WO2016041377A1 - 保护装置、电子设备和电源 - Google Patents

保护装置、电子设备和电源 Download PDF

Info

Publication number
WO2016041377A1
WO2016041377A1 PCT/CN2015/079954 CN2015079954W WO2016041377A1 WO 2016041377 A1 WO2016041377 A1 WO 2016041377A1 CN 2015079954 W CN2015079954 W CN 2015079954W WO 2016041377 A1 WO2016041377 A1 WO 2016041377A1
Authority
WO
WIPO (PCT)
Prior art keywords
tvs
type protector
protection device
power supply
protector
Prior art date
Application number
PCT/CN2015/079954
Other languages
English (en)
French (fr)
Inventor
王庆海
丁昱
黄银涛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15841278.3A priority Critical patent/EP3185384B1/en
Publication of WO2016041377A1 publication Critical patent/WO2016041377A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/041Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage using a short-circuiting device
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/06Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage using spark-gap arresters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/042Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage comprising means to limit the absorbed power or indicate damaged over-voltage protection device
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/043Protection of over-voltage protection device by short-circuiting

Definitions

  • the present invention relates to the field of communications, and in particular, to a protection device, an electronic device, and a power source.
  • Overvoltages include overvoltages caused by direct lightning strikes or induced lightning and overvoltages within the power supply system, such as power frequency overvoltages, operating overvoltages, and the like. Overvoltage can threaten the safety of people and equipment and affect the reliability of equipment operation. Therefore, precautions must be taken to reduce the overvoltage to the permissible level.
  • differential mode protection for low-level communication power ports can use a primary protection circuit by connecting one or more Metal Oxide Varistor (MOV) connected in parallel between the power ports. Current.
  • MOV Metal Oxide Varistor
  • the lightning current is gradually discharged by using a multi-stage protection circuit.
  • This solution has the following disadvantages: due to the existence of electrolytic capacitors in the power supply circuit, when the DC power supply port is subjected to lightning strikes of different polarities, the lightning protection performance of the circuit is greatly different. When the lightning current flows from the negative pole of the power supply to the positive pole, the impact on the rear stage of the protection circuit is much more severe, mainly because the residual voltage at both ends of the protection circuit is higher, so that the current flowing into the latter stage circuit is larger, then the latter stage circuit Or the device is more susceptible to damage.
  • the invention provides a protection device, an electronic device and a power source, which can reduce the residual voltage at both ends of the protection device and improve the protection capability of the negative polarity of the power port to the positive pole.
  • a protection device comprising: a one-way TVS, a negative pole of the one-way TVS is connected to the positive pole of the power source, a positive pole of the one-way TVS is connected to a negative pole of the power source; a switch type protector, a switch type protection The device is connected between the unidirectional TVS and the positive or negative pole of the voltage, wherein the switch protector and the unidirectional TVS are subjected to a surge from the positive pole to the negative pole at the port of the power source Conducted to shunt the inrush current, and the unidirectional TVS clamps the surge voltage across the unidirectional TVS to the clamp voltage, and the switch-type protector and the unidirectional TVS are subjected to a surge from the negative pole to the positive pole at the port of the power supply. Turn on to shunt the inrush current.
  • the protection device further includes: a first clamp type protector, the first clamp type protector being connected in parallel with the unidirectional TVS for shunting the surge current.
  • the protection device further includes: a first clamp type protector, a first clamp type protector and a series connected switch type protector and a clamp type protector Parallel connection for shunting inrush current.
  • the first clamp type protector is a transient suppression diode unidirectional TVS or a metal oxide varistor MOV.
  • the protection device further includes: a decoupler, the decoupler is connected in series at the power port and Between the protected devices.
  • the method further includes: a second clamp type protector, the second clamp type protector is connected in parallel with the protected device, and the second clamp is connected in parallel
  • the position protector and the protected device are connected in series with the decoupler, and the branch where the decoupler and the second clamp type protector are located is connected in parallel with the switch type protector and the branch where the unidirectional TVS is located.
  • the switch protector is a transient suppression thyristor TSS or a gas discharge tube GDT.
  • the protection device further includes: an overcurrent protector, an overcurrent protection The device is connected in series with the switch protector and the unidirectional TVS for overcurrent protection.
  • an electronic device comprising the protection device and the protected device according to any of the preceding claims, wherein the protection device and the protected device are connected in parallel.
  • a power supply comprising the protection device and the power supply device, the protection device and the power supply device according to any one of the first aspect or the first to the eighth possible implementation manners
  • the power supply units are connected in parallel.
  • the protection device of the embodiment of the present invention passes the residual voltage connected in series
  • the lower switch-type protector and the unidirectional TVS are connected between the ports of the power supply, which can reduce the residual voltage at both ends of the protection device, thereby significantly reducing the shunting of the rear-stage circuit and improving the protection capability of the negative pole of the power supply to the positive pole.
  • FIG. 1 is a schematic block diagram of a protection device in accordance with one embodiment of the present invention.
  • FIG. 2 is a schematic circuit diagram of a protection device in accordance with one embodiment of the present invention.
  • FIG. 3 is a schematic block diagram of a protection device in accordance with another embodiment of the present invention.
  • FIG. 4 is a schematic block diagram of a protection device in accordance with another embodiment of the present invention.
  • FIG. 5 is a schematic circuit diagram of a protection device in accordance with another embodiment of the present invention.
  • Figure 6 is a schematic circuit diagram of a protection device in accordance with another embodiment of the present invention.
  • Figure 7 is a schematic circuit diagram of a protection device in accordance with another embodiment of the present invention.
  • Figure 8 is a schematic circuit diagram of a protection device in accordance with another embodiment of the present invention.
  • FIG. 9 is a schematic block diagram of a protection device in accordance with still another embodiment of the present invention.
  • Figure 10 is a schematic circuit diagram of a protection device in accordance with still another embodiment of the present invention.
  • Figure 11 is a schematic circuit diagram of a protection device in accordance with still another embodiment of the present invention.
  • Figure 12 is a schematic block diagram of a protection device in accordance with still another embodiment of the present invention.
  • Figure 13 is a schematic circuit diagram of a protection device in accordance with still another embodiment of the present invention.
  • Figure 14 is a schematic circuit diagram of a protection device in accordance with still another embodiment of the present invention.
  • the protection device 100 includes a switch-type protector 110 and a unidirectional transient voltage suppressor (TVS) 120, which may also be referred to as a transient suppression diode.
  • TVS unidirectional transient voltage suppressor
  • the cathode of the unidirectional TVS 120 is connected to the anode of the power source, and the anode of the unidirectional TVS 120 is connected to the cathode of the power source.
  • the switch type protector 110 is connected between the unidirectional TVS 120 and the positive or negative pole of the power source, that is, the switch type protector 110 and the unidirectional TVS are connected in series between the ports of the power source.
  • the first end of the switch protector 110 is connected to the negative pole of the power supply
  • the second end of the switch protector 110 is connected to the positive pole of the unidirectional TVS 120
  • the negative pole of the unidirectional TVS 120 is connected to the positive pole of the power supply.
  • the switch protector 110 and the unidirectional TVS 120 can also be interchanged.
  • the second end of the switch protector 110 is connected to the positive pole of the power supply.
  • the first end of the switch protector 110 and the positive pole of the unidirectional TVS 120 Connected, the negative pole of the unidirectional TVS 120 is connected to the positive pole of the power supply.
  • This power supply is used to provide operating voltage to the protected device.
  • the positive and negative poles of the power source are connected to the positive and negative terminals of the power input end of the protected device through the protection device 100. It should be noted that the protection device 100 needs to be connected in parallel with the protected device.
  • the switch protector 110 and the unidirectional TVS 120 are turned on when the port of the power source is subjected to a surge from positive to negative to shunt the inrush current, and the unidirectional TVS 120 clamps the voltage to the clamp voltage to prevent protection.
  • the device is subjected to an overvoltage.
  • the switch protector 110 and the unidirectional TVS 120 are turned on when the port of the power source is subjected to a surge current from the negative pole to the positive pole to shunt the surge current and prevent surge current from entering the protected device.
  • the protection device of the embodiment of the present invention can reduce the residual voltage at both ends of the protection device by connecting the switch-type protector 110 with the low residual voltage and the unidirectional TVS in series, that is, can reduce the application of the residual voltage at both ends of the latter circuit. Voltage. Since the residual voltage across the protection device 100 is lower, the current flowing into the protected device becomes smaller as the latter circuit including the electrolytic capacitor (the protected device shown in FIG. 1) is the same. Therefore, the protection device of the embodiment of the invention can reduce the voltage applied across the circuit of the latter stage, thereby improving the protection capability of the port from the negative pole to the positive pole of the power source.
  • the switch-type protector When the voltage across the switch-type protector is greater than or equal to the operating voltage of the switch-type protector, the switch-type protector can be quickly converted from the original high-resistance state to the conductive state, and after the conduction, a short circuit is basically presented to discharge the current. Protect the effect of the rear stage circuit. After not meeting certain short-circuit conditions, It is restored to a high resistance state. At the same time, the switching device has a freewheeling characteristic, and when it meets the freewheeling condition, it will not automatically return from the low resistance state to the high resistance state, and will burn out or even cause short circuit and combustion of the circuit board after a certain period of time. Moreover, the switching-type protector is generally low in the free-wheeling sustaining voltage in the conductive state.
  • the power supply circuit when the power supply circuit is higher than the voltage threshold, it is difficult to realize the freewheeling interruption, and the device is easily damaged by overheating.
  • TVS When the voltage across TVS is not higher than the cutoff voltage of TVS, TVS exhibits a high-impedance state, that is, an open circuit state is basically present in the circuit.
  • the voltage across TVS When the voltage across TVS is greater than or equal to its operating voltage, it exhibits a low-resistance state. At the same time, the voltage at both ends will be clamped to a certain level, so that the circuit connected in parallel will not be subjected to a large overvoltage shock and is protected.
  • the unidirectional TVS 120 has a certain residual pressure at both ends, which can function as a partial pressure, so that The voltage across the switch-type protector 110 does not reach the condition of continuous flow, thereby implementing the freewheeling interruption of the switch-type protector 110, so that the switch-type protector 110 returns to the high-impedance state.
  • the protection device of the embodiment of the present invention can reduce the residual voltage at both ends of the protection device by connecting the switch-type protector with a low residual voltage connected in series and the unidirectional TVS between the ports of the power supply, thereby being able to significantly reduce
  • the shunting of the rear-stage circuit improves the protection of the negative pole of the power supply to the positive pole.
  • the MOV is usually connected between the ports of the power source to discharge the lightning current. Since the residual voltage of the MOV is high, it is usually necessary to add a decoupling component or circuit after the MOV to reduce the application to the rear stage circuit (see FIG. 1). The voltage across the protected device) reduces the impact of the overvoltage on the subsequent circuit. Due to the large volume of the decoupling element or circuit, the overall size of the protection device in the prior art is large. However, in the protection device of the embodiment of the present invention, the residual voltage across the switch type protector and the unidirectional TVS is low, so that the decoupling element or the circuit is not required to be added, and the volume of the protection device can be reduced.
  • the embodiment of the present invention can reduce the residual voltage at both ends of the protection device, the capability of withstanding the surge shock can be improved, and the long-wave lightning protection capability can be improved.
  • the switch type protector 110 may also be a switch type protection device combination or a circuit having a switch type protection device function.
  • the switching protection device may be a Gas Discharge Tube (GDT) or a Thyristor Surge Suppressor (TSS), which may also be referred to as a transient suppression thyristor.
  • the unidirectional TVS 120 can also be a combination or circuit of devices having similar functional characteristics to unidirectional TVS.
  • the unidirectional TVS is replaced with a unidirectional device such as a diode whose cathode is connected to the positive terminal of the power supply, the anode of the diode is connected to the power supply through the switch type protector 110. negative electrode.
  • the switch-type protector 110 and the diode are turned on and off, and the surge current is released, thereby preventing the surge current from entering the protected device.
  • FIG. 2 shows a schematic circuit diagram of a protection device 100 in accordance with one embodiment of the present invention.
  • Figure 2 is a specific example of Figure 1.
  • the TSS is an example of the switch-type protector 110 of FIG. 1.
  • the TSS is connected in series with the unidirectional TVS.
  • the negative pole of the unidirectional TVS is directly connected to the positive pole of the power supply, and the positive pole of the unidirectional TVS is connected to the negative pole of the power supply through the TSS.
  • the positions of the unidirectional TVS and TSS can be interchanged as long as the negative pole of the TVS is connected to the positive pole of the power supply.
  • the negative pole of the unidirectional TVS can be connected to the positive pole of the power supply through the TSS, and the positive pole of the unidirectional TVS is directly connected to the negative pole of the power supply.
  • the port of the power supply is subjected to a surge from positive to negative, the series TSS and the unidirectional TVS are protected, and the unidirectional TVS reverse breakdown exhibits a clamp characteristic to clamp the voltage to a lower voltage value, and the TSS is turned on.
  • a short circuit occurs, at which time the residual voltage applied to the protected device is equal to the voltage across the TSS plus the residual voltage of the unidirectional TVS.
  • the unidirectional TVS When the port of the power supply suffers from the negative to positive surge current, when the operating voltage is reached, the unidirectional TVS is forwarded and the TSS is turned on. At this time, the residual voltage applied to the protected device is equal to the voltage across the TSS plus the unidirectional TVS.
  • the positive conduction voltage and the residual voltage are extremely low, so that the smaller the current flowing to the rear stage circuit (ie, the protected device shown in FIG. 2), the damage of the protected device can be prevented, thereby improving the negative to positive pole of the power supply port. Protection ability.
  • the branch of the TSS and the unidirectional TVS are opened before the operating voltage of the TSS is reached, thereby being able to avoid the positive and negative poles and the power source due to the unidirectional TVS. Loss caused by incorrect connection of positive and negative electrodes.
  • the protection device 100 may further include: a first clamp type protector 130, the first clamp type protector 130 is connected in parallel with the one-way TVS 120 for shunting the flow through the switch with the first clamp The surge current of the type protector 110.
  • the first clamp type protector 130 may also be connected in parallel with a branch circuit composed of the switch type protector 110 and the one-way TVS 120 connected in series for the switch type protector 110 connected in series.
  • the unidirectional TVS 120 consists of a branch shunt power supply port that is subjected to inrush current.
  • the first clamp type protector can clamp the voltage across the first clamp type protector to the clamp voltage while shunting, preventing the protected device from overvoltage in the subsequent stage circuit.
  • the first clamp type protector 130 may be a combination of MOV or TVS or a clamp type protector or a circuit having a clamp type protector function.
  • the embodiment of the invention can improve the reliability and protection capability of the protection device.
  • FIG. 5 and 6 show schematic circuit diagrams of a protection device in accordance with another embodiment of the present invention.
  • 5 and 6 are examples of Figs. 3 and 4, respectively.
  • the TSSs in Figs. 5 and 6 are examples of the switch type protector 110 of Figs. 3 and 4, respectively, and the MOVs are examples of the clamp type protectors 130 of Figs. 3 and 4, respectively.
  • the unidirectional TVS is connected in parallel with the MOV, and the branch in which the unidirectional TVS and the MOV are connected in parallel is connected in series with the TSS.
  • the negative pole of the unidirectional TVS is directly connected to the positive pole of the power supply, and the positive pole of the unidirectional TVS is connected to the negative pole of the power supply through the TSS.
  • the unidirectional TVS is connected in series with the TSS.
  • the negative pole of the unidirectional TVS is directly connected to the positive pole of the power supply.
  • the positive pole of the unidirectional TVS is connected to the negative pole of the power supply through the TSS, and the branch where the unidirectional TVS and TSS are located is connected in parallel with the MOV.
  • the working principle of FIG. 5 and FIG. 6 is the same as that of FIG. 3 and FIG. 4 above. To avoid repetition, it will not be described in detail herein.
  • FIG. 7 and 8 show schematic circuit diagrams of a protection device in accordance with another embodiment of the present invention.
  • the protection device shown in Figures 7 and 8 differs from the protection device shown in Figures 5 and 6 in that the unidirectional TVS is replaced with a series of bidirectional TVS and diodes, respectively.
  • the TSS, the bidirectional TVS and the diode are connected in series, the cathode of the diode is connected to the positive pole of the power supply, and the anode of the diode is connected to the negative pole of the power supply via the bidirectional TVS and TSS.
  • the branch is open due to the switching characteristics of the TSS and the reverse-cut characteristics of the diode.
  • FIG. 9 shows a schematic block diagram of a protection device in accordance with another embodiment of the present invention.
  • the protection device 100 can also include a decoupler 140.
  • the decoupler 140 is connected in series between the port of the power source and the protected device.
  • the decoupler 140 may be connected in series between the negative pole of the power source and the protected device, or the decoupler 140 may be connected in series between the positive pole of the power source and the protected device.
  • the decoupler 140 is configured to divide the voltage of the port of the power source to prevent an overvoltage of the protected device.
  • the inrush current flows through the series The decoupler 140 and the protected device are connected, and as the current intensity increases, the voltage across the decoupler and the protected device rises.
  • the switch The type protector 110 and the unidirectional TVS 120 start to conduct, when most of the current flows through the branch of the switch protector 110 and the unidirectional TVS 120, and only a small portion of the current flows through the series connected decoupler and is Protect the device, preventing most of the current from flowing through the protected device.
  • the decoupler divides the voltage between the switch protector 110 and the unidirectional TVS 120 to prevent the operating voltages of the branch protector 110 and the unidirectional TVS 120 from being applied to both ends of the protected device. An overvoltage condition has occurred.
  • a plurality of decouplers may also be disposed in the protection device 100, for example, a decouper is connected in series between the positive or negative pole of the power source and the protected device, respectively.
  • the decoupler can be composed of single or multiple components with decoupling functions such as an inductor, a resistor, a MOS tube, a wire, and a cable.
  • decoupler 140 shown in the dashed box of Figures 3 and 4 functions the same as the decoupler 140 of Figure 6, and will not be described in detail herein.
  • FIGS. 10 and 11 respectively show schematic circuit diagrams of a protection device according to another embodiment of the present invention.
  • 10 and FIG. 11 are another example of FIGS. 3 and 4, respectively.
  • the TSSs of FIGS. 10 and 11 are examples of the switch type protector 110 of FIGS. 3 and 4, respectively, and the MOVs of FIGS. 10 and 11 respectively.
  • An example of the clamp type protector 130 in FIGS. 3 and 4, and L in FIGS. 10 and 11 are examples of the decoupler 140 in FIGS. 3 and 4, respectively.
  • the working principle of FIG. 10 and FIG. 11 in FIG. 10 is the same as that of FIG. 3 and FIG. 4 above. To avoid repetition, details are not described herein again.
  • the protection device 100 may further include an overcurrent protector 150, as shown by the dashed box in FIG.
  • the overcurrent protector 150 is connected in series with the switch protector 110 and the unidirectional TVS 120 for overcurrent protection. This will prevent a power failure.
  • the overcurrent protector 150 can be quickly disconnected to ensure that the protected device is operating normally.
  • the position of the overcurrent protector 150 can be interchanged with the position of the switch protector 110 or the unidirectional TVS 120 as long as the overcurrent protector 150 is connected in series with the switch protector 110 and the unidirectional TVS 120.
  • the overcurrent protector 150 may be an element or circuit having an overcurrent protection function such as a fuse or a thermistor.
  • an overcurrent protector may also be added to the branch where the switch protector 110 and the unidirectional TVS 120 are located in the protection device according to the embodiment of the present invention shown in FIGS. 1 to 8, 10 and 11.
  • the switch protector 110, the unidirectional TVS 120, and the overcurrent protector are connected in series.
  • FIG. 12 shows a schematic block diagram of a protection device 100 in accordance with another embodiment of the present invention.
  • the protection device 100 may further include a first stage protection circuit 200 and a second stage protection circuit 210.
  • the second stage protection circuit 210 is connected in parallel with the first stage protection circuit.
  • the first level protection circuit 200 includes any one of the protection devices 100 according to the embodiment of the present invention shown in FIGS. 1 to 9 .
  • the second level protection circuit 210 includes a second clamp type protector 160 and a decoupler 170 .
  • the second clamp type protector 160 is connected in parallel with the protected device, and the decoupler 170 is connected in series with the second clamp type protector 160 and the protected device connected in parallel.
  • the decoupler 170 is capable of dividing the voltage across the second stage of protection circuitry.
  • the second clamp type protector 160 is connected in parallel with the protected device to shunt a surge voltage or a surge current.
  • the second clamp type protector 160 may be an overvoltage protection element such as MOV, TVS, or a combination thereof.
  • 13 and 14 respectively show schematic circuit diagrams of a protection device according to another embodiment of the present invention.
  • 13 and 14 are examples of Fig. 12.
  • the branch in which the TSS on the left side of the TSS, the unidirectional TVS, and the L is located in FIG. 13 constitutes an example of the first stage protection circuit 200 in FIG. 12, wherein the TSS and the unidirectional TVS are connected in series between the ports of the power source, and the one-way TVS
  • the cathode is connected to the positive pole of the power supply, and the MOV on the left side of L is connected in parallel with the TSS and the unidirectional TVS connected in series.
  • the branch where the MOV on the right side of L and L is located constitutes an example of the second stage protection circuit 210 in Fig. 12.
  • the MOV on the right side of L is connected in parallel with the protected device, and L is connected in series with the MOV and the protected device connected in parallel.
  • the working principle of the protection device is similar. The difference is that the one-way TVS exhibits the characteristics of the diode at this time, and is forward-conducting. At this time, the branch of the one-way TVS and TSS is located. The road is used to divert the surge current, Unable to clamp voltage.
  • FIG. 14 is different from FIG. 13 in that the MOV on the left side of L is connected in parallel with the unidirectional TVS, and the TSS is connected in series with the unidirectional TVS and MOV connected in parallel.
  • the protection device of Fig. 14 is similar to the operation of the protection device of Fig. 13. When the voltage across the MOV on the right side of L and L reaches the operating voltage of the branch where the MOV on the left side of the TSS, the unidirectional TVS, and the L is located, the surge Most of the current in the current flows through the branch.
  • the MOVs on the left side of the unidirectional TVS and L work together to clamp the voltage across them to the clamp voltage: when the inrush current is from the negative pole of the power supply When flowing to the positive pole, the unidirectional TVS exhibits the characteristics of the diode conducting, and the MOV on the left side of L clamps the voltage across it to the clamping voltage.
  • the protection device provided by the embodiment of the present invention may also be a multi-level protection device including a multi-stage protection circuit.
  • a third-stage protection circuit or a fourth-stage protection circuit may be provided to gradually discharge the surge current received by the port of the power source, thereby ensuring protection.
  • the device is operating normally.
  • Another embodiment of the present invention further provides an electronic device including the protection device and the protected device of FIGS. 1 to 14, the protection device and the protected device being connected in parallel.
  • Another embodiment of the present invention also provides a power supply including the protection device of FIG. 1 to FIG. 14 and a power supply device, the protection device and the power supply device being connected in parallel.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be indirect coupling through some interface, device or unit.
  • a communication connection which may be in electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Protection Of Static Devices (AREA)

Abstract

一种保护装置、电子设备和电源。该保护装置(100)包括:单向瞬态电压抑制器(TVS) (120),单向TVS的负极连接到电源的正极,单向TVS的正极连接到电源的负极;开关型保护器(110),该开关型保护器连接在该单向TVS与电源的正极或者负极之间,其中,该开关型保护器和该单向TVS在该电源的端口受到正极到负极的浪涌冲击时导通,以分流浪涌电流,并且该单向TVS将该单向TVS两端的浪涌电压箝位到箝位电压,该开关型保护器和该单向TVS在该电源的端口受到负极到正极的浪涌冲击时导通,以分流浪涌电流。该保护装置能够降低保护装置两端的残压,提升电源的端口负极到正极的防护能力。

Description

保护装置、电子设备和电源
本申请要求于2014年09月19日提交中国专利局、申请号为201410482156.8,发明名称为“保护装置、电子设备和电源”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信领域,尤其是涉及一种保护装置、电子设备和电源。
背景技术
通信设备的电源经常会受到过电压的干扰。过电压包括遭受直击雷或感应雷产生的过电压和供电系统内部的过电压,例如工频过电压、操作过电压等。过电压能够威胁人身和设备安全,影响设备运行的可靠性。因此必须采取防范措施,将过电压降低到允许的水平。
通常,对于通信电源端口低量级的差模防护可以采用一级防护电路,通过在电源端口之间连接一个或多个并联连接的金属氧化物压敏电阻(Metal Oxide Varistor,MOV)泄放雷击电流。对于高量级的差模防护,通过采用多级防护电路将雷击电流逐步泄放。
这种方案存在以下缺点:由于电源电路中电解电容的存在,在直流电源口遭受不同极性雷击时,电路的防雷性能有较大差异。当雷击电流从电源负极流向正极时,对防护电路后级的冲击要严酷得多,主要表现为由于防护电路两端的残压较高,使得涌入后级电路的电流较大,则后级电路或者器件更容易损坏。
发明内容
本发明提供了一种保护装置、电子设备和电源,能够降低保护装置两端的残压,提升电源端口负极到正极的防护能力。
第一方面,提供了一种保护装置,该保护装置包括:单向TVS,单向TVS的负极连接到电源的正极,单向TVS的正极连接到电源的负极;开关型保护器,开关型保护器连接在单向TVS与电压的正极或者负极之间,其中,开关型保护器和单向TVS在电源的端口受到正极到负极的浪涌冲击时 导通,以分流浪涌电流,并且单向TVS将单向TVS两端的浪涌电压箝位到箝位电压,开关型保护器和单向TVS在电源的端口受到负极到正极的浪涌冲击时导通,以分流浪涌电流。
结合第一方面,在第一种可能的实现方式中,该保护装置还包括:第一箝位型保护器,第一箝位型保护器与单向TVS并联连接,用于分流浪涌电流。
结合第一方面,在第二种可能的实现方式中,该保护装置还包括:第一箝位型保护器,第一箝位型保护器与串联连接的开关型保护器和箝位型保护器并联连接,用于分流浪涌电流。
结合第一种或第二种可能的实现方式,在第三种可能的实现方式中,第一箝位型保护器为瞬态抑制二极管单向TVS或者金属氧化物压敏电阻MOV。
结合第一方面或第一种或第二种或第三种可能的实现方式,在第四种可能的实现方式中,该保护装置还包括:退耦器,退耦器串联连接在电源端口与所述被保护设备之间。
结合第四种可能的实现方式,在第五种可能的实现方式中,还包括:第二箝位型保护器,第二箝位型保护器与被保护设备并联连接,并联连接的第二箝位型保护器和被保护设备与退耦器串联连接,退耦器和第二箝位型保护器所在的支路与开关型保护器和单向TVS所在的支路并联连接。。
结合第一方面或第一种至第五种可能的实现方式中的任一种可能的实现方式,在第六种可能的实现方式中,开关型保护器为瞬态抑制晶闸管TSS或气体放电管GDT。
结合第一方面或第一种至第六种可能的实现方式中的任一种可能的实现方式,在第七种可能的实现方式中,该保护装置还包括:过流保护器,过流保护器与开关型保护器和单向TVS串联连接,用于过流保护。
第二方面,提供了一种电子设备,该电子设备包括如上述任一项所述的保护装置和被保护装置,保护装置和被保护装置并联连接。
第三方面,提供了一种电源,该电源包括如第一方面或第一种至第八种可能的实现方式中的任一种可能的实现方式所述的保护装置和供电装置,保护装置和供电装置并联连接。
基于上述技术方案,本发明实施例的保护装置,通过将串联连接的残压 较低的开关型保护器和单向TVS连接在电源的端口之间,能够降低保护装置两端的残压,进而能够显著减小后级电路的分流,提升电源的端口负极到正极的防护能力。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明一个实施例的保护装置的示意性框图。
图2是根据本发明一个实施例的保护装置的示意性电路图。
图3是根据本发明另一实施例的保护装置的示意性框图。
图4是根据本发明另一实施例的保护装置的示意性框图。
图5是根据本发明另一实施例的保护装置的示意性电路图。
图6是根据本发明另一实施例的保护装置的示意性电路图。
图7是根据本发明另一实施例的保护装置的示意性电路图。
图8是根据本发明另一实施例的保护装置的示意性电路图。
图9是根据本发明再一实施例的保护装置的示意性框图。
图10是根据本发明再一实施例的保护装置的示意性电路图。
图11是根据本发明再一实施例的保护装置的示意性电路图。
图12是根据本发明再一实施例的保护装置的示意性框图。
图13是根据本发明再一实施例的保护装置的示意性电路图。
图14是根据本发明再一实施例的保护装置的示意性电路图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
应注意,以下描述中,在两个元件连接时,这两个元件可以直接连接,也可以通过一个或多个中间元件或介质间接地连接。两个元件连接的方式可 包括接触方式或非接触方式,或者可包括有线方式或无线方式。本领域技术人员可以对以下描述的示例连接进行等价替换或修改,这样的替换或修改均落入本发明的范围内。
图1是根据本发明一个实施例的保护装置100的示意性框图。如图1所示,保护装置100包括:开关型保护器110和单向瞬态电压抑制器(Transient Voltage Suppressor,TVS)120,TVS也可以称为瞬态抑制二极管。
单向TVS 120的负极连接到电源的正极,单向TVS 120的正极连接到所述电源的负极。开关型保护器110连接在单向TVS 120与电源的正极或者负极之间,即开关型保护器110和单向TVS串联连接在电源的端口之间。
具体地,开关型保护器110的第一端与电源的负极相连接,开关型保护器110的第二端与单向TVS 120的正极相连接,单向TVS 120的负极与电源的正极相连接。或者,开关型保护器110和单向TVS 120也可以互换位置,开关型保护器110的第二端与电源的正极相连接,开关型保护器110的第一端与单向TVS 120的正极相连接,单向TVS 120的负极与电源的正极相连接。
该电源用于为被保护设备提供工作电压。该电源的正负极通过保护装置100与被保护设备的电源输入端的正负极相连接。应注意,保护装置100需与该被保护设备并联连接。
开关型保护器110和单向TVS 120在电源的端口受到正极到负极的浪涌冲击时导通,以分流浪涌电流,并且单向TVS 120将电压箝位到箝位电压,能够防止被保护设备遭受过电压。开关型保护器110和单向TVS 120在电源的端口受到负极到正极的浪涌电流时导通,以分流浪涌电流,能够防止浪涌电流进入被保护设备。
应注意的是,本发明实施例的保护装置通过将残压较低的开关型保护器110和单向TVS串联连接,能够降低保护装置两端的残压,即能够降低施加在后级电路两端的电压。由于在包括电解电容的后级电路(如图1所示的被保护设备)相同的情况下,保护装置100两端的残压越低流入被保护设备的电流就会越小。因此本发明实施例的保护装置能够降低施加在后级电路两端的电压,从而能够提高对电源的端口负极到正极的防护能力。
开关型保护器两端的电压大于或等于开关型保护器的动作电压时,开关型保护器可以迅速由原来的高阻状态转化为导电状态,导通后基本呈现短路,以泄放电流,起到保护后级电路的效果。在不满足一定的短路条件后, 又恢复成高阻状态。同时开关型器件具有续流特性,满足续流条件时,不会自动从低阻状态恢复成高阻状态,超过一定时间会烧毁甚至引发电路板的短路、燃烧。而且开关型保护器在导电状态下续流维持电压一般比较低,例如在高于电压阈值的电源电路中应用时难以实现续流遮断,很容易使器件持续过热而损坏。TVS两端的电压不高于TVS的截止电压的情况下,TVS呈现出高阻状态,也就是在电路中基本呈现开路状态,当TVS两端的电压大于或等于其动作电压后,呈现低阻状态,同时两端的电压会被钳位到一定的水平,使得与其并联的电路不会遭受到很大的过电压冲击,被保护起来。在本发明实施例中,通过将开关型保护器110与单向TVS 120串联连接,在受到浪涌冲击之后,单向TVS 120两端具有一定的残压,能够起到分压的作用,使得开关型保护器110两端的电压达不到维持续流的条件,从而实现开关型保护器110的续流遮断,使得开关型保护器110恢复到高阻抗状态。
因此,本发明实施例的保护装置,通过将串联连接的残压较低的开关型保护器和单向TVS连接在电源的端口之间,能够降低保护装置两端的残压,进而能够显著减小后级电路的分流,提升电源的端口负极到正极的防护能力。
现有技术中通常在电源的端口之间连接MOV来泄放雷击电流,由于MOV的残压较高,通常还需要在MOV后增加去耦元件或电路来降低施加至后级电路(如图1中的被保护设备)两端的电压,以降低过电压对后级电路的冲击。由于退耦元件或电路的体积较大,使得现有技术中保护装置的整体体积较大。而本发明实施例的保护装置中开关型保护器和单向TVS两端的残压较低使得无需增加去耦元件或者电路,能够减小保护装置的体积。
另外,由于本发明实施例能够降低保护装置两端的残压,提高对浪涌冲击的耐受能力,进而能够提升长波防雷的能力。
应理解,在本发明实施例中,开关型保护器110还可以为开关型保护器件组合或者具有开关型保护器件功能的电路。例如,开关型保护器件可以为气体放电管(Gas Discharge Tube,GDT)或者晶闸管浪涌抑制器(Thyristor Surge Suppressor,TSS),也可以称为瞬态抑制晶闸管。单向TVS 120还可以为具有与单向TVS类似功能特性的器件的组合或者电路。
应注意,若将单向TVS替换为单向型器件,如二极管,该二极管的阴极连接到电源的正极,该二极管的阳极通过开关型保护器110连接到电源的 负极。当所述电源的端口受到负极到正极的浪涌电流时,开关型保护器110和二极管导通分流,泄放浪涌电流,能够防止浪涌电流进入被保护设备。但是当电源的端口受到正极到负极的浪涌冲击时,由于二极管反向截止,使得浪涌电流无法通过开关型保护器110和二极管所在的支路泄放,只能流向后级保护电路,当只有一级保护电路时,该浪涌电流就会直接流向被保护设备,不能达到防护的目的,造成被保护设备的损害。
图2示出了根据本发明一个实施例的保护装置100的示意性电路图。图2是图1的一个具体例子。TSS是图1中开关型保护器110的例子,TSS与单向TVS串联连接,单向TVS的负极直接连接到电源的正极,单向TVS的正极通过TSS连接到电源的负极。单向TVS和TSS的位置可以互换,只要保证TVS的负极连接到电源的正极即可。例如,单向TVS的负极可以通过TSS连接到电源的正极,单向TVS的正极直接连接到电源的负极。在电源的端口遭受正极到负极的浪涌冲击时,串联的TSS和单向TVS起保护作用,单向TVS反向击穿呈现箝位特性将电压箝位到较低的电压值,TSS导通基本呈现短路,此时施加于被保护设备的残压等于TSS两端的电压加上单向TVS的残余电压。在电源的端口遭受负极到正极的浪涌电流时,达到动作电压时,单向TVS正向导通,TSS导通,此时施加于被保护设备的残压等于TSS两端的电压加上单向TVS的正向导通电压,残压极低,使得流到后级电路(即图2中所示被保护设备)的电流越小,能够防止被保护设备损坏,从而提升了对电源的端口负极到正极的防护能力。
另外,在本发明实施例中,通过串联连接TSS和单向TVS,使得在达到TSS的动作电压之前TSS和单向TVS所在支路开路,从而能够避免由于单向TVS的正负极与电源的正负极连接错误而带来的损失。
图3和图4示出了根据本发明另一实施例的保护装置的示意性框图。如图3所示,保护装置100还可以包括:第一箝位型保护器130,第一箝位型保护器130与单向TVS 120并联连接,用于与第一箝位器分流流过开关型保护器110的浪涌电流。或者,如图4所示,第一箝位型保护器130还可以与串联连接的开关型保护器110和单向TVS 120组成的支路并联连接,用于与串联连接的开关型保护器110和单向TVS 120组成的支路分流电源的端口遭受的浪涌电流。应理解,第一箝位型保护器在分流的同时能够将第一箝位型保护器两端的电压箝位到箝位电压,防止后级电路中的被保护设备过电压。 其中,第一箝位型保护器130可以为MOV或者TVS或者箝位型保护器的组合或者具有箝位型保护器功能的电路。本发明实施例能够提升保护装置的可靠性与防护能力。
图5和图6示出了根据本发明另一实施例的保护装置的示意性电路图。图5和图6分别是图3和图4的例子。图5和图6中的TSS分别是图3和图4中开关型保护器110的例子,MOV分别是图3和图4中箝位型保护器130的例子。图5中,单向TVS与MOV并联连接,单向TVS与MOV并联连接的支路与TSS串联连接,单向TVS的负极直接连接到电源正极,单向TVS的正极通过TSS连接到电源负极。图6中,单向TVS与TSS串联连接,单向TVS的负极直接连接到电源正极,单向TVS的正极通过TSS连接到电源负极,单向TVS和TSS所在的支路与MOV并联连接。图5和图6的工作原理如上文图3和图4的工作原理相同,为避免重复,在此不再详细描述。
图7和图8示出了根据本发明另一实施例的保护装置的示意性电路图。如图7和图8所示保护装置与图5和图6所示保护装置的区别在于,将单向TVS分别替换为串联的双向TVS和二极管。TSS、双向TVS和二极管串联连接,二极管的阴极与电源的正极相连接,二极管的阳极通过双向TVS和TSS与电源的负极相连接。在没有受到浪涌冲击时,由于TSS的开关特性以及二极管反向截止的特性,该支路呈开路状态。在电源的端口遭受正极到负极的浪涌电流时,由于二极管反向截止,二极管所在的支路不导通,此时,图7中MOV与TSS起保护作用,图8中MOV起保护作用。在电源的端口遭受负极到正极的浪涌电流时,二极管正向导通,此时双向TVS将双向TVS两端的浪涌电压箝位到箝位电压,同时图7中二极管和双向TVS与并联连接的MOV分流流经TSS的浪涌电流,图8中MOV所在的支路与串联的TSS、双向TVS和二极管所在的支路共同分流电源的端口的浪涌电流,能够使得较少的浪涌电流流经被保护设备。
图9示出了根据本发明另一实施例的保护装置的示意性框图。如图9所示,保护装置100还可以包括退耦器140。退耦器140串联连接在电源的端口与被保护设备之间。例如,如图9所示退耦器140可以串联连接在电源的负极与被保护设备之间,或者退耦器140还可以串联连接在电源的正极与被保护设备之间。退耦器140用于分压所述电源的端口的电压,防止所述被保护设备出现过电压。当电源的端口遭受浪涌冲击时,浪涌电流先流经串联连 接的退耦器140和被保护设备,随着电流强度的增加,退耦器和被保护设备两端的电压上升,当电压达到开关型保护器110和单向TVS 120的动作电压时,则开关型保护器110和单向TVS 120开始动作导通,这时大部分电流流经开关型保护器110和单向TVS 120所在支路,只有一小部分电流流经串联连接的退耦器和被保护设备,从而防止了大部分电流流经被保护设备。退耦器对开关型保护器110和单向TVS 120之间的电压进行了分压,能够防止开关型保护器110和单向TVS 120所在支路的动作电压全部施加在被保护设备两端而出现过电压的情况。应理解,保护装置100中还可以设置多个退耦器,例如,分别在电源的正极或负极与被保护设备之间串联连接一个退耦器。该退耦器可以由如电感、电阻、MOS管、导线、线缆等单个或多个具有退耦作用的元器件组成。
应注意,图3和图4虚线框中所示的退耦器140与图6所示退耦器140的作用相同,在此不再详细描述。
图10和图11分别示出了根据本发明另一实施例的保护装置的示意性电路图。图10和图11分别是图3和图4的另一例子,图10和图11中的TSS分别是图3和图4中开关型保护器110的例子,图10和图11中的MOV分别是图3和图4中箝位型保护器130的例子,图10和图11中的L分别是图3和图4中退耦器140的例子。图10中图10和图11的工作原理如上文图3和图4的工作原理相同,为避免重复,在此不再赘述。
可选地,保护装置100还可以包括过流保护器150,如图9虚线框所示。过流保护器150与开关型保护器110和单向TVS 120串联连接,用于过流保护。这样能够防止引起电源故障。例如,过流保护器150所在的支路上的开关型保护器110或单向TVS 120出现故障时,过流保护器150可以迅速断开,以确保被保护设备正常运行。过流保护器150的位置可以与开关型保护器110或者单向TVS 120的位置互换,只要保证过流保护器150与开关型保护器110和单向TVS 120串联连接即可。过流保护器150可以是保险丝、热敏电阻等具有过流保护功能的元件或者电路。
应理解,还可以在图1至图8、图10和图11示出的根据本发明实施例的保护装置中开关型保护器110和单向TVS 120所在的支路中加入过流保护器,使开关型保护器110、单向TVS 120和过流保护器串联连接。
图12示出了根据本发明另一实施例的保护装置100的示意性框图。如 图12所示,保护装置100还可以包括第一级保护电路200和第二级保护电路210,第二级保护电路210与第一级保护电路并联连接。其中,第一级保护电路200包括图1至图9所示的任一种根据本发明实施例的保护装置100,第二级保护电路210包括第二箝位型保护器160和退耦器170,第二箝位型保护器160与被保护设备并联连接,退耦器170与并联连接的第二箝位型保护器160和被保护设备串联连接。退耦器170能够对第二级保护电路两端的电压分压。第二箝位型保护器160与被保护设备并联连接,分流浪涌电压或浪涌电流。第二箝位型保护器160可以为MOV、TVS等过压保护元件或者它们的组合电路。当电源的端口受到浪涌电流时,第二级保护电路210先动作,该浪涌电流先流经第二级保护电路210,当第二级保护电路两端的电压达到第一级保护电路200的动作电压时,浪涌电流中大部分电流流经第一级保护电路200,此时浪涌电流中少部分电流流经第二级保护电路210,使得第二级保护电路210的残压较低,从而确保被保护设备如电子设备能够正常运行或者不发生损坏。
图13和图14分别示出了根据本发明另一实施例的保护装置的示意性电路图。图13和图14是图12的例子。图13中TSS、单向TVS和L左侧的MOV所在的支路组成图12中第一级保护电路200的例子,其中TSS和单向TVS串联连接在电源的端口之间,且单向TVS的阴极与电源的正极相连接,L左侧的MOV与串联连接的TSS和单向TVS并联连接。L和L右侧的MOV所在的支路组成图12中第二级保护电路210的例子,L右侧的MOV与被保护设备并联连接,L与并联连接的该MOV和被保护设备串联连接。
在图13中,当电源的端口受到正极到负极的浪涌冲击时,电流先流经L和L右侧的MOV,当L和L右侧的MOV两端的电压达到串联连接的TSS和单向TVS或者L左侧的MOV的动作电压时,浪涌电流中大部分电流流经串联连接的TSS和单向TVS所在的支路,以及L左侧的MOV所在的支路,同时单向TVS将其两端的电压箝位到箝位电压,L左侧的MOV将其两端的电压箝位到箝位电压,此时浪涌电流中少部分电流流经L及L右侧的MOV,使得L右侧的MOV两端的残压较低,从而确保被保护设备如电子设备能够正常运行或者不发生损坏。当电源的端口受到负极到正极的浪涌冲击时,保护装置的工作原理类似,区别之处在于,单向TVS此时呈现二极管的特性,正向导通,此时单向TVS和TSS所在的支路用于分流浪涌电流, 无法箝位电压。
图14与图13的区别之处在于,L左侧的MOV与单向TVS并联连接,TSS与并联连接的单向TVS和MOV串联连接。图14的保护装置与图13的保护装置的工作原理类似,当L和L右侧的MOV两端的电压达到TSS、单向TVS和L左侧的MOV所在的支路的动作电压时,浪涌电流中大部分电流流经该支路。区别之处在于:当浪涌电流的从电源的正极流向负极时,单向TVS和L左侧的MOV共同作用将其两端的电压箝位到箝位电压:当浪涌电流的从电源的负极流向正极时,单向TVS呈现二极管的特性导通,L左侧的MOV将其两端电压箝位到箝位电压。
应理解,本发明实施例提供的保护装置还可以为包括多级保护电路的多级保护装置。例如,当被保护设备的耐压能力较低时,还可以设置第三级保护电路或第四级保护电路,将电源的端口遭受到的浪涌电流进行逐步地泄放,从而能够确保被保护设备正常运行。
本发明另一实施例还提供了一种电子设备,该电子设备包括图1至图14的保护装置和被保护装置,该保护装置和该被保护装置并联连接。
本发明另一实施例还提供了一种电源,该电源包括图1至图14的保护装置和供电装置,该保护装置和该供电装置并联连接。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合 或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种保护装置,其特征在于,包括:
    单向瞬态电压抑制器TVS,所述单向TVS的负极连接到电源的正极,所述单向TVS的正极连接到所述电源的负极;
    开关型保护器,所述开关型保护器连接在所述单向TVS与所述电源的正极或者负极之间,
    其中,所述开关型保护器和所述单向TVS在所述电源的端口受到正极到负极的浪涌冲击时导通,以分流浪涌电流,并且所述单向TVS将所述单向TVS两端的浪涌电压箝位到箝位电压,
    所述开关型保护器和所述单向TVS在所述电源的端口受到负极到正极的浪涌冲击时导通,以分流浪涌电流。
  2. 根据权利要求1所述的保护装置,其特征在于,还包括:第一箝位型保护器,所述第一箝位型保护器与所述单向TVS并联连接,用于分流所述浪涌电流。
  3. 根据权利要求1所述的保护装置,其特征在于,还包括:第一箝位型保护器,所述第一箝位型保护器与串联连接的所述开关型保护器和单向TVS并联连接,用于分流所述浪涌电流。
  4. 根据权利要求2或3所述的保护装置,其特征在于,所述第一箝位型保护器为TVS或者金属氧化物压敏电阻MOV。
  5. 根据权利要求1至4中任一项所述的保护装置,其特征在于,还包括:退耦器,所述退耦器串联连接在所述电源端口与所述被保护设备之间。
  6. 根据权利要求5所述的防护装置,其特征在于,还包括:第二箝位型保护器,所述第二箝位型保护器与被保护设备并联连接,并联连接的所述第二箝位型保护器和所述被保护设备与所述退耦器串联连接,所述退耦器和所述第二箝位型保护器所在的支路与所述开关型保护器和所述单向TVS所在的支路并联连接。
  7. 根据权利要求1至6中任一项所述的保护装置,其特征在于,所述开关型保护器为瞬态抑制晶闸管TSS或气体放电管GDT。
  8. 根据权利要求1至7中任一项所述的保护装置,其特征在于,还包括:过流保护器,所述过流保护器与所述开关型保护器和所述单向TVS串联连接,用于过流保护。
  9. 一种电子设备,其特征在于,包括如权利要求1至8中任一项所述的保护装置和被保护装置,所述保护装置与所述被保护装置并联连接。
  10. 一种电源,其特征在于,包括如权利要求1至8中任一项所述的保护装置和供电装置,所述保护装置与所述供电装置并联连接。
PCT/CN2015/079954 2014-09-19 2015-05-27 保护装置、电子设备和电源 WO2016041377A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15841278.3A EP3185384B1 (en) 2014-09-19 2015-05-27 Protection apparatus, electronic device and power supply

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410482156.8A CN104269835A (zh) 2014-09-19 2014-09-19 保护装置、电子设备和电源
CN201410482156.8 2014-09-19

Publications (1)

Publication Number Publication Date
WO2016041377A1 true WO2016041377A1 (zh) 2016-03-24

Family

ID=52161337

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/079954 WO2016041377A1 (zh) 2014-09-19 2015-05-27 保护装置、电子设备和电源

Country Status (3)

Country Link
EP (1) EP3185384B1 (zh)
CN (1) CN104269835A (zh)
WO (1) WO2016041377A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108512206A (zh) * 2018-04-13 2018-09-07 深圳远征技术有限公司 一种用于接地电阻测试仪的浪涌保护电路及装置
EP3565075A4 (en) * 2016-12-28 2020-08-05 Shenzhen Bencent Electronics Co., Ltd. OVERLOAD PROTECTION CIRCUIT AND ELECTRONIC DEVICE USING THE CIRCUIT
US11509134B2 (en) * 2016-12-23 2022-11-22 Huawei Technologies Co., Ltd. Communication interface protection circuit having transient voltage suppression

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105917541B (zh) 2012-10-26 2018-06-26 保险丝公司 电涌保护器件
CN104269835A (zh) * 2014-09-19 2015-01-07 华为技术有限公司 保护装置、电子设备和电源
CN104617653B (zh) * 2015-02-15 2017-07-21 华为技术有限公司 一种选择性保护电路、方法及供电系统
US10148079B2 (en) * 2015-04-07 2018-12-04 Dongguan Littelfuse Electronics Co., Ltd. Surge protection device
CN105048433A (zh) * 2015-07-01 2015-11-11 山东超越数控电子有限公司 一种用于dc-dc电源浪涌防护设计方法
US10250033B2 (en) * 2015-12-01 2019-04-02 Hamilton Sundstrand Corporation Transient voltage suppressor having built-in-test capability for solid state power controllers
CN105552873B (zh) * 2016-01-05 2024-03-29 深圳市槟城电子股份有限公司 一种浪涌防护器件
CN107196282A (zh) * 2017-07-14 2017-09-22 力特半导体(无锡)有限公司 一种浪涌保护器
CN108428697A (zh) * 2017-11-09 2018-08-21 上海长园维安微电子有限公司 一种低电容双向带负阻tvs器件
CN107872053A (zh) * 2017-11-25 2018-04-03 贵阳永青仪电科技有限公司 一种防雷低电平开关量采样电路
CN107976569A (zh) * 2017-11-25 2018-05-01 贵阳永青仪电科技有限公司 一种防雷电压型模拟信号采样电路
CN107966605A (zh) * 2017-11-25 2018-04-27 贵阳永青仪电科技有限公司 一种防雷高电平开关量或频率信号采样电路
CN109950888A (zh) * 2017-12-20 2019-06-28 东莞市阿甘半导体有限公司 一种直流电源保护电路及电子设备
WO2020114410A1 (zh) * 2018-12-08 2020-06-11 郭桥石 瞬态电压抑制装置
US11641103B2 (en) * 2020-11-06 2023-05-02 Abb Schweiz Ag Power semiconductor switch clamping circuit
CN116191384A (zh) * 2021-11-29 2023-05-30 中兴通讯股份有限公司 雷击防护方法、雷击防护装置、电源模块、基站

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203481808U (zh) * 2013-06-21 2014-03-12 上海伊莱克斯实业有限公司 保护rs232通讯信号的防雷电路
CN103795045A (zh) * 2012-10-31 2014-05-14 华为技术有限公司 保护装置
CN103956387A (zh) * 2014-05-15 2014-07-30 安徽芯旭半导体有限公司 一种浪涌防护器件
CN104269835A (zh) * 2014-09-19 2015-01-07 华为技术有限公司 保护装置、电子设备和电源

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD288739A7 (de) * 1979-04-18 1991-04-11 Deutsche Post,Zentrum Fuer Telekommunikation,De Anordnung zum schutz fernmeldetechnischer einrichtungen
US4912589A (en) * 1988-01-13 1990-03-27 Tii Industries, Inc. Surge suppression on AC power lines
EP0360933A1 (en) * 1988-09-28 1990-04-04 Semitron Industries Limited An improved transient suppression device
CN202535055U (zh) * 2012-02-06 2012-11-14 深圳市瑞隆源电子有限公司 一种安防监控摄像机的防雷模块及安防监控摄像机
EP2757688B1 (en) * 2013-01-18 2019-05-22 HS Elektronik Systeme GmbH Active clamped transistor circuit for low temperature operating conditions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103795045A (zh) * 2012-10-31 2014-05-14 华为技术有限公司 保护装置
CN203481808U (zh) * 2013-06-21 2014-03-12 上海伊莱克斯实业有限公司 保护rs232通讯信号的防雷电路
CN103956387A (zh) * 2014-05-15 2014-07-30 安徽芯旭半导体有限公司 一种浪涌防护器件
CN104269835A (zh) * 2014-09-19 2015-01-07 华为技术有限公司 保护装置、电子设备和电源

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3185384A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11509134B2 (en) * 2016-12-23 2022-11-22 Huawei Technologies Co., Ltd. Communication interface protection circuit having transient voltage suppression
EP3565075A4 (en) * 2016-12-28 2020-08-05 Shenzhen Bencent Electronics Co., Ltd. OVERLOAD PROTECTION CIRCUIT AND ELECTRONIC DEVICE USING THE CIRCUIT
US11296497B2 (en) 2016-12-28 2022-04-05 Shenzhen Bencent Electronics Co., Ltd. Surge protection circuit and electronic device using the circuit
CN108512206A (zh) * 2018-04-13 2018-09-07 深圳远征技术有限公司 一种用于接地电阻测试仪的浪涌保护电路及装置
CN108512206B (zh) * 2018-04-13 2024-05-10 深圳远征技术有限公司 一种用于接地电阻测试仪的浪涌保护电路及装置

Also Published As

Publication number Publication date
EP3185384B1 (en) 2022-11-30
EP3185384A4 (en) 2017-09-13
CN104269835A (zh) 2015-01-07
EP3185384A1 (en) 2017-06-28

Similar Documents

Publication Publication Date Title
WO2016041377A1 (zh) 保护装置、电子设备和电源
US20150222109A1 (en) Surge protection circuit
WO2014067272A1 (zh) 保护装置
KR101171228B1 (ko) Hemp 대책용 전원선로 방호장치
WO2016034121A1 (zh) 用于通信设备直流电源端口的防雷保护电路及方法
TWI355126B (en) Protect circuit of car power
JP6745412B2 (ja) サージ保護回路およびこれを用いた電子装置
EP3387723B1 (en) Surge protection circuit and surge protection method
US9640951B2 (en) Triggering circuit of overvoltage protection with an asymmetric element
US9748764B2 (en) Surge protective devices
CN102882181B (zh) 一种基于双向可控硅的反接保护及过压保护电路
US11984717B2 (en) Protection against AC voltage conditions
US20160322810A1 (en) System and method for providing surge protection
CN206379875U (zh) 用于机车直流电源电器的浪涌保护电路
JP2004215323A (ja) 保護回路
CN111064172A (zh) 保护电路和变桨系统
CN211127137U (zh) 一种直流电源正负极性通用装置及充电设备
US10916939B2 (en) Low leakage transient overvoltage protection circuit using a series connected metal oxide varistor (MOV) and silicon controlled rectifier (SCR)
US8947844B2 (en) Series type surge suppressor and clamping circuit
CN201450328U (zh) 一种工程机械控制器的电源保护电路
CN203951159U (zh) 一种电涌保护器冗余系统
JP2015211602A (ja) サージプロテクタ
US11862966B2 (en) Surge protector
CN108054744B (zh) 一种多极多层间隙型电涌保护器
CN211209294U (zh) 一种浪涌防护电路、器件、充电装置和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15841278

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015841278

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015841278

Country of ref document: EP