WO2017016150A1 - 一种基于幅度调制的带内透传监控信号的光模块 - Google Patents

一种基于幅度调制的带内透传监控信号的光模块 Download PDF

Info

Publication number
WO2017016150A1
WO2017016150A1 PCT/CN2015/097818 CN2015097818W WO2017016150A1 WO 2017016150 A1 WO2017016150 A1 WO 2017016150A1 CN 2015097818 W CN2015097818 W CN 2015097818W WO 2017016150 A1 WO2017016150 A1 WO 2017016150A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
circuit
current
optical
low
Prior art date
Application number
PCT/CN2015/097818
Other languages
English (en)
French (fr)
Inventor
梁飞
徐红春
周日凯
张玉安
郑勇志
Original Assignee
武汉光迅科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉光迅科技股份有限公司 filed Critical 武汉光迅科技股份有限公司
Publication of WO2017016150A1 publication Critical patent/WO2017016150A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/40Transceivers

Definitions

  • the invention relates to the field of communication technologies, in particular to the fields of optical transmission network, mobile pre-transmission, mobile backhaul, fixed broadband access, large customer dedicated line access, etc., in particular, to an optical signal with in-band transparent transmission monitoring signal based on amplitude modulation. Module.
  • optical fiber communication become the main transmission means of modern information networks.
  • the current optical communication network as one of the core optoelectronic devices, there are more and more types of optical transceiver modules, and the requirements are also higher and higher, and the complexity is also developing at an alarming rate.
  • optical transceiver module not only transmit the service signals it carries, but also transmit various management and monitoring signals. Since the services carried are very different, in order to make the management and monitoring information independent of the service signals, the traditional method is to open up a special wavelength channel to transmit the monitoring signals.
  • the traditional optical transceiver module does not have the function of transmitting the service signal and the monitoring signal at the same time, so that the operator has to add additional optical cable and channel resources in various application scenarios that need to transmit the monitoring signal, and has to add additional optical transceiver modules and split waves.
  • Equipment these bring problems such as rising input costs, low spectrum utilization, multi-standard and multi-protocol inconsistency, and expensive equipment.
  • the invention provides an optical module based on amplitude modulation for in-band transparent transmission monitoring signals, which can well solve the above problems in the background art.
  • the scheme loads the monitoring signal into the envelope of the carried service signal by using amplitude modulation, and shares the optical cable and the channel resource with the bearer service signal, thereby maximally saving channel resources, and the transparent transmission monitoring signal is independent of the bearer service signal protocol. It has a high degree of flexibility in use and is the most cost-effective solution for applications that need to transmit monitoring signals.
  • An optical module based on amplitude modulation for in-band transparent transmission monitoring signal comprising a transmitting unit and a receiving unit; the transmitting unit comprising a low-speed baseband amplitude for modulating a baseband monitoring signal into a low-speed voltage modulated signal Overmodulation circuit, laser drive circuit for converting low-speed voltage modulation signal into low-speed current modulation signal, laser for loading low-speed current modulation signal, electro-absorption signal modulation circuit for generating high-speed electric pulse signal for service signal, An electroabsorption modulator for controlling whether to absorb light waves emitted by a laser by a high-speed electric pulse signal; the receiving unit comprising an avalanche photodiode for receiving an optical signal from an external optical network and converting the optical signal into a current signal, a transconductance amplifier for converting a main path current pulse signal into a voltage pulse signal, a limiting amplifier for shaping the voltage pulse signal to recover a received service signal, and for converting the branch current signal into a ratio proportion
  • the low-speed baseband amplitude overmodulation circuit is coupled to the laser through a laser drive circuit, the electrical absorption signal modulation circuit is coupled to an electroabsorption modulator, and the laser is coupled to an electroabsorption modulator; one of the avalanche photodiodes The output port is connected to the limiting amplifier through a transconductance amplifier, and the other output port of the avalanche photodiode is connected to the low frequency demodulation circuit through a mirror current circuit.
  • the low-speed baseband amplitude overmodulation circuit includes a first digital-to-analog converter and a second digital-to-analog converter for determining a modulation depth of the baseband amplitude overmodulation signal, and amplitudes for modulating the amplitude of the baseband amplitude overmodulation signal Modulator;
  • the low frequency demodulation circuit includes a low pass filter circuit for filtering a high frequency service signal in the current pulse signal to retain a low frequency monitor signal, and a transconductance amplifying circuit for converting the low frequency current signal into a low frequency voltage signal. a comparison decision circuit for recovering the low frequency voltage signal out of the receiving baseband low frequency monitoring signal;
  • the low pass filter circuit is connected to the comparison decision circuit through a transconductance amplifying circuit.
  • the mirror current circuit uses a mirror current source to generate a branch current equal to the main circuit current, or a current sampling circuit to convert the main current into a current proportional to the main current through the current/voltage conversion circuit. Voltage signal.
  • An optical communication system includes: a first optical transceiver module and a second optical transceiver module, wherein the first optical transceiver module is connected to the second optical transceiver module through an optical communication network;
  • the first optical transceiver module and the second optical transceiver module are all the optical modules described above.
  • An optical module based on amplitude modulation for in-band transparent transmission monitoring signal comprising a transmitting unit and a receiving unit; wherein the transmitting unit comprises a low-speed baseband amplitude for modulating a baseband monitoring signal into a low-speed voltage modulated signal Overmodulation circuit, laser drive circuit for converting low-speed voltage modulation signal into low-speed current modulation signal, laser for loading low-speed current modulation signal, electro-absorption signal modulation circuit for generating high-speed electric pulse signal for service signal, An electroabsorption modulator for controlling whether to absorb light waves emitted by a laser by a high-speed electric pulse signal; the receiving unit comprising an avalanche photodiode for receiving an optical signal from an external optical network and converting the optical signal into a current signal, a transconductance amplifier for converting a main path current pulse signal into a voltage pulse signal, a limiting amplifier for shaping the voltage pulse signal to recover a received service signal, and for converting the branch current signal into a ratio proportional to
  • the optical module of the present invention is loaded on the optical service signal envelope because the monitoring signal is loaded, so that no additional optical path is needed. It can maximize the sharing of existing fiber optic cable and pipeline resources; since the monitoring signal is loaded on the optical service signal envelope, the solution is flexible regardless of the communication protocol; since the external optical module is not required to be added externally, the solution cost Optimal and most economical.
  • FIG. 1 is a functional block diagram of an internal structure of an optical module based on amplitude modulation and in-band transparent transmission monitoring signal according to an embodiment of the present invention.
  • FIG. 2 is a functional block diagram of a low frequency baseband amplitude overmodulation circuit provided by an embodiment of the present invention.
  • FIG. 3 is a functional block diagram of a low frequency demodulation circuit provided by an embodiment of the present invention.
  • FIG. 4 is a scenario of a peer-to-peer communication application provided by an embodiment of the present invention.
  • FIG. 5 is a waveform diagram of a transmission baseband monitoring signal according to an embodiment of the present invention.
  • FIG. 6 is a waveform diagram of a low speed voltage modulation signal provided by an embodiment of the present invention.
  • FIG. 7 is a waveform diagram of a bearer service signal carrying monitoring signal information according to an embodiment of the present invention.
  • FIG. 1 is a functional block diagram of an internal structure of an optical module based on amplitude modulation and in-band transparent transmission monitoring signal according to an embodiment of the present invention. As shown in FIG. 1, the present invention proposes an optical mode of an in-band transparent transmission monitoring signal based on amplitude modulation.
  • a block comprising a transmitting unit and a receiving unit;
  • the transmitting unit comprising a low frequency baseband amplitude overmodulation circuit 14 for modulating the baseband monitoring signal into a low speed voltage modulated signal for transforming the low speed voltage modulated signal into a low speed current modulated signal a laser driving circuit 13, a laser 11 for loading a low-speed current modulation signal, an electric absorption signal modulation circuit 15 for generating a high-speed electric pulse signal for a traffic signal, and for controlling whether or not to absorb light waves emitted by the laser 11 by a high-speed electric pulse signal Electro-absorption modulator 12;
  • the receiving unit includes an avalanche photodiode 21 for receiving an optical signal from an external optical network and converting the optical signal into a current signal for converting the main path current pulse signal into a voltage pulse signal a transconductance amplifier 23, a limiting amplifier 24 for shaping the voltage pulse signal to recover the received service signal, a mirror current circuit 22 for converting the branch current signal into a current
  • the low speed baseband amplitude overmodulation circuit 14 is coupled to the laser 11 by a laser drive circuit 13, the electrical absorption signal modulation circuit 15 is coupled to an electroabsorption modulator 12, and the laser 11 is coupled to an electroabsorption modulator 12; the avalanche One of the output ports of the photodiode 21 is connected to the limiting amplifier 24 via a transconductance amplifier 23, and the other output port of the avalanche photodiode 21 is connected to the low frequency demodulation circuit 25 through the mirror current circuit 22.
  • the signal flow direction of the optical module carrying the service signal is:
  • Tx1 is a transmission service signal
  • Tx1 generates a high-speed electric pulse signal Vx1 through the electric absorption signal modulation circuit 15, and Vx1 controls the electro-absorption modulator 12 to absorb or not absorb the light wave emitted by the laser 11 to achieve an output pulse of the output optical pulse code stream.
  • the purpose of code stream control The optical pulse code stream is transmitted through the external optical network 30, and the avalanche photodiode 21 receives the optical pulse code stream from the external optical network 30.
  • the main path current pulse Ix2 is converted into a voltage pulse Vx2 through the transconductance amplifier 23, and Vx2 passes through the limiting amplifier 24.
  • the shaping is performed to recover the received service signal Rx2.
  • the electro-absorption modulator 12 is an optical signal modulation device fabricated by using an exciton absorption effect in a semiconductor, and has a fast response speed and low operating power consumption.
  • the avalanche photodiode 21 is a P-N junction type photodetecting diode that amplifies the photoelectric signal by the avalanche multiplication effect of the carrier, and converts the optical pulse into a current pulse.
  • the signal flow of the low-speed monitoring signal transmitted by the optical module is:
  • s(t)1 is a transmission baseband monitoring signal (as shown in FIG. 5), and s(t)1 is modulated into a low-speed voltage modulation signal V(t)1 by a low-frequency baseband amplitude overmodulation circuit 14 (as shown in FIG. 6).
  • V(t)1 is converted into a low-speed current modulation signal I(t)1 by the laser driving circuit 13, and I(t)1 is used to drive the laser 11. Since the light output of the laser 11 is proportional to the drive current I(t)1 loaded thereon, the optical power output of the laser 11 is indirectly controlled by the baseband low frequency monitor signal s(t)1.
  • the laser 11 acts as a light source of the electro-absorption modulator 12, and is capable of loading the baseband low-speed monitoring signal s(t)1 onto the envelope of the transmission service signal Tx1.
  • the modulated bearer service signal (shown in FIG. 7) carrying the monitoring signal information is transmitted to the external optical network 30.
  • the avalanche photodiode 21 receives the optical signal from the external optical network 30, converts it into a current signal, and the main path current signal Ix2 recovers the received traffic signal Rx2 through the transconductance amplifier 23 and the limiting amplifier 24.
  • the branch current signal is converted by the mirror current circuit 22 into a current pulse signal I(t) 2 equal to or proportional to the main path current signal, and I(t) 2 is demodulated by the low frequency demodulation circuit 25 to receive the baseband low speed monitor signal d. (t) 2.
  • the internal structure of the low frequency demodulation circuit 25 will be further described later.
  • the temperature has a great influence on the characteristics of the laser 11.
  • it is generally required to control the temperature.
  • the laser 11 usually has a TEC constant temperature control module.
  • FIG. 2 depicts a specific implementation of a low frequency baseband amplitude overmodulation circuit 14 including a first digital to analog converter 141 and a second digital to analog converter 142 for determining the modulation depth of the baseband amplitude overmodulation signal, and for An amplitude modulator 143 that modulates the amplitude of the baseband over the amplitude of the modulated signal.
  • the output Va of the first digital-to-analog converter 141 and the output Vb of the second digital-to-analog converter 142 are respectively connected to the input of the amplitude modulator 143.
  • the size of Va and Vb is adjustable. The size of Va and Vb determines the modulation depth of the baseband amplitude overmodulation signal.
  • the modulation depth needs to be traded between the performance of the bearer service signal and the low speed monitoring signal.
  • a low frequency demodulation circuit 25 including a low pass filter circuit 251 for filtering high frequency traffic signals in the current pulse signal to preserve low frequency supervisory signals for converting low frequency current signals into The transconductance amplifying circuit 252 of the low frequency voltage signal, the comparison decision circuit 253 for recovering the low frequency voltage signal out of the receiving baseband low frequency monitoring signal, wherein the low pass filtering circuit 251 is connected to the comparison decision circuit 253 via the transconductance amplifying circuit 252 .
  • the current pulse signal I(t)2 includes both a high frequency service signal and a low frequency monitoring signal, and I(t)2 filters out the high frequency service signal component through the low pass filter 251, leaving only the low frequency monitoring signal I(t) 2'
  • the low frequency monitoring signal I(t) 2' is converted into a low frequency voltage signal V(t) 2 by the transconductance amplifying circuit 252, and the low frequency voltage signal V(t) 2 is recovered by the comparison decision circuit 253 to receive the low frequency of the receiving baseband.
  • the mirror current circuit 22 may use a mirror current source to generate a branch current equal to the main circuit current, or a current sampling circuit to convert the main current into a current/voltage conversion circuit.
  • the main circuit current is proportional to the voltage signal.
  • FIG. 4 depicts an application scenario for peer-to-peer communication using the optical module of the present invention.
  • an optical communication system includes a first optical transceiver module 10, a second optical transceiver module 20, and an optical communication network 30.
  • the first optical transceiver module 10 passes through the optical communication network 30 and the second optical transceiver.
  • the transceiver module 20 is connected.
  • the first optical transceiver module 10 and the second optical transceiver module 20 in the optical communication system all adopt the above-mentioned optical module based on the amplitude modulation and the in-band transparent transmission monitoring signal.
  • Tx1 is a transmission service signal of the first optical transceiver module 10
  • s(t)1 is a transmission low-speed monitoring signal of the first optical transceiver module 10
  • Rx1 is a reception service signal of the first optical transceiver module 10.
  • d(t)1 is the receiving low-speed monitoring signal of the first optical transceiver module 10
  • Tx2 is the transmitting service signal of the second optical transceiver module 20
  • s(t)2 is the transmitting low-speed monitoring signal of the second optical transceiver module 20
  • Rx2 It is a reception service signal of the second optical transceiver module 20
  • d(t)2 is a reception low-speed monitoring signal of the second optical transceiver module 20.
  • the first optical transceiver module 10 loads the s(t)1 carrying the low-speed monitoring information into the envelope of the service signal Tx1 through the baseband amplitude overmodulation, and modulates the bearer service signal carrying the monitoring signal information (as shown in FIG. 7).
  • the s(t)1 and the Tx1 share the optical cable and the channel resource, and are jointly transmitted to the optical receiving port of the second optical transceiver module 20 through the external optical communication network 30, and the second optical transceiver module 20 demodulates the received modulated signal.
  • the reception service signal Rx2 and the reception low speed monitoring signal d(t)2 are respectively recovered.
  • the second optical transceiver module 20 loads the s(t)2 carrying the low-speed monitoring information into the envelope of the service signal Tx2 through the baseband amplitude overmodulation, and the s(t)2 and the Tx2 share the optical cable and the channel resources, and pass through together.
  • the external optical communication network 30 is transmitted to the optical receiving port of the first optical transceiver module 10.
  • the first optical transceiver module 10 demodulates the received modulated signal, and recovers the received service signal Rx1 and the received low-speed monitoring signal d(t), respectively. 1.
  • an optical module based on amplitude modulation and an in-band transparent transmission monitoring signal can be provided, and the transparent transmission problem of the in-band monitoring signal can be solved economically and effectively. High industrial use value.
  • the optical module based on the amplitude modulation and the in-band transparent transmission monitoring signal can be applied to the design of the optical transceiver module, and can also be applied to other products based on the scheme.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

本发明公开了一种基于幅度调制的带内透传监控信号的光模块,属于通信技术领域。所述光模块,包括低速基带幅度过调制电路、激光器驱动电路、激光器、电吸收信号调制电路、电吸收调制器、雪崩光电二极管、跨导放大器、限幅放大器、镜像电流电路、低频解调电路。相较于传统的光模块,本技术方案所述的光模块将监控信号通过幅度调制加载到所承载业务信号的包络上,与承载业务信号共享光缆与通道资源,节约了通道资源,而且透传的监控信号与所承载业务信号协议无关,具有高度的使用灵活性;由于光模块内部集成低速基带信号调制解调单元,无需外部额外增加光功能单元,就能实现监控信号的透传,对需要传输监控信号的应用场景是最具经济效益的解决方案。

Description

一种基于幅度调制的带内透传监控信号的光模块 技术领域
本发明涉及通信技术领域,特别是光传输网、移动前传、移动回传、固定宽带接入、大客户专线接入等通信领域,尤其涉及一种基于幅度调制的带内透传监控信号的光模块。
背景技术
通信网干线传输容量的不断扩大及速率的不断提高使得光纤通信成为现代信息网络的主要传输手段。在现在的光通信网络中,作为核心光电子器件之一的光收发模块的种类越来越多,要求也越来越高,复杂程度也以惊人的速度发展。
同时,越来越多的光纤通信应用场景要求光收发模块不仅能传输其所承载的业务信号,同时还要能传输各种管理与监控信号。由于承载的业务千差万别,为了使管理与监控信息不依赖于业务信号,传统的方法是开辟一个专门的波长信道来传输监控信号。
传统光收发模块不具备同时传输业务信号与监控信号功能,使得运营商在各种需要传输监控信号的应用场景不得不增加额外的光缆与通道资源,不得不增加额外的光收发模块以及分合波设备,这些都给运营商带来诸如投入成本上升,频谱利用率不高,多标准和多协议的不统一,设备费用昂贵等问题。
发明内容
本发明提出了一种基于幅度调制的带内透传监控信号的光模块,能够很好的解决背景技术中的上述问题。本方案通过将监控信号采用幅度调制加载到所承载业务信号的包络上,与承载业务信号共享光缆与通道资源,能够最大限度的节约通道资源,而且透传监控信号与承载业务信号协议无关,具有高度的使用灵活性,对需要传输监控信号的应用场景,是最具经济效益的解决方案。
本发明采用的技术方案是:
一种基于幅度调制的带内透传监控信号的光模块,所述光模块,包括发送单元和接收单元;所述发送单元,包括用于将基带监控信号调制成低速电压调制信号的低速基带幅度过调制电路、用于将低速电压调制信号变换成低速电流调制信号的激光器驱动电路、用于加载低速电流调制信号的激光器、用于将业务信号生成高速电脉冲信号的电吸收信号调制电路、用于由高速电脉冲信号控制是否吸收由激光器发出的光波的电吸收调制器;所述接收单元,包括用于接收来自外部光网络的光信号并将光信号转换成电流信号的雪崩光电二极管、用于将主路电流脉冲信号转换成电压脉冲信号的跨导放大器、用于对电压脉冲信号整形恢复出接收业务信号的限幅放大器、用于将支路电流信号变换成与主路电流信号成比例的电流脉冲信号 的镜像电流电路、用于将电流脉冲信号解调出接收基带低速监控信号的低频解调电路;
其中,所述低速基带幅度过调制电路通过激光器驱动电路与激光器连接,所述电吸收信号调制电路与电吸收调制器连接,所述激光器与电吸收调制器连接;所述雪崩光电二极管的其中一输出端口通过跨导放大器与限幅放大器连接,所述雪崩光电二极管的另一输出端口通过镜像电流电路与低频解调电路连接。
其中,所述低速基带幅度过调制电路,包括用于决定基带幅度过调制信号的调制深度的第一数模转换器和第二数模转换器、以及用于调制基带幅度过调制信号幅度的幅度调制器;
其中,所述第一数模转换器的输出和第二数模转换器的输出分别连接所述幅度调制器的输入。
其中,所述低频解调电路,包括用于滤除电流脉冲信号中的高频业务信号以保留低频监控信号的低通滤波电路、用于将低频电流信号转换成低频电压信号的跨导放大电路、用于将低频电压信号恢复出接收基带低频监控信号的比较判决电路;
其中,所述低通滤波电路通过跨导放大电路与比较判决电路连接。
其中,所述镜像电流电路采用镜像电流源以产生一路与主路电流大小相等的支路电流,或者采用电流采样电路以将主路电流通过电流/电压变换电路转换成与主路电流成比例的电压信号。
一种光通信系统,包括,第一光收发模块及第二光收发模块,所述第一光收发模块通过光通信网络与第二光收发模块连接;
其中,所述第一光收发模块及第二光收发模块均为上述所述的光模块。
有益效果:
本发明所述的一种基于幅度调制的带内透传监控信号的光模块,包括发送单元和接收单元;所述发送单元,包括用于将基带监控信号调制成低速电压调制信号的低速基带幅度过调制电路、用于将低速电压调制信号变换成低速电流调制信号的激光器驱动电路、用于加载低速电流调制信号的激光器、用于将业务信号生成高速电脉冲信号的电吸收信号调制电路、用于由高速电脉冲信号控制是否吸收由激光器发出的光波的电吸收调制器;所述接收单元,包括用于接收来自外部光网络的光信号并将光信号转换成电流信号的雪崩光电二极管、用于将主路电流脉冲信号转换成电压脉冲信号的跨导放大器、用于对电压脉冲信号整形恢复出接收业务信号的限幅放大器、用于将支路电流信号变换成与主路电流信号成比例的电流脉冲信号的镜像电流电路、用于将电流脉冲信号解调出接收基带低速监控信号的低频解调电路。可见,本发明所述的光模块由于监控信号是加载在光业务信号包络上,因此,无需额外增加光通路, 能最大限度共享现有光缆与管道资源;由于监控信号是加载在光业务信号包络上,因此,该方案与通信协议无关,极具灵活性;由于无需外部额外增加光功能单元,该方案成本最优,最具经济价值。
附图说明
图1是本发明具体实施方式提供的一种基于幅度调制的带内透传监控信号的光模块的内部结构功能框图。
图2是本发明具体实施方式提供的低频基带幅度过调制电路的功能框图。
图3是本发明具体实施方式提供的低频解调电路的功能框图。
图4是本发明具体实施方式提供的一种点对点通信应用场景。
图5是本发明具体实施方式提供的发送基带监控信号的波形图。
图6是本发明具体实施方式提供的低速电压调制信号的波形图。
图7是本发明具体实施方式提供的携带监控信号信息的承载业务信号的波形图。
图中:
10:第一光收发模块;              20:第二光收发模块;
11:激光器;                      21:雪崩光电二极管;
12:电吸收调制器;                22:镜像电流电路;
13:激光器驱动电路;              23:跨导放大器;
14:低频基带幅度过调制电路;      24:限幅放大器;
15:电吸收信号调制电路;          25:低频解调电路;
30:光通信网络;
141:第一数模转换器;
142:第二数模转换器;
143:幅度调制器;
251:低通滤波电路;
252:跨导放大电路;
253:比较判决电路。
具体实施方式
下面结合实施例和附图对本发明做出详细说明。
图1是本发明具体实施方式提供的一种基于幅度调制的带内透传监控信号的光模块的内部结构功能框图。如图1所示,本发明提出了一种基于幅度调制的带内透传监控信号的光模 块,包括发送单元和接收单元;所述发送单元,包括用于将基带监控信号调制成低速电压调制信号的低频基带幅度过调制电路14、用于将低速电压调制信号变换成低速电流调制信号的激光器驱动电路13、用于加载低速电流调制信号的激光器11、用于将业务信号生成高速电脉冲信号的电吸收信号调制电路15、用于由高速电脉冲信号控制是否吸收由激光器11发出的光波的电吸收调制器12;所述接收单元,包括用于接收来自外部光网络的光信号并将光信号转换成电流信号的雪崩光电二极管21、用于将主路电流脉冲信号转换成电压脉冲信号的跨导放大器23、用于对电压脉冲信号整形恢复出接收业务信号的限幅放大器24、用于将支路电流信号变换成与主路电流信号成比例的电流脉冲信号的镜像电流电路22、用于将电流脉冲信号解调出接收基带低速监控信号的低频解调电路25。
以下结合附图1,对本发明所述光模块的内部结构及各功能单元互连做进一步说明。
所述低速基带幅度过调制电路14通过激光器驱动电路13与激光器11连接,所述电吸收信号调制电路15与电吸收调制器12连接,所述激光器11与电吸收调制器12连接;所述雪崩光电二极管21的其中一输出端口通过跨导放大器23与限幅放大器24连接,所述雪崩光电二极管21的另一输出端口通过镜像电流电路22与低频解调电路25连接。
如图1所示,所述光模块承载业务信号的信号流向为:
Tx1是发送业务信号,Tx1通过电吸收信号调制电路15生成高速电脉冲信号Vx1,Vx1控制电吸收调制器12去吸收或不吸收由激光器11发出的光波,达到使输出光脉冲码流受电脉冲码流控制的目的。光脉冲码流通过外部光网络30进行传送,雪崩光电二极管21接收来自外部光网络30的光脉冲码流,主路电流脉冲Ix2通过跨导放大器23转换成电压脉冲Vx2,Vx2通过限幅放大器24进行整形,恢复出接收业务信号Rx2。
需要说明的是,电吸收调制器12是利用半导体中激子吸收效应制作而成的光信号调制器件,响应速度快,工作功耗低。雪崩光电二极管21是一种P-N结型的光检测二极管,利用载流子的雪崩倍增效应来放大光电信号,能将光脉冲转换成电流脉冲。
如图1所示,所述光模块传输的低速监控信号的信号流向为:
s(t)1是发送基带监控信号(如图5所示),s(t)1通过低频基带幅度过调制电路14调制成低速电压调制信号V(t)1(如图6所示),低速基带幅度过调制电路14的内部结构后面会进一步说明。V(t)1通过激光器驱动电路13变换成低速电流调制信号I(t)1,I(t)1用来驱动激光器11。由于激光器11的光输出量与加载在其上的驱动电流I(t)1成一定的比例关系,因而激光器11输出的光功率幅度受基带低频监控信号s(t)1间接控制。激光器11作为电吸收调制器12的光源,能够将基带低速监控信号s(t)1加载到发送业务信号Tx1的包络上去, 调制成的携带监控信号信息的承载业务信号(如图7所示)被传送到外部光网络30。雪崩光电二极管21接收来自外部光网络30的光信号,将其转换成电流信号,主路电流信号Ix2通过跨导放大器23、限幅放大器24恢复出接收业务信号Rx2。支路电流信号通过镜像电流电路22变换成与主路电流信号相等或成比例的电流脉冲信号I(t)2,I(t)2通过低频解调电路25解调出接收基带低速监控信号d(t)2。低频解调电路25的内部结构后面会进一步说明。
需要说明的是,温度对激光器11的特性有较大的影响,为了使激光器11输出功率稳定,一般需要对其进行温度控制,所述激光器11通常带有TEC恒温控制模块。
以下结合附图2,对低频基带幅度过调制电路14的内部结构及各功能单元互连做进一步说明。
图2描述了一种低频基带幅度过调制电路14的具体实施方式,包括有用于决定基带幅度过调制信号的调制深度的第一数模转换器141和第二数模转换器142、以及用于调制基带幅度过调制信号幅度的幅度调制器143。其中,第一数模转换器141的输出Va和第二数模转换器142的输出Vb分别连接幅度调制器143的输入。Va、Vb大小可调,Va、Vb的大小决定基带幅度过调制信号的调制深度,调制深度需要在承载业务信号和低速监控信号性能之间进行权衡。调制深度越大,低速监控信号接收灵敏度越高、误码率越低,而承载业务信号接收灵敏度越低,误码率越高;反之,调制深度越小,低速监控信号接收灵敏度越低、误码率越高,而承载业务信号接收灵敏度越高,误码率越低。
以下结合附图3,对低频解调电路25的内部结构及各功能单元互连做进一步说明。
图3描述了一种低频解调电路25的具体实施方式,包括有用于滤除电流脉冲信号中的高频业务信号以保留低频监控信号的低通滤波电路251、用于将低频电流信号转换成低频电压信号的跨导放大电路252、用于将低频电压信号恢复出接收基带低频监控信号的比较判决电路253,其中,所述低通滤波电路251通过跨导放大电路252与比较判决电路253连接。
电流脉冲信号I(t)2同时包含有高频业务信号和低频监控信号,I(t)2通过低通滤波器251滤除高频业务信号成分,仅保留低频监控信号I(t)2’,低频监控信号I(t)2’通过跨导放大电路252,将低频电流信号转换成低频电压信号V(t)2,低频电压信号V(t)2通过比较判决电路253恢复出接收基带低频监控信号d(t)2。
在本方案中,所述镜像电流电路22可以采用镜像电流源以产生一路与主路电流大小相等的支路电流,也可以采用电流采样电路以将主路电流通过电流/电压变换电路转换成与主路电流成比例的电压信号。
以下结合实施例和图4,对本发明的应用场景做进一步说明。
图4描述了使用本发明所述光模块进行点对点通信的一种应用场景。如图4所示,一种光通信系统,包括有第一光收发模块10、第二光收发模20、光通信网络30,所述第一光收发模块10通过光通信网络30与第二光收发模块20连接。所述的光通信系统中的第一光收发模块10和第二光收发模块20均采用的是上述所述的基于幅度调制的带内透传监控信号的光模块。
如图4所示,Tx1是第一光收发模块10的发送业务信号,s(t)1是第一光收发模块10的发送低速监控信号,Rx1是第一光收发模块10的接收业务信号,d(t)1是第一光收发模块10的接收低速监控信号;Tx2是第二光收发模块20的发送业务信号,s(t)2是第二光收发模块20的发送低速监控信号,Rx2是第二光收发模块20的接收业务信号,d(t)2是第二光收发模块20的接收低速监控信号。
第一光收发模块10将携带低速监控信息的s(t)1通过基带幅度过调制加载到业务信号Tx1的包络上,调制成的携带监控信号信息的承载业务信号(如图7所示),s(t)1与Tx1共享光缆和通道资源,共同通过外部光通信网络30传送到第二光收发模块20的光接收端口,第二光收发模块20对接收到的调制信号进行解调,分别恢复出接收业务信号Rx2和接收低速监控信号d(t)2。同理,第二光收发模块20将携带低速监控信息的s(t)2通过基带幅度过调制加载到业务信号Tx2的包络上,s(t)2与Tx2共享光缆和通道资源,共同通过外部光通信网络30传送到第一光收发模块10的光接收端口,第一光收发模块10对接收到的调制信号进行解调,分别恢复出接收业务信号Rx1和接收低速监控信号d(t)1。
综上所述,根据本发明所公开的内容,能达到预期目的,提供的基于幅度调制的带内透传监控信号的光模块,可以经济有效的解决带内监控信号的透传难题,具有极高的产业利用价值。
所述基于幅度调制的带内透传监控信号的光模块,既可应用于设计光收发模块,也可应用于基于该方案的其它产品。
上述说明及附图仅是用于说明本发明的实施例,凡本领域技术人员,在不脱离所附权利要求书所限定的本发明范围内,仍可在形式上和细节上对本发明做出各种变化,其并未脱离本发明的技术与精神。

Claims (5)

  1. 一种基于幅度调制的带内透传监控信号的光模块,其特征在于:所述光模块,包括发送单元和接收单元;所述发送单元,包括用于将基带监控信号调制成低速电压调制信号的低速基带幅度过调制电路(14)、用于将低速电压调制信号变换成低速电流调制信号的激光器驱动电路(13)、用于加载低速电流调制信号的激光器(11)、用于将业务信号生成高速电脉冲信号的电吸收信号调制电路(15)、用于由高速电脉冲信号控制是否吸收由激光器(11)发出的光波的电吸收调制器(12);所述接收单元,包括用于接收来自外部光网络的光信号并将光信号转换成电流信号的雪崩光电二极管(21)、用于将主路电流脉冲信号转换成电压脉冲信号的跨导放大器(23)、用于对电压脉冲信号整形恢复出接收业务信号的限幅放大器(24)、用于将支路电流信号变换成与主路电流信号成比例的电流脉冲信号的镜像电流电路(22)、用于将电流脉冲信号解调出接收基带低速监控信号的低频解调电路(25);
    其中,所述低速基带幅度过调制电路(14)通过激光器驱动电路(13)与激光器(11)连接,所述电吸收信号调制电路(15)与电吸收调制器(12)连接,所述激光器(11)与电吸收调制器(12)连接;所述雪崩光电二极管(21)的其中一输出端口通过跨导放大器(23)与限幅放大器(24)连接,所述雪崩光电二极管(21)的另一输出端口通过镜像电流电路(22)与低频解调电路(25)连接。
  2. 根据权利要求1所述的一种基于幅度调制的带内透传监控信号的光模块,其特征在于:所述低速基带幅度过调制电路(14),包括用于决定基带幅度过调制信号的调制深度的第一数模转换器(141)和第二数模转换器(142)、以及用于调制基带幅度过调制信号幅度的幅度调制器(143);
    其中,所述第一数模转换器(141)的输出和第二数模转换器(142)的输出分别连接所述幅度调制器(143)的输入。
  3. 根据权利要求1所述的一种基于幅度调制的带内透传监控信号的光模块,其特征在于:所述低频解调电路(25),包括用于滤除电流脉冲信号中的高频业务信号以保留低频监控信号的低通滤波电路(251)、用于将低频电流信号转换成低频电压信号的跨导放大电路(252)、用于将低频电压信号恢复出接收基带低频监控信号的比较判决电路(253);
    其中,所述低通滤波电路(251)通过跨导放大电路(252)与比较判决电路(253)连接。
  4. 根据权利要求1所述的一种基于幅度调制的带内透传监控信号的光模块,其特征在于:所述镜像电流电路(22)采用镜像电流源以产生一路与主路电流大小相等的支路电流,或者采用电流采样电路以将主路电流通过电流/电压变换电路转换成与主路电流成比例的电压信号。
  5. 一种光通信系统,其特征在于:包括,第一光收发模块(10)及第二光收发模块(20),所述第一光收发模块(10)通过光通信网络(30)与第二光收发模块(20)连接;
    其中,所述第一光收发模块(10)及第二光收发模块(20)均为权利要求1-4任一项所述的光模块。
PCT/CN2015/097818 2015-07-24 2015-12-18 一种基于幅度调制的带内透传监控信号的光模块 WO2017016150A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510440141.X 2015-07-24
CN201510440141.XA CN104980225B (zh) 2015-07-24 2015-07-24 一种基于幅度调制的带内透传监控信号的光模块

Publications (1)

Publication Number Publication Date
WO2017016150A1 true WO2017016150A1 (zh) 2017-02-02

Family

ID=54276370

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097818 WO2017016150A1 (zh) 2015-07-24 2015-12-18 一种基于幅度调制的带内透传监控信号的光模块

Country Status (2)

Country Link
CN (1) CN104980225B (zh)
WO (1) WO2017016150A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110730040A (zh) * 2019-11-19 2020-01-24 杭州芯耘光电科技有限公司 一种支持宽动态接收光功率范围的低速通信方法及光模块
CN113259013A (zh) * 2021-05-12 2021-08-13 希烽光电科技(南京)有限公司 一种单波长100g长距离光模块
WO2022257907A1 (en) * 2021-06-08 2022-12-15 Wingcomm Co., Ltd. Optical cable for transmission of audio and video signals

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104980225B (zh) * 2015-07-24 2017-10-03 武汉光迅科技股份有限公司 一种基于幅度调制的带内透传监控信号的光模块
CN105763261B (zh) * 2016-02-24 2018-08-07 烽火通信科技股份有限公司 一种基于激光器加载调制的载波通讯方法及系统
AT521463B1 (de) * 2018-10-03 2020-02-15 Ait Austrian Inst Tech Gmbh Verfahren zur Detektion von Diskontinuitäten in einem optischen Kanal, insbesondere bei einer Glasfaserleitung
CN109495185B (zh) * 2018-11-14 2020-12-22 青岛海信宽带多媒体技术有限公司 光模块
CN109495181B (zh) * 2018-12-07 2021-09-10 青岛海信宽带多媒体技术有限公司 光模块信号处理方法、装置及光模块
CN109768832B (zh) * 2019-01-14 2021-10-08 中国科学院上海光学精密机械研究所 低噪声相干光学及射频频率标准同时解调装置
CN112054868B (zh) 2019-06-06 2021-11-19 中国移动通信有限公司研究院 一种光模块、管控信息处理方法及通信系统
CN112087258B (zh) * 2019-06-13 2022-06-10 青岛海信宽带多媒体技术有限公司 光模块
CN112087677A (zh) * 2019-06-14 2020-12-15 青岛海信宽带多媒体技术有限公司 光模块信息交互方法及光模块
CN112152722A (zh) * 2019-06-26 2020-12-29 青岛海信宽带多媒体技术有限公司 一种光模块
CN110661575A (zh) * 2019-09-20 2020-01-07 武汉光迅科技股份有限公司 一种直调光发射机
CN111262631B (zh) * 2020-01-17 2021-04-06 烽火通信科技股份有限公司 一种管理信息的处理方法、光模块、onu及其应用系统
CN111277333B (zh) * 2020-01-20 2023-01-20 青岛海信宽带多媒体技术有限公司 一种光模块
CN115001588B (zh) * 2021-03-01 2023-06-09 烽火通信科技股份有限公司 一种5g前传链路的远端管理装置与方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101453266A (zh) * 2006-10-09 2009-06-10 华为技术有限公司 一种光通信系统中激光安全保护方法和装置
CN201629744U (zh) * 2010-04-27 2010-11-10 青岛海信宽带多媒体技术有限公司 一种接收光强度监控电路及光模块
CN102857298A (zh) * 2012-04-25 2013-01-02 索尔思光电(成都)有限公司 在光模块中监控功率参数的电路和方法
US20140254973A1 (en) * 2013-03-08 2014-09-11 Mitsubishi Electric Corporation Optical module
CN104980225A (zh) * 2015-07-24 2015-10-14 武汉光迅科技股份有限公司 一种基于幅度调制的带内透传监控信号的光模块

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000358261A (ja) * 1999-06-16 2000-12-26 Nec Corp 光クロスコネクト装置及び光ネットワーク装置並びに接続状態監視方法
CN101043271B (zh) * 2007-04-26 2010-11-10 华为技术有限公司 一种光业务信号保护倒换方法、设备及系统
CN204993356U (zh) * 2015-07-24 2016-01-20 武汉光迅科技股份有限公司 一种基于幅度调制的带内透传监控信号的光模块

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101453266A (zh) * 2006-10-09 2009-06-10 华为技术有限公司 一种光通信系统中激光安全保护方法和装置
CN201629744U (zh) * 2010-04-27 2010-11-10 青岛海信宽带多媒体技术有限公司 一种接收光强度监控电路及光模块
CN102857298A (zh) * 2012-04-25 2013-01-02 索尔思光电(成都)有限公司 在光模块中监控功率参数的电路和方法
US20140254973A1 (en) * 2013-03-08 2014-09-11 Mitsubishi Electric Corporation Optical module
CN104980225A (zh) * 2015-07-24 2015-10-14 武汉光迅科技股份有限公司 一种基于幅度调制的带内透传监控信号的光模块

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110730040A (zh) * 2019-11-19 2020-01-24 杭州芯耘光电科技有限公司 一种支持宽动态接收光功率范围的低速通信方法及光模块
CN110730040B (zh) * 2019-11-19 2024-03-29 杭州芯耘光电科技有限公司 一种支持宽动态接收光功率范围的低速通信方法及光模块
CN113259013A (zh) * 2021-05-12 2021-08-13 希烽光电科技(南京)有限公司 一种单波长100g长距离光模块
CN113259013B (zh) * 2021-05-12 2022-07-08 希烽光电科技(南京)有限公司 一种单波长100g长距离光模块
WO2022257907A1 (en) * 2021-06-08 2022-12-15 Wingcomm Co., Ltd. Optical cable for transmission of audio and video signals

Also Published As

Publication number Publication date
CN104980225B (zh) 2017-10-03
CN104980225A (zh) 2015-10-14

Similar Documents

Publication Publication Date Title
WO2017016150A1 (zh) 一种基于幅度调制的带内透传监控信号的光模块
WO2020042492A1 (zh) 基于pam4调制技术的双向光收发模块
CN104967487B (zh) 一种基于频率调制的带内透传监控信号的光模块
KR101235671B1 (ko) 엔벨로프 제거 및 복원 증폭기를 사용하는 데이터 전송 방법, 엔벨로프 제거 및 복원 증폭기, 전송 디바이스, 수신 디바이스, 및 그것들을 위한 통신 네트워크
CN112532325B (zh) 一种多维复用的光子太赫兹通信系统
CN103067091A (zh) 光发送器、光发送方法和光发送/接收系统
CN107302401B (zh) 一种基于波分复用技术的水下无线光通信装置及方法
CN106375017A (zh) 一种基于pam4调制的光收发模块
WO2015154389A1 (zh) 光收发模块及其工作参数的配置方法及装置
CN204761443U (zh) 一种基于频率调制的带内透传监控信号的光模块
JP5450795B2 (ja) Linc増幅器を使用したデータ送信のための方法、linc増幅器、送信装置、受信装置、およびその通信ネットワーク
CN101895495A (zh) 正交双偏振差分四相相移键控发射与接收的方法及其系统
CN105978631A (zh) 一种光子微波自干扰信号消除装置与方法
CN103414516B (zh) 基于同/外差探测的双向有线/无线混合光接入方法与系统
CN204993356U (zh) 一种基于幅度调制的带内透传监控信号的光模块
CN104410462A (zh) 基于偏振复用的光信号调制与直接检测的方法及装置
CN110798268B (zh) 高效谱效率且可优化功率衰落的微波信号光纤传输方法
CN104467970A (zh) 信号混合传输的转换装置和方法
US20120288274A1 (en) Optical network system and devices enabling data, diagnosis, and management communications
CN106059663A (zh) 一种基于sefdm的高频谱效率短距离光互联系统及方法
CN102833004A (zh) 一种传输距离大于40千米的100g cfp光模块
CN107204929A (zh) 基于激光可见光通信的无线路由器
CN108631881B (zh) 一种相干光装置
CN105959080A (zh) 单边带无载波幅度相位调制的波分复用无源光网络系统
CN106559135A (zh) 基于可见光通信的信息收发方法、收发装置及其系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15899498

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15899498

Country of ref document: EP

Kind code of ref document: A1