WO2017014368A1 - 펄스 전원 장치 - Google Patents

펄스 전원 장치 Download PDF

Info

Publication number
WO2017014368A1
WO2017014368A1 PCT/KR2015/012761 KR2015012761W WO2017014368A1 WO 2017014368 A1 WO2017014368 A1 WO 2017014368A1 KR 2015012761 W KR2015012761 W KR 2015012761W WO 2017014368 A1 WO2017014368 A1 WO 2017014368A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
power
semiconductor switch
turn
semiconductor
Prior art date
Application number
PCT/KR2015/012761
Other languages
English (en)
French (fr)
Inventor
류홍제
장성록
유찬훈
Original Assignee
한국전기연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전기연구원 filed Critical 한국전기연구원
Publication of WO2017014368A1 publication Critical patent/WO2017014368A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/53Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback
    • H03K3/57Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback the switching device being a semiconductor device

Definitions

  • the present invention relates to a pulse power supply, and more particularly, to a pulse power supply that provides a discharge path capable of quickly discharging a voltage or energy charged in a load device.
  • a high voltage pulse generator circuit supplies pulse power to a load device that requires a high voltage, such as various test equipments or plasma generators (PSII, etc.), and a conventional high voltage pulse generator circuit has a lifetime problem, a variable pulse width, and an operation of the device.
  • PSII plasma generators
  • the method using the max pulse generator using the spark gap and the method using the tube switch have a short lifespan of the device and cannot control the pulse width.
  • the method using the pulse transformer has difficulty in obtaining a fast rise time of the pulse due to the inductance of the transformer, and the circuit becomes complicated because a reset circuit, etc., must be added due to the magnetic saturation of the transformer.
  • IGBT Insulated Gate Bipolar Transistor
  • IGBTs can overcome the shortcomings of mechanical switches used in conventional Max pulse generators, such as permanent lifetime and use of pulse repetition rate and pulse width control.
  • the constraints on the product are difficult, which can cause problems with the reliability of the product.
  • IGBTs pulse generators with IGBTs.
  • the key technology in pulse generators with IGBTs is to overcome the voltage and current rating of the switch. Unlike conventional gas discharge switches, IGBTs have a small voltage and current rating.
  • each switch requires an independent drive power supply, with the higher strength of the isolation of the independent drive power supply increasing toward the top of the series switch configuration. Therefore, one of the most difficult techniques in high voltage driving is known as the insulation technology of the driving power supply.
  • both methods have a limited pulse width, and in particular, the TR method has a large limit on the pulse rise / fall time due to leakage inductance.
  • the overall size of the device is large and the efficiency is low, arc generation protection is possible in the method using IGBT and TR, but complicated circuits are pointed out as a problem.
  • the pulsed power supply system of the above patent (hereinafter referred to as a prior patent) has an advantage in that the lifespan can be greatly improved, the size can be downsized, and various control of the high-voltage pulse that is finally outputted is possible.
  • the prior art pulsed power system includes a plurality of power stages in which power cells having a semiconductor switch and a charging capacitor are connected in series, a power inverter for supplying power for capacitor charging of each power cell, and a power inverter as a high voltage insulated cable.
  • a power loop connected to supply power between the respective power cells, a control inverter for providing a gate signal of a semiconductor switch, and a control signal for generating a gate power, and a high voltage insulated cable. It consists of a control loop that is connected to be fed.
  • the plurality of power stages are all connected in series, and since all power cells are connected in series even in each power stage, all the power cells in the pulsed power system are all connected in series.
  • each power cell constituting the power stage has a semiconductor switch, such as an IGBT, and a charging capacitor connected in series thereto.
  • the semiconductor switches and the charging capacitors of the entire power cell are all connected in series, so that the semiconductor switches and the charging capacitors of the entire power stage constituting the pulsed power system are connected in series.
  • each power cell receives a bypass diode connected at both ends of the semiconductor switch and the capacitor, a rectifier diode connected at both ends of the charging capacitor, and a gate signal for driving the semiconductor switch by driving the gate power insulated from the control loop of a single turn.
  • a power switch driver gate driving circuit for applying power.
  • These power cells are supplied with power for charging a capacitor through a power loop connected from a power inverter, and also with a control signal from a control loop connected from a control inverter.
  • each power stage has a transformer consisting of a power loop and a control loop, when the power inverter supplies high voltage power through the power loop, voltage is provided to each power cell through the power transformer to charge the capacitor, and the control inverter controls The control signal applied through the loop is applied to the power switch driver through the control transformer to output the gate signal and driving power for driving the semiconductor switch.
  • a compensation winding connected between the power transformers of the upper and lower power stages is inserted and installed so as to be sensitive, and thus the leakage inductance of each transformer is installed. It solves the problem of unbalanced charge voltage between charge capacitors due to the difference.
  • the pulsed power system of the above configuration generates a high voltage pulse by charging the entire charging capacitor in parallel and then connecting the charging capacitors in series through a switch to discharge the charging capacitors in series at the same time.
  • the pulsed power supply device 10 may repeatedly switch on / off a load device.
  • the pulse power is applied to the device 30, but not only the resistance component but also the capacitance component is present in the load device 30.
  • FIG. 1B the falling time of the applied power pulse is increased. This happens.
  • An object of the present invention is to provide a pulsed power supply device that can minimize the falling time of the power supply pulse while minimizing power loss.
  • a pulse power supply according to a preferred embodiment of the present invention, the semiconductor switch unit; An energy storage unit connected in series with the semiconductor switch unit to discharge a voltage charged therein to a load device when the semiconductor switch unit is turned on; An energy supply unit supplying electrical energy to the energy storage unit; A bypass switching unit connected in parallel with the semiconductor switch unit and the energy storage unit such that a forward direction of an anti-parallel diode included therein coincides with a discharge direction of the energy storage unit; And a power unit driving the semiconductor switch unit and the bypass switching unit.
  • the pulsed power supply apparatus includes a plurality of power cells, the plurality of power so that the semiconductor switch unit and the energy storage unit included in each of the plurality of power cells are connected in series with each other
  • the cells may be connected in series with each other.
  • a turn on pulse signal and a turn off pulse are sequentially input to a driving unit, and the driving unit turns on the semiconductor switch unit when the turn on pulse signal is input.
  • the driving unit turns on the semiconductor switch unit when the turn on pulse signal is input.
  • the energy storage unit of the pulsed power supply apparatus includes a pair of charging capacitors connected in series with each other, the energy supply unit includes a pair of rectifier diodes connected in series with each other, the semiconductor
  • the switch unit includes a pair of semiconductor switches, each of which is connected to the charging capacitor, the bypass switching unit includes a pair of semiconductor switching elements, each semiconductor switching element is the charge capacitor and the semiconductor switch connected in series with each other It can be connected at both ends of.
  • the energy storage unit of the pulsed power supply device includes a charging capacitor
  • the energy supply may be implemented as a rectifier circuit for charging the charging capacitor by converting the AC power into a DC power source.
  • the driving unit of the pulse power supply turns on the semiconductor switch unit in accordance with the turn-on pulse signal input from the control inverter, the turn-on of the semiconductor switch unit until the turn-off pulse signal is input A first driver for maintaining a state; And a second driver configured to turn on the bypass switching unit when a turn off pulse signal is input from the control inverter.
  • the second driving unit when the turn-off pulse signal is input from the control inverter, the second driving unit is previously defined after the first driving unit turns off the semiconductor switch unit After the delay time has elapsed, the bypass switching unit may be turned on.
  • the semiconductor switch unit and the bypass switching unit may be implemented as an Insulated-Gate Bipolar Transistor (IGBT).
  • IGBT Insulated-Gate Bipolar Transistor
  • a pulse power supply for supplying power for charging the energy storage unit;
  • a power loop for supplying power from the power inverter to an energy supply unit in each power cell;
  • a control inverter providing power and a control signal to the semiconductor switch unit and the semiconductor switch unit;
  • a control loop for supplying a control signal to the driving unit in each power cell from the control inverter.
  • bypass switching unit of the pulse power supply discharges the energy stored in the load device, the voltage between the two ends of the semiconductor switch unit connected in parallel the energy connected in series with the semiconductor switch unit It can be limited to the voltage charged in the supply.
  • a bypass switching unit implemented by a semiconductor switching element (eg, IGBT) including an anti-parallel diode is connected in parallel to both ends of the semiconductor switch unit and the energy storage unit connected in series.
  • the bypass switching unit is kept off, and the anti-parallel diode is used as the bypass diode to protect the devices when a malfunction occurs, and the bypass switching unit is not supplied when the pulse power is not supplied.
  • the load device is efficiently discharged without adding a separate configuration (for example, a discharge resistor) for discharging the load device. This can reduce the falling time of the power supply pulse, thereby minimizing unnecessary power consumption.
  • FIGS. 2A and 2B are diagrams showing the configuration of a pulsed power supply device according to a preferred embodiment of the present invention.
  • FIG. 3 is a circuit diagram showing a detailed configuration of a drive unit according to a preferred embodiment of the present invention.
  • FIG. 4 is a circuit diagram illustrating a turn-on mode operation of a driving unit according to an exemplary embodiment of the present invention.
  • FIG. 5 is a circuit diagram illustrating a sustain mode operation after turning on a driving unit according to an exemplary embodiment of the present invention.
  • FIG. 6 is a circuit diagram illustrating a turn off mode operation of a driving unit according to an exemplary embodiment of the present invention.
  • FIG. 2A is a diagram illustrating a configuration of a pulse power supply device according to a preferred embodiment of the present invention
  • FIG. 2B illustrates a path for outputting power pulses from a pulse power supply device to a load device and a path for discharging a voltage charged in the load device. Figure is shown.
  • the configuration of the pulse power supply device according to the preferred embodiment of the present invention is compared to the configuration of the prior patents (Korean Patent No. 0820171, US Patent 7,843,087), only the internal configuration of the power cell.
  • a basic configuration of a pulse power supply device for generating other high voltage pulses for example, a plurality of power cells 200-1 to 200-24 are connected in series to configure a power stage, wherein each power cell
  • the configuration in which the charging capacitors C_ST1, C_ST2, ... and the semiconductor switches IGBT1, IGBT2, ... are connected in series is a pulse power source disclosed in the above patents (Korean Patent No. 0820171, US Patent 7,843,087). Same as the basic configuration of the system.
  • the pulsed power supply device includes a plurality of power stages in which power cells are connected in series, a power inverter 400 for supplying power for charging capacitors C_ST1, C_ST2, ... of each power cell, and a high voltage insulated cable.
  • the power loop 600, the gate signals of the semiconductor switches IGBT1, IGBT2, ..., and the like are connected to supply electrical energy from the power inverter 400 to the energy supply units in the respective power cells.
  • a control inverter 300 including a control loop 500 is connected to supply a control signal from the control inverter 300 to the driving unit (210-1, 210-2 ...) in each power cell as a high-voltage insulated cable It is also the same as the prior patent in that it is configured.
  • the power cells 200-1 to 200-24 supply power for charging the capacitors C_ST1, C_ST2,... Through the power loop 600 connected from the power inverter 400.
  • a control signal is supplied through the control loop 500 connected to the control inverter 300.
  • the power inverter 400 supplies the high voltage power through the power loop 600
  • the voltage induced through the secondary windings of the respective power cells 200-1 to 200-24 is converted into each power cell 200-1. 200-24) to charge the capacitors C_ST1, C_ST2, ...
  • the control signal applied by the control inverter 300 through the control loop 500 is the driving unit (210-1, 210-2 ).
  • Semiconductor switching elements IGBT_BP2 Certainly applied to the driving units 210-1, 210-2 ... through the secondary winding connected to Outputs a gate signal and a driving power source.
  • the compensation windings connected between the power transformers of the upper and lower power stages may be inserted to be provided as a negative electrode.
  • the prior patent includes a rectifying diode in one power cell, a single capacitor connected in parallel with the rectifying diode, a single semiconductor switch connected in series with the capacitor, a single bypass diode, and a single power switch driver.
  • a power cell according to an example includes an energy storage unit including a pair of charging capacitors, an energy supply unit including a pair of rectifying diodes, and a semiconductor including a pair of semiconductor switches therein. And a switch unit, a bypass switching unit including a pair of semiconductor switching elements, and a pair of driving units.
  • each of the pair of driving units includes a first driving unit for driving the semiconductor switch and a second driving unit for driving the semiconductor switching element.
  • 24 power cells 200-1 to 200-24 are connected in series.
  • a pair of charging capacitors C_ST1 and C_ST2 included in the power cell of the present invention are connected in series, and likewise, a pair of rectifying diodes D_REC1 , D_REC2) are connected in series.
  • the top and bottom of the pair of charge capacitors C_ST1 and C_ST2 connected in series are connected to the top and bottom of the pair of rectifier diodes D_REC1 and D_REC2 connected in series, respectively, so that the charge capacitors C_ST1 and C_ST2 and the rectifier diodes ( D_REC1, D_REC2) are connected in parallel.
  • one end of the secondary winding TR_Sec1 is connected to the connection node between the pair of charging capacitors C_ST1 and C_ST2, and the other end of the secondary winding TR_Sec1 is connected to the connection node between the pair of rectifier diodes D_REC1 and D_REC2.
  • This connection constitutes a double voltage rectifier circuit.
  • the semiconductor switches IGBT1 and IGBT2 are connected in series to the pair of charging capacitors C_ST1 and C_ST2, and the driving units 210-1 and 210-2 are connected to the semiconductor switches IGBT1 and IGBT2, respectively.
  • the configuration and operation of the driving units 210-1 and 210-2 will be described with reference to FIGS. 3 to 6.
  • the pair of semiconductor switching elements IGBT_BP1 and IGBT_BP2 included in the bypass switching unit include an antiparallel diode, and the forward capacitor of the antiparallel diode is charged with the charge capacitors C_ST1 and C_ST2.
  • the capacitors are connected in parallel with the charging capacitors C_ST1 and C_ST2 and the semiconductor switches IGBT1 and IGBT2 to coincide with the direction in which the power supply pulses are supplied.
  • the charge capacitors C_ST1, C_ST2 ... and the semiconductor switches IGBT1, IGBT2 ... of each power cell are the charge capacitors C_ST1, C_ST2 ... and the semiconductor switch IGBT1 of the adjacent power cells.
  • IGBT2 in series with each other, so that the semiconductor switching elements (IGBT_BP1, IGBT_BP2 ”) connected in parallel with them are also connected in series with the semiconductor switching elements (IGBT_BP1, IGBT_BP2 %) of each power cell. Be careful.
  • the gate receives a control signal from the driver 210-1, the collector is an emitter of the semiconductor switch IGBT1, and the emitter is charged. It is connected to one end of the capacitor C_ST1, respectively.
  • the semiconductor switches IGBT1 and IGBT2 and the charging capacitors C_ST1 and C_ST2 are all connected by a series circuit.
  • the two charging capacitors C_ST1 and C_ST2 are simultaneously charged by a voltage provided from one secondary winding, and the two semiconductor switches IGBT1 and IGBT2 are simultaneously turned on, so that the voltages of the two charging capacitors C_ST1 and C_ST2 are simultaneously turned on. Since it is discharged, it can charge and discharge twice the voltage applied through the secondary winding.
  • the turn-on pulse signal is input to the driving units 210-1, 210-2 ... through the secondary windings C_TR1, C_TR2 ... of the driving units 210-1, 210-2 ..., and the driving units 210-1, 210. -2 ...) includes a first driver 210a-see FIG. 3, which is driven by a turn-on pulse signal to turn on the semiconductor switches IGBT1, IGBT2 ... connected to the second driver. 210b-see FIG. 3), the semiconductor switching elements IGBT_BP1, IGBT_BP2..., Connected to the second driver 210b-see 3, remain off.
  • each power cell When the driving units 210-1, 210-2 ... included in each power cell turn on the semiconductor switches IGBT1, IGBT2 ... at the same time, a plurality of serial switches connected in series to the semiconductor switches IGBT1, IGBT2 ...
  • the charging capacitors C_ST1, C_ST2... Are simultaneously discharged, and a voltage pulse having a sum of the voltages charged in each of the charging capacitors C_ST1, C_ST2... Is output to the load device 1000.
  • the turned-on semiconductor switches IGBT1, IGBT2... Are turned on until the control inverter 300 transmits a turn-off signal.
  • the voltage discharged from the other power cells is transferred to the semiconductor switching elements IGBT_BP1, IGBT_BP2 ... It is delivered to the adjacent semiconductor switch through the included antiparallel diode.
  • the semiconductor switching device IGBT_BP1 limits the voltage applied to the semiconductor switch IGBT1 to the charging voltage of the charging capacitor C_ST1 connected in series with the semiconductor switch IGBT1, thereby overloading the semiconductor switch IGBT1. It is possible to perform a function of preventing (IGBT1) from being destroyed.
  • the turn off signal is the secondary winding (C_TR1, C_TR2 ...) of the driving units 210-1, 210-2 ...
  • the first driving unit 210a turns off the semiconductor switches IGBT1 and IGBT2... Connected to the first driving unit 210-1, 210-2, and the second driving unit 210b. Turn on the semiconductor switching elements IGBT_BP1, IGBT_BP2...
  • FIG. 3 is a circuit diagram showing the detailed configuration of the driving unit (210-1, 210-2 %) according to a preferred embodiment of the present invention.
  • the driving units 210-1 and 210-2 are formed of a first driving unit 210a and a second driving unit 210b.
  • the first driving unit 210a turns on the semiconductor switches IGBT1, IGBT2... And maintains the turn-on state, and then turns off the turn-off pulse from the control inverter 300.
  • the semiconductor switches IGBT1, IGBT2 .
  • the semiconductor switches IGBT1, IGBT2 .
  • the second driver 210b turns on the semiconductor switching elements IGBT_BP1, IGBT_BP2...
  • FIG. 4 is a circuit diagram illustrating a turn on mode operation of a driving unit according to an exemplary embodiment of the present invention.
  • FIG. 5 is a circuit diagram illustrating a sustain mode operation after turning on a driving unit according to an exemplary embodiment of the present invention.
  • the current charged through the resistor R8 is continuously discharged while the voltage charged in the capacitor C2 is discharged, and the voltage value applied to the resistor R8 is a semiconductor switch. It is applied to the gate of the (Main IGBT) to keep the semiconductor switches (IGBT1, IGBT2 ...) turned on.
  • FIG. 6 is a circuit diagram illustrating a turn off mode operation of a driving unit according to an exemplary embodiment of the present invention.
  • the first driver 210a may pass through diodes D2 and D6. As the current flows, capacitor C2 is charged, while transistor Q1 is turned on by the voltage drop at resistor R6.
  • the transistor Q3 when a negative turn-off pulse signal is input to the driving unit, the transistor Q3 is turned on momentarily by the current flowing momentarily along the resistor R12, the capacitor C3, and the resistor R13 in the second driving unit 210b, While transistor Q3 is turned on, current flowing through inductor L1 flows through transistor Q3, so that no voltage is applied to the gate of semiconductor switching element IGBT_BP.
  • the transistor Q3 After a time delay according to the time constant determined by the resistor R12, the capacitor C3, and the resistor R13 occurs, the transistor Q3 is turned off, and the current flowing through the inductor L1 flows into the gate of the semiconductor switching element IGBT_BP, so that the semiconductor switching element ( The IGBT_BP is turned on, so that the voltage charged in the load device 1000 is quickly discharged through the semiconductor switching element IGBT_BP.
  • the semiconductor switch Main IGBT is turned off and the semiconductor switching element IGBT_BP is turned on after generating a time delay according to the time constant determined by the resistor R12, the capacitor C3, and the resistor R13. This is to prevent a malfunction such as a noise effect caused by the turn-off of the semiconductor switch Main IGBT and the semiconductor switching element IGBT_BP occurring at the same time.
  • the bypass diode installed in each power cell is replaced with a semiconductor switching element including an anti-parallel diode, and the gate driving circuit is replaced with the present invention.
  • the same effect as the present invention may be obtained when the first driving unit 210a for controlling the semiconductor switch and the second driving unit 210b for controlling the semiconductor switching element are changed to include the driving unit.
  • a pair of charging capacitors included in each of the power cells shown in FIGS. 2A and 2B are connected to an energy storage unit, a pair of semiconductor switches to a semiconductor switch unit, and a pair of rectifier diodes are connected in parallel with the energy storage unit.
  • a pair of semiconductor switching elements are equivalently represented as bypass switching units, respectively, and the circuit shown in FIGS. 2A and 2B may be represented by a structure substantially the same as that to which the present invention is applied to the prior patent. Therefore, the technical idea of the present invention can be applied as it is.
  • the preferred embodiment of the present invention described above with reference to FIGS. 2A to 6 and the prior patent include a plurality of power cells
  • the technical idea of the present invention is to provide a pulse power supply comprising one or more power cells. All are applicable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Power Conversion In General (AREA)
  • Electronic Switches (AREA)

Abstract

본 발명은 펄스 전원 장치를 공개한다. 본 발명의 바람직한 실시예에 따른 펄스 전원 장치는, 직렬로 연결된 반도체 스위치부와 에너지 저장부의 양단에, 역병렬 다이오드가 포함된 반도체 스위칭 소자(예컨대, IGBT)로 구현되는 바이패스 스위칭부를 병렬로 연결한다. 그리고, 펄스 전원 공급시에는 바이패스 스위칭부를 오프상태로 유지하여 역병렬 다이오드를 바이패스 다이오드로서 활용하여 소자들의 오동작이 발생하였을 때, 소자들을 보호하고, 펄스 전원이 공급되지 않는 동안에는 바이패스 스위칭부를 턴 온시켜 부하 장치에 충전된 전압을 바이패스 스위칭부에 포함된 반도체 스위칭 소자를 통해서 방전시킴으로써, 부하 장치의 방전을 위한 별도의 구성(예컨대, 방전 저항)을 추가하지 않고도 부하 장치를 효율적으로 방전시켜 전원 펄스를 falling time을 감소시킬 수 있고, 따라서, 불필요한 전력 소모를 최소화할 수 있다.

Description

펄스 전원 장치
본 발명은 펄스 전원 장치 관한 것으로서, 보다 구체적으로는 부하 장치에 충전된 전압 혹은 에너지를 신속하게 방전시킬 수 있는 방전 경로를 제공하는 펄스 전원 장치에 관한 것이다.
일반적으로 고전압 펄스 발생 회로는 각종 시험장비나 플라즈마 발생장치(PSII 등)와 같이 고전압을 필요로 하는 부하 장치로 펄스 전원을 공급하는데, 종래의 고전압 펄스 발생 회로는 장치의 수명 문제, 펄스 폭 가변, 동작 주파수의 증대, 펄스 전압의 조절, 직류 고전압 전원의 필요성 등의 측면에 있어서 많은 문제점이 발견되고 있다.
예컨대, 스파크 갭을 이용한 막스 펄스발생기를 이용하는 방식과 진공관 스위치를 이용하는 방식은 장치의 수명이 짧으며, 펄스 폭의 조절이 불가능하다. 또한 펄스 반복률을 높이는데 한계가 있고, 직류 고전압 전원 회로를 필요로 하는 등의 단점을 가진다.
또한, 펄스변압기를 이용하는 방식은 변압기의 인덕턴스로 인해 펄스의 빠른 상승 시간을 얻는 데에 어려움이 있고, 변압기의 자기포화로 인해 리셋 회로 등이 추가되어야 하므로 회로가 복잡해지며, 소음이 발생한다는 것과 펄스 폭을 늘리기 어렵다는 등의 단점이 있다.
그리고, 막스 펄스발생기에서 스파크 갭 스위치 대신 반도체 스위치인 절연 게이트 양극성 트랜지스터(Insulated Gate Bipolar Transistor; 이하 IGBT로 약칭함)를 사용하고자 하는 노력이 있어 왔다.
IGBT는 수명이 영구적이고 이를 사용할 경우 펄스 반복률 및 펄스 폭 제어가 가능해지는 등 종래의 막스 펄스 발생기에서 사용된 기계적인 스위치의 단점이 극복될 수 있으나, 스위치를 구동하는 문제, 균등 전압 분배 등 동작에 대한 제약조건이 까다로워 제품의 신뢰성에 문제를 일으킬 수 있는 소지를 안고 있다.
IGBT를 이용한 펄스발생기에서 가장 핵심 기술은 스위치의 전압, 전류 정격을 극복하는 것이다. IGBT는 기존의 가스 방전 스위치와 달리 작은 전압, 전류 정격을 갖고 있다.
이에 하나의 스파크 갭 스위치 대신 하나의 IGBT를 사용하는 것이 아니라 전압 정격에 견딜 수 있도록 원하는 만큼의 복수개 IGBT들을 직렬로 연결하여 이들을 동시에 턴 온/오프하는 방법이 사용될 수 있다. 이 경우 IGBT들이 온(on)이나 오프(off)될 때 구동 타이밍 차이로 전압 불균형이 발생하기 쉬우며, 이때 전압 불균형으로 인해 전압 정격을 넘으면 IGBT는 즉시 파손된다.
또한 IGBT가 직렬로 구동될 때 각 스위치는 독립 구동 전원이 필요한데, 이때 직렬 스위치 구성의 윗부분으로 갈수록 독립 구동 전원의 절연의 강도가 더욱 커져야 한다. 따라서, 고압 구동에 있어서 가장 어려운 기술 중의 하나가 구동 전원의 절연기술로 알려져 있다.
당 기술분야에서 IGBT를 이용하는 기술로서 IGBT와 트랜지스터(이하, TR이라약칭함)를 함께 사용하는 방식이 알려져 있으며, 막스 펄스발생기와 IGBT 및 TR을 이용하는 전원발생장치 모두 SCR 제어 방식이 적용되는 고압충전기가 사용되고 있는바, 지금까지 사용되고 있는 고압충전기는 전체 크기가 매우 크다는 문제점을 가지고 있다.
그 밖에 두 방식 모두 펄스 폭에 제약이 있으며, 특히 TR을 사용한 방식에서는 누설 인덕턴스로 인한 펄스 상승/하강 시간에 큰 제약이 있다. 그리고, 장치 전체 크기가 크고 효율이 낮으며, IGBT 및 TR을 이용한 방식에서 아크 발생 보호는 가능하나 복잡한 회로가 문제로 지적되고 있다.
따라서, 본원 출원인 및 발명자는 상기와 같은 문제점을 해결하기 위하여 반도체 스위치를 이용한 새로운 형태의 펄스 전원 시스템을 특허 출원한바 있다[한국등록특허 제0820171호, 미국특허 7,843,087]. 상기 특허(이하, 선행특허라 함)의 펄스 전원 시스템은 수명이 크게 향상되고 소형화가 가능하며 최종 출력되는 고전압 펄스의 다양한 제어가 가능한 이점을 가진다.
상기 선행특허의 펄스 전원 시스템은 반도체 스위치 및 충전 커패시터를 가지는 파워 셀들이 직렬로 연결되어 이루어진 복수개의 파워 스테이지, 상기 각 파워 셀의 커패시터 충전을 위한 전원을 공급하는 파워 인버터, 고압 절연 케이블로서 파워 인버터로부터 각 파워 셀 사이에 전원이 공급되도록 연결되는 파워 루프, 반도체 스위치의 게이트 신호 및 게이트 전원을 발생시키기 위한 제어신호를 제공하는 컨트롤 인버터, 고압 절연 케이블로서 컨트롤 인버터로부터 각 파워 셀 사이에 제어신호가 공급되도록 연결되는 컨트롤 루프를 포함하여 구성된다.
여기서, 복수개의 파워 스테이지는 전체가 직렬로 연결되는데, 각 파워 스테이지 내에서도 파워 셀들이 모두 직렬로 연결되므로 펄스 전원 시스템 내 전체 파워 셀들이 모두 직렬로 연결된 구조를 가진다.
이때, 파워 스테이지를 구성하는 각 파워 셀은 반도체 스위치, 예컨대 IGBT와, 이에 직렬로 연결된 충전 커패시터를 가진다. 또한 각 파워 스테이지에서 전체 파워 셀의 반도체 스위치 및 충전 커패시터들이 모두 직렬로 연결되며, 이에 펄스 전원 시스템을 구성하는 전체 파워 스테이지의 반도체 스위치 및 충전 커패시터들이 모두 직렬로 연결된다.
또한, 각 파워 셀은 반도체 스위치 및 커패시터의 양단에 연결된 바이패스 다이오드, 충전 커패시터의 양단에 연결된 정류 다이오드, 단일 턴의 컨트롤 루프에서 절연된 게이트 전원을 인가받아 반도체 스위치의 구동을 위한 게이트 신호 및 구동 전원을 인가하는 파워 스위치 드라이버(게이트 구동 회로)를 포함하여 구성된다.
이러한 파워 셀들은 파워 인버터로부터 연결된 파워 루프를 통해 커패시터의 충전을 위한 전원을 공급받고, 이와 더불어 컨트롤 인버터로부터 연결된 컨트롤 루프를 통해 제어신호를 공급받는다.
즉, 각 파워 스테이지는 파워 루프와 컨트롤 루프가 구성하는 변압기를 가지며, 파워 인버터가 파워 루프를 통해 고전압 전원을 공급하면 파워 변압기를 통해 전압이 각 파워 셀로 제공되어 커패시터에 충전되고, 컨트롤 인버터가 컨트롤 루프를 통해 인가하는 제어신호가 컨트롤 변압기를 통해 파워 스위치 드라이버로 인가되어 반도체 스위치의 구동을 위한 게이트 신호와 구동 전원이 출력되도록 한다.
그 밖에 선행특허의 펄스 전원 시스템에서는 충전 커패시터 간 충전 전압의 차이를 보상하기 위해 상, 하단 파워 스테이지의 파워 변압기 간에 연결되는 보상권선을 감극성이 되도록 삽입하여 설치하고, 이를 통해 각 변압기의 누설 인덕턴스 차이로 인한 충전 커패시터 간 충전 전압의 불균형 문제를 해결하고 있다.
한편, 상기한 구성의 펄스 전원 시스템에서는 전체 충전 커패시터를 병렬로 충전한 다음 스위치를 통해 충전 커패시터들을 직렬로 접속시켜 충전 커패시터를 동시에 직렬로 방전시키는 방식으로 고전압 펄스를 발생시킨다.
그런데, 상술한 바와 같은 일반적인 종래기술에 따른 펄스 전원 장치 및 선행 특허에 따른 펄스 전원 장치에는 방전용 저항이 추가되어 불필요한 전력 소모가 발생하는 문제점이 존재하였다.
구체적으로, 일반적인 펄스 전원 장치의 등가회로를 도시한 도 1을 참조하여 설명하면, 도 1의 (a)에 도시된 바와 같이, 펄스 전원 장치(10)는 반복적으로 스위치를 온/오프시킴으로써 부하 장치(30)로 펄스 전원을 인가하는데, 부하장치(30) 내부에는 저항 성분뿐만 아니라 커패시턴스 성분이 존재하여, 도 1의 (b)에 도시된 바와 같이, 인가되는 전원 펄스의 falling time 이 길어지는 현상이 발생한다.
이러한 문제점은 높은 펄스 반복률이 요구되는 수처리 및 가스처리 장치가 부하장치로서 적용되는 경우에는 심각한 문제점이 야기되는 바, 종래기술은 도 1의 (a)에 도시된 바와 같이 부하장치(30)의 양단에 방전 저항(20)을 연결하여, 전원 펄스가 인가되지 않는 기간에 부하 장치(30)에 충전된 전압을 방전 저항(20)을 통해서 방전시킴으로써 falling time을 단축시켰다. 그러나, 방전 저항(20)이 작아지면 작아질수록 전원 펄스의 falling time은 감소하지만, 그 만큼 전력 손실이 커지는 문제점이 발생하였다.
본 발명이 해결하고자 하는 과제는, 전력 손실을 최소화하면서도 전원 펄스의 falling time을 최소화할 수 있는 펄스 전원 장치를 제공하는 것이다.
상술한 과제를 해결하기 위한, 본 발명의 바람직한 실시예에 따른 펄스 전원 장치는, 반도체 스위치부; 상기 반도체 스위치부가 온되면, 내부에 충전된 전압을 부하 장치로 방전하도록 상기 반도체 스위치부와 직렬로 연결된 에너지 저장부; 상기 에너지 저장부에 전기 에너지를 공급하는 에너지 공급부; 내부에 포함된 역병렬 다이오드의 순방향이 상기 에너지 저장부의 방전 방향과 일치하도록 상기 반도체 스위치부 및 상기 에너지 저장부와 병렬로 연결된 바이패스 스위칭부; 및 상기 반도체 스위치부 및 상기 바이패스 스위칭부를 구동하는 구동부;를 포함하는 파워 셀을 하나 이상 포함한다.
또한, 본 발명의 다른 바람직한 실시예에 따른 펄스 전원 장치는 복수의 파워 셀을 포함하고, 상기 복수의 파워 셀에 각각 포함된 상기 반도체 스위치부 및 상기 에너지 저장부가 서로 직렬로 연결되도록 상기 복수의 파워 셀은 서로 직렬로 연결될 수 있다.
또한, 본 발명의 다른 바람직한 실시예에 따른 펄스 전원 장치에서는, 구동부로 턴 온 펄스 신호와 턴 오프 펄스가 순차적으로 입력되고, 상기 구동부는 턴 온 펄스 신호가 입력되면 상기 반도체 스위치부를 턴 온시켜 상기 에너지 저장부에 충전된 전압을 상기 부하 장치로 방전시키고, 턴 오프 펄스 신호가 입력되면, 상기 반도체 스위치부를 오프시키고 상기 바이패스 스위칭부를 턴 온시켜, 상기 부하 장치 내부에 충전되었던 전압을 상기 바이패스 스위칭부를 통해서 방전시킬 수 있다.
또한, 본 발명의 다른 바람직한 실시예에 따른 펄스 전원 장치의 에너지 저장부는 서로 직렬로 연결된 한 쌍의 충전 커패시터를 포함하고, 상기 에너지 공급부는 서로 직렬로 연결된 한 쌍의 정류 다이오드를 포함하며, 상기 반도체 스위치부는 각각이 상기 충전 커패시터와 연결되는 한 쌍의 반도체 스위치를 포함하고, 상기 바이패스 스위칭부는 한 쌍의 반도체 스위칭 소자를 포함하며, 각 반도체 스위칭 소자는 서로 직렬로 연결된 상기 충전 커패시터와 상기 반도체 스위치의 양단에 연결될 수 있다.
또한, 본 발명의 다른 바람직한 실시예에 따른 펄스 전원 장치의 에너지 저장부는 충전 커패시터를 포함하고, 상기 에너지 공급부는 교류 전원을 입력받아 직류 전원으로 변환하여 상기 충전 커패시터를 충전시키는 정류회로로 구현될 수 있다.
또한, 본 발명의 다른 바람직한 실시예에 따른 펄스 전원 장치의 구동부는 콘트롤 인버터로부터 입력되는 턴 온 펄스 신호에 따라서 상기 반도체 스위치부를 턴 온 시키고, 턴 오프 펄스 신호가 입력될때까지 상기 반도체 스위치부의 턴 온 상태를 유지하는 제 1 구동부; 및 상기 콘트롤 인버터로부터 턴 오프 펄스 신호가 입력되면 상기 바이패스 스위칭부를 턴 온 시키는 제 2 구동부를 포함할 수 있다.
또한, 본 발명의 다른 바람직한 실시예에 따른 펄스 전원 장치에서, 콘트롤 인버터로부터 턴 오프 펄스 신호가 입력되면, 상기 제 2 구동부는 상기 제 1 구동부가 상기 반도체 스위치부를 턴 오프시킨 후, 사전에 정의된 지연 시간이 경과된 후에 상기 바이패스 스위칭부를 턴 온 시킬 수 있다.
또한, 본 발명의 다른 바람직한 실시예에 따른 펄스 전원 장치에서, 상기 반도체 스위치부 및 상기 바이패스 스위칭부는 IGBT(Insulated-Gate Bipolar Transistor)로 구현될 수 있다.
또한, 본 발명의 다른 바람직한 실시예에 따른 펄스 전원 장치는, 상기 에너지 저장부의 충전을 위한 전원을 공급하는 파워 인버터; 상기 파워 인버터로부터 각 파워 셀 내 에너지 공급부에 전원이 공급되도록 하는 파워 루프; 상기 반도체 스위치부 및 상기 반도체 스위칭부에 전원 및 제어신호를 제공하는 컨트롤 인버터; 및 상기 컨트롤 인버터로부터 각 파워 셀 내 구동부에 제어신호가 공급되도록 하는 컨트롤 루프;를 더 포함할 수 있다.
또한, 본 발명의 다른 바람직한 실시예에 따른 펄스 전원 장치의 상기 바이패스 스위칭부는 상기 부하 장치 내부에 저장된 에너지를 방전시키고, 병렬로 연결된 반도체 스위치부의 양단간의 전압이 상기 반도체 스위치부와 직렬로 연결된 에너지 공급부에 충전된 전압으로 제한할 수 있다.
[유리한 효과]
본 발명은 직렬로 연결된 반도체 스위치부와 에너지 저장부의 양단에, 역병렬 다이오드가 포함된 반도체 스위칭 소자(예컨대, IGBT)로 구현되는 바이패스 스위칭부를 병렬로 연결한다. 그리고, 펄스 전원 공급시에는 바이패스 스위칭부를 오프상태로 유지하여 역병렬 다이오드를 바이패스 다이오드로서 활용하여 소자들의 오동작이 발생하였을 때, 소자들을 보호하고, 펄스 전원이 공급되지 않는 동안에는 바이패스 스위칭부를 턴 온시켜 부하 장치에 충전된 전압을 바이패스 스위칭부에 포함된 반도체 스위칭 소자를 통해서 방전시킴으로써, 부하 장치의 방전을 위한 별도의 구성(예컨대, 방전 저항)을 추가하지 않고도 부하 장치를 효율적으로 방전시켜 전원 펄스의 falling time을 감소시킬 수 있고, 따라서, 불필요한 전력 소모를 최소화할 수 있다.
도 1은 종래 기술에 따른 펄스 전원 장치의 등가 회로 및 전원 펄스의 파형을 도시하는 도면이다.
도 2a 및 도 2b는 본 발명의 바람직한 실시예에 따른 펄스 전원 장치의 구성을 도시하는 도면이다.
도 3은 본 발명의 바람직한 실시예에 따른 구동부의 세부 구성을 도시하는 회로도이다.
도 4는 본 발명의 바람직한 실시예에 따른 구동부의 턴온 모드 동작을 설명하는 회로도이다.
도 5는 본 발명의 바람직한 실시예에 따른 구동부의 턴온 후 유지 모드 동작을 설명하는 회로도이다.
도 6은 본 발명의 바람직한 실시예에 따른 구동부의 턴 오프 모드 동작을 설명하는 회로도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예들을 설명한다.
도 2a는 본 발명의 바람직한 실시예에 따른 펄스 전원 장치의 구성을 도시하는 도면이고, 도 2b는 펄스 전원 장치에서 부하 장치로 전원 펄스를 출력하는 경로 및 부하 장치에 충전된 전압이 방전되는 경로를 도시한 도면이다.
도 2a 및 도 2b 를 참조하면, 본 발명의 바람직한 실시예에 따른 펄스 전원 장치의 구성은 선행특허(한국등록특허 제0820171호, 미국특허 7,843,087)의 구성과 비교하였을 때, 파워셀의 내부 구성에만 차이가 있고, 그 밖의 고전압 펄스를 만들어내기 위한 펄스 전원 장치의 기본적인 구성, 예컨대 복수개의 파워셀(200-1~200-24)이 직렬로 연결되어 파워 스테이지가 구성되고, 이때 각 파워셀들 간의 충전 커패시터(C_ST1,C_ST2,...)와 반도체 스위치(IGBT1,IGBT2,...)들이 직렬로 연결되는 구성은 상기의 선행특허(한국등록특허 제0820171호, 미국특허 7,843,087)에 제시된 펄스 전원 시스템의 기본 구성과 동일하다.
또한, 펄스 전원 장치는 파워셀들이 직렬로 연결되어 이루어진 복수개의 파워 스테이지, 각 파워셀의 커패시터(C_ST1,C_ST2,...) 충전을 위한 전원을 공급하는 파워 인버터(400), 고압 절연 케이블로서 파워 인버터(400)로부터 각 파워셀 내 에너지 공급부로 전기 에너지가 공급되도록 연결되는 파워 루프(600), 반도체 스위치(IGBT1,IGBT2,...)의 게이트 신호 및 게이트 전원을 발생시키기 위한 제어신호를 제공하는 콘트롤 인버터(300), 고압 절연 케이블로서 콘트롤 인버터(300)로부터 각 파워셀 내 구동부(210-1, 210-2...)에 제어신호가 공급되도록 연결되는 콘트롤 루프(500)를 포함하여 구성되는 점에서도 선행 특허와 동일하다.
마찬가지로, 상기한 구성에서 파워셀들(200-1~200-24)은 파워 인버터(400)로부터 연결된 파워 루프(600)를 통해 커패시터(C_ST1,C_ST2,...)의 충전을 위한 전원을 공급받고, 이와 더불어 콘트롤 인버터(300)로부터 연결된 콘트롤 루프(500)를 통해 제어신호를 공급받는다.
구체적으로, 파워 인버터(400)가 파워 루프(600)를 통해 고전압 전원을 공급하면 각 파워셀(200-1~200-24)의 2차측 권선을 통해 유도된 전압이 각 파워셀(200-1~200-24)로 제공되어 커패시터(C_ST1,C_ST2,...)에 충전되고, 콘트롤 인버터(300)가 콘트롤 루프(500)를 통해 인가하는 제어신호는 구동부(210-1,210-2...)에 연결된 2차측 권선을 통해 구동부(210-1,210-2...)로 인가되어 반도체 스위치(IGBT1,IGBT2,...) 및 바이패스 스위칭부를 구현하는 반도체 스위칭 소자(IGBT_BP1,IGBT_BP2...)의 구동을 위한 게이트 신호와 구동 전원이 출력되도록 한다.
이와 더불어 도면상 나타내지는 않았으나, 충전 커패시터 간 충전 전압의 차이를 보상하기 위해 상, 하단 파워 스테이지의 파워 변압기 간에 연결되는 보상권선을 감극성이 되도록 삽입하여 설치될 수도 있다.
그 외에 상기의 선행특허에 제시되어 있는 펄스 전원 장치의 구성과 동일한 구성에 대해서는 본 명세서에서 상세한 설명을 생략하기로 한다.
이하에서는, 상기 선행 특허와 구성상 차이점을 보이는 본 발명의 바람직한 실시예에 따른 파워셀의 세부 구성 및 동작에 대해서 설명한다.
선행특허는 하나의 파워셀에 정류 다이오드, 정류 다이오드와 병렬로 연결된 단일 커패시터, 커패시터와 직렬로 연결된 단일 반도체 스위치, 단일 바이패스 다이오드, 및 단일한 파워 스위치 드라이버를 포함하는데 비하여, 본 발명은 바람직한 실시예에 따른 하나의 파워셀은 그 내부에, 한 쌍의 충전 커패시터를 포함하여 구현되는 에너지 저장부, 한 쌍의 정류 다이오드를 포함하여 구현되는 에너지 공급부, 한 쌍의 반도체 스위치를 포함하여 구현되는 반도체 스위치부, 한 쌍의 반도체 스위칭 소자를 포함하여 구현되는 바이패스 스위칭부, 및 한 쌍의 구동부를 포함한다. 여기서, 한 쌍의 구동부 각각은 반도체 스위치를 구동시키기 위한 제 1 구동부 및 반도체 스위칭 소자를 구동시키기 위한 제 2 구동부로 구성됨을 주의해야 한다.
도 2a 및 도 2b 에 도시된 실시예의 펄스 전원 장치는 24개의 파워셀(200-1~200-24)이 직렬로 연결되어 구성된다. 이하, 제 1 파워셀(200-1)을 참조하여 설명하면, 본 발명의 파워셀에 포함되는 한 쌍의 충전 커패시터(C_ST1,C_ST2)는 직렬로 연결되고, 마찬가지로, 한 쌍의 정류 다이오드(D_REC1,D_REC2)가 직렬로 연결된다. 직렬로 연결된 한 쌍의 충전 커패시터(C_ST1,C_ST2)의 상단과 하단은 각각 직렬로 연결된 한 쌍의 정류 다이오드(D_REC1,D_REC2)의 상단 및 하단과 연결됨으로써 충전 커패시터(C_ST1,C_ST2)와 정류 다이오드(D_REC1,D_REC2)는 병렬로 연결된다.
또한, 한 쌍의 충전 커패시터(C_ST1,C_ST2)간 연결 노드에는 2차 권선(TR_Sec1)의 일단이 연결되고, 한 쌍의 정류 다이오드(D_REC1,D_REC2)간 연결 노드에는 2차 권선(TR_Sec1)의 타단이 연결되어 배전압 정류회로가 구성된다.
아울러, 한 쌍의 충전 커패시터(C_ST1,C_ST2)에는 각각 반도체 스위치(IGBT1,IGBT2)가 직렬로 연결되고, 반도체 스위치(IGBT1,IGBT2)에는 각각 구동부(210-1,210-2)가 연결된다. 구동부(210-1,210-2)의 구성 및 동작에 대해서는 도 3 내지 도 6을 참조하여 설명한다.
한편, 바이패스 스위칭부에 포함되는 한 쌍의 반도체 스위칭 소자(IGBT_BP1,IGBT_BP2)는 내부에 역병렬 다이오드가 포함되어 있으며, 역병렬 다이오드의 순방향이 충전 커패시터(C_ST1,C_ST2)가 부하 장치(1000)로 전원 펄스를 공급하는 방향과 일치하도록 충전 커패시터(C_ST1,C_ST2) 및 반도체 스위치(IGBT1,IGBT2)와 병렬로 연결된다. 상술한 바와 같이, 각 파워셀의 충전 커패시터(C_ST1,C_ST2...) 및 반도체 스위치(IGBT1,IGBT2...)는 인접한 파워셀의 충전 커패시터(C_ST1,C_ST2...) 및 반도체 스위치(IGBT1,IGBT2...)와 서로 직렬로 연결되므로, 이들과 병렬로 연결된 반도체 스위칭 소자(IGBT_BP1,IGBT_BP2...) 역시 각 파워셀의 반도체 스위칭 소자(IGBT_BP1,IGBT_BP2...)와 서로 직렬로 연결됨을 주의해야 한다.
도 2a 및 도 2b에 도시된 예에서, 반도체 스위칭 소자(IGBT_BP1)의 경우, 게이트는 구동부(210-1)로부터 제어신호를 입력받으며, 콜렉터는 반도체 스위치(IGBT1)의 에미터와, 에미터는 충전 커패시터(C_ST1)의 일단과 각각 연결되어 있다.
반도체 스위칭 소자(IGBT_BP1,IGBT_BP2...)에 포함된 역병렬 다이오드는 선행특허의 바이패스 다이오드로서 기능을 수행하여, 복수의 반도체 스위치 중 일부가 동기화되지 않아 오동작하거나, 반도체 스위치에 이상이 발생하는 경우에, 바이패스 경로를 형성함으로써 전원 펄스가 원활히 부하 장치(1000)로 공급될 수 있도록 한다.
한편, 도 2a 및 도 2b에 도시된 바와 같이, 각 파워셀을 배전압 정류 회로로 구성하는 경우, 반도체 스위치들(IGBT1,IGBT2)과 충전 커패시터들(C_ST1,C_ST2)은 모두 직렬 회로로 연결되며, 2차측 권선 하나로부터 제공되는 전압에 의해 두 충전 커패시터(C_ST1,C_ST2)가 동시에 충전된 다음, 두 반도체 스위치(IGBT1,IGBT2)가 동시에 턴 온되면서 두 충전 커패시터(C_ST1,C_ST2)의 전압이 동시에 방전되므로, 2차측 권선을 통해 인가되는 전압의 2배의 전압을 충전 및 방전시킬 수 있다.
도 2a 및 도 2b를 참조하여, 본 발명의 펄스 전원 장치의 동작을 설명하면, 먼저, 콘트롤 인버터(300)에서 복수의 반도체 스위치들(IGBT1,IGBT2...)을 동시에 턴 온 시키기 위한 양(+) 극성을 갖는 턴 온 신호를 콘트롤 루프(500)를 통해서 전송한다.
턴 온 펄스 신호는 구동부(210-1,210-2...)의 2차측 권선(C_TR1,C_TR2...)을 통해서 구동부(210-1,210-2...)에 입력되고, 구동부(210-1,210-2...)에 포함된 제 1 구동부(210a-도 3 참조)는 턴 온 펄스 신호에 의해서 구동되어 자신에게 연결된 반도체 스위치(IGBT1,IGBT2...)를 턴 온시키고, 제 2 구동부(210b-도 3 참조)는 턴 온 신호에 의해서 구동되지 않아 제 2 구동부(210b-도 3 참조)에 연결된 반도체 스위칭 소자(IGBT_BP1,IGBT_BP2...)는 오프 상태를 유지한다.
각 파워셀에 포함된 구동부(210-1,210-2...)가 동시에 반도체 스위치(IGBT1,IGBT2...)를 턴 온시키면, 반도체 스위치(IGBT1,IGBT2...)에 직렬로 연결된 복수의 충전 커패시터(C_ST1,C_ST2...)가 동시에 방전을 수행하고, 각 충전 커패시터(C_ST1,C_ST2...)에 충전된 전압이 합쳐진 크기의 전압 펄스가 부하 장치(1000)로 출력된다. 여기서, 턴 온된 반도체 스위치(IGBT1,IGBT2...)는 콘트롤 인버터(300)가 턴 오프 신호를 전송할 때까지 턴 온 상태가 유지된다.
만약, 직렬로 연결된 반도체 스위치(IGBT1,IGBT2...) 중 어느 하나가 동기화되지 않거나, 이상이 발생한 경우에, 다른 파워셀들에서 방전된 전압은 반도체 스위칭 소자(IGBT_BP1,IGBT_BP2...)에 포함된 역병렬 다이오드를 통해서 인접한 반도체 스위치로 전달된다.
도 2a 및 도 2b에 도시된 예에서, 반도체 스위치(IGBT1)가 오동작하는 경우, 반도체 스위치(IGBT2) 및 충전 커패시터(C_ST2)를 통과한 전류는 바이패스 스위칭부에 포함되는 반도체 스위칭 소자(IGBT_BP1)에 포함된 역병렬 다이오드를 통해서 부하 장치(1000)로 흐르게 된다.
이 때, 반도체 스위치(IGBT1)의 이미터와 콜렉터 사이에는 충전 커패시터(C_ST1)에 충전된 전압만이 걸리게 된다. 따라서, 반도체 스위칭 소자(IGBT_BP1)는 반도체 스위치(IGBT1)에 걸리는 전압을 반도체 스위치(IGBT1)에 직렬로 연결된 충전 커패시터(C_ST1)의 충전 전압으로 제한함으로써 반도체 스위치(IGBT1)에 과전압이 걸림으로써 반도체 스위치(IGBT1)가 파괴되는 것을 방지하는 기능을 수행할 수 있다.
그 후, 콘트롤 인버터(300)가 콘트롤 루프(500)를 통해서 턴 오프 신호를 전송하면, 턴 오프 신호는 구동부(210-1,210-2...)의 2차측 권선(C_TR1,C_TR2...)을 통해서 구동부(210-1,210-2...)로 입력되고, 제 1 구동부(210a)는 자신에게 연결된 반도체 스위치(IGBT1,IGBT2...)를 턴 오프시키고, 제 2 구동부(210b)는 자신에게 연결된 반도체 스위칭 소자(IGBT_BP1,IGBT_BP2...)를 턴 온시킨다.
각 파워셀의 반도체 스위칭 소자(IGBT_BP1,IGBT_BP2...)가 턴온되면, 부하 장치(1000) 내부의 커패시턴스 성분들에 충전된 전압은, 서로 직렬로 연결되고 턴 온된 반도체 스위칭 소자들(IGBT_BP1,IGBT_BP2...)을 통해서 빠른 속도로 방전된다.
도 3은 본 발명의 바람직한 실시예에 따른 구동부(210-1,210-2...)의 세부 구성을 도시하는 회로도이다. 도 3을 참조하면, 상술한 바와 같이, 구동부(210-1,210-2...)는 제 1 구동부(210a) 및 제 2 구동부(210b)로 구성된다.
제 1 구동부(210a)는 콘트롤 인버터(300)로부터 턴 온 펄스 신호가 입력되면 반도체 스위치(IGBT1,IGBT2...)를 턴 온 시키고 턴 온 상태를 유지하다가, 콘트롤 인버터(300)로부터 턴 오프 펄스 신호가 입력되면 반도체 스위치(IGBT1,IGBT2...)를 턴 오프 시킨다. 한편, 제 2 구동부(210b)는 콘트롤 인버터(300)로부터 턴 오프 펄스 신호가 입력되면 반도체 스위칭 소자(IGBT_BP1,IGBT_BP2...)를 턴 온시킨다.
도 4는 본 발명의 바람직한 실시예에 따른 구동부의 턴 온 모드 동작을 설명하는 회로도이다.
도 4를 참조하여 반도체 스위치의 턴 온 과정을 설명하면, 구동부(210-1,210-2...)에 턴 온 펄스 신호가 입력되면, 제 1 구동부(210a)에서는, 다이오드 D1을 통해서 전류가 흐르면서 커패시터 C2 및 C1이 충전된다. 커패시터 C2를 통과한 전류가 저항 R7을 통과하면서 전압차를 발생시켜 트랜지스터 Q2를 턴 온 시키고, 저항 R3 및 트랜지스터 Q2를 흐르는 전류에 의해서 MOSFET U1 의 게이트에 인가된 전압값을 떨어뜨려 U1이 턴 온되며, MOSFET U1을 통해서 흐르는 전류로 인해서 저항 R8에 걸리는 전압값이 반도체 스위치(Main IGBT)의 게이트에 인가되어 반도체 스위치(IGBT1,IGBT2...)를 턴 온 시킨다.
도 5는 본 발명의 바람직한 실시예에 따른 구동부의 턴 온 후 유지 모드 동작을 설명하는 회로도이다.
도 5를 참조하면, 도 4에 도시된 과정에 의해서 일단 MOSFET U1 이 턴 온되면, 커패시터 C2에 충전된 전압이 방전되면서 저항 R8에는 지속적으로 전류가 흐르게 되고, 저항 R8에 걸리는 전압값이 반도체 스위치(Main IGBT)의 게이트에 인가되어 반도체 스위치(IGBT1,IGBT2...)를 턴 온 상태를 유지시킨다.
도 6은 본 발명의 바람직한 실시예에 따른 구동부의 턴 오프 모드 동작을 설명하는 회로도이다.
도 6을 참조하면, 도 5에서 도시된 과정에 의해서 턴 온 상태가 유지되는 중에, 구동부에 음(-)의 턴 오프 펄스 신호가 입력되면, 제 1 구동부(210a)에서는 다이오드 D2 및 D6를 통해서 전류가 흐르면서 커패시터 C2 가 충전되는 한편, 저항 R6에서의 전압 강하에 의해서 트랜지스터 Q1이 턴온 된다.
한편, 커패시터 C1이 다이오드 D3를 통해서 방전되면서 Mosfet U1은 턴 오프되고, 반도체 스위치(Main IGBT)의 게이트에 인가되던 전압은 저항 R2, 트랜지스터 Q1 및 저항 R6를 통해서 방전되면서 반도체 스위치(Main IGBT)는 턴 오프 된다.
한편, 구동부에 음(-)의 턴 오프 펄스 신호가 입력되면, 제 2 구동부(210b)에서는 저항 R12, 커패시터 C3, 및 저항 R13을 따라서 순간적으로 흐르는 전류에 의해서 트랜지스터 Q3가 순간적으로 턴 온되고, 트랜지스터 Q3가 턴온되는 동안에는 인덕터 L1을 통해서 흐르는 전류는 트랜지스터 Q3를 통해서 흐르게 됨으로써 반도체 스위칭 소자(IGBT_BP)의 게이트에는 전압이 인가되지 않는다.
저항 R12, 커패시터 C3, 및 저항 R13에 의해서 결정되는 시상수에 따른 시간 지연이 발생한 후, 트랜지스터 Q3는 턴 오프되고, 인덕터 L1에 흐르는 전류는 반도체 스위칭 소자(IGBT_BP)의 게이트로 유입되면서 반도체 스위칭 소자(IGBT_BP)는 턴 온되고, 이에 따라서 부하 장치(1000)에 충전된 전압은 반도체 스위칭 소자(IGBT_BP)를 통해서 신속하게 방전된다.
턴 오프 모드에서, 반도체 스위치(Main IGBT)가 턴 오프되고, 저항 R12, 커패시터 C3, 및 저항 R13에 의해서 결정되는 시상수에 따른 시간 지연을 발생시킨 후 반도체 스위칭 소자(IGBT_BP)를 턴온 시키는 이유는, 반도체 스위치(Main IGBT)의 턴 오프와 반도체 스위칭 소자(IGBT_BP)가 동시에 발생함으로 인해서 발생하는 노이즈 영향 등과 같은 오동작을 방지하기 위함이다.
지금까지, 도 2a 내지 도 6을 참조하여, 본 발명의 바람직한 실시예에 따른 펄스 전원 장치를 설명하였다. 그러나, 도 2a 및 도 2b에 도시된 펄스 전원 장치 이외에, 다른 펄스 전원 장치에도 본 발명이 적용될 수 있음을 당업자는 알 수 있을 것이다.
예컨대, 상기한 선행특허(한국등록특허 제0820171호, 미국특허 7,843,087)의 경우에도, 각 파워셀에 설치된 바이패스 다이오드를 역병렬 다이오드가 포함된 반도체 스위칭 소자로 대체하고, 게이트 구동 회로를 본 발명의 구동부와 같이 반도체 스위치를 제어하는 제 1 구동부(210a)와 반도체 스위칭 소자를 제어하는 제 2 구동부(210b)를 포함하도록 변경하는 경우에는 본 발명과 동일한 효과를 나타낼 수 있다.
즉, 도 2a 및 도 2b에 도시된 각 파워 셀에 포함된 한 쌍의 충전 커패시터는 에너지 저장부로, 한 쌍의 반도체 스위치는 반도체 스위치부로, 한 쌍의 정류 다이오드는 에너지 저장부와 병렬로 연결되는 에너지 공급부로, 한 쌍의 반도체 스위칭 소자는 바이패스 스위칭부로 각각 등가적으로 표현하면, 도 2a 및 도 2b에 도시된 회로는 선행 특허에 본 발명을 적용한 것과 실질적으로 동일한 구조로 표현될 수 있고, 따라서, 본 발명의 기술적 사상이 그대로 적용될 수 있다.
또한, 도 2a 내지 도 6을 참조하여 상술한 본 발명의 바람직한 실시예 및 상기 선행 특허의 경우에는 복수의 파워셀을 포함하지만, 본 발명의 기술적 사상은 하나 이상의 파워셀로 구성되는 펄스 전원 장치에는 모두 적용 가능하다.
이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.

Claims (10)

  1. 반도체 스위치부;
    상기 반도체 스위치부가 온되면, 내부에 충전된 전압을 부하 장치로 방전하도록 상기 반도체 스위치부와 직렬로 연결된 에너지 저장부;
    상기 에너지 저장부에 전기 에너지를 공급하는 에너지 공급부;
    내부에 포함된 역병렬 다이오드의 순방향이 상기 에너지 저장부의 방전 방향과 일치하도록 상기 반도체 스위치부 및 상기 에너지 저장부와 병렬로 연결된 바이패스 스위칭부; 및
    상기 반도체 스위치부 및 상기 바이패스 스위칭부를 구동하는 구동부;를 포함하는 파워 셀을 하나 이상 포함하는 것을 특징으로 하는 펄스 전원 장치.
  2. 제 1 항에 있어서,
    상기 펄스 전원 장치는 복수의 파워 셀을 포함하고,
    상기 복수의 파워 셀에 각각 포함된 상기 반도체 스위치부 및 상기 에너지 저장부가 서로 직렬로 연결되도록 상기 복수의 파워 셀은 서로 직렬로 연결된 것을 특징으로 하는 펄스 전원 장치.
  3. 제 1 항에 있어서,
    상기 구동부로 턴 온 펄스 신호와 턴 오프 펄스가 순차적으로 입력되고,
    상기 구동부는 턴 온 펄스 신호가 입력되면 상기 반도체 스위치부를 턴 온시켜 상기 에너지 저장부에 충전된 전압을 상기 부하 장치로 방전시키고, 턴 오프 펄스 신호가 입력되면, 상기 반도체 스위치부를 오프시키고 상기 바이패스 스위칭부를 턴 온시켜, 상기 부하 장치 내부에 충전되었던 전압을 상기 바이패스 스위칭부를 통해서 방전시키는 것을 특징으로 하는 펄스 전원 장치.
  4. 제 1 항에 있어서,
    상기 에너지 저장부는 서로 직렬로 연결된 한 쌍의 충전 커패시터를 포함하고,
    상기 에너지 공급부는 서로 직렬로 연결된 한 쌍의 정류 다이오드를 포함하며,
    상기 반도체 스위치부는 각각이 상기 충전 커패시터와 연결되는 한 쌍의 반도체 스위치를 포함하고,
    상기 바이패스 스위칭부는 한 쌍의 반도체 스위칭 소자를 포함하며, 각 반도체 스위칭 소자는 서로 직렬로 연결된 상기 충전 커패시터와 상기 반도체 스위치의 양단에 연결되는 것을 특징으로 하는 펄스 전원 장치.
  5. 제 1 항에 있어서,
    상기 에너지 저장부는 충전 커패시터를 포함하고, 상기 에너지 공급부는 교류 전원을 입력받아 직류 전원으로 변환하여 상기 충전 커패시터를 충전시키는 정류회로인 것을 특징으로 하는 펄스 전원 장치.
  6. 제 1 항에 있어서, 상기 구동부는
    콘트롤 인버터로부터 입력되는 턴 온 펄스 신호에 따라서 상기 반도체 스위치부를 턴 온 시키고, 턴 오프 펄스 신호가 입력될때까지 상기 반도체 스위치부의 턴 온 상태를 유지하는 제 1 구동부; 및
    상기 콘트롤 인버터로부터 턴 오프 펄스 신호가 입력되면 상기 바이패스 스위칭부를 턴 온 시키는 제 2 구동부를 포함하는 것을 특징으로 하는 펄스 전원 장치.
  7. 제 6 항에 있어서,
    상기 콘트롤 인버터로부터 턴 오프 펄스 신호가 입력되면, 상기 제 2 구동부는 상기 제 1 구동부가 상기 반도체 스위치부를 턴 오프시킨 후, 사전에 정의된 지연 시간이 경과된 후에 상기 바이패스 스위칭부를 턴 온 시키는 것을 특징으로 하는 펄스 전원 장치.
  8. 제 1 항 내지 제 7 항 중 어느 한 항에 있어서,
    상기 반도체 스위치부 및 상기 바이패스 스위칭부는 IGBT(Insulated-Gate Bipolar Transistor)로 구현되는 것을 특징으로 하는 펄스 전원 장치.
  9. 제 1 항 내지 제 7 항 중 어느 한 항에 있어서,
    상기 에너지 저장부의 충전을 위한 전원을 공급하는 파워 인버터;
    상기 파워 인버터로부터 각 파워 셀 내 에너지 공급부에 전원이 공급되도록 하는 파워 루프;
    상기 반도체 스위치부 및 상기 반도체 스위칭부에 전원 및 제어신호를 제공하는 컨트롤 인버터; 및
    상기 컨트롤 인버터로부터 각 파워 셀 내 구동부에 제어신호가 공급되도록 하는 컨트롤 루프;를 더 포함하는 것을 특징으로 하는 펄스 전원 장치.
  10. 제 1 항에 있어서, 상기 바이패스 스위칭부는
    상기 부하 장치 내부에 저장된 에너지를 방전시키고, 병렬로 연결된 반도체 스위치부의 양단간의 전압이 상기 반도체 스위치부와 직렬로 연결된 에너지 공급부에 충전된 전압으로 제한하는 것을 특징으로 하는 펄스 전원 장치.
PCT/KR2015/012761 2015-07-21 2015-11-26 펄스 전원 장치 WO2017014368A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150102809A KR101739882B1 (ko) 2015-07-21 2015-07-21 펄스 전원 장치
KR10-2015-0102809 2015-07-21

Publications (1)

Publication Number Publication Date
WO2017014368A1 true WO2017014368A1 (ko) 2017-01-26

Family

ID=57834463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/012761 WO2017014368A1 (ko) 2015-07-21 2015-11-26 펄스 전원 장치

Country Status (2)

Country Link
KR (1) KR101739882B1 (ko)
WO (1) WO2017014368A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190048636A (ko) * 2017-10-31 2019-05-09 한국전기연구원 절연형 게이트 구동 장치
KR102410532B1 (ko) 2020-10-30 2022-06-16 한국전기연구원 모듈형 펄스 전원 장치
KR102448125B1 (ko) * 2021-04-02 2022-09-27 중앙대학교 산학협력단 고전압 펄스 전원 장치 및 이의 동작 방법
KR102573440B1 (ko) * 2021-04-09 2023-08-31 중앙대학교 산학협력단 반도체 스위치를 이용한 펄스 전원 장치 및 이의 고속 게이트 제어 방법
KR102674725B1 (ko) * 2022-08-08 2024-06-12 중앙대학교 산학협력단 펄스 전원 장치 및 반도체 스위치를 제어하는 게이트 드라이버
KR20240111207A (ko) * 2023-01-09 2024-07-16 한국전기연구원 스위치스태킹회로 및 이를 포함하는 스위치스태킹장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001169570A (ja) * 1999-12-09 2001-06-22 Mitsubishi Electric Corp パルス電源装置
KR20010088926A (ko) * 2001-08-07 2001-09-29 윤문수 반도체 스위치와 고주파 변압기를 조합한 펄스형 및계단파형 고전압 발생장치
JP2003069406A (ja) * 2001-08-27 2003-03-07 Origin Electric Co Ltd 高電圧半導体スイッチ装置および高電圧発生装置
KR100567169B1 (ko) * 2003-05-30 2006-04-04 한국전기연구원 반도체 소자를 이용한 양방향 고압 펄스 전원 장치
KR100820171B1 (ko) * 2006-11-02 2008-04-07 한국전기연구원 반도체 스위치를 이용한 펄스전원장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001169570A (ja) * 1999-12-09 2001-06-22 Mitsubishi Electric Corp パルス電源装置
KR20010088926A (ko) * 2001-08-07 2001-09-29 윤문수 반도체 스위치와 고주파 변압기를 조합한 펄스형 및계단파형 고전압 발생장치
JP2003069406A (ja) * 2001-08-27 2003-03-07 Origin Electric Co Ltd 高電圧半導体スイッチ装置および高電圧発生装置
KR100567169B1 (ko) * 2003-05-30 2006-04-04 한국전기연구원 반도체 소자를 이용한 양방향 고압 펄스 전원 장치
KR100820171B1 (ko) * 2006-11-02 2008-04-07 한국전기연구원 반도체 스위치를 이용한 펄스전원장치

Also Published As

Publication number Publication date
KR101739882B1 (ko) 2017-05-25
KR20170010992A (ko) 2017-02-02

Similar Documents

Publication Publication Date Title
WO2017014368A1 (ko) 펄스 전원 장치
TWI661633B (zh) 模組化電源系統
CN101606299B (zh) 均衡充电设备
WO2010087608A2 (en) Charge equalization apparatus and method for series-connected battery string
EP2566027A1 (en) Bidirectional dc/dc converter
Holtz et al. A nondissipative snubber circuit for high-power GTO inverters
US10587258B2 (en) Drive circuit of power semiconductor switch
KR102077958B1 (ko) 반도체 스위치를 이용한 양극성 펄스 전원 장치
US9680464B2 (en) Semiconductor switch circuit
Gao et al. All-solid-state pulse adder with bipolar high voltage fast narrow pulses output
WO2022206471A1 (zh) 一种电池系统、驱动系统及储能集装箱
WO2021049720A1 (ko) 다중 구조 변압기를 위한 전압 밸런싱 회로를 가지는 공진형 컨버터
JP2000078753A (ja) 電力調相装置とその電力調相装置を適用した送電システム
CN117614308A (zh) 一种充放电一体化脉冲产生模块
WO2018093149A1 (ko) Dc-dc 전압 컨버터를 부스트 동작 모드에서 안전 동작 모드로 전환하는 제어 시스템
US11888411B2 (en) Power conversion device
WO2019009629A1 (ko) 압전소자를 이용한 잔존 전하의 재사용이 가능한 에너지 수집 장치
CN115459751A (zh) 一种基于SiC MOSFET串联高压开关组件
WO2018108142A1 (zh) 模块化电源系统
WO2024085300A1 (ko) 전압밸런싱회로 및 이를 포함하는 스위치소자 스태킹회로
WO2014069835A1 (ko) 부하 전류 재생 회로, 및 부하 전류 재생 회로를 구비한 전기 장치
WO2021132901A2 (ko) 결합 인덕터를 구비한 dc-dc 변환 장치
WO2024172510A1 (ko) 전력변환장치
KR101172752B1 (ko) 펄스전원장치의 이상 검출 시스템 및 방법
WO2024029949A1 (ko) 적응적으로 영전류를 검출하는 스위칭 레귤레이터 및 그 제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15899015

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15899015

Country of ref document: EP

Kind code of ref document: A1