WO2016034121A1 - 用于通信设备直流电源端口的防雷保护电路及方法 - Google Patents

用于通信设备直流电源端口的防雷保护电路及方法 Download PDF

Info

Publication number
WO2016034121A1
WO2016034121A1 PCT/CN2015/088833 CN2015088833W WO2016034121A1 WO 2016034121 A1 WO2016034121 A1 WO 2016034121A1 CN 2015088833 W CN2015088833 W CN 2015088833W WO 2016034121 A1 WO2016034121 A1 WO 2016034121A1
Authority
WO
WIPO (PCT)
Prior art keywords
lightning protection
protection circuit
differential mode
voltage
communication device
Prior art date
Application number
PCT/CN2015/088833
Other languages
English (en)
French (fr)
Inventor
李虎
Original Assignee
烽火通信科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烽火通信科技股份有限公司 filed Critical 烽火通信科技股份有限公司
Publication of WO2016034121A1 publication Critical patent/WO2016034121A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/06Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage using spark-gap arresters

Definitions

  • the present invention relates to the field of application of communication equipment products, and in particular, to a lightning protection circuit and method for a DC power port of a communication device.
  • communication equipment Many office (station) communication equipment (hereinafter referred to as communication equipment) are hanged to unmanned stations, outdoor cabinets, poles, etc. Used in outdoor scenes.
  • the functional circuits of the DC power port of the existing communication device include a master-slave power combination control circuit, an electromechanical management circuit, a DC/DC (DC chopper) isolated power supply circuit, and an EMI (Electromagnetic Interference) circuit.
  • a master-slave power combination control circuit an electromechanical management circuit
  • a DC/DC (DC chopper) isolated power supply circuit an electromechanical management circuit
  • EMI Electromagnetic Interference
  • EMI Electromagnetic Interference
  • the multi-level voltage limiting and decoupling circuit can protect the communication equipment in the outdoor scene, the lightning protection efficiency is low, the high residual voltage and residual voltage are maintained for a long time, and the multi-level voltage limiting and Circuits and components with large decoupling circuits are difficult to be compatible with in miniaturized communication devices. Therefore, when the multi-level voltage limiting and decoupling circuit is used for lightning protection of the communication device, not only the lightning protection efficiency is low, but also it can only be applied to a communication device with a large size, and the application range is relatively simple, which is difficult to meet the requirements of the communication carrier. .
  • the object of the present invention is to provide a lightning protection circuit and method for a DC power port of a communication device, which has high lightning protection efficiency and short maintenance time of high residual voltage and residual voltage. It can reduce the risk of lightning damage on the DC power port of the communication device and the risk of overvoltage and overcurrent impact on the DC power port of each service disk. It is not only safe, but also applicable to a wide range of applications.
  • a lightning protection circuit for a DC power port of a communication device including a differential mode first-level lightning protection circuit, a decoupling network, and a differential mode second-level lightning protection circuit. And a common mode lightning protection circuit; the input end of the DC power supply of the communication device is sequentially connected to the output end of the power supply through the differential mode first-level lightning protection circuit, the decoupling network, and the differential mode second-level lightning protection circuit, and the communication device DC power supply The input end is connected to the protective ground PE through a common mode lightning protection circuit;
  • the differential mode first-level lightning protection circuit comprises a first gas discharge tube GDT1 connected in series between a negative input terminal and a positive input end of a DC power supply of the communication device, and a first varistor The MOV1 and the first fuse F1;
  • the differential mode second-stage lightning protection circuit comprises a second varistor MOV2 and a second fuse F2 connected in series between the negative output terminal of the DC power supply of the communication device and the positive output terminal;
  • the decoupling network comprises a series connection Inductive or resistive device T and decoupling fuse F3 between the differential mode first-level lightning protection circuit and the differential mode second-level lightning protection circuit;
  • the common mode lightning protection circuit includes a series connection at the positive input end of the power supply and the protective ground PE Lightning protection gas discharge tube GDT2;
  • the differential mode first-level lightning protection circuit is configured to: perform a rough limit voltage on a sudden voltage of a DC power supply of the communication device, and consume a differential mode energy;
  • the decoupling network is configured to: form a time lag effect on abrupt voltage and current of a DC power supply of the communication device, and implement a decoupling function between the differential mode first lightning protection circuit and the differential mode second lightning protection circuit;
  • the differential mode second-level lightning protection circuit is configured to: accurately limit the residual voltage of the first-stage lightning strike voltage of the differential mode, so that the DC power of the communication device is protected from the over-voltage and over-current energy;
  • the common mode lightning protection circuit is configured to: connect a sudden current of a DC power supply of the communication device to the protective ground PE.
  • the first gas discharge tube GDT1, the first varistor MOV1 and the first fuse F1 are sequentially connected; the second varistor MOV2 and the second fuse F2 are sequentially connected; the inductance or the resistance
  • the device T includes a first pin PIN1, a second pin PIN2, a third pin PIN3, and a fourth pin PIN4.
  • the first pin PIN1 is respectively discharged to the negative input terminal of the power supply through the decoupling fuse F3, and the first gas is discharged.
  • the GDT1 is connected; the third pin PIN3 is respectively connected to the positive input terminal of the power source, the first fuse F1, and the lightning protection gas discharge tube GDT2; the second pin PIN2 of T is respectively connected with the negative output terminal of the power supply and the second varistor MOV2 is connected; the fourth pin PIN4 of T is respectively connected to the positive output terminal of the power source and the second fuse F2;
  • the differential mode first-level lightning protection circuit and the differential mode are controlled.
  • the second-level lightning protection circuit and the common-mode lightning protection circuit are all in an open state; when the DC power supply of the communication device is not normally powered, the abrupt voltage of the DC power supply causes the first varistor MOV1, the first gas discharge tube GDT1, and the lightning protection gas to discharge The tube GDT2 is in a low resistance conduction state;
  • the first varistor MOV1 and the first gas discharge tube GDT1 share voltage from the positive input terminal and the negative input terminal of the power source; the first varistor MOV1 and the first gas discharge tube GDT1 are introduced from the positive input terminal and the negative input terminal of the power source.
  • Clamping current, lightning protection gas discharge tube GDT2 connects part of the clamping current to the protective ground PE; the clamp current flows through the first varistor MOV1, the first gas discharge tube GDT1 and the inductor or resistive device T to the differential mode second Level lightning protection circuit; the inductor or resistive device T forms a voltage drop to the clamp current;
  • the second varistor MOV2 of the differential mode second-level lightning protection circuit is in a low-resistance conduction state, and the second varistor MOV2 limits its own voltage to 150V; the clamp current flows through the second varistor MOV2 to a negative output terminal and a positive output terminal of the power supply;
  • the first-level lightning protection circuit, decoupling network, differential mode second-level lightning protection circuit and common mode lightning protection circuit continue to work until the differential mode first-level lightning protection circuit, differential mode second-level lightning protection circuit and common mode protection The lightning circuit is restored to an open state.
  • the 1 mA operating voltage of the first varistor MOV1 is 33V to 39V, the maximum lightning current is 5KA, 8/20 ⁇ s; the DC breakdown voltage of the first gas discharge tube GDT1 is greater than 75V, the maximum The lightning current is 5KA, 8/20 ⁇ s; the first fuse F1 uses a slow-blow fuse with a breaking voltage greater than 125V and a slow melting 7A.
  • the decoupling fuse F3 of the decoupling network adopts a slow-blow fuse, and the breaking voltage is greater than 125V, and the fusing current satisfies the maximum operating current requirement of the circuit; the inductance of the inductive or resistive device T is not less than 5 ⁇ H. The maximum flow meets the maximum operating current requirement of the circuit.
  • the 1 mA operating voltage range of the second varistor MOV2 of the differential mode second-level lightning protection circuit is 82V-100V, and the maximum lightning current is 5KA, 8/20 ⁇ s;
  • the second fuse F2 uses a slow-blow fuse with a breaking voltage greater than 125V and a slow-melting 5A.
  • the lightning breakdown gas discharge tube GDT2 of the common mode lightning protection circuit has a DC breakdown voltage greater than 75V, and the maximum lightning strike current is 5KA, 8/20 ⁇ s.
  • a low residual voltage lightning protection method for a DC power port of a communication device based on the above circuit comprising the following steps:
  • the differential mode first-level lightning protection circuit, the differential mode second-level lightning protection circuit and the common-mode lightning protection circuit are all in an open state.
  • the abrupt voltage of the DC power supply makes the first pressure sensitive
  • the resistor MOV1, the first gas discharge tube GDT1 and the lightning protection gas discharge tube GDT2 are in a low resistance conduction state;
  • the first varistor MOV1 and the first gas discharge tube GDT1 share voltage from the positive input terminal and the negative input terminal of the power source; the first varistor MOV1 and the first gas discharge tube GDT1 are input from the positive input terminal and the negative terminal of the power source.
  • the clamp current is introduced at the end, and the lightning protection gas discharge tube GDT2 connects part of the clamping current to the protective ground PE; the clamp current flows to the differential mode through the first varistor MOV1, the first gas discharge tube GDT1, and the inductor or resistive device T.
  • a second level lightning protection circuit the inductive or resistive device T forms a voltage drop to the clamp current;
  • the second varistor MOV2 of the differential mode second-level lightning protection circuit is in a low-resistance conduction state, and the second varistor MOV2 limits its own voltage to 150V; the clamp current passes through the second varistor MOV2 Flow to the negative output of the power supply and the positive output;
  • the differential mode first-level lightning protection circuit of the present invention can coarsely limit the abrupt voltage of the DC power supply of the communication device, and consume most of the differential mode energy; common mode lightning protection The circuit is capable of abrupt currents of the DC power supply of the communication device Grounding further consumes differential mode energy; the differential mode second-level lightning protection circuit can accurately limit the residual voltage of the first-order lightning strike voltage of the differential mode, so that the DC power supply of the communication device is protected from over-voltage and over-current energy.
  • the present invention can pass the differential mode first-level lightning protection circuit and the differential mode second-level lightning protection.
  • the circuit and the common mode lightning protection circuit protect the DC power supply of the communication device, not only the lightning protection efficiency is high, but also the maintenance time of the high residual voltage and the residual voltage is short, which reduces the risk of lightning damage of the DC power port of the communication device, and each The risk of overvoltage and overcurrent impact on the DC power port of the service disk is relatively safe to use.
  • the inductive or resistive device of the present invention is capable of forming a voltage drop across a common mode inductor on a current leaking to a differential mode second stage lightning protection circuit, and broadening the energy envelope, thereby limiting the differential mode first level lightning protection.
  • the voltage and current of the circuit flowing to the differential mode second-stage lightning protection circuit are abrupt; further ensuring the safety of the invention.
  • circuit component of the present invention is small and can be applied to a communication device that is compact in an outdoor scene, the scope of application of the present invention is relatively wide and is convenient for people to use.
  • FIG. 1 is a circuit diagram of a lightning protection circuit for a DC power port of a communication device according to an embodiment of the present invention.
  • a lightning protection circuit for a DC power port of a communication device in the embodiment of the present invention includes a differential mode first-level lightning protection circuit, a decoupling network, a differential mode second-level lightning protection circuit, and a common mode. Lightning protection circuit.
  • the input end of the DC power supply of the communication device passes through the differential mode first-level lightning protection circuit and decoupling
  • the network and differential mode second-level lightning protection circuit is connected to the output end of the power supply, and the input end of the DC power supply of the communication device is connected to the protection ground PE through the common mode lightning protection circuit.
  • the differential mode first-level lightning protection circuit comprises a first gas discharge tube GDT1, a first varistor MOV1 and a first fuse F1 connected in series between a negative input terminal and a positive input end of the DC power supply of the communication device;
  • the lightning circuit comprises a second varistor MOV2 and a second fuse F2 connected in series between the negative output terminal of the DC power supply of the communication device and the positive output terminal;
  • the decoupling network comprises a first-stage lightning protection circuit and a differential mode second connected in series in the differential mode Inductive or resistive device T and decoupling fuse F3 between the lightning protection circuits;
  • the common mode lightning protection circuit comprises a lightning protection gas discharge tube GDT2 connected in series between the positive input end of the power supply and the protective ground PE.
  • the differential mode first-level lightning protection circuit is used for: rough limiting the abrupt voltage of the DC power supply of the communication device, and consuming differential mode energy.
  • the decoupling network is used to form a time lag effect on the abrupt voltage and current of the DC power supply of the communication device, and realize the decoupling function between the differential mode first lightning protection circuit and the differential mode second lightning protection circuit.
  • the differential mode second-level lightning protection circuit is used to: accurately limit the residual voltage of the first-stage lightning strike voltage of the differential mode, so that the DC power supply of the communication device is protected from the over-voltage and over-current energy.
  • the common mode lightning protection circuit is used to: connect the abrupt current of the DC power supply of the communication device to the protective ground PE.
  • the first gas discharge tube GDT1, the first varistor MOV1 and the first fuse F1 are sequentially connected; the second varistor MOV2 and the second fuse F2 are sequentially connected.
  • the inductive or resistive device T includes a first pin PIN1, a second pin PIN2, a third pin PIN3, and a fourth pin PIN4.
  • the first pin PIN1 passes through the decoupling fuse F3 and the negative input terminal of the power supply, respectively.
  • a gas discharge tube GDT1 is connected; the third pin PIN3 is respectively connected to the positive input terminal of the power source, the first fuse F1, and the lightning protection gas discharge tube GDT2 Connected; the second pin PIN2 is respectively connected to the negative output terminal of the power supply and the second varistor MOV2; the fourth pin PIN4 is respectively connected to the positive output terminal of the power supply and the second fuse F2.
  • the 1mA operating voltage of the first varistor MOV1 of the differential mode first-level lightning protection circuit is 33V-39V, and the maximum lightning strike current is 5KA, 8/20 ⁇ s.
  • the DC breakdown voltage of the first gas discharge tube GDT1 is greater than 75V, and the maximum lightning current is 5KA, 8/20 ⁇ s.
  • the first fuse F1 uses a slow-blow fuse with a breaking voltage greater than 125V and a slow melting 7A.
  • the decoupling fuse F3 of the decoupling network uses a slow-blow fuse with a breaking voltage greater than 125V, and the fusing current satisfies the maximum operating current requirement of the circuit.
  • the inductance of the inductive or resistive device T is not less than 5 ⁇ H, and the maximum through current satisfies the maximum operating current requirement of the circuit.
  • the 1mA operating voltage range of the second varistor MOV2 of the differential mode second-level lightning protection circuit is 82V-100V, and the maximum lightning current is 5KA, 8/20 ⁇ s.
  • the second fuse F2 uses a slow-blow fuse with a breaking voltage greater than 125V and a slow melting 5A.
  • the lightning breakdown gas discharge tube GDT2 of the common mode lightning protection circuit has a DC breakdown voltage of more than 75V, and the maximum lightning strike current is 5KA, 8/20 ⁇ s.
  • step S1 controlling the differential mode first-level lightning protection circuit, the differential mode second-level lightning protection circuit, and the common mode lightning protection circuit are all in an open state, determining whether the DC power supply of the communication device is normally powered, and if so, performing step S1 again, otherwise determining communication
  • the DC power supply of the device is subjected to a high voltage attack (for example, a lightning strike), and the abrupt voltage of the DC power source causes the first varistor MOV1, the first gas discharge tube GDT1, and the lightning protection gas discharge tube GDT2 to be in a low-resistance conduction state, and proceeds to step S2.
  • the first varistor MOV1 and the first gas discharge tube GDT1 share voltage from the positive input terminal and the negative input terminal of the power source.
  • First varistor MOV1 and first gas The discharge tube GDT1 introduces a clamp current from the positive input terminal and the negative input terminal of the power source, and the lightning protection gas discharge tube GDT2 connects a part of the clamp current to the protection ground PE.
  • the clamp current flows through the first varistor MOV1, the first gas discharge tube GDT1, and the inductive or resistive device T to the differential mode second-stage lightning protection circuit; the inductive or resistive device T forms a voltage drop to the clamp current, and Enlarge the energy envelope.
  • the second varistor MOV2 of the differential mode second-level lightning protection circuit is in a low-resistance conduction state, the second varistor MOV2 limits its own voltage within 150V; the clamp current passes through the second varistor MOV2 Flow to the negative output of the power supply and the positive output.
  • Steps S2 to S3 are executed cyclically until the differential mode first-level lightning protection circuit, the differential mode second-level lightning protection circuit, and the common mode lightning protection circuit are restored to an open state.
  • the inductor or resistive device T uses its own hysteresis characteristic to form a voltage drop across the common mode inductor of the current that leaks to the differential mode second-stage lightning protection circuit, and the energy The envelope is broadened to limit the voltage and current abrupt changes in the differential mode first-level lightning protection circuit to the differential mode second-level lightning protection circuit.
  • the second fuse F2 and the decoupling fuse F3 can prevent the circuit from being abnormally short-circuited.
  • the voltage and current of the differential mode first-level lightning protection circuit, the differential mode second-level lightning protection circuit, and the common mode lightning protection circuit are reduced, thereby making the differential mode first-level lightning protection circuit
  • the differential mode second-level lightning protection circuit and the common mode lightning protection circuit are restored from the low-resistance conduction state to the disconnected state.

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Protection Of Static Devices (AREA)

Abstract

一种用于通信设备直流电源端口的防雷保护电路及方法。该电路包括对通信设备直流电源的突变电压进行粗限压的差模第一级防雷电路,对通信设备直流电源的突变电压和电流形成时滞效应、实现差模第一防雷电路和差模第二级防雷电路之间的去耦合功能的退耦合网络,对差模第一级雷击电压的残压进行精确限压、使得通信设备直流电源免受过压过流能量冲击的差模第二级防雷电路,以及将通信设备直流电源的突变电流接保护地(PE)的共模防雷电路。该防雷保护电路及方法的防雷效率较高,残压维持时间较短,能够降低通信设备直流电源端口的雷击损坏风险、以及各业务盘直流电源端口的过压过流冲击风险。

Description

用于通信设备直流电源端口的防雷保护电路及方法 技术领域
本发明涉及通信设备产品应用领域,具体涉及一种用于通信设备直流电源端口的防雷保护电路及方法。
背景技术
随着信息技术的快速发展,通信运营商对通信设备的使用环境要求越来越高,许多局(站)通信设备(以下简称通信设备)被下挂到无人站、室外柜、抱杆等室外场景中使用。
现有的通信设备的直流电源端口的功能电路包括主备电源合路控制电路、机电管理电路、DC/DC(直流斩波器)隔离电源电路、EMI(Electromagnetic Interference,电磁干扰)电路等。通信设备的功能电路的在无人站、室外柜、抱杆等室外场景中使用时,由于室外场景中的外界干扰因素较多(例如雷击或者地电位反等),而且通信设备的功能电路的安全性能等级(耐压等级、抗冲击等级、抗过压等级)较低,因此通信设备在干扰因素较多的室外场景中使用时,耦合雷击和接地系统的地电位反击可能会损坏通信设备的直流电源端口的功能电路,进而使得通信设备无法使用,安全存在极大的隐患。
目前,人们采用2种办法对通信设备进行防雷保护:1、为通信设备增加单一的防护器件,2、通过多级限压和退耦电路,逐级抑制后达到直流电源端口功能电路抗过压要求。但是,上述2种办法分别存在以下缺陷:
(1)随着通信设备适用环境的扩大,通信设备在业务功能增加 的同时设备尺寸小型化,进而使得通信设备的空间集成密度显著增加。由于通信设备的元器件的空间限制,在室外场景中使用的通信设备直流电源端口无法使用单一的防护器件完成防雷保护功能,因此,设置有单一防护器件的通信设备难以在室外场景中使用,其适用范围比较单一,难以满足通信运营商的需求。
(2)通过多级限压和退耦电路虽然能够对室外场景中的通信设备进行防雷,但是防雷保护效率低,高残压和残压的维持时间较长,而且多级限压和退耦电路庞大的电路和元件难以兼容在小型化的通信设备中。因此,通过多级限压和退耦电路为通信设备防雷时,不仅防雷保护效率低,而且只能适用于尺寸较大的通信设备,其适用范围比较单一,难以满足通信运营商的需求。
发明内容
针对现有技术中存在的缺陷,本发明的目的在于提供一种用于通信设备直流电源端口的防雷保护电路及方法,防雷效率较高,高残压和残压的维持时间较短,能够降低通信设备直流电源端口的雷击损坏风险、以及各业务盘直流电源端口过压过流冲击风险,不仅比较安全,而且适用范围比较广泛,便于人们使用。
为达到以上目的,本发明采取的技术方案是:一种用于通信设备直流电源端口的防雷保护电路,包括差模第一级防雷电路、退耦合网络、差模第二级防雷电路和共模防雷电路;所述通信设备直流电源的输入端依次通过差模第一级防雷电路、退耦合网络、差模第二级防雷电路与电源的输出端相连,通信设备直流电源的输入端通过共模防雷电路接保护地PE;
所述差模第一级防雷电路包括串联在通信设备直流电源负极输入端与正极输入端之间的第一气体放电管GDT1、第一压敏电阻 MOV1和第一保险丝F1;差模第二级防雷电路包括串联在通信设备直流电源负极输出端与正极输出端之间的第二压敏电阻MOV2和第二保险丝F2;退耦合网络包括串联在差模第一级防雷电路和差模第二级防雷电路之间的电感或阻性器件T和退耦保险丝F3;共模防雷电路包括串联在电源正极输入端与接保护地PE之间的防雷气体放电管GDT2;
所述差模第一级防雷电路用于:对通信设备直流电源的突变电压进行粗限压,消耗差模能量;
所述退耦合网络用于:对通信设备直流电源的突变电压和电流形成时滞效应,实现差模第一防雷电路和差模第二级防雷电路之间的去耦合功能;
所述差模第二级防雷电路用于:对差模第一级雷击电压的残压进行精确限压,使得通信设备直流电源免受过压过流能量冲击;
所述共模防雷电路用于:将通信设备直流电源的突变电流接保护地PE。
在上述技术方案的基础上,所述第一气体放电管GDT1、第一压敏电阻MOV1和第一保险丝F1顺次相连;第二压敏电阻MOV2和第二保险丝F2顺次相连;电感或阻性器件T包括第一引脚PIN1、第二引脚PIN2、第三引脚PIN3和第四引脚PIN4;第一引脚PIN1通过退耦保险丝F3分别与电源的负极输入端、第一气体放电管GDT1相连;第三引脚PIN3分别与电源的正极输入端、第一保险丝F1、防雷气体放电管GDT2相连;T的第二引脚PIN2分别与电源的负极输出端、第二压敏电阻MOV2相连;T的第四引脚PIN4分别与电源的正极输出端、第二保险丝F2相连;
所述防雷保护电路进行防雷时,控制差模第一级防雷电路、差模 第二级防雷电路和共模防雷电路均处于开路状态;通信设备直流电源未正常供电时,直流电源的突变电压使得第一压敏电阻MOV1、第一气体放电管GDT1和防雷气体放电管GDT2处于低阻导通状态;
第一压敏电阻MOV1和第一气体放电管GDT1从电源的正极输入端和负极输入端分担电压;第一压敏电阻MOV1和第一气体放电管GDT1从电源的正极输入端和负极输入端导入钳位电流,防雷气体放电管GDT2将部分钳位电流接保护地PE;钳位电流通过第一压敏电阻MOV1、第一气体放电管GDT1和电感或阻性器件T流至差模第二级防雷电路;电感或阻性器件T对钳位电流形成电压降;
差模第二级防雷电路的第二压敏电阻MOV2处于低阻导通状态,第二压敏电阻MOV2将自身的电压限制在150V之内;钳位电流通过第二压敏电阻MOV2流至电源的负极输出端和正极输出端;
第一级防雷电路、退耦合网络、差模第二级防雷电路和共模防雷电路持续工作,直至差模第一级防雷电路、差模第二级防雷电路和共模防雷电路均恢复至开路状态。
在上述技术方案的基础上,所述第一压敏电阻MOV1的1mA动作电压为33V~39V,最大雷击电流为5KA,8/20μs;第一气体放电管GDT1的直流击穿电压大于75V,最大雷击电流为5KA,8/20μs;第一保险丝F1采用慢熔断保险丝,其分断电压大于125V,慢熔7A。
在上述技术方案的基础上,所述退耦合网络的退耦保险丝F3采用慢熔断保险丝,其分断电压大于125V,熔断电流满足电路最大工作电流需求;电感或阻性器件T的感量不小于5μH,最大通流满足电路最大工作电流需求。
在上述技术方案的基础上,所述差模第二级防雷电路的第二压敏电阻MOV2的1mA动作电压范围为82V~100V,最大雷击电流为 5KA,8/20μs;第二保险丝F2采用慢熔断保险丝,其分断电压大于125V,慢熔5A。
在上述技术方案的基础上,所述共模防雷电路的防雷气体放电管GDT2的直流击穿电压大于75V,最大雷击电流为5KA,8/20μs。
一种基于上述电路的用于通信设备直流电源端口的低残压的防雷保护方法,包括以下步骤:
A、控制差模第一级防雷电路、差模第二级防雷电路和共模防雷电路均处于开路状态,通信设备直流电源未正常供电时,直流电源的突变电压使得第一压敏电阻MOV1、第一气体放电管GDT1和防雷气体放电管GDT2处于低阻导通状态;
B、第一压敏电阻MOV1和第一气体放电管GDT1从电源的正极输入端和负极输入端分担电压;第一压敏电阻MOV1和第一气体放电管GDT1从电源的正极输入端和负极输入端导入钳位电流,防雷气体放电管GDT2将部分钳位电流接保护地PE;钳位电流通过第一压敏电阻MOV1、第一气体放电管GDT1和电感或阻性器件T流至差模第二级防雷电路;电感或阻性器件T对钳位电流形成电压降;
C、差模第二级防雷电路的第二压敏电阻MOV2处于低阻导通状态,第二压敏电阻MOV2将自身的电压限制在150V之内;钳位电流通过第二压敏电阻MOV2流至电源的负极输出端和正极输出端;
D、循环执行步骤B~C,直至差模第一级防雷电路、差模第二级防雷电路和共模防雷电路均恢复至开路状态。
与现有技术相比,本发明的优点在于:
(1)通信设备直流电源受到攻击(雷击)时,本发明的差模第一级防雷电路能够对通信设备直流电源的突变电压进行粗限压,消耗大部分差模能量;共模防雷电路能够将通信设备直流电源的突变电流 接地,进一步消耗差模能量;差模第二级防雷电路能够对差模第一级雷击电压的残压实现精确限压,以使得通信设备直流电源免受过压过流能量冲击。
与现有技术中防雷保护效率低,高残压维持时间较长的多级限压和退耦电路相比,本发明能够通过差模第一级防雷电路、差模第二级防雷电路和共模防雷电路对通信设备直流电源进行防雷,不仅防雷效率较高,而且高残压和残压的维持时间较短,降低了通信设备直流电源端口的雷击损坏风险、以及各业务盘直流电源端口过压过流冲击风险,使用比较安全。
(2)本发明的电感或阻性器件能够将漏向差模第二级防雷电路的电流在共模电感上形成电压降,并将能量包络展宽,从而限制差模第一级防雷电路流向差模第二级防雷电路的传递的电压和电流突变;进一步保证本发明使用的安全。
(3)本发明的电路元器件较小,能够适用于室外场景的小型化的通信设备中,因此,本发明的适用范围比较广泛,便于人们使用。
附图说明
图1为本发明实施例中用于通信设备直流电源端口的防雷保护电路的电路图。
具体实施方式
以下结合附图及实施例对本发明作进一步详细说明。
参见图1所示,本发明实施例中的用于通信设备直流电源端口的防雷保护电路,包括差模第一级防雷电路、退耦合网络、差模第二级防雷电路和共模防雷电路。
通信设备直流电源的输入端依次通过差模第一级防雷电路、退耦 合网络、差模第二级防雷电路与电源的输出端相连,通信设备直流电源的输入端通过共模防雷电路接保护地PE。
差模第一级防雷电路包括串联在通信设备直流电源负极输入端与正极输入端之间的第一气体放电管GDT1、第一压敏电阻MOV1和第一保险丝F1;差模第二级防雷电路包括串联在通信设备直流电源负极输出端与正极输出端之间的第二压敏电阻MOV2和第二保险丝F2;退耦合网络包括串联在差模第一级防雷电路和差模第二级防雷电路之间的电感或阻性器件T和退耦保险丝F3;共模防雷电路包括串联在电源正极输入端与接保护地PE之间的防雷气体放电管GDT2。
差模第一级防雷电路用于:对通信设备直流电源的突变电压进行粗限压,消耗差模能量。
退耦合网络用于:对通信设备直流电源的突变电压和电流形成时滞效应,实现差模第一防雷电路和差模第二级防雷电路之间的去耦合功能。
差模第二级防雷电路用于:对差模第一级雷击电压的残压进行精确限压,使得通信设备直流电源免受过压过流能量冲击。
共模防雷电路用于:将通信设备直流电源的突变电流接保护地PE。
本实施例中的第一气体放电管GDT1、第一压敏电阻MOV1和第一保险丝F1顺次相连;第二压敏电阻MOV2和第二保险丝F2顺次相连。电感或阻性器件T包括第一引脚PIN1、第二引脚PIN2、第三引脚PIN3和第四引脚PIN4,第一引脚PIN1通过退耦保险丝F3分别与电源的负极输入端、第一气体放电管GDT1相连;第三引脚PIN3分别与电源的正极输入端、第一保险丝F1、防雷气体放电管GDT2 相连;第二引脚PIN2分别与电源的负极输出端、第二压敏电阻MOV2相连;第四引脚PIN4分别与电源的正极输出端、第二保险丝F2相连。
本实施例中差模第一级防雷电路的第一压敏电阻MOV1的1mA动作电压为33V~39V,最大雷击电流为5KA,8/20μs。第一气体放电管GDT1的直流击穿电压大于75V,最大雷击电流为5KA,8/20μs。第一保险丝F1采用慢熔断保险丝,其分断电压大于125V,慢熔7A。
退耦合网络的退耦保险丝F3采用慢熔断保险丝,其分断电压大于125V,熔断电流满足电路最大工作电流需求。电感或阻性器件T的感量不小于5μH,最大通流满足电路最大工作电流需求。
差模第二级防雷电路的第二压敏电阻MOV2的1mA动作电压范围为82V~100V,最大雷击电流为5KA,8/20μs。第二保险丝F2采用慢熔断保险丝,其分断电压大于125V,慢熔5A。
共模防雷电路的防雷气体放电管GDT2的直流击穿电压大于75V,最大雷击电流为5KA,8/20μs。
本发明实施例中的基于上述电路的用于通信设备直流电源端口的低残压的防雷保护方法,包括以下步骤:
S1:控制差模第一级防雷电路、差模第二级防雷电路和共模防雷电路均处于开路状态,判断通信设备直流电源是否正常供电,若是,重新执行步骤S1,否则确定通信设备直流电源受到高压攻击(例如雷击),直流电源的突变电压使得第一压敏电阻MOV1、第一气体放电管GDT1和防雷气体放电管GDT2处于低阻导通状态,转到步骤S2。
S2:第一压敏电阻MOV1和第一气体放电管GDT1从电源的正极输入端和负极输入端分担电压。第一压敏电阻MOV1和第一气体 放电管GDT1从电源的正极输入端和负极输入端导入钳位电流,防雷气体放电管GDT2将部分钳位电流接保护地PE。钳位电流通过第一压敏电阻MOV1、第一气体放电管GDT1和电感或阻性器件T流至差模第二级防雷电路;电感或阻性器件T对钳位电流形成电压降、并将能量包络展宽。
S3:差模第二级防雷电路的第二压敏电阻MOV2处于低阻导通状态,第二压敏电阻MOV2将自身的电压限制在150V之内;钳位电流通过第二压敏电阻MOV2流至电源的负极输出端和正极输出端。
S4:循环执行步骤S2~S3,直至差模第一级防雷电路、差模第二级防雷电路和共模防雷电路均恢复至开路状态。
本发明实施例中用于通信设备直流电源端口的低残压的防雷保护方法的工作原理如下:
钳位电流流经电感或阻性器件T时,电感或阻性器件T利用自身的迟滞特性,将漏向差模第二级防雷电路的电流在共模电感上形成电压降,并将能量包络展宽,从而限制差模第一级防雷电路流向差模第二级防雷电路的传递的电压和电流突变。第一保险丝F1。第二保险丝F2和退耦保险丝F3能够防止电路异常短路。
通信设备直流电源的电压减小时,差模第一级防雷电路、差模第二级防雷电路和共模防雷电路的电压和电流均减小,进而使得差模第一级防雷电路、差模第二级防雷电路和共模防雷电路从低阻导通状态恢复至断开状态。
本发明不局限于上述实施方式,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围之内。本说明书中未作详细描述的内容属于本领域专业技术人员公知的现有技术。

Claims (7)

  1. 一种用于通信设备直流电源端口的防雷保护电路,其特征在于:包括差模第一级防雷电路、退耦合网络、差模第二级防雷电路和共模防雷电路;所述通信设备直流电源的输入端依次通过差模第一级防雷电路、退耦合网络、差模第二级防雷电路与电源的输出端相连,通信设备直流电源的输入端通过共模防雷电路接保护地PE;
    所述差模第一级防雷电路包括串联在通信设备直流电源负极输入端与正极输入端之间的第一气体放电管GDT1、第一压敏电阻MOV1和第一保险丝F1;差模第二级防雷电路包括串联在通信设备直流电源负极输出端与正极输出端之间的第二压敏电阻MOV2和第二保险丝F2;退耦合网络包括串联在差模第一级防雷电路和差模第二级防雷电路之间的电感或阻性器件T和退耦保险丝F3;共模防雷电路包括串联在电源正极输入端与接保护地PE之间的防雷气体放电管GDT2;
    所述差模第一级防雷电路用于:对通信设备直流电源的突变电压进行粗限压,消耗差模能量;
    所述退耦合网络用于:对通信设备直流电源的突变电压和电流形成时滞效应,实现差模第一防雷电路和差模第二级防雷电路之间的去耦合功能;
    所述差模第二级防雷电路用于:对差模第一级雷击电压的残压进行精确限压,使得通信设备直流电源免受过压过流能量冲击;
    所述共模防雷电路用于:将通信设备直流电源的突变电流接保护地PE。
  2. 如权利要求1所述的用于通信设备直流电源端口的防雷保护电路,其特征在于:所述第一气体放电管GDT1、第一压敏电阻MOV1 和第一保险丝F1顺次相连;第二压敏电阻MOV2和第二保险丝F2顺次相连;电感或阻性器件T包括第一引脚PIN1、第二引脚PIN2、第三引脚PIN3和第四引脚PIN4;第一引脚PIN1通过退耦保险丝F3分别与电源的负极输入端、第一气体放电管GDT1相连;第三引脚PIN3分别与电源的正极输入端、第一保险丝F1、防雷气体放电管GDT2相连;T的第二引脚PIN2分别与电源的负极输出端、第二压敏电阻MOV2相连;T的第四引脚PIN4分别与电源的正极输出端、第二保险丝F2相连;
    所述防雷保护电路进行防雷时,控制差模第一级防雷电路、差模第二级防雷电路和共模防雷电路均处于开路状态;通信设备直流电源未正常供电时,直流电源的突变电压使得第一压敏电阻MOV1、第一气体放电管GDT1和防雷气体放电管GDT2处于低阻导通状态;
    第一压敏电阻MOV1和第一气体放电管GDT1从电源的正极输入端和负极输入端分担电压;第一压敏电阻MOV1和第一气体放电管GDT1从电源的正极输入端和负极输入端导入钳位电流,防雷气体放电管GDT2将部分钳位电流接保护地PE;钳位电流通过第一压敏电阻MOV1、第一气体放电管GDT1和电感或阻性器件T流至差模第二级防雷电路;电感或阻性器件T对钳位电流形成电压降;
    差模第二级防雷电路的第二压敏电阻MOV2处于低阻导通状态,第二压敏电阻MOV2将自身的电压限制在150V之内;钳位电流通过第二压敏电阻MOV2流至电源的负极输出端和正极输出端;
    第一级防雷电路、退耦合网络、差模第二级防雷电路和共模防雷电路持续工作,直至差模第一级防雷电路、差模第二级防雷电路和共模防雷电路均恢复至开路状态。
  3. 如权利要求1或2所述的用于通信设备直流电源端口的防雷 保护电路,其特征在于:所述第一压敏电阻MOV1的1mA动作电压为33V~39V,最大雷击电流为5KA,8/20μs;第一气体放电管GDT1的直流击穿电压大于75V,最大雷击电流为5KA,8/20μs;第一保险丝F1采用慢熔断保险丝,其分断电压大于125V,慢熔7A。
  4. 如权利要求1或2所述的用于通信设备直流电源端口的防雷保护电路,其特征在于:所述退耦合网络的退耦保险丝F3采用慢熔断保险丝,其分断电压大于125V,熔断电流满足电路最大工作电流需求;电感或阻性器件T的感量不小于5μH,最大通流满足电路最大工作电流需求。
  5. 如权利要求1或2所述的用于通信设备直流电源端口的防雷保护电路,其特征在于:所述差模第二级防雷电路的第二压敏电阻MOV2的1mA动作电压范围为82V~100V,最大雷击电流为5KA,8/20μs;第二保险丝F2采用慢熔断保险丝,其分断电压大于125V,慢熔5A。
  6. 如权利要求1或2所述的用于通信设备直流电源端口的防雷保护电路,其特征在于:所述共模防雷电路的防雷气体放电管GDT2的直流击穿电压大于75V,最大雷击电流为5KA,8/20μs。
  7. 一种基于权利要求1至6任一项所述电路的用于通信设备直流电源端口的低残压的防雷保护方法,其特征在于,包括以下步骤:
    A、控制差模第一级防雷电路、差模第二级防雷电路和共模防雷电路均处于开路状态,通信设备直流电源未正常供电时,直流电源的突变电压使得第一压敏电阻MOV1、第一气体放电管GDT1和防雷气体放电管GDT2处于低阻导通状态;
    B、第一压敏电阻MOV1和第一气体放电管GDT1从电源的正极输入端和负极输入端分担电压;第一压敏电阻MOV1和第一气体放 电管GDT1从电源的正极输入端和负极输入端导入钳位电流,防雷气体放电管GDT2将部分钳位电流接保护地PE;钳位电流通过第一压敏电阻MOV1、第一气体放电管GDT1和电感或阻性器件T流至差模第二级防雷电路;电感或阻性器件T对钳位电流形成电压降;
    C、差模第二级防雷电路的第二压敏电阻MOV2处于低阻导通状态,第二压敏电阻MOV2将自身的电压限制在150V之内;钳位电流通过第二压敏电阻MOV2流至电源的负极输出端和正极输出端;
    D、循环执行步骤B~C,直至差模第一级防雷电路、差模第二级防雷电路和共模防雷电路均恢复至开路状态。
PCT/CN2015/088833 2014-09-03 2015-09-02 用于通信设备直流电源端口的防雷保护电路及方法 WO2016034121A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410445412.6 2014-09-03
CN201410445412.6A CN104253426A (zh) 2014-09-03 2014-09-03 用于通信设备直流电源端口的防雷保护电路及方法

Publications (1)

Publication Number Publication Date
WO2016034121A1 true WO2016034121A1 (zh) 2016-03-10

Family

ID=52188078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/088833 WO2016034121A1 (zh) 2014-09-03 2015-09-02 用于通信设备直流电源端口的防雷保护电路及方法

Country Status (2)

Country Link
CN (1) CN104253426A (zh)
WO (1) WO2016034121A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107454707A (zh) * 2017-05-15 2017-12-08 上海路傲电子科技有限公司 一种可吸收金属基板漏电流的led照明线性恒流驱动电路
CN108832714A (zh) * 2016-07-27 2018-11-16 国网江苏省电力公司常州供电公司 一种有源配电网智能终端蓄电池隔离监测装置
CN109186381A (zh) * 2018-08-13 2019-01-11 贵州全安密灵科技有限公司 对电子雷管电路进行保护的方法及结构
CN113782396A (zh) * 2021-01-11 2021-12-10 嘉兴京硅智能技术有限公司 断路器系统
CN114003118A (zh) * 2020-07-28 2022-02-01 华为技术有限公司 一种服务器供电电路以及服务器

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104253426A (zh) * 2014-09-03 2014-12-31 烽火通信科技股份有限公司 用于通信设备直流电源端口的防雷保护电路及方法
CN105140900A (zh) * 2015-09-09 2015-12-09 成都川睿科技有限公司 智能交通系统的防雷击电源插座
CN106911307A (zh) * 2017-02-22 2017-06-30 新华三技术有限公司 以太网传输eoc信号混频器
CN107134766B (zh) * 2017-04-27 2019-08-16 华为技术有限公司 一种防雷电路
CN107994926B (zh) * 2017-12-29 2024-06-07 欧普照明股份有限公司 一种基于电力载波实现信号传输的线路及通讯系统
CN113922652B (zh) * 2021-11-17 2024-02-09 阳光电源股份有限公司 一种逆变器、逆变系统以及防雷电路及其控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1581627A (zh) * 2003-07-31 2005-02-16 华为技术有限公司 一种保护电路
CN103296873A (zh) * 2012-02-28 2013-09-11 研祥智能科技股份有限公司 一种电源及其滤波器
CN203231469U (zh) * 2013-05-08 2013-10-09 苏州昆拓热控系统股份有限公司 具有通讯接口防雷功能的机柜空调器
CN104253426A (zh) * 2014-09-03 2014-12-31 烽火通信科技股份有限公司 用于通信设备直流电源端口的防雷保护电路及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2599821Y (zh) * 2003-01-29 2004-01-14 烽火通信科技股份有限公司 多路2m信号端口防雷转接器
CN201392702Y (zh) * 2009-04-13 2010-01-27 广州市海德防雷科技有限公司 后备通流容量避雷器
CN202917967U (zh) * 2012-07-26 2013-05-01 京信通信技术(广州)有限公司 直流电源的防雷装置
CN203352164U (zh) * 2013-05-21 2013-12-18 东莞市盈聚电子有限公司 一种电源适配器防雷电路
CN203387174U (zh) * 2013-07-16 2014-01-08 深圳远征技术有限公司 一种分布系统集中接地保护与雷电防护装置及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1581627A (zh) * 2003-07-31 2005-02-16 华为技术有限公司 一种保护电路
CN103296873A (zh) * 2012-02-28 2013-09-11 研祥智能科技股份有限公司 一种电源及其滤波器
CN203231469U (zh) * 2013-05-08 2013-10-09 苏州昆拓热控系统股份有限公司 具有通讯接口防雷功能的机柜空调器
CN104253426A (zh) * 2014-09-03 2014-12-31 烽火通信科技股份有限公司 用于通信设备直流电源端口的防雷保护电路及方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108832714A (zh) * 2016-07-27 2018-11-16 国网江苏省电力公司常州供电公司 一种有源配电网智能终端蓄电池隔离监测装置
CN107454707A (zh) * 2017-05-15 2017-12-08 上海路傲电子科技有限公司 一种可吸收金属基板漏电流的led照明线性恒流驱动电路
CN107454707B (zh) * 2017-05-15 2024-01-30 上海路傲电子科技有限公司 一种可吸收金属基板漏电流的led照明线性恒流驱动电路
CN109186381A (zh) * 2018-08-13 2019-01-11 贵州全安密灵科技有限公司 对电子雷管电路进行保护的方法及结构
CN109186381B (zh) * 2018-08-13 2023-11-28 贵州全安密灵科技有限公司 对电子雷管电路进行保护的方法及结构
CN114003118A (zh) * 2020-07-28 2022-02-01 华为技术有限公司 一种服务器供电电路以及服务器
CN113782396A (zh) * 2021-01-11 2021-12-10 嘉兴京硅智能技术有限公司 断路器系统
CN113782396B (zh) * 2021-01-11 2023-09-12 嘉兴京硅智能技术有限公司 断路器系统

Also Published As

Publication number Publication date
CN104253426A (zh) 2014-12-31

Similar Documents

Publication Publication Date Title
WO2016034121A1 (zh) 用于通信设备直流电源端口的防雷保护电路及方法
WO2016041377A1 (zh) 保护装置、电子设备和电源
US9310870B2 (en) Network appliance with power conditioning
US20150222109A1 (en) Surge protection circuit
KR101171228B1 (ko) Hemp 대책용 전원선로 방호장치
US9054514B2 (en) Reduced let through voltage transient protection or suppression circuit
CN105981241B (zh) 具有非对称组件的过电压保护的驱动电路
WO2014067272A1 (zh) 保护装置
US20130208380A1 (en) Transient control technology circuit
US8681467B2 (en) Surge protection apparatus and method using the same
CN203645292U (zh) 过压过流保护电路
CN204030571U (zh) 大通流容量低残压的宽电压范围的交、直流电源防雷器
CN105470936A (zh) 抑制共模浪涌的网络变压器防雷电路
CN204144932U (zh) 一种新型电涌保护装置
CN207799010U (zh) 一种实现雷击浪涌和绝缘耐压测试同时通过的设计电路
CN113439372A (zh) 对交流电压状况的保护
CN105470913A (zh) 过压保护电路
CN105322523A (zh) 一种新型电涌保护装置
CN105048433A (zh) 一种用于dc-dc电源浪涌防护设计方法
CN205565714U (zh) 一种具有雷电变频抑制功能的防雷设备
CN204597472U (zh) 一种用于电子设备rs232信号接口的防雷电路
CN203951159U (zh) 一种电涌保护器冗余系统
KR101556551B1 (ko) 속류 방지를 위한 dc 선로용 서지 보호 장치
CN104734497B (zh) 避雷器在线监控系统电源
TW201336193A (zh) 雷擊斷電保護裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15838769

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15838769

Country of ref document: EP

Kind code of ref document: A1