WO2017016080A1 - 基于共轭电磁收发阵列宽频探测及可视显示安检系统及方法 - Google Patents

基于共轭电磁收发阵列宽频探测及可视显示安检系统及方法 Download PDF

Info

Publication number
WO2017016080A1
WO2017016080A1 PCT/CN2015/092743 CN2015092743W WO2017016080A1 WO 2017016080 A1 WO2017016080 A1 WO 2017016080A1 CN 2015092743 W CN2015092743 W CN 2015092743W WO 2017016080 A1 WO2017016080 A1 WO 2017016080A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
data processing
magnetic
conjugate
security
Prior art date
Application number
PCT/CN2015/092743
Other languages
English (en)
French (fr)
Inventor
韦岗
杨萃
曹燕
王一歌
Original Assignee
广州彩磁信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州彩磁信息技术有限公司 filed Critical 广州彩磁信息技术有限公司
Publication of WO2017016080A1 publication Critical patent/WO2017016080A1/zh

Links

Images

Definitions

  • the invention relates to the field of security detection systems, and in particular to a broadband detection and visual display security inspection system and method based on a conjugate electromagnetic transceiver array.
  • the metal security system is used to inspect metal objects hidden in the human body, such as firearms, control tools, etc., and is widely used in airports, stations, courts, large conference venues and other public places with large populations. In these places, there are many people, and there are often illegal elements carrying illegal weapons such as knife and gun to take the opportunity to commit crimes, resulting in major casualties and property losses, causing extremely negative negative impact on society.
  • the metal security inspection system is one of the most effective tools. It has been widely used in important safety facilities such as airports. It is one of the most effective security tools that have been tested and tested for a long time.
  • existing metal security systems have the following problems:
  • the existing metal security inspection system whether digital or analog, will be interfered by the external environment and the direct magnetic signal inside the system, resulting in false detection and missed detection.
  • the sensor of the current security inspection system consists of a transmitting coil and an electromagnetic receiving device, which can emit electromagnetic waves to the external environment as well as electromagnetic waves generated by the external environment.
  • electromagnetic waves There are many devices that generate electromagnetic waves in the external environment. For example, high-voltage lines, large-scale motors, electric welders, intermediate frequency furnaces, walkie-talkies, and other adjacent security systems radiate electromagnetic fields outward. These magnetic fields can interfere with and affect the normal detection of security doors.
  • the electromagnetic receiving device receives an electromagnetic signal directly from the transmitting coil, that is, a direct magnetic signal.
  • the direct magnetic signal has a high intensity and interferes with the reception of the induced magnetic signal.
  • the amount of information carried by signals transmitted by existing metal security systems is not large enough.
  • existing metal security system products mainly emit sine waves or pulse waves, and some patents propose to use step-sweep sinusoidal signals for detection (such as patent 200710123855.3).
  • Shannon Information Theory the amount of information carried by a signal is related to signal duration and signal bandwidth. The longer the signal duration and the wider the bandwidth, the richer the detection information carried.
  • the pulse wave time domain duration is very short and is subject to The impact of the hardware device is also narrow, so it is theoretically not conducive to the carrying of the detection information, and is susceptible to noise.
  • the sine wave the bandwidth is extremely narrow, is not conducive to the carrying of information.
  • the frequency sweep signal is a set of sinusoidal signals with discrete frequency points, and the ability to carry information is not as good as continuous frequency conversion signals.
  • the current security door system when people pass and detect metal objects, will sound an alarm, without a visual interface, can not know the specific location of metal objects.
  • the existing metal security door system has problems such as poor anti-interference ability, low detection accuracy, and non-visualization.
  • the present invention provides a broadband detection and visual display security inspection system and method based on conjugate electromagnetic transceiver array, using conjugate electromagnetic
  • the transceiver array realizes wide-band electromagnetic detection signal transmission, no interference or low-interference magnetic signal reception, and uses digital signal processing method to analyze the target contour extraction and detection data, and display it in a color visual interface to realize convenient, fast and accurate security inspection. system.
  • the alternating current in the coil produces an alternating magnetic field.
  • an eddy current is generated in the metal conductor, and the current emits a magnetic field having the same frequency but opposite direction as the original magnetic field, called a secondary magnetic field or an induced magnetic field, by detecting the direction of the magnetic field.
  • the strength can reverse the position, properties and size of the metal conductor.
  • the magnetic fields generated at their geometric centers are opposite in direction and the same size.
  • the magnetic field strength is zero. If the magnetic sensing elements are placed in their geometric center position and there are other metal conductors in the space, then the magnetic signal received by the magnetic sensing element is the induced magnetic signal excited by the alternating magnetic field of the metal conductor, and is not emitted by the coil.
  • the direct magnetic signal interference is the case in which the magnetic sensing elements are placed in their geometric center position and there are other metal conductors in the space.
  • the magnetic fields weaken each other, and the magnetic field is weak after superposition; if the magnetic sensing element is placed in the geometric center plane of the two coils and the neighborhood of the geometric center plane, When there are other metal conductors in the space, then the magnetic induction element receives the induced magnetic field of the metal conductor and is also interfered by the direct magnetic signal emitted by the coil, but the interference is small.
  • the present invention proposes a broadband detection and visual display security check based on a conjugate electromagnetic transceiver array. System and method.
  • a broadband detection and visual display security inspection system based on a conjugate electromagnetic transceiver array, comprising a security detection front end, a data processing background and a support frame.
  • the security detection front end and the data processing background transmit data through wired or wireless data transmission technology.
  • the support frame is used to fix the security detection front end.
  • a wideband detection and visual display security inspection system and method based on a conjugate electromagnetic transmission and reception array, and transmitting a broadband alternating magnetic signal and receiving an induced magnetic signal through a conjugate electromagnetic transmitting and receiving array of a security detection front end.
  • the conjugate electromagnetic transceiver array is an array composed of a plurality of conjugate electromagnetic transceiver units, and the plurality of conjugate electromagnetic transceiver units are fixed on the support frame, and the arrangement manner can be determined according to specific application requirements.
  • the support frame is a door frame, and the conjugate electromagnetic transceiver units are closely arranged along the edge of the door frame to form an array.
  • the conjugate electromagnetic transmitting and receiving unit includes a conjugate electromagnetic transmitting unit and a directional magnetic receiving array.
  • the conjugate electromagnetic transmitting unit of the above conjugate electromagnetic transmitting and receiving unit is obtained by combining a plurality of pairs of co-geometric center conjugate electromagnetic transmitting pairs.
  • the conjugate electromagnetic transmission pair means that coils are respectively wound on two coil cores having the same geometric shape, and the coils are wound in exactly the same way, and the currents in the coils are connected in opposite polarity, so that the currents in the two coils One direction is clockwise and the other is counterclockwise.
  • the conjugate electromagnetic transmitting pair may also be wound around the coil cores of two identical geometric shapes, the coils are wound in exactly the opposite way, and the currents in the coils are connected in the same polarity, so that the currents in the two coils One direction is clockwise and the other is counterclockwise.
  • the coil core can be made of a material having a high magnetic permeability such as iron or iron-nickel or silicon steel sheet. According to Ampere's law, if there is no other magnetic field source, as long as the currents in the two coils of the above conjugated electromagnetic transmitting pair are the same, then the magnetic field strength is zero at the geometric center of the two coils; at the geometric center of the two coils In the neighborhood of the geometric center plane, the magnetic field is weak. If there are other sources of magnetic field in the space, then by adjusting the conjugated electromagnetic transmission to the currents in the two coils, the electromagnetic strength at their geometric center can be made zero; in this case, at the geometric center plane of the two coils and In the neighborhood of the geometric center plane, the magnetic field is weak.
  • the directional magnetic receiving array of the conjugate electromagnetic transmitting and receiving unit comprises a plurality of directional magnetic receiving units, and the plurality of directional magnetic receiving units are arranged at a position where the magnetic signal of the conjugate electromagnetic transmitting unit is zero or weak according to practical application requirements.
  • the conjugate electromagnetic transmitting unit includes only one pair of conjugate electromagnetic transmitting pairs
  • the directional magnetic receiving unit is placed at the geometric center of the conjugate electromagnetic transmitting pair, and in addition, a plurality of directional magnetic receiving units may be arranged in total.
  • the geometric center plane of the yoke electromagnetic transmission pair is arranged with a small number of directional magnetic receiving units in the neighborhood of the conjugate electromagnetic transmission pair to the geometric center plane.
  • the conjugate electromagnetic transmitting unit includes a plurality of pairs of co-geometric center conjugate electromagnetic transmitting pairs
  • the directional magnetic receiving unit is placed at the geometric center of the conjugate electromagnetic transmitting pair
  • a plurality of directional magnetic receiving units may be arranged on the geometric center line of the conjugate electromagnetic transmitting unit, and a small number of directional magnetic receiving units are arranged in the neighborhood of the geometric center line of the conjugate electromagnetic transmitting unit.
  • the directional magnetic receiving unit can be fixed by a bracket, and the material of the bracket should be selected from a non-metal that does not affect the magnetic field.
  • the directional magnetic receiving unit of the directional magnetic receiving array receives the magnetic signal and converts it into an electrical signal, which is characterized in that a plurality of magnetic sensing elements and a metal magnetic field shielding cover are combined, and the magnetic sensing element may be a magnetic sensing element or a coil or other magnetic induction. element.
  • a plurality of magnetic induction elements constitute an omnidirectional magnetic field receiving unit, and a magnetic field vector in all directions in the space can be obtained. If three magnetic sensors are used, the three magnetic sensors need to be placed in three directions perpendicular to each other in space so that the composed magnetic field receiving unit can receive the magnetic field vectors in all directions in the space.
  • a metal magnetic field shield is added to one side of the omnidirectional magnetic field receiving unit to shield the magnetic field in a certain direction, and only receives a magnetic field from other directions than the shield to obtain a directional magnetic receiving unit.
  • the metal shield of the directional magnetic receiving unit should be placed on the side away from the detection target.
  • the metal shield of the directional magnetic receiving unit should be placed on the side close to the outer frame of the door.
  • the security detection front end of the conjugate electromagnetic transmission and reception array wide frequency detection and visual display security inspection system comprises a conjugate electromagnetic transceiver array, an image acquisition device, a data transmission module, a data processing module and a current control module.
  • the data transmission module is connected to the data processing module
  • the data processing module is connected to the current control module
  • the current control module is connected to the conjugate electromagnetic transceiver array and the image acquisition device.
  • the image acquisition device of the security detection front end is used to collect an image of the detected object, that is, a camera.
  • the camera should be mounted on the support frame to capture the full view of the object being inspected, such as the top of the security door, to capture the full view of the personnel and items passing through the security door.
  • the conjugate electromagnetic transceiver array of the security detection front end is used to transmit a broadband detection signal, receive a magnetic signal, and convert it into an electrical signal.
  • the magnetic signal received by the conjugate electromagnetic transceiver array may be an interference magnetic signal emitted by other magnetic field sources in the detection space, or may be an induced magnetic signal excited by the detected metal conductor. After receiving, it is converted into an electrical signal. It is a magnetoelectric signal.
  • the data transmission module of the security detection front end is used for data interaction with the data processing background, and the data transmission technology used is an existing wired or wireless data transmission technology, which is not detailed.
  • the data processing module of the security detection front end includes a data processing unit and a data storage unit for storing the broadband detection signal and the current amplitude control signal, and the magnetic wave received by the conjugate electromagnetic transceiver array.
  • the electrical signal and the image signal collected by the image acquisition device, and the data processing unit is used to control the security detection front end, generate a broadband detection signal and a current amplitude control signal, and perform some preprocessing, such as filtering, on the received signal. , denoising, zooming, etc.
  • the current control module of the security detection front end includes an A/D converter, a D/A converter, and a current control circuit.
  • the D/A converter is configured to convert the digital signal output by the data processing unit into an analog signal, and then the analog signal generates a current through the current control circuit and inputs to each coil of each electromagnetic transmitting unit in the conjugate electromagnetic transmitting and receiving array.
  • the magnetic signal received by the conjugate electromagnetic transceiver array and the image signal received by the image acquisition device are A/D converted, input to the data processing module of the security detection front end, and filtered, denoised, and processed by the data processing unit of the data processing module. After amplification and other processing, it is sent to the data transmission module and sent to the data processing background.
  • the data processing background of the broadband detection and visual display security detection system based on the conjugate electromagnetic transceiver array comprises a data transmission module, a data processing module and a human-computer interaction module.
  • the human-computer interaction module is connected to the data processing module, and the data processing module is connected to the data transmission module.
  • the human-computer interaction module in the data processing background includes a keyboard, a display screen, and the like, and is used by the system user to set parameters of the broadband detection signal and view the detection result, and the settable parameters include a frequency modulation mode of the broadband detection signal, a starting frequency, Cutoff frequency, modulation frequency, and duration of the signal, etc.
  • the data processing module of the data processing background includes a data processing unit and a data storage unit.
  • the data processing unit is configured to control each module in the data processing background, process the received magnetoelectric signal from the security detection front end and the image signal collected by the image acquisition device: including extracting the contour of the detected target from the image and inverting Information such as the position, attribute and size of the detected metal conductor is output to the human-computer interaction module for display.
  • the data storage unit is used to store the broadband detection signal, the current amplitude control signal, the received magnetoelectric signal and image information, and other information that needs to be stored in the process.
  • the data processing module of the data processing background is used for data interaction with the security detection front end, and the data transmission technology used by the data transmission technology should be a wireless or wired data transmission technology corresponding to the data transmission module of the security detection front end.
  • the working process of the broadband detection and visual display security inspection system and method based on the conjugate electromagnetic transceiver array includes a magnetic field pre-calibration process and a detection process.
  • the magnetic field pre-calibration process is performed every time the security inspection system is turned on or the detection environment is changed. In order to eliminate the pre-calibration process performed by the magnetic signals emitted by some magnetic field sources other than the detection space detection target to interfere with the directional magnetic receiving unit. Adjusting the magnitude of the current in the conjugate electromagnetic transmitting pair coil in the conjugate electromagnetic transmitting unit before the system starts detecting, that is, when the detecting target passes through the security inspection system, so that the orientation at the geometric center in each conjugate electromagnetic transmitting and receiving unit The magnetic field strength of the magnetic receiving unit is zero or is below a predetermined threshold.
  • the steps of the magnetic field pre-calibration process include:
  • Step 1 The system user inputs the parameters of the broadband detection signal through the human-computer interaction module in the data processing background.
  • the parameters include the frequency modulation mode of the broadband detection signal, the starting frequency, the cutoff frequency, the modulation frequency, and the duration of the signal.
  • the parameter is sent to the security detection front end through the data transmission module of the data processing background.
  • the security detection front end receives the broadband detection signal parameters and generates a broadband detection signal.
  • the data transmission module receives the parameters of the broadband detection signal and inputs it to the data processing module.
  • the data processing module at the security detection front end generates a broadband detection signal and a current amplitude control signal and stores them in the data storage unit.
  • Step 3 The security detection front end sends a broadband detection magnetic signal.
  • the data processing module of the security detection front end outputs the broadband detection signal and the current amplitude control signal to the current control module.
  • the current control circuit After the current control module undergoes D/A conversion, the current control circuit generates corresponding current input into the conjugate electromagnetic transceiver array. Conjugated in the coil of the electromagnetic transmitting unit.
  • Step 4 The directional magnetic receiving unit of the security detecting front end located at the geometric center of the conjugate electromagnetic transmitting unit receives the interference magnetic signal.
  • Each of the conjugated electromagnetic transceiving arrays disposed at the geometric center of the conjugate electromagnetic transmitting unit receives the interfering magnetic signal and converts it into an electrical signal to obtain an interfering magnetoelectric signal.
  • the data processing module is input to the security detection front end.
  • Step 5 The data processing module of the security detection front end adjusts the current amplitude control signal. After the data processing module of the security detection front end performs filtering, denoising, amplification, etc. on the received interference magnetoelectric signal, the data processing module determines the interference received by each of the directional magnetic receiving units located at the geometric center position of the conjugate electromagnetic transmitting unit. Whether the magnetoelectric signal is zero, if it is zero, there is no need to adjust the current amplitude control signal, and the process proceeds to step 6. It is also possible to set a threshold close to 0 according to actual needs, and determine whether the received interference magnetic signal is less than the threshold.
  • the interference is considered negligible, and the current amplitude control signal does not need to be adjusted, and the process proceeds to step 6;
  • the set threshold indicating that there are other magnetic field sources in the space, so the data processing module adjusts the current amplitude control signal so that each is located in the conjugate electromagnetic
  • the directional magnetic receiving unit of the transmitting unit geometric center position receives the interference magnetic signal is zero or less than the set threshold, stores a new current amplitude control signal, proceeds to step 3;
  • Step 6 The security detection front end sends the adjusted current amplitude control signal to the data transmission module and sends it to the data processing background.
  • the data transmission module in the data processing background receives the data processing module and inputs it to the data processing module in the data processing background for storage.
  • the pre-calibration process ends.
  • the detecting process of the wideband detection and visual display security system based on the conjugate electromagnetic transceiver array comprises the following steps:
  • Step 1 The security detection front end sends a broadband detection magnetic signal.
  • the data processing unit of the security detection front end reads the broadband detection signal and the current amplitude control signal stored in the data storage unit, and after the D/A conversion by the current control module, generates a corresponding current input to the conjugate electromagnetic in the current control circuit.
  • a coil of each conjugate electromagnetic transmitting unit in the transceiver array is
  • the security detection front end receives the detected magnetic signal and acquires image information.
  • Each of the directional magnetic receiving units in the conjugate electromagnetic transmitting and receiving array receives the magnetic signal and converts it into an electrical signal, that is, a magnetoelectric signal; and the image capturing device acquires an image signal of the detected target.
  • the data processing module for denoising, amplifying, etc. the data transmission module of the front end of the security detection is sent to the data processing background.
  • Step 3 The data processing background receives the magnetoelectric signal and the image signal. After receiving the magnetoelectric signal and the image signal, the data transmission module of the data processing background inputs the data processing module to the data processing background.
  • Step 4 Data Processing Background processing of magnetoelectric signals and image signals.
  • the data processing module in the data processing background analyzes the strength and direction of the signal received by each of the directional magnetic receiving units according to the received magnetoelectric signal, and inverts information such as the position, attribute and size of the metal conductor. At the same time, the data processing module analyzes the contour parameters of the detection target of the image signal, and extracts the contour of the detected target.
  • Step 5 The data processing background shows the detection results.
  • the outline of the detected object and the position, attribute and size of the metal object are displayed in different colors.
  • the invention designs a conjugate electromagnetic emission unit, and the coil cores of two identical geometric shapes are respectively wound in the same manner in the same manner. If the currents in the coils are the same in magnitude and the access polarities are opposite, the current directions in the two coils are obtained. One is clockwise and the other is counterclockwise, then at their geometric center, the magnetic field strength is zero.
  • the reception of the induced magnetic signal is not interfered by other magnetic field source signals.
  • the present invention performs a pre-calibration process prior to detection, that is, if there are other magnetic field sources in the detection space, then by adjusting the magnitude of the currents of the two coils of the conjugate electromagnetic emission pair, the magnetic field strength is zero at their geometric centers. . This avoids the detection of other magnetic field sources in the space, such as adjacent security systems, large motors, walkie-talkies, etc. for magnetic sensing components.
  • the invention utilizes a broadband detection signal for detection, and has a wide signal bandwidth and a long duration, so that it can carry more information of the detection target.
  • the invention converts the received magnetic signal into an electrical signal, and digitizes it and then inputs it to the digital signal processing unit for parameter analysis and processing, and the detection accuracy is higher than that by hardware or analog method.
  • the contour of the detected target and the position of the detected metal conductor are simultaneously displayed, so that the worker can quickly locate the position of the metal conductor without performing a second inspection.
  • FIG. 1 is a system block diagram of an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a conjugate electromagnetic transmission pair according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a conjugate electromagnetic transmitting unit according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a directional magnetic receiving unit according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a conjugate electromagnetic transceiver unit according to an embodiment of the present invention.
  • Figure 6 is a top cross-sectional view of a conjugate electromagnetic transceiver unit according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of a conjugate electromagnetic transceiver array according to an embodiment of the present invention.
  • FIG. 8 is a block diagram of a data processing background according to an embodiment of the present invention.
  • FIG. 9 is a flow chart of a magnetic field pre-calibration step in an embodiment of the present invention.
  • FIG. 10 is a flow chart showing the steps of a system detection process according to an embodiment of the present invention.
  • FIG. 1 it is a block diagram of a wideband detection and visual display security inspection system based on a conjugate electromagnetic transceiver array according to the present invention.
  • the security inspection system includes a security detection front end, a data processing background, and a support frame.
  • the door frame of the security door is the support frame, and the modules of the security detection front end are placed on the security door to exchange information with the data processing background through wired or wireless data transmission.
  • the security detection front end of the conjugate electromagnetic transmission and reception array wide frequency detection and visual display security inspection system comprises a conjugate electromagnetic transceiver array, an image acquisition device, a data transmission module, a data processing module and a current control module.
  • the data transmission module is connected to the data processing module
  • the data processing module is connected to the current control module
  • the current control module is connected to the conjugate electromagnetic transceiver array and the image acquisition device.
  • the image acquisition device of the security detection front end is used to collect an image of the detected object, that is, a camera.
  • the camera should be mounted on the support frame to capture the full view of the object being inspected, such as the top of the security door, to capture the full view of the personnel and items passing through the security door.
  • the data transmission module of the security detection front end is used for data interaction with the data processing background, and the data transmission technology used is an existing wired or wireless data transmission technology, such as Wifi.
  • the conjugate electromagnetic transceiver array of the security detection front end is used to transmit a broadband detection signal, receive a magnetic signal, and convert it into an electrical signal.
  • the magnetic signal received by the conjugate electromagnetic transceiver array may be an interference magnetic signal emitted by other magnetic field sources in the detection space, or may be an induced magnetic signal excited by the detected metal conductor, and after being received, converted into an electrical signal, that is, It is a magnetoelectric signal.
  • the data processing module of the security detection front end comprises a data processing unit and a data storage unit, wherein the data storage unit is configured to store the broadband detection signal and the current amplitude control signal, the signal received by the conjugate electromagnetic transceiver array, and the image signal collected by the image acquisition device.
  • the data processing unit is used to control the security detection front end, generate a broadband detection signal and a current amplitude control signal, and perform some preprocessing on the received signal, such as filtering, denoising, and amplification.
  • the current control module of the security detection front end includes an A/D converter and D/A conversion. And current control circuit.
  • the D/A converter is configured to convert the digital signal output by the data processing unit into an analog signal, and then the analog signal generates a corresponding current through the current control circuit, and is input to each coil of each electromagnetic transmitting unit in the conjugate electromagnetic transmitting and receiving array.
  • the data received by the conjugate electromagnetic transceiver array and the image acquisition device is input to the data processing module after A/D conversion, and is processed by the data processing unit of the data processing module for filtering, denoising, amplifying, etc., and then sent to the data transmission module. Send to the data processing background.
  • Figure 2 is a schematic diagram of a conjugate electromagnetic transmission pair.
  • the conjugate electromagnetic transmission pair is: 201 is a pair of conjugate electromagnetic transmission pairs in which the coil core is a triangular pyramid, and 202 is a conjugate electromagnetic transmission pair in which the coil core is a rectangular cylinder.
  • Each pair is two coil cores of exactly the same geometry, and the coils are wound in the same way on the coil core, and the currents in the coils are connected in opposite polarity so that the current direction in the two coils is clockwise. The other is counterclockwise.
  • the 203 is a pair of coil cores which are cylindrical conjugate electromagnetic transmission pairs, on which the coils are wound in the opposite manner, and the currents in the coils are connected to the same polarity, so that the current direction in the two coils is one Clockwise and the other counterclockwise.
  • the conjugate electromagnetic transmission pair can also be of other geometries.
  • Figure 3 is a schematic diagram of a conjugate electromagnetic transmitting unit.
  • the conjugate electromagnetic transmitting unit is composed of a plurality of conjugate electromagnetic transmitting pairs of a common geometric center.
  • the conjugate electromagnetic transmitting unit is composed of three pairs of conjugate electromagnetic transmitting pairs of a common geometric center. They are a conjugate electromagnetic transmission pair made of a coil core of a 301 triangular pyramid, a conjugate electromagnetic transmission pair made of a coil core of 302 rectangular cylinders, and a conjugate electromagnetic transmission pair made of a coil core of a 303 cylinder, 304 is their geometric center position.
  • the directional magnetic receiving unit is characterized in that a plurality of magnetic sensing elements and a metal shielding cover are combined, and the magnetic sensing element may be a magnetic sensing element or a coil or other magnetic sensing element.
  • the magnetic sensitive receiver is an omnidirectional magnetic field receiver capable of obtaining magnetic field vectors in all directions.
  • a metal magnetic field shield is added to one side of the omnidirectional magnetic field receiver to shield the magnetic field in a certain direction, and only receives a magnetic field from other directions than the shield to obtain a directional magnetic receiving unit.
  • FIG. 5 is a schematic diagram of the conjugate electromagnetic transmitting and receiving unit, and the conjugate electromagnetic transmitting and receiving unit includes a conjugate electromagnetic transmitting unit and a directional magnetic receiving array.
  • Fixed placement of multiple directional magnetic receiving units with non-metallic brackets A directional magnetic receiving array is formed in the geometric center position of the conjugate electromagnetic transmitting unit, the geometric center line of the conjugate electromagnetic transmitting unit, and its neighborhood.
  • 501, 502, and 503 are conjugate electromagnetic transmitting pairs of a triangular core, a rectangular cylinder, and a cylindrical coil core, respectively, and 504, 505, and 506 are respectively located at the geometric center of the conjugate electromagnetic transmitting unit.
  • the geometric center line, the directional magnetic receiving unit adjacent to the geometric center line, and the 507 are brackets for fixing the directional magnetic receiving unit, and the material thereof should be a non-metal material that does not affect the magnetic field.
  • Fig. 6 is a cross-sectional view showing the AA plane of the conjugate electromagnetic transmitting and receiving unit of Fig. 5.
  • 601, 602, and 603 are conjugate electromagnetic transmitting pairs of a triangular core, a rectangular cylinder, and a cylindrical coil core, respectively, and 604 is a directional magnetic field placed at a geometric center position and a geometric center line of the conjugate electromagnetic transmitting unit.
  • the receiving unit, 605, is a directional magnetic receiving unit placed in the neighborhood of the geometric centerline of the conjugate electromagnetic transmitting unit.
  • FIG. 7 is a conjugate electromagnetic transceiver array in the security gate system of the embodiment.
  • the conjugate electromagnetic transceiver array is an array composed of a plurality of conjugate electromagnetic transceiver units, and a plurality of conjugate electromagnetic transceiver units are fixed on the support frame. That is, the edge of the door frame surrounding the security door is closely arranged. When aligned, the metal shield in the directional magnetic receiving unit in each conjugate electromagnetic transceiver array should be placed close to the outside of the security gate for shielding the interfering magnetic signal outside the security gate.
  • 701 is a conjugate electromagnetic transceiver unit, and a plurality of conjugate electromagnetic transceiver units are closely arranged along the edge of the door to form an array.
  • 702 is the camera.
  • FIG. 8 is a block diagram of the data processing background of the present invention.
  • the data processing background includes a data transmission module, a data processing module, and a human-computer interaction module.
  • the human-computer interaction module is connected to the data processing module, and the data processing module is connected to the data transmission module.
  • the human-computer interaction module in the data processing background includes a keyboard, a display screen, and the like, and is used by the system user to set parameters of the broadband detection signal and view the detection result, and the settable parameters include a frequency modulation mode of the broadband detection signal, a starting frequency, Cutoff frequency, modulation frequency, and duration of the signal, etc.
  • the data processing module of the data processing background includes a data processing unit and a data storage unit. The data processing unit is configured to control each module in the data processing background, process the received magnetoelectric signal from the security detection front end, and image signals collected by the image acquisition device: including extracting the contour of the detected target from the image and detecting the inversion The position, attribute and size of the metal conductor to the information are output to the human-computer interaction module for display.
  • the data storage unit is used to store the broadband detection signal, the current amplitude control signal, the received magnetoelectric signal and image information, and other information that needs to be stored in the process.
  • the data processing module of the data processing background is used for data interaction with the security detection front end, and the data transmission technology used by the data transmission technology should be a wireless or wired data transmission technology corresponding to the data transmission module of the security detection front end.
  • the conjugated electromagnetic transceiver array broadband detection and visual display security inspection system and method includes a magnetic field pre-calibration process and a detection process. Pre-calibration is performed each time the power is turned on or when the detection environment changes. The pre-calibration steps for each use of the system are described below in conjunction with Figure 9:
  • Step 1 The user inputs the parameters of the broadband detection signal through the human-computer interaction module in the data processing background.
  • the parameter is sent to the security detection front end through the data transmission module of the data processing background.
  • the security detection front end receives the broadband detection signal parameters and generates a broadband detection signal.
  • the data transmission module receives the parameters of the broadband detection signal and inputs it to the data processing module.
  • the data processing module at the security detection front end generates a broadband detection signal and a current amplitude control signal and stores them in the data storage unit.
  • a chirp signal is generated as a broadband detection signal according to a parameter input by the user, and the expression is:
  • ⁇ 0 is the starting angular frequency of the chirp signal
  • ⁇ 0 2 ⁇ f 0 /f s
  • f s is the sampling rate
  • k is the modulation frequency
  • k (f 1 - f 0 ) / (f s 2 T)
  • N is the number of samples of the digital signal
  • N f s T.
  • A is the amplitude of the broadband detection signal.
  • the current control amplitude signal needs to give the magnitude of the current amplitude in each coil, that is, the value of the current amplitude A in each coil in each conjugate transceiver unit.
  • Step 3 The security detection front end sends a broadband detection magnetic signal.
  • the data processing module of the security detection front end outputs the broadband detection signal and the current amplitude control signal to the current control module.
  • the current control circuit After the current control module undergoes D/A conversion, the current control circuit generates corresponding current input into the conjugate electromagnetic transceiver array. Conjugated in the coil of the electromagnetic transmitting unit.
  • Step 4 The directional magnetic receiving unit of the security detecting front end located at the geometric center of the conjugate electromagnetic transmitting unit receives the interference magnetic signal.
  • Each of the conjugated electromagnetic transceiving arrays disposed at the geometric center of the conjugate electromagnetic transmitting unit receives the interfering magnetic signal and converts it into an electrical signal to obtain an interfering magnetoelectric signal.
  • the data processing module is input to the security detection front end.
  • Step 5 The data processing module of the security detection front end adjusts the current amplitude control signal. Before security inspection After the data processing module of the terminal performs filtering, denoising, amplification, etc. on the received interference magnetoelectric signal, the data processing module determines the interference magnetoelectric signal received by each of the directional magnetic receiving units located at the geometric center position of the conjugate electromagnetic transmitting unit. Whether it is zero or not, if it is zero, it is not necessary to adjust the current amplitude control signal, and proceed to step 6. It is also possible to set a threshold close to 0 according to actual needs, and determine whether the received interference magnetic signal is less than the threshold.
  • step 6 If it is less, the interference is considered negligible, and the current amplitude control signal does not need to be adjusted, and the process proceeds to step 6; Zero or not less than the set threshold, indicating that there are other magnetic field sources in the space, so the data processing module adjusts the current amplitude control signal so that each of the directional magnetic receiving units located at the geometric center of the conjugate electromagnetic transmitting unit receives the interference.
  • the magnetic signal is zero or less than the set threshold, storing a new current amplitude control signal, proceeds to step 3;
  • Step 6 The security detection front end sends the adjusted current amplitude control signal to the data transmission module and sends it to the data processing background.
  • the data transmission module in the data processing background receives the data processing module and inputs it to the data processing module in the data processing background for storage.
  • the pre-calibration process ends.
  • the system can begin probing.
  • the directional magnetic receiving unit located at the geometric center position of the conjugate electromagnetic transmitting unit is not interfered by the direct magnetic signal and is not interfered by other magnetic field sources while receiving the induced magnetic signal.
  • the directional magnetic receiving unit located at the geometric centerline of the conjugate electromagnetic transmitting unit and its adjacent region is also less subject to interference.
  • Step 1 The security detection front end sends a broadband detection magnetic signal.
  • the data processing unit of the security detection front end reads the broadband detection signal and the current amplitude control signal stored in the data storage unit, and after the D/A conversion by the current control module, generates a corresponding current input to the conjugate electromagnetic in the current control circuit.
  • a coil of each conjugate electromagnetic transmitting unit in the transceiver array is
  • the security detection front end receives the detected magnetic signal and acquires image information.
  • Each of the directional magnetic receiving units in the conjugate electromagnetic transmitting and receiving array receives the magnetic signal and converts it into an electrical signal, that is, a magnetoelectric signal; and the image capturing device acquires an image signal of the detected target.
  • the data processing module for denoising, amplifying, etc. the data transmission module of the front end of the security detection is sent to the data processing background.
  • Step 3 The data processing background receives the magnetoelectric signal and the image signal. After receiving the magnetoelectric signal and the image signal, the data transmission module of the data processing background inputs the data processing module to the data processing background.
  • Step 4 Data Processing Background processing of magnetoelectric signals and image signals.
  • a data processing module in the data processing background analyzing the strength of the signal received by each of the directional magnetic receiving units according to the received magnetoelectric signal Direction, inversion of the location, properties and size of the metal conductor.
  • the data processing module analyzes the contour parameters of the image signal to extract the contour of the detected target.
  • Step 5 The data processing background shows the detection results.
  • the outline of the detected object and the position, attribute and size of the metal object are displayed in different colors.

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Abstract

一种基于共轭电磁收发阵列宽频探测及可视显示安检系统,包括安检探测前端、数据处理后台和支撑架。在安检探测前端,通过共轭电磁收发单元实现宽频探测磁信号的发送和无干扰、低干扰定向磁接收;两个几何形状相同的线圈芯上缠绕线圈组成共轭电磁发送对(201,202,203,301,302,303,501,502,503,601,602,603),调整线圈缠绕方式、线圈中电流大小和方向,使得在它们的几何中心处的磁场强度为零;若干对共几何中心的共轭电磁发送对组合得到共轭电磁发送单元,并将定向磁接收元件(504,505,506,604,605)放置在共轭电磁发送单元的磁场为零或较弱的位置,得到共轭电磁收发单元(701);在数据处理后台,将探测接收的信号进行处理和彩色显示。可以快速、准确地检测和显示金属导体的大小、属性和位置。还提供了一种基于共轭电磁收发阵列宽频探测及可视显示安检方法。

Description

基于共轭电磁收发阵列宽频探测及可视显示安检系统及方法 技术领域:
本发明涉及安防检测系统领域,具体涉及一种基于共轭电磁收发阵列宽频探测及可视显示安检系统及方法。
背景技术:
金属安检系统用来检查人身体上隐藏的金属物品,如枪支,管制刀具等,广泛应用于机场、车站、法院、大型会议会场等人流较大的公共场所。在这些场所,人员众多,经常会有不法分子携带刀枪等违禁物品伺机作案,从而造成重大的人员伤亡和财产损失,给社会造成极其恶劣的负面影响。而金属安检系统是最有效的工具之一,它已广泛应用于机场等重要的安全设施里,是经过长时间的实践检验、行之有效的安防工具之一。然而现有的金属安检系统存在以下一些问题:
第一,现有的金属安检系统,无论是数字的还是模拟的,均会受外部环境的干扰和系统内部直达磁信号的干扰,导致系统检测会存在误检和漏检。现行安检系统的传感器由发射线圈和电磁接收器件组成,它既可以向外部环境发射电磁波,同时也可以接收外部环境产生的电磁波。外部环境产生电磁波的设备有很多,如高压线、大型的电机、电焊机、中频炉、对讲机、以及相邻的其它安检系统等会向外辐射电磁场,这些磁场会干扰、影响安检门的正常探测。另外,由于发射线圈和电磁接收器件距离很近,因此电磁接收器件会接收到直接来自于发射线圈的电磁信号,即直达磁信号。该直达磁信号强度大,对感生磁信号的接收造成干扰。
第二,现有的金属安检系统所发射的信号所携带的信息量不够大。从发射的电磁信号的模式来讲,现有的金属安检系统产品主要发射正弦波或脉冲波,有一些专利则提出利用步进扫频正弦信号进行探测(如专利200710123855.3)。根据香农信息论,信号携带的信息量与信号持续时间、信号带宽有关,信号持续时间越长、带宽越宽,携带的探测信息越丰富。而脉冲波时域持续时间非常短,受发 射硬件器件的影响,其实际频带也较窄,因此从理论上来说不利于探测信息的携带,易于受噪声影响。而正弦波,带宽极窄,也不利于信息的携带。扫频信号是频点离散的一组正弦信号,携带信息的能力不及连续变频信号。
第三,现在的安检门系统,当人通过并探测到金属物品时,会发出警报声,而没有可视化的界面,无法得知金属物品的具体位置。
总之,现有的金属安检门系统存在抗干扰能力差、检测精度较低、非可视化等问题。
发明内容:
为克服现有金属安检门系统抗干扰性较差、检测精度较低、非可视化等问题,本发明提出一种基于共轭电磁收发阵列宽频探测及可视显示安检系统及方法,使用共轭电磁收发阵列实现宽频电磁探测信号发送、无干扰或者低干扰磁信号接收,利用数字化信号处理方法进行被探测目标轮廓提取和探测数据的分析,并以彩色可视化界面显示,实现方便、快速、准确的安检系统。
根据麦克斯韦方程,线圈中的交变电流会产生交变磁场。金属导体受交变电磁场激励时,在金属导体中产生涡流电流,而该电流又发射一个与原磁场频率相同但方向相反的磁场,称为二次磁场或者感生磁场,通过检测该磁场的方向和强度就可以反演出金属导体的位置、属性和大小等。
根据安培定律,如果两个形状完全相同的线圈中经过方向相反的交变电流,通过调整线圈中宽频交变电流的大小,使得在它们的几何中心处产生的磁场方向相反,大小相同,叠加后磁场强度为零。如果将磁感应元件放置在它们的几何中心位置,而空间中又有其它金属导体时,那么该磁感应元件接收到的磁信号是金属导体受交变磁场激发的感生磁信号,而不受线圈发射的直达磁信号的干扰。
同时,在两个线圈的几何中心面以及几何中心面的邻域,磁场互相削弱,叠加后磁场较弱;如果将磁感应元件放置在两个线圈的几何中心面以及几何中心面的邻域,而空间中又有其它金属导体时,那么该磁感应元件在接收到金属导体的感生磁场的同时,也会受到线圈发射的直达磁信号的干扰,但是该干扰很小。基于上述原理,本发明提出了一种基于共轭电磁收发阵列宽频探测及可视显示安检 系统及方法。
一种基于共轭电磁收发阵列宽频探测及可视显示安检系统,包含安检探测前端、数据处理后台和支撑架。安检探测前端与数据处理后台通过有线或者无线的数据传输技术进行数据的传输。支撑架用于固定安检探测前端。
一种基于共轭电磁收发阵列宽频探测及可视显示安检系统及方法,通过安检探测前端的共轭电磁收发阵列来进行宽频交变磁信号的发送和感生磁信号的接收。共轭电磁收发阵列是由多个共轭电磁收发单元组成的阵列,多个共轭电磁收发单元被固定在支撑架上,排列方式可依据具体的应用需求而定。例如,对于安检门系统,支撑架是门框,共轭电磁收发单元沿着门框边缘紧密排列形成阵列。
上述共轭电磁收发单元包含共轭电磁发送单元和定向磁接收阵列。
上述共轭电磁收发单元的共轭电磁发送单元由若干对共几何中心的共轭电磁发送对组合得到。所述共轭电磁发送对是指:在两个几何形状完全相同的线圈芯上分别绕有线圈,线圈的缠绕方式完全相同,线圈中电流接入的极性相反,使得两个线圈中的电流方向一个为顺时针,另一个为逆时针。所述共轭电磁发送对也可以是在两个几何形状完全相同的线圈芯上分别绕有线圈,线圈的缠绕方式完全相反,线圈中电流接入的极性相同,使得两个线圈中的电流方向一个为顺时针,另一个为逆时针。线圈芯可以为铁或铁镍或硅钢片等磁导率较高的材料所制。根据安培定律,如果没有其他磁场源,只要上述共轭电磁发送对的两个线圈中的电流大小相同,那么在两个线圈的几何中心处,磁场强度为零;在两个线圈的几何中心面及几何中心面的邻域内,磁场较弱。如果空间中有其他的磁场源,那么通过调整共轭电磁发送对两个线圈中的电流,能够使得在它们的几何中心处的电磁强度为零;此时,在两个线圈的几何中心面以及几何中心面的邻域内,磁场较弱。
上述共轭电磁收发单元的定向磁接收阵列,包含多个定向磁接收单元,按照实际应用需求,将多个定向磁接收单元布置在上述共轭电磁发送单元的磁信号为零或较弱的位置,比如,如果共轭电磁发送单元仅包含一对共轭电磁发送对,那么将定向磁接收单元放置在共轭电磁发送对的几何中心处,另外,还可布置若干个定向磁接收单元在共轭电磁发送对的几何中心面,布置少量定向磁接收单元在共轭电磁发送对几何中心面的邻域内。如果共轭电磁发送单元包含多对共几何中心的共轭电磁发送对,那么将定向磁接收单元放置在共轭电磁发送对的几何中心 处,另外,还可布置若干个定向磁接收单元在共轭电磁发送单元的几何中心线,布置少量定向磁接收单元在共轭电磁发送单元几何中心线的邻域。定向磁接收单元可通过支架固定,支架的材料应选择不影响磁场的非金属。
上述定向磁接收阵列的定向磁接收单元,接收磁信号并转换为电信号,其特征在于由多个磁感应元件和一个金属磁场屏蔽罩组合而成,磁感应元件可以是磁敏元件或者线圈或者其它磁感应元件。多个磁感应元件组成全向磁场接收单元,能获得空间中所有方向的磁场矢量。如果采用三个磁敏传感器,则三个磁敏传感器需要放置在空间中互相垂直的三个方向上,以使得组成的磁场接收单元可以接收到空间中所有方向的磁场矢量。在上述全向磁场接收单元的某个面添加一个金属磁场屏蔽罩,使得在某个方向的磁场被屏蔽,而只能接收来自于屏蔽罩以外其他方向的磁场,得到定向磁接收单元。在实际应用中,定向磁接收单元的金属屏蔽罩应该放置在远离检测目标的一侧,比如安检门系统中,定向磁接收单元的金属屏蔽罩应该放置在靠近门外边框的一侧。
所述的基于共轭电磁收发阵列宽频探测及可视显示安检系统的安检探测前端包括共轭电磁收发阵列、图像采集装置、数据传输模块、数据处理模块和电流控制模块。数据传输模块与数据处理模块相连,数据处理模块与电流控制模块相连,而电流控制模块又与共轭电磁收发阵列、图像采集装置相连。
安检探测前端的图像采集装置用于采集被检测目标的图像,即是摄像头。摄像头应该安装在支撑架上能够拍摄到被检测目标全貌的位置上,例如安检门的顶部,可以拍摄到通过安检门的人员和物品的全貌。
安检探测前端的共轭电磁收发阵列用于发送宽频探测信号、接收磁信号并转换为电信号。共轭电磁收发阵列所接收到的磁信号可能是探测空间中其它磁场源发出的干扰磁信号,也可能是由所检测的金属导体激发的感生磁信号,接收后,转换为电信号,称为磁电信号。
安检探测前端的数据传输模块用于和数据处理后台进行数据的交互,其所采用的数据传输技术是现有的有线或者无线数据传输技术,遂不详述。
安检探测前端的数据处理模块包含数据处理单元和数据存储单元,数据存储单元用于存储宽频探测信号和电流幅度控制信号、共轭电磁收发阵列接收到的磁 电信号以及图像采集装置采集到的图像信号等,而数据处理单元则用于对安检探测前端进行控制、产生宽频探测信号和电流幅度控制信号、以及对接收到的信号进行一些预处理,比如滤波、去噪、放大等。
安检探测前端的电流控制模块包含A/D转换器、D/A转换器和电流控制电路。D/A转换器用于将数据处理单元输出的数字信号转换为模拟信号,之后该模拟信号通过电流控制电路产生电流,输入到共轭电磁收发阵列中各电磁发送单元的各个线圈。共轭电磁收发阵列接收到的磁信号和图像采集装置接收到的图像信号经过A/D转换后,输入到安检探测前端的数据处理模块,由数据处理模块的数据处理单元进行滤波、去噪、放大等处理后,交给数据发送模块发送给数据处理后台。
所述的基于共轭电磁收发阵列宽频探测及可视显示安检系统的数据处理后台包含数据传输模块、数据处理模块以及人机交互模块。所述的人机交互模块与数据处理模块相连,数据处理模块又与数据传输模块相连。
所述的数据处理后台的人机交互模块包含键盘、显示屏等,用于系统使用者设置宽频探测信号的参数和查看探测结果,可设置的参数包括宽频探测信号的调频方式、起始频率、截止频率、调频率和信号的持续时间等。
所述的数据处理后台的数据处理模块包含数据处理单元和数据存储单元。数据处理单元用于控制数据处理后台各个模块、对接收到的来自于安检探测前端的磁电信号和图像采集装置采集到的图像信号进行处理:包括从图像中提取被检测目标的轮廓以及反演所探测到的金属导体的位置、属性和大小等信息,并输出到人机交互模块进行显示。而数据存储单元则用于存储宽频探测信号、电流幅度控制信号、接收到的磁电信号和图像信息以及其它一些处理中需要存储的信息。
所述的数据处理后台的数据传输模块用于与安检探测前端进行数据的交互,其所使用的数据传输技术应是与安检探测前端的数据传输模块相对应的无线或者有线的数据传输技术。
基于共轭电磁收发阵列宽频探测及可视显示安检系统及方法的工作过程,包括磁场预校准过程和探测过程。
所述的磁场预校准过程是在每次安检系统开机运行时或者检测环境发生改 变时,为了剔除探测空间检测目标以外的其它一些磁场源发出的磁信号对定向磁接收单元产生干扰而进行的预校准过程。在系统开始探测之前,即在没有探测目标经过安检系统时,调整共轭电磁发送单元中的共轭电磁发送对线圈中的电流大小,使得每一共轭电磁收发单元中的位于几何中心处的定向磁接收单元的磁场强度为零,或者低于预先设定的阈值。所述的磁场预校准过程的步骤包括:
步骤1.系统使用者通过数据处理后台的人机交互模块输入宽频探测信号的参数。参数包括宽频探测信号的调频方式、起始频率、截止频率、调频率和信号的持续时间等。该参数经过数据处理后台的数据传输模块发送给安检探测前端。
步骤2.安检探测前端接收宽频探测信号参数,并产生宽频探测信号。在安检探测前端,数据传输模块接收到宽频探测信号的参数后,输入到数据处理模块。在安检探测前端的数据处理模块产生宽频探测信号和电流幅度控制信号,并存储在数据存储单元。
步骤3.安检探测前端发送宽频探测磁信号。安检探测前端的数据处理模块将宽频探测信号和电流幅度控制信号输出至电流控制模块,在电流控制模块经过D/A转换后,在电流控制电路产生相应的电流输入到共轭电磁收发阵列中各个共轭电磁发送单元的线圈中。
步骤4.安检探测前端的位于共轭电磁发送单元几何中心位置的定向磁接收单元接收干扰磁信号。共轭电磁收发阵列中的各个布置在共轭电磁发送单元几何中心处的定向磁接收单元接收到干扰磁信号,并转换为电信号,得到干扰磁电信号。并在安检探测前端的电流控制模块中进行A/D转换后,输入到安检探测前端的数据处理模块。
步骤5.安检探测前端的数据处理模块调整电流幅度控制信号。安检探测前端的数据处理模块对接收到的干扰磁电信号进行滤波、去噪、放大等预处理之后,数据处理模块判断位于共轭电磁发送单元几何中心位置的各个定向磁接收单元接收到的干扰磁电信号是否为零,如果为零,则不需要调整电流幅度控制信号,进入步骤6。也可以根据实际需要设定一个接近于0的阈值,判断接收到的干扰磁信号是否小于该阈值,如果小于,则认为干扰可忽略,不需要再调整电流幅度控制信号,进入步骤6;如果不为零或者不小于设定的阈值,则说明空间中有其他磁场源,因此数据处理模块调整电流幅度控制信号,使得每一个位于共轭电磁 发送单元几何中心位置的定向磁接收单元接收到的干扰磁信号为零或者小于设定的阈值,存储新的电流幅度控制信号,进入步骤3;
步骤6.安检探测前端将调整后的电流幅度控制信号交给数据传输模块发送给数据处理后台,数据处理后台的数据传输模块接收后输入到数据处理后台的数据处理模块进行存储。预校准过程结束。
所述的基于共轭电磁收发阵列宽频探测及可视显示安检系统的探测过程包含以下步骤:
步骤1.安检探测前端发送宽频探测磁信号。安检探测前端的数据处理单元读取存储在数据存储单元中的宽频探测信号和电流幅度控制信号,并经过电流控制模块进行D/A转换后,在电流控制电路产生相应的电流输入到共轭电磁收发阵列中的各个共轭电磁发送单元的线圈。
步骤2.安检探测前端接收探测磁信号和采集图像信息。共轭电磁收发阵列中的各定向磁接收单元接收磁信号并转换为电信号,即磁电信号;图像采集装置采集被检测目标的图像信号。将磁电信号和图像信号经过数据处理模块进行去噪、放大等预处理之后,通过安检探测前端的数据传输模块发送给数据处理后台。
步骤3.数据处理后台接收磁电信号和图像信号。数据处理后台的数据传输模块接收到磁电信号和图像信号后,输入到数据处理后台的数据处理模块。
步骤4.数据处理后台处理磁电信号和图像信号。在数据处理后台的数据处理模块,根据接收到的磁电信号分析每个定向磁接收单元接收到的信号的强度和方向,反演出金属导体所在的位置、属性和大小等信息。同时,数据处理模块对图像信号进行检测目标的轮廓参数分析,提取出被检测目标的轮廓。
步骤5.数据处理后台显示探测结果。在人机交互模块,同时以不同颜色显示被探测目标的轮廓和金属物品的位置、属性和大小等。
本发明的有益效果是:
1、在实现磁信号发射的同时保证探测感生磁信号的接收不受发射直达磁信号的干扰。本发明设计了共轭电磁发射单元,两个几何形状完全相同的线圈芯上分别以相同的方式缠绕线圈,如果线圈中的电流大小相同、接入极性相反,使得两个线圈中的电流方向一个为顺时针,另一个为逆时针,那么在它们的几何中心处,磁场强度为零。或者两个几何形状完全相同的线圈芯上分别以相反的方式缠 绕线圈,如果线圈中的电流大小相同、接入极性相同,使得两个线圈中的电流方向一个为顺时针,另一个为逆时针,那么在它们的几何中心处,磁场强度也为零。当几何中心处的磁场为零时,在它们的几何中心面及几何中心面的邻域,磁场强度微弱。因此,将磁感应元件放置在该几何中心位置上,可以避免发射直达磁信号对磁感应元件的干扰,将磁感应元件放置在几何中心面及其邻域,磁场较弱,可降低发射直达磁信号对磁感应元件的干扰。
2、感生磁信号的接收不受其它磁场源信号的干扰。本发明在探测前进行了预校准过程,即如果探测空间中存在其他磁场源,那么通过调整共轭电磁发射对中两个线圈的电流的大小,使得在它们的几何中心处,磁场强度为零。这样做避免了检测空间中其它一些磁场源,例如邻近的安检系统、大型电机、对讲机等对于磁感应元件的干扰。
3、本发明利用宽频探测信号来进行探测,信号带宽宽、持续时间长,因此能够携带更多的探测目标的信息。
4、本发明将接收到的磁信号转换为电信号,并数字化后输入到数字信号处理单元进行参数的分析和处理,检测的精度要高于利用硬件或者模拟的方法进行检测。
5、在人机交互模块,同时显示被检测目标的轮廓和所检测到的金属导体的位置,使得工作人员能快速定位到金属导体的位置,而不需要再进行二次检查。
附图说明:
图1是本发明实施例的系统框图;
图2是本发明实施例的共轭电磁发送对的示意图;
图3是本发明实施例的共轭电磁发送单元的示意图;
图4是本发明实施例的定向磁接收单元的示意图;
图5本发明实施例的共轭电磁收发单元的示意图;
图6本发明实施例的共轭电磁收发单元俯视截面图;
图7本发明实施例的共轭电磁收发阵列示意图;
图8是本发明实施例的数据处理后台框图;
图9是本发明实施例的磁场预校准步骤流程图;
图10是本发明实施例的系统探测过程步骤流程图。
具体实施方式:
本实施例以安检门为例,结合附图对本发明的具体实施方式作进一步说明,但本发明的实施不限于此。
如图1所示,是本发明所述的基于共轭电磁收发阵列宽频探测及可视显示安检系统的框图。所述的安检系统包括安检探测前端、数据处理后台和支撑架。在本实施例中,安检门的门框即是支撑架,安检探测前端的各模块放置在安检门上,通过有线或者无线数据传输方式与数据处理后台进行信息交互。
所述的基于共轭电磁收发阵列宽频探测及可视显示安检系统的安检探测前端包括共轭电磁收发阵列、图像采集装置、数据传输模块、数据处理模块和电流控制模块。数据传输模块与数据处理模块相连,数据处理模块与电流控制模块相连,而电流控制模块又与共轭电磁收发阵列、图像采集装置相连。
安检探测前端的图像采集装置用于采集被检测目标的图像,即是摄像头。摄像头应该安装在支撑架上能够拍摄到被检测目标全貌的位置上,例如安检门的顶部,可以拍摄到通过安检门的人员和物品的全貌。安检探测前端的数据传输模块用于和数据处理后台进行数据的交互,其所采用的数据传输技术是现有的有线或者无线数据传输技术,比如Wifi等。安检探测前端的共轭电磁收发阵列用于发送宽频探测信号、接收磁信号并转换为电信号。共轭电磁收发阵列所接收到的磁信号可能是探测空间中其它磁场源发出的干扰磁信号,也可能是由所检测的金属导体激发的感生磁信号,接收后,转换为电信号,即是磁电信号。安检探测前端的数据处理模块包含数据处理单元和数据存储单元,数据存储单元用于存储宽频探测信号和电流幅度控制信号、共轭电磁收发阵列接收到的信号以及图像采集装置采集到的图像信号,而数据处理单元则用于对安检探测前端进行控制、产生宽频探测信号和电流幅度控制信号、以及对接收到的信号进行一些预处理,比如滤波、去噪、放大等。安检探测前端的电流控制模块包含A/D转换器、D/A转换 器和电流控制电路。D/A转换器用于将数据处理单元输出的数字信号转换为模拟信号,之后该模拟信号通过电流控制电路产生相应的电流,输入到共轭电磁收发阵列中各电磁发送单元的各个线圈中。共轭电磁收发阵列和图像采集装置接收到的数据经过A/D转换后,输入到数据处理模块,由数据处理模块的数据处理单元进行滤波、去噪、放大等处理后,交给数据发送模块发送给数据处理后台。
如图2所示是共轭电磁发送对的示意图。本实施例中共轭电磁发送对为:201是一对线圈芯为三角锥体的共轭电磁发送对,202是线圈芯为矩形柱体的共轭电磁发送对。每一对都是几何形状完全相同的两个线圈芯,在线圈芯上以相同的方式绕有线圈,线圈中的电流接入极性相反,使得两个线圈中的电流方向一个为顺时针,另一个为逆时针。203是一对线圈芯为圆柱体共轭电磁发送对,在该圆柱体线圈芯上以相反的方式绕有线圈,线圈中的电流接入极性相同,使得两个线圈中的电流方向一个为顺时针,另一个为逆时针。共轭电磁发送对也可以是其它几何形状。
如图3所示是共轭电磁发送单元的示意图。共轭电磁发送单元由若干对共几何中心的共轭电磁发送对组合而成。本实施例中,共轭电磁发送单元由三对共几何中心的共轭电磁发送对组合而成。它们分别是301三角锥体的线圈芯制成的共轭电磁发送对、302矩形柱体的线圈芯制成的共轭电磁发送对和303圆柱体的线圈芯制成的共轭电磁发送对,304是它们的几何中心位置。根据安培定律,如果没有其他磁场源,只要每一对共轭电磁发送对中两个线圈中的电流大小相同,那么在磁芯的几何中心处,磁场强度为零。如果空间中有其他的磁场源,那么通过调整共轭电磁发送对线圈中的电流,使得在它们的几何中心处的磁场强度为零。
如图4所示是所述的定向磁接收单元,其特征在于由多个磁感应元件和一个金属屏蔽罩组合而成,磁感应元件可以是磁敏元件也可以是线圈或者其它磁感应元件。本实施例中将三个磁敏元件放置在空间中互相垂直的三个方向上,组成的磁敏接收器是全向磁场接收器,能获得所有方向的磁场矢量。在上述全向磁场接收器的某个面添加一个金属磁场屏蔽罩,使得在某个方向的磁场被屏蔽,而只能接收来自于屏蔽罩以外其他方向的磁场,得到定向磁接收单元。
如图5是所述的共轭电磁收发单元的示意图,共轭电磁收发单元包含共轭电磁发送单元和定向磁接收阵列。利用非金属支架将多个定向磁接收单元固定放置 在共轭电磁发送单元的几何中心位置、共轭电磁发送单元的几何中心线及其邻域内,形成定向磁接收阵列。图5中,501、502、503分别是三角锥体、矩形柱体、圆柱体的线圈芯制成的共轭电磁发送对,504、505、506分别是位于共轭电磁发送单元的几何中心位置、几何中心线、几何中心线邻域的定向磁接收单元,507是用于固定定向磁接收单元的支架,其材质应是不影响磁场的非金属材质。
图6所示是图5的共轭电磁收发单元的AA面的截面图。601、602、603分别是三角锥体、矩形柱体、圆柱体的线圈芯制成的共轭电磁发送对,604是放置在共轭电磁发送单元的几何中心位置和几何中心线上的定向磁接收单元,605是放置在共轭电磁发送单元几何中心线邻域的定向磁接收单元。
如图7所示是本实施例安检门系统中的共轭电磁收发阵列,共轭电磁收发阵列是由多个共轭电磁收发单元组成的阵列,多个共轭电磁收发单元固定在支撑架上,即围绕安检门的门框边缘紧密排列。排列时,每个共轭电磁收发阵列中的定向磁接收单元中的金属屏蔽罩应放置在靠近安检门外侧的位置,用于屏蔽安检门外部的干扰磁信号。701为共轭电磁收发单元,多个共轭电磁收发单元沿着门边沿紧密排列形成阵列。702为摄像头。
如图8所示是本发明所述数据处理后台的框图。数据处理后台包含数据传输模块、数据处理模块以及人机交互模块。所述的人机交互模块与数据处理模块相连,数据处理模块又与数据传输模块相连。
所述的数据处理后台的人机交互模块包含键盘、显示屏等,用于系统使用者设置宽频探测信号的参数和查看探测结果,可设置的参数包括宽频探测信号的调频方式、起始频率、截止频率、调频率和信号的持续时间等。所述的数据处理后台的数据处理模块包含数据处理单元和数据存储单元。数据处理单元用于控制数据处理后台各个模块、处理接收到的来自于安检探测前端的磁电信号和图像采集装置采集到的图像信号:包括从图像中提取被检测目标的轮廓以及反演所探测到的金属导体的位置、属性和大小等信息,并输出到人机交互模块进行显示。而数据存储单元则用于存储宽频探测信号、电流幅度控制信号、接收到的磁电信号和图像信息以及其它一些处理中需要存储的信息。所述的数据处理后台的数据传输模块用于与安检探测前端进行数据的交互,其所使用的数据传输技术应是与安检探测前端的数据传输模块相对应的无线或者有线的数据传输技术。
所述的基于共轭电磁收发阵列宽频探测及可视显示安检系统及方法,工作过程包括磁场预校准过程和探测过程。在每次开机时或者检测环境发生改变时,要进行预校准,下面结合图9,对每次使用系统时的预校准步骤进行描述:
步骤1.使用者通过数据处理后台的人机交互模块输入宽频探测信号的参数。参数包括宽频探测信号的调频方式、起始频率、截止频率、调频率和信号的持续时间等。设用户设置的参数宽频探测信号的调频方式是线性调频,起始频率3.5MHz,即f0=3.5MHz。截止频率是5MHz,即f1=5MHz。持续时间T=20ms。该参数经过数据处理后台的数据传输模块发送给安检探测前端。
步骤2.安检探测前端接收宽频探测信号参数,并产生宽频探测信号。在安检探测前端,数据传输模块接收到宽频探测信号的参数后,输入到数据处理模块。在安检探测前端的数据处理模块产生宽频探测信号和电流幅度控制信号,并存储在数据存储单元。
根据用户输入的参数产生线性调频信号作为宽频探测信号,其表达式为:
Figure PCTCN2015092743-appb-000001
其中,ω0是线性调频信号的起始角频率,ω0=2πf0/fs,fs为采样率,k为调频率,k=(f1-f0)/(fs 2T)。N为数字信号的样本数,N=fsT。
Figure PCTCN2015092743-appb-000002
为相位,可以取随机的初始相位。A是宽频探测信号的幅度。电流控制幅度信号需要给出每个线圈中电流幅度的大小,即是给出每个共轭收发单元中的每个线圈中电流幅度A的取值。
步骤3.安检探测前端发送宽频探测磁信号。安检探测前端的数据处理模块将宽频探测信号和电流幅度控制信号输出至电流控制模块,在电流控制模块经过D/A转换后,在电流控制电路产生相应的电流输入到共轭电磁收发阵列中各个共轭电磁发送单元的线圈中。
步骤4.安检探测前端的位于共轭电磁发送单元几何中心位置的定向磁接收单元接收干扰磁信号。共轭电磁收发阵列中的各个布置在共轭电磁发送单元几何中心处的定向磁接收单元接收到干扰磁信号,并转换为电信号,得到干扰磁电信号。并在安检探测前端的电流控制模块中进行A/D转换后,输入到安检探测前端的数据处理模块。
步骤5.安检探测前端的数据处理模块调整电流幅度控制信号。安检探测前 端的数据处理模块对接收到的干扰磁电信号进行滤波、去噪、放大等预处理之后,数据处理模块判断位于共轭电磁发送单元几何中心位置的各个定向磁接收单元接收到的干扰磁电信号是否为零,如果为零,则不需要调整电流幅度控制信号,进入步骤6。也可以根据实际需要设定一个接近于0的阈值,判断接收到的干扰磁信号是否小于该阈值,如果小于,则认为干扰可忽略,不需要再调整电流幅度控制信号,进入步骤6;如果不为零或者不小于设定的阈值,则说明空间中有其他磁场源,因此数据处理模块调整电流幅度控制信号,使得每一个位于共轭电磁发送单元几何中心位置的定向磁接收单元接收到的干扰磁信号为零或者小于设定的阈值,存储新的电流幅度控制信号,进入步骤3;
步骤6.安检探测前端将调整后的电流幅度控制信号交给数据传输模块发送给数据处理后台,数据处理后台的数据传输模块接收后输入到数据处理后台的数据处理模块进行存储。预校准过程结束。
预校准过程结束后,系统可以开始探测。此时,位于共轭电磁发送单元几何中心位置的定向磁接收单元在接收感生磁信号的同时不受直达磁信号的干扰,也不受其他磁场源的干扰。位于共轭电磁发送单元几何中心线及其邻域的定向磁接收单元所受到的干扰也较小。下面结合图10,介绍所述的基于共轭电磁收发阵列宽频探测及可视显示安检系统的探测过程,包含以下步骤:
步骤1.安检探测前端发送宽频探测磁信号。安检探测前端的数据处理单元读取存储在数据存储单元中的宽频探测信号和电流幅度控制信号,并经过电流控制模块进行D/A转换后,在电流控制电路产生相应的电流输入到共轭电磁收发阵列中的各个共轭电磁发送单元的线圈。
步骤2.安检探测前端接收探测磁信号和采集图像信息。共轭电磁收发阵列中的各定向磁接收单元接收磁信号并转换为电信号,即磁电信号;图像采集装置采集被检测目标的图像信号。将磁电信号和图像信号经过数据处理模块进行去噪、放大等预处理之后,通过安检探测前端的数据传输模块发送给数据处理后台。
步骤3.数据处理后台接收磁电信号和图像信号。数据处理后台的数据传输模块接收到磁电信号和图像信号后,输入到数据处理后台的数据处理模块。
步骤4.数据处理后台处理磁电信号和图像信号。在数据处理后台的数据处理模块,根据接收到的磁电信号分析每个定向磁接收单元接收到的信号的强度和 方向,反演出金属导体所在的位置、属性和大小等信息。同时,数据处理模块对图像信号进行轮廓参数分析,提取出被检测目标的轮廓。
步骤5.数据处理后台显示探测结果。在人机交互模块,同时以不同颜色显示被探测目标的轮廓和金属物品的位置、属性和大小等。

Claims (10)

  1. 基于共轭电磁收发阵列宽频探测及可视显示安检系统,其特征在于系统包含安检探测前端、数据处理后台和支撑架,安检探测前端和数据处理后台之间以有线或无线方式进行数据传输,安检探测前端固定在支撑架上。安检探测前端通过一种共轭电磁收发单元组成共轭电磁收发阵列,发送宽频探测磁信号和实现无干扰或低干扰定向磁接收。数据处理后台对数字化的探测接收信号进行分析、存储和显示。
  2. 根据权利要求1所述的基于共轭电磁收发阵列宽频探测及可视显示安检系统,其特征在于安检探测前端的共轭电磁收发阵列是由多个共轭电磁收发单元组成的阵列,多个共轭电磁收发单元被固定在支撑架上,多个共轭电磁收发单元的排列方式可依据具体的应用需求而定,对于安检门,安检门的门框就是支撑架,多个共轭电磁收发单元沿着安检门框边缘排列。
  3. 根据权利要求2所述的基于共轭电磁收发阵列宽频探测及可视显示安检系统,其特征在于共轭电磁收发单元包含共轭电磁发送单元和定向磁接收阵列。
  4. 根据权利要求3所述的基于共轭电磁收发阵列宽频探测及可视显示安检系统,其特征在于共轭电磁收发单元的共轭电磁发送单元由若干对共几何中心的共轭电磁发送对组合而成,所述共轭电磁发送对是指:在两个几何形状完全相同的线圈芯上分别绕有线圈,线圈的缠绕方式完全相同,线圈中的电流接入极性相反,使得两个线圈中的电流方向一个为顺时针,另一个为逆时针,所述共轭电磁发送对也可以是在两个几何形状完全相同的线圈芯上分别绕有线圈,线圈的缠绕方式完全相反,线圈中的电流接入极性相同使得两个线圈中的电流方向一个为顺时针,另一个为逆时针,线圈芯可以为铁或铁镍或硅钢片等磁导率较高的材料所制,根据安培定律,如果没有其他磁场源,只要上述共轭电磁发送对的两个线圈中的电流大小相同,那么在两个线圈的几何中心处,磁场强度为零;在两个线圈的几何中心面及几何中心面的邻域内,磁场较弱,如果空间中有其他的磁场源,那么通过调整共轭电磁发送对两个线圈中的电流,能够使得在它们的几何中心处的电磁强度为零;此时,在两个线圈的几何中心面以及几何中心面的邻域内,磁场较弱。
  5. 根据权利要求3所述的基于共轭电磁收发阵列宽频探测及可视显示安检系统,其特征在于共轭电磁收发单元的定向磁接收阵列,包含多个定向磁接收单元,
    所述的定向磁接收阵列的定向磁接收单元,用于接收磁信号并转换为电信号,其特征在于由多个磁感应元件和一个金属磁场屏蔽罩组合而成,磁感应元件可以是磁敏元件或者线圈或者其它磁感应元件,多个磁感应元件组成全向磁场接收单元,能获得空间中所有方向的磁场矢量,如果采用三个磁敏传感器,则三个磁敏传感器需要放置在空间中互相垂直的三个方向上,以使得组成的磁场接收单元可以接收到空间中所有方向的磁场矢量,在上述全向磁场接收单元的某个面添加一个金属磁场屏蔽罩,使得在某个方向的磁场被屏蔽,而只能接收来自于屏蔽罩以外其他方向的磁场,得到定向磁接收单元,在实际应用中,定向磁接收单元的金属屏蔽罩应该放置在远离检测目标的一侧,比如安检门系统中,定向磁接收单元的金属屏蔽罩应该放置在靠近门外边框的一侧,
    按照实际应用需求,将多个定向磁接收单元布置在上述共轭电磁发送单元的磁信号为零或较弱的位置,如果共轭电磁发送单元仅包含一对共轭电磁发送对,那么将定向磁接收单元放置在共轭电磁发送对的几何中心处,另外,可布置若干个定向磁接收单元在共轭电磁发送对的几何中心面,布置少量定向磁接收单元在共轭电磁发送对几何中心面的邻域,如果共轭电磁发送单元包含多对共几何中心的共轭电磁发送对,那么将定向磁接收单元放置在共轭电磁发送对的几何中心处,可布置若干个定向磁接收单元在共轭电磁发送单元的几何中心线,布置少量定向磁接收单元在共轭电磁发送单元的几何中心线的邻域,上述定向磁接收单元可通过支架固定,支架的材质应是不影响磁场的非金属材质。
  6. 根据权利要求1所述的基于共轭电磁收发阵列宽频探测及可视显示安检系统,其特征在于安检探测前端包括共轭电磁收发阵列、图像采集装置、数据传输模块、数据处理模块和电流控制模块,数据传输模块与数据处理模块相连,数据处理模块与电流控制模块相连,而电流控制模块又与共轭电磁收发阵列、图像采集装置相连,
    安检探测前端的图像采集装置用于采集被检测目标的图像,即是摄像头。摄像头应该安装在支撑架上能够拍摄到被检测目标全貌的位置上,例如安检门的顶 部,可以拍摄到通过安检门的人员和物品的全貌,
    安检探测前端的共轭电磁收发阵列用于发送宽频探测信号、接收磁信号并转换为电信号,共轭电磁收发阵列所接收到的磁信号可能是探测空间中其它磁场源发出的干扰磁信号,也可能是由所检测的金属导体激发的感生磁信号,接收后,转换为电信号,称为磁电信号,
    安检探测前端的数据传输模块用于和数据处理后台进行数据的交互,其所采用的数据传输技术是现有的有线或者无线数据传输技术,
    安检探测前端的数据处理模块包含数据处理单元和数据存储单元,数据存储单元用于存储宽频探测信号和电流幅度控制信号、共轭电磁收发阵列接收到的信号以及图像采集装置采集到的图像信号,而数据处理单元则用于对安检探测前端的各个模块进行控制、产生宽频探测信号和电流幅度控制信号、以及对接收到的信号进行一些预处理,比如滤波、去噪、放大,
    安检探测前端的电流控制模块包含A/D转换器、D/A转换器和电流控制电路,D/A转换器用于将数据处理单元输出的数字信号转换为模拟信号,之后该模拟信号通过电流控制电路产生电流,输入到共轭电磁收发阵列中各个共轭电磁发送单元的线圈中,共轭电磁收发阵列接收到的磁信号和图像采集装置接收到的图像信号经过A/D转换后,输入到安检探测前端的数据处理模块,由数据处理模块的数据处理单元进行滤波、去噪、放大处理后,交给数据发送模块发送给数据处理后台。
  7. 根据权利要求1所述的基于共轭电磁收发阵列宽频探测及可视显示安检系统,其特征在于数据处理后台包含数据传输模块、数据处理模块以及人机交互模块,所述的人机交互模块与数据处理模块相连,数据处理模块又与数据传输模块相连,
    所述的数据处理后台的人机交互模块包含键盘、显示屏等输入输出设备,用于系统使用者设置宽频探测信号的参数和查看探测结果,可设置的参数包括宽频探测信号的调频方式、起始频率、截止频率、调频率和信号的持续时间,
    所述的数据处理后台的数据处理模块包含数据处理单元和数据存储单元,数据处理单元用于控制数据处理后台各个模块、对接收到的来自于安检探测前端的磁电信号和图像采集装置采集到的图像信号进行处理:包括提取图像的轮廓以及 反演所探测到的金属导体的位置、属性和大小信息,并输出到人机交互模块进行显示。而数据存储单元则用于存储宽频探测信号、电流幅度控制信号、接收到的感生磁电信号和图像信息以及其它一些处理中需要存储的信息,
    所述的数据处理后台的数据传输模块用于与安检探测前端进行数据的交互,其所使用的数据传输技术应是与安检探测前端的数据传输模块相对应的无线或者有线的数据传输技术。
  8. 一种基于共轭电磁收发阵列宽频探测及可视显示安检方法,其特征在于系统工作过程包括磁场预校准过程和探测过程。
  9. 根据权利要求8所述的基于共轭电磁收发阵列宽频探测及可视显示安检方法,其特征在于所述的磁场预校准过程是在每次安检系统开机运行或者检测环境发生变化时,为了剔除探测空间检测目标以外的其它一些磁场源发出的磁信号对定向磁接收单元产生干扰而进行的预校准过程,在系统开始探测之前,即在没有探测目标经过安检系统时,调整共轭电磁发送单元中的共轭电磁发送对线圈中的电流大小,使得每一共轭电磁收发单元中的位于几何中心处的定向磁接收单元的磁场强度为零,或者低于预先设定的阈值,所述的磁场预校准过程的步骤包括:
    步骤1.系统使用者通过数据处理后台的人机交互模块输入宽频探测信号的参数,参数包括宽频探测信号的调频方式、起始频率、截止频率、调频率和信号的持续时间等,该参数经过数据处理后台的数据传输模块发送给安检探测前端,
    步骤2.安检探测前端接收宽频探测信号参数,并产生宽频探测信号,在安检探测前端,数据传输模块接收到宽频探测信号的参数后,输入到数据处理模块,在安检探测前端的数据处理模块产生宽频探测信号和电流幅度控制信号,并存储在数据存储单元,
    步骤3.安检探测前端发送宽频探测磁信号,安检探测前端的数据处理模块将宽频探测信号和电流幅度控制信号输出至电流控制模块,在电流控制模块经过D/A转换后,在电流控制电路产生相应的电流输入到共轭电磁收发阵列中各个共轭电磁发送单元的线圈中,
    步骤4.安检探测前端的位于共轭电磁发送单元几何中心位置的定向磁接收单元接收干扰磁信号,共轭电磁收发阵列中的各个布置在共轭电磁发送单元几何中心处的定向磁接收单元接收到干扰磁信号,并转换为电信号,得到干扰磁电信 号,并在安检探测前端的电流控制模块中进行A/D转换后,输入到安检探测前端的数据处理模块,
    步骤5.安检探测前端的数据处理模块调整电流幅度控制信号,安检探测前端的数据处理模块对接收到的干扰磁电信号进行滤波、去噪、放大预处理之后,数据处理模块判断位于共轭电磁发送单元几何中心位置的各个定向磁接收单元接收到的干扰磁电信号是否为零,如果为零,则不需要调整电流幅度控制信号,进入步骤6,也可以根据实际需要设定一个接近于零的阈值,判断接收到的干扰磁信号是否小于该阈值,如果小于,则认为干扰可忽略,不需要再调整电流幅度控制信号,进入步骤6;如果不为零或不小于设定的阈值,则说明空间中有其他磁场源,因此数据处理模块调整电流幅度控制信号,使得每一个位于共轭电磁发送单元几何中心位置的定向磁接收单元接收到的干扰磁信号为零或者小于设定的阈值,存储新的电流幅度控制信号,进入步骤3;
    步骤6.安检探测前端将调整后的电流幅度控制信号交给数据传输模块发送给数据处理后台,数据处理后台的数据传输模块接收后输入到数据处理后台的数据处理模块进行存储,预校准过程结束。
  10. 根据权利要求8所述的基于共轭电磁收发阵列宽频探测及可视显示安检方法,其特征在于基于共轭电磁收发阵列宽频探测及可视显示安检系统及方法的探测过程包含以下步骤:
    步骤1.安检探测前端发送宽频探测磁信号,安检探测前端的数据处理单元读取存储在数据存储单元中的宽频探测信号和电流幅度控制信号,并经过电流控制模块进行D/A转换后,在电流控制电路产生相应的电流输入到共轭电磁收发阵列中的各个共轭电磁发送单元的线圈,
    步骤2.安检探测前端接收探测磁信号和采集图像信息,共轭电磁收发阵列中的各定向磁接收单元接收磁信号并转换为电信号,即磁电信号;图像采集装置采集被检测目标的图像信号,将磁电信号和图像信号经过数据处理模块进行去噪、放大等预处理之后,通过安检探测前端的数据传输模块发送给数据处理后台,
    步骤3.数据处理后台接收磁电信号和图像信号,数据处理后台的数据传输模块接收到磁电信号和图像信号后,输入到数据处理后台的数据处理模块,
    步骤4.数据处理后台处理磁电信号和图像信号,在数据处理后台的数据处 理模块,根据接收到的磁电信号分析每个定向磁接收单元接收到的信号的强度和方向,反演出金属导体所在的位置、属性和大小等信息,同时,数据处理模块对图像信号进行轮廓参数分析,提取出被检测目标的轮廓,
    步骤5.数据处理后台显示探测结果,在人机交互模块,同时以不同颜色显示被探测目标的轮廓和金属物品的位置、属性和大小。
PCT/CN2015/092743 2015-07-24 2015-10-23 基于共轭电磁收发阵列宽频探测及可视显示安检系统及方法 WO2017016080A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510447661.3 2015-07-24
CN201510447661.3A CN105005083A (zh) 2015-07-24 2015-07-24 基于共轭电磁收发阵列宽频探测及可视显示安检系统及方法

Publications (1)

Publication Number Publication Date
WO2017016080A1 true WO2017016080A1 (zh) 2017-02-02

Family

ID=54377816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/092743 WO2017016080A1 (zh) 2015-07-24 2015-10-23 基于共轭电磁收发阵列宽频探测及可视显示安检系统及方法

Country Status (2)

Country Link
CN (1) CN105005083A (zh)
WO (1) WO2017016080A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107290653A (zh) * 2017-05-13 2017-10-24 华南理工大学 基于宽频磁感应信道特征辨识pcb的检测装置和方法
CN108318075A (zh) * 2018-02-09 2018-07-24 李法利 安检装置的控制电路
CN111435175A (zh) * 2019-01-11 2020-07-21 天津大学青岛海洋技术研究院 一种瞬变电磁三维多深度点测量系统及其方法
CN111624673A (zh) * 2020-04-24 2020-09-04 博微太赫兹信息科技有限公司 一种采用压缩感知码分复用的人体安检系统
CN111812727A (zh) * 2020-07-27 2020-10-23 吉林大学 一种非侵入式核磁共振粮仓储量探测装置及探测方法
CN112051615A (zh) * 2020-08-17 2020-12-08 北京海澳达科技有限公司 一种水下磁异常探测系统
CN112630294A (zh) * 2020-12-07 2021-04-09 清华大学 基于Chirp信号的旋转层析缺陷检测方法和装置
CN112799138A (zh) * 2021-02-02 2021-05-14 福建省麦雅数控科技有限公司 超薄材料生产流水线的高灵敏度金属异物检测探头及其工作方法和制造方法
CN113359092A (zh) * 2021-06-05 2021-09-07 自然资源部第一海洋研究所 高频雷达小型化宽频磁接收模块及其阵元与方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106000994A (zh) * 2016-06-01 2016-10-12 华南理工大学 一种基于数字宽频信号的导管式便携超声清洗装置与方法
CN109212614A (zh) * 2017-06-30 2019-01-15 北京至感传感器技术研究院有限公司 适用于开阔地的隐形安检系统及安检组件
CN108445543B (zh) * 2018-03-16 2020-11-03 爱德森(厦门)电子有限公司 一种提高电磁检测安检门灵敏度与抗干扰能力装置
FR3083879B1 (fr) * 2018-07-16 2020-10-16 Alessandro Manneschi Detecteur combine pour la detection de metaux et d'objets cibles magnetises
CN108829069A (zh) * 2018-08-07 2018-11-16 吉林合纵信息技术有限公司 基于物联网的会议服务系统
CN109444963A (zh) * 2018-11-06 2019-03-08 青岛海月辉科技有限公司 安全门检测系统以及检测方法
CN113358966B (zh) * 2021-06-25 2022-06-17 中国民用航空飞行学院 一种民航导航台站电磁环境评估方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4424058C1 (de) * 1994-07-08 1995-10-19 Mesutronic Geraetebau Gmbh Einrichtung zur Erzeugung eines Erkennungssignals beim Auftreten metallisch leitender Teile in einem Förderstrom
CN2371566Y (zh) * 1999-05-26 2000-03-29 王祥驳 一种门式金属探测器
CN101294919A (zh) * 2006-11-14 2008-10-29 通用电气家园保护有限公司 用于在检查扫描器中平衡不对称磁场的装置和方法
CN101556253A (zh) * 2008-04-09 2009-10-14 中国电子科技集团公司第五十研究所 一种隐藏金属物品的探测装置和方法
CN101907730A (zh) * 2010-06-28 2010-12-08 重庆大学 电磁感应式金属零部件漏装检测装置及检测方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010133501A1 (de) * 2009-05-18 2010-11-25 Sick Ag Sensor zum detektieren metallischer objekte
CA2813496C (en) * 2010-10-07 2018-12-04 Mettler-Toledo Safeline Limited Method for operating a metal detection system and metal detection system
CN201886158U (zh) * 2010-12-10 2011-06-29 何海参 电磁场金属物检测仪
DE102013205910A1 (de) * 2013-04-04 2014-10-09 Robert Bosch Gmbh Objektsuchgerät und Verfahren zum Orten eines metallischen und/oder magnetisierbaren Objekts

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4424058C1 (de) * 1994-07-08 1995-10-19 Mesutronic Geraetebau Gmbh Einrichtung zur Erzeugung eines Erkennungssignals beim Auftreten metallisch leitender Teile in einem Förderstrom
CN2371566Y (zh) * 1999-05-26 2000-03-29 王祥驳 一种门式金属探测器
CN101294919A (zh) * 2006-11-14 2008-10-29 通用电气家园保护有限公司 用于在检查扫描器中平衡不对称磁场的装置和方法
CN101556253A (zh) * 2008-04-09 2009-10-14 中国电子科技集团公司第五十研究所 一种隐藏金属物品的探测装置和方法
CN101907730A (zh) * 2010-06-28 2010-12-08 重庆大学 电磁感应式金属零部件漏装检测装置及检测方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107290653B (zh) * 2017-05-13 2023-04-21 华南理工大学 基于宽频磁感应信道特征辨识pcb的检测装置和方法
CN107290653A (zh) * 2017-05-13 2017-10-24 华南理工大学 基于宽频磁感应信道特征辨识pcb的检测装置和方法
CN108318075A (zh) * 2018-02-09 2018-07-24 李法利 安检装置的控制电路
CN111435175A (zh) * 2019-01-11 2020-07-21 天津大学青岛海洋技术研究院 一种瞬变电磁三维多深度点测量系统及其方法
CN111624673A (zh) * 2020-04-24 2020-09-04 博微太赫兹信息科技有限公司 一种采用压缩感知码分复用的人体安检系统
CN111624673B (zh) * 2020-04-24 2023-12-05 博微太赫兹信息科技有限公司 一种采用压缩感知码分复用的人体安检系统
CN111812727A (zh) * 2020-07-27 2020-10-23 吉林大学 一种非侵入式核磁共振粮仓储量探测装置及探测方法
CN111812727B (zh) * 2020-07-27 2023-04-28 吉林大学 一种非侵入式核磁共振粮仓储量探测装置及探测方法
CN112051615A (zh) * 2020-08-17 2020-12-08 北京海澳达科技有限公司 一种水下磁异常探测系统
CN112051615B (zh) * 2020-08-17 2023-10-31 北京海澳达科技有限公司 一种水下磁异常探测系统
CN112630294A (zh) * 2020-12-07 2021-04-09 清华大学 基于Chirp信号的旋转层析缺陷检测方法和装置
CN112799138A (zh) * 2021-02-02 2021-05-14 福建省麦雅数控科技有限公司 超薄材料生产流水线的高灵敏度金属异物检测探头及其工作方法和制造方法
CN112799138B (zh) * 2021-02-02 2024-01-16 福建省麦雅数控科技有限公司 超薄材料生产流水线的高灵敏度金属异物检测探头及其工作方法和制造方法
CN113359092B (zh) * 2021-06-05 2022-12-13 自然资源部第一海洋研究所 高频雷达小型化宽频磁接收模块及其阵元与方法
CN113359092A (zh) * 2021-06-05 2021-09-07 自然资源部第一海洋研究所 高频雷达小型化宽频磁接收模块及其阵元与方法

Also Published As

Publication number Publication date
CN105005083A (zh) 2015-10-28

Similar Documents

Publication Publication Date Title
WO2017016080A1 (zh) 基于共轭电磁收发阵列宽频探测及可视显示安检系统及方法
CN107064291B (zh) 一种磁聚集脉冲涡流线圈检测传感器
CN104655714B (zh) 基于宽频磁波反射通路参数辨识的检测与成像方法及装置
US7999550B2 (en) Multi-sensor system for the detection and characterization of unexploded ordnance
JP2017514109A (ja) 超広帯域検出機
Tian et al. Design of an electromagnetic imaging system for weapon detection based on GMR sensor arrays
CN104569745B (zh) 局部放电带电检测装置和方法
CN106249114A (zh) 基于wifi传输的多功能带电检测装置及方法
JP5435631B2 (ja) 電磁波発生源可視化装置及び方法
WO2013006373A1 (en) Walk-through metal detection system
CN106353606A (zh) 一种用于工频电磁场全向检测的装置及方法
CN107102363A (zh) 一种金属物体探测装置及金属探测方法
CN106772666B (zh) 一种新的违规电子设备检测系统及检测方法
CN105380645B (zh) 一种肺磁图的检测方法与装置
CN103454339B (zh) 一种自激励屏蔽全磁信息感应探测装置
CN113093289A (zh) 埋入结构内部金属体参数的高分辨率无损检测装置
Liu et al. Magnetic gradient full-tensor fingerprints for metallic objects detection of a security system based on anisotropic magnetoresistance sensor arrays
CN103376443A (zh) 探地雷达探测地面干扰快速消除方法
CN107144804A (zh) 磁体系统及核磁共振探测装置
Yin et al. The design of a FPGA-based digital magnetic induction tomography (MIT) system for metallic object imaging
CN108445543B (zh) 一种提高电磁检测安检门灵敏度与抗干扰能力装置
CN107329180A (zh) 基于模拟梳状滤波器的磁共振地下水探测装置及探测方法
CN210894728U (zh) 一种电磁激励响应信号互感装置和检测装置
Al-Qubaa et al. Electromagnetic imaging system for weapon detection and classification
CN109061379B (zh) 基于感应电压微分法的接地网拓扑结构和断点识别方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15899432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15899432

Country of ref document: EP

Kind code of ref document: A1