WO2017014550A1 - Method and apparatus for measuring photoplethysmography signal, and non-transitory computer-readable recording medium - Google Patents

Method and apparatus for measuring photoplethysmography signal, and non-transitory computer-readable recording medium Download PDF

Info

Publication number
WO2017014550A1
WO2017014550A1 PCT/KR2016/007893 KR2016007893W WO2017014550A1 WO 2017014550 A1 WO2017014550 A1 WO 2017014550A1 KR 2016007893 W KR2016007893 W KR 2016007893W WO 2017014550 A1 WO2017014550 A1 WO 2017014550A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
wavelength range
illuminance
pulse wave
wave signal
Prior art date
Application number
PCT/KR2016/007893
Other languages
French (fr)
Korean (ko)
Inventor
신민용
최윤철
유흥종
신성준
전진홍
송지영
Original Assignee
주식회사 휴이노
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160023632A external-priority patent/KR20170010714A/en
Priority claimed from KR1020160023600A external-priority patent/KR20170010713A/en
Application filed by 주식회사 휴이노 filed Critical 주식회사 휴이노
Publication of WO2017014550A1 publication Critical patent/WO2017014550A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters

Definitions

  • the present invention relates to a method, an apparatus and a non-transitory computer readable recording medium for measuring an optical-only pulse wave signal.
  • biometric information such as electrocardiogram, heart rate, body temperature information, oxygen saturation, electromyography, sweat gland activity, sweating rate, respiratory rate, as well as blood pressure, is obtained from two or more contacts (not necessarily physically attached) on the human body, respectively. Since it is obtained based on a signal, in order to obtain biometric information, a technique capable of appropriately processing and measuring biosignals obtained from various touch points of a human body is required.
  • PhotoPlethysmoGraphy (PPG) signals are important in measuring various bioinformation related to heart function, including SpO 2 in the blood.
  • PPG PhotoPlethysmoGraphy
  • FIG. 1 is a diagram illustrating an environment in which oxygen saturation is measured according to the prior art.
  • the sun as well as the light irradiated to the human body by the light emitting unit (not shown) and reflected from the human body 120 of the user Or even ambient light irradiated from the external light source 130, such as a lamp, may be received. Since the intensity or brightness of the ambient light emitted from the external light source 130 may vary depending on the measurement environment, There is a technical problem that it is not easy to maintain a constant amount (intensity or brightness) of the light received by the light receiving unit 110.
  • the brightness (ie, illuminance) of the light detected by the light receiver 110 needs to be kept constant.
  • a shielding structure was used to block the portion from which light is irradiated and sensed from an external light source. For this reason, according to the related art, there is a spatial constraint that all components, such as a light emitting unit for irradiating light and a light receiving unit for detecting light, are generated in the shielding structure, and the size of the measuring device becomes excessively large due to the shielding structure. Problems also arise.
  • the present inventor proposes a technique capable of accurately measuring a photo-propagating pulse wave signal (moreover, oxygen saturation degree) in an environment where the brightness of ambient light is not constant due to an external light source.
  • the object of the present invention is to solve all the above-mentioned problems.
  • the present invention is irradiated light of the first wavelength range and the light of the second wavelength range to the human body of the user, respectively, the light of the first wavelength range and the first incident through the first filter unit and the second filter unit It senses the light of the two wavelength range, respectively, and the first and second illuminance, respectively, the illuminance of each of the light of the first wavelength range and the light of the second wavelength range incident through each of the first filter unit and the second filter unit Measure and generate a first photoemission pulse signal in accordance with light in the detected first wavelength range and a second photoelectrification pulse signal in accordance with light in the detected second wavelength range and measure the first
  • the brightness of at least one of the light in the first wavelength range and the light in the second wavelength range irradiated to the user's human body so that the difference between at least one of the illuminance and the second illuminance and the predetermined reference illuminance is less than the predetermined level.
  • a method for measuring a PPG signal comprising: irradiating light of a first wavelength range and light of a second wavelength range to a human body of a user, the first filter unit And light in a first wavelength range and light in a second wavelength range respectively incident through the second filter units, and light in a first wavelength range incident through each of the first filter unit and the second filter units. And measuring first illuminance and second illuminance, respectively, illuminance of each of the light in the second wavelength range, and a first photo-propagating pulse wave signal according to the light in the detected first wavelength range and the detected second wavelength range.
  • a method of controlling the brightness of at least one of light in a first wavelength range and light in a second wavelength range irradiated to a human body of the user is provided.
  • an apparatus for measuring a PPG signal comprising: a first light emitting unit and a first light emitting unit for irradiating a user's human body with light in a first wavelength range and light in a second wavelength range, respectively; The first light receiving unit and the second light receiving unit for detecting light in the first wavelength range and light in the second wavelength range respectively incident through the second light emitting unit, the first filter unit and the second filter unit, respectively, the first filter unit and the A first illuminance sensor and a second illuminance sensor for measuring first and second illuminance, respectively, illuminance of each of light in a first wavelength range and light in a second wavelength range that are incident through each of the second filter units; A calculation unit configured to generate a first photo-only pulse wave signal according to light in a first wavelength range and a second photo-only pulse wave signal according to light in the detected second wavelength range, and among the measured first and second illuminance values At least one and preset reference roughness It is
  • non-transitory computer readable recording medium for recording another method, apparatus, and computer program for executing the method for implementing the present invention.
  • an effect of being able to accurately measure the photoelectric pulse wave signal even in an environment in which the brightness of the ambient light is not constant due to the external light source is achieved.
  • the effect of being able to increase the accuracy of the various biometric information that can be derived from the photoelectric pulse wave signal is achieved.
  • the present invention by adopting a configuration for adaptively adjusting the brightness of the light irradiated to the human body, it is possible to prevent the occurrence of spatial constraints due to the existing shielding structure, furthermore, the size and shape of the The effect of being able to easily mount a photoelectric pulse wave signal measuring device in a constrained wearable device is achieved.
  • the present invention by adopting a configuration for adaptively correcting the signal according to the detected light based on the measured illuminance, it is possible to prevent the occurrence of spatial constraints due to the existing shielding structure, furthermore, The effect of being able to easily mount the photoelectric pulse wave signal measuring device in a wearable device having a small size and a shape is achieved.
  • FIG. 1 is a diagram illustrating an environment in which a photoelectric pulse wave signal is measured according to the prior art.
  • FIG. 2 is a diagram schematically showing a configuration of an entire system according to an embodiment of the present invention.
  • FIG. 3 is a diagram illustrating an internal configuration of a photoelectric pulse wave signal measuring apparatus according to an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating an example of a photoelectric pulse wave signal measuring apparatus according to an embodiment of the present invention.
  • FIG. 5 is a diagram exemplarily illustrating a process of measuring an optical exclusive pulse wave signal and an oxygen saturation degree according to an embodiment of the present invention.
  • FIG. 6 is a diagram illustrating a process of measuring the oxygen saturation degree in accordance with another embodiment of the present invention.
  • control unit 270 control unit
  • FIG. 2 is a diagram schematically showing a configuration of an entire system according to an embodiment of the present invention.
  • the entire system may include a communication network 100, an optical-only pulse wave signal measuring apparatus 200, and a device 300.
  • the communication network 100 may be configured regardless of a communication mode such as wired communication or wireless communication, and may include a local area network (LAN) and a metropolitan area network (MAN). ), Or a wide area network (WAN).
  • the communication network 100 as used herein includes a well-known short range wireless communication network such as Wi-Fi, Wi-Fi Direct, LTE Direct, or Bluetooth. Can be.
  • the communication network 100 may include, at least in part, a known wired / wireless data communication network, a known telephone network, or a known wired / wireless television communication network without being limited thereto.
  • the photo-propagation pulse wave signal measuring apparatus 200 irradiating the light of the first wavelength range and the light of the second wavelength range to the user's human body, respectively, the first filter unit ( Each of the light of the first wavelength range and the light of the second wavelength range incident through each of the 241 and the second filter units 242 is respectively sensed, and each of the first filter unit 241 and the second filter unit 242 is detected.
  • the first and second illuminance, respectively, the illuminance of each of the light of the first wavelength range and the light of the second wavelength range, which are incident through the light, are measured, respectively, and the first optical-only pulse wave signal according to the light of the detected first wavelength range.
  • the photoelectric pulse wave signal measuring apparatus 200 if the difference between at least one of the above-described first and second illuminance and the predetermined reference illuminance is a predetermined level or more, By correcting at least one of the first photo-only pulse wave signal and the second photo-only pulse wave signal with reference to a relative relationship between at least one of the first and second illuminance values measured above and the predetermined reference illuminance above, The external light source can accurately measure the photo-specific pulse wave signal and oxygen saturation in an environment where the brightness of ambient light is not constant.
  • optical pulse wave signal measuring apparatus 200 The function of the optical-only pulse wave signal measuring apparatus 200 will be described in more detail below.
  • the optical pulse wave signal measuring device 200 has been described as described above, but this description is exemplary, and at least a part of a function or component required for the optical pulse wave signal measuring device 200 is a device ( It will be apparent to those skilled in the art that they may be implemented within 300 or included within device 300.
  • the device 300 is a digital device including a function capable of communicating after connecting to the optical dedicated pulse wave signal measuring apparatus 200, and includes a memory means and a microprocessor. Therefore, any digital device having computing capability may be adopted as the device 300 according to the present invention.
  • the device 300 may be a wearable device such as a smart glass, a smart watch, a smart band, a smart ring, a smart necklace, or a smart phone, a smart pad, a desktop computer, a notebook computer, a workstation, a PDA, a web pad, a mobile phone, or the like. It may be the same somewhat traditional device.
  • the device 300 may include sensing means for obtaining a biosignal from a human body, and may include display means for providing biometric information to a user.
  • the device 300 may further include an application program for performing a function according to the present invention.
  • an application may exist in the form of a program module in the device 300.
  • the nature of the program module may be generally similar to that of the calculator 250, the communicator 260, and the controller 270 of the apparatus for measuring optical pulse wave signals as described below.
  • the application may be replaced with a hardware device or a firmware device, at least a part of which may perform a function substantially the same or equivalent thereto.
  • FIG. 3 is a diagram illustrating an internal configuration of a photoelectric pulse wave signal measuring apparatus according to an embodiment of the present invention.
  • the apparatus for measuring photonic pulse wave includes a light emitting unit 210, a light receiving unit 220, an illuminance sensor unit 230, a filter unit 240, and a calculation unit.
  • the unit 250 may include a communication unit 260 and a control unit 270.
  • the calculator 250, the communicator 260, and the controller 270 may be program modules in which at least some of them communicate with an external system (not shown).
  • Such program modules may be included in the optical-only pulse wave signal measuring apparatus 200 in the form of an operating system, an application module, and other program modules, and may be physically stored on various known storage devices.
  • program modules may be stored in a remote storage device that can communicate with the optical-only pulse wave signal measuring apparatus 200.
  • program modules include, but are not limited to, routines, subroutines, programs, objects, components, data structures, etc. that perform particular tasks or execute particular abstract data types, described below, in accordance with the present invention.
  • FIG. 4 is a diagram illustrating an example of a photoelectric pulse wave signal measuring apparatus according to an embodiment of the present invention.
  • the light emitting unit 210 is light of the first wavelength range and light of the second wavelength range with respect to the human body (for example, finger, wrist, etc.) of the user to be measured It can perform the function of investigating.
  • the light emitting unit 210 according to an embodiment of the present invention, the first light emitting unit 211 and the second light emitting unit 212 for emitting light of the first wavelength range and light of the second wavelength range, respectively It may include, and may be made of a light emitting diode (LED) capable of generating light in a first wavelength range or light in a second wavelength range according to a predetermined period.
  • LED light emitting diode
  • the light in the first wavelength range may include visible light in the wavelength range of 490 nm to 780 nm
  • the light in the second wavelength range may include infrared light in the wavelength range of 800 nm to 980 nm.
  • the illuminance or the second illuminance may be adjusted in a direction to match the predetermined reference illuminance. That is, according to one embodiment of the present invention, the light of the first wavelength range irradiated on the human body of the user so that the difference between at least one of the first and second illuminance and the predetermined reference illuminance is less than the predetermined level
  • brightness of at least one of the light in the second wavelength range can be adaptively adjusted.
  • the first light emitter 211 may make the first illuminance coincide with the preset illuminance.
  • the brightness of light in the first wavelength range to be irradiated can be increased.
  • the second light emitter 212 may be configured to match the preset reference illuminance.
  • the brightness of the light of the second wavelength range irradiated at may be reduced.
  • the function of adjusting the brightness of the light of the first wavelength range or the light of the second wavelength range may be performed by the controller 270.
  • the light receiving unit 220 may perform a function of sensing the light of the first wavelength range and the light of the second wavelength range, respectively.
  • the light receiving unit 220 may include a first light receiving unit 221 and a second light receiving unit 222 that detect light in a first wavelength range and light in a second wavelength range, respectively. And a photodiode capable of sensing light in the first wavelength range or light in the second wavelength range.
  • the light detected by the light receiving unit 220 may include not only the light irradiated by the light emitting unit 210 and reflected from the human body of the user, but also ambient light irradiated from an external light source. .
  • the light of the first wavelength range and the light of the second wavelength range detected by the light receiving unit 220 respectively, the first filter unit 241 and the second filter unit 242
  • the first filter part 241 and the second filter part 242 may each include a filter for selectively transmitting light in a first wavelength range and light in a second wavelength range. Can be.
  • the illuminance sensor unit 230 is the light and the second wavelength range of the first wavelength range incident through each of the first filter unit 241 and the second filter unit 242.
  • the first illuminance and the second illuminance of each illuminance of the light may be measured.
  • the illuminance sensor unit 230 may include a first illuminance sensor unit 231 and a second illuminance sensor unit 232 for detecting the first illuminance and the second illuminance, respectively.
  • the first illuminance sensor 231 and the second illuminance sensor 232 may be disposed around the first light receiver 221 and the second light receiver 222, respectively.
  • the calculation unit 250 generates the first photo-only pulse wave signal according to the light of the first wavelength range and the second photo-only pulse wave signal according to the light of the second wavelength range. Function can be performed.
  • the calculation unit 250 the first wavelength generated by each of the first light emitting unit 211 or the second light emitting unit 212 by the above-described control unit 270
  • the first or second illuminance is preset so that the difference between the first or second illuminance and the predetermined reference illuminance is less than the predetermined level.
  • the first optical-only pulse wave signal or the second light is generated according to the light of the first wavelength range or the light of the second wavelength range sensed by the first light receiver 221 or the second light receiver 222, respectively. It is possible to generate a photoelectric pulse wave signal respectively.
  • the calculation unit 250 when the first illuminance or the second illuminance exceeds a predetermined reference illuminance, the relative between the first illuminance or the second illuminance and the predetermined reference illuminance With reference to the ratio, the intensity of the first photo-only pulse wave signal or the second photo-only pulse wave signal may be corrected (scaled). For example, when the first illuminance measured by the first illuminance sensor unit 231 is 2000 lux and the preset reference illuminance is 1000 lux, the light of the first wavelength range detected by the first light receiver 221 is applied. The intensity of the first photoelectric pulse wave signal may be scaled by 1/2.
  • an effect of accurately measuring the photoelectric pulse wave signal can be achieved in an environment in which the brightness of the ambient light is not constant due to the external light source without employing the conventional shielding structure causing the space constraint. .
  • the calculation unit 250 calculates the oxygen saturation degree in the blood of the user's body with reference to the first photo-only pulse wave signal and the second photo-only pulse wave signal generated as described above. Function can be performed.
  • the calculation unit 250 based on a conventional oxygen saturation calculation model that can be applied when the detected illuminance matches the preset reference illuminance, the oxygen saturation easily Can be calculated.
  • the first light-only output derived as a result of adaptively controlling the brightness of the light generated by the light emitting unit 210 or adaptively correcting the photo-only pulse wave signal generated from the light detected by the light receiving unit 220. Since the pulse wave signal and the second photo-proprietary pulse wave signal may be applied to the conventional oxygen saturation calculation model as it is, the calculation unit 250 according to an embodiment of the present invention may perform the above-described first photo-dedicated pulse wave signal. And the oxygen saturation degree can be calculated with reference to the second photo-only pulse wave signal and the conventional oxygen saturation degree calculation model.
  • the oxygen saturation calculation model according to the embodiment of the present invention includes the above-mentioned first photo-only pulse wave signal (ie, red light signal) and second photo-only pulse wave signal (ie, infrared light). It can be a model for calculating the oxygen content of hemoglobin in the blood based on the difference in the alternating current component).
  • the oxygen saturation calculation model according to the present invention is not necessarily limited to those listed above, it will be appreciated that can be changed as many as possible within the scope of the object of the present invention.
  • FIG. 5 is a diagram exemplarily illustrating a process of measuring an optical exclusive pulse wave signal and an oxygen saturation degree according to an embodiment of the present invention.
  • the first light emitter 211 and the second light emitter 212 respectively emit red light in the first wavelength range and infrared light in the second wavelength range (IR).
  • the first light receiving unit 221 and the second light receiving unit 222 may be emitted to the human body 120 of the user, the red light of the first wavelength range reflected from the user's human body or irradiated from an external light source and Infrared light of a second wavelength range may be respectively detected.
  • the first illuminance sensor unit 231 and the second illuminance sensor unit 232 may include the first light receiver 221 and the second light receiver 222. It is disposed in the periphery, respectively, to measure the illuminance of the red light of the first wavelength range and the infrared light of the second wavelength range.
  • the calculation unit 250 may include a first photodedicated pulse wave signal according to light in the detected first wavelength range and the detected second wavelength.
  • the second photoelectric pulse wave signal may be generated according to the light in the range.
  • the calculation unit 250 according to an embodiment of the present invention may calculate the oxygen saturation level in the blood of the user with reference to the first photo-only pulse wave signal and the second photo-only pulse wave signal generated as described above. .
  • the control unit 270 may have a red color in the first wavelength range measured by the first illuminance sensor unit 231 or the second illuminance sensor unit 232, respectively.
  • the brightness (intensity) of the infrared light in the second wavelength range can be adaptively adjusted.
  • the communication unit 260 performs a function of allowing the optical exclusive pulse wave signal measuring apparatus 200 to communicate with an external device.
  • control unit 270 is the light emitting unit 210, the light receiving unit 220, the illumination sensor 230, the filter unit 240, the calculation unit 250 and the communication unit 260 It controls the flow of data. That is, the controller 270 controls the flow of data from the outside or between the respective components of the optical-only pulse wave signal measuring apparatus 200, so that the light emitting unit 210, the light receiving unit 220, the illuminance sensor unit 230, The filter 240, the calculator 250, and the communicator 260 each control to perform a unique function.
  • the optical dedicated pulse wave signal measuring apparatus 200 in addition to the function of adaptively adjusting the brightness of the light of the first wavelength range or the light of the second wavelength range, the first optical only And adaptively correct the intensity of the pulse wave signal or the second photo-only pulse wave signal.
  • the calculation unit 250 of the photoelectric pulse wave signal measuring apparatus 200 is measured by each of the first illuminance sensor unit 231 and the second illuminance sensor unit 232. If the difference between at least one of the first illuminance and the second illuminance and the predetermined reference illuminance is greater than or equal to a predetermined level, refer to the relative relationship between the at least one of the first and second illuminance measured above and the predetermined reference illuminance. In this case, a function of correcting at least one of the first photo-only pulse wave signal and the second photo-only pulse wave signal may be performed.
  • the calculation unit 250 based on the relative ratio between at least one of the above-described first illumination and second illumination and the predetermined reference illumination, the first photoelectric only A correction for scaling the intensity of at least one of the pulse wave signal and the second photo-proprietary pulse wave signal may be performed.
  • the first illuminance measured by the first illuminance sensor unit 231 is 2000 lux and the preset reference illuminance is 1000 lux
  • the light of the first wavelength range detected by the first light receiver 221 is applied.
  • the intensity of the first photoelectric pulse wave signal may be scaled by 1/2.
  • the second illuminance measured by the second illuminance sensor unit 232 is 2000 lux and the preset reference illuminance is 1000 lux
  • the light of the second wavelength range detected by the second light receiver 222 is detected.
  • the intensity of the second photoelectric pulse wave signal may be scaled by 1/3.
  • the photo-only pulse wave signal measuring apparatus 200 without using a conventional shielding structure causing a space constraint, in an environment where the brightness of the ambient light is not constant due to the external light source The effect of being able to accurately measure photoelectric pulse wave signals is achieved.
  • the calculation unit 250 of the optical dedicated pulse wave signal measuring apparatus 200 with reference to the first optical pulse pulse wave signal and the second optical pulse pulse wave signal after the correction as described above
  • the function of calculating the oxygen saturation in the blood of the user's body may be performed.
  • the calculation unit 250 may calculate the oxygen saturation based on the oxygen saturation calculation model that can be applied when the detected illuminance coincides with a preset reference illuminance.
  • the first photo-only pulse wave signal and the second photo-only pulse wave signal whose intensity is adaptively corrected based on a predetermined reference illuminance may be applied as it is to the oxygen saturation calculation model as described above
  • the calculation unit 250 according to the embodiment may calculate the oxygen saturation with reference to the first photo-only pulse wave signal and the second photo-only pulse wave signal that have been corrected above and the oxygen saturation calculation model.
  • FIG. 6 is a diagram illustrating a process of measuring the oxygen saturation degree in accordance with another embodiment of the present invention.
  • the first light emitter 211 and the second light emitter 212 may emit red light in the first wavelength range and infrared light in the second wavelength range, respectively.
  • the first light receiving unit 221 and the second light receiving unit 222 may be emitted to the human body 120 of the user, the red light of the first wavelength range reflected from the user's human body or irradiated from an external light source and Infrared light of a second wavelength range may be respectively detected.
  • the first illuminance sensor 231 and the second illuminance sensor 232 may include the first light receiver 221 and the second light receiver 222. It is disposed in the periphery, respectively, to measure the illuminance of the red light of the first wavelength range and the infrared light of the second wavelength range.
  • the calculation unit 250 may include a first photodedicated pulse wave signal according to light in the detected first wavelength range and the detected second wavelength.
  • the second photoelectric pulse wave signal may be generated according to the light in the range.
  • the calculation unit 250 according to another embodiment of the present invention based on the relative ratio between at least one of the above-described first and second illuminance and the predetermined reference illuminance, the first optical-only pulse wave signal And scaling the intensity of at least one of the second photoelectric pulse wave signals.
  • the calculation unit 250 refers to the first optical-only pulse wave signal and the second optical-only pulse wave signal, which have been corrected above, by referring to the blood of the user.
  • the oxygen saturation degree can be calculated.
  • Embodiments according to the present invention described above may be implemented in the form of program instructions that may be executed by various computer components, and may be recorded on a non-transitory computer readable recording medium.
  • the non-transitory computer readable recording medium may include program instructions, data files, data structures, etc. alone or in combination.
  • the program instructions recorded on the non-transitory computer readable recording medium may be those specially designed and configured for the present invention, or may be known and available to those skilled in the computer software arts.
  • non-transitory computer readable recording media include magnetic media such as hard disks, floppy disks and magnetic tape, optical recording media such as CD-ROMs, DVDs, magnetic-optical media such as floppy disks ( magneto-optical media) and hardware devices specifically configured to store and execute program instructions, such as ROM, RAM, flash memory, and the like.
  • program instructions include not only machine code generated by a compiler, but also high-level language code that can be executed by a computer using an interpreter or the like.
  • the hardware device may be configured to operate as one or more software modules to perform the process according to the invention, and vice versa.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physiology (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

According to the present invention, provided are a method and an apparatus for measuring a photoplethysmography signal, and a non-transitory computer-readable recording medium. According to the present invention, effects of enabling an accurate photoplethysmography signal to be obtained even in an environment in which the brightness of ambient light is not constant because of an external light source, and enabling the accuracy of various pieces of biometric information capable of being derived from photoplethysmography to be increased are achieved.

Description

광전용적맥파 신호를 측정하기 위한 방법, 장치 및 비일시성의 컴퓨터 판독 가능한 기록 매체Method, apparatus and non-transitory computer readable recording medium for measuring photo-propagating pulse wave signal
본 발명은 광전용적맥파 신호를 측정하기 위한 방법, 장치 및 비일시성의 컴퓨터 판독 가능한 기록 매체에 관한 것이다.The present invention relates to a method, an apparatus and a non-transitory computer readable recording medium for measuring an optical-only pulse wave signal.
최근 과학 기술의 비약적인 발전으로 인해 인류 전체의 삶의 질이 향상되고 있으며, 의료 환경에서도 많은 변화가 발생하였다. 과거에는 병원에서 X-ray, CT, fMRI 등의 의료영상을 촬영한 후 몇 시간 또는 며칠을 기다려야 영상 판독이 가능했었다.Due to the recent rapid development of science and technology, the quality of life of the entire human race is improving, and many changes have occurred in the medical environment. In the past, hospitals had to wait hours or days after taking X-rays, CTs, and fMRIs to read images.
그러나 최근 10여년 전부터 의료영상을 촬영한 후 영상의학과 전문의의 모니터 화면으로 영상이 전송되어 즉시 판독할 수 있는 영상저장 및 전송시스템(PACS, Picture Archive Communication System)이 도입되었다. 또한, 병원에 가지 않고서도 자신의 혈당과 혈압을 언제 어디서나 확인할 수 있는 유비쿼터스(ubiquitous) 헬스케어 관련 의료기기가 많이 보급되어, 혈당 환자나 고혈압 환자들은 자신의 집이나 사무실에서 이를 사용하고 있다. 특히, 각종 질환의 주요한 발명 원인이 되고 있고 유병률이 증가하고 있는 고혈압의 경우에는, 혈압을 지속적으로 측정하여 실시간으로 알려주는 시스템이 필요하며, 이와 관련한 다양한 유형의 연구들이 시도되고 있다.However, a picture storage communication system (PACS) has been introduced that can be read immediately after taking medical images for more than a decade ago. In addition, ubiquitous health care-related medical devices that can check their blood sugar and blood pressure anytime and anywhere without going to the hospital has been supplied, blood glucose patients or hypertensive patients are using it in their homes or offices. In particular, in the case of hypertension, which is a major cause of invention of various diseases and the prevalence is increasing, a system for continuously measuring blood pressure and real-time notification is required, and various types of studies have been attempted in this regard.
한편, 혈압뿐만 아니라 심전도, 심박수, 체온 정보, 산소포화도, 근전도, 땀샘 활성도, 발한량, 호흡수 등의 생체 정보는 인체 상의 둘 이상의 접점(반드시 물리적으로 붙어 있을 필요는 없음)으로부터 각각 획득되는 생체 신호에 기초하여 얻어지기 때문에, 생체 정보를 얻기 위해서는 인체의 여러 접점으로부터 획득되는 생체 신호를 적절히 처리하여 측정할 수 있는 기술이 요구된다.On the other hand, biometric information such as electrocardiogram, heart rate, body temperature information, oxygen saturation, electromyography, sweat gland activity, sweating rate, respiratory rate, as well as blood pressure, is obtained from two or more contacts (not necessarily physically attached) on the human body, respectively. Since it is obtained based on a signal, in order to obtain biometric information, a technique capable of appropriately processing and measuring biosignals obtained from various touch points of a human body is required.
특히, 광전용적맥파(PPG; PhotoPlethysmoGraphy) 신호는 혈액 내 산소포화도(SpO2)를 비롯하여 심장 기능에 관한 다양한 생체 정보를 측정함에 있어서 중요하게 활용되고 있다. 지금까지 소개된 종래의 광전용적맥파 신호 측정 기술에 따르면, 외부 광원에 의한 오차가 발생하는 것을 방지하기 위해 차폐 구조가 필수적으로 요구되는 등의 기술적 제약이 존재한다.In particular, PhotoPlethysmoGraphy (PPG) signals are important in measuring various bioinformation related to heart function, including SpO 2 in the blood. According to the conventional photo-only pulse wave signal measurement technology introduced so far, there are technical limitations such that a shielding structure is required to prevent an error caused by an external light source.
이하에서는, 광전용적맥파 신호를 이용하여 혈액 내 산소포화도를 산출하는 경우를 예로 들어, 보다 자세히 설명하기로 한다.Hereinafter, a case where the oxygen saturation in the blood is calculated using the photoelectric pulse wave signal will be described in more detail.
광전용적맥파 신호를 이용하여 혈액 내 산소포화도(SpO2)를 측정하기 위한 종래 기술로서, 인체로부터 반사되는 가시광선 광(예를 들면, 적색 광, 녹색 광 등) 및 적외선 광을 감지하고 그 감지된 가시광선 광 및 적외선 광 각각에 따른 광전용적맥파 신호에 기초하여 산소포화도를 산출하는 기술이 소개된 바 있는데, 이러한 종래 기술은, 혈액 내 산소헤모글로빈(HbO2)에 의한 광 흡수율이 가시광선 광보다 적외선 광에서 더 높게 나타난다는 원리에 기초한 것이다.Conventional technology for measuring the oxygen saturation (SpO 2 ) in the blood using a photo-propagating pulse wave signal, and detects and detects visible light (for example, red light, green light, etc.) and infrared light reflected from the human body The technique for calculating the oxygen saturation based on the photo-proprietary pulse wave signals according to the visible light and infrared light, respectively, has been introduced. In this conventional technology, the light absorption rate of oxygen hemoglobin (HbO 2 ) in the blood is visible light It is based on the principle that it appears higher in infrared light.
도 1은 종래 기술에 따라 산소포화도가 측정되는 환경을 예시적으로 나타내는 도면이다. 도 1을 참조하면, 종래의 광전용적맥파 신호 측정 장치의 수광부(110)에서는, 발광부(미도시됨)에 의해 사용자의 인체에 대하여 조사되고 사용자의 인체(120)으로부터 반사되는 광뿐만 아니라 태양이나 전등과 같은 외부 광원(130)으로부터 조사되는 주변광(ambient light)까지 모두 수광될 수 있는데, 외부 광원(130)으로부터 조사되는 주변광의 세기 또는 밝기는 측정 환경에 따라 얼마든지 변할 수 있기 때문에, 수광부(110)에서 수광되는 광의 양(세기 또는 밝기)을 일정하게 유지하는 것이 쉽지 않다는 기술적 과제가 존재한다.1 is a diagram illustrating an environment in which oxygen saturation is measured according to the prior art. Referring to FIG. 1, in the light receiving unit 110 of the conventional photoelectric pulse wave signal measuring apparatus, the sun as well as the light irradiated to the human body by the light emitting unit (not shown) and reflected from the human body 120 of the user Or even ambient light irradiated from the external light source 130, such as a lamp, may be received. Since the intensity or brightness of the ambient light emitted from the external light source 130 may vary depending on the measurement environment, There is a technical problem that it is not easy to maintain a constant amount (intensity or brightness) of the light received by the light receiving unit 110.
광전용적맥파 신호(나아가, 산소포화도)를 정확하게 측정하려면 수광부(110)에서 감지되는 광의 밝기(즉, 조도)가 일정하게 유지될 필요가 있는데, 종래 기술에서는, 위와 같은 기술적 과제를 달성하기 위하여, 광이 조사되고 감지되는 부분을 외부 광원으로부터 차단시키는 차폐 구조가 사용되었다. 이로 인해, 종래 기술에 따르면, 차폐 구조 내에 광을 조사하는 발광부, 광을 감지하는 수광부 등의 구성요소를 모두 포함시켜야 하는 공간적 제약이 발생하게 되고, 차폐 구조로 인해 측정 장치의 크기가 지나치게 커지는 문제점도 발생하게 된다.In order to accurately measure the photodedicated pulse wave signal (moreover, oxygen saturation), the brightness (ie, illuminance) of the light detected by the light receiver 110 needs to be kept constant. In the related art, in order to achieve the above technical problem, A shielding structure was used to block the portion from which light is irradiated and sensed from an external light source. For this reason, according to the related art, there is a spatial constraint that all components, such as a light emitting unit for irradiating light and a light receiving unit for detecting light, are generated in the shielding structure, and the size of the measuring device becomes excessively large due to the shielding structure. Problems also arise.
이에, 본 발명자는, 외부 광원으로 인해 주변광의 밝기가 일정하지 않은 환경에서 광전용적맥파 신호(나아가, 산소포화도)를 정확하게 측정할 수 있는 기술을 제안한다.Accordingly, the present inventor proposes a technique capable of accurately measuring a photo-propagating pulse wave signal (moreover, oxygen saturation degree) in an environment where the brightness of ambient light is not constant due to an external light source.
본 발명은 상술한 문제점을 모두 해결하는 것을 그 목적으로 한다.The object of the present invention is to solve all the above-mentioned problems.
또한, 본 발명은 제1 파장 범위의 광 및 제2 파장 범위의 광을 사용자의 인체에 대하여 각각 조사하고, 제1 필터부 및 제2 필터부 각각을 통하여 입사되는 제1 파장 범위의 광 및 제2 파장 범위의 광을 각각 감지하고, 제1 필터부 및 제2 필터부 각각을 통하여 입사되는 제1 파장 범위의 광 및 제2 파장 범위의 광 각각의 조도인 제1 조도 및 제2 조도를 각각 측정하고, 위의 감지되는 제1 파장 범위의 광에 따른 제1 광전용적맥파 신호와 위의 감지되는 제2 파장 범위의 광에 따른 제2 광전용적맥파 신호를 생성하고, 위의 측정되는 제1 조도 및 제2 조도 중 적어도 하나와 기설정된 기준 조도 사이의 차이가 기설정된 수준 미만이 되도록, 사용자의 인체에 대하여 조사되는 제1 파장 범위의 광 및 제2 파장 범위의 광 중 적어도 하나의 밝기를 조절함으로써, 외부 광원으로 인해 주변광의 밝기가 일정하지 않은 환경에서 광전용적맥파 신호를 정확하게 측정할 수 있는 방법, 장치 및 비일시성의 컴퓨터 판독 가능한 기록 매체를 제공하는 것을 다른 목적으로 한다.In addition, the present invention is irradiated light of the first wavelength range and the light of the second wavelength range to the human body of the user, respectively, the light of the first wavelength range and the first incident through the first filter unit and the second filter unit It senses the light of the two wavelength range, respectively, and the first and second illuminance, respectively, the illuminance of each of the light of the first wavelength range and the light of the second wavelength range incident through each of the first filter unit and the second filter unit Measure and generate a first photoemission pulse signal in accordance with light in the detected first wavelength range and a second photoelectrification pulse signal in accordance with light in the detected second wavelength range and measure the first The brightness of at least one of the light in the first wavelength range and the light in the second wavelength range irradiated to the user's human body so that the difference between at least one of the illuminance and the second illuminance and the predetermined reference illuminance is less than the predetermined level. By adjusting the external light source Another object is to provide a method, apparatus and non-transitory computer readable recording medium capable of accurately measuring a photo-proprietary pulse wave signal in an environment where the brightness of ambient light is not constant.
상기 목적을 달성하기 위한 본 발명의 대표적인 구성은 다음과 같다.Representative configuration of the present invention for achieving the above object is as follows.
본 발명의 일 태양에 따르면, 광전용적맥파(PPG) 신호를 측정하기 위한 방법으로서, 제1 파장 범위의 광 및 제2 파장 범위의 광을 사용자의 인체에 대하여 각각 조사하는 단계, 제1 필터부 및 제2 필터부 각각을 통하여 입사되는 제1 파장 범위의 광 및 제2 파장 범위의 광을 각각 감지하고, 상기 제1 필터부 및 상기 제2 필터부 각각을 통하여 입사되는 제1 파장 범위의 광 및 제2 파장 범위의 광 각각의 조도인 제1 조도 및 제2 조도를 각각 측정하는 단계, 및 상기 감지되는 제1 파장 범위의 광에 따른 제1 광전용적맥파 신호와 상기 감지되는 제2 파장 범위의 광에 따른 제2 광전용적맥파 신호를 생성하는 단계를 포함하고, 상기 조사 단계에서, 상기 측정되는 제1 조도 및 제2 조도 중 적어도 하나와 기설정된 기준 조도 사이의 차이가 기설정된 수준 미만이 되도록, 상기 사용자의 인체에 대하여 조사되는 제1 파장 범위의 광 및 제2 파장 범위의 광 중 적어도 하나의 밝기를 조절하는 방법이 제공된다.According to an aspect of the present invention, a method for measuring a PPG signal, comprising: irradiating light of a first wavelength range and light of a second wavelength range to a human body of a user, the first filter unit And light in a first wavelength range and light in a second wavelength range respectively incident through the second filter units, and light in a first wavelength range incident through each of the first filter unit and the second filter units. And measuring first illuminance and second illuminance, respectively, illuminance of each of the light in the second wavelength range, and a first photo-propagating pulse wave signal according to the light in the detected first wavelength range and the detected second wavelength range. Generating a second photo-proprietary pulse wave signal according to the light of the light source; wherein, in the irradiating step, a difference between at least one of the measured first illumination intensity and the second illumination intensity and a predetermined reference illumination value is less than a preset level; As far as possible A method of controlling the brightness of at least one of light in a first wavelength range and light in a second wavelength range irradiated to a human body of the user is provided.
본 발명의 다른 태양에 따르면, 광전용적맥파(PPG) 신호를 측정하기 위한 장치로서, 제1 파장 범위의 광 및 제2 파장 범위의 광을 사용자의 인체에 대하여 각각 조사하는 제1 발광부 및 제2 발광부, 제1 필터부 및 제2 필터부 각각을 통하여 입사되는 제1 파장 범위의 광 및 제2 파장 범위의 광을 각각 감지하는 제1 수광부 및 제2 수광부, 상기 제1 필터부 및 상기 제2 필터부 각각을 통하여 입사되는 제1 파장 범위의 광 및 제2 파장 범위의 광 각각의 조도인 제1 조도 및 제2 조도를 각각 측정하는 제1 조도 센서 및 제2 조도 센서, 상기 감지되는 제1 파장 범위의 광에 따른 제1 광전용적맥파 신호와 상기 감지되는 제2 파장 범위의 광에 따른 제2 광전용적맥파 신호를 생성하는 산출부, 및 상기 측정되는 제1 조도 및 제2 조도 중 적어도 하나와 기설정된 기준 조도 사이의 차이가 기설정된 수준 미만이 되도록, 상기 사용자의 인체에 대하여 조사되는 제1 파장 범위의 광 및 제2 파장 범위의 광 중 적어도 하나의 밝기를 조절하는 제어부를 포함하는 장치가 제공된다.According to another aspect of the present invention, there is provided an apparatus for measuring a PPG signal, comprising: a first light emitting unit and a first light emitting unit for irradiating a user's human body with light in a first wavelength range and light in a second wavelength range, respectively; The first light receiving unit and the second light receiving unit for detecting light in the first wavelength range and light in the second wavelength range respectively incident through the second light emitting unit, the first filter unit and the second filter unit, respectively, the first filter unit and the A first illuminance sensor and a second illuminance sensor for measuring first and second illuminance, respectively, illuminance of each of light in a first wavelength range and light in a second wavelength range that are incident through each of the second filter units; A calculation unit configured to generate a first photo-only pulse wave signal according to light in a first wavelength range and a second photo-only pulse wave signal according to light in the detected second wavelength range, and among the measured first and second illuminance values At least one and preset reference roughness It is less than a predetermined level difference such that, the apparatus including a control unit for adjusting at least one of the brightness of the light of the light and a second wavelength range of the first wavelength range is irradiated with respect to the body of the user is provided.
이 외에도, 본 발명을 구현하기 위한 다른 방법, 장치 및 상기 방법을 실행하기 위한 컴퓨터 프로그램을 기록하기 위한 비일시성의 컴퓨터 판독 가능한 기록 매체가 더 제공된다.In addition, there is further provided a non-transitory computer readable recording medium for recording another method, apparatus, and computer program for executing the method for implementing the present invention.
본 발명에 의하면, 외부 광원으로 인해 주변광의 밝기가 일정하지 않은 환경에서도 광전용적맥파 신호를 정확하게 측정할 수 있게 되는 효과가 달성된다.According to the present invention, an effect of being able to accurately measure the photoelectric pulse wave signal even in an environment in which the brightness of the ambient light is not constant due to the external light source is achieved.
또한, 본 발명에 의하면, 광전용적맥파 신호로부터 도출될 수 있는 다양한 생체 정보의 정확도를 높일 수 있게 되는 효과가 달성된다.In addition, according to the present invention, the effect of being able to increase the accuracy of the various biometric information that can be derived from the photoelectric pulse wave signal is achieved.
또한, 본 발명에 의하면, 인체에 대하여 조사되는 광의 밝기를 적응적으로 조절하는 구성을 채용함으로써, 기존의 차폐 구조로 인해 공간적 제약이 발생하는 것을 방지할 수 있게 되고, 나아가, 크기가 작고 형상의 제약이 있는 웨어러블 디바이스(wearable device)에도 광전용적맥파 신호 측정 장치를 손쉽게 탑재시킬 수 있게 되는 효과가 달성된다.In addition, according to the present invention, by adopting a configuration for adaptively adjusting the brightness of the light irradiated to the human body, it is possible to prevent the occurrence of spatial constraints due to the existing shielding structure, furthermore, the size and shape of the The effect of being able to easily mount a photoelectric pulse wave signal measuring device in a constrained wearable device is achieved.
또한, 본 발명에 의하면, 감지되는 광에 따른 신호를 측정되는 조도에 기초하여 적응적으로 보정하는 구성을 채용함으로써, 기존의 차폐 구조로 인해 공간적 제약이 발생하는 것을 방지할 수 있게 되고, 나아가, 크기가 작고 형상의 제약이 있는 웨어러블 디바이스(wearable device)에도 광전용적맥파 신호 측정 장치를 손쉽게 탑재시킬 수 있게 되는 효과가 달성된다.In addition, according to the present invention, by adopting a configuration for adaptively correcting the signal according to the detected light based on the measured illuminance, it is possible to prevent the occurrence of spatial constraints due to the existing shielding structure, furthermore, The effect of being able to easily mount the photoelectric pulse wave signal measuring device in a wearable device having a small size and a shape is achieved.
도 1은 종래 기술에 따라 광전용적맥파 신호가 측정되는 환경을 예시적으로 나타내는 도면이다.1 is a diagram illustrating an environment in which a photoelectric pulse wave signal is measured according to the prior art.
도 2는 본 발명의 일 실시예에 따른 전체 시스템의 구성을 개략적으로 나타내는 도면이다.2 is a diagram schematically showing a configuration of an entire system according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 광전용적맥파 신호 측정 장치의 내부 구성을 예시적으로 나타내는 도면이다.FIG. 3 is a diagram illustrating an internal configuration of a photoelectric pulse wave signal measuring apparatus according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따라 광전용적맥파 신호 측정 장치의 모습을 예시적으로 나타내는 도면이다.4 is a diagram illustrating an example of a photoelectric pulse wave signal measuring apparatus according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따라 광전용적맥파 신호와 산소포화도를 측정하는 과정을 예시적으로 나타내는 도면이다.FIG. 5 is a diagram exemplarily illustrating a process of measuring an optical exclusive pulse wave signal and an oxygen saturation degree according to an embodiment of the present invention.
도 6은 본 발명의 다른 실시예에 따라 산소포화도를 측정하는 과정을 예시적으로 나타내는 도면이다.6 is a diagram illustrating a process of measuring the oxygen saturation degree in accordance with another embodiment of the present invention.
<부호의 설명><Description of the code>
100: 통신망100: network
200: 광전용적맥파 신호 측정 장치200: photoelectric pulse wave signal measuring device
210: 발광부210: light emitting unit
220: 수광부220: light receiver
230: 조도 센서부230: illuminance sensor unit
240: 필터부240: filter unit
250: 산출부250: output unit
260: 통신부260: communication unit
270: 제어부270: control unit
300: 디바이스300: device
후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이들 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예에 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 기능을 지칭한다.DETAILED DESCRIPTION The following detailed description of the invention refers to the accompanying drawings that show, by way of illustration, specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. It should be understood that the various embodiments of the present invention are different but need not be mutually exclusive. For example, certain shapes, structures, and characteristics described herein may be embodied in other embodiments without departing from the spirit and scope of the invention with respect to one embodiment. In addition, it is to be understood that the location or arrangement of individual components within each disclosed embodiment may be changed without departing from the spirit and scope of the invention. The following detailed description, therefore, is not to be taken in a limiting sense, and the scope of the present invention, if properly described, is defined only by the appended claims, along with the full range of equivalents to which such claims are entitled. Like reference numerals in the drawings refer to the same or similar functions throughout the several aspects.
이하에서는, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 하기 위하여, 본 발명의 바람직한 실시예들에 관하여 첨부된 도면을 참조하여 상세히 설명하기로 한다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art can easily implement the present invention.
전체 시스템의 구성Configuration of the entire system
본 발명의 일 실시예에 따라 광전용적맥파 신호를 측정하기 위한 전체 시스템에 관하여 상세히 설명하면, 아래와 같다.If described in detail with respect to the entire system for measuring the photoelectric pulse wave signal according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 전체 시스템의 구성을 개략적으로 나타내는 도면이다.2 is a diagram schematically showing a configuration of an entire system according to an embodiment of the present invention.
도 2에 도시되어 있는 바와 같이, 본 발명의 일 실시예에 따른 전체 시스템은, 통신망(100), 광전용적맥파 신호 측정 장치(200) 및 디바이스(300)로 구성될 수 있다.As shown in FIG. 2, the entire system according to the exemplary embodiment of the present invention may include a communication network 100, an optical-only pulse wave signal measuring apparatus 200, and a device 300.
먼저, 본 발명의 일 실시예에 따른 통신망(100)은 유선 통신이나 무선 통신과 같은 통신 양태를 가리지 않고 구성될 수 있으며, 근거리 통신망(LAN, Local Area Network), 도시권 통신망(MAN, Metropolitan Area Network), 광역 통신망(WAN, Wide Area Network) 등 다양한 통신망으로 구성될 수 있다. 바람직하게는, 본 명세서에서 말하는 통신망(100)은 와이파이(Wi-Fi), 와이파이 다이렉트(Wi-Fi Direct), LTE 다이렉트(LTE Direct), 블루투스(Bluetooth)와 같은 공지의 근거리 무선 통신망을 포함할 수 있다. 그러나, 통신망(100)은, 굳이 이에 국한될 필요 없이, 공지의 유무선 데이터 통신망, 공지의 전화망 또는 공지의 유무선 텔레비전 통신망을 그 적어도 일부에 있어서 포함할 수도 있다.First, the communication network 100 according to an embodiment of the present invention may be configured regardless of a communication mode such as wired communication or wireless communication, and may include a local area network (LAN) and a metropolitan area network (MAN). ), Or a wide area network (WAN). Preferably, the communication network 100 as used herein includes a well-known short range wireless communication network such as Wi-Fi, Wi-Fi Direct, LTE Direct, or Bluetooth. Can be. However, the communication network 100 may include, at least in part, a known wired / wireless data communication network, a known telephone network, or a known wired / wireless television communication network without being limited thereto.
다음으로, 본 발명의 일 실시예에 따른 광전용적맥파 신호 측정 장치(200)는, 제1 파장 범위의 광 및 제2 파장 범위의 광을 사용자의 인체에 대하여 각각 조사하고, 제1 필터부(241) 및 제2 필터부(242) 각각을 통하여 입사되는 제1 파장 범위의 광 및 제2 파장 범위의 광을 각각 감지하고, 제1 필터부(241) 및 제2 필터부(242) 각각을 통하여 입사되는 제1 파장 범위의 광 및 제2 파장 범위의 광 각각의 조도인 제1 조도 및 제2 조도를 각각 측정하고, 위의 감지되는 제1 파장 범위의 광에 따른 제1 광전용적맥파 신호와 위의 감지되는 제2 파장 범위의 광에 따른 제2 광전용적맥파 신호를 생성하고, 위의 측정되는 제1 조도 및 제2 조도 중 적어도 하나와 기설정된 기준 조도 사이의 차이가 기설정된 수준 미만이 되도록, 사용자의 인체에 대하여 조사되는 제1 파장 범위의 광 및 제2 파장 범위의 광 중 적어도 하나의 밝기를 조절함으로써, 외부 광원으로 인해 주변광의 밝기가 일정하지 않은 환경에서 광전용적맥파 신호와 산소포화도를 정확하게 측정하는 기능을 수행할 수 있다.Next, the photo-propagation pulse wave signal measuring apparatus 200 according to an embodiment of the present invention, irradiating the light of the first wavelength range and the light of the second wavelength range to the user's human body, respectively, the first filter unit ( Each of the light of the first wavelength range and the light of the second wavelength range incident through each of the 241 and the second filter units 242 is respectively sensed, and each of the first filter unit 241 and the second filter unit 242 is detected. The first and second illuminance, respectively, the illuminance of each of the light of the first wavelength range and the light of the second wavelength range, which are incident through the light, are measured, respectively, and the first optical-only pulse wave signal according to the light of the detected first wavelength range. And generating a second photo-proprietary pulse wave signal according to light in the detected second wavelength range, wherein a difference between at least one of the measured first illuminance and second illuminance and a predetermined reference illuminance is less than a predetermined level. Of the first wavelength range irradiated on the human body of the user And second, by adjusting at least one of the brightness of the light in the second wavelength range may be due to an external light source functions to accurately measure the photoelectric volume pulse wave signals and oxygen saturation in the environment is not a near constant brightness.
한편, 본 발명의 다른 실시예에 따른 광전용적맥파 신호 측정 장치(200)는, 위의 측정되는 제1 조도 및 제2 조도 중 적어도 하나와 기설정된 기준 조도 사이의 차이가 기설정된 수준 이상이면, 위의 측정되는 제1 조도 및 제2 조도 중 적어도 하나와 위의 기설정된 기준 조도 사이의 상대적인 관계를 참조로 하여, 제1 광전용적맥파 신호 및 제2 광전용적맥파 신호 중 적어도 하나를 보정함으로써, 외부 광원으로 인해 주변광의 밝기가 일정하지 않은 환경에서 광전용적맥파 신호와 산소포화도를 정확하게 측정하는 기능을 수행할 수 있다.On the other hand, the photoelectric pulse wave signal measuring apparatus 200 according to another embodiment of the present invention, if the difference between at least one of the above-described first and second illuminance and the predetermined reference illuminance is a predetermined level or more, By correcting at least one of the first photo-only pulse wave signal and the second photo-only pulse wave signal with reference to a relative relationship between at least one of the first and second illuminance values measured above and the predetermined reference illuminance above, The external light source can accurately measure the photo-specific pulse wave signal and oxygen saturation in an environment where the brightness of ambient light is not constant.
광전용적맥파 신호 측정 장치(200)의 기능에 관하여는 아래에서 더 자세하게 알아보기로 한다. 한편, 광전용적맥파 신호 측정 장치(200)에 관하여 위와 같이 설명되었으나, 이러한 설명은 예시적인 것이고, 광전용적맥파 신호 측정 장치(200)에 요구되는 기능이나 구성요소의 적어도 일부가 필요에 따라 디바이스(300) 내에서 실현되거나 디바이스(300) 내에 포함될 수도 있음은 당업자에게 자명하다.The function of the optical-only pulse wave signal measuring apparatus 200 will be described in more detail below. On the other hand, the optical pulse wave signal measuring device 200 has been described as described above, but this description is exemplary, and at least a part of a function or component required for the optical pulse wave signal measuring device 200 is a device ( It will be apparent to those skilled in the art that they may be implemented within 300 or included within device 300.
마지막으로, 본 발명의 일 실시예에 따른 디바이스(300)는 광전용적맥파 신호 측정 장치(200)에 접속한 후 통신할 수 있는 기능을 포함하는 디지털 기기로서, 메모리 수단을 구비하고 마이크로 프로세서를 탑재하여 연산 능력을 갖춘 디지털 기기라면 얼마든지 본 발명에 따른 디바이스(300)로서 채택될 수 있다. 디바이스(300)는 스마트 글래스, 스마트 워치, 스마트 밴드, 스마트 링, 스마트 넥클리스 등과 같은 웨어러블(wearable) 디바이스이거나 스마트폰, 스마트 패드, 데스크탑 컴퓨터, 노트북 컴퓨터, 워크스테이션, PDA, 웹 패드, 이동 전화기 등과 같은 다소 전통적인 디바이스일 수 있다. 본 발명의 일 실시예에 따르면, 디바이스(300)는 인체로부터 생체 신호를 획득하기 위한 센싱 수단을 포함할 수 있고, 생체 정보를 사용자에게 제공하기 위한 표시 수단을 포함할 수 있다.Finally, the device 300 according to an embodiment of the present invention is a digital device including a function capable of communicating after connecting to the optical dedicated pulse wave signal measuring apparatus 200, and includes a memory means and a microprocessor. Therefore, any digital device having computing capability may be adopted as the device 300 according to the present invention. The device 300 may be a wearable device such as a smart glass, a smart watch, a smart band, a smart ring, a smart necklace, or a smart phone, a smart pad, a desktop computer, a notebook computer, a workstation, a PDA, a web pad, a mobile phone, or the like. It may be the same somewhat traditional device. According to an embodiment of the present invention, the device 300 may include sensing means for obtaining a biosignal from a human body, and may include display means for providing biometric information to a user.
또한, 본 발명의 일 실시예에 따르면, 디바이스(300)에는 본 발명에 따른 기능을 수행하기 위한 애플리케이션 프로그램이 더 포함되어 있을 수 있다. 이러한 애플리케이션은 해당 디바이스(300) 내에서 프로그램 모듈의 형태로 존재할 수 있다. 이러한 프로그램 모듈의 성격은 후술할 바와 같은 광전용적맥파 신호 측정 장치(200)의 산출부(250), 통신부(260) 및 제어부(270)와 전반적으로 유사할 수 있다. 여기서, 애플리케이션은 그 적어도 일부가 필요에 따라 그것과 실질적으로 동일하거나 균등한 기능을 수행할 수 있는 하드웨어 장치나 펌웨어 장치로 치환될 수도 있다.In addition, according to an embodiment of the present invention, the device 300 may further include an application program for performing a function according to the present invention. Such an application may exist in the form of a program module in the device 300. The nature of the program module may be generally similar to that of the calculator 250, the communicator 260, and the controller 270 of the apparatus for measuring optical pulse wave signals as described below. Here, the application may be replaced with a hardware device or a firmware device, at least a part of which may perform a function substantially the same or equivalent thereto.
광전용적맥파 신호 측정 장치의 구성Configuration of optical dedicated pulse wave signal measuring device
이하에서는, 본 발명의 구현을 위하여 중요한 기능을 수행하는 광전용적맥파 신호 측정 장치(200)의 내부 구성 및 각 구성요소의 기능에 대하여 살펴보기로 한다.Hereinafter, the internal configuration and functions of each component of the optical-only pulse wave signal measuring apparatus 200 performing important functions for the implementation of the present invention will be described.
도 3은 본 발명의 일 실시예에 따른 광전용적맥파 신호 측정 장치의 내부 구성을 예시적으로 나타내는 도면이다.FIG. 3 is a diagram illustrating an internal configuration of a photoelectric pulse wave signal measuring apparatus according to an embodiment of the present invention.
도 3을 참조하면, 본 발명의 일 실시예에 따른 광전용적맥파 신호 측정 장치(200)는, 발광부(210), 수광부(220), 조도 센서부(230), 필터부(240), 산출부(250), 통신부(260) 및 제어부(270)를 포함할 수 있다. 본 발명의 일 실시예에 따르면, 산출부(250), 통신부(260) 및 제어부(270)는 그 중 적어도 일부가 외부 시스템(미도시됨)과 통신하는 프로그램 모듈들일 수 있다. 이러한 프로그램 모듈들은 운영 시스템, 응용 프로그램 모듈 및 기타 프로그램 모듈의 형태로 광전용적맥파 신호 측정 장치(200)에 포함될 수 있으며, 물리적으로는 여러 가지 공지의 기억 장치 상에 저장될 수 있다. 또한, 이러한 프로그램 모듈들은 광전용적맥파 신호 측정 장치(200)와 통신 가능한 원격 기억 장치에 저장될 수도 있다. 한편, 이러한 프로그램 모듈들은 본 발명에 따라 후술할 특정 업무를 수행하거나 특정 추상 데이터 유형을 실행하는 루틴, 서브루틴, 프로그램, 오브젝트, 컴포넌트, 데이터 구조 등을 포괄하지만, 이에 제한되지는 않는다.Referring to FIG. 3, the apparatus for measuring photonic pulse wave according to an embodiment of the present invention includes a light emitting unit 210, a light receiving unit 220, an illuminance sensor unit 230, a filter unit 240, and a calculation unit. The unit 250 may include a communication unit 260 and a control unit 270. According to an embodiment of the present invention, the calculator 250, the communicator 260, and the controller 270 may be program modules in which at least some of them communicate with an external system (not shown). Such program modules may be included in the optical-only pulse wave signal measuring apparatus 200 in the form of an operating system, an application module, and other program modules, and may be physically stored on various known storage devices. In addition, these program modules may be stored in a remote storage device that can communicate with the optical-only pulse wave signal measuring apparatus 200. On the other hand, such program modules include, but are not limited to, routines, subroutines, programs, objects, components, data structures, etc. that perform particular tasks or execute particular abstract data types, described below, in accordance with the present invention.
도 4는 본 발명의 일 실시예에 따라 광전용적맥파 신호 측정 장치의 모습을 예시적으로 나타내는 도면이다.4 is a diagram illustrating an example of a photoelectric pulse wave signal measuring apparatus according to an embodiment of the present invention.
먼저, 본 발명의 일 실시예에 따르면, 발광부(210)는 측정의 대상이 되는 사용자의 인체(예를 들면, 손가락, 손목 등)에 대하여 제1 파장 범위의 광 및 제2 파장 범위의 광을 조사하는 기능을 수행할 수 있다. 구체적으로, 본 발명의 일 실시예에 따른 발광부(210)는, 제1 파장 범위의 광 및 제2 파장 범위의 광을 각각 발광시키는 제1 발광부(211) 및 제2 발광부(212)를 포함할 수 있고, 소정의 주기에 따라 제1 파장 범위의 광 또는 제2 파장 범위의 광을 발생시킬 수 있는 발광 다이오드(LED)로 이루어질 수 있다. 예를 들면, 제1 파장 범위의 광에는 490 nm 내지 780 nm의 파장 범위의 가시광선 광이 포함될 수 있고, 제2 파장 범위의 광에는 800 nm 내지 980 nm의 파장 범위의 적외선 광이 포함될 수 있다.First, according to an embodiment of the present invention, the light emitting unit 210 is light of the first wavelength range and light of the second wavelength range with respect to the human body (for example, finger, wrist, etc.) of the user to be measured It can perform the function of investigating. Specifically, the light emitting unit 210 according to an embodiment of the present invention, the first light emitting unit 211 and the second light emitting unit 212 for emitting light of the first wavelength range and light of the second wavelength range, respectively It may include, and may be made of a light emitting diode (LED) capable of generating light in a first wavelength range or light in a second wavelength range according to a predetermined period. For example, the light in the first wavelength range may include visible light in the wavelength range of 490 nm to 780 nm, and the light in the second wavelength range may include infrared light in the wavelength range of 800 nm to 980 nm. .
또한, 본 발명의 일 실시예에 따르면, 발광부(210)로부터 발광되는 제1 파장 범위의 광 및 제2 파장 범위의 광은 각각 제1 필터부(241) 및 제2 필터부(242)를 통해 사용자의 인체에 조사될 수 있으며, 여기서, 제1 필터부(241) 및 제2 필터부(242)는 각각 제1 파장 범위의 광 및 제2 파장 범위의 광을 선택적으로 투과시키는 필터로 이루어질 수 있다.In addition, according to one embodiment of the present invention, the light of the first wavelength range and the light of the second wavelength range emitted from the light emitting unit 210, respectively, the first filter unit 241 and the second filter unit 242 It may be irradiated to the human body of the user, wherein, the first filter unit 241 and the second filter unit 242 is made of a filter for selectively transmitting the light of the first wavelength range and the light of the second wavelength range, respectively Can be.
또한, 후술할 바와 같이, 본 발명의 일 실시예에 따르면, 사용자의 인체에 대하여 조사되는 제1 파장 범위의 광 또는 제2 파장 범위의 광의 밝기는, 조도 센서부(230)에서 측정되는 제1 조도 또는 제2 조도가 기설정된 기준 조도와 일치되도록 하는 방향으로 조절될 수 있다. 즉, 본 발명의 일 실시예에 따르면, 제1 조도 및 제2 조도 중 적어도 하나와 기설정된 기준 조도 사이의 차이가 기설정된 수준 미만이 되도록, 사용자의 인체에 대하여 조사되는 제1 파장 범위의 광 및 제2 파장 범위의 광 중 적어도 하나의 밝기가 적응적으로 조절될 수 있다.In addition, as will be described later, according to an embodiment of the present invention, the brightness of the light of the first wavelength range or the light of the second wavelength range irradiated to the human body of the user, the first measured by the illuminance sensor unit 230 The illuminance or the second illuminance may be adjusted in a direction to match the predetermined reference illuminance. That is, according to one embodiment of the present invention, the light of the first wavelength range irradiated on the human body of the user so that the difference between at least one of the first and second illuminance and the predetermined reference illuminance is less than the predetermined level And brightness of at least one of the light in the second wavelength range can be adaptively adjusted.
예를 들면, 제1 조도 센서부(231)에서 측정되는 제1 조도가 기설정된 기준 조도보다 낮은 경우에, 제1 조도가 기설정된 기준 조도가 일치하게 될 수 있도록 제1 발광부(211)에서 조사되는 제1 파장 범위의 광의 밝기를 증가시킬 수 있다. 다른 예를 들면, 제2 조도 센서부(232)에서 측정되는 제2 조도가 기설정된 기준 조도보다 높은 경우에, 제2 조도가 기설정된 기준 조도가 일치하게 될 수 있도록 제2 발광부(212)에서 조사되는 제2 파장 범위의 광의 밝기를 감소시킬 수 있다. 본 발명의 일 실시예에 따르면, 제1 파장 범위의 광 또는 제2 파장 범위의 광의 밝기를 조절하는 기능은 제어부(270)에 의해 수행될 수 있다.For example, when the first illuminance measured by the first illuminance sensor unit 231 is lower than the preset reference illuminance, the first light emitter 211 may make the first illuminance coincide with the preset illuminance. The brightness of light in the first wavelength range to be irradiated can be increased. As another example, when the second illuminance measured by the second illuminance sensor unit 232 is higher than the preset reference illuminance, the second light emitter 212 may be configured to match the preset reference illuminance. The brightness of the light of the second wavelength range irradiated at may be reduced. According to an embodiment of the present invention, the function of adjusting the brightness of the light of the first wavelength range or the light of the second wavelength range may be performed by the controller 270.
다음으로, 본 발명의 일 실시예에 따르면, 수광부(220)는 제1 파장 범위의 광 및 제2 파장 범위의 광을 각각 감지하는 기능을 수행할 수 있다. 구체적으로, 본 발명의 일 실시예에 따른 수광부(220)는, 제1 파장 범위의 광 및 제2 파장 범위의 광을 각각 감지하는 제1 수광부(221) 및 제2 수광부(222)를 포함할 수 있고, 제1 파장 범위의 광 또는 제2 파장 범위의 광을 감지할 수 있는 포토 다이오드로 이루어질 수 있다. 본 발명의 일 실시예에 따르면, 수광부(220)에 의해 감지되는 광에는, 발광부(210)에 의하여 조사되어 사용자의 인체로부터 반사되는 광뿐만 아니라, 외부 광원으로부터 조사되는 주변광이 포함될 수 있다.Next, according to one embodiment of the present invention, the light receiving unit 220 may perform a function of sensing the light of the first wavelength range and the light of the second wavelength range, respectively. In detail, the light receiving unit 220 according to the exemplary embodiment of the present invention may include a first light receiving unit 221 and a second light receiving unit 222 that detect light in a first wavelength range and light in a second wavelength range, respectively. And a photodiode capable of sensing light in the first wavelength range or light in the second wavelength range. According to an embodiment of the present invention, the light detected by the light receiving unit 220 may include not only the light irradiated by the light emitting unit 210 and reflected from the human body of the user, but also ambient light irradiated from an external light source. .
또한, 본 발명의 일 실시예에 따르면, 수광부(220)에 의해 감지되는 제1 파장 범위의 광 및 제2 파장 범위의 광은 각각 제1 필터부(241) 및 제2 필터부(242)를 통해 입사될 수 있으며, 앞서 설명된 바와 같이, 제1 필터부(241) 및 제2 필터부(242)는 각각 제1 파장 범위의 광 및 제2 파장 범위의 광을 선택적으로 투과시키는 필터로 이루어질 수 있다.In addition, according to one embodiment of the present invention, the light of the first wavelength range and the light of the second wavelength range detected by the light receiving unit 220, respectively, the first filter unit 241 and the second filter unit 242 As described above, the first filter part 241 and the second filter part 242 may each include a filter for selectively transmitting light in a first wavelength range and light in a second wavelength range. Can be.
다음으로, 본 발명의 일 실시예에 따르면, 조도 센서부(230)는 제1 필터부(241) 및 제2 필터부(242) 각각을 통하여 입사되는 제1 파장 범위의 광 및 제2 파장 범위의 광 각각의 조도인 제1 조도 및 제2 조도를 각각 측정하는 기능을 수행할 수 있다. 구체적으로, 본 발명의 일 실시예에 따른 조도 센서부(230)는, 제1 조도 및 제2 조도를 각각 감지하는 제1 조도 센서부(231) 및 제2 조도 센서부(232)를 포함할 수 있으며, 제1 조도 센서부(231) 및 제2 조도 센서부(232)는 각각 제1 수광부(221) 및 제2 수광부(222)의 주변에 배치될 수 있다.Next, according to one embodiment of the present invention, the illuminance sensor unit 230 is the light and the second wavelength range of the first wavelength range incident through each of the first filter unit 241 and the second filter unit 242. The first illuminance and the second illuminance of each illuminance of the light may be measured. Specifically, the illuminance sensor unit 230 according to an embodiment of the present invention may include a first illuminance sensor unit 231 and a second illuminance sensor unit 232 for detecting the first illuminance and the second illuminance, respectively. The first illuminance sensor 231 and the second illuminance sensor 232 may be disposed around the first light receiver 221 and the second light receiver 222, respectively.
다음으로, 본 발명의 일 실시예에 따르면, 산출부(250)는 제1 파장 범위의 광에 따른 제1 광전용적맥파 신호와 제2 파장 범위의 광에 따른 제2 광전용적맥파 신호를 생성하는 기능을 수행할 수 있다.Next, according to an embodiment of the present invention, the calculation unit 250 generates the first photo-only pulse wave signal according to the light of the first wavelength range and the second photo-only pulse wave signal according to the light of the second wavelength range. Function can be performed.
보다 구체적으로, 본 발명의 일 실시예에 따른 산출부(250)는, 상술한 제어부(270)에 의하여, 제1 발광부(211) 또는 제2 발광부(212)에서 각각 발생되는 제1 파장 범위의 광 또는 제2 파장 범위의 광의 밝기가 적응적으로 조절됨에 따라, 제1 조도 또는 제2 조도와 기설정된 기준 조도 사이의 차이가 기설정된 수준 미만일 정도로 제1 조도 또는 제2 조도가 기설정된 기준 조도와 일치하게 되는 경우에, 제1 수광부(221) 또는 제2 수광부(222)에서 각각 감지되는 제1 파장 범위의 광 또는 제2 파장 범위의 광에 따라 제1 광전용적맥파 신호 또는 제2 광전용적맥파 신호를 각각 생성할 수 있다.More specifically, the calculation unit 250 according to an embodiment of the present invention, the first wavelength generated by each of the first light emitting unit 211 or the second light emitting unit 212 by the above-described control unit 270 As the brightness of the light in the range or the light in the second wavelength range is adaptively adjusted, the first or second illuminance is preset so that the difference between the first or second illuminance and the predetermined reference illuminance is less than the predetermined level. When the reference illuminance coincides with the reference illuminance, the first optical-only pulse wave signal or the second light is generated according to the light of the first wavelength range or the light of the second wavelength range sensed by the first light receiver 221 or the second light receiver 222, respectively. It is possible to generate a photoelectric pulse wave signal respectively.
또한, 본 발명의 일 실시예에 따른 산출부(250)는, 제1 조도 또는 제2 조도가 기설정된 기준 조도를 초과하는 경우에, 제1 조도 또는 제2 조도와 기설정된 기준 조도 사이의 상대적인 비율을 참조로 하여, 제1 광전용적맥파 신호 또는 제2 광전용적맥파 신호의 세기를 보정(스케일링)할 수 있다. 예를 들면, 제1 조도 센서부(231)에서 측정되는 제1 조도가 2000 lux이고, 기설정된 기준 조도가 1000 lux인 경우에, 제1 수광부(221)에서 감지되는 제1 파장 범위의 광에 따른 제1 광전용적맥파 신호의 세기가 1/2 배로 스케일링될 수 있다.In addition, the calculation unit 250 according to an embodiment of the present invention, when the first illuminance or the second illuminance exceeds a predetermined reference illuminance, the relative between the first illuminance or the second illuminance and the predetermined reference illuminance With reference to the ratio, the intensity of the first photo-only pulse wave signal or the second photo-only pulse wave signal may be corrected (scaled). For example, when the first illuminance measured by the first illuminance sensor unit 231 is 2000 lux and the preset reference illuminance is 1000 lux, the light of the first wavelength range detected by the first light receiver 221 is applied. The intensity of the first photoelectric pulse wave signal may be scaled by 1/2.
따라서, 본 발명에 의하면, 공간적 제약을 야기하는 종래의 차폐 구조를 채용하지 않으면서도, 외부 광원으로 인해 주변광의 밝기가 일정하지 않은 환경에서 광전용적맥파 신호를 정확하게 측정할 수 있게 되는 효과가 달성된다.Therefore, according to the present invention, an effect of accurately measuring the photoelectric pulse wave signal can be achieved in an environment in which the brightness of the ambient light is not constant due to the external light source without employing the conventional shielding structure causing the space constraint. .
한편, 본 발명의 일 실시예에 따르면, 산출부(250)는 위와 같이 생성되는 제1 광전용적맥파 신호 및 제2 광전용적맥파 신호를 참조로 하여, 사용자의 인체의 혈액 내 산소포화도를 산출하는 기능을 수행할 수 있다.Meanwhile, according to an embodiment of the present invention, the calculation unit 250 calculates the oxygen saturation degree in the blood of the user's body with reference to the first photo-only pulse wave signal and the second photo-only pulse wave signal generated as described above. Function can be performed.
구체적으로, 본 발명의 일 실시예에 따른 산출부(250)는, 감지되는 광의 조도가 기설정된 기준 조도와 일치하는 경우에 적용될 수 있는 통상적인 산소포화도 산출 모델에 근거하여, 산소포화도를 용이하게 산출할 수 있다. 앞서 설명한 바와 같이, 발광부(210)에서 발생되는 광의 밝기를 적응적으로 제어하거나 수광부(220)에서 감지되는 광으로부터 생성되는 광전용적맥파 신호를 적응적으로 보정한 결과로서 도출되는 제1 광전용적맥파 신호 및 제2 광전용적맥파 신호는 위의 통상적인 산소포화도 산출 모델에 그대로 적용될 수 있으므로, 본 발명의 일 실시예에 따른 산출부(250)는, 위의 보정을 거친 제1 광전용적맥파 신호 및 제2 광전용적맥파 신호와 위의 통상적인 산소포화도 산출 모델을 참조로 하여 산소포화도를 산출할 수 있게 된다.Specifically, the calculation unit 250 according to an embodiment of the present invention, based on a conventional oxygen saturation calculation model that can be applied when the detected illuminance matches the preset reference illuminance, the oxygen saturation easily Can be calculated. As described above, the first light-only output derived as a result of adaptively controlling the brightness of the light generated by the light emitting unit 210 or adaptively correcting the photo-only pulse wave signal generated from the light detected by the light receiving unit 220. Since the pulse wave signal and the second photo-proprietary pulse wave signal may be applied to the conventional oxygen saturation calculation model as it is, the calculation unit 250 according to an embodiment of the present invention may perform the above-described first photo-dedicated pulse wave signal. And the oxygen saturation degree can be calculated with reference to the second photo-only pulse wave signal and the conventional oxygen saturation degree calculation model.
예를 들면, 본 발명의 일 실시예에 따른 산소포화도 산출 모델은, 위의 보정을 거친 제1 광전용적맥파 신호(즉, 적색 광에 따른 신호) 및 제2 광전용적맥파 신호(즉, 적외선 광에 따른 신호) 사이의 교류 성분의 차이에 기초하여 혈액 내 헤모글로빈의 산소 함유량을 산출하는 모델일 수 있다. 다만, 본 발명에 따른 산소포화도 산출 모델이 반드시 상기 열거된 것에 한정되는 것은 아니며, 본 발명의 목적을 달성할 수 있는 범위 내에서 얼마든지 변경될 수 있음을 밝혀 둔다.For example, the oxygen saturation calculation model according to the embodiment of the present invention includes the above-mentioned first photo-only pulse wave signal (ie, red light signal) and second photo-only pulse wave signal (ie, infrared light). It can be a model for calculating the oxygen content of hemoglobin in the blood based on the difference in the alternating current component). However, the oxygen saturation calculation model according to the present invention is not necessarily limited to those listed above, it will be appreciated that can be changed as many as possible within the scope of the object of the present invention.
도 5는 본 발명의 일 실시예에 따라 광전용적맥파 신호와 산소포화도를 측정하는 과정을 예시적으로 나타내는 도면이다.FIG. 5 is a diagram exemplarily illustrating a process of measuring an optical exclusive pulse wave signal and an oxygen saturation degree according to an embodiment of the present invention.
도 5를 참조하면, 본 발명의 일 실시예에 따른 제1 발광부(211) 및 제2 발광부(212)는 각각 제1 파장 범위의 적색(Red) 광 및 제2 파장 범위의 적외선(IR) 광을 발생시켜 사용자의 인체(120)에 조사할 수 있고, 제1 수광부(221) 및 제2 수광부(222)는 사용자의 인체로부터 반사되거나 외부 광원으로부터 조사되는 제1 파장 범위의 적색 광 및 제2 파장 범위의 적외선 광을 각각 감지할 수 있다.Referring to FIG. 5, the first light emitter 211 and the second light emitter 212 according to the exemplary embodiment of the present invention respectively emit red light in the first wavelength range and infrared light in the second wavelength range (IR). The first light receiving unit 221 and the second light receiving unit 222 may be emitted to the human body 120 of the user, the red light of the first wavelength range reflected from the user's human body or irradiated from an external light source and Infrared light of a second wavelength range may be respectively detected.
계속하여, 도 5를 참조하면, 본 발명의 일 실시예에 따른 제1 조도 센서부(231) 및 제2 조도 센서부(232)는, 제1 수광부(221) 및 제2 수광부(222)의 주변에 각각 배치되어 제1 파장 범위의 적색 광의 조도 및 제2 파장 범위의 적외선 광의 조도를 측정할 수 있다.5, the first illuminance sensor unit 231 and the second illuminance sensor unit 232 according to the embodiment of the present invention may include the first light receiver 221 and the second light receiver 222. It is disposed in the periphery, respectively, to measure the illuminance of the red light of the first wavelength range and the infrared light of the second wavelength range.
계속하여, 도 5를 참조하면, 본 발명의 일 실시예에 따른 산출부(250)는, 위의 감지되는 제1 파장 범위의 광에 따른 제1 광전용적맥파 신호와 위의 감지되는 제2 파장 범위의 광에 따른 제2 광전용적맥파 신호를 생성할 수 있다. 또한, 본 발명의 일 실시예에 따른 산출부(250)는, 위와 같이 생성되는 제1 광전용적맥파 신호 및 제2 광전용적맥파 신호를 참조로 하여, 사용자의 혈액 내 산소포화도를 산출할 수 있다.5, the calculation unit 250 according to an exemplary embodiment of the present invention may include a first photodedicated pulse wave signal according to light in the detected first wavelength range and the detected second wavelength. The second photoelectric pulse wave signal may be generated according to the light in the range. In addition, the calculation unit 250 according to an embodiment of the present invention may calculate the oxygen saturation level in the blood of the user with reference to the first photo-only pulse wave signal and the second photo-only pulse wave signal generated as described above. .
계속하여, 도 5를 참조하면, 본 발명의 일 실시예에 따른 제어부(270)는, 제1 조도 센서부(231) 또는 제2 조도 센서부(232)에서 각각 측정되는 제1 파장 범위의 적색 광의 조도 또는 제2 파장 범위의 적외선 광의 조도가 기설정된 기준 조도와 일치되도록 하는 방향으로, 제1 발광부(211) 또는 제2 발광부(212)에서 각각 발생되는 제1 파장 범위의 적색 광 또는 제2 파장 범위의 적외선 광의 밝기(세기)를 적응적으로 조절할 수 있다.5, the control unit 270 according to an embodiment of the present invention may have a red color in the first wavelength range measured by the first illuminance sensor unit 231 or the second illuminance sensor unit 232, respectively. The red light of the first wavelength range generated in the first light emitting unit 211 or the second light emitting unit 212 in a direction such that the illuminance of the light or the infrared light of the second wavelength range matches the predetermined reference illuminance, or The brightness (intensity) of the infrared light in the second wavelength range can be adaptively adjusted.
다음으로, 본 발명의 일 실시예에 따른 통신부(260)는 광전용적맥파 신호 측정 장치(200)가 외부 장치와 통신할 수 있도록 하는 기능을 수행한다.Next, the communication unit 260 according to an embodiment of the present invention performs a function of allowing the optical exclusive pulse wave signal measuring apparatus 200 to communicate with an external device.
마지막으로, 본 발명의 일 실시예에 따른 제어부(270)는 발광부(210), 수광부(220), 조도 센서부(230), 필터부(240), 산출부(250) 및 통신부(260) 간의 데이터의 흐름을 제어하는 기능을 수행한다. 즉, 제어부(270)는 외부로부터의 또는 광전용적맥파 신호 측정 장치(200)의 각 구성요소 간의 데이터의 흐름을 제어함으로써, 발광부(210), 수광부(220), 조도 센서부(230), 필터부(240), 산출부(250) 및 통신부(260)에서 각각 고유 기능을 수행하도록 제어한다.Finally, the control unit 270 according to an embodiment of the present invention is the light emitting unit 210, the light receiving unit 220, the illumination sensor 230, the filter unit 240, the calculation unit 250 and the communication unit 260 It controls the flow of data. That is, the controller 270 controls the flow of data from the outside or between the respective components of the optical-only pulse wave signal measuring apparatus 200, so that the light emitting unit 210, the light receiving unit 220, the illuminance sensor unit 230, The filter 240, the calculator 250, and the communicator 260 each control to perform a unique function.
다른 실시예Another embodiment
한편, 본 발명의 다른 실시예에 따르면, 광전용적맥파 신호 측정 장치(200)는, 제1 파장 범위의 광 또는 제2 파장 범위의 광의 밝기를 적응적으로 조절하는 기능에 더하여, 제1 광전용적맥파 신호 또는 제2 광전용적맥파 신호의 세기를 적응적으로 보정하는 기능을 수행할 수 있다.On the other hand, according to another embodiment of the present invention, the optical dedicated pulse wave signal measuring apparatus 200, in addition to the function of adaptively adjusting the brightness of the light of the first wavelength range or the light of the second wavelength range, the first optical only And adaptively correct the intensity of the pulse wave signal or the second photo-only pulse wave signal.
구체적으로, 본 발명의 다른 실시예에 따르면, 광전용적맥파 신호 측정 장치(200)의 산출부(250)는, 제1 조도 센서부(231) 및 제2 조도 센서부(232) 각각에서 측정되는 제1 조도 및 제2 조도 중 적어도 하나와 기설정된 기준 조도 사이의 차이가 기설정된 수준 이상이면, 위의 측정되는 제1 조도 및 제2 조도 중 적어도 하나와 기설정된 기준 조도 사이의 상대적인 관계를 참조로 하여, 제1 광전용적맥파 신호 및 제2 광전용적맥파 신호 중 적어도 하나를 보정하는 기능을 수행할 수 있다.Specifically, according to another embodiment of the present invention, the calculation unit 250 of the photoelectric pulse wave signal measuring apparatus 200 is measured by each of the first illuminance sensor unit 231 and the second illuminance sensor unit 232. If the difference between at least one of the first illuminance and the second illuminance and the predetermined reference illuminance is greater than or equal to a predetermined level, refer to the relative relationship between the at least one of the first and second illuminance measured above and the predetermined reference illuminance. In this case, a function of correcting at least one of the first photo-only pulse wave signal and the second photo-only pulse wave signal may be performed.
보다 구체적으로, 본 발명의 다른 실시예에 따른 산출부(250)는, 위의 측정되는 제1 조도 및 제2 조도 중 적어도 하나와 기설정된 기준 조도 사이의 상대적인 비율에 기초하여, 제1 광전용적맥파 신호 및 상기 제2 광전용적맥파 신호 중 적어도 하나의 세기를 스케일링하는 보정을 수행할 수 있다.More specifically, the calculation unit 250 according to another embodiment of the present invention, based on the relative ratio between at least one of the above-described first illumination and second illumination and the predetermined reference illumination, the first photoelectric only A correction for scaling the intensity of at least one of the pulse wave signal and the second photo-proprietary pulse wave signal may be performed.
예를 들면, 제1 조도 센서부(231)에서 측정되는 제1 조도가 2000 lux이고, 기설정된 기준 조도가 1000 lux인 경우에, 제1 수광부(221)에서 감지되는 제1 파장 범위의 광에 따른 제1 광전용적맥파 신호의 세기가 1/2 배로 스케일링될 수 있다. 다른 예를 들면, 제2 조도 센서부(232)에서 측정되는 제2 조도가 2000 lux이고, 기설정된 기준 조도가 1000 lux인 경우에, 제2 수광부(222)에서 감지되는 제2 파장 범위의 광에 따른 제2 광전용적맥파 신호의 세기가 1/3 배로 스케일링될 수 있다.For example, when the first illuminance measured by the first illuminance sensor unit 231 is 2000 lux and the preset reference illuminance is 1000 lux, the light of the first wavelength range detected by the first light receiver 221 is applied. The intensity of the first photoelectric pulse wave signal may be scaled by 1/2. As another example, when the second illuminance measured by the second illuminance sensor unit 232 is 2000 lux and the preset reference illuminance is 1000 lux, the light of the second wavelength range detected by the second light receiver 222 is detected. The intensity of the second photoelectric pulse wave signal may be scaled by 1/3.
따라서, 본 발명의 다른 실시예에 따른 광전용적맥파 신호 측정 장치(200)에 의하면, 공간적 제약을 야기하는 종래의 차폐 구조를 채용하지 않으면서도, 외부 광원으로 인해 주변광의 밝기가 일정하지 않은 환경에서 광전용적맥파 신호를 정확하게 측정할 수 있게 되는 효과가 달성된다.Therefore, according to the photo-only pulse wave signal measuring apparatus 200 according to another embodiment of the present invention, without using a conventional shielding structure causing a space constraint, in an environment where the brightness of the ambient light is not constant due to the external light source The effect of being able to accurately measure photoelectric pulse wave signals is achieved.
또한, 본 발명의 다른 실시예에 따르면, 광전용적맥파 신호 측정 장치(200)의 산출부(250)는, 위와 같은 보정을 거친 제1 광전용적맥파 신호 및 제2 광전용적맥파 신호를 참조로 하여, 사용자의 인체의 혈액 내 산소포화도를 산출하는 기능을 수행할 수 있다.In addition, according to another embodiment of the present invention, the calculation unit 250 of the optical dedicated pulse wave signal measuring apparatus 200, with reference to the first optical pulse pulse wave signal and the second optical pulse pulse wave signal after the correction as described above The function of calculating the oxygen saturation in the blood of the user's body may be performed.
구체적으로, 본 발명의 다른 실시예에 따른 산출부(250)는, 감지되는 광의 조도가 기설정된 기준 조도와 일치하는 경우에 적용될 수 있는 산소포화도 산출 모델에 근거하여, 산소포화도를 산출할 수 있다. 앞서 설명한 바와 같이, 기설정된 기준 조도에 근거하여 그 세기가 적응적으로 보정되는 제1 광전용적맥파 신호 및 제2 광전용적맥파 신호는 위의 산소포화도 산출 모델에 그대로 적용될 수 있으므로, 본 발명의 다른 실시예에 따른 산출부(250)는, 위의 보정을 거친 제1 광전용적맥파 신호 및 제2 광전용적맥파 신호와 위의 산소포화도 산출 모델을 참조로 하여 산소포화도를 산출할 수 있게 된다.Specifically, the calculation unit 250 according to another embodiment of the present invention may calculate the oxygen saturation based on the oxygen saturation calculation model that can be applied when the detected illuminance coincides with a preset reference illuminance. . As described above, the first photo-only pulse wave signal and the second photo-only pulse wave signal whose intensity is adaptively corrected based on a predetermined reference illuminance may be applied as it is to the oxygen saturation calculation model as described above, The calculation unit 250 according to the embodiment may calculate the oxygen saturation with reference to the first photo-only pulse wave signal and the second photo-only pulse wave signal that have been corrected above and the oxygen saturation calculation model.
도 6은 본 발명의 다른 실시예에 따라 산소포화도를 측정하는 과정을 예시적으로 나타내는 도면이다.6 is a diagram illustrating a process of measuring the oxygen saturation degree in accordance with another embodiment of the present invention.
도 6을 참조하면, 본 발명의 다른 실시예에 따른 제1 발광부(211) 및 제2 발광부(212)는 각각 제1 파장 범위의 적색(Red) 광 및 제2 파장 범위의 적외선(IR) 광을 발생시켜 사용자의 인체(120)에 조사할 수 있고, 제1 수광부(221) 및 제2 수광부(222)는 사용자의 인체로부터 반사되거나 외부 광원으로부터 조사되는 제1 파장 범위의 적색 광 및 제2 파장 범위의 적외선 광을 각각 감지할 수 있다.Referring to FIG. 6, the first light emitter 211 and the second light emitter 212 according to another exemplary embodiment of the present invention may emit red light in the first wavelength range and infrared light in the second wavelength range, respectively. The first light receiving unit 221 and the second light receiving unit 222 may be emitted to the human body 120 of the user, the red light of the first wavelength range reflected from the user's human body or irradiated from an external light source and Infrared light of a second wavelength range may be respectively detected.
계속하여, 도 6을 참조하면, 본 발명의 다른 실시예에 따른 제1 조도 센서부(231) 및 제2 조도 센서부(232)는, 제1 수광부(221) 및 제2 수광부(222)의 주변에 각각 배치되어 제1 파장 범위의 적색 광의 조도 및 제2 파장 범위의 적외선 광의 조도를 측정할 수 있다.6, the first illuminance sensor 231 and the second illuminance sensor 232 according to another embodiment of the present invention may include the first light receiver 221 and the second light receiver 222. It is disposed in the periphery, respectively, to measure the illuminance of the red light of the first wavelength range and the infrared light of the second wavelength range.
계속하여, 도 6을 참조하면, 본 발명의 다른 실시예에 따른 산출부(250)는, 위의 감지되는 제1 파장 범위의 광에 따른 제1 광전용적맥파 신호와 위의 감지되는 제2 파장 범위의 광에 따른 제2 광전용적맥파 신호를 생성할 수 있다. 또한, 본 발명의 다른 실시예에 따른 산출부(250)는, 위의 측정되는 제1 조도 및 제2 조도 중 적어도 하나와 기설정된 기준 조도 사이의 상대적인 비율에 기초하여, 제1 광전용적맥파 신호 및 제2 광전용적맥파 신호 중 적어도 하나의 세기를 스케일링하는 보정을 수행할 수 있다.6, the calculation unit 250 according to another exemplary embodiment of the present invention may include a first photodedicated pulse wave signal according to light in the detected first wavelength range and the detected second wavelength. The second photoelectric pulse wave signal may be generated according to the light in the range. In addition, the calculation unit 250 according to another embodiment of the present invention, based on the relative ratio between at least one of the above-described first and second illuminance and the predetermined reference illuminance, the first optical-only pulse wave signal And scaling the intensity of at least one of the second photoelectric pulse wave signals.
계속하여, 도 6을 참조하면, 본 발명의 다른 실시예에 따른 산출부(250)는, 위의 보정을 거친 제1 광전용적맥파 신호 및 제2 광전용적맥파 신호를 참조로 하여, 사용자의 혈액 내 산소포화도를 산출할 수 있다.6, the calculation unit 250 according to another embodiment of the present invention refers to the first optical-only pulse wave signal and the second optical-only pulse wave signal, which have been corrected above, by referring to the blood of the user. The oxygen saturation degree can be calculated.
이상 설명된 본 발명에 따른 실시예들은 다양한 컴퓨터 구성요소를 통하여 수행될 수 있는 프로그램 명령어의 형태로 구현되어 비일시성의 컴퓨터 판독 가능한 기록 매체에 기록될 수 있다. 상기 비일시성의 컴퓨터 판독 가능한 기록 매체는 프로그램 명령어, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 비일시성의 컴퓨터 판독 가능한 기록 매체에 기록되는 프로그램 명령어는 본 발명을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 분야의 당업자에게 공지되어 사용 가능한 것일 수도 있다. 비일시성의 컴퓨터 판독 가능한 기록 매체의 예에는, 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체, CD-ROM, DVD와 같은 광기록 매체, 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 ROM, RAM, 플래시 메모리 등과 같은 프로그램 명령어를 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령어의 예에는, 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드도 포함된다. 상기 하드웨어 장치는 본 발명에 따른 처리를 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.Embodiments according to the present invention described above may be implemented in the form of program instructions that may be executed by various computer components, and may be recorded on a non-transitory computer readable recording medium. The non-transitory computer readable recording medium may include program instructions, data files, data structures, etc. alone or in combination. The program instructions recorded on the non-transitory computer readable recording medium may be those specially designed and configured for the present invention, or may be known and available to those skilled in the computer software arts. Examples of non-transitory computer readable recording media include magnetic media such as hard disks, floppy disks and magnetic tape, optical recording media such as CD-ROMs, DVDs, magnetic-optical media such as floppy disks ( magneto-optical media) and hardware devices specifically configured to store and execute program instructions, such as ROM, RAM, flash memory, and the like. Examples of program instructions include not only machine code generated by a compiler, but also high-level language code that can be executed by a computer using an interpreter or the like. The hardware device may be configured to operate as one or more software modules to perform the process according to the invention, and vice versa.
이상에서 본 발명이 구체적인 구성요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나, 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명이 상기 실시예들에 한정되는 것은 아니며, 본 발명이 속하는 기술분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형을 꾀할 수 있다.Although the present invention has been described by specific embodiments such as specific components and the like, but the embodiments and the drawings are provided to assist in a more general understanding of the present invention, the present invention is not limited to the above embodiments. For those skilled in the art, various modifications and variations can be made from these descriptions.
따라서, 본 발명의 사상은 상기 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등하게 또는 등가적으로 변형된 모든 것들은 본 발명의 사상의 범주에 속한다고 할 것이다.Accordingly, the spirit of the present invention should not be limited to the above-described embodiments, and all of the equivalents or equivalents of the claims, as well as the appended claims, fall within the scope of the spirit of the present invention. I will say.

Claims (21)

  1. 광전용적맥파(PPG) 신호를 측정하기 위한 방법으로서,A method for measuring PPG signals,
    제1 파장 범위의 광 및 제2 파장 범위의 광을 사용자의 인체에 대하여 각각 조사하는 단계,Irradiating light of the first wavelength range and light of the second wavelength range onto the human body of the user,
    제1 필터부 및 제2 필터부 각각을 통하여 입사되는 제1 파장 범위의 광 및 제2 파장 범위의 광을 각각 감지하고, 상기 제1 필터부 및 상기 제2 필터부 각각을 통하여 입사되는 제1 파장 범위의 광 및 제2 파장 범위의 광 각각의 조도인 제1 조도 및 제2 조도를 각각 측정하는 단계, 및First light incident through the first filter unit and the second filter unit, respectively, and light in the second wavelength range detected by the first filter unit and the second filter unit; Measuring first and second illuminance, respectively, the illuminance of each of the light in the wavelength range and the light in the second wavelength range, and
    상기 감지되는 제1 파장 범위의 광에 따른 제1 광전용적맥파 신호와 상기 감지되는 제2 파장 범위의 광에 따른 제2 광전용적맥파 신호를 생성하는 단계Generating a first photo-only pulse wave signal according to light in the detected first wavelength range and a second photo-only pulse wave signal according to light in the detected second wavelength range.
    를 포함하고,Including,
    상기 조사 단계에서,In the investigation step,
    상기 측정되는 제1 조도 및 제2 조도 중 적어도 하나와 기설정된 기준 조도 사이의 차이가 기설정된 수준 미만이 되도록, 상기 사용자의 인체에 대하여 조사되는 제1 파장 범위의 광 및 제2 파장 범위의 광 중 적어도 하나의 밝기를 조절하는 방법.Light in a first wavelength range and light in a second wavelength range irradiated on the human body of the user such that a difference between at least one of the measured first and second illuminance and a predetermined reference illuminance is less than a predetermined level. How to adjust the brightness of at least one of.
  2. 제1항에 있어서,The method of claim 1,
    상기 조사 단계에서,In the investigation step,
    상기 측정되는 제1 조도 및 제2 조도 중 적어도 하나가 상기 기설정된 기준 조도 미만인 경우에, 상기 사용자의 인체에 대하여 조사되는 제1 파장 범위의 광 및 제2 파장 범위의 광 중 적어도 하나의 밝기를 증가시키는 방법.When at least one of the measured first illuminance and second illuminance is less than the predetermined reference illuminance, the brightness of at least one of the light of the first wavelength range and the light of the second wavelength range irradiated with respect to the human body of the user is determined. How to increase.
  3. 제1항에 있어서,The method of claim 1,
    상기 생성 단계에서,In the generating step,
    상기 측정되는 제1 조도 및 제2 조도 중 적어도 하나가 상기 기설정된 기준 조도 초과인 경우에, 상기 측정되는 제1 조도 및 제2 조도 중 적어도 하나와 상기 기설정된 기준 조도 사이의 상대적인 비율을 참조로 하여, 상기 제1 광전용적맥파 신호 및 상기 제2 광전용적맥파 신호 중 적어도 하나의 세기를 보정하는 방법.When at least one of the measured first illuminance and the second illuminance is greater than the preset reference illuminance, the relative ratio between the at least one of the measured first illuminance and the second illuminance and the preset reference illuminance is referred to. And correcting at least one of the intensity of the first photo-only pulse wave signal and the second photo-only pulse wave signal.
  4. 제1항에 있어서,The method of claim 1,
    상기 제1 광전용적맥파 신호 및 상기 제2 광전용적맥파 신호를 참조로 하여, 상기 사용자의 인체의 혈액 내 산소포화도를 산출하는 단계Calculating oxygen saturation in the blood of the user's body with reference to the first photo-only pulse wave signal and the second photo-only pulse wave signal
    를 더 포함하는 방법.How to include more.
  5. 제1항에 있어서,The method of claim 1,
    상기 제1 필터부 및 상기 제2 필터부는 각각 상기 제1 파장 범위의 광 및 상기 제2 파장 범위의 광을 선택적으로 투과시키는 방법.And wherein the first filter portion and the second filter portion selectively transmit light in the first wavelength range and light in the second wavelength range, respectively.
  6. 제1항에 있어서,The method of claim 1,
    상기 제1 파장 범위에는 490 nm 내지 780 nm의 파장 범위가 포함되고, 상기 제2 파장 범위에는 800 nm 내지 980 nm의 파장 범위가 포함되는 방법.The first wavelength range includes a wavelength range of 490 nm to 780 nm, and the second wavelength range includes a wavelength range of 800 nm to 980 nm.
  7. 제1항에 있어서,The method of claim 1,
    상기 사용자의 인체에 대하여 조사되는 제1 파장 범위의 광 및 제2 파장 범위의 광은, 각각 상기 제1 필터부 및 상기 제2 필터부를 통하여 상기 사용자의 인체에 대하여 조사되는 방법.And light in a first wavelength range and light in a second wavelength range irradiated onto the human body of the user are irradiated onto the human body of the user through the first filter unit and the second filter unit, respectively.
  8. 제1항에 있어서,The method of claim 1,
    상기 측정되는 제1 조도 및 제2 조도 중 적어도 하나와 기설정된 기준 조도 사이의 차이가 기설정된 수준 이상이면, 상기 측정되는 제1 조도 및 제2 조도 중 적어도 하나와 상기 기설정된 기준 조도 사이의 상대적인 관계를 참조로 하여, 상기 제1 광전용적맥파 신호 및 상기 제2 광전용적맥파 신호 중 적어도 하나를 보정하는 단계If the difference between at least one of the measured first and second illuminance and a predetermined reference illuminance is greater than or equal to a predetermined level, the relative between at least one of the measured first and second illuminance and the predetermined reference illuminance Correcting at least one of the first photo-only pulse wave signal and the second photo-only pulse wave signal with reference to a relationship
    를 더 포함하는 방법.How to include more.
  9. 제8항에 있어서,The method of claim 8,
    상기 보정 단계에서,In the correction step,
    상기 측정되는 제1 조도 및 제2 조도 중 적어도 하나와 상기 기설정된 기준 조도 사이의 차이가 기설정된 수준 이상이면, 상기 측정되는 제1 조도 및 제2 조도 중 적어도 하나와 상기 기설정된 기준 조도 사이의 상대적인 비율에 기초하여, 상기 제1 광전용적맥파 신호 및 상기 제2 광전용적맥파 신호 중 적어도 하나의 세기를 스케일링(scaling)하는 방법.If the difference between at least one of the measured first and second illuminance and the predetermined reference illuminance is greater than or equal to a predetermined level, between at least one of the measured first and second illuminance and the predetermined reference illuminance And based on a relative ratio, scaling an intensity of at least one of the first photo-only pulse wave signal and the second photo-only pulse wave signal.
  10. 제8항에 있어서,The method of claim 8,
    상기 보정을 거친 제1 광전용적맥파 신호 및 제2 광전용적맥파 신호를 참조로 하여, 상기 사용자의 인체의 혈액 내 산소포화도를 산출하는 단계Calculating oxygen saturation in the blood of the user's body with reference to the corrected first and second photo-only pulse wave signals
    를 더 포함하는 방법.How to include more.
  11. 제1항에 따른 방법을 실행하기 위한 컴퓨터 프로그램을 기록한 비일시성의 컴퓨터 판독 가능한 기록 매체.A non-transitory computer readable recording medium having recorded thereon a computer program for executing the method according to claim 1.
  12. 광전용적맥파(PPG) 신호를 측정하기 위한 장치로서,An apparatus for measuring a photo-propagation pulse wave (PPG) signal,
    제1 파장 범위의 광 및 제2 파장 범위의 광을 사용자의 인체에 대하여 각각 조사하는 제1 발광부 및 제2 발광부,A first light emitting part and a second light emitting part respectively irradiating light of a first wavelength range and light of a second wavelength range to a human body of the user;
    제1 필터부 및 제2 필터부 각각을 통하여 입사되는 제1 파장 범위의 광 및 제2 파장 범위의 광을 각각 감지하는 제1 수광부 및 제2 수광부,A first light receiving unit and a second light receiving unit sensing light of a first wavelength range and light of a second wavelength range respectively incident through the first filter unit and the second filter unit;
    상기 제1 필터부 및 상기 제2 필터부 각각을 통하여 입사되는 제1 파장 범위의 광 및 제2 파장 범위의 광 각각의 조도인 제1 조도 및 제2 조도를 각각 측정하는 제1 조도 센서 및 제2 조도 센서,A first illuminance sensor and a first illuminance sensor for measuring illuminance of first and second illuminance, respectively, which are illuminances of light in a first wavelength range and light in a second wavelength range respectively incident through the first filter unit and the second filter unit; 2 illuminance sensor,
    상기 감지되는 제1 파장 범위의 광에 따른 제1 광전용적맥파 신호와 상기 감지되는 제2 파장 범위의 광에 따른 제2 광전용적맥파 신호를 생성하는 산출부, 및A calculator configured to generate a first photo-only pulse wave signal according to light in the detected first wavelength range and a second photo-only pulse wave signal according to light in the detected second wavelength range, and
    상기 측정되는 제1 조도 및 제2 조도 중 적어도 하나와 기설정된 기준 조도 사이의 차이가 기설정된 수준 미만이 되도록, 상기 사용자의 인체에 대하여 조사되는 제1 파장 범위의 광 및 제2 파장 범위의 광 중 적어도 하나의 밝기를 조절하는 제어부Light in a first wavelength range and light in a second wavelength range irradiated on the human body of the user such that a difference between at least one of the measured first and second illuminance and a predetermined reference illuminance is less than a predetermined level. Control unit for adjusting at least one of the brightness
    를 포함하는 장치.Device comprising a.
  13. 제12항에 있어서,The method of claim 12,
    상기 제어부는, 상기 측정되는 제1 조도 및 제2 조도 중 적어도 하나가 상기 기설정된 기준 조도 미만인 경우에, 상기 사용자의 인체에 대하여 조사되는 제1 파장 범위의 광 및 제2 파장 범위의 광 중 적어도 하나의 밝기를 증가시키는 장치.The controller may include at least one of light in a first wavelength range and light in a second wavelength range irradiated to the human body of the user when at least one of the measured first and second illuminances is less than the predetermined reference illuminance. Device for increasing the brightness of one.
  14. 제12항에 있어서,The method of claim 12,
    상기 산출부는, 상기 측정되는 제1 조도 및 제2 조도 중 적어도 하나가 상기 기설정된 기준 조도 초과인 경우에, 상기 측정되는 제1 조도 및 제2 조도 중 적어도 하나와 상기 기설정된 기준 조도 사이의 상대적인 비율을 참조로 하여, 상기 제1 광전용적맥파 신호 및 상기 제2 광전용적맥파 신호 중 적어도 하나의 세기를 보정하는 장치.The calculation unit may include a relative value between at least one of the measured first and second illuminance and the preset reference illuminance when at least one of the measured first and second illuminances is greater than the preset reference illuminance. The apparatus for correcting the intensity of at least one of the first photo-only pulse wave signal and the second photo-only pulse wave signal with reference to the ratio.
  15. 제12항에 있어서,The method of claim 12,
    상기 산출부는, 상기 제1 광전용적맥파 신호 및 상기 제2 광전용적맥파 신호를 참조로 하여, 상기 사용자의 인체의 혈액 내 산소포화도를 산출하는 장치.The calculation unit is a device for calculating the oxygen saturation in the blood of the human body of the user with reference to the first photo-only pulse wave signal and the second photo-only pulse wave signal.
  16. 제12항에 있어서,The method of claim 12,
    상기 제1 필터부 및 상기 제2 필터부는 각각 상기 제1 파장 범위의 광 및 상기 제2 파장 범위의 광을 선택적으로 투과시키는 장치.And the first filter unit and the second filter unit selectively transmit light in the first wavelength range and light in the second wavelength range, respectively.
  17. 제12항에 있어서,The method of claim 12,
    상기 제1 파장 범위에는 490 nm 내지 780 nm의 파장 범위가 포함되고, 상기 제2 파장 범위에는 800 nm 내지 980 nm의 파장 범위가 포함되는 장치.The first wavelength range includes a wavelength range of 490 nm to 780 nm, and the second wavelength range includes a wavelength range of 800 nm to 980 nm.
  18. 제12항에 있어서,The method of claim 12,
    상기 사용자의 인체에 대하여 조사되는 제1 파장 범위의 광 및 제2 파장 범위의 광은, 각각 상기 제1 필터부 및 상기 제2 필터부를 통하여 상기 사용자의 인체에 대하여 조사되는 장치.The light of the first wavelength range and the light of the second wavelength range irradiated to the human body of the user is irradiated to the human body of the user through the first filter unit and the second filter unit, respectively.
  19. 제12항에 있어서,The method of claim 12,
    상기 산출부는, 상기 감지되는 제1 파장 범위의 광에 따른 제1 광전용적맥파 신호와 상기 감지되는 제2 파장 범위의 광에 따른 제2 광전용적맥파 신호를 생성하고, 상기 측정되는 제1 조도 및 제2 조도 중 적어도 하나와 기설정된 기준 조도 사이의 차이가 기설정된 수준 이상이면, 상기 측정되는 제1 조도 및 제2 조도 중 적어도 하나와 상기 기설정된 기준 조도 사이의 상대적인 관계를 참조로 하여, 상기 제1 광전용적맥파 신호 및 상기 제2 광전용적맥파 신호 중 적어도 하나를 보정하는 장치.The calculating unit may generate a first photo-only pulse wave signal according to light in the detected first wavelength range and a second photo-only pulse wave signal according to light in the detected second wavelength range, and measure the first illuminance and When the difference between at least one of the second illuminance and the predetermined reference illuminance is equal to or greater than a predetermined level, the relative relationship between the at least one of the measured first and second illuminance and the preset reference illuminance is referred to. And correcting at least one of the first photo-only pulse wave signal and the second photo-only pulse wave signal.
  20. 제19항에 있어서,The method of claim 19,
    상기 산출부는, 상기 측정되는 제1 조도 및 제2 조도 중 적어도 하나와 상기 기설정된 기준 조도 사이의 차이가 기설정된 수준 이상이면, 상기 측정되는 제1 조도 및 제2 조도 중 적어도 하나와 상기 기설정된 기준 조도 사이의 상대적인 비율에 기초하여, 상기 제1 광전용적맥파 신호 및 상기 제2 광전용적맥파 신호 중 적어도 하나의 세기를 스케일링(scaling)하는 장치.The calculator may be configured to determine whether the difference between at least one of the first and second illuminance measured and the predetermined reference illuminance is equal to or greater than a predetermined level, the at least one of the measured first and second illuminance and the preset illuminance. And scaling an intensity of at least one of the first photo-only pulse wave signal and the second photo-only pulse wave signal based on a relative ratio between reference illuminances.
  21. 제19항에 있어서,The method of claim 19,
    상기 산출부는, 상기 보정을 거친 제1 광전용적맥파 신호 및 제2 광전용적맥파 신호를 참조로 하여, 상기 사용자의 인체의 혈액 내 산소포화도를 산출하는 장치.The calculation unit is a device for calculating the oxygen saturation degree in the blood of the human body of the user with reference to the corrected first photo-only pulse wave signal and the second photo-only pulse wave signal.
PCT/KR2016/007893 2015-07-20 2016-07-20 Method and apparatus for measuring photoplethysmography signal, and non-transitory computer-readable recording medium WO2017014550A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR20150102695 2015-07-20
KR10-2015-0102694 2015-07-20
KR10-2015-0102695 2015-07-20
KR20150102694 2015-07-20
KR10-2016-0023600 2016-02-26
KR1020160023632A KR20170010714A (en) 2015-07-20 2016-02-26 Method, device and non-transitory computer-readable recording medium for measuring photoplethysmography signal
KR1020160023600A KR20170010713A (en) 2015-07-20 2016-02-26 Method, device and non-transitory computer-readable recording medium for measuring photoplethysmography signal
KR10-2016-0023632 2016-02-26

Publications (1)

Publication Number Publication Date
WO2017014550A1 true WO2017014550A1 (en) 2017-01-26

Family

ID=57834175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/007893 WO2017014550A1 (en) 2015-07-20 2016-07-20 Method and apparatus for measuring photoplethysmography signal, and non-transitory computer-readable recording medium

Country Status (1)

Country Link
WO (1) WO2017014550A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3564786A1 (en) * 2018-05-02 2019-11-06 Nokia Technologies Oy An apparatus, method, computer program and electronic device for monitoring a biometric parameter
WO2023243831A1 (en) * 2022-06-13 2023-12-21 삼성전자주식회사 Wearable device and electronic device for estimating percentage of target material, and method for operating same
CN117481644A (en) * 2024-01-03 2024-02-02 中国人民解放军总医院第二医学中心 Wireless blood oxygen monitoring method for elderly patients in perioperative period

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003169780A (en) * 2001-12-06 2003-06-17 Nippon Seimitsu Sokki Kk Photoelectric pulse wave type pulse measuring instrument
KR20030054607A (en) * 2001-12-26 2003-07-02 주식회사 멕 Method for controlling quality of light for optical sensor
US20130127714A1 (en) * 2011-11-22 2013-05-23 Pixart Imaging Inc. User interface system and optical finger mouse system
KR20150082038A (en) * 2014-01-07 2015-07-15 삼성전자주식회사 Electronic device and photoplethysmography method
KR20150083000A (en) * 2014-01-07 2015-07-16 삼성전자주식회사 Apparatus and method for measuring a heart rate using photoplethysmography in a electronic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003169780A (en) * 2001-12-06 2003-06-17 Nippon Seimitsu Sokki Kk Photoelectric pulse wave type pulse measuring instrument
KR20030054607A (en) * 2001-12-26 2003-07-02 주식회사 멕 Method for controlling quality of light for optical sensor
US20130127714A1 (en) * 2011-11-22 2013-05-23 Pixart Imaging Inc. User interface system and optical finger mouse system
KR20150082038A (en) * 2014-01-07 2015-07-15 삼성전자주식회사 Electronic device and photoplethysmography method
KR20150083000A (en) * 2014-01-07 2015-07-16 삼성전자주식회사 Apparatus and method for measuring a heart rate using photoplethysmography in a electronic device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3564786A1 (en) * 2018-05-02 2019-11-06 Nokia Technologies Oy An apparatus, method, computer program and electronic device for monitoring a biometric parameter
WO2019211516A1 (en) * 2018-05-02 2019-11-07 Nokia Technologies Oy An apparatus, method, computer program and electronic device for monitoring a biometric parameter
WO2023243831A1 (en) * 2022-06-13 2023-12-21 삼성전자주식회사 Wearable device and electronic device for estimating percentage of target material, and method for operating same
CN117481644A (en) * 2024-01-03 2024-02-02 中国人民解放军总医院第二医学中心 Wireless blood oxygen monitoring method for elderly patients in perioperative period
CN117481644B (en) * 2024-01-03 2024-04-02 中国人民解放军总医院第二医学中心 Wireless blood oxygen monitoring method for elderly patients in perioperative period

Similar Documents

Publication Publication Date Title
US20150223700A1 (en) Device, system and method for determining vital signs of a subject based on reflected and transmitted light
US10314546B2 (en) Capacitance enhanced physiological measurements
WO2016195413A1 (en) Biosignal measurement device utilizing plurality of electrodes for measuring biosignal as touch sensors
JP6453770B2 (en) System and method for determining a vital sign of a subject
EP2928360B1 (en) Device and method for obtaining vital sign information of a living being
CN105979861B (en) Device, system and method for determining vital signs of a subject based on reflected and transmitted light
WO2016186472A1 (en) Earphone comprising bio-signal measurement means, and bio-signal monitoring system comprising same
US10110859B2 (en) System, method and device for monitoring light and sound impact on a person
WO2017014550A1 (en) Method and apparatus for measuring photoplethysmography signal, and non-transitory computer-readable recording medium
WO2016195347A1 (en) Bio-signal measuring apparatus which operates differently according to target
US20210186347A1 (en) Method and apparatus for determining a health status of an infant
WO2020027523A1 (en) Context-aware respiration rate determination using an electronic device
WO2015129975A1 (en) It-based circadian biological rhythm management system and method thereof
Lu et al. A prototype of reflection pulse oximeter designed for mobile healthcare
Stojanovic et al. Simplified open HW/SW pulse oximetry interface for purpose of COVID-19 symptoms detection and monitoring
WO2022173103A1 (en) Wearable device for measuring multiple biosignals, and artificial-intelligence-based remote monitoring system using same
WO2017171228A1 (en) System for measuring bio-signal including arrhythmia using smart scale
WO2019221438A1 (en) Electronic device for measuring blood pressure and operating method thereof
EP3344119A1 (en) System, method and processor for monitoring a vital sign of a subject
WO2016144094A1 (en) Method, system, and non-transitory computer-readable recording medium for measuring multiple bio-signals
KR20170010713A (en) Method, device and non-transitory computer-readable recording medium for measuring photoplethysmography signal
US20190261859A1 (en) System and Method for a Wearable Vital Signs Monitor
Zubair et al. COVID-19 pandemic management: a multi-parameter portable healthcare monitoring device
US20170020421A1 (en) Method, apparatus and non-transitory computer-readable recording medium for measuring photoplethysmography signals
US20230335252A1 (en) Physiological information processing apparatus, physiological information processing method, program and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16828054

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 15.05.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16828054

Country of ref document: EP

Kind code of ref document: A1