WO2017014293A1 - Electric power system - Google Patents

Electric power system Download PDF

Info

Publication number
WO2017014293A1
WO2017014293A1 PCT/JP2016/071511 JP2016071511W WO2017014293A1 WO 2017014293 A1 WO2017014293 A1 WO 2017014293A1 JP 2016071511 W JP2016071511 W JP 2016071511W WO 2017014293 A1 WO2017014293 A1 WO 2017014293A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
demand
fluctuation
private
factory
Prior art date
Application number
PCT/JP2016/071511
Other languages
French (fr)
Japanese (ja)
Inventor
修司 久山
山口 収
浅野 一哉
裕樹 杉
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2016564649A priority Critical patent/JP6365686B2/en
Priority to KR1020187001180A priority patent/KR102006581B1/en
Priority to CN201680042292.2A priority patent/CN107851999B/en
Publication of WO2017014293A1 publication Critical patent/WO2017014293A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Definitions

  • the present invention relates to a power system in a factory group.
  • Patent Document 1 the technique proposed in Patent Document 1 is limited to efficient operation of the power generation facility by selecting a function in the power generation facility. Therefore, for example, when surplus power that has not been used by the power demand facility among the power generated by the power generation facility is sold (transmitted) to an external power network such as a power company, the power generation facility, the storage facility, and the power demand facility are In consideration of the overall power supply and demand including the power sales amount (transmission amount) to the external power network cannot be controlled.
  • the above-mentioned “electric power demand facility” indicates, for example, a facility that consumes electric power provided in a factory.
  • the present invention has been made in view of the above, and an object of the present invention is to provide a power system capable of controlling the amount of power sold to an external power network.
  • a power system includes a factory having a power demand facility, a private power generation apparatus that supplies generated power to the factory, the factory, and the factory.
  • a power transmission line connecting the private power generation device, and the surplus power is sold to an external power supply and demand device via the power transmission line.
  • the power system is connected to the power transmission line and generates power by the private power generation device.
  • a power storage device that stores the stored power and supplies the stored power to the factory; a database in which manufacturing plan information of the factory is stored; and future power demand in the factory based on the manufacturing plan information And instructing the private power generation device to change the amount of power generation based on the predicted fluctuation in power demand, and storing and discharging the power storage device. Characterized in that it comprises a Shimesuru power control device.
  • the power control apparatus acquires a manufacturing plan information from the database, and a future power demand in the factory based on the manufacturing plan information.
  • a power demand predicting unit that predicts power, low-frequency power fluctuations that are power fluctuations that can be followed by the private power generation device based on fluctuations in the power demand, and followable by the power storage device that cannot be followed by the private power generation device
  • a power fluctuation separating unit that separates high-frequency power fluctuations that are power fluctuations, and instructing the private power generation device to generate power according to the low-frequency power fluctuations;
  • a power generation / storage instruction unit for instructing the amount of discharge to the power storage device.
  • the power system according to the present invention is characterized in that, in the above-mentioned invention, the power storage device has a faster response speed to fluctuations in power demand than the private power generation device.
  • the power system according to the present invention is characterized in that, in the above invention, the power storage device is a flywheel device, a secondary battery or a capacitor.
  • the power system according to the present invention is characterized in that, in the above-mentioned invention, the system is in a steelworks.
  • the present invention based on the fluctuation in power demand predicted based on the manufacturing plan information, instructing the private power generation device to change the amount of power generation, and instructing the power storage device to store and discharge,
  • the amount of power sold to the external power network can be controlled in consideration of the power supply and demand of the entire power system.
  • FIG. 1 is a schematic diagram illustrating a configuration of a power system according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram illustrating a configuration of a power control device in the power system according to the embodiment of the present invention.
  • FIG. 3 is a flowchart illustrating an example of a processing procedure of the power control apparatus in the power system according to the embodiment of the present invention.
  • FIG. 4 is a diagram illustrating an example of the power system according to the embodiment of the present invention, and is a graph illustrating fluctuations in the total demand power amount, the power generation amount, the power sale amount, and the power storage amount in the steelworks.
  • the power system 1 is a system used in a steel plant, and includes a power control device 10, a database (DB) 20, a power transmission line 30, a private power generation device 40, a power storage device 50, a hot rolling factory 60, and others.
  • DB database
  • a factory 70, a transmission line 80, an external power supply and demand device 90, and a connection point 100 are provided.
  • the database 20 is provided in the steelworks, and accumulates power consumption information, generated power information, stored power information, and manufacturing plan information.
  • the power consumption information is information regarding power consumption from the past to the present at the hot rolling factory 60 and the other factory 70.
  • the generated power information is information related to the generated power from the past to the present in the private power generator 40.
  • the stored power information is information regarding stored power from the past to the present in the power storage device 50.
  • the production plan information is information relating to product production plans in the hot rolling factory 60 and other factories 70, and more specifically, information relating to which materials are processed and when products or intermediate products are produced. is there.
  • the power transmission line 30 is connected to a private power generation device 40, a power storage device 50, a hot rolling factory 60, another factory 70, and an external power supply / demand apparatus 90, and transmits power between them. That is, the private power generation device 40, the power storage device 50, the hot rolling factory 60, the other factory 70, and the external power supply / demand device 90 supply power through the power transmission line 30 and receive power through the power transmission line 30.
  • the private power generation device 40 is provided in the steelworks, and specifically, is a thermal power plant using in-house generated gas or LNG.
  • the private power generation device 40 supplies the generated power to the hot rolling factory 60 and the other factory 70 via the transmission line 30.
  • the private power generation apparatus 40 sells the surplus power to the external power supply / demand apparatus 90 via the transmission line 30.
  • the power storage device 50 is provided in the ironworks and stores the electric power generated by the private power generation device 40. Then, the power storage device 50 supplies the stored power to the hot rolling factory 60 and the other factory 70 via the power transmission line 30. In addition, when surplus power is generated, the power storage device 50 sells the surplus power to the external power supply and demand device 90 via the transmission line 30.
  • the power storage device 50 uses a device that has a faster response speed to fluctuations in power demand than the private power generation device 40. Moreover, as the electrical storage apparatus 50, a flywheel apparatus, a secondary battery, a capacitor, etc. can be used, for example.
  • the hot rolling factory 60 and the other factory 70 are provided in the steel works and have power demand facilities (for example, rolling mills).
  • the other factory 70 is specifically a manufacturing factory such as a steelmaking factory or a plank factory.
  • the transmission path 80 is connected to the private power generation device 40, the power storage device 50, the hot rolling factory 60, and the other factory 70, and transmits information therebetween. That is, the private power generation device 40, the power storage device 50, the hot rolling factory 60, and the other factory 70 exchange information on power consumption information, generated power information, stored power information, and manufacturing plan information via the transmission path 80.
  • the external power supply and demand device 90 is provided outside the steelworks, for example, a power plant of an electric power company. As shown in FIG. 1, the external power supply and demand apparatus 90 is connected to the power transmission line 30 in the steel works via the connection point 100, and supplies power to the hot rolling factory 60 and other factories 70 as necessary. Supply. In addition, the power system 1 sells surplus power generated by the private power generation device 40 to the external power supply and demand device 90 via the transmission line 30.
  • the power control apparatus 10 is realized by a general-purpose information processing apparatus such as a personal computer or a workstation.
  • the processing unit 11, the ROM 12, the RAM 13, and the transmission A path 14 and an input / output port 15 are provided.
  • the arithmetic processing unit 11, the ROM 12, and the RAM 13 are configured to be able to transmit and receive data to and from each other via the transmission path 14.
  • the arithmetic processing unit 11, the ROM 12, and the RAM 13 are configured to transmit and receive data to and from the database 20 and the transmission path 80 via the input / output port 15.
  • the arithmetic processing unit 11 is realized by hardware such as a CPU.
  • the arithmetic processing unit 11 supervises the overall operation of the power control device 10 by instructing each unit of the power control device 10 and transferring data based on various programs and data information stored in the ROM 12. Control.
  • the arithmetic processing unit 11 functions as a manufacturing plan acquisition unit 111, a power demand prediction unit 112, a power fluctuation separation unit 113, and a power generation / storage instruction unit 114.
  • the ROM 12 stores a program for operating the power control apparatus 10 and realizing various functions provided in the power control apparatus 10, data used during the execution of these programs, and the like.
  • a power control program 121 for causing the arithmetic processing unit 11 to function as the manufacturing plan acquisition unit 111, the power demand prediction unit 112, the power fluctuation separation unit 113, and the power generation / storage instruction unit 114, and to execute a power control process described later is stored. Is done.
  • the RAM 13 is a semiconductor memory used as a working memory for the arithmetic processing unit 11, and includes a memory area that temporarily stores a program executed by the arithmetic processing unit 11, data used during the execution, and the like.
  • the power control process is realized in the power control apparatus 10 by the arithmetic processing unit 11 reading and executing the power control program 121 stored in the ROM 12 and performing the process according to the procedure shown in FIG.
  • the process shown in the figure is repeatedly executed every predetermined control cycle.
  • the control cycle here indicates a timing (for example, a 30-minute pitch) for evaluating how much the power sale integrated value can follow the target value.
  • Step S1 In the process of step S ⁇ b> 1, the manufacturing plan acquisition unit 111 of the power control apparatus 10 acquires manufacturing plan information of the hot rolling factory 60 and the other factory 70 from the database 20.
  • the time of N ⁇ ⁇ t is the above-described control cycle, and is a period for evaluating the power purchase amount integrated value.
  • ⁇ t is determined in consideration of a rolling pitch or the like (for example, a time of about 5 minutes including a plurality of rolling opportunities).
  • the power control apparatus 10 adds the fluctuation of the demand power amount of the hot rolling factory 60 from the time t calculated by the above formula (1) to t + N ⁇ ⁇ t and the fluctuation of the demand power amount of the other factory 70, Predict fluctuations in the total power demand in the steelworks (the power demand of the entire steelworks). It should be noted that fluctuations in the amount of power demand for other factories 70 are trend predictions (for example, if the moving average method is used, the actual power amount average value in the immediately preceding evaluation period or the like is used as the predicted value, and if the linear regression method is used, the immediately preceding predetermined period is used. Prediction based on the linear regression formula of
  • step S3 the power fluctuation separation unit 113 of the power control apparatus 10 adds the amount of power sold from time t to t + N ⁇ ⁇ t to the change in total demand power in the ironworks from time t to t + N ⁇ ⁇ t.
  • the power generation amount is calculated, and the calculated target power generation amount is separated into low frequency power fluctuation and high frequency power fluctuation.
  • the amount of power sold at each time from t to t + N ⁇ ⁇ t (between t + i ⁇ ⁇ t to t + (i + 1) ⁇ ⁇ t) is a constant obtained by multiplying the target value of the accumulated power sale value by (1 / N ⁇ ⁇ t). Value.
  • the low-frequency power fluctuation indicates a fluctuation in power demand that can be followed by an increase or decrease in the amount of power generated by the private power generator 40.
  • the private power generator 40 generally has low responsiveness to fluctuations in power demand, and cannot supply power immediately in response to a sudden demand for power.
  • the low-frequency power fluctuation described above is a slow fluctuation in power demand that can supply power even with such a private power generator 40.
  • the high-frequency power fluctuation indicates a fluctuation in power demand that cannot be followed by an increase or decrease in the amount of power generated by the private power generator 40. That is, the high-frequency power fluctuation is a rapid fluctuation in power demand that cannot be supplied by the private power generation apparatus 40 with low response as described above.
  • the high-frequency power fluctuation is also a fluctuation in power demand that can be tracked by power storage or discharge by the power storage device 50.
  • the power storage device 50 generally has high responsiveness to fluctuations in power demand (for example, on the order of msec), and can supply power immediately in response to a sudden demand for power. Therefore, even if there is a high-frequency power fluctuation that cannot be supplied by the private power generation device 40, the power storage device 50 can supply power.
  • the power fluctuation separation unit 113 uses, for example, the maximum power fluctuation frequency that can be followed by the private power generation apparatus 40 as a reference, sets power fluctuations below the frequency as low-frequency power fluctuations, and power fluctuations exceeding the frequency as high-frequency power fluctuations. Thus, the high frequency power fluctuation and the low frequency power fluctuation are separated.
  • Step S4 In step S ⁇ b> 4, the power generation / storage instruction unit 114 of the power control device 10 transmits an instruction amount as time-series data of the power generation amount corresponding to the low frequency power fluctuation to the private power generation device 40. As a result, the private power generation device 40 changes the power generation amount according to the received power generation amount.
  • the power generation / storage instruction unit 114 transmits an instruction amount of the storage amount / discharge amount according to the high-frequency power fluctuation to the storage device 50.
  • the power storage device 50 changes the power storage amount / discharge amount in the control cycle of the msec order by the control device provided inside the power storage device 50 according to the received instruction amount as the time series data of the power storage amount / discharge amount. It should be noted that higher cycle power fluctuations that cannot be absorbed even by the charge / discharge instruction of power storage device 50 (for example, less than m seconds) are absorbed by power flow control in external power supply and demand device 90.
  • the power generation amount is instructed to the private power generation device 40 based on the fluctuation in power demand predicted based on the manufacturing plan information, and the power storage device 50 is instructed. Instruct to store and discharge. That is, among the fluctuations in the future power demand predicted from the production plan, for the slow fluctuations (low frequency power fluctuations) that can be followed by the power generation by the private power generator 40, the power generated by the private power generator 40 is supplied. To do. On the other hand, for rapid fluctuations (high-frequency power fluctuations) that cannot be followed by power generation by the private power generation device 40, the power storage device 50 having higher responsiveness than the private power generation device 40 is used, and power is supplied or discharged. If there is a surplus, charge is performed. Therefore, according to the power system 1, when surplus power is sold to the external power network, the amount of power sold to the external power network can be controlled in consideration of the power supply and demand of the entire power system 1.
  • the present invention is applied to the total demand power amount in the steelworks, the power generation amount by the private power generation device 40, the power sale amount, and the power storage amount variation by the power storage device 50 in two hours from 14:00 to 16:00. It is the graph compared with the case and the conventional case which does not apply this invention.
  • low frequency power fluctuations are indicated by broken lines
  • high frequency power fluctuations are indicated by solid lines.
  • the power generation amount is increased in the upward direction of the graph, and is represented by an integrated value for 30 minutes (see “Factory integrated 30-minute integration” in the figure), and is reset every 30 minutes.
  • the amount of electric power sold is increasing in the lower direction of the graph, and is represented by an integrated value for 30 minutes (see “Integrated 30 minutes of power retail” in the figure), and is reset every 30 minutes.
  • the amount of electricity stored is increasing in the upward direction of the graph, and is stored when it goes upward, and discharged when it goes downward.
  • the power sale target value is, for example, a value determined by an agreement with an electric power company that owns the external power supply and demand apparatus 90, and is an integrated value of the amount of power sold every 30 minutes. That is, the cycle of the control process shown in FIG. 3 is 30 minutes in this embodiment.
  • the amount of power sold at 15:00 and 16:00 exceeds the power sales target value. This indicates that the private power generation apparatus 40 cannot follow the high frequency power fluctuation and has generated extra power. Further, in the conventional method, the amount of power sold at 15:30 is less than the power sales target value. This indicates that the private power generator 40 cannot follow the high-frequency power fluctuation and cannot generate power. Thus, with the conventional method, it is difficult to match the power sale amount with the power sale target value.
  • the surplus power is stored by the power storage device 50, so that the power sales amount falls within the power sales target value at 15:00, 15:30, and 16:00. Yes. That is, at 14:30 to 15:00 and 15:30 to 16:00, excess power generated by the private power generation device 40 is stored by the power storage device 50, and from 15:00 to 15:30, the private power generation device.
  • the electric power that is insufficient only by the power generation by 40 is supplied by the discharge by the power storage device 50.
  • the power generation / storage instruction unit 114 of the power control device 10 transmits an instruction amount of the storage amount / discharge amount according to the high-frequency power fluctuation to the storage device 50, This can be realized by changing the amount of stored electricity / the amount of discharge of the power storage device 50.
  • step S4 of FIG. 3 the power generation / storage instruction unit 114 of the power control apparatus 10 transmits an instruction amount of the power generation amount corresponding to the low frequency power fluctuation to the private power generation apparatus 40, and private power generation This can be realized by changing the power generation amount of the device 40.
  • the present invention can be applied to an electric power system because the amount of electric power sold can be controlled in consideration of the electric power demand of the entire system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • Economics (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

This electric power system 1 is provided with: factories 60 and 70 having electricity demanding facilities; an independent electricity generating device 40 which supplies generated electric power to the factories 60 and 70; and power transmission lines 30 connecting the factories 60 and 70 to the independent electricity generating device 40. The electric power system 1 sells surplus electric power to an external power supply and demand device 90 by way of the power transmission lines 30. The electric power system 1 is also provided with: an electricity storage device 50 which is connected to the power transmission lines 30, stores electric power generated by the independent electricity generating device 40, and supplies stored electric power to the factories 60 and 70; a database 20 in which manufacturing plan information for the factories 60 and 70 is accumulated; and an electric power control device 10 which predicts the future electricity demand of the factories 60 and 70 on the basis of the manufacturing plan information, instructs the independent electricity generating device 40 to vary the amount of generated power, on the basis of variations in the predicted electricity demand, and instructs the electricity storage device 50 to store or discharge electric power.

Description

電力システムPower system
 本発明は、工場群における電力システムに関する。 The present invention relates to a power system in a factory group.
 従来、蓄電装置を利用した電力システムとして、発電設備の効率的な操業を目的として、発電設備が備える複数の機能のうち、各機能を実行した場合に稼働する発電設備内の機器の消費電力と、蓄電装置の放電容量とを比較し、当該放電容量の範囲内で実行可能な機能を選定する技術が提案されている(例えば特許文献1参照)。 Conventionally, as an electric power system using a power storage device, for the purpose of efficient operation of the power generation facility, among the functions provided in the power generation facility, the power consumption of the equipment in the power generation facility that operates when each function is executed and A technique for comparing the discharge capacity of a power storage device and selecting a function that can be executed within the range of the discharge capacity has been proposed (see, for example, Patent Document 1).
特開2014-79094号公報JP 2014-79094 A
 しかしながら、特許文献1で提案された技術は、発電設備内の機能選択を行うことで当該発電設備の効率的な運用を行うことにとどまる。従って、例えば発電設備によって発電された電力のうち、電力需要設備によって使用されなかった余剰電力を電力会社等の外部電力網へ売電(送電)する際に、発電設備、蓄電設備および電力需要設備を含む全体の電力需給を考慮して、当該外部電力網への売電量(送電量)を制御することはできない。なお、前記した「電力需要設備」とは、例えば工場内に設けられた、電力を消費する設備のことを示している。 However, the technique proposed in Patent Document 1 is limited to efficient operation of the power generation facility by selecting a function in the power generation facility. Therefore, for example, when surplus power that has not been used by the power demand facility among the power generated by the power generation facility is sold (transmitted) to an external power network such as a power company, the power generation facility, the storage facility, and the power demand facility are In consideration of the overall power supply and demand including the power sales amount (transmission amount) to the external power network cannot be controlled. In addition, the above-mentioned “electric power demand facility” indicates, for example, a facility that consumes electric power provided in a factory.
 本発明は、上記に鑑みてなされたものであって、外部電力網への売電量を制御することができる電力システムを提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide a power system capable of controlling the amount of power sold to an external power network.
 上述した課題を解決し、目的を達成するために、本発明に係る電力システムは、電力需要設備を有する工場と、発電した電力を前記工場に対して供給する自家発電装置と、前記工場と前記自家発電装置とを結ぶ送電線と、を備え、前記送電線を介して、余剰電力を外部電力需給装置に対して売電する電力システムにおいて、前記送電線に接続され、前記自家発電装置によって発電された電力を蓄電するとともに、蓄電した電力を前記工場に対して供給する蓄電装置と、前記工場の製造計画情報が蓄積されたデータベースと、前記製造計画情報に基づいて前記工場における将来の電力需要を予測し、予測された電力需要の変動に基づいて、前記自家発電装置に対して発電量の変更を指示するとともに、前記蓄電装置に対して蓄電および放電を指示する電力制御装置と、を備えることを特徴とする。 In order to solve the above-described problems and achieve the object, a power system according to the present invention includes a factory having a power demand facility, a private power generation apparatus that supplies generated power to the factory, the factory, and the factory. A power transmission line connecting the private power generation device, and the surplus power is sold to an external power supply and demand device via the power transmission line. The power system is connected to the power transmission line and generates power by the private power generation device. A power storage device that stores the stored power and supplies the stored power to the factory; a database in which manufacturing plan information of the factory is stored; and future power demand in the factory based on the manufacturing plan information And instructing the private power generation device to change the amount of power generation based on the predicted fluctuation in power demand, and storing and discharging the power storage device. Characterized in that it comprises a Shimesuru power control device.
 また、本発明に係る電力システムは、上記発明において、前記電力制御装置が、前記データベースから前記製造計画情報を取得する製造計画取得部と、前記製造計画情報に基づいて前記工場における将来の電力需要を予測する電力需要予測部と、前記電力需要の変動から、前記自家発電装置によって追従可能な電力変動である低周波電力変動と、前記自家発電装置によって追従不可能かつ前記蓄電装置によって追従可能な電力変動である高周波電力変動と、を分離する電力変動分離部と、前記低周波電力変動に応じた発電量を前記自家発電装置に対して指示するとともに、前記高周波電力変動に応じた蓄電量または放電量を前記蓄電装置に対して指示する発電蓄電指示部と、を備えることを特徴とする。 Further, in the power system according to the present invention, in the above invention, the power control apparatus acquires a manufacturing plan information from the database, and a future power demand in the factory based on the manufacturing plan information. A power demand predicting unit that predicts power, low-frequency power fluctuations that are power fluctuations that can be followed by the private power generation device based on fluctuations in the power demand, and followable by the power storage device that cannot be followed by the private power generation device A power fluctuation separating unit that separates high-frequency power fluctuations that are power fluctuations, and instructing the private power generation device to generate power according to the low-frequency power fluctuations; And a power generation / storage instruction unit for instructing the amount of discharge to the power storage device.
 また、本発明に係る電力システムは、上記発明において、前記蓄電装置が、前記自家発電装置と比較して、電力需要の変動に対する応答速度が速いことを特徴とする。 Moreover, the power system according to the present invention is characterized in that, in the above-mentioned invention, the power storage device has a faster response speed to fluctuations in power demand than the private power generation device.
 また、本発明に係る電力システムは、上記発明において、前記蓄電装置が、フライホイール装置、二次電池またはキャパシタであることを特徴とする。 The power system according to the present invention is characterized in that, in the above invention, the power storage device is a flywheel device, a secondary battery or a capacitor.
 また、本発明に係る電力システムは、上記発明において、製鉄所内のシステムであることを特徴とする。 Moreover, the power system according to the present invention is characterized in that, in the above-mentioned invention, the system is in a steelworks.
 本発明によれば、製造計画情報に基づいて予測した電力需要の変動に基づいて、自家発電装置に対して発電量の変更を指示するとともに、蓄電装置に対して蓄電および放電を指示するため、余剰電力を外部電力網へ売電する際に、電力システム全体の電力需給を考慮して、当該外部電力網への売電量を制御することができる。 According to the present invention, based on the fluctuation in power demand predicted based on the manufacturing plan information, instructing the private power generation device to change the amount of power generation, and instructing the power storage device to store and discharge, When selling surplus power to an external power network, the amount of power sold to the external power network can be controlled in consideration of the power supply and demand of the entire power system.
図1は、本発明の実施形態に係る電力システムの構成を示す概略図である。FIG. 1 is a schematic diagram illustrating a configuration of a power system according to an embodiment of the present invention. 図2は、本発明の実施形態に係る電力システムにおける電力制御装置の構成を示す概略図である。FIG. 2 is a schematic diagram illustrating a configuration of a power control device in the power system according to the embodiment of the present invention. 図3は、本発明の実施形態に係る電力システムにおける電力制御装置の処理手順の一例を示すフローチャートである。FIG. 3 is a flowchart illustrating an example of a processing procedure of the power control apparatus in the power system according to the embodiment of the present invention. 図4は、本発明の実施形態に係る電力システムの実施例を示す図であり、製鉄所内の総需要電力量、発電量、売電量および蓄電量の変動を示すグラフである。FIG. 4 is a diagram illustrating an example of the power system according to the embodiment of the present invention, and is a graph illustrating fluctuations in the total demand power amount, the power generation amount, the power sale amount, and the power storage amount in the steelworks.
 以下、本発明に係る電力システムの実施形態について、図面を参照しながら説明する。なお、本発明は以下の実施形態に限定されるものではない。また、以下の実施形態における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。 Hereinafter, embodiments of a power system according to the present invention will be described with reference to the drawings. In addition, this invention is not limited to the following embodiment. In addition, constituent elements in the following embodiments include those that can be easily replaced by those skilled in the art or those that are substantially the same.
[電力システムの構成]
 まず、本発明が適用される電力システム1の構成について、図1を参照しながら説明する。電力システム1は、製鉄所内で用いられるシステムであり、電力制御装置10と、データベース(DB)20と、送電線30と、自家発電装置40と、蓄電装置50と、熱延工場60と、その他工場70と、伝送路80と、外部電力需給装置90と、連結点100と、を備えている。
[Power system configuration]
First, the configuration of a power system 1 to which the present invention is applied will be described with reference to FIG. The power system 1 is a system used in a steel plant, and includes a power control device 10, a database (DB) 20, a power transmission line 30, a private power generation device 40, a power storage device 50, a hot rolling factory 60, and others. A factory 70, a transmission line 80, an external power supply and demand device 90, and a connection point 100 are provided.
 データベース20は、製鉄所内に設けられ、消費電力情報、発電電力情報、蓄電電力情報および製造計画情報を蓄積する。ここで、消費電力情報とは、熱延工場60およびその他工場70における、過去から現在にわたる消費電力に関する情報である。また、発電電力情報とは、自家発電装置40における、過去から現在にわたる発電電力に関する情報である。また、蓄電電力情報とは、蓄電装置50における、過去から現在にわたる蓄電電力に関する情報である。また、製造計画情報とは、熱延工場60およびその他工場70における、製品の製造計画に関する情報であり、より具体的にはどの材料をいつ処理して製品または中間製品を製造するかに関する情報である。 The database 20 is provided in the steelworks, and accumulates power consumption information, generated power information, stored power information, and manufacturing plan information. Here, the power consumption information is information regarding power consumption from the past to the present at the hot rolling factory 60 and the other factory 70. The generated power information is information related to the generated power from the past to the present in the private power generator 40. The stored power information is information regarding stored power from the past to the present in the power storage device 50. The production plan information is information relating to product production plans in the hot rolling factory 60 and other factories 70, and more specifically, information relating to which materials are processed and when products or intermediate products are produced. is there.
 送電線30は、図1に示すように、自家発電装置40、蓄電装置50、熱延工場60、その他工場70および外部電力需給装置90と接続されており、これらの間で電力を送電する。すなわち、自家発電装置40、蓄電装置50、熱延工場60、その他工場70および外部電力需給装置90は、送電線30を介して電力を供給するとともに、当該送電線30を介して電力を受ける。 As shown in FIG. 1, the power transmission line 30 is connected to a private power generation device 40, a power storage device 50, a hot rolling factory 60, another factory 70, and an external power supply / demand apparatus 90, and transmits power between them. That is, the private power generation device 40, the power storage device 50, the hot rolling factory 60, the other factory 70, and the external power supply / demand device 90 supply power through the power transmission line 30 and receive power through the power transmission line 30.
 自家発電装置40は、製鉄所内に設けられ、具体的には所内発生ガスやLNGを利用した火力発電所等である。自家発電装置40は、発電した電力を、送電線30を介して熱延工場60およびその他工場70に供給する。また、自家発電装置40は、余剰電力が発生している場合、当該余剰電力を、送電線30を介して外部電力需給装置90に売電する。 The private power generation device 40 is provided in the steelworks, and specifically, is a thermal power plant using in-house generated gas or LNG. The private power generation device 40 supplies the generated power to the hot rolling factory 60 and the other factory 70 via the transmission line 30. Moreover, when the surplus power is generated, the private power generation apparatus 40 sells the surplus power to the external power supply / demand apparatus 90 via the transmission line 30.
 蓄電装置50は、製鉄所内に設けられ、自家発電装置40によって発電された電力を蓄電する。そして、蓄電装置50は、蓄電した電力を、送電線30を介して熱延工場60およびその他工場70に供給する。また、蓄電装置50は、余剰電力が発生している場合、当該余剰電力を、送電線30を介して外部電力需給装置90に売電する。 The power storage device 50 is provided in the ironworks and stores the electric power generated by the private power generation device 40. Then, the power storage device 50 supplies the stored power to the hot rolling factory 60 and the other factory 70 via the power transmission line 30. In addition, when surplus power is generated, the power storage device 50 sells the surplus power to the external power supply and demand device 90 via the transmission line 30.
 蓄電装置50は、自家発電装置40と比較して、電力需要の変動に対する応答速度が速いものを用いる。また、蓄電装置50としては、例えばフライホイール装置、二次電池またはキャパシタ等を用いることができる。 The power storage device 50 uses a device that has a faster response speed to fluctuations in power demand than the private power generation device 40. Moreover, as the electrical storage apparatus 50, a flywheel apparatus, a secondary battery, a capacitor, etc. can be used, for example.
 熱延工場60およびその他工場70は、製鉄所内に設けられており、電力需要設備(例えば圧延機等)を有している。その他工場70は、具体的には製鋼工場や厚板工場等の製造工場等である。 The hot rolling factory 60 and the other factory 70 are provided in the steel works and have power demand facilities (for example, rolling mills). The other factory 70 is specifically a manufacturing factory such as a steelmaking factory or a plank factory.
 伝送路80は、自家発電装置40、蓄電装置50、熱延工場60およびその他工場70と接続されており、これらの間で情報を伝達する。すなわち、自家発電装置40、蓄電装置50、熱延工場60およびその他工場70は、伝送路80を介して消費電力情報、発電電力情報、蓄電電力情報および製造計画情報の各情報をやり取りする。 The transmission path 80 is connected to the private power generation device 40, the power storage device 50, the hot rolling factory 60, and the other factory 70, and transmits information therebetween. That is, the private power generation device 40, the power storage device 50, the hot rolling factory 60, and the other factory 70 exchange information on power consumption information, generated power information, stored power information, and manufacturing plan information via the transmission path 80.
 外部電力需給装置90は、製鉄所の外部に設けられており、例えば電力会社の発電所である。外部電力需給装置90は、図1に示すように、連結点100を介して製鉄所内の送電線30に接続されており、必要に応じて、熱延工場60およびその他工場70に対して電力を供給する。また、電力システム1は、自家発電装置40によって発電して余った余剰電力を、送電線30を介して、外部電力需給装置90に対して売電する。 The external power supply and demand device 90 is provided outside the steelworks, for example, a power plant of an electric power company. As shown in FIG. 1, the external power supply and demand apparatus 90 is connected to the power transmission line 30 in the steel works via the connection point 100, and supplies power to the hot rolling factory 60 and other factories 70 as necessary. Supply. In addition, the power system 1 sells surplus power generated by the private power generation device 40 to the external power supply and demand device 90 via the transmission line 30.
[電力制御装置の構成]
 次に、電力システム1における電力制御装置10の構成について、図2を参照しながら説明する。電力制御装置10は、具体的にはパーソナルコンピュータやワークステーション等の汎用の情報処理装置によって実現されるものであり、同図に示すように、演算処理部11と、ROM12と、RAM13と、伝送路14と、入出力ポート15と、を備えている。演算処理部11、ROM12およびRAM13は、伝送路14を介して、互いにデータを送受信可能に構成されている。また、演算処理部11、ROM12およびRAM13は、入出力ポート15を介して、データベース20および伝送路80にデータを送受信可能に構成されている。
[Configuration of power control device]
Next, the configuration of the power control apparatus 10 in the power system 1 will be described with reference to FIG. Specifically, the power control apparatus 10 is realized by a general-purpose information processing apparatus such as a personal computer or a workstation. As shown in the figure, the processing unit 11, the ROM 12, the RAM 13, and the transmission A path 14 and an input / output port 15 are provided. The arithmetic processing unit 11, the ROM 12, and the RAM 13 are configured to be able to transmit and receive data to and from each other via the transmission path 14. The arithmetic processing unit 11, the ROM 12, and the RAM 13 are configured to transmit and receive data to and from the database 20 and the transmission path 80 via the input / output port 15.
 演算処理部11は、CPU等のハードウェアによって実現される。この演算処理部11は、ROM12に格納されるプログラムやデータの各種情報等を基に電力制御装置10を構成する各部への指示やデータの転送等を行い、電力制御装置10全体の動作を統括的に制御する。この演算処理部11は、図2に示すように、製造計画取得部111、電力需要予測部112、電力変動分離部113および発電蓄電指示部114として機能する。 The arithmetic processing unit 11 is realized by hardware such as a CPU. The arithmetic processing unit 11 supervises the overall operation of the power control device 10 by instructing each unit of the power control device 10 and transferring data based on various programs and data information stored in the ROM 12. Control. As illustrated in FIG. 2, the arithmetic processing unit 11 functions as a manufacturing plan acquisition unit 111, a power demand prediction unit 112, a power fluctuation separation unit 113, and a power generation / storage instruction unit 114.
 ROM12には、電力制御装置10を動作させ、この電力制御装置10が備える種々の機能を実現するためのプログラム、およびこれらのプログラムの実行中に使用されるデータ等が格納される。また、演算処理部11を製造計画取得部111、電力需要予測部112、電力変動分離部113および発電蓄電指示部114として機能させ、後述する電力制御処理を実行させるための電力制御プログラム121が格納される。 The ROM 12 stores a program for operating the power control apparatus 10 and realizing various functions provided in the power control apparatus 10, data used during the execution of these programs, and the like. In addition, a power control program 121 for causing the arithmetic processing unit 11 to function as the manufacturing plan acquisition unit 111, the power demand prediction unit 112, the power fluctuation separation unit 113, and the power generation / storage instruction unit 114, and to execute a power control process described later is stored. Is done.
 RAM13は、演算処理部11の作業用メモリとして用いられる半導体メモリであり、演算処理部11が実行するプログラムや、その実行中に使用されるデータ等を一時的に保持するメモリ領域を備える。 The RAM 13 is a semiconductor memory used as a working memory for the arithmetic processing unit 11, and includes a memory area that temporarily stores a program executed by the arithmetic processing unit 11, data used during the execution, and the like.
[電力制御処理]
 次に、電力制御装置10による電力制御処理について、図3を参照しながら説明する。電力制御処理は、具体的には、電力制御装置10において、演算処理部11がROM12に格納された電力制御プログラム121を読み出して実行し、図3に示した手順に従って処理を行うことで実現される。なお、同図に示した処理は、所定の制御周期ごとに繰り返し実行される。ここでいう制御周期とは、売電量積算値が目標値にどれだけ追従できているかを評価するタイミング(例えば、30分ピッチ)のことを示している。
[Power control processing]
Next, power control processing by the power control apparatus 10 will be described with reference to FIG. Specifically, the power control process is realized in the power control apparatus 10 by the arithmetic processing unit 11 reading and executing the power control program 121 stored in the ROM 12 and performing the process according to the procedure shown in FIG. The The process shown in the figure is repeatedly executed every predetermined control cycle. The control cycle here indicates a timing (for example, a 30-minute pitch) for evaluating how much the power sale integrated value can follow the target value.
(ステップS1)
 ステップS1の処理では、電力制御装置10の製造計画取得部111が、データベース20から、熱延工場60およびその他工場70の製造計画情報を取得する。
(Step S1)
In the process of step S <b> 1, the manufacturing plan acquisition unit 111 of the power control apparatus 10 acquires manufacturing plan information of the hot rolling factory 60 and the other factory 70 from the database 20.
(ステップS2)
 ステップS2の処理では、電力制御装置10の電力需要予測部112が、ステップS1で取得した製造計画情報に基づいて、将来にわたる各工場の電力需要(需要電力量)をΔtで離散化した時系列データとして予測する。例えば熱延工場60の場合、製造計画情報と下記式(1)を用いて、時刻t+i・Δt~t+(i+1)・Δtの間の需要電力量を算出する。この予測をi=0,1,2,・・・,N-1まで求めることにより、時刻tからt+N・Δtまでの電力需要の変動を予測する。ここで、N・Δtの時間が上述の制御周期であり、買電量積算値を評価する期間である。また、Δtは、圧延ピッチ等を考慮して定める(例えば複数の圧延チャンスを含む5分程度の時間等)。
(Step S2)
In the process of step S2, the power demand prediction unit 112 of the power control apparatus 10 discretizes the future power demand (demand power amount) of each factory by Δt based on the manufacturing plan information acquired in step S1. Predict as data. For example, in the case of the hot rolling factory 60, the amount of power demand between the times t + i · Δt to t + (i + 1) · Δt is calculated using the production plan information and the following equation (1). By obtaining this prediction up to i = 0, 1, 2,..., N−1, the fluctuation in power demand from time t to t + N · Δt is predicted. Here, the time of N · Δt is the above-described control cycle, and is a period for evaluating the power purchase amount integrated value. Δt is determined in consideration of a rolling pitch or the like (for example, a time of about 5 minutes including a plurality of rolling opportunities).
P(i) = Σ_s(α × W(s) × Log(R(s))) ・・・式(1)

    P:時刻t+i・Δt~t+(i+1)・Δtにおける熱延需要電力量
    s:時刻t+i・Δt~t+(i+1)・Δtにおける圧延スラブ番号
    W(s):スラブsの重量
    R(s):スラブsの圧延機における圧下量
    α:係数
    Δt:
P (i) = Σ_s (α × W (s) × Log (R (s))) (1)

P: hot-rolled demand electric energy at time t + i · Δt to t + (i + 1) · Δt s: rolling slab number at time t + i · Δt to t + (i + 1) · Δt W (s): weight of slab s R (s): Reduction amount of slab s in rolling mill α: Coefficient Δt:
 電力制御装置10は、上記式(1)によって算出した時刻tからt+N・Δtまでの熱延工場60の需要電力量の変動と、その他工場70の需要電力量の変動とを足し合わせることにより、製鉄所内の総需要電力量(製鉄所全体の電力需要)の変動を予測する。なお、その他工場70の需要電力量の変動は、トレンド予測(例えば、移動平均法であれば直前の評価期間等の実績電力量平均値を予測値とし、線形回帰法であれば直前の所定期間の線形回帰式による予測を予測値とする等)によって予測する。 The power control apparatus 10 adds the fluctuation of the demand power amount of the hot rolling factory 60 from the time t calculated by the above formula (1) to t + N · Δt and the fluctuation of the demand power amount of the other factory 70, Predict fluctuations in the total power demand in the steelworks (the power demand of the entire steelworks). It should be noted that fluctuations in the amount of power demand for other factories 70 are trend predictions (for example, if the moving average method is used, the actual power amount average value in the immediately preceding evaluation period or the like is used as the predicted value, and if the linear regression method is used, the immediately preceding predetermined period is used. Prediction based on the linear regression formula of
(ステップS3)
 ステップS3では、電力制御装置10の電力変動分離部113が、時刻tからt+N・Δtまでの製鉄所内の総需要電力量の変動に時刻tからt+N・Δtまでの売電量を足し合わせることにより目標発電量を算出し、算出された目標発電量を、低周波電力変動と高周波電力変動とに分離する。なお、時刻tからt+N・Δtまでの各時刻(t+i・Δt~t+(i+1)・Δtの間)の売電量は、売電量積算値の目標値に(1/N・Δt)を乗じた一定値とする。
(Step S3)
In step S3, the power fluctuation separation unit 113 of the power control apparatus 10 adds the amount of power sold from time t to t + N · Δt to the change in total demand power in the ironworks from time t to t + N · Δt. The power generation amount is calculated, and the calculated target power generation amount is separated into low frequency power fluctuation and high frequency power fluctuation. The amount of power sold at each time from t to t + N · Δt (between t + i · Δt to t + (i + 1) · Δt) is a constant obtained by multiplying the target value of the accumulated power sale value by (1 / N · Δt). Value.
 ここで、低周波電力変動とは、自家発電装置40による発電量の増減によって追従可能な電力需要の変動のことを示している。自家発電装置40は、一般的に電力需要の変動に対する応答性が低く、急な電力の要求に対してすぐに電力を供給することができない。前記した低周波電力変動は、このような自家発電装置40であっても電力の供給が可能な、緩慢な電力需要の変動のことである。 Here, the low-frequency power fluctuation indicates a fluctuation in power demand that can be followed by an increase or decrease in the amount of power generated by the private power generator 40. The private power generator 40 generally has low responsiveness to fluctuations in power demand, and cannot supply power immediately in response to a sudden demand for power. The low-frequency power fluctuation described above is a slow fluctuation in power demand that can supply power even with such a private power generator 40.
 一方、高周波電力変動とは、自家発電装置40による発電量の増減によって追従不可能な電力需要の変動のことを示している。すなわち、高周波電力変動は、前記したような応答性の低い自家発電装置40では電力の供給が不可能な、急激な電力需要の変動のことである。 On the other hand, the high-frequency power fluctuation indicates a fluctuation in power demand that cannot be followed by an increase or decrease in the amount of power generated by the private power generator 40. That is, the high-frequency power fluctuation is a rapid fluctuation in power demand that cannot be supplied by the private power generation apparatus 40 with low response as described above.
 また、高周波電力変動は、蓄電装置50による蓄電または放電によって追従可能な電力需要の変動でもある。蓄電装置50は、一般的に電力需要の変動に対する応答性が高く(例えばmsecオーダー)、急な電力の要求に対してすぐに電力を供給することができる。従って、自家発電装置40では電力の供給が不可能な高周波電力変動であっても、蓄電装置50では電力の供給が可能である。 The high-frequency power fluctuation is also a fluctuation in power demand that can be tracked by power storage or discharge by the power storage device 50. The power storage device 50 generally has high responsiveness to fluctuations in power demand (for example, on the order of msec), and can supply power immediately in response to a sudden demand for power. Therefore, even if there is a high-frequency power fluctuation that cannot be supplied by the private power generation device 40, the power storage device 50 can supply power.
 電力変動分離部113は、例えば自家発電装置40によって追従可能な、最大の電力変動の周波数を基準とし、当該周波数以下の電力変動を低周波電力変動とし、当該周波数を超える電力変動を高周波電力変動とすることで、高周波電力変動と低周波電力変動とを分離する。 The power fluctuation separation unit 113 uses, for example, the maximum power fluctuation frequency that can be followed by the private power generation apparatus 40 as a reference, sets power fluctuations below the frequency as low-frequency power fluctuations, and power fluctuations exceeding the frequency as high-frequency power fluctuations. Thus, the high frequency power fluctuation and the low frequency power fluctuation are separated.
(ステップS4)
 ステップS4では、電力制御装置10の発電蓄電指示部114が、低周波電力変動に応じた発電量の時系列データとしての指示量を自家発電装置40に送信する。その結果、自家発電装置40は、受信した発電量の指示量に従って発電量を変更する。
(Step S4)
In step S <b> 4, the power generation / storage instruction unit 114 of the power control device 10 transmits an instruction amount as time-series data of the power generation amount corresponding to the low frequency power fluctuation to the private power generation device 40. As a result, the private power generation device 40 changes the power generation amount according to the received power generation amount.
 また、発電蓄電指示部114は、高周波電力変動に応じた蓄電量/放電量の指示量を蓄電装置50に送信する。その結果、蓄電装置50は、受信した蓄電量/放電量の時系列データとしての指示量に従って、蓄電装置50内部に備える制御装置によってmsecオーダーの制御周期で蓄電量/放電量を変更する。なお、蓄電装置50の充放電指示でも変動吸収できないようなさらに高周期の電力変動は(例えば、m秒未満)、外部電力需給装置90にある潮流制御によって吸収される。 Further, the power generation / storage instruction unit 114 transmits an instruction amount of the storage amount / discharge amount according to the high-frequency power fluctuation to the storage device 50. As a result, the power storage device 50 changes the power storage amount / discharge amount in the control cycle of the msec order by the control device provided inside the power storage device 50 according to the received instruction amount as the time series data of the power storage amount / discharge amount. It should be noted that higher cycle power fluctuations that cannot be absorbed even by the charge / discharge instruction of power storage device 50 (for example, less than m seconds) are absorbed by power flow control in external power supply and demand device 90.
 以上のような構成を備える電力システム1によれば、製造計画情報に基づいて予測した電力需要の変動に基づいて、自家発電装置40に対して発電量の変更を指示するとともに、蓄電装置50に対して蓄電および放電を指示する。すなわち、製造計画から予測した将来の電力需要の変動のうち、自家発電装置40による発電によって追従可能な緩慢な変動分(低周波電力変動)については、当該自家発電装置40によって発電した電力を供給する。一方、自家発電装置40による発電によって追従不可能な急激な変動分(高周波電力変動)については、自家発電装置40よりも応答性の高い蓄電装置50を用い、放電によって電力を供給、あるいは電力が余った場合は蓄電を行う。従って、電力システム1によれば、余剰電力を外部電力網へ売電する際に、電力システム1全体の電力需給を考慮して、当該外部電力網への売電量を制御することができる。 According to the power system 1 having the above-described configuration, the power generation amount is instructed to the private power generation device 40 based on the fluctuation in power demand predicted based on the manufacturing plan information, and the power storage device 50 is instructed. Instruct to store and discharge. That is, among the fluctuations in the future power demand predicted from the production plan, for the slow fluctuations (low frequency power fluctuations) that can be followed by the power generation by the private power generator 40, the power generated by the private power generator 40 is supplied. To do. On the other hand, for rapid fluctuations (high-frequency power fluctuations) that cannot be followed by power generation by the private power generation device 40, the power storage device 50 having higher responsiveness than the private power generation device 40 is used, and power is supplied or discharged. If there is a surplus, charge is performed. Therefore, according to the power system 1, when surplus power is sold to the external power network, the amount of power sold to the external power network can be controlled in consideration of the power supply and demand of the entire power system 1.
 以下、実施例を挙げて本発明をより具体的に説明する。図4では、14:00から16:00までの2時間における製鉄所内の総需要電力量、自家発電装置40による発電量、売電量、蓄電装置50による蓄電量の変動を、本発明を適用した場合と、本発明を適用しない従来の場合とで比較したグラフである。 Hereinafter, the present invention will be described more specifically with reference to examples. In FIG. 4, the present invention is applied to the total demand power amount in the steelworks, the power generation amount by the private power generation device 40, the power sale amount, and the power storage amount variation by the power storage device 50 in two hours from 14:00 to 16:00. It is the graph compared with the case and the conventional case which does not apply this invention.
 図4において、低周波電力変動は破線で示し、高周波電力変動は実線で示している。また、発電量は、グラフ上方向が増加方向であり、30分間の積算値で表され(図中の「工場使用30分積算」参照)、30分ごとにリセットされる。また、売電量は、グラフ下方向が増加方向であり、30分間の積算値で表され(図中の「電力小売30分積算」参照)、30分ごとにリセットされる。また、蓄電量は、グラフ上方向が増加方向であり、上方向に進むと蓄電され、下方向に進むと放電される。そして、売電目標値は、例えば外部電力需給装置90を保有する電力会社との取り決めによって定められた値であり、30分ごとの売電量の積算値である。すなわち、図3に示した制御処理の周期は、この実施例では30分となっている。 In FIG. 4, low frequency power fluctuations are indicated by broken lines, and high frequency power fluctuations are indicated by solid lines. Further, the power generation amount is increased in the upward direction of the graph, and is represented by an integrated value for 30 minutes (see “Factory integrated 30-minute integration” in the figure), and is reset every 30 minutes. In addition, the amount of electric power sold is increasing in the lower direction of the graph, and is represented by an integrated value for 30 minutes (see “Integrated 30 minutes of power retail” in the figure), and is reset every 30 minutes. In addition, the amount of electricity stored is increasing in the upward direction of the graph, and is stored when it goes upward, and discharged when it goes downward. The power sale target value is, for example, a value determined by an agreement with an electric power company that owns the external power supply and demand apparatus 90, and is an integrated value of the amount of power sold every 30 minutes. That is, the cycle of the control process shown in FIG. 3 is 30 minutes in this embodiment.
 図4に示すように、従来の方法では、15:00,16:00における売電量が売電目標値を超過している。これは、自家発電装置40が高周波電力変動に追従できず、余分に電力を発電してしまったことを示している。また、従来の方法では、15:30における売電量が売電目標値よりも不足している。これは、自家発電装置40が高周波電力変動に追従できず、発電できなかったことを示している。このように、従来の方法では、売電量を売電目標値に一致させることが困難である。 As shown in FIG. 4, in the conventional method, the amount of power sold at 15:00 and 16:00 exceeds the power sales target value. This indicates that the private power generation apparatus 40 cannot follow the high frequency power fluctuation and has generated extra power. Further, in the conventional method, the amount of power sold at 15:30 is less than the power sales target value. This indicates that the private power generator 40 cannot follow the high-frequency power fluctuation and cannot generate power. Thus, with the conventional method, it is difficult to match the power sale amount with the power sale target value.
 一方、図4に示すように、本発明に係る方法では、蓄電装置50によって余剰電力を蓄電することで、15:00,15:30,16:00ともに売電量が売電目標値に収まっている。すなわち、14:30~15:00,15:30~16:00では、自家発電装置40によって発電された余分な電力を蓄電装置50によって蓄電し、15:00~15:30では、自家発電装置40による発電のみでは不足する電力を、蓄電装置50による放電によってまかなっている。これらの処理は、前記した図3のステップS4に示すように、電力制御装置10の発電蓄電指示部114が高周波電力変動に応じた蓄電量/放電量の指示量を蓄電装置50に送信し、蓄電装置50の蓄電量/放電量を変更させることで実現することができる。 On the other hand, as shown in FIG. 4, in the method according to the present invention, the surplus power is stored by the power storage device 50, so that the power sales amount falls within the power sales target value at 15:00, 15:30, and 16:00. Yes. That is, at 14:30 to 15:00 and 15:30 to 16:00, excess power generated by the private power generation device 40 is stored by the power storage device 50, and from 15:00 to 15:30, the private power generation device. The electric power that is insufficient only by the power generation by 40 is supplied by the discharge by the power storage device 50. In these processes, as shown in step S4 of FIG. 3 described above, the power generation / storage instruction unit 114 of the power control device 10 transmits an instruction amount of the storage amount / discharge amount according to the high-frequency power fluctuation to the storage device 50, This can be realized by changing the amount of stored electricity / the amount of discharge of the power storage device 50.
 さらに、図4に示すように、15:30~16:00では、低周波電力変動に従って自家発電装置40の発電量を低く制御することで、無駄な発電を抑えている。この処理は、前記した図3のステップS4に示すように、電力制御装置10の発電蓄電指示部114が低周波電力変動に応じた発電量の指示量を自家発電装置40に送信し、自家発電装置40の発電量を変更させることで実現することができる。 Further, as shown in FIG. 4, between 15:30 and 16:00, useless power generation is suppressed by controlling the power generation amount of the private power generator 40 in accordance with the low frequency power fluctuation. In this process, as shown in step S4 of FIG. 3 described above, the power generation / storage instruction unit 114 of the power control apparatus 10 transmits an instruction amount of the power generation amount corresponding to the low frequency power fluctuation to the private power generation apparatus 40, and private power generation This can be realized by changing the power generation amount of the device 40.
 以上、本発明に係る電力システムについて、発明を実施するための形態および実施例により具体的に説明したが、本発明の趣旨はこれらの記載に限定されるものではなく、特許請求の範囲の記載に基づいて広く解釈されなければならない。また、これらの記載に基づいて種々変更、改変等したものも本発明の趣旨に含まれることはいうまでもない。 The power system according to the present invention has been specifically described with reference to the embodiments and examples for carrying out the invention. However, the gist of the present invention is not limited to these descriptions, and the description of the claims Should be interpreted widely. Needless to say, various changes and modifications based on these descriptions are also included in the spirit of the present invention.
 本発明は、システム全体の電力需要を考慮して売電量を制御することができるため、電力システムに適用することができる。 The present invention can be applied to an electric power system because the amount of electric power sold can be controlled in consideration of the electric power demand of the entire system.
 1 電力システム
 10 電力制御装置
 11 演算処理部
 111 製造計画取得部
 112 電力需要予測部
 113 電力変動分離部
 114 発電蓄電指示部
 12 ROM
 121 電力制御プログラム
 13 RAM
 14 伝送路
 15 入出力ポート
 20 データベース
 30 送電線
 40 自家発電装置
 50 蓄電装置
 60 熱延工場
 70 その他工場
 80 伝送路
 90 外部電力需給装置
 100 連結点
DESCRIPTION OF SYMBOLS 1 Electric power system 10 Electric power control apparatus 11 Arithmetic processing part 111 Manufacturing plan acquisition part 112 Electric power demand prediction part 113 Electric power fluctuation separation part 114 Electric power generation electrical storage instruction | indication part 12 ROM
121 Power control program 13 RAM
DESCRIPTION OF SYMBOLS 14 Transmission path 15 Input / output port 20 Database 30 Transmission line 40 Private power generation apparatus 50 Power storage apparatus 60 Hot rolling factory 70 Other factory 80 Transmission path 90 External power supply and demand apparatus 100 Connection point

Claims (5)

  1.  電力需要設備を有する工場と、発電した電力を前記工場に対して供給する自家発電装置と、前記工場と前記自家発電装置とを結ぶ送電線と、を備え、前記送電線を介して、余剰電力を外部電力需給装置に対して売電する電力システムにおいて、
     前記送電線に接続され、前記自家発電装置によって発電された電力を蓄電するとともに、蓄電した電力を前記工場に対して供給する蓄電装置と、
     前記工場の製造計画情報が蓄積されたデータベースと、
     前記製造計画情報に基づいて前記工場における将来の電力需要を予測し、予測された電力需要の変動に基づいて、前記自家発電装置に対して発電量の変更を指示するとともに、前記蓄電装置に対して蓄電および放電を指示する電力制御装置と、
     を備えることを特徴とする電力システム。
    A factory having power demand equipment, a private power generation device that supplies the generated power to the factory, and a transmission line that connects the factory and the private power generation device, and surplus power via the transmission line In the power system that sells power to external power supply and demand equipment,
    A power storage device connected to the power transmission line and storing the power generated by the private power generation device, and supplying the stored power to the factory;
    A database in which manufacturing plan information of the factory is accumulated;
    Predicting future power demand in the factory based on the manufacturing plan information, instructing the private power generation apparatus to change the amount of power generation based on the predicted fluctuation in power demand, and A power control device for instructing storage and discharge,
    An electric power system comprising:
  2.  前記電力制御装置は、
     前記データベースから前記製造計画情報を取得する製造計画取得部と、
     前記製造計画情報に基づいて前記工場における将来の電力需要を予測する電力需要予測部と、
     前記電力需要の変動から、前記自家発電装置によって追従可能な電力変動である低周波電力変動と、前記自家発電装置によって追従不可能かつ前記蓄電装置によって追従可能な電力変動である高周波電力変動と、を分離する電力変動分離部と、
     前記低周波電力変動に応じた発電量を前記自家発電装置に対して指示するとともに、前記高周波電力変動に応じた蓄電量または放電量を前記蓄電装置に対して指示する発電蓄電指示部と、
     を備えることを特徴とする請求項1に記載の電力システム。
    The power control device
    A production plan obtaining unit for obtaining the production plan information from the database;
    A power demand prediction unit for predicting a future power demand in the factory based on the manufacturing plan information;
    From the fluctuation of the power demand, low frequency power fluctuation that is power fluctuation that can be followed by the private power generation apparatus, and high frequency power fluctuation that is power fluctuation that cannot be followed by the private power generation apparatus and can be followed by the power storage apparatus, A power fluctuation separation unit that separates
    A power generation / storage instruction unit that instructs the private power generation apparatus to generate power according to the low-frequency power fluctuation, and that instructs the power storage apparatus to store power or discharge according to the high-frequency power fluctuation;
    The power system according to claim 1, further comprising:
  3.  前記蓄電装置は、前記自家発電装置と比較して、電力需要の変動に対する応答速度が速いことを特徴とする請求項1または請求項2に記載の電力システム。 The power system according to claim 1 or 2, wherein the power storage device has a faster response speed to fluctuations in power demand than the private power generation device.
  4.  前記蓄電装置は、フライホイール装置、二次電池またはキャパシタであることを特徴とする請求項3に記載の電力システム。 4. The power system according to claim 3, wherein the power storage device is a flywheel device, a secondary battery, or a capacitor.
  5.  製鉄所内のシステムであることを特徴とする請求項1から請求項4のいずれか一項に記載の電力システム。 The electric power system according to any one of claims 1 to 4, wherein the electric power system is a system in an ironworks.
PCT/JP2016/071511 2015-07-22 2016-07-22 Electric power system WO2017014293A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016564649A JP6365686B2 (en) 2015-07-22 2016-07-22 Power system
KR1020187001180A KR102006581B1 (en) 2015-07-22 2016-07-22 Electric power system
CN201680042292.2A CN107851999B (en) 2015-07-22 2016-07-22 Electric power system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015144655 2015-07-22
JP2015-144655 2015-07-22

Publications (1)

Publication Number Publication Date
WO2017014293A1 true WO2017014293A1 (en) 2017-01-26

Family

ID=57835095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071511 WO2017014293A1 (en) 2015-07-22 2016-07-22 Electric power system

Country Status (4)

Country Link
JP (1) JP6365686B2 (en)
KR (1) KR102006581B1 (en)
CN (1) CN107851999B (en)
WO (1) WO2017014293A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7042984B1 (en) * 2021-02-26 2022-03-28 三菱電機株式会社 Command device, charge / discharge control system, power control system, central command device, set value management device, charge / discharge control method and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021022112A (en) * 2019-07-26 2021-02-18 トヨタ自動車株式会社 Energy management system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013093917A (en) * 2011-10-24 2013-05-16 Panasonic Corp Energy management device, energy management system and program
WO2013121514A1 (en) * 2012-02-14 2013-08-22 東芝三菱電機産業システム株式会社 Power equalisation device
JP2014217198A (en) * 2013-04-26 2014-11-17 株式会社東芝 Power storage amount management device and power storage amount management system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0622066A2 (en) * 2006-10-16 2014-05-27 Vpec Inc ELECTRIC POWER SYSTEM.
JP2012249476A (en) * 2011-05-30 2012-12-13 Panasonic Corp Power supply system
KR101243192B1 (en) * 2011-08-02 2013-03-25 한국전기연구원 Method and System for controlling output of wind power generation equipment
KR101846026B1 (en) * 2011-10-25 2018-04-06 한국전력공사 Method and system for managing electric power demand based on prior prediction of electric power demand
JP5957235B2 (en) * 2012-01-30 2016-07-27 株式会社東芝 Operation planning system
JP2014050256A (en) * 2012-08-31 2014-03-17 Hitachi Ltd Factory energy management system, power management device, and factory energy management method
JP6054122B2 (en) * 2012-09-28 2016-12-27 株式会社東芝 Railway power management equipment
JP6043576B2 (en) 2012-10-10 2016-12-14 株式会社日立製作所 Storage battery system and power plant control system
KR101397746B1 (en) * 2012-11-20 2014-05-21 한국과학기술원 Method and system for smart power management

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013093917A (en) * 2011-10-24 2013-05-16 Panasonic Corp Energy management device, energy management system and program
WO2013121514A1 (en) * 2012-02-14 2013-08-22 東芝三菱電機産業システム株式会社 Power equalisation device
JP2014217198A (en) * 2013-04-26 2014-11-17 株式会社東芝 Power storage amount management device and power storage amount management system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7042984B1 (en) * 2021-02-26 2022-03-28 三菱電機株式会社 Command device, charge / discharge control system, power control system, central command device, set value management device, charge / discharge control method and program
WO2022180799A1 (en) * 2021-02-26 2022-09-01 三菱電機株式会社 Command device, charge/discharge control system, power control system, central command device, setting value management device, storage battery, charge/discharge control method, and program

Also Published As

Publication number Publication date
KR102006581B1 (en) 2019-08-01
KR20180017171A (en) 2018-02-20
CN107851999B (en) 2020-10-16
JP6365686B2 (en) 2018-08-01
CN107851999A (en) 2018-03-27
JPWO2017014293A1 (en) 2017-07-27

Similar Documents

Publication Publication Date Title
TWI397864B (en) Method of making operation plan for an energy storage equipment and operation plan making equipment
JP2007330002A (en) Power monitoring measurement control system of micro-grid, its power monitoring measurement control method and power monitoring measurement control program
JP4808754B2 (en) Natural energy power generation control system
KR102181879B1 (en) Hour-ahead price based energy management method and system for industrial facilities
JP7120600B2 (en) Processing device, processing method and program
JP6365686B2 (en) Power system
JP6499534B2 (en) Demand controller
TWI524619B (en) Power management apparatus
Hu et al. Multi-parameter deep-perception and many-objective autonomous-control of rolling schedule on high speed cold tandem mill
Sarkar et al. Optimal reliability, production lotsize and safety stock: An economic manufacturing quantity model
Mohammed et al. Performance of exponential smoothing, a neural network and a hybrid algorithm to the short term load forecasting of batch and continuous loads
JP2011114919A (en) Economical load distribution control device and economical load distribution control method
JP2017070134A (en) Power prediction method
CN104899646A (en) Predictive maintenance method for multi-device hybrid system
JP6413262B2 (en) Power demand control device, power demand control method, power demand control system, program, and recording medium
JP5268961B2 (en) Power supply system control method and power supply system
JP6157901B2 (en) Supply and demand control system and supply and demand control device for power system
Yao et al. Design, implementation and testing of an intelligent knowledge-based system for the supervisory control of a hot rolling mill
JP6160705B2 (en) Electric power supply / demand guidance apparatus and electric power supply / demand guidance method
JP2009183077A (en) Generated power adjusting method of manufacture plant power generation facility
JP2020061796A (en) Operation plan optimization device
Fang et al. An adaptive job shop scheduling mechanism for disturbances by running reinforcement learning in digital twin environment
JP6593000B2 (en) Energy supply and demand planning device and program
CN109818352B (en) Distribution network emergency power supply vehicle scheduling method based on approximate dynamic programming algorithm
Xenos et al. Operational optimization of compressors in parallel considering condition-based maintenance

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016564649

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16827853

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187001180

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16827853

Country of ref document: EP

Kind code of ref document: A1