JP2007330002A - Power monitoring measurement control system of micro-grid, its power monitoring measurement control method and power monitoring measurement control program - Google Patents

Power monitoring measurement control system of micro-grid, its power monitoring measurement control method and power monitoring measurement control program Download PDF

Info

Publication number
JP2007330002A
JP2007330002A JP2006157896A JP2006157896A JP2007330002A JP 2007330002 A JP2007330002 A JP 2007330002A JP 2006157896 A JP2006157896 A JP 2006157896A JP 2006157896 A JP2006157896 A JP 2006157896A JP 2007330002 A JP2007330002 A JP 2007330002A
Authority
JP
Japan
Prior art keywords
power
value
power generation
maximum
commercial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006157896A
Other languages
Japanese (ja)
Other versions
JP4189930B2 (en
Inventor
Wataru Goto
亘 後藤
Hidetoshi Takada
英俊 高田
Koji Iwadate
考治 岩館
Takashige Kobayashi
隆重 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Facilities Inc
Original Assignee
NTT Facilities Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Facilities Inc filed Critical NTT Facilities Inc
Priority to JP2006157896A priority Critical patent/JP4189930B2/en
Publication of JP2007330002A publication Critical patent/JP2007330002A/en
Application granted granted Critical
Publication of JP4189930B2 publication Critical patent/JP4189930B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a power monitoring measurement control system which can surely prevent a reverse power flow or reselling caused by the change of a demand, and to obtain a power monitoring measurement control method and a power monitoring measurement control program. <P>SOLUTION: The micro-grid 1 includes a power customer facility LM at a micro-grid power receiving point for receiving the supply of commercial system point power P1 from a general electric power supplier power network 2, other power customer facilities L1... LL, and one or more distributed power supplies K1... KK which feed power to these facilities. The micro-grid operates a maximum power fluctuation value by receiving power measurement values of a maximum value and a minimum value of the commercial system point power P1 at each instantaneous time band, receives the maximum power fluctuation value of the past same instantaneous time band and compares it with the operated maximum power fluctuation value, creates a power generation plan of the next day of each distributed power supply on the basis of the larger maximum power fluctuation value, and performs the operation control of a current day on the basis of the power generation plan. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、マイクログリッドにおける電力監視計測制御システム、その電力監視計測制御方法及びその電力監視計測制御プログラムに関する。   The present invention relates to a power monitoring measurement control system in a microgrid, a power monitoring measurement control method thereof, and a power monitoring measurement control program thereof.

マイクログリッドは、小規模な複数の発電施設と複数の需要施設をまとめて最適制御し、電気需要の平滑化、施設利用率の向上及びエネルギー利用率の向上を図って、電気や熱などのエネルギーを低コストで安定供給するシステムとして研究が進められている。   The microgrid is designed to optimally control multiple small-scale power generation facilities and multiple demand facilities to smooth electricity demand, improve facility utilization rates, and improve energy utilization rates. Research is underway as a system that stably supplies low-cost products.

ここで、電力供給には、まず電気供給約款上の制約があり、これは商用電力系統への分散型電源からの逆潮流が契約及び許可なき限り禁止されることである。また、事業法上の制約より商用電力系統から購入した電力の転売が禁止されることがある。   Here, the power supply is first limited in terms of the power supply contract, which means that reverse power flow from the distributed power source to the commercial power system is prohibited unless contracted and permitted. In addition, resale of power purchased from the commercial power system may be prohibited due to restrictions in the business law.

従来から、分散型電源から商用電力系統へ電力が逆流するのを防止する技術が考えられてきている。有効電力の消費量を制御する負荷装置を備えるもの(例えば特許文献1参照)。また、電力会社の電力系統への逆潮流の発生を検出する逆潮流検出手段を設け、逆潮流の発生時に、電力系統の主回路から主発電装置の主電力供給回路と副発電装置の副電力供給回路を、瞬時に、遮断する瞬時回路遮断手段を設けて構成するもの(例えば特許文献2参照)がある。また、逆潮流防止の考え方は含まれていないが、所定地域内の分散型電源を備えた電力需要家を含む複数の電力需要家への配電とこれら需要家間の電力需給を低コストで行なうことができると共に、電力系統を安定させるため、分散型電源に入力され、又は、出力されるエネルギーを貯蔵するエネルギー貯蔵設備と、電力売買装置により購入された所定の電力量と分散型電源からの総発電電力量とをコミュニティ内の電力需要家に各々の電力需要に応じて配分し、その配分の際に、電力総需要量と総供給量とに差があるときは、その差を解消するように分散型電源の運転を分散型電源制御装置を介して制御して電力の需給を調整する電力需要制御装置と、を具備しているものがある(例えば特許文献3参照)。さらに、現行の電力制御システムでは、変動には配慮せず30分間の積算電力量の需給バランスを監視し分散型電源の発電計画をし、当日の運用制御をする30分の同時同量制御と呼ばれるものも用いられている。
特開平05−056564号公報(第1頁要約書、図1) 特開2002−374628号公報(第1頁要約書、図1) 特開2002−010500号公報(第1頁要約書、図1)
Conventionally, a technique for preventing power from flowing back from a distributed power source to a commercial power system has been considered. A load device that controls the amount of active power consumption is provided (see, for example, Patent Document 1). In addition, reverse power flow detection means is provided for detecting the occurrence of reverse power flow in the power system of the power company. When reverse power flow occurs, the main power supply circuit of the main power generator and the sub power of the sub power generator Some supply circuits are configured by providing instantaneous circuit interruption means for instantaneously interrupting the supply circuit (see, for example, Patent Document 2). In addition, although the concept of preventing reverse power flow is not included, power is distributed to a plurality of power consumers including a power consumer with a distributed power source in a predetermined area, and power supply and demand between these consumers is performed at a low cost. In order to stabilize the power system, the energy storage facility for storing the energy input to or output from the distributed power source, the predetermined amount of power purchased by the power trading device and the distributed power source Distribute the total amount of generated power to the electricity consumers in the community according to each power demand. If there is a difference between the total power demand and the total supply, the difference is resolved. As described above, there is a power demand control device that controls the operation of the distributed power source via the distributed power source control device to adjust the power supply and demand (see, for example, Patent Document 3). In addition, the current power control system monitors the balance between supply and demand for 30 minutes of integrated power without considering fluctuations, makes a power generation plan for distributed power sources, and performs the same amount control for 30 minutes to control the operation on the day. What is called is also used.
Japanese Patent Laid-Open No. 05-056564 (summary of first page, FIG. 1) JP 2002-374628 A (1st page abstract, FIG. 1) Japanese Patent Laid-Open No. 2002-010500 (first page abstract, FIG. 1)

しかしながら、従来の技術は、単に逆潮流またはその虞を計測し、逆潮流を防止するものか、エネルギー貯蔵設備と分散型電源制御を用いて電力の需給を調整するものであり、商用系統電力の遮断が行われたり、需給の変化への追随性能の遅れによる問題があった。また、実際の需要電力変動は、ポンプやエレベータなどの回転機のスイッチ入力などにより短時間に大きな変動が生じており、上記の30分の同時同量制御と呼ばれるものにあっても、上記のように、短時間に発生する実際の電力変動による逆潮流の防止に対応できなかった。   However, the conventional technology merely measures the reverse power flow or the risk thereof and prevents the reverse power flow, or adjusts the power supply and demand using energy storage equipment and distributed power control. There were problems due to blocking and delay in performance following changes in supply and demand. In addition, the actual fluctuation in power demand has a large fluctuation in a short time due to the input of a switch of a rotary machine such as a pump or an elevator. Thus, it was not possible to cope with the prevention of reverse power flow due to actual power fluctuations occurring in a short time.

本発明は、需給の変化によって生じる逆潮流を、的確に防止できるマイクログリッドの電力監視計測制御システム、その電力監視計測制御方法及びその電力監視計測制御プログラムを提供することを課題とする。   It is an object of the present invention to provide a microgrid power monitoring measurement control system, a power monitoring measurement control method thereof, and a power monitoring measurement control program thereof that can accurately prevent a reverse power flow caused by a change in supply and demand.

上記課題を解決するため、本発明は、一般電気事業者電力網から商用系統電力の供給を受けるマイクログリッド受電点の電力需要家設備と、これに電力を供給する1以上の分散型電源とを含むマイクログリッドにおける電力監視計測制御システムであって、瞬時時間帯毎の商用系統点電力の最大値と最小値の電力計測値を受けて最大電力変動値を演算し、同時刻瞬時時間帯の中で過去最大の最大電力変動値を受けて、前記演算した最大電力変動値と比較して大きい方の最大電力変動値に基づき、前記各分散型電源の翌日の発電計画を行い、この発電計画に基づき当日の運用制御を行う発電計画策定手段を有するマイクログリッドの電力監視計測制御システムとする。これによって、実際の需要電力変動における、ポンプやエレベータなどの回転機のスイッチ入力などによる短時間に生じる大きな変動を感知し、実際の電力変動による逆潮流の防止に対応できる。時間帯間隔を短くすると、より実際の電力変動に近くなる傾向にあることを活用し、瞬時時間帯毎の電力需要の最大変動値に応じてあらかじめ翌日の発電計画値を定める、これに基づき当日の運用制御を行い、需給の変化によって生じる逆潮流を、的確に防止できる。   In order to solve the above-described problems, the present invention includes a power consumer facility of a microgrid receiving point that receives supply of commercial grid power from a general electric utility power grid, and one or more distributed power sources that supply power to the power grid. It is a power monitoring measurement control system in a microgrid, which calculates the maximum power fluctuation value by receiving the maximum and minimum power measurement values of commercial grid point power for each instantaneous time zone, and within the instantaneous time zone at the same time In response to the maximum power fluctuation value in the past, based on the maximum power fluctuation value that is larger than the calculated maximum power fluctuation value, the power generation plan for the next day of each distributed power source is performed. A microgrid power monitoring and measurement control system having a power generation plan formulation means for performing operation control on the day is assumed. Accordingly, it is possible to sense a large fluctuation that occurs in a short time due to a switch input of a rotary machine such as a pump or an elevator in an actual fluctuation in power demand, and to cope with prevention of reverse power flow due to an actual fluctuation in electric power. By making use of the fact that shortening the time period interval tends to be closer to actual power fluctuations, the power generation plan value for the next day is determined in advance according to the maximum fluctuation value of power demand for each instantaneous time period. It is possible to accurately prevent reverse currents caused by changes in supply and demand.

また、前記各分散型電源の前記翌日の発電計画と前記当日の運用制御が、商用系統点への分散型電源発電電力の逆潮流防止を条件とするマイクログリッドの電力監視計測制御システムとすれば、実際の需要電力変動における、ポンプやエレベータなどの回転機のスイッチ入力などによる短時間に生じる大きな変動を感知し、実際の電力変動による逆潮流の防止に対応できる。   In addition, if the power generation plan for the next day and the operation control on the day for each distributed power source is a microgrid power monitoring measurement control system that is provided with the condition of preventing the reverse power flow of the distributed power generation power to the commercial grid point. It is possible to detect a large fluctuation that occurs in a short time due to a switch input of a rotary machine such as a pump or an elevator in an actual fluctuation in power demand, and to cope with prevention of reverse power flow due to an actual power fluctuation.

また、前記瞬時時間帯毎に、前記マイクログリッド受電点の電力需要家設備需要電力予測値から前記商用系統点電力の前記比較して大きい方の最大電力変動値を引いた最大発電計画値以下に、前記瞬時時間帯の分散型電源の翌日の発電計画値を定めるマイクログリッドの電力監視計測制御システムとすれば、商用系統点へのマイクログリッドからの逆潮流の防止を的確に図ることができる。   In addition, for each instantaneous time period, below the maximum power generation plan value obtained by subtracting the larger maximum power fluctuation value of the commercial grid point power from the power consumer facility demand power predicted value of the microgrid power receiving point. If the power monitoring measurement control system of the microgrid that determines the power generation plan value for the next day of the distributed power supply in the instantaneous time zone is used, it is possible to accurately prevent the reverse power flow from the microgrid to the commercial grid point.

また、前記分散型電源を発電コストの安い順から、前記最大発電計画値以下の電力供給量まで積み上げ選定するマイクログリッドの電力監視計測制御システムとすれば、電力コストを適切に下げることができる。   Further, if the distributed power source is a microgrid power monitoring measurement control system in which the power supply cost is selected from the lowest power generation cost up to the maximum power generation plan value, the power cost can be appropriately reduced.

また、前記最大発電計画値以下の電力供給量までの前記分散型電源の積み上げ選定が、前記分散型電源のいずれかの故障をも予測して行われるマイクログリッドの電力監視計測制御システムとすれば、分散型電源の故障によって生じるコストの上昇を抑えることが可能となる。   In addition, if the microgrid power monitoring measurement control system in which the selection of stacking of the distributed power sources up to the power supply amount equal to or less than the maximum power generation plan value is performed by predicting any failure of the distributed power sources is performed. It is possible to suppress an increase in cost caused by the failure of the distributed power source.

また、商用系統点電力の計測値に異常検知の閾値を設定し、この計測値が前記閾値を超えた場合、直ちに修正発電計画を演算し前記分散型電源へ再指令するマイクログリッドの電力監視計測制御システムとすれば、異常検知の閾値の設定によって、修正発電計画の実行を可能とし、的確な対応処置をとることができる。   In addition, an abnormality detection threshold value is set for the measured value of commercial grid point power, and when this measured value exceeds the threshold value, a corrected power generation plan is immediately calculated and re-directed to the distributed power source. In the case of the control system, it is possible to execute the corrected power generation plan by setting the abnormality detection threshold value and to take an appropriate countermeasure.

一方で、本発明は、一般電気事業者電力網から商用系統電力の供給を受けるマイクログリッド受電点の電力需要家設備と、他の電力需要家設備と、これらに電力を供給する1以上の分散型電源とを含むマイクログリッドにおける電力監視計測制御システムであって、瞬時時間帯毎の商用系統点電力と商用連系点潮流電力の各々の最大値と最小値の計測値を受けて、それぞれの最大電力変動値を演算し、それぞれ同時刻瞬時時間帯の中で過去最大の最大電力変動値と比較して大きい方の最大電力変動値に基づき、前記各分散型電源の翌日の発電計画を行い、この発電計画に基づき当日の運用制御を行うマイクログリッドの電力監視計測制御システムとする。これによって、実際の需要電力変動における、ポンプやエレベータなどの回転機のスイッチ入力などによる短時間に生じる大きな変動を感知し、実際の電力変動による逆潮流の防止と転売防止を的確に図ることが可能となる。時間帯間隔を短くすると、より実際の電力変動に近くなる傾向にあることを活用し、瞬時時間帯毎の電力需要の最大変動値に応じてあらかじめ翌日の発電計画値を定める、これに基づき当日の運用制御を行い、需給の変化によって生じる逆潮流と転売を、的確に防止できる。   On the other hand, the present invention provides a power consumer facility of a microgrid power receiving point that receives supply of commercial grid power from a general electric utility power network, another power consumer facility, and one or more distributed types that supply power to these facilities. A power monitoring and measurement control system in a microgrid including a power supply, which receives the maximum and minimum measured values of commercial grid point power and commercial grid point power for each instantaneous time zone, Calculate the power fluctuation value, and based on the maximum power fluctuation value that is larger than the maximum power fluctuation value of the past in the same time instant time zone, perform the power generation plan for the next day of each distributed power source, A microgrid power monitoring measurement control system that performs operation control on the day based on this power generation plan. As a result, it is possible to detect large fluctuations that occur in a short time due to switch inputs of rotating machines such as pumps and elevators in actual demand power fluctuations, and to accurately prevent reverse power flow and resale prevention due to actual power fluctuations. It becomes possible. By making use of the fact that shortening the time period interval tends to be closer to actual power fluctuations, the power generation plan value for the next day is determined in advance according to the maximum fluctuation value of power demand for each instantaneous time period. By controlling the operation, reverse flow and resale caused by changes in supply and demand can be accurately prevented.

また、前記各分散型電源の翌日の発電計画と当日の運用制御とが、商用系統点への分散型電源発電電力の逆潮流防止と、マイクログリッド内の商用連系点から前記他の電力需要設備への商用電力の転売防止を条件とするマイクログリッドの電力監視計測制御システムとすれば、実際の需要電力変動における、ポンプやエレベータなどの回転機のスイッチ入力などによる短時間に生じる大きな変動を感知し、実際の電力変動による逆潮流の防止と転売防止とに対応できる。   In addition, the power generation plan on the next day of each of the distributed power sources and the operation control on the same day prevent reverse power flow of the distributed power generation power to the commercial grid point, and the other power demand from the commercial interconnection point in the microgrid. With a microgrid power monitoring measurement control system that requires the prevention of resale of commercial power to facilities, large fluctuations that occur in a short time due to switch inputs of rotating machines such as pumps and elevators in actual demand power fluctuations. It can detect and respond to prevention of reverse power flow and resale due to actual power fluctuations.

また、前記瞬時時間帯毎に、前記全需要家設備需要電力予測値から前記商用系統点電力の前記比較して大きい方の最大電力変動値を引いた最大発電計画値と、マイクログリッド受電点の需要家設備以外の全電力需要家設備需要電力予測値に、前記商用連系点潮流電力の前記比較して大きい方の最大電力変動値を加えた最小発電計画値との間に、前記瞬時時間帯の前記分散型電源の翌日の発電計画値を定めるマイクログリッドの電力監視計測制御システムとすれば、商用系統点へのマイクログリッドからの逆潮流の防止と商用電力の転売防止を的確に図ることができる。   Further, for each instantaneous time zone, a maximum power generation plan value obtained by subtracting the larger maximum power fluctuation value of the commercial grid point power from the predicted power demand value of all the customer facilities, and a micro grid power receiving point The instantaneous time between the predicted value of power demand for all power facilities other than the customer facilities and the minimum power generation plan value obtained by adding the larger maximum power fluctuation value of the commercial interconnection tidal power compared to the power generation point. If it is a microgrid power monitoring measurement control system that determines the power generation plan value for the next day of the distributed power source in the belt, it will accurately prevent the reverse power flow from the microgrid to the commercial grid point and the resale of commercial power Can do.

また、前記最大発電計画値と、前記最小発電計画値とが、逆転した大きさの値となる場合にもその間に前記瞬時時間帯の分散型電源の翌日の発電計画値を定めるマイクログリッドの電力監視計測制御システムとすれば、前記最大発電計画値と、前記最小発電計画値とが、逆転した大きさの値となる場合にも、商用系統点へのマイクログリッドからの逆潮流の防止と商用電力の転売防止を効果的に図ることができる。   In addition, even when the maximum power generation plan value and the minimum power generation plan value are reversed in value, the power of the microgrid that determines the power generation plan value of the next day of the distributed power source in the instantaneous time period between them. With the monitoring measurement control system, even if the maximum power generation plan value and the minimum power generation plan value are reversed, the reverse power flow from the microgrid to the commercial grid point can be prevented and It is possible to effectively prevent the resale of electric power.

また、前記その間の前記瞬時時間帯の分散型電源の翌日の発電計画値を、商用系統点電力の最大電力変動値と商用連系点潮流電力の最大電力変動値より、マイクログリッド受電点の需要家設備以外の全電力需要家設備需要電力予測値に、マイクログリッド受電点の需要家設備需要電力予測値に〔商用連系点潮流最大電力変動値÷(商用連系点潮流最大電力変動値+商用系統点最大電力変動値)〕を掛けたものを加えた値に定めるマイクログリッドの電力監視計測制御システムとすれば、前記最大発電計画値と、前記最小発電計画値とが、逆転した大きさの値となる場合にも、商用系統点へのマイクログリッドからの逆潮流の防止と商用電力の転売防止をより的確に図ることができる。   In addition, the power generation plan value for the next day of the distributed power source in the instantaneous time period in the meantime is calculated based on the maximum power fluctuation value of the commercial grid point power and the maximum power fluctuation value of the commercial interconnection point power flow. Total power demand other than house equipment is estimated to be the estimated power demand value of the customer equipment at the microgrid power receiving point [maximum power fluctuation value of commercial interconnection point ÷ (maximum power fluctuation value of commercial interconnection point + In the case of a microgrid power monitoring measurement control system determined by adding a value obtained by multiplying the value obtained by multiplying the commercial grid point maximum power fluctuation value)], the maximum power generation plan value and the minimum power generation plan value are reversed. Even when the value becomes the value, it is possible to more accurately prevent the reverse power flow from the microgrid to the commercial grid point and the commercial power resale.

また、前記分散型電源を発電コストの安い順に積み上げ選定を行い前記全電力需要家設備需要電力予測値から積み上げた発電電力を引いた値を商用電力とする運転制御手段を含み、通常は、商用電力コストより安い発電コストの前記分散型電源を前記マイクログリッド受電点需要家設備以外の全電力需要家設備需要電力予測値に前記商用連系点潮流電力の前記比較して大きい方の最大電力変動値を加えた最小発電計画値を越えて、前記全電力需要家設備需要電力予測値から前記商用系統点電力の前記比較して大きい方の最大電力変動値を引いた最大発電計画値を越えない発電電力まで発電コストの安い順に積み上げ選定を行い前記全電力需要家設備需要電力予測値から積み上げた発電電力を引いた値を商用電力とし、前記最小発電計画値に商用電力より安い発電コストの分散型電源のみで積み上げできない場合は、更に商用電力より高い分散型電源を発電コストの安い順に、最小発電計画値丁度になるまで積み上げ選定を行い、前記全電力需要家設備需要電力予測値から積み上げた発電電力を引いた値を商用電力とし、前記最大発電計画値以上に商用電力より安い発電コストの分散型電源のみで積み上げられる場合は、最大発電計画値丁度になるまで積み上げ選定を行い、前記全電力需要家設備需要電力予測値から積み上げた発電電力を引いた値を商用電力とするマイクログリッドの電力監視計測制御システムとすれば、電力コストを下げることができ、経済的である。   The distributed power source includes operation control means for selecting commercial power as a value obtained by subtracting the generated power from the estimated power demand value of all power consumer equipment by selecting and stacking the distributed power sources in ascending order of power generation cost. The distributed power source having a power generation cost lower than the power cost is set to the predicted power demand value of all power consumer facilities other than the microgrid power receiving point customer facility. The maximum power generation plan value obtained by subtracting the larger maximum power fluctuation value of the commercial grid point power from the total power consumer facility demand power prediction value does not exceed the minimum power generation plan value added with the value. The power generation cost is selected in ascending order of power generation cost, and the value obtained by subtracting the power generation power accumulated from the estimated power demand for all power customer facilities is used as commercial power, and the value is calculated as the minimum power generation plan value. If it is not possible to build up only with a distributed power source with a power generation cost lower than that of electric power, we will further select a distributed power source higher than commercial power in order from the lowest power generation cost until the minimum power generation plan value is reached. When the value obtained by subtracting the generated power accumulated from the predicted power demand value is used as commercial power, and it is stacked only with a distributed power source with a power generation cost lower than the commercial power above the maximum power generation plan value, until the maximum power generation plan value is reached. By selecting a stack and making it a microgrid power monitoring measurement control system that uses the value obtained by subtracting the generated power accumulated from the predicted power demand for all power customer facilities as the commercial power, the power cost can be reduced, and the economy Is.

また、前記最大発電計画値と、前記最小発電計画値とが、逆転した大きさの値となる場合に、前記発電計画値から受電一定制御する分散型電源の送電可能容量の1/2を引いた値まで発電コストの安い順に分散型電源を積み上げ、前記全電力需要家設備需要電力予測値から前記発電計画値を引いた値を商用電力とするマイクログリッドの電力監視計測制御システムとすれば、前記最大発電計画値と、前記最小発電計画値とが、逆転した大きさの値となる場合にも、電力コストを下げることができ、経済的である。   In addition, when the maximum power generation plan value and the minimum power generation plan value are reversed, the power generation capacity is subtracted from the power generation capacity of the distributed power source with constant power reception control. If it is a power monitoring measurement control system of a microgrid that accumulates distributed power sources in the order of cheaper power generation cost to the value and subtracts the power generation plan value from the total power consumer facility demand power predicted value as commercial power, Even when the maximum power generation plan value and the minimum power generation plan value are reversed, the power cost can be reduced, which is economical.

また、前記全電力需要家設備電力の需要を越えない電力供給量までの前記分散型電源の積み上げ選定が、前記分散型電源のいずれかの故障を予測して行われるマイクログリッドの電力監視計測制御システムとすれば、分散型電源のいずれかに故障が生じた場合にも、経済性を追求するとともに、転売の防止を図ることができる。   In addition, the power monitoring and measurement control of the microgrid, in which the selection of stacking of the distributed power sources up to the amount of power supply that does not exceed the demand of the total power customer facility power is performed by predicting any failure of the distributed power sources If it is a system, even if a failure occurs in any of the distributed power sources, it is possible to pursue economic efficiency and prevent resale.

また、商用系統点電力の計測値と商用連系点潮流電力の計測値との両方に異常検知の閾値を設定し、これらいずれかの計測値が前記閾値を超えた場合、前記閾値から前記計測値を引いた値に前記同時刻瞬時時間帯の中で過去最大の最大電力変動値を加えた値を前記同時刻瞬時時間帯の新しい過去最大の最大電力変動値として、直ちに修正発電計画を演算し前記分散型電源へ再指令するマイクログリッドの電力監視計測制御システムとすれば、異常検知の閾値の設定によって、修正発電計画の実行を可能とし、的確な対応処置をとることができる。   In addition, an abnormality detection threshold value is set for both the measured value of commercial grid point power and the measured value of commercial grid point power, and when any of these measured values exceeds the threshold value, the measurement is performed from the threshold value. Immediately calculate the corrected power generation plan using the value obtained by adding the maximum maximum power fluctuation value in the same time instant time zone as the new maximum maximum power fluctuation value in the same time instant time zone. If the microgrid power monitoring measurement control system that re-directs to the distributed power source is set, it is possible to execute the corrected power generation plan by setting the abnormality detection threshold, and to take an appropriate countermeasure.

一方で、本発明は、一般電気事業者電力網から商用系統電力の供給を受けるマイクログリッド受電点の電力需要家設備と、これに電力を供給する1以上の分散型電源とを含むマイクログリッドにおける電力監視計測制御方法であって、瞬時時間帯毎の前記商用系統点電力の最大値と最小値の電力計測値を受けて最大電力変動値を演算するステップと、同時刻瞬時時間帯の中で過去最大の最大電力変動値を受けて、前記演算した最大電力変動値と比較して大きい方の最大電力変動値を選定するステップと、この比較して大きい方の最大電力変動値に基づき、前記各分散型電源の翌日の発電計画を行うステップと、この発電計画に基づき当日の運用制御を行うステップと、を含むマイクログリッドの電力監視計測制御方法とする。この方法によって、実際の需要電力変動における、ポンプやエレベータなどの回転機のスイッチ入力などによる短時間に生じる大きな変動を感知し、実際の電力変動による逆潮流の防止に対応できる。時間帯間隔を短くすると、より実際の電力変動に近くなる傾向にあることを活用し、瞬時時間帯毎の電力需要の最大変動値に応じてあらかじめ翌日の発電計画値を定める、これに基づき当日の運用制御を行い、各分散型電源に指令し、需給の変化によって生じる逆潮流を、的確に防止できる。   On the other hand, the present invention provides power in a microgrid including a power consumer facility at a microgrid power receiving point that receives supply of commercial grid power from a general electric utility power grid, and one or more distributed power sources that supply power thereto. A monitoring measurement control method, the step of calculating the maximum power fluctuation value by receiving the maximum and minimum power measurement values of the commercial grid point power for each instantaneous time zone, and the past in the instantaneous time zone at the same time Receiving a maximum power fluctuation value and selecting a larger maximum power fluctuation value compared to the calculated maximum power fluctuation value; and A power monitoring measurement control method for a microgrid including a step of performing a power generation plan on the next day of a distributed power source and a step of performing operation control on the day based on the power generation plan. By this method, it is possible to sense a large fluctuation that occurs in a short time due to a switch input of a rotary machine such as a pump or an elevator in an actual demand power fluctuation, and to cope with prevention of reverse power flow due to the actual power fluctuation. By making use of the fact that shortening the time period interval tends to be closer to actual power fluctuations, the power generation plan value for the next day is determined in advance according to the maximum fluctuation value of power demand for each instantaneous time period. In this way, reverse power flow caused by changes in supply and demand can be prevented accurately.

また、前記各分散型電源の前記翌日の発電計画を行うステップと前記当日の運用制御を行うステップとが、商用系統点への分散型電源発電電力の逆潮流防止を条件とするマイクログリッドの電力監視計測制御方法とすれば、実際の需要電力変動における、ポンプやエレベータなどの回転機のスイッチ入力などによる短時間に生じる大きな変動を感知し、実際の電力変動による逆潮流の防止に対応できる。   In addition, the step of performing the power generation plan for the next day for each of the distributed power sources and the step of performing the operation control for the current day include the power of the microgrid on the condition that the reverse power flow prevention of the distributed power generation power to the commercial grid point is a condition With the monitoring measurement control method, it is possible to sense a large fluctuation that occurs in a short time due to a switch input of a rotating machine such as a pump or an elevator in actual demand power fluctuation, and to cope with prevention of reverse power flow due to actual power fluctuation.

また、前記各分散型電源の翌日の発電計画を行うステップが、前記瞬時時間帯毎に前記電力需要家設備需要電力予測値から前記商用系統点電力の前記比較して大きい方の最大電力変動値を引いた最大発電計画値以下に、前記瞬時時間帯の分散型電源の翌日の発電計画値を定めるマイクログリッドの電力監視計測制御方法とすれば、商用系統点へのマイクログリッドからの逆潮流の防止を的確に図ることができる。   Further, the step of carrying out the power generation plan for the next day of each of the distributed power sources is the larger maximum power fluctuation value of the commercial grid point power compared to the power consumer facility demand power predicted value for each instantaneous time period. If the microgrid power monitoring measurement control method that determines the power generation plan value for the next day of the distributed power source in the instantaneous time zone below the maximum power generation plan value obtained by subtracting, the reverse power flow from the microgrid to the commercial grid point Prevention can be achieved accurately.

また、前記分散型電源を発電コストの安い順から、前記最大発電計画値以下の電力供給量まで積み上げ選定するステップを含むマイクログリッドの電力監視計測制御方法とすれば、電力コストを適切に下げることができる。   In addition, if the power generation measurement and control method of the microgrid includes a step of selecting the distributed power source from the lowest power generation cost to the power supply amount below the maximum power generation plan value, the power cost can be appropriately reduced. Can do.

また、前記最大発電計画値以下の電力供給量までの前記分散型電源の積み上げ選定ステップが、前記分散型電源のいずれかの故障をも予測して行われるマイクログリッドの電力監視計測制御方法とすれば、分散型電源の故障によって生じるコストの上昇を抑えることが可能となる。   Further, the method of selecting and stacking the distributed power sources up to the power supply amount equal to or less than the maximum power generation plan value is a microgrid power monitoring measurement control method performed by predicting any failure of the distributed power sources. For example, it is possible to suppress an increase in cost caused by a failure of the distributed power source.

また、商用系統点電力の計測値に異常検知の閾値が設定され、この計測値が前記閾値を超えた場合、直ちに修正発電計画を演算し前記分散型電源へ再指令するステップを含むマイクログリッドの電力監視計測制御方法とすれば、異常検知の閾値の設定によって、修正発電計画の実行を可能とし、的確な対応処置をとることができる。   In addition, when a threshold value for abnormality detection is set in the measured value of the commercial grid point power, and the measured value exceeds the threshold value, a corrected power generation plan is immediately calculated and the microgrid including the step of re-commanding the distributed power source is included. With the power monitoring measurement control method, the corrected power generation plan can be executed by setting a threshold value for abnormality detection, and an appropriate countermeasure can be taken.

一方で、本発明は、一般電気事業者電力網から商用系統電力の供給を受けるマイクログリッド受電点の電力需要家設備と、他の電力需要家設備と、これらに電力を供給する1以上の分散型電源とを含むマイクログリッドにおける電力監視計測制御方法であって、瞬時時間帯毎の商用系統点電力と商用連系点潮流電力の各々の最大値と最小値の計測値を受けて、それぞれの最大電力変動値を演算するステップと、それぞれ同時刻瞬時時間帯の中で過去最大の最大電力変動値と比較して大きい方の最大電力変動値を選定するステップと、それぞれの比較して大きい方の最大電力変動値に基づき、前記各分散型電源の翌日の発電計画を行うステップと、この発電計画に基づき当日の運用制御を行うステップと、を含むマイクログリッドの電力監視計測制御方法とする。これによって、実際の需要電力変動における、ポンプやエレベータなどの回転機のスイッチ入力などによる短時間に生じる大きな変動を感知し、実際の電力変動による逆潮流の防止と転売防止を的確に図ることが可能となる。時間帯間隔を短くすると、より実際の電力変動に近くなる傾向にあることを活用し、瞬時時間帯毎の電力需要の最大変動値に応じてあらかじめ翌日の発電計画値を定める、これに基づき当日の運用制御を行い、需給の変化によって生じる逆潮流と転売を、的確に防止できる。   On the other hand, the present invention provides a power consumer facility of a microgrid power receiving point that receives supply of commercial grid power from a general electric utility power network, another power consumer facility, and one or more distributed types that supply power to these facilities. A power monitoring and measurement control method in a microgrid including a power supply, which receives the maximum and minimum measured values of the commercial grid point power and commercial grid point power for each instantaneous time zone, The step of calculating the power fluctuation value, the step of selecting the larger maximum power fluctuation value compared with the maximum power fluctuation value of the past maximum in the same time instant time zone, respectively, and the larger of each comparison A microgrid power monitor including a step of performing a power generation plan for the next day of each of the distributed power sources based on a maximum power fluctuation value, and a step of performing operation control for the day based on the power generation plan And the control method. As a result, it is possible to detect large fluctuations that occur in a short time due to switch inputs of rotating machines such as pumps and elevators in actual demand power fluctuations, and to accurately prevent reverse power flow and resale prevention due to actual power fluctuations. It becomes possible. By making use of the fact that shortening the time period interval tends to be closer to actual power fluctuations, the power generation plan value for the next day is determined in advance according to the maximum fluctuation value of power demand for each instantaneous time period. By controlling the operation, reverse flow and resale caused by changes in supply and demand can be accurately prevented.

また、前記各分散型電源の翌日の発電計画を行うステップと当日の運用制御を行うステップとが、商用系統点への分散型電源発電電力の逆潮流防止と、マイクログリッド内の商用連系点から前記他の電力需要設備への商用電力の転売防止を条件とするマイクログリッドの電力監視計測制御方法とすれば、実際の需要電力変動における、ポンプやエレベータなどの回転機のスイッチ入力などによる短時間に生じる大きな変動を感知し、実際の電力変動による逆潮流の防止と転売防止とに対応できる。   In addition, the step of performing the power generation plan for the next day of each of the distributed power sources and the step of performing the operation control on the day include prevention of reverse power flow of the distributed power generation power to the commercial grid point, and commercial interconnection points in the microgrid. If the microgrid power monitoring measurement control method is based on prevention of resale of commercial power to other power demand facilities from the above, it is possible to reduce the shortage caused by switch input of a rotary machine such as a pump or elevator in actual demand power fluctuations. It can detect large fluctuations that occur in time and can respond to prevention of reverse power flow and resale due to actual power fluctuations.

また、前記各分散型電源の翌日の発電計画を行うステップが、前記瞬時時間帯毎に、前記全需要家設備需要電力予測値から前記商用系統点電力の前記比較して大きい方の最大電力変動値を引いた最大発電計画値と、マイクログリッド受電点の需要家設備以外の全電力需要家設備需要電力予測値に、前記商用連系点潮流電力の前記比較して大きい方の最大電力変動値を加えた最小発電計画値との間に、前記瞬時時間帯の前記分散型電源の翌日の発電計画値を定めるマイクログリッドの電力監視計測制御方法とすれば、商用系統点へのマイクログリッドからの逆潮流の防止と商用電力の転売防止を的確に図ることができる。   Further, the step of carrying out the power generation plan for the next day of each of the distributed power sources is the largest maximum power fluctuation of the commercial grid point power compared to the predicted power demand value of all the customer facilities for each instantaneous time period. The maximum power fluctuation value of the larger of the commercial interconnection point tidal power compared to the maximum power generation plan value minus the value and the predicted power demand value of all power customers other than the customer equipment at the microgrid receiving point If the microgrid power monitoring measurement control method for determining the power generation plan value for the next day of the distributed power source in the instantaneous time zone between the minimum power generation plan value plus the It is possible to accurately prevent the reverse power flow and the resale of commercial power.

また、前記各分散型電源の翌日の発電計画を行うステップが、前記最大発電計画値と、前記最小発電計画値とが、逆転した大きさの値となる場合にもその間に前記瞬時時間帯の前記分散型電源の翌日の発電計画値を定めるマイクログリッドの電力監視計測制御方法とすれば、前記最大発電計画値と、前記最小発電計画値とが、逆転した大きさの値となる場合にも、商用系統点へのマイクログリッドからの逆潮流の防止と商用電力の転売防止を効果的に図ることができる。   Further, in the step of performing the power generation plan on the next day for each of the distributed power sources, even when the maximum power generation plan value and the minimum power generation plan value have reversed values, the instantaneous time zone If the microgrid power monitoring and measurement control method for determining the power generation plan value for the next day of the distributed power source is used, the maximum power generation plan value and the minimum power generation plan value may be reversed. Therefore, it is possible to effectively prevent the reverse power flow from the microgrid to the commercial grid point and the resale of commercial power.

また、前記各分散型電源の翌日の発電計画を行うステップが、前記その間の前記瞬時時間帯の分散型電源の翌日の発電計画値を、商用系統点電力の最大電力変動値と商用連系点潮流電力の最大電力変動値より、マイクログリッド受電点の需要家設備以外の全電力需要家設備需要電力予測値に、マイクログリッド受電点の需要家設備需要電力予測値に〔商用連系点潮流最大電力変動値÷(商用連系点潮流最大電力変動値+商用系統点最大電力変動値)〕を掛けたものを加えた値に定めるマイクログリッドの電力監視計測制御方法とすれば、前記最大発電計画値と、前記最小発電計画値とが、逆転した大きさの値となる場合にも、商用系統点へのマイクログリッドからの逆潮流の防止と商用電力の転売防止をより的確に図ることができる。   Further, the step of performing a power generation plan for the next day of each of the distributed power sources includes a power generation plan value for the next day of the distributed power source in the instantaneous time period between the maximum power fluctuation value of the commercial grid point power and a commercial interconnection point. From the maximum power fluctuation value of the tidal power, the predicted power demand value for all power customer equipment other than the customer equipment at the microgrid power receiving point, If the microgrid power monitoring measurement control method is set to a value obtained by multiplying the value obtained by multiplying power fluctuation value ÷ (commercial interconnection point maximum power fluctuation value + commercial grid point maximum power fluctuation value) ”, the maximum power generation plan Even when the value and the minimum power generation plan value are reversed values, it is possible to more accurately prevent the reverse power flow from the microgrid to the commercial grid point and the commercial power resale. .

また、前記分散型電源を発電コストの安い順に積み上げ選定を行い前記全電力需要家設備需要電力予測値から積み上げた発電電力を引いた値を商用電力とするステップを含み、このステップが、通常は、商用電力コストより安い発電コストの前記分散型電源を前記マイクログリッド受電点需要家設備以外の全電力需要家設備需要電力予測値に前記商用連系点潮流電力の前記比較して大きい方の最大電力変動値を加えた最小発電計画値を越えて、前記全電力需要家設備需要電力予測値から前記商用系統点電力の前記比較して大きい方の最大電力変動値を引いた最大発電計画値を越えない発電電力まで発電コストの安い順に積み上げ選定を行い前記全電力需要家設備需要電力予測値から積み上げた発電電力を引いた値を商用電力とし、前記最小発電計画値に商用電力より安い発電コストの分散型電源のみで積み上げできない場合は、更に商用電力より高い分散型電源を発電コストの安い順に、最小発電計画値丁度になるまで積み上げ選定を行い、前記全電力需要家設備需要電力予測値から積み上げた発電電力を引いた値を商用電力とし、前記最大発電計画値以上に商用電力より安い発電コストの分散型電源のみで積み上げられる場合は、最大発電計画値丁度になるまで積み上げ選定を行い、前記全電力需要家設備需要電力予測値から積み上げた発電電力を引いた値を商用電力とするマイクログリッドの電力監視計測制御方法とすれば、電力コストを下げることができ、経済的である。   In addition, it includes a step of selecting the stacked power sources in order of increasing power generation cost and making the commercial power a value obtained by subtracting the generated power accumulated from the predicted value of the total power consumer equipment demand power. In addition, the distributed power source having a power generation cost lower than the commercial power cost is set to the predicted value of the total power consumer facility demand power other than the microgrid power receiving point customer facility. The maximum power generation plan value obtained by subtracting the comparatively larger maximum power fluctuation value of the commercial grid point power from the total power consumer facility demand power prediction value exceeding the minimum power generation plan value including the power fluctuation value. The power generation cost that does not exceed the power generation cost is selected in ascending order, and the value obtained by subtracting the generated power generation from the predicted value of the total power consumer equipment demand power is used as the commercial power. If the planned value cannot be stacked with only the distributed power source with the power generation cost cheaper than the commercial power, the distributed power source higher than the commercial power is selected in order of the lowest power generation cost until the minimum power generation planned value is just reached. When the value obtained by subtracting the accumulated power generated from the predicted power demand for power customer facilities is commercial power, the maximum power generation plan value is calculated when the power generation cost is higher than the maximum power generation plan value and only with distributed power sources with a power generation cost lower than that of the commercial power. If it is a microgrid power monitoring measurement control method in which the value obtained by subtracting the generated power accumulated from the predicted value of the total power consumer equipment demand power is used as commercial power, the power cost is reduced. Can be economical.

また、前記最大発電計画値と、前記最小発電計画値とが、逆転した大きさの値となる場合に、前記発電計画値から受電一定制御する分散型電源の送電可能容量の1/2を引いた値まで発電コストの安い順に分散型電源を積み上げ、前記全電力需要家設備需要電力予測値から前記発電計画値を引いた値を商用電力とするステップを含むマイクログリッドの電力監視計測制御方法とすれば、前記最大発電計画値と、前記最小発電計画値とが、逆転した大きさの値となる場合にも、電力コストを下げることができ、経済的である。   In addition, when the maximum power generation plan value and the minimum power generation plan value are reversed, the power generation capacity is subtracted from the power generation capacity of the distributed power source with constant power reception control. A power monitoring measurement control method for a microgrid including a step of stacking distributed power sources in order of low power generation cost up to a predetermined value, and subtracting the power generation plan value from the total power consumer facility demand power prediction value to obtain commercial power; In this case, even when the maximum power generation plan value and the minimum power generation plan value are reversed, the power cost can be reduced, which is economical.

また、前記全電力需要家設備電力の需要を越えない電力供給量までの前記分散型電源の積み上げ選定を行うステップが、前記分散型電源のいずれかの故障を予測して行われるマイクログリッドの電力監視計測制御方法とすれば、分散型電源のいずれかに故障が生じた場合にも、経済性を追求するとともに、転売の防止を図ることができる。   In addition, the power of the microgrid in which the step of selecting and stacking the distributed power sources up to the amount of power supply that does not exceed the demand of the total power customer facility power is performed by predicting any failure of the distributed power sources If the monitoring measurement control method is used, even if a failure occurs in any of the distributed power sources, it is possible to pursue economic efficiency and prevent resale.

また、商用系統点電力の計測値と商用連系点潮流電力の計測値との両方に異常検知の閾値が設定され、これらいずれかの計測値が前記閾値を超えた場合、前記閾値から前記計測値を引いた値に前記同時刻瞬時時間帯の中で過去最大の最大電力変動値を加えた値を前記同時刻瞬時間帯の新しい過去最大の最大電力変動値として、直ちに修正発電計画を演算し前記分散型電源へ再指令するステップを含むマイクログリッドの電力監視計測制御方法とすれば、異常検知の閾値の設定によって、修正発電計画の実行を可能とし、的確な対応処置をとることができる。   In addition, an abnormality detection threshold is set for both the measured value of the commercial grid point power and the measured value of the commercial grid point power, and when any of these measured values exceeds the threshold, the measurement is performed from the threshold. Immediately calculate the corrected power generation plan using the value obtained by adding the maximum maximum power fluctuation value in the same time instant time zone as the new maximum maximum power fluctuation value in the same time instant time zone. If the microgrid power monitoring measurement control method includes the step of re-directing to the distributed power source, the correction power generation plan can be executed by setting the abnormality detection threshold value, and an appropriate countermeasure can be taken. .

一方で、本発明は、一般電気事業者電力網から商用系統電力の供給を受けるマイクログリッド受電点の電力需要家設備と、これに電力を供給する1以上の分散型電源とを含むマイクログリッドにおける電力監視計測制御をコンピュータに実行させるためのマイクログリッドの電力監視計測制御プログラムであって、コンピュータに、瞬時時間帯毎の商用系統点電力の最大値と最小値の電力計測値を受けて最大電力変動値を演算する手順と、同時刻瞬時時間帯の中で過去最大の最大電力変動値を受けて、前記演算した最大電力変動値と比較して大きい方の最大電力変動値を選定する手順と、この比較して大きい方の最大電力変動値に基づき、前記各分散型電源の翌日の発電計画を行う手順と、この発電計画に基づき当日の運用制御を行う手順と、を実行させるための、マイクログリッドの電力監視計測制御プログラムとする。このプログラムによって、実際の需要電力変動における、ポンプやエレベータなどの回転機のスイッチ入力などによる短時間に生じる大きな変動を感知し、実際の電力変動による逆潮流の防止に対応できる。時間帯間隔を短くすると、より実際の電力変動に近くなる傾向にあることを活用し、瞬時時間帯毎の電力需要の最大変動値に応じてあらかじめ翌日の発電計画値を定める、これに基づき当日の運用制御を行い、各分散型電源に指令し、需給の変化によって生じる逆潮流を、的確に防止できる。   On the other hand, the present invention provides power in a microgrid including a power consumer facility at a microgrid power receiving point that receives supply of commercial grid power from a general electric utility power grid, and one or more distributed power sources that supply power thereto. A microgrid power monitoring and measurement control program for causing a computer to execute monitoring and measurement control. When the computer receives the maximum and minimum power measurement values of commercial system point power for each instantaneous time zone, the maximum power fluctuation A procedure for calculating a value, a procedure for receiving a maximum power fluctuation value in the past in the same time instant time zone, and selecting a larger maximum power fluctuation value compared with the calculated maximum power fluctuation value; A procedure for performing a power generation plan for the next day for each of the distributed power sources based on the larger maximum power fluctuation value in comparison, and a procedure for performing operation control for the day based on the power generation plan; And a for executing, the microgrid power monitoring measurement control program. By this program, it is possible to detect a large fluctuation that occurs in a short time due to a switch input of a rotary machine such as a pump or an elevator in an actual fluctuation in demand power, and to cope with prevention of reverse power flow due to actual fluctuation in power. By making use of the fact that shortening the time period interval tends to be closer to actual power fluctuations, the power generation plan value for the next day is determined in advance according to the maximum fluctuation value of power demand for each instantaneous time period. In this way, reverse power flow caused by changes in supply and demand can be prevented accurately.

また、前記各分散型電源の前記翌日の発電計画を行う手順と前記当日の運用制御を行う手順とが、商用系統点への分散型電源発電電力の逆潮流防止を条件とするマイクログリッドの電力監視計測制御プログラムとすれば、実際の需要電力変動における、ポンプやエレベータなどの回転機のスイッチ入力などによる短時間に生じる大きな変動を感知し、実際の電力変動による逆潮流の防止に対応できる。   In addition, the procedure for performing the power generation plan for each distributed power source on the next day and the procedure for performing the operation control for the current day include the power of the microgrid on the condition that the reverse power flow prevention of the distributed power generation power to the commercial system point is a condition If the monitoring measurement control program is used, it is possible to sense a large fluctuation that occurs in a short time due to a switch input of a rotating machine such as a pump or an elevator in an actual demand power fluctuation, and to cope with prevention of reverse power flow due to the actual power fluctuation.

また、前記各分散型電源の翌日の発電計画を行う手順が、前記瞬時時間帯毎に、前記電力需要家設備需要電力予測値から前記商用系統点電力の前記比較して大きい方の最大電力変動値を引いた最大発電計画値以下に、前記瞬時時間帯の分散型電源の翌日の発電計画値を定めるマイクログリッドの電力監視計測制御プログラムとすれば、商用系統点へのマイクログリッドからの逆潮流の防止を的確に図ることができる。   Further, the procedure for performing the power generation plan for the next day of each of the distributed power sources is the largest maximum power fluctuation of the commercial grid point power compared to the predicted value of the power consumer facility demand power for each instantaneous time period. If the microgrid power monitoring measurement control program determines the power generation plan value for the next day of the distributed power source in the instantaneous time zone below the maximum power generation plan value minus the value, the reverse power flow from the microgrid to the commercial grid point Can be accurately prevented.

また、さらに前記分散型電源を発電コストの安い順から、前記最大発電計画値以下の電力供給量まで積み上げ選定する手順を、コンピュータに実行させるためのマイクログリッドの電力監視計測制御プログラムとすれば、電力コストを適切に下げることができる。   Further, if the procedure for selecting the distributed power source from the order of cheaper power generation cost to the power supply amount below the maximum power generation plan value is a microgrid power monitoring measurement control program for causing a computer to execute, Electric power costs can be reduced appropriately.

また、前記最大発電計画値以下の電力供給量までの前記分散型電源の積み上げ選定する手順が、前記分散型電源のいずれかの故障をも予測して行われるマイクログリッドの電力監視計測制御プログラムとすれば、分散型電源の故障によって生じるコストの上昇を抑えることが可能となる。   In addition, a microgrid power monitoring measurement control program in which the procedure for selecting and stacking the distributed power sources up to a power supply amount equal to or less than the maximum power generation plan value is performed by predicting any failure of the distributed power sources, In this case, it is possible to suppress an increase in cost caused by a failure of the distributed power source.

また、さらに商用系統点の潮流電力の計測値に異常検知の閾値が設定され、この計測値が前記閾値を超えた場合、直ちに修正発電計画を演算し前記分散型電源へ再指令する手順をコンピュータに実行させるためのマイクログリッドの電力監視計測制御プログラムとすれば、異常検知の閾値の設定によって、修正発電計画の実行を可能とし、的確な対応処置をとることができる。   Further, when a threshold value for abnormality detection is set to the measured value of the tidal current power at the commercial system point, and the measured value exceeds the threshold value, a procedure for immediately calculating a corrected power generation plan and re-instructing the distributed power source is performed by the computer. If the microgrid power monitoring and measurement control program is to be executed at the same time, it is possible to execute the corrected power generation plan by setting the abnormality detection threshold value and to take an appropriate countermeasure.

一方で、本発明は、一般電気事業者電力網から商用系統電力の供給を受けるマイクログリッド受電点の電力需要家設備と、他の電力需要家設備と、これらに電力を供給する1以上の分散型電源とを含むマイクログリッドにおける電力監視計測制御をコンピュータに実行させるためのマイクログリッドの電力監視計測制御プログラムであって、コンピュータに、瞬時時間帯毎の商用系統点電力と商用連系点潮流電力の各々の最大値と最小値の計測値を受けて、それぞれの最大電力変動値を演算する手順と、それぞれ同時刻瞬時時間帯の中で過去最大の最大電力変動値と比較して大きい方の最大電力変動値を選定する手順と、それぞれの比較して大きい方の最大電力変動値に基づき、前記各分散型電源の翌日の発電計画を行う手順と、この発電計画に基づき当日の運用制御を行う手順と、を実行させるための、マイクログリッドの電力監視計測制御プログラムとする。これによって、実際の需要電力変動における、ポンプやエレベータなどの回転機のスイッチ入力などによる短時間に生じる大きな変動を感知し、実際の電力変動による逆潮流の防止と転売防止を的確に図ることが可能となる。時間帯間隔を短くすると、より実際の電力変動に近くなる傾向にあることを活用し、瞬時時間帯毎の電力需要の最大変動値に応じてあらかじめ翌日の発電計画値を定める、これに基づき当日の運用制御を行い、需給の変化によって生じる逆潮流と転売を、的確に防止できる。   On the other hand, the present invention provides a power consumer facility of a microgrid power receiving point that receives supply of commercial grid power from a general electric utility power network, another power consumer facility, and one or more distributed types that supply power to these facilities. A power monitoring and measurement control program for a microgrid for causing a computer to execute power monitoring and measurement control in a microgrid including a power supply. The procedure for calculating each maximum power fluctuation value by receiving the measurement value of each maximum value and minimum value, and the maximum maximum power fluctuation value compared to the maximum power fluctuation value in the past at the same time instant time zone. A procedure for selecting a power fluctuation value, a procedure for performing a power generation plan for the next day of each of the distributed power sources based on the larger maximum power fluctuation value compared to each other, and this power generator For executing a procedure for operation control of the day based on, and microgrids power monitoring measurement control program. As a result, it is possible to detect large fluctuations that occur in a short time due to switch inputs of rotating machines such as pumps and elevators in actual demand power fluctuations, and to accurately prevent reverse power flow and resale prevention due to actual power fluctuations. It becomes possible. By making use of the fact that shortening the time period interval tends to be closer to actual power fluctuations, the power generation plan value for the next day is determined in advance according to the maximum fluctuation value of power demand for each instantaneous time period. By controlling the operation, reverse flow and resale caused by changes in supply and demand can be accurately prevented.

また、前記各分散型電源の翌日の発電計画を行う手順と前記当日の運用制御を行う手順とが、商用系統点への分散型電源発電電力の逆潮流防止と、マイクログリッド内の商用連系点から前記他の電力需要設備への商用電力の転売防止を条件とするマイクログリッドの電力監視計測制御プログラムとすれば、実際の需要電力変動における、ポンプやエレベータなどの回転機のスイッチ入力などによる短時間に生じる大きな変動を感知し、実際の電力変動による逆潮流の防止と転売防止とに対応できる。   Further, the procedure for performing the power generation plan for the next day of each of the distributed power sources and the procedure for performing the operation control on the same day include the prevention of reverse power flow of the distributed power generation power to the commercial grid point and the commercial interconnection within the microgrid. If it is a microgrid power monitoring and measurement control program that prevents commercial power from being resold to other power demand facilities from the point, it depends on switch inputs of rotating machines such as pumps and elevators in actual demand power fluctuations It can detect large fluctuations that occur in a short time, and can respond to prevention of reverse power flow and resale prevention due to actual power fluctuations.

また、前記各分散型電源の翌日の発電計画を行う手順が、前記瞬時時間帯毎に、前記全需要家設備需要電力予測値から前記商用系統点電力の前記比較して大きい方の最大電力変動値を引いた最大発電計画値と、マイクログリッド受電点の需要家設備以外の全電力需要家設備需要電力予測値に、前記商用連系点潮流電力の前記比較して大きい方の最大電力変動値を加えた最小発電計画値との間に、前記瞬時時間帯の前記分散型電源の翌日の発電計画値を定めるマイクログリッドの電力監視計測制御プログラムとすれば、商用系統点へのマイクログリッドからの逆潮流の防止と商用電力の転売防止を的確に図ることができる。   Further, the procedure for performing the power generation plan for the next day of each of the distributed power sources is the largest maximum power fluctuation of the commercial grid point power from the predicted power demand value for all the customer facilities for each instantaneous time period. The maximum power fluctuation value of the larger of the commercial interconnection point tidal power compared to the maximum power generation plan value minus the value and the predicted power demand value of all power customers other than the customer equipment at the microgrid receiving point If the power monitoring measurement control program for the microgrid that determines the power generation plan value for the next day of the distributed power source in the instantaneous time zone between It is possible to accurately prevent the reverse power flow and the resale of commercial power.

また、前記各分散型電源の翌日の発電計画を行う手順が、前記最大発電計画値と、前記最小発電計画値とが、逆転した大きさの値となる場合にもその間に前記瞬時時間帯の前記分散型電源の翌日の発電計画値を定めるマイクログリッドの電力監視計測制御プログラムとすれば、前記最大発電計画値と、前記最小発電計画値とが、逆転した大きさの値となる場合にも、商用系統点へのマイクログリッドからの逆潮流の防止と商用電力の転売防止を効果的に図ることができる。   Further, in the procedure for performing the power generation plan for the next day of each distributed power source, even when the maximum power generation plan value and the minimum power generation plan value are reversed, the instantaneous time zone If the power monitoring measurement control program for the microgrid that determines the power generation plan value for the next day of the distributed power source is used, the maximum power generation plan value and the minimum power generation plan value may be reversed. Therefore, it is possible to effectively prevent the reverse power flow from the microgrid to the commercial grid point and the resale of commercial power.

また、前記各分散型電源の翌日の発電計画を行う手順が、前記その間の前記瞬時時間帯の分散型電源の翌日の発電計画値を、商用系統点電力の最大電力変動値と商用連系点潮流電力の最大電力変動値より、マイクログリッド受電点の需要家設備以外の全電力需要家設備需要電力予測値に、マイクログリッド受電点の需要家設備需要電力予測値に〔商用連系点潮流最大電力変動値÷(商用連系点潮流最大電力変動値+商用系統点最大電力変動値)〕を掛けたものを加えた値に定めるマイクログリッドの電力監視計測制御プログラムとすれば、前記最大発電計画値と、前記最小発電計画値とが、逆転した大きさの値となる場合にも、商用系統点へのマイクログリッドからの逆潮流の防止と商用電力の転売防止をより的確に図ることができる。   Further, the procedure for carrying out the power generation plan for the next day of each of the distributed power sources includes the power generation plan value for the next day of the distributed power source in the instantaneous time period between the maximum power fluctuation value of the commercial grid point power and the commercial interconnection point. From the maximum power fluctuation value of the tidal power, the predicted power demand value for all power customer equipment other than the customer equipment at the microgrid power receiving point, If the microgrid power monitoring measurement control program is set to a value obtained by multiplying the value obtained by multiplying power fluctuation value ÷ (commercial interconnection point maximum power fluctuation value + commercial grid point maximum power fluctuation value) ”, the maximum power generation plan Even when the value and the minimum power generation plan value are reversed values, it is possible to more accurately prevent the reverse power flow from the microgrid to the commercial grid point and the commercial power resale. .

また、前記分散型電源を発電コストの安い順に積み上げ選定を行い前記全電力需要家設備需要電力予測値から積み上げた発電電力を引いた値を商用電力とする手順をコンピュータに実行させるための部分を含み、このステップが、通常は、商用電力コストより安い発電コストの前記分散型電源を前記マイクログリッド受電点需要家設備以外の全電力需要家設備需要電力予測値に前記商用連系点潮流電力の前記比較して大きい方の最大電力変動値を加えた最小発電計画値を越えて、前記全電力需要家設備需要電力予測値から前記商用系統点電力の前記比較して大きい方の最大電力変動値を引いた最大発電計画値を越えない発電電力まで発電コストの安い順に積み上げ選定を行い前記全電力需要家設備需要電力予測値から積み上げた発電電力を引いた値を商用電力とし、前記最小発電計画値に商用電力より安い発電コストの分散型電源のみで積み上げできない場合は、更に商用電力より高い分散型電源を発電コストの安い順に、最小発電計画値丁度になるまで積み上げ選定を行い、前記全電力需要家設備需要電力予測値から積み上げた発電電力を引いた値を商用電力とし、前記最大発電計画値以上に商用電力より安い発電コストの分散型電源のみで積み上げられる場合は、最大発電計画値丁度になるまで積み上げ選定を行い、前記全電力需要家設備需要電力予測値から積み上げた発電電力を引いた値を商用電力とするマイクログリッドの電力監視計測制御プログラムとすれば、電力コストを下げることができ、経済的である。   In addition, a part for selecting the stacked power sources in order from the lowest power generation cost and causing the computer to execute a procedure in which a value obtained by subtracting the generated power accumulated from the predicted value of the total power consumer equipment demand power is used as commercial power is provided. This step usually includes the distributed power source having a power generation cost lower than the commercial power cost to the predicted power demand value of all power customer facilities other than the microgrid power point customer facility. The comparatively larger maximum power fluctuation value of the commercial grid point power from the total power consumer facility demand power predicted value exceeding the minimum power generation plan value obtained by adding the larger maximum power fluctuation value. The power generation cost that does not exceed the maximum power generation plan value minus the power generation cost is selected in ascending order of power generation cost, and the generated power is subtracted from the predicted power demand value for all power customers' facilities. If the value is commercial power, and the minimum power generation plan value cannot be stacked with only distributed power sources with a power generation cost lower than that of commercial power, the minimum power generation plan value is set in the order of lower power generation costs. The distribution power is selected until the total power consumer equipment demand power predicted value is subtracted from the accumulated power generation power, and the power generation cost is lower than the maximum power generation plan value and lower than the power generation cost. In the case of power accumulation, the power grid is selected until the maximum power generation plan value is just reached, and the power monitoring and measurement control of the microgrid using commercial power as the value obtained by subtracting the power generation power accumulated from the predicted power demand for all power consumers If it is a program, the power cost can be reduced and it is economical.

また、前記最大発電計画値と、前記最小発電計画値とが、逆転した大きさの値となる場合に、前記発電計画値から受電一定制御する分散型電源の送電可能容量の1/2を引いた値まで発電コストの安い順に分散型電源を積み上げ、前記全電力需要家設備需要電力予測値から前記発電計画値を引いた値を商用電力とする手順をコンピュータに実行させるための部分を含むマイクログリッドの電力監視計測制御プログラムとすれば、前記最大発電計画値と、前記最小発電計画値とが、逆転した大きさの値となる場合にも、電力コストを下げることができ、経済的である。   In addition, when the maximum power generation plan value and the minimum power generation plan value are reversed, the power generation capacity is subtracted from the power generation capacity of the distributed power source with constant power reception control. Including a portion for causing a computer to execute a procedure in which distributed power sources are stacked in ascending order of power generation cost up to a predetermined value, and a value obtained by subtracting the power generation plan value from the total power consumer facility demand power predicted value is used as commercial power If the grid power monitoring measurement control program is used, it is economical because the power generation cost can be reduced even when the maximum power generation plan value and the minimum power generation plan value are reversed. .

また、前記全電力需要家設備電力の需要を越えない電力供給量までの前記分散型電源の積み上げ選定を行う手順が、前記分散型電源のいずれかの故障を予測して行われるマイクログリッドの電力監視計測制御プログラムとすれば、分散型電源のいずれかに故障が生じた場合にも、経済性を追求するとともに、転売の防止を図ることができる。   In addition, the power of the microgrid, in which the procedure of selecting and stacking the distributed power sources up to the power supply amount that does not exceed the demand of the total power customer facility power is performed by predicting any failure of the distributed power sources If the monitoring measurement control program is used, it is possible to pursue economic efficiency and prevent resale even when a failure occurs in any of the distributed power sources.

また、商用系統点電力の計測値と商用連系点潮流電力の計測値との両方に異常検知の閾値が設定され、これらいずれかの計測値が前記閾値を超えた場合、前記閾値から前記計測値を引いた値に前記同時刻瞬時時間帯の中で過去最大の最大電力変動値を加えた値を前記同時刻瞬時時間帯の新しい過去最大の最大電力変動値として、直ちに修正発電計画を演算し前記分散型電源へ再指令する手順をコンピュータに実行させるための部分を含むマイクログリッドの電力監視計測制御プログラムとすれば、異常検知の閾値の設定によって、修正発電計画の実行を可能とし、的確な対応処置をとることができる。   In addition, an abnormality detection threshold is set for both the measured value of the commercial grid point power and the measured value of the commercial grid point power, and when any of these measured values exceeds the threshold, the measurement is performed from the threshold. Immediately calculate the corrected power generation plan using the value obtained by adding the maximum maximum power fluctuation value in the same time instant time zone as the new maximum maximum power fluctuation value in the same time instant time zone. If the microgrid power monitoring and measurement control program includes a part for causing the computer to execute the procedure for re-directing to the distributed power source, the modified power generation plan can be executed by setting the abnormality detection threshold value. Corrective action can be taken.

本発明によれば、瞬時時間帯毎の商用系統点電力の最大値と最小値の電力計測値を受けて最大電力変動値を演算し、同時刻瞬時時間帯の中で過去最大の最大電力変動値を受けて、前記演算した最大電力変動値と比較して大きい方の最大電力変動値に基づき、各分散型電源の翌日の発電計画を行い、この発電計画に基づき当日の運用制御を行う発電計画策定手段を有するマイクログリッドの電力監視計測制御システムとすることによって、実際の需要電力変動における、短時間に生じる大きな変動を感知し、実際の電力変動による逆潮流の防止に対応できる。時間帯間隔を短くすると、より実際の電力変動に近くなる傾向にあることを活用し、瞬時時間帯毎の電力需要の最大変動値に応じてあらかじめ翌日の発電計画値を定める、これに基づき当日の運用制御を行い、需給の変化によって生じる逆潮流を、的確に防止できる。   According to the present invention, the maximum power fluctuation value is calculated by receiving the maximum and minimum power measurement values of the commercial grid point power for each instantaneous time zone, and the maximum maximum power fluctuation in the same time instant time zone is calculated. A power generation plan for the next day of each distributed power source based on the larger maximum power fluctuation value compared to the calculated maximum power fluctuation value, and the operation control of the day based on this power generation plan By adopting a microgrid power monitoring measurement control system having a plan formulation means, it is possible to sense a large fluctuation occurring in a short time in actual demand power fluctuation and to prevent reverse power flow due to actual power fluctuation. By making use of the fact that shortening the time period interval tends to be closer to actual power fluctuations, the power generation plan value for the next day is determined in advance according to the maximum fluctuation value of power demand for each instantaneous time period. It is possible to accurately prevent reverse currents caused by changes in supply and demand.

また、本発明によれば、瞬時時間帯毎の前記商用系統点電力の最大値と最小値の電力計測値を受けて最大電力変動値を演算するステップと、同時刻瞬時時間帯の中で過去最大の最大電力変動値を受けて、前記演算した最大電力変動値と比較して大きい方の最大電力変動値を選定するステップと、この比較して大きい方の最大電力変動値に基づき、各分散型電源の翌日の発電計画を行うステップと、この発電計画に基づき当日の運用制御を行うステップと、を含むマイクログリッドの電力監視計測制御方法とすることによって、実際の需要電力変動における、短時間に生じる大きな変動を感知し、実際の電力変動による逆潮流の防止に対応できる。時間帯間隔を短くすると、より実際の電力変動に近くなる傾向にあることを活用し、瞬時時間帯毎の電力需要の最大変動値に応じてあらかじめ翌日の発電計画値を定める、これに基づき当日の運用制御を行い、需給の変化によって生じる逆潮流を、的確に防止できる。   Further, according to the present invention, the step of calculating the maximum power fluctuation value by receiving the maximum and minimum power measurement values of the commercial grid point power for each instantaneous time zone, and the past in the instantaneous time zone at the same time In response to the maximum power fluctuation value, the step of selecting a larger maximum power fluctuation value compared to the calculated maximum power fluctuation value, and each variance based on the larger maximum power fluctuation value A method for monitoring and controlling the power of the microgrid including a step of performing a power generation plan for the next day of the type power supply and a step of performing operational control on the day based on the power generation plan, so that a short time in actual demand power fluctuation can be obtained. It is possible to detect large fluctuations that occur in the system and to prevent reverse power flow due to actual power fluctuations. By making use of the fact that shortening the time period interval tends to be closer to actual power fluctuations, the power generation plan value for the next day is determined in advance according to the maximum fluctuation value of power demand for each instantaneous time period. It is possible to accurately prevent reverse currents caused by changes in supply and demand.

また、本発明によれば、コンピュータに、瞬時時間帯毎の商用系統点電力の最大値と最小値の電力計測値を受けて最大電力変動値を演算する手順と、同時刻瞬時時間帯の中で過去最大の最大電力変動値を受けて、前記演算した最大電力変動値と比較して大きい方の最大電力変動値を選定する手順と、この比較して大きい方の最大電力変動値に基づき、各分散型電源の翌日の発電計画を行う手順と、この発電計画に基づき当日の運用制御を行う手順と、を実行させるための、マイクログリッドの電力監視計測制御プログラムとすることによって、実際の需要電力変動における、短時間に生じる大きな変動を感知し、実際の電力変動による逆潮流の防止に対応できる。時間帯間隔を短くすると、より実際の電力変動に近くなる傾向にあることを活用し、瞬時時間帯毎の電力需要の最大変動値に応じてあらかじめ翌日の発電計画値を定める、これに基づき当日の運用制御を行い、需給の変化によって生じる逆潮流を、的確に防止できる。   Further, according to the present invention, the computer receives the maximum value and the minimum power measurement value of the commercial grid point power for each instantaneous time zone, and calculates the maximum power fluctuation value. In response to the largest maximum power fluctuation value in comparison with the calculated maximum power fluctuation value and the larger maximum power fluctuation value compared with the calculated maximum power fluctuation value, By using the microgrid power monitoring and measurement control program to execute the procedure for performing the power generation plan for each distributed power source the next day and the procedure for performing the operation control for the day based on this power generation plan, It can detect large fluctuations in power fluctuations in a short period of time and cope with prevention of reverse power flow due to actual power fluctuations. By making use of the fact that shortening the time period interval tends to be closer to actual power fluctuations, the power generation plan value for the next day is determined in advance according to the maximum fluctuation value of power demand for each instantaneous time period. It is possible to accurately prevent reverse currents caused by changes in supply and demand.

以下本発明の実施の形態を、図を参照しつつ説明する。   Embodiments of the present invention will be described below with reference to the drawings.

以下の本発明の実施の形態は、マイクログリッド受電点の電力需要家設備以外に、他の電力需要家設備を含むマイクログリッドについてのものであるが、マイクログリッド受電点の電力需要家設備以外の他の電力需要家設備が無い場合のマイクログリッドについても、以下の説明は、他の電力需要家設備をないものとすることにより、同様に適用できるものである。   The following embodiments of the present invention relate to a microgrid including other power consumer equipment in addition to the power consumer equipment at the microgrid power receiving point, but other than the power consumer equipment at the microgrid power receiving point. The following description can be similarly applied to the microgrid in the case where there is no other electric power consumer equipment by assuming that there is no other electric power consumer equipment.

図1は、本発明による一実施の形態としてのマイクログリッドの電力監視計測制御システムを含むマイクログリッドの構成図である。図1に示すように、マイクログリッド1は、一般電気事業者電力網(電力会社)2から商用系統点電力の供給を受けるマイクログリッド受電点の電力需要家設備LMと、他の電力需要家設備L1乃至LLと、これらに電力を供給する1以上の分散型電源K1乃至KK、ここでは風力発電装置、太陽発電装置、燃料電池、ガスエンジンなどK台を例示している、と、上記の電力需要家設備L1乃至LL、分散型電源K1乃至KKの電力を監視計測制御する電力監視計測制御システム5を含む。一般電気事業者電力網(電力会社)2、電力需要家設備LM、分散型電源K1乃至KK、需要家設備L1乃至LLは、図1に示すように、電力ケーブルKBで接続される。電力監視計測制御システム5は、計測・制御線5Cによって、マイクログリッド1内の電力需要家設備LM、分散型電源K1乃至KK、電力需要家設備L1乃至LLを制御する。   FIG. 1 is a configuration diagram of a microgrid including a microgrid power monitoring measurement control system according to an embodiment of the present invention. As shown in FIG. 1, the microgrid 1 includes a power consumer facility LM at a microgrid power receiving point that receives supply of commercial grid point power from a general electric utility power network (power company) 2, and another power consumer facility L <b> 1. To LL, and one or more distributed power sources K1 to KK for supplying power to them, which are exemplified by K units such as wind power generators, solar power generators, fuel cells, gas engines, etc. It includes a power monitoring measurement control system 5 that monitors and controls the power of the home equipment L1 to LL and the distributed power sources K1 to KK. As shown in FIG. 1, the general electric utility power network (electric power company) 2, the power customer equipment LM, the distributed power sources K1 to KK, and the customer equipment L1 to LL are connected by a power cable KB. The power monitoring measurement control system 5 controls the power consumer equipment LM, the distributed power sources K1 to KK, and the power consumer equipment L1 to LL in the microgrid 1 by the measurement / control line 5C.

ここで、マイクログリッド1の入口の商用系統点O1での電力を商用系統点電力P1、この商用系統点O1での逆潮流電力を逆潮流RP1(点線矢印で示す)とする。また、マイクログリッド1内の商用連系点O2における電力を商用連系点潮流電力P2、この商用連系点潮流電力P2の逆潮流電力を逆潮流RP2(転売商用電力に当たる、これを、転売電力とも呼ぶ、図1では、斜線つき矢印で示す)とする。さらに、分散型電源K1,・・・,KKからの電力をPK1,・・・,PKK、その他の電力需要家設備L1,・・・,LLへの電力をPL1,・・・,PLLとして示す。これらの電力情報は、図2Bでの電力設備8からの情報として、電力監視計測制御システム5に伝達される。また、PL1,・・・,PLLの総和をP3とする。   Here, the power at the commercial system point O1 at the entrance of the microgrid 1 is defined as the commercial system point power P1, and the reverse power flow at the commercial system point O1 is defined as the reverse power flow RP1 (indicated by a dotted line arrow). Also, the power at the commercial interconnection point O2 in the microgrid 1 is the commercial interconnection point power P2, and the reverse power RP2 of this commercial interconnection power P2 is the reverse power RP2 (the resale power It is also referred to as a hatched arrow in FIG. Further, the power from the distributed power sources K1,..., KK is indicated as PK1,..., PKK, and the power to the other power consumer facilities L1,. . These pieces of power information are transmitted to the power monitoring measurement control system 5 as information from the power equipment 8 in FIG. 2B. Further, the sum of PL1,..., PLL is P3.

(本発明における基本的定義事項)
ここで、さらに説明を展開するにあたり、本発明における基本的定義事項となる、商用系統点電力、商用連系点潮流電力、瞬時時間帯毎(この実施の形態では、各々の1分間毎)の各々の最大電力変動値について、定義内容を次に示す。
(Basic definition in the present invention)
Here, in further developing the description, the commercial system point power, the commercial interconnection point power, and the instantaneous time zone (in this embodiment, for each one minute), which are the basic definition items in the present invention. The definition contents for each maximum power fluctuation value are as follows.

商用系統点電力=全電力需要家設備電力−分散型電源の総発電電力・・・式(x)
商用連系点潮流電力=分散型電源の総発電電力−マイクログリッド受電点需要家設備以外の全電力需要家設備電力・・・式(y)
であり、瞬時時間帯毎(この実施の形態では、各々の1分間毎)の各々の最大電力変動値は、
商用系統点電力の最大電力変動値=式(x)の瞬時時間帯毎の最大値−最小値
商用連系点潮流電力の最大電力変動値=式(y)の瞬時時間帯毎の最大値−最小値
Commercial system point power = total power customer facility power-total generated power of distributed power source: Formula (x)
Commercial interconnection point tidal power = Total power generated by distributed power source-Total power customer facility power other than microgrid power receiving point customer facility ... Formula (y)
Each maximum power fluctuation value for each instantaneous time zone (in this embodiment, for each one minute) is
Maximum power fluctuation value of commercial grid point power = Maximum value for each instantaneous time zone in equation (x)-Minimum value Maximum power fluctuation value of commercial interconnection point power flow = Maximum value for each instantaneous time zone of equation (y)- minimum value

さらに、上記の瞬時時間帯は、後述するこの実施の形態では、1分の時間帯としているが、追随精度を問題なく保つには、コンピュータの応答時間も配慮すると、30秒乃至5分が望ましい。なぜなら、商用系統点電力、商用連系点潮流電力は、それぞれ全電力需要家設備需要電力から分散型電源総発電電力を減じた電力、分散型電源総発電電力からマイクログリッド受電点需要家設備以外の全電力需要家設備需要電力を減じた電力であり、受電一定制御する分散型電源の負荷変動に対する発電調整が遅い場合は、商用系統点電力、商用連系点潮流電力の時間変動も大きくなり、瞬時時間帯の最大電力変動値も大きくなる。   Furthermore, the instantaneous time zone described above is a time zone of 1 minute in this embodiment, which will be described later, but 30 seconds to 5 minutes is desirable in consideration of the response time of the computer in order to keep the tracking accuracy without any problem. . This is because commercial grid point power and commercial interconnection point power are the power obtained by subtracting the total power generated by the distributed power source from the total power customer facility power, and other than the microgrid power point customer facility from the total distributed power generated power If the power generation adjustment with respect to the load fluctuation of the distributed power source with constant power reception control is slow, the time fluctuation of the commercial grid point power and commercial interconnection point power will also increase. The maximum power fluctuation value in the instantaneous time zone also becomes large.

需要負荷変動は、マイクログリッド内需要負荷設備の種類により、電力変動の大きさ、変動周期等の特性は様々で、それら設備の合成の特性であり、電力変動周期が秒単位なのか、分単位なのか不確定であり、また電力変動に周期性があるかどうかも不確定である。
ここで、瞬時時間帯周期を秒単位に設定すれば、実際の需要負荷変動周期に近い最大値、最小値により最大電力変動値を得られるが、負荷追従性の遅い分散型電源では秒単位で発電指令を受けて秒単位で発電調整はできず、現実的な設定ではない。瞬時時間帯を十分単位に設定すれば種々の変動周期の負荷特性の合成とは言え、実際の負荷変動は期間内に多数含み、負荷変動を大きく見込んだ逆潮流・転売防止を重視した発電目標指令となるが、分散型電源の経済性を考慮したこまめな発電目標値指令はできないため、現実的な設定ではない。実施例としては追従性の遅い分散型電源と経済性を考慮して、瞬時時間帯を1分と設定して説明している。
Depending on the type of demand load equipment in the microgrid, the demand load fluctuation has various characteristics such as the magnitude of power fluctuation, fluctuation cycle, etc., and is a composite characteristic of the equipment, whether the power fluctuation cycle is in seconds or in minutes It is also uncertain whether the power fluctuations are periodic or not.
Here, if the instantaneous time period is set in seconds, the maximum power fluctuation value can be obtained by the maximum and minimum values that are close to the actual demand load fluctuation period. In response to the power generation command, power generation cannot be adjusted in seconds, which is not a realistic setting. If the instantaneous time zone is set to a sufficient unit, it is a synthesis of load characteristics with various fluctuation cycles, but there are many actual load fluctuations within the period, and power generation targets that emphasize backflow and resale prevention that anticipate large load fluctuations Although it is a command, since a frequent power generation target command that considers the economics of distributed power sources cannot be made, it is not a realistic setting. The embodiment is described with an instantaneous time zone set to 1 minute in consideration of a distributed power source with slow followability and economy.

次に、図2Aには、電力監視計測制御システム5の構成を示す。ここでは、電力監視計測制御システム5は、マイクログリット受電点電力需要家設備LM、その他の各電力需要家設備L1・・・、LLと接続された複数の計測端末51aと、商用連系点O2、分散型電源K1・・・KKと接続された複数の計測・制御端末51bと、これら複数の計測端末51aと複数の計測・制御端末51bと通信手段ITを介して接続される中央処理装置CPUから構成される。中央処理装置CPUは、各種データベースまたプログラムを含む記憶装置U−1、プログラムにより動作する演算処理装置U−2、表示装置U−3、通信手段ITに対応する通信装置U−4からなる。   Next, FIG. 2A shows a configuration of the power monitoring measurement control system 5. Here, the power monitoring measurement control system 5 includes a micro grid receiving point power consumer facility LM, a plurality of other power consumer facilities L1,..., LL, a plurality of measurement terminals 51a, and a commercial interconnection point O2. , A plurality of measurement / control terminals 51b connected to the distributed power supply K1... KK, and a central processing unit CPU connected to the plurality of measurement terminals 51a and the plurality of measurement / control terminals 51b via communication means IT. Consists of The central processing unit CPU includes a storage device U-1 including various databases or programs, an arithmetic processing unit U-2 operated by the program, a display unit U-3, and a communication unit U-4 corresponding to the communication means IT.

図2Bは、図1のマイクログリッドの電力監視計測制御システム5の翌日発電計画の基本制御ブロック図である。   FIG. 2B is a basic control block diagram of the next day power generation plan of the power monitoring measurement control system 5 of the microgrid in FIG.

各計測端末51(51a,51b)は、各電力需要家設備、商用系統点、商用連系点、分散型電源などの、電力設備8から電力計測データ51Dを計測し、各電力需要家設備の需要電力計測データ52Dを需要電力データベース61へ送信する。また、瞬時時間帯毎に商用系統点電力P1および商用連系点潮流電力P2の最大電力変動値を演算処理し、瞬時時間帯最大電力変動値53Dをデータベース62へ送信する。   Each measurement terminal 51 (51a, 51b) measures the power measurement data 51D from the power facility 8, such as each power consumer facility, commercial grid point, commercial grid point, distributed power source, and the like. The demand power measurement data 52D is transmitted to the demand power database 61. Further, the maximum power fluctuation value of the commercial grid point power P1 and the commercial interconnection point power flow P2 is calculated for each instantaneous time zone, and the instantaneous time zone maximum power fluctuation value 53D is transmitted to the database 62.

需要電力データベース61は、過去に計測した各電力需要家設備需要電力計測データ61Dのデータベースである。   The demand power database 61 is a database of each power consumer facility demand power measurement data 61D measured in the past.

データベース62は、瞬時時間帯最大電力変動値53D(商用系統点最大電力変動値、商用連系点潮流最大電力変動値を示す)を受信して、過去最大の瞬時時間帯毎の最大電力変動値の24時間データベースである。   The database 62 receives the instantaneous time zone maximum power fluctuation value 53D (indicating the commercial power point maximum power fluctuation value, the commercial grid point power flow maximum power fluctuation value), and the maximum power fluctuation value for each past maximum instantaneous time zone. 24 hours database.

設備特性データベース63は、各分散型電源等の特性(例えば分散型電源の発電容量、負荷追従性、運用上の制約事項、発電コスト、商用系統点から購入するコスト)のデータベースである。   The facility characteristic database 63 is a database of characteristics of each distributed power source (for example, power generation capacity of the distributed power source, load followability, operational restrictions, power generation cost, cost purchased from commercial system points).

需要電力予測手段65は、需要電力データ61Dと該当する時間の予測気温より需要電力予測データ65Dを生成する。   The demand power prediction means 65 generates demand power prediction data 65D from the demand power data 61D and the predicted temperature at the corresponding time.

翌日発電計画策定手段71は、需要電力予測データ65Dと、データベース62からの過去最大の瞬時時間帯毎最大電力変動値62Dと、設備特性データベース63からの設備特性データ63Dを基に、逆潮流防止・転売電力防止するような分散型電源の総発電電力を決定する逆潮流・転売防止制御手段72と、総発電電力を最も経済的な商用系統電力と各分散型電源発電電力に配分する経済配分制御手段73により翌日の各分散型電源発電電力と商用系統電力を計画する。策定した翌日発電計画データ71Dを、決められた時間に運用制御手段81へ送信する。制御端末91以降については、次の図2Cの説明で説明する。   The next day power generation plan formulation means 71 prevents reverse power flow based on the demand power prediction data 65D, the maximum power fluctuation value 62D for the maximum instantaneous time zone from the database 62, and the facility characteristic data 63D from the facility characteristic database 63. -Reverse flow / resale prevention control means 72 for determining the total generated power of the distributed power source for preventing resale power, and economic distribution for distributing the total generated power to the most economical commercial system power and each distributed power source generated power The distributed power generation power and commercial grid power for the next day are planned by the control means 73. The formulated next day power generation plan data 71D is transmitted to the operation control means 81 at a predetermined time. The control terminal 91 and later will be described in the following description of FIG. 2C.

図2Cは、図1のマイクログリッドの電力監視計測制御システム5の当日運用制御の基本制御ブロック図である。   FIG. 2C is a basic control block diagram of on-the-day operation control of the power monitoring measurement control system 5 of the microgrid in FIG.

各計測端末51は、各電力需要家設備、商用系統点、商用連系点、分散型電源などの、電力設備8から電力計測データ51Dを計測し、各電力需要家設備の需要電力計測データ52Dを需要電力データベース61へ送信する。また、瞬時時間帯毎に商用系統点電力P1および商用連系点潮流電力P2の最大電力変動値を演算処理し、瞬時時間帯最大電力変動値53Dをデータベース62へ送信する。商用連系点O2もしくは商用連系点O2の計測端末51bが異常検知設定値による異常検知をした場合は、直ちに当日緊急修正発電計画策定手段75へ各分散型電源発電電力計測データ54Dと異常検知情報55Dを送信する。   Each measurement terminal 51 measures power measurement data 51D from the power equipment 8, such as each power consumer equipment, commercial grid point, commercial interconnection point, distributed power source, and the like, and demand power measurement data 52D of each power consumer equipment. Is transmitted to the demand power database 61. Further, the maximum power fluctuation value of the commercial grid point power P1 and the commercial interconnection point power flow P2 is calculated for each instantaneous time zone, and the instantaneous time zone maximum power fluctuation value 53D is transmitted to the database 62. When the commercial connection point O2 or the measurement terminal 51b at the commercial connection point O2 detects an abnormality based on the abnormality detection set value, each distributed power generation power measurement data 54D and abnormality detection are immediately sent to the emergency correction power generation plan formulation means 75 on that day. Information 55D is transmitted.

需要電力データベース61は、過去に計測した各電力需要家設備需要電力計測データ61Dのデータベースである。   The demand power database 61 is a database of each power consumer facility demand power measurement data 61D measured in the past.

データベース62は、瞬時時間帯最大電力変動値53D(商用系統点最大電力変動値、商用連系点潮流最大電力変動値を示す)を受信して、過去最大の瞬時時間帯毎の最大電力変動値の24時間データベースである。   The database 62 receives the instantaneous time zone maximum power fluctuation value 53D (indicating the commercial power point maximum power fluctuation value, the commercial grid point power flow maximum power fluctuation value), and the maximum power fluctuation value for each past maximum instantaneous time zone. 24 hours database.

設備特性データベース63は、各分散型電源等の特性(例えば分散型電源の発電容量、負荷追従性、運用上の制約事項、発電コスト、商用系統点から購入するコスト)のデータベースである。   The facility characteristic database 63 is a database of characteristics of each distributed power source (for example, power generation capacity of the distributed power source, load followability, operational restrictions, power generation cost, cost purchased from commercial system points).

需要電力予測手段65は、需要電力データ61Dと該当する時間の予測気温より需要電力予測データ65Dを生成する。   The demand power prediction means 65 generates demand power prediction data 65D from the demand power data 61D and the predicted temperature at the corresponding time.

運用制御手段81は、翌日発電計画策定手段71より前日送付の翌日発電計画データ71Dに基づいた分散型電源発電目標値指令81Dを定期的に各制御端末91へ指令する。   The operation control means 81 periodically commands each control terminal 91 a distributed power generation target value command 81D based on the next day power generation plan data 71D sent from the next day power generation plan formulation means 71.

分散型電源毎に配置する各制御端末91は、対応する分散型電源へ発電目標値指令91Dを送信する。   Each control terminal 91 arranged for each distributed power source transmits a power generation target value command 91D to the corresponding distributed power source.

各分散型電源K1〜KKは、制御端末からの発電目標値指令91Dに基づいて発電電力を制御する。   Each of the distributed power sources K1 to KK controls the generated power based on the power generation target value command 91D from the control terminal.

当日緊急修正発電計画策定手段75は計測端末51より各分散型電源発電電力計測データ54Dと異常検知情報55Dを受信した場合は、過去最大の瞬時時間帯毎最大電力変動値62D、需要電力予測データ65D、設備特性データ63D、各分散型電源発電電力計測データ54Dより当日緊急発電計画データ75Dを演算し、運用制御手段81へ送信する。   On the day, when the emergency power generation plan formulation means 75 receives each distributed power generation power measurement data 54D and abnormality detection information 55D from the measurement terminal 51, the maximum power fluctuation value 62D for the maximum instantaneous time zone, demand power prediction data On the day, emergency power generation plan data 75D is calculated from 65D, facility characteristic data 63D, and each distributed power generation power measurement data 54D, and transmitted to the operation control means 81.

運用制御手段81は、当日緊急発電計画データ75Dに基づいた分散型電源発電目標値指令81Dを定期的に各制御端末91へ指令する。分散型電源毎に配置する各制御端末91は、対応する分散型電源へ発電目標値指令91Dを送信する。各分散型電源K1〜KKは、制御端末からの発電目標値指令91Dに基づいて発電電力を制御する。   The operation control means 81 periodically commands each control terminal 91 a distributed power generation target value command 81D based on the emergency power generation plan data 75D on the day. Each control terminal 91 arranged for each distributed power source transmits a power generation target value command 91D to the corresponding distributed power source. Each of the distributed power sources K1 to KK controls the generated power based on the power generation target value command 91D from the control terminal.

図3は、図1のマイクログリッドの電力監視計測制御システム内の処理の流れを示す説明図である。上記の図2B、図2Cの説明は、図3の電力監視計測制御システム内の処理の流れを更に詳細に説明している。   FIG. 3 is an explanatory diagram showing a flow of processing in the power monitoring measurement control system of the microgrid in FIG. The above description of FIGS. 2B and 2C explains the flow of processing in the power monitoring measurement control system of FIG. 3 in more detail.

ステップS1(需要予測(前日))では、前日の段階での翌日の需要電力予測データを得る。   In step S1 (demand forecast (previous day)), demand power forecast data for the next day at the stage of the previous day is obtained.

電力需要家設備毎に、過去の実績需要電力と翌日予測気温から翌日の需要電力予測データを得る。   For each power consumer facility, the next day demand power forecast data is obtained from the past actual demand power and the next day forecast temperature.

グラフS1G1をLM電力需要家設備需要電力予測データ、グラフS1G2をL1電力需要家設備需要電力予測データ、・・・、LL電力需要家設備需要電力予測データを総和したマイクログリッド受電点の需要家以外の全電力需要家設備需要電力予測データ(以下LM以外の全電力需要家設備需要電力予測データと呼ぶことがある)とする。   Graph S1G1 is LM power customer facility demand power prediction data, graph S1G2 is L1 power customer facility demand power prediction data, and so on. Total power consumer facility demand power forecast data (hereinafter, referred to as all power customer facility demand power forecast data other than LM).

更に上記、LM以外の全電力需要家設備需要電力予測データにLM電力需要家設備需要電力予測データを加算したものを全電力需要家設備需要電力予測データと呼び、グラフS1G3に示す。   Furthermore, what added LM electric power consumer equipment demand power prediction data to the above all electric power consumer equipment demand power prediction data other than LM is called total electric power consumer equipment demand power prediction data, and shows it in graph S1G3.

グラフS1G2とグラフS1G3を区別できるように同一のグラフ上に示したものが、グラフS2G1である。   The graph S2G1 is shown on the same graph so that the graph S1G2 and the graph S1G3 can be distinguished.

ステップS2(発電計画(前日))では、電力潮流制約のある電力需要家設備(ここではLM)と全電力需要家設備の需要電力予測データから図9の(1)式とフローF4、または図9の(2)式とフローF5を満たす(図9については、後に詳細に説明する)翌日の発電計画データを策定する。すなわち、グラフS2G2に示すとおり、電力潮流制約を満たす翌日の発電計画データは、LM以外の全電力需要家設備需要電力予測データ(グラフS1G2)より大きく、全電力需要家設備需要電力予測データ(グラフS1G3)より小さい範囲にデータ策定される。   In step S2 (power generation plan (previous day)), the formula (1) and the flow F4 in FIG. 9 or the flow F4 from the power demand forecast data of the power consumer equipment (here, LM) and all the power consumer equipment with power flow restrictions are shown. Formula (2) of No. 9 and flow F5 are satisfied, and power generation plan data for the next day is formulated (FIG. 9 will be described in detail later). That is, as shown in the graph S2G2, the power generation plan data on the next day that satisfies the power flow constraint is larger than the total power customer facility demand power prediction data (graph S1G2) other than the LM, and the total power customer facility demand power prediction data (graph S1G3) Data is formulated in a smaller range.

ステップS3(運用制御(当日))では、前日から日付変更時点で前日策定された発電計画データに基づいて、各分散型電源に決められた周期、例えば1分ごと、で発電目標値を指令して運用制御する(図9のフローF1と図12乃至14のF4、F5、これについては後に詳述する。)。ただし、商用系統点電力P1と商用連系点潮流電力P2とは常時監視される。この状態をグラフS3G1に示す。全電力需要家設備実績需要電力ZDとLM以外の全電力需要家設備実績需要電力LMDとの間に発電計画データが収まっており、運用制御値として発電計画データが非常に合致している場合である。   In step S3 (operation control (on the day)), a power generation target value is commanded at a period determined for each distributed power source, for example, every minute based on the power generation plan data formulated on the previous day from the previous day when the date is changed. Operation control is performed (flow F1 in FIG. 9 and F4 and F5 in FIGS. 12 to 14, which will be described in detail later). However, the commercial grid point power P1 and the commercial grid point power P2 are constantly monitored. This state is shown in graph S3G1. In the case where the power generation plan data is contained between the total power customer facility actual demand power ZD and the total power customer facility actual demand power LMD other than LM, and the power generation plan data is very consistent as the operation control value. is there.

ステップS4(緊急修正発電計画(当日))では、商用系統点電力P1と商用連系点潮流電力P2が異常検知設定値を下回った場合に、逆潮流・転売を防止するように分散型電源へ発電目標値指令91Dを与える(図10のフローF2と図12乃至14のF4、F5、または図11のフローF3と図12乃至14のF4、F5の処理を実行する。これについては後に詳述する)。この状態をグラフS4G1に示す。全電力需要家設備実績需要電力ZDとLM以外の全電力需要家設備実績需要電力LMDとの間から前日策定の発電計画データが逸脱して、商用電力の転売が発生してしまう。商用電力転売防止するために上記演算処理を実施して、分散型電源へ発電目標値指令91Dを与えてグラフS4G2のように、緊急修正発電計画データを運用制御値として、商用電力転売発生を回避する。   In step S4 (emergency correction power generation plan (on the day)), when the commercial grid point power P1 and the commercial grid point power flow P2 fall below the abnormality detection set value, the distributed power source is switched to prevent reverse power flow and resale. The power generation target value command 91D is given (the processing of the flow F2 in FIG. 10 and F4 and F5 in FIGS. 12 to 14 or the processing in the flow F3 in FIG. 11 and F4 and F5 in FIGS. 12 to 14 is executed. To do). This state is shown in graph S4G1. The actual power generation plan data deviated from the previous day deviates from the total power customer facility actual demand power ZD and the total power customer facility actual demand power LMD other than the LM, and commercial power resale occurs. The above calculation processing is performed to prevent commercial power resale, and the power generation target value command 91D is given to the distributed power source to avoid the occurrence of commercial power resale by using the emergency correction power generation plan data as the operation control value as in the graph S4G2. To do.

図4は、最大電力変動値の定義を示す説明図である。図4の(a)は、商用系統点最大電力変動値303を示し、図4の(b)は、商用連系点潮流最大電力変動値313を示す。   FIG. 4 is an explanatory diagram showing the definition of the maximum power fluctuation value. 4A shows the commercial grid point maximum power fluctuation value 303, and FIG. 4B shows the commercial interconnection point maximum power fluctuation value 313.

図4(a)において、縦軸は、電力(kW)を横軸は時間を示す。図上実線は商用系統点電力301(商用系統点電力P1)の変動を示している。この実施の形態では、瞬時時間帯単位を1分間隔として、この商用系統点電力301の変動値の1分間の最大値と最小値の差を採り、その時間帯の商用系統点最大電力変動値303と定義する。設定値以下の場合を異常とする異常検知設定値305を最下部点線のように定める。   In FIG. 4A, the vertical axis represents power (kW) and the horizontal axis represents time. The solid line in the figure shows the fluctuation of the commercial system point power 301 (commercial system point power P1). In this embodiment, the instant time zone unit is set to 1 minute interval, and the difference between the maximum value and the minimum value of the fluctuation value of the commercial system point power 301 for 1 minute is taken, and the commercial system point maximum power fluctuation value in that time zone is taken. 303. An abnormality detection setting value 305 that determines an abnormality when the value is equal to or less than the setting value is determined as indicated by the lowermost dotted line.

図4(b)において、縦軸は、電力(kW)を横軸は時間を示す。図上実線は商用連系点潮流電力311(商用連系点潮流電力P2)の変動を示している。この実施の形態では、瞬時時間帯単位を1分間隔として、この商用連系点潮流電力311の変動値の1分間の最大値と最小値の差を採り、その時間帯の商用連系点潮流最大電力変動値313と定義する。設定値以下の場合を異常とする異常検知設定値315を最下部点線のように定める。   In FIG.4 (b), a vertical axis | shaft shows electric power (kW) and a horizontal axis shows time. The solid line in the figure shows the fluctuation of commercial interconnection point power flow 311 (commercial interconnection point power flow P2). In this embodiment, the instantaneous time zone unit is set to 1 minute interval, and the difference between the maximum value and the minimum value of the fluctuation value of the commercial interconnection point power flow 311 for 1 minute is taken, and the commercial interconnection point current flow in that time zone is taken. The maximum power fluctuation value 313 is defined. An abnormality detection set value 315 that determines an abnormality when the value is equal to or less than the set value is determined as indicated by a dotted line at the bottom.

図5は、本実施の形態のマイクログリッドの電力監視計測制御システムにおける分散型電源の運用制御の説明図で、縦軸は、電力(kW)を横軸は時間を示す。上記の商用系統点最大電力変動値303及び商用連系点潮流最大電力変動値313と同じ時間帯の1分間を切出して図5には表示している。   FIG. 5 is an explanatory diagram of operation control of the distributed power supply in the power monitoring measurement control system of the microgrid of the present embodiment, where the vertical axis indicates power (kW) and the horizontal axis indicates time. One minute of the same time zone as the commercial grid point maximum power fluctuation value 303 and the commercial interconnection point power flow maximum power fluctuation value 313 is extracted and displayed in FIG.

マイクログリッドの全電力需要家設備電力(全需要家設備の必要とする電力)401とマイクログリッド受電点需要家設備LM以外の全電力需要家設備電力403との間の電力レベルに、分散型電源発電電力411,413,415,417,419の総和が計画値として定められる。分散型電源発電電力411,413,415,417は、発電を一定に制御する発電一定制御タイプの分散型電源発電電力であり、分散型電源発電電力419は、商用系統点電力(全電力需要家設備電力401から分散型電源発電電力411,413,415,417,419の総和を減じた電力)をこの時間帯の受電一定制御値421に一定になるように出力調整する分散型電源の発電電力である。発電一定制御する分散型電源発電電力411,413,415,417は例えば燃料電池などの急激な出力調整の苦手なベース電源で構成される。受電一定制御する分散型電源発電電力419は、例えばガスエンジンなどのベース電源に比較して需要負荷変動に対する出力調整が比較的早い電源で構成される。   The distributed power source is at a power level between the total power customer facility power (the power required by all customer facilities) 401 of the micro grid and the total power customer facility power 403 other than the micro grid receiving point customer facility LM. The sum total of the generated electric power 411, 413, 415, 417, 419 is determined as a planned value. The distributed power generation power 411, 413, 415, and 417 are power generation constant control type distributed power generation power that controls power generation to be constant, and the distributed power generation power 419 is a commercial system point power (all power customers). The power generated by the distributed power source is adjusted so that the power obtained by subtracting the sum of the distributed power source generated power 411, 413, 415, 417, 419 from the facility power 401 becomes constant at the power reception constant control value 421 in this time zone. It is. Distributed power source generated power 411, 413, 415, and 417 for constant power generation is composed of a base power source that is not good at rapid output adjustment, such as a fuel cell. The distributed power generation power 419 for which power reception constant control is performed is constituted by a power source whose output adjustment with respect to demand load fluctuations is relatively quick compared to a base power source such as a gas engine.

図6は、本実施の形態のマイクログリッドの電力監視計測制御システム5における発電計画値の策定手順(1)の説明図である。図6の縦軸は、電力(kW)を横軸は時間を示し、図5をベースとして、発電計画の最大値>発電計画の最小値となる場合の発電計画値の選定手順を説明するものである。   FIG. 6 is an explanatory diagram of a power generation plan value formulation procedure (1) in the microgrid power monitoring measurement control system 5 of the present embodiment. The vertical axis in FIG. 6 indicates power (kW), the horizontal axis indicates time, and the procedure for selecting the power generation plan value when the maximum value of the power generation plan is greater than the minimum value of the power generation plan based on FIG. It is.

この時間帯(例えば、12:00〜12:01とする)で過去最大の商用系統点最大電力変動値303MAXは、図4(a)のこの時間帯(12:00〜12:01)の商用系統点最大電力変動値303の中で過去最大の値である。   The maximum commercial power point maximum power fluctuation value 303MAX in this time zone (for example, 12: 0 to 12:01) is the commercial power of this time zone (12: 0 to 12:01) in FIG. This is the maximum value in the past in the system point maximum power fluctuation value 303.

また、この時間帯(12:00〜12:01)で過去最大の商用連系点潮流最大電力変動値313MAXは、図4(b)のこの時間帯(12:00〜12:01)の商用連系点潮流最大電力変動値313の中で過去最大の値である。   In addition, the largest commercial interconnection point power flow maximum power fluctuation value 313MAX in this time zone (12: 0 to 12:01) is the commercial power in this time zone (12: 0 to 12:01) in FIG. This is the maximum value in the past in the interconnection point tidal current maximum power fluctuation value 313.

この時間帯(12:00〜12:01)の発電計画値(最大)545は、全電力需要家設備需要電力予測した1分間積算値531からこの時間帯で過去最大の商用系統点最大電力変動値303MAXを減じた値である。   The power generation plan value (maximum) 545 in this time zone (12: 00 to 12:01) is the maximum commercial power point maximum power fluctuation in this time zone from the one-minute integrated value 531 predicted for the total power consumer equipment demand power. This is a value obtained by subtracting the value 303MAX.

また、この時間帯(12:00〜12:01)の発電計画値(最小)543は、LM以外の全電力需要家設備需要電力予測した1分間積算値533にこの時間帯で過去最大の商用連系点潮流最大電力変動値313MAXを加算した値である。   In addition, the power generation plan value (minimum) 543 in this time zone (12: 0 to 12:01) is the largest commercial value in this time zone, which is the accumulated value for one minute 533 predicted for the demand power of all power customer facilities other than LM. This is a value obtained by adding the interconnection point tidal current maximum power fluctuation value 313MAX.

後述する(1)式を満たす場合の経済性を考慮したこの時間帯(12:00〜12:01)の発電計画値541は、発電計画値(最小)543より大きく、発電計画値(最大)545より小さく設定される。   The power generation plan value 541 in this time zone (12: 0 to 12:01) in consideration of the economic efficiency when the expression (1) described later is satisfied is larger than the power generation plan value (minimum) 543, and the power generation plan value (maximum). It is set to be smaller than 545.

図7及び図8は、本実施の形態のマイクログリッドの電力監視計測制御システムにおける発電計画値の策定手順(2)の説明図である。図7の縦軸は、電力(kW)を横軸は時間を示し、発電計画の最大値<発電計画の最小値となる場合の発電計画値の選定手順を説明するものである。   FIGS. 7 and 8 are explanatory diagrams of the power generation plan value formulation procedure (2) in the microgrid power monitoring measurement control system of the present embodiment. The vertical axis in FIG. 7 indicates power (kW), the horizontal axis indicates time, and the power generation plan value selection procedure when the maximum value of the power generation plan <the minimum value of the power generation plan is described.

この時間帯(例えば、12:00〜12:01とする)で過去最大の商用系統点最大電力変動値303MAXは、図4(a)のこの時間帯(12:00〜12:01)の商用系統点最大電力変動値303の中で過去最大の値である。   The maximum commercial power point maximum power fluctuation value 303MAX in this time zone (for example, 12: 0 to 12:01) is the commercial power of this time zone (12: 0 to 12:01) in FIG. This is the maximum value in the past in the system point maximum power fluctuation value 303.

また、この時間帯(12:00〜12:01)で過去最大の商用連系点潮流最大電力変動値313MAXは、図4(b)のこの時間帯(12:00〜12:01)の商用連系点潮流最大電力変動値313の中で過去最大の値である。   In addition, the largest commercial interconnection point power flow maximum power fluctuation value 313MAX in this time zone (12: 0 to 12:01) is the commercial power in this time zone (12: 0 to 12:01) in FIG. This is the maximum value in the past in the interconnection point tidal current maximum power fluctuation value 313.

この時間帯(12:00〜12:01)の発電計画値(最大)645は、全電力需要家設備需要電力予測した1分間積算値531からこの時間帯で過去最大の商用系統点最大電力変動値303MAXを減じた値である。   The power generation plan value (maximum) 645 in this time zone (12: 00 to 12:01) is the largest commercial system point maximum power fluctuation in this time zone from the one-minute integrated value 531 predicted for the total power consumer equipment demand power. This is a value obtained by subtracting the value 303MAX.

また、この時間帯(12:00〜12:01)の発電計画値(最小)643は、LM以外の全電力需要家設備需要電力予測した1分間積算値533にこの時間帯で過去最大の商用連系点潮流最大電力変動値313MAXを加算した値である。   In addition, the power generation plan value (minimum) 643 in this time zone (12: 0 to 12:01) is the largest commercial value in the past in this time zone to the integrated value 533 predicted for the demand power of all power consumer equipment other than LM. This is a value obtained by adding the interconnection point tidal current maximum power fluctuation value 313MAX.

上記のこの時間帯の発電計画値(最大)645とこの時間帯の発電計画値(最小)643とは、発電計画の最大値<発電計画の最小値となっているため、下記(1)式を満たす解は存在しない。そこで、図8に示すように下記(2)式を満たす、発電計画値を選定する。   Since the power generation plan value (maximum) 645 and the power generation plan value (minimum) 643 in this time zone are the maximum value of the power generation plan <the minimum value of the power generation plan, the following equation (1) There is no solution that satisfies Therefore, as shown in FIG. 8, a power generation plan value that satisfies the following equation (2) is selected.

マイクログリッド受電点の電力需要家設備LM以外の全電力需要家設備需要電力予測値+商用連系点潮流最大電力変動値
≦ 分散型電源の総発電電力
≦ 全電力需要家設備需要電力予測値−商用系統点最大電力変動値・・・(1)式
Power demand forecast value of all power customers other than the power consumer equipment LM at the power receiving point of the microgrid + Maximum power fluctuation value of the commercial grid connection point ≤ Total power generation of the distributed power source ≤ Forecast power demand value of the total power customer equipment- Commercial system point maximum power fluctuation value (1)

つまり、全電力需要家設備需要電力予測した1分間積算値531とマイクログリッド受電点需要家設備以外の全電力需要家設備需要電力予測した1分間積算値533の差分、すなわち、マイクログリッド受電点需要家設備需要電力予測した1分間積算値を過去最大の商用連系点潮流最大電力変動値313MAXと過去最大の商用系統点最大電力変動値303MAXの比率(612と631の比率)で按分した点をこの時間帯の発電計画値641に選定する。   That is, the difference between the 1-minute integrated value 531 predicted for the total power consumer facility demand power and the 1-minute integrated value 533 for the predicted total power consumer facility demand power other than the microgrid power receiving point customer facility, that is, the microgrid power receiving point demand The point where the one-minute integrated value predicted for household equipment demand power is prorated by the ratio between the largest commercial interconnection point power flow maximum power fluctuation value 313MAX and the largest commercial grid point maximum power fluctuation value 303MAX (ratio between 612 and 631). The power generation plan value 641 for this time zone is selected.

マイクログリッド受電点需要家設備以外の全電力需要家設備需要電力予測値
+マイクログリッド受電点需要家設備需要電力予測値×商用連系点潮流最大電力変動値
÷(商用連系点潮流最大電力変動値+商用系統点最大電力変動値)・・・(2)式
Predicted power demand for all power customers other than microgrid receiving point customer equipment + Predicted power demand for microgrid receiving point customer equipment x Maximum power fluctuation value for commercial interconnection point ÷ (Maximum power fluctuation for commercial grid point power flow) Value + commercial system point maximum power fluctuation value) (2) formula

以下、上記の実施の形態のマイクログリッドにおける電力監視計測制御システム5を中核とした制御フローについて説明する。   Hereinafter, a control flow with the power monitoring measurement control system 5 in the microgrid of the above embodiment as a core will be described.

図9は、図1のマイクログリッド1における、瞬時商用連系点潮流電力及び瞬時商用系統点電力が共に正常値の場合(共に異常検知設定値以上である場合)の電力監視計測制御システム5を中核とした制御フロー図(フローF1の図)である。   FIG. 9 shows the power monitoring measurement control system 5 in the microgrid 1 of FIG. 1 when the instantaneous commercial interconnection point power and the instantaneous commercial grid point power are both normal values (both are equal to or higher than the abnormality detection set value). It is the control flow figure (drawing of flow F1) made into the core.

ステップF1S1では、瞬時商用系統点電力と瞬時商用連系点潮流電力の計測が、例えば、1秒間隔で行われる。   In step F1S1, the measurement of the instantaneous commercial grid point power and the instantaneous commercial interconnection point power is performed, for example, at intervals of 1 second.

ステップF1S2では、ここでは瞬時時間帯として1分間の計測期間中での最大値と最小値を上記両電力について選定する。   In step F1S2, here, the maximum value and the minimum value in the measurement period of 1 minute are selected for the both powers as the instantaneous time zone.

ステップF1S3では、上記の両電力のそれぞれについての(最大値―最小値)をその1分間(時間帯)の瞬時最大電力変動値、すなわち、商用系統点最大電力変動値、商用連系点潮流最大電力変動値、とする。ステップF1S2とステップF1S3については、図4の(a)と図4の(b)に基づいてもすでに説明した。   In step F1S3, the (maximum value-minimum value) for each of the above two electric powers is set to the instantaneous maximum power fluctuation value for one minute (time period), that is, the commercial system point maximum power fluctuation value, the commercial interconnection point power flow maximum. The power fluctuation value. Steps F1S2 and F1S3 have already been described based on FIG. 4A and FIG. 4B.

ステップF1S4では、その1分間の最大電力変動値をデータベース62(図2C)に保存されている過去同時刻最大電力変動値と比較する。過去同時刻最大変動値より大きい場合は、ステップF1S5に至る。過去同時刻最大変動値より小さい場合は、ステップF1S99に至り、データベース62に保存されている過去同時刻最大電力変動値は、上書き更新されない。   In step F1S4, the maximum power fluctuation value for one minute is compared with the past same-time maximum power fluctuation value stored in the database 62 (FIG. 2C). If it is larger than the past maximum variation value at the same time, step F1S5 is reached. If it is smaller than the past same-time maximum fluctuation value, the process reaches step F1S99, and the past same-time maximum power fluctuation value stored in the database 62 is not overwritten and updated.

ステップF1S5では、F1S3の演算値を過去同時刻最大電力変動値として、データベース62に保存されている該当時刻の最大電力変動値を上書き更新する。この上書きは、瞬時商用連系点潮流電力及び瞬時商用系統点電力の両電力の場合もあれば片方のみの場合もあり、それぞれに対してそれぞれ行われる。   In step F1S5, the calculated value of F1S3 is used as the past maximum power fluctuation value at the same time, and the maximum power fluctuation value at the corresponding time stored in the database 62 is overwritten and updated. This overwriting may be performed for both the instantaneous commercial interconnection point power and the instantaneous commercial grid point power or only one of them.

一方で、ステップF1S21では、各電力需要家設備の需要電力計測データ52D(図2C)を、ここでは1分間隔(単位)で計測する。   On the other hand, in step F1S21, demand power measurement data 52D (FIG. 2C) of each power consumer facility is measured here at intervals of 1 minute (unit).

ステップF1S22では、この1分毎計測データを需要電力データベース61(図2C)に保存する。   In step F1S22, the measurement data per minute is stored in the demand power database 61 (FIG. 2C).

ステップF1S23では、需要電力予測手段65(図2C)にて、過去の需要電力データ61D(図2C)と該当する時間の予測気温より需要電力予測データ65Dを生成する。   In step F1S23, the demand power prediction means 65 (FIG. 2C) generates demand power prediction data 65D from the past demand power data 61D (FIG. 2C) and the predicted temperature at the corresponding time.

ステップF1S6では、既に、翌日発電計画データ71Dが有る場合はF1S7に至り、無い場合は、F1S1およびF1S21へ戻る。   In step F1S6, if the next day power generation plan data 71D already exists, the process reaches F1S7, and if not, the process returns to F1S1 and F1S21.

ステップF1S7では、翌日発電計画策定手段71(図2C)にて、マイクログリッド受電点需要家設備以外の全電力需要家設備需要予測電力、全電力需要家設備需要予測電力、データベース62(図2C)に保存されている過去最大の瞬時時間帯毎最大電力変動値62D(図2C)および設備特性データ63D(図2C)から、最低の発電コストを考慮した(フローF4)分散型電源の修正発電計画を策定する。この修正発電計画は、この場合、下記(1)式を満たすように決められる。   In step F1S7, the next day power generation plan formulation means 71 (FIG. 2C) uses the total power customer facility demand predicted power other than the microgrid power receiving point customer facility, the total power customer facility demand predicted power, and the database 62 (FIG. 2C). Power generation value 62D (FIG. 2C) and facility characteristic data 63D (FIG. 2C), which are the largest in the past, stored in the past, considering the lowest power generation cost (flow F4). Formulate. In this case, the modified power generation plan is determined so as to satisfy the following expression (1).

マイクログリッド受電点需要家設備以外の全電力需要家設備需要電力予測値+商用連系点潮流最大電力変動値
≦ 分散型電源の総発電電力
≦ 全電力需要家設備需要電力予測値−商用系統点最大電力変動値・・・(1)式
Predicted power demand value of all power customers other than microgrid receiving point consumer equipment + Maximum power fluctuation value of commercial grid connection point ≤ Total generated power of distributed power source ≤ Predicted power demand value of all power customer equipment-Commercial power grid point Maximum power fluctuation value (1)

ここで上記(1)式を満たす発電計画の解が得られた場合、ステップF1S9に至る。このステップF1S7についての説明は、上述の図5と図6との説明においても触れた。
ステップF1S8では、ステップF1S7において、上記(1)式を満たす発電計画の解が存在しない場合の時間帯の修正発電計画を行う。この時間帯の修正発電計画値は、下記(2)式により決められる。
When the solution of the power generation plan that satisfies the above equation (1) is obtained, step F1S9 is reached. The description of this step F1S7 was also mentioned in the description of FIG. 5 and FIG.
In step F1S8, in step F1S7, a corrected power generation plan for the time zone when there is no solution of the power generation plan that satisfies the above equation (1) is performed. The corrected power generation plan value for this time zone is determined by the following equation (2).

マイクログリッド受電点需要家設備以外の全電力需要家設備需要電力予測値
+マイクログリッド受電点需要家設備需要電力予測値
×商用連系点潮流最大電力変動値÷(商用連系点潮流最大電力変動値+商用系統点最大電力変動値)・・・(2)式
Predicted power demand value of all power customers other than microgrid receiving point customer facilities + Predicted power demand value of microgrid receiving point customer facilities × Maximum power fluctuation value of commercial interconnection point ÷ (Maximum power fluctuation of commercial grid point power flow) Value + commercial system point maximum power fluctuation value) (2) formula

ここで上記(2)式を満たす値に発電計画の解が決められた場合には、ステップF1S9に至る。このステップF1S8についての説明は、上述の図7と図8との説明においても触れた。   Here, when the solution of the power generation plan is determined to a value satisfying the above expression (2), the process proceeds to step F1S9. The description of this step F1S8 was also mentioned in the description of FIG. 7 and FIG.

ステップF1S9では、当日の運用制御手段81が上記の翌日発電計画データ71Dを再受信して、既にある翌日発電計画データを上書き更新する。更新処理の後、F1S1およびF1S21へ戻る。   In step F1S9, the operation control means 81 of the day re-receives the next day power generation plan data 71D and overwrites and updates the existing next day power generation plan data. After the update process, the process returns to F1S1 and F1S21.

図10は、図1のマイクログリッドにおける、瞬時商用連系点潮流電力が異常の場合(異常検知設定値より小さい場合)の電力監視計測制御システム5を中核とした制御フロー図(フローF2の図)である。   FIG. 10 is a control flow diagram with the power monitoring measurement control system 5 as the core when the instantaneous commercial interconnection point power flow is abnormal (smaller than the abnormality detection set value) in the microgrid of FIG. ).

ステップF2S1では、瞬時商用系統点電力と瞬時商用連系点潮流電力の計測が、例えば、1秒間隔で行われる。   In step F2S1, the measurement of instantaneous commercial grid point power and instantaneous commercial interconnection point power is performed, for example, at 1 second intervals.

ステップF2S2で、瞬時商用連系点潮流電力が異常検知設定値より小さい場合に異常検知情報55D(図2C)が発生する。   In step F2S2, when the instantaneous commercial interconnection point power is smaller than the abnormality detection set value, abnormality detection information 55D (FIG. 2C) is generated.

ステップF2S3では、商用連系点潮流電力につき、
過去の同時刻最大電力変動値+(異常検知設定値―異常検知設定値を下回った瞬間の瞬時商用連系点潮流電力) をその1分間瞬時商用連系点潮流最大電力変動値とする。ここでの商用系統点電力については異常検知設定値を下回っていなければ、正常時同様(図9同様)に行われる。
In Step F2S3, the commercial interconnection power flow power is
The past maximum power fluctuation value at the same time + (abnormality detection setting value-instantaneous commercial interconnection point power flow at the moment when the abnormality detection setting value is exceeded) is defined as the instantaneous commercial interconnection point power flow maximum power fluctuation value for 1 minute. If the commercial system point power here is not less than the abnormality detection set value, it is performed in the same manner as in the normal state (similar to FIG. 9).

ステップF2S4では、データベース62内の過去の同時刻最大電力変動値を上記の商用連系点潮流最大電力変動値で上書きする。   In step F2S4, the past maximum power fluctuation value at the same time in the database 62 is overwritten with the above-mentioned commercial interconnection point power flow maximum power fluctuation value.

一方で、ステップF2S21では、各電力需要家設備の需要電力計測データ52D(図2C)を、ここでは1分間隔(単位)で計測する。   On the other hand, in step F2S21, demand power measurement data 52D (FIG. 2C) of each power consumer facility is measured here at intervals of 1 minute (unit).

ステップF2S22では、この1分毎計測データを需要電力データベース61(図2C)に保存する。   In step F2S22, the measurement data per minute is stored in the demand power database 61 (FIG. 2C).

ステップF2S23では、需要電力予測手段65(図2C)にて、過去の需要電力データ61D(図2C)と該当する時間の予測気温より需要電力予測データ65Dを生成する。   In step F2S23, the demand power prediction means 65 (FIG. 2C) generates demand power prediction data 65D from the past demand power data 61D (FIG. 2C) and the predicted temperature at the corresponding time.

ステップF2S5では、当日緊急修正発電計画策定手段75(図2C)にて、全電力需要家設備電力需要予測値、マイクログリッド受電点需要家設備以外の全電力需要家設備需要電力予測値、データベース62(図2C)に保存されている過去最大の瞬時時間帯毎最大電力変動値62D(図2C)、設備特性データ63D(図2C)及び各分散型電源発電電力計測データ54D(図2C)から、最低の発電コストを考慮した(フローF4)分散型電源の修正発電計画を策定する。この緊急修正発電計画は、この場合も、上記の(1)式を満たすように決められる。ここで上記(1)式を満たす発電計画の解が得られた場合、ステップF2S7に至る。ステップF2S6では、ステップF2S5において、上記(1)式を満たす発電計画の解が存在しない場合の時間帯の緊急修正発電計画を行う。この時間帯の緊急修正発電計画値は、上記(2)式により決められる。緊急修正発電計画値が決められると、ステップF2S7に至る。   In step F2S5, on the day of the emergency corrected power generation plan formulation means 75 (FIG. 2C), the total power customer facility power demand forecast value, the total power customer facility demand power forecast value other than the microgrid power receiving point customer facility, the database 62 From the past maximum instantaneous power fluctuation value 62D (FIG. 2C), facility characteristic data 63D (FIG. 2C) and each distributed power generation power measurement data 54D (FIG. 2C) stored in (FIG. 2C), A modified power generation plan for a distributed power source is formulated in consideration of the lowest power generation cost (Flow F4). This emergency correction power generation plan is determined so as to satisfy the above formula (1). When the solution of the power generation plan that satisfies the above equation (1) is obtained, step F2S7 is reached. In step F2S6, in step F2S5, an emergency correction power generation plan in a time zone when there is no solution of the power generation plan that satisfies the above equation (1) is performed. The emergency correction power generation plan value in this time zone is determined by the above equation (2). When the emergency correction power generation plan value is determined, the process proceeds to step F2S7.

ステップF2S7では、当日運用制御手段81は、上記の緊急修正発電計画データ75Dを受信して、各制御端末91へ緊急修正発電計画データに基づいた発電目標値指令81Dを送信し、ステップF2S1とステップF2S21へ戻る。   In step F2S7, the day-time operation control means 81 receives the emergency correction power generation plan data 75D and transmits a power generation target value command 81D based on the emergency correction power generation plan data to each control terminal 91. Return to F2S21.

一方、ステップF2S8では、制御端末91は各分散型電源へ発電目標値指令81Dを指令する。   On the other hand, in step F2S8, the control terminal 91 commands a power generation target value command 81D to each distributed power source.

ステップF2S9では、指令された発電目標値指令81Dに基づき、各分散型電源は発電電力を調整し、商用電力転売発生を防止する。   In step F2S9, each distributed power source adjusts the generated power based on the commanded power generation target value command 81D to prevent commercial power resale.

図11は、図1のマイクログリッドにおける、瞬時商用系統点電力が異常の場合(異常検知設定値以下の場合)の電力監視計測制御システム5を中核とした制御フロー図(フローF3の図)である。   FIG. 11 is a control flow diagram (figure F3) centered on the power monitoring measurement control system 5 in the microgrid of FIG. 1 when the instantaneous commercial system point power is abnormal (when it is below the abnormality detection set value). is there.

ステップF3S1では、瞬時商用系統点電力と瞬時商用連系点潮流電力の計測が、例えば、1秒間隔で行われる。   In step F3S1, the measurement of the instantaneous commercial grid point power and the instantaneous commercial interconnection point power is performed at intervals of 1 second, for example.

ステップF3S2で、瞬時商用系統点電力が異常検知設定値より小さい場合に異常検知情報55Dが発生する。   In step F3S2, when the instantaneous commercial system point power is smaller than the abnormality detection set value, abnormality detection information 55D is generated.

ステップF3S3では、商用系統点電力につき、
過去の同時刻最大電力変動値+(異常検知設定値―異常検知設定値を割った瞬間の瞬時商用系統点電力)
をその1分間の瞬時商用系統点最大電力変動値とする。ここでの商用連系点潮流電力については異常検知設定値を下回っていなければ、正常時同様(図9同様)に行われる。
In step F3S3, for commercial grid point power,
Maximum power fluctuation value at the same time in the past + (Abnormality detection setting value-Instantaneous commercial system point power at the moment of dividing the abnormality detection setting value)
Is the instantaneous commercial system maximum power fluctuation value for 1 minute. If the commercial interconnection point power flow here is not lower than the abnormality detection set value, it is performed in the same manner as normal (similar to FIG. 9).

ステップF3S4では、データベース62内の過去の同時刻最大電力変動値の内の商用系統点電力については上記の商用系統点最大電力変動値で上書きする。   In step F3S4, the commercial grid point power in the past maximum power fluctuation value in the database 62 is overwritten with the commercial grid point maximum power fluctuation value.

一方で、ステップF3S21では、各電力需要家設備の需要電力計測データ52D(図2C)を、ここでは1分間隔(単位)で計測する。   On the other hand, in step F3S21, the demand power measurement data 52D (FIG. 2C) of each power consumer facility is measured here at intervals of 1 minute (unit).

ステップF3S22では、この1分毎計測データを需要電力データベース61(図2C)に保存する。   In step F3S22, the minute measurement data is stored in the demand power database 61 (FIG. 2C).

ステップF3S23では、需要電力予測手段65(図2C)にて、過去の需要電力データ61D(図2C)と該当する時間の予測気温より需要電力予測データ65Dを生成する。   In step F3S23, the demand power prediction means 65 (FIG. 2C) generates demand power prediction data 65D from the past demand power data 61D (FIG. 2C) and the predicted temperature at the corresponding time.

ステップF3S5では、当日緊急修正発電計画策定手段75(図2C)にて、マイクログリッド受電点需要家設備以外の全電力需要家設備需要電力予測値、全電力需要家設備需要電力予測値、データベース62(図2C)に保存されている過去最大の瞬時時間帯毎最大電力変動値62D(図2C)、設備特性データ63D(図2C)及び各分散型電源発電電力計測データ54D(図2C)から、最低の発電コストを考慮した(フローF4)分散型電源の緊急修正発電計画を策定する。この緊急修正発電計画は、この場合にも、上記の(1)式を満たすように決められる。   In step F3S5, on the day of the emergency correction power generation plan formulation means 75 (FIG. 2C), the predicted power demand value for all power customer facilities other than the microgrid power receiving point customer facility, the predicted power demand value for all power customer facilities, database 62 From the past maximum instantaneous power fluctuation value 62D (FIG. 2C), facility characteristic data 63D (FIG. 2C) and each distributed power generation power measurement data 54D (FIG. 2C) stored in (FIG. 2C), Develop an emergency correction power generation plan for the distributed power source considering the lowest power generation cost (Flow F4). In this case as well, this emergency correction power generation plan is determined so as to satisfy the above formula (1).

ここで上記(1)式を満たす発電計画の解が得られた場合、ステップF3S7に至る。   When the solution of the power generation plan that satisfies the above equation (1) is obtained, step F3S7 is reached.

ステップF3S6では、ステップF3S5において、上記(1)式を満たす発電計画の解が存在しない場合の時間帯の緊急修正発電計画を行う。この時間帯の緊急修正発電計画値は、上記(2)式により決められる。緊急修正発電計画値が決められると、ステップF3S7に至る。   In step F3S6, in step F3S5, an emergency correction power generation plan in a time zone when there is no solution of the power generation plan that satisfies the above equation (1) is performed. The emergency correction power generation plan value in this time zone is determined by the above equation (2). When the emergency correction power generation plan value is determined, the process proceeds to step F3S7.

ステップF3S7では、当日運用制御手段81は、上記の緊急修正発電計画データ75Dを受信して、各制御端末91へ緊急修正発電計画データに基づいた発電目標値指令81Dを送信し、ステップF2S1とステップF2S21へ戻る。   In step F3S7, the day-time operation control means 81 receives the emergency correction power generation plan data 75D and transmits a power generation target value command 81D based on the emergency correction power generation plan data to each control terminal 91. Return to F2S21.

一方、ステップF3S8では、制御端末91は各分散型電源へ発電目標値指令81Dを指令する。   On the other hand, in step F3S8, the control terminal 91 commands a power generation target value command 81D to each distributed power source.

ステップF3S9では、指令された発電目標値指令81Dに基づき、各分散型電源は発電電力を調整し、商用系統点O1(図1)への逆潮流発生を防止する。   In step F3S9, each distributed power source adjusts the generated power based on the commanded power generation target value command 81D to prevent the occurrence of reverse power flow to the commercial system point O1 (FIG. 1).

次に、最低の発電コストを考慮した発電計画の演算処理につき図12乃至図14に基づき説明する。   Next, the calculation process of the power generation plan in consideration of the minimum power generation cost will be described with reference to FIGS.

図12は、図6の発電計画値の策定手順(1)に対応する、図1のマイクログリッドにおける最低の発電コストを考慮した発電計画演算処理の電力監視計測制御システム5を中核としたフロー図(フローF4の図)である。図13は、図6の発電計画値の策定手順(1)に対応する、図12に続く最低の発電コストを考慮した発電計画演算処理の電力監視計測制御システム5を中核としたフロー図(フローF4の続き図)である。フロー4は、上記の(1)式を満たす場合に適用される最低の発電コストを考慮した発電計画の演算処理である。   FIG. 12 is a flowchart corresponding to the power generation plan value formulation procedure (1) in FIG. 6 with the power monitoring measurement control system 5 in the power generation plan calculation process taking into account the minimum power generation cost in the microgrid in FIG. 1 as the core. (Figure of flow F4). 13 corresponds to the power generation plan value formulation procedure (1) in FIG. 6 and is a flow diagram (flow) centered on the power monitoring measurement control system 5 of the power generation plan calculation processing considering the lowest power generation cost following FIG. It is a continuation figure of F4). Flow 4 is a calculation process of a power generation plan in consideration of the minimum power generation cost applied when the above equation (1) is satisfied.

ステップF4S1では、経済配分手段73(図2C)にて、
全電力需要家設備需要電力予測値―商用系統点最大電力変動値・・式F401と、
マイクログリッド受電点需要家設備以外の全電力需要家設備需要電力予測値+商用連系点潮流最大電力変動値・・式F402と、を演算する。
In step F4S1, the economic distribution means 73 (FIG. 2C)
Total power consumer equipment demand power forecast value-commercial system point maximum power fluctuation value ... Formula F401,
All power consumer facility demand power predicted value other than microgrid power receiving point customer facility + commercial interconnection point tidal current maximum power fluctuation value ··· Formula F402 is calculated.

ステップF4S2では、分散型電源の発電コスト(燃料費、メンテナンス費、諸経費等の合計)(円/kWh)、商用系統点から購入する電力料金(円/kWh)の設備特性データ63Dより、
式F402の演算値−発電コストの1番目に安い分散型電源(受電一定制御する分散型電源を除く)送電可能容量・・式F403を演算する。
In step F4S2, from the facility characteristic data 63D of the power generation cost (total of fuel cost, maintenance cost, various expenses, etc.) (yen / kWh) of the distributed power source, and the power rate (yen / kWh) purchased from the commercial grid point,
Calculated value of Formula F402—Distributed type power supply with the lowest power generation cost (excluding distributed type power source with constant power reception control) transmittable capacity. Formula F403 is calculated.

ステップF4S3で、式F403の演算値が0より大なら、ステップF4S4で、
式F403の演算値−2番目に安い分散型電源(受電一定制御する分散型電源を除く)送電可能容量・・式F404を演算する。
In step F4S3, if the calculated value of expression F403 is greater than 0, in step F4S4,
Calculated value of Formula F403—Calculate Formula F404 which is the second cheapest distributed power source (excluding the distributed power source that performs constant power reception control).

ステップF4S3で、式F404の演算値が0より大なら、ステップF4S4で、
式F404の演算値−N+1番目に安い分散型電源(受電一定制御する分散型電源を除く)送電可能容量 を演算して、最新の式F404の演算値とする。
In step F4S3, if the calculated value of expression F404 is greater than 0, in step F4S4,
Calculated value of Formula F404 -N + 1 The cheapest distributed power source (excluding the distributed power source with constant power reception control) transmittable capacity is calculated as the latest calculated value of Formula F404.

以下同様に、ステップF4S3、ステップF4S4、ステップF4S3、・・・の演算を繰り返して、式F404の演算値が初めて0以下となった場合、ステップF4S5で、
N番目に安い分散型電源(受電一定制御する分散型電源を除く)発電コスト−商用系統点から購入する電力料金・・式F405、を演算する。
Similarly, when the calculation of step F4S3, step F4S4, step F4S3,... Is repeated and the calculation value of expression F404 becomes 0 or less for the first time, in step F4S5,
N-th lowest distributed power source (excluding distributed power source with constant power reception control) power generation cost—electric power price purchased from commercial grid point—formula F405 is calculated.

ステップF4S6で、式F405の演算値が0より大のときには、ステップF4S7でN番目に安い分散型電源の発電計画値を、
式F402−(1番目に安い分散型電源送電可能容量+2番目に安い分散型電源送電可能容量+・・・+N−1番目に安い分散型電源送電可能容量) とする。
In step F4S6, when the calculated value of expression F405 is greater than 0, the power generation plan value of the Nth lowest distributed power source is determined in step F4S7.
Formula F402- (first lowest distributed power transmission capacity) + second lowest distributed power transmission capacity + ... + N-1 lowest distributed power transmission capacity).

ステップF4S8では、
受電一定制御する分散型電源の発電コスト−商用系統点から購入する電力料金・・式F406 を演算する。
In step F4S8,
Power generation cost of distributed power source for which power reception constant control is performed-electric power charge purchased from the commercial grid point. Formula F406 is calculated.

ステップF4S9で、式F406の演算値が0より大のときには、ステップF4S10で、
受電一定制御する分散型電源の受電一定制御値を、全電力需要家設備予測電力−式F406の演算値 として指示する。
In step F4S9, when the calculated value of expression F406 is greater than 0, in step F4S10,
The constant power reception control value of the distributed power source that performs constant power reception control is designated as the total power consumer facility predicted power-calculated value of Formula F406.

ステップF4S9で、式F406の演算値が0以下のときには、ステップF4S11で、
受電一定制御する分散型電源の受電一定制御値を、商用系統点最大電力変動値 として指示する。
In step F4S9, when the calculated value of the expression F406 is 0 or less, in step F4S11,
Instruct the constant power reception control value of the distributed power source with constant power reception as the maximum power fluctuation value of the commercial system.

ステップF4S6で、式F405の演算値が0以下のときには、図13に至る。   In Step F4S6, when the calculated value of Formula F405 is 0 or less, the process reaches FIG.

図13のステップF4S12で、
M番目に安い分散型電源(受電一定制御する分散型電源を除く)発電コスト−商用系統から購入する電力料金・・式407でM=N+1の場合 を演算する。
In step F4S12 of FIG.
M-th lowest distributed power source (excluding distributed power source with constant power reception control) power generation cost-power charge purchased from the commercial system.

ステップF4S13で、式F407の演算値が0より大のときには、ステップF4S14で、
(1番目に安い分散型電源送電可能容量+・・・+M−1番目に安い分散型電源送電可能容量)−式F401の演算値・・式F408を演算する。
In step F4S13, when the calculated value of the expression F407 is larger than 0, in step F4S14,
(1st cheapest distributed power transmission capacity +... + M-1 first cheapest distributed power transmission capacity) -calculated value of Formula F401. Formula F408 is calculated.

ステップF4S15で、式408の演算値が0より大のときには、ステップF4S16で、
M−1番目に安い分散型電源の発電計画値を、M−1番目に安い分散型電源送電可能容量−式F408の演算値 として、受電一定制御する分散型電源の受電一定制御値を、商用系統点最大電力変動値 として指示する。
In step F4S15, when the calculated value of Expression 408 is larger than 0, in step F4S16,
The power generation plan value of the M-1st cheapest distributed power source is used as the calculated value of the M-1st cheapest distributed power transmission capacity-Formula F408. Instructed as system point maximum power fluctuation value.

ステップF4S15で、式F408の演算値が0以下のときには、ステップF4S17で、
受電一定制御する分散型電源の発電コスト−商用系統点から購入する電力料金・・式F406 を演算する。
In step F4S15, when the calculated value of expression F408 is 0 or less, in step F4S17,
Power generation cost of distributed power source for which power reception constant control is performed-electric power charge purchased from the commercial grid point. Formula F406 is calculated.

ステップF4S18で、式F406の演算値が0より大のときには、ステップF4S19で、
M−1番目に安い分散型電源の発電計画値を、M−1番目に安い分散型電源送電可能容量 として、受電一定制御する分散型電源の受電一定制御値を、商用系統点最大電力変動値−式F408の演算値 として指示する。
In step F4S18, when the calculated value of the expression F406 is larger than 0, in step F4S19,
The power generation plan value of the M-1st cheapest distributed power source is set as the M-1st cheapest distributed power transmission capacity, and the power receiving constant control value of the distributed power source that performs constant power receiving control is the commercial power point maximum power fluctuation value. -Specify as the calculated value of Formula F408.

ステップF4S18で、式F406の演算値が0以下のときには、ステップF4S20で、
M−1番目に安い分散型電源の発電計画値を、M−1番目に安い分散型電源送電可能容量 として、受電一定制御する分散型電源の受電一定制御値を、商用系統点最大電力変動値 として指示する。
In step F4S18, when the calculated value of expression F406 is 0 or less, in step F4S20,
The power generation plan value of the M-1st cheapest distributed power source is set as the M-1st cheapest distributed power transmission capacity, and the power receiving constant control value of the distributed power source that performs constant power receiving control is the commercial power point maximum power fluctuation value. Instruct as.

ステップF4S13で、式F407の演算値が0以下のときには、ステップF4S21で、
(1番目に安い分散型電源送電可能容量+・・・+M番目に安い分散型電源送電可能容量)−式F401の演算値・・式F409 を演算する。
In step F4S13, when the calculated value of expression F407 is 0 or less, in step F4S21,
(First lowest-cost distributed power transmission capacity +... + M-th lowest distributed power transmission capacity) -Calculated value of Formula F401 Formula F409 is calculated.

ステップF4S22で、式F409の演算値が0より大のときには、ステップF4S23で、
M番目に安い分散型電源の発電コスト−受電一定制御する分散型電源の発電コスト・・式F410 を演算する。
In step F4S22, when the calculated value of the expression F409 is larger than 0, in step F4S23,
The power generation cost of the M-th lowest distributed power source—the power generation cost of the distributed power source for which power reception constant control is performed. Formula F410 is calculated.

ステップF4S24で、式F410の演算値が0より大のときには、ステップF4S25で、
M番目に安い分散型電源の発電計画を0と、受電一定制御する分散型電源の受電一定制御値を、商用系統点最大電力変動値 として指示する。
In step F4S24, when the calculated value of expression F410 is greater than 0, in step F4S25,
The power generation plan of the M-th lowest distributed power source is designated as 0, and the constant power reception control value of the distributed power source that performs constant power reception control is designated as the maximum power fluctuation value of the commercial system.

ステップF4S24で、式F410の演算値が0以下のときには、ステップF4S26で、M番目に安い分散型電源の発電計画値を、
M番目に安い分散型電源送電可能容量−式F409の演算値 として、受電一定制御する分散型電源の受電一定制御値を、商用系統点最大電力変動値 として指示する。
In step F4S24, when the calculated value of the expression F410 is 0 or less, in step F4S26, the power generation plan value of the Mth lowest distributed power source is set.
As the calculated value of the Mth lowest distributed power transmission capacity-Formula F409, the constant power reception control value of the distributed power source for which power reception is controlled is instructed as the maximum power fluctuation value of the commercial system point.

なお、上記ステップF4S22で、式F409の演算値が0以下のときには、
M=M+1 として、上記ステップF4S13に戻る。
In step F4S22, when the calculated value of expression F409 is 0 or less,
As M = M + 1, the process returns to step F4S13.

以下同様に、受電一定制御しない分散型電源の発電計画値、受電一定制御する分散型電源の受電一定制御値の全てが決定されるまで、F4S13,F4S22,F4S13,・・・の演算は繰り返され、経済配分制御手段73は完了する。   Similarly, the calculation of F4S13, F4S22, F4S13,... Is repeated until all of the power generation plan value of the distributed power source that does not perform constant power reception control and the constant power reception control value of the distributed power source that performs constant power reception control are determined. The economic distribution control means 73 is completed.

次に、図14は、図7,図8の発電計画値の策定手順(2)に対応する、図1のマイクログリッド1における最低の発電コストを考慮した発電計画演算処理の電力監視計測制御システム5を中核としたフロー図(フローF5の図)である。フローF5は、上記の(2)式により発電計画値が決められる場合に適用される最低の発電コストを考慮した発電計画の演算処理である。   Next, FIG. 14 shows a power monitoring measurement control system for power generation plan calculation processing considering the lowest power generation cost in the microgrid 1 of FIG. 1, corresponding to the power generation plan value formulation procedure (2) of FIGS. It is a flow figure (figure F5) which made 5 the core. The flow F5 is a power generation plan calculation process that takes into consideration the minimum power generation cost that is applied when the power generation plan value is determined by the above equation (2).

ステップF5S1では、経済配分制御手段73(図2C)にて、
マイクログリッド受電点需要家設備以外の全電力需要家設備需要電力予測値
+マイクログリッド受電点電力需要家設備需要電力予測値×商用連系点潮流最大電力変動値
÷(商用連系点潮流最大電力変動値+商用系統点最大電力変動値)・・・(2)式
を演算する。
In step F5S1, the economic distribution control means 73 (FIG. 2C)
Predicted value of total power customer facility demand other than microgrid receiving point customer facility + predicted value of microgrid receiving point power customer facility demand × commercial interconnection point maximum power fluctuation value ÷ (commercial interconnection point tidal current maximum power Fluctuation value + commercial system point maximum power fluctuation value) (2) is calculated.

ステップF5S2では、分散型電源の発電コスト(燃料費、メンテナンス費、諸経費等の合計)円/kWh、商用系統点から購入する電力料金 円/kWhを含む設備特性データ63Dより、
(2)式の演算値−受電一定制御する分散型電源送電可能容量の1/2−発電コストの1番目に安い分散型電源(受電一定制御する分散型電源を除く)送電可能容量・・・式F501 を演算する。
In step F5S2, from the facility characteristic data 63D including the power generation cost (total of fuel cost, maintenance cost, various expenses, etc.) Yen / kWh of the distributed power source, and the power rate Yen / kWh purchased from the commercial grid point,
Calculated value of equation (2)-1/2 of the distributed power transmission capacity capable of constant power reception control-2nd lowest distributed power generation cost (excluding the distributed power source controlled constant power transmission capacity) ... Formula F501 is calculated.

ステップF5S3で、式F501の演算値が0より大なら、ステップF5S4で、
式F501の演算値―2番目に安い分散型電源(受電一定制御する分散型電源を除く)送電可能容量 ・・・式F502 を演算する。
If the calculated value of the expression F501 is larger than 0 in step F5S3, in step F5S4,
Calculated value of Formula F501—Calculates the second cheapest distributed power source (excluding the distributed power source with constant power reception control) transmittable capacity Formula F502.

ステップF5S3で、式F502の演算値が0より大なら、ステップF5S4で、
式F502の演算値−N+1番目に安い分散型電源(受電一定制御する分散型電源を除く)送電可能容量 を演算して、最新の式F502の演算値とする。
In step F5S3, if the calculated value of expression F502 is greater than 0, in step F5S4,
Calculated value of Formula F502 -N + 1 The cheapest distributed power source (excluding the distributed power source with constant power reception control) transmittable capacity is calculated as the latest calculated value of Formula F502.

以下同様に、ステップF5S3、ステップF5S4、ステップF5S3、・・・の演算を繰り返して、式F502の演算値が初めて0以下となった場合、ステップF5S5で、
N番目に安い分散型電源の発電計画値を、N番目に安い分散型電源送電可能容量−式F502の演算値 として、
受電一定制御する分散型電源の受電一定制御値を、全電力需要家設備需要予測電力−(2)式の演算値 とする。
Similarly, when the calculation of step F5S3, step F5S4, step F5S3,... Is repeated and the calculation value of the expression F502 becomes 0 or less for the first time, in step F5S5,
The power generation plan value of the Nth lowest distributed power supply is calculated as the Nth lowest distributed power transmission capacity-formula F502.
The constant power reception control value of the distributed power source that performs constant power reception control is the total power consumer facility demand forecast power minus the calculated value of equation (2).

以上で、受電一定制御しない分散型電源の発電計画値、受電一定制御する分散型電源の受電一定制御値の全てが決定され、経済配分制御手段73の動作は完了する。   Thus, all of the power generation plan value of the distributed power source that is not subjected to constant power reception control and the constant power reception control value of the distributed power source that is subjected to constant power reception are determined, and the operation of the economic distribution control means 73 is completed.

以上のように、本発明によるマイクログリッドの電力監視計測制御システムは、瞬時時間帯毎の電力需要の最大変動値に応じてあらかじめ翌日の発電計画値を定め、これに基づき当日の運用制御を行い、需給の変化への追随を迅速的確に処理することを可能とするシステムとして有用であり、特に産業上製造され、活用されるに適している。   As described above, the power monitoring measurement control system of the microgrid according to the present invention determines the power generation plan value for the next day in advance according to the maximum fluctuation value of the power demand for each instantaneous time zone, and performs the operation control of the day based on this. It is useful as a system that can quickly and accurately handle changes in supply and demand, and is particularly suitable for industrial production and use.

本発明による一実施の形態としてのマイクログリッドの電力監視計測制御システムを含むマイクログリッドの構成図である。1 is a configuration diagram of a microgrid including a microgrid power monitoring measurement control system according to an embodiment of the present invention. FIG. 図1のマイクログリッドの電力監視計測制御システムの基本構成図である。It is a basic block diagram of the electric power monitoring measurement control system of the microgrid of FIG. 図1のマイクログリッドの電力監視計測制御システムの翌日発電計画の基本制御ブロック図である。It is a basic control block diagram of the next day power generation plan of the power monitoring measurement control system of the micro grid of FIG. 図1のマイクログリッドの電力監視計測制御システム5の当日運用制御の基本制御ブロック図である。FIG. 2 is a basic control block diagram of the day operation control of the microgrid power monitoring measurement control system 5 of FIG. 1. 図1のマイクログリッドの電力監視計測制御システム内の処理の流れを示す説明図である。It is explanatory drawing which shows the flow of a process in the electric power monitoring measurement control system of the micro grid of FIG. (a)は、図1のマイクログリッドの電力監視計測制御システムにおける商用系統点電力の最大電力変動値の定義の説明図である。(b)は、図1のマイクログリッドの電力監視計測制御システムにおける商用連系点潮流電力の最大電力変動値の定義の説明図である。(A) is explanatory drawing of the definition of the maximum electric power fluctuation value of commercial system point electric power in the electric power monitoring measurement control system of the microgrid of FIG. (B) is explanatory drawing of the definition of the maximum electric power fluctuation value of commercial connection point tidal power in the electric power monitoring measurement control system of the microgrid of FIG. 図1のマイクログリッドの電力監視計測制御システムにおける分散型電源の運用制御の説明図である。It is explanatory drawing of the operation control of the distributed power supply in the electric power monitoring measurement control system of the micro grid of FIG. 図1のマイクログリッドの電力監視計測制御システムにおける発電計画値の策定手順(1)の説明図である。It is explanatory drawing of the formulation procedure (1) of the electric power generation plan value in the electric power monitoring measurement control system of the micro grid of FIG. 図1のマイクログリッドの電力監視計測制御システムにおける発電計画値の策定手順(2)−1の説明図である。It is explanatory drawing of the formulation procedure (2) -1 of the electric power generation plan value in the electric power monitoring measurement control system of the micro grid of FIG. 図1のマイクログリッドの電力監視計測制御システムにおける発電計画値の策定手順(2)−2の説明図である。It is explanatory drawing of the formulation procedure (2) -2 of the electric power generation plan value in the electric power monitoring measurement control system of the micro grid of FIG. 図1のマイクログリッドにおける、瞬時商用連系点潮流電力及び瞬時商用系統点電力が共に正常値の場合の電力監視計測制御システムを中核とした制御フロー図(フローF1)である。FIG. 2 is a control flow diagram (flow F1) centering on a power monitoring measurement control system when the instantaneous commercial interconnection point power and instantaneous commercial grid point power are both normal values in the microgrid of FIG. 1; 図1のマイクログリッドにおける瞬時商用連系点潮流電力が異常値の場合の電力監視計測制御システムを中核とした制御フロー図(フローF2)である。FIG. 2 is a control flow diagram (flow F <b> 2) centered on a power monitoring measurement control system when the instantaneous commercial interconnection point power flow in the microgrid of FIG. 1 is an abnormal value. 図1のマイクログリッドにおける瞬時商用系統点電力が異常値の場合の電力監視計測制御システムを中核とした制御フロー図(フローF3)である。FIG. 2 is a control flow diagram (flow F3) centering on a power monitoring measurement control system when instantaneous commercial system point power in the microgrid of FIG. 1 is an abnormal value. 図5の発電計画値の策定手順(1)に対応する、図1のマイクログリッドにおける最低の発電コストを考慮した発電計画演算処理の電力監視計測制御システムを中核としたフロー図(フローF4)である。FIG. 5 is a flowchart (flow F4) corresponding to the power generation plan value formulation procedure (1) in FIG. 5 centered on the power monitoring measurement control system of the power generation plan calculation processing in consideration of the minimum power generation cost in the microgrid in FIG. is there. 図5の発電計画値の策定手順(1)に対応する、図12に続く最低の発電コストを考慮した発電計画演算処理の電力監視計測制御システムを中核としたフロー図(フローF4の続き)である。The flow diagram (continuation of flow F4) centering on the power monitoring measurement control system of the power generation plan calculation processing considering the lowest power generation cost following FIG. 12, corresponding to the power generation plan value formulation procedure (1) of FIG. is there. 図7,図8の発電計画値の策定手順(2)に対応する、図1のマイクログリッドにおける最低の発電コストを考慮した発電計画演算処理の電力監視計測制御システムを中核としたフロー図(フローF5)である。Flow diagram centered on the power monitoring and measurement control system for power generation plan calculation processing considering the lowest power generation cost in the microgrid in FIG. 1 corresponding to the power generation plan value formulation procedure (2) in FIGS. F5).

符号の説明Explanation of symbols

1 マイクログリッド、2 一般電気事業者電力網(電力会社)、5 電力監視計測制御システム、5C 計測・制御線、8 電力設備、51 各計測端末、51a 他の各電力需要家設備L1・・・LLと接続された計測端末、51b 商用連系点O2と分散型電源K1・・・KKと接続された計測・制御端末、51D 電力計測データ、52D 各電力需要家設備の需要電力計測データ、53D 瞬時時間帯最大電力変動値、54D 分散型電源発電計測データ、55D 異常検知情報、61 需要電力データベース、61D 過去に計測した各電力需要家設備需要電力データ、62 データベース、62D 瞬時時間帯毎最大電力変動値、63 設備特性データベース、63D 設備特性データ、65 需要電力予測手段、65D 需要電力予測データ、71 翌日発電計画策定手段、71D 翌日発電計画データ、72 逆潮流・転売防止制御手段、73 経済配分制御手段、75 当日緊急修正発電計画策定手段、75D 当日緊急発電計画データ、81 運用制御手段、81D 分散型電源発電目標値指令、91(51b) 各制御端末、91D 発電目標値指令、301 商用系統点電力(商用系統点電力P1)、303 商用系統点最大電力変動値、305 異常検知設定値、311 商用連系点潮流電力(商用連系点潮流電力P2)、313 商用連系点潮流最大電力変動値、315 異常検知設定値、401 マイクログリッドの全電力需要家設備電力(全需要家設備の必要とする電力)、403 マイクログリッド受電点需要家設備LM以外の全電力需要家設備電力、411,413,415,417,419 分散型電源発電電力、421 受電一定制御値、303MAX この時間帯(例えば、12:00〜12:01とする)で過去最大の商用系統点最大電力変動値、313MAX この時間帯(12:00〜12:01)で過去最大の商用連系点潮流最大電力変動値、531 全電力需要家設備需要電力予測した1分間積算値、533 LM以外の全電力需要家設備需要電力予測した1分間積算値、541 (1)式を満たす場合の経済性を考慮したこの時間帯(12:00〜12:01)の発電計画値、543 この時間帯(12:00〜12:01)の発電計画値(最小)、545 この時間帯(12:00〜12:01)の発電計画値(最大)、612と631の比率 過去最大の商用連系点潮流最大電力変動値313MAXと過去最大の商用系統点最大電力変動値303MAXの比率、641 この時間帯の発電計画値、643 この時間帯(12:00〜12:01)の発電計画値(最小)、645 この時間帯(12:00〜12:01)の発電計画値(最大)、CPU 中央処理装置、F1乃至F5 フロー、F1SI乃至F1S9,F1S21乃至F1S23,F1S99,F2S1乃至F2S9,F2S21乃至F2S23,F3S1乃至F3S9,F3S21乃至F3S23,F4S1乃至F4S26,F5S1乃至F5S5 ステップ、IT 通信手段、K1乃至KK 分散型電源、KB 電力ケーブル、LM マイクログリッド受電点の電力需要家設備、L1乃至LL 他の電力需要家設備、LMD LM以外の全電力需要家設備実績需要電力、O1 商用系統点、O2 商用連系点、P1 商用系統点電力、P2 商用連系点潮流電力、P3 PL1乃至PLLの総和供給電力、PK1乃至PKK 分散型電源K1乃至KKからの電力、PL1乃至PLL 電力需要家設備L1乃至LLへの電力、RP1 逆潮流、RP2 逆潮流(転売電力)、S1,S2,S3,S4 ステップ、S1G1,S1G2,S1G3,S2G1,S2G2,S3G1,S4G1,S4G2 グラフ、U−1 記憶装置、U−2 演算処理装置、U−3 表示装置、U−4 通信装置、ZD 全電力需要家設備実績需要電力、(1),(2),F401乃至F410,F501,F502 式。   DESCRIPTION OF SYMBOLS 1 Microgrid, 2 General electric power company electric power network (electric power company), 5 Electric power monitoring measurement control system, 5C Measurement / control line, 8 Electric power equipment, 51 Each measuring terminal, 51a Other electric power consumer equipment L1 ... LL Measurement terminal 51b connected to commercial interconnection point O2 and distributed power source K1... KK, measurement / control terminal connected to KK, 51D power measurement data, 52D power demand measurement data for each power consumer facility, 53D instantaneous Time zone maximum power fluctuation value, 54D distributed power generation measurement data, 55D anomaly detection information, 61 demand power database, 61D data measured for each power consumer facility measured in the past, 62 database, 62D maximum power fluctuation per instantaneous time zone Value, 63 equipment characteristic database, 63D equipment characteristic data, 65 demand power prediction means, 65D demand power forecast data 71 Next day power generation plan formulation means, 71D Next day power generation plan data, 72 Reverse power flow / resale prevention control means, 73 Economic distribution control means, 75 Day emergency correction power generation plan formulation means, 75D Day emergency generation plan data, 81 Operation control means, 81D Distributed power generation target value command, 91 (51b) Each control terminal, 91D Power generation target value command, 301 Commercial system point power (commercial system point power P1), 303 Commercial system point maximum power fluctuation value, 305 Abnormality detection set value 311 Commercial interconnection point tidal current power (commercial interconnection point tidal power P2), 313 Commercial interconnection point tidal current maximum power fluctuation value, 315 Abnormality detection set value, 401 Micro grid all power customer facility power (all customer facility power) 403, 413, 413, all power customer facility power other than 403 microgrid receiving point customer facility LM 15, 417, 419 Distributed power generation power, 421 Power reception constant control value, 303MAX This time zone (e.g., 12: 0 to 12:01), the largest commercial system point maximum power fluctuation value in the past, 313MAX this time zone (12: 0 to 12:01) The largest commercial interconnection point tidal current maximum power fluctuation value in the past, 531 Total power customer facility demand power predicted 1 minute integrated value, 533 LM All power customer facility demand power forecast 1 minute integrated value, 541 Power generation plan value in this time zone (12: 0 to 12:01) considering economics when satisfying the formula (1), 543 This time zone (12: 0 to 12:01) Power generation plan value (minimum), 545 Power generation plan value (maximum) in this time zone (12: 0 to 12:01), ratio of 612 and 631 The largest commercial interconnection point tidal current maximum power fluctuation value 313 Ratio of AX and the maximum commercial power point maximum power fluctuation value 303MAX, 641 Power generation plan value in this time zone, 643 Power generation plan value (minimum) in this time zone (12: 0 to 12:01), 645 Time zone (12: 0 to 12:01) power generation plan value (maximum), CPU central processing unit, F1 to F5 flow, F1SI to F1S9, F1S21 to F1S23, F1S99, F2S1 to F2S9, F2S21 to F2S23, F3S1 to F3S9, F3S21 Thru F3S23, F4S1 thru F4S26, F5S1 thru F5S5 step, IT communication means, K1 thru KK distributed power source, KB power cable, LM microgrid power point power consumer equipment, L1 thru LL other power consumer equipment, LMD LM All power customer facility performance demand power, except O Commercial grid point, O2 commercial grid point, P1 commercial grid point power, P2 commercial grid point power, P3 PL1 to PLL total supply power, PK1 to PKK power from distributed power sources K1 to KK, PL1 to PLL power Power to customer facilities L1 to LL, RP1 reverse power flow, RP2 reverse power flow (resale power), S1, S2, S3, S4 steps, S1G1, S1G2, S1G3, S2G1, S2G2, S3G1, S4G1, S4G2 graph, U- DESCRIPTION OF SYMBOLS 1 Memory | storage device, U-2 arithmetic processing unit, U-3 display apparatus, U-4 communication apparatus, ZD Total electric power consumer equipment actual demand electric power, (1), (2), F401 thru | or F410, F501, F502 type | formula.

Claims (45)

一般電気事業者電力網から商用系統電力の供給を受けるマイクログリッド受電点の電力需要家設備と、これに電力を供給する1以上の分散型電源とを含むマイクログリッドにおける電力監視計測制御システムであって、
瞬時時間帯毎の商用系統点電力の最大値と最小値の電力計測値を受けて最大電力変動値を演算し、同時刻瞬時時間帯の中で過去最大の最大電力変動値を受けて、前記演算した最大電力変動値と比較して大きい方の最大電力変動値に基づき、前記各分散型電源の翌日の発電計画を行い、この発電計画に基づき当日の運用制御を行う発電計画策定手段を有することを特徴とするマイクログリッドの電力監視計測制御システム。
A power monitoring measurement control system in a microgrid including a power consumer facility of a microgrid receiving point that receives commercial grid power from a general electric utility power grid, and one or more distributed power sources that supply power to the power grid ,
Calculate the maximum power fluctuation value by receiving the maximum and minimum power measurement values of the commercial grid point power for each instantaneous time zone, receive the maximum power fluctuation value of the past in the instantaneous time zone at the same time, Based on the maximum power fluctuation value that is larger than the calculated maximum power fluctuation value, the power generation plan formulation means performs a power generation plan on the next day of each of the distributed power sources and performs operation control on the day based on the power generation plan. Microgrid power monitoring measurement control system characterized by this.
前記各分散型電源の前記翌日の発電計画と前記当日の運用制御が、商用系統点への分散型電源発電電力の逆潮流防止を条件とすることを特徴とする請求項1に記載のマイクログリッドの電力監視計測制御システム。   2. The microgrid according to claim 1, wherein the power generation plan on the next day and the operation control on the day of the distributed power sources are on condition that the reverse power flow of the distributed power generation power to the commercial grid point is prevented. Power monitoring measurement control system. 前記瞬時時間帯毎に、
前記マイクログリッド受電点の電力需要家設備需要電力予測値から前記商用系統点電力の前記比較して大きい方の最大電力変動値を引いた最大発電計画値以下に、
前記瞬時時間帯の分散型電源の翌日の発電計画値を定めることを特徴とする請求項1又は2に記載のマイクログリッドの電力監視計測制御システム。
For each instantaneous time period,
Below the maximum power generation plan value obtained by subtracting the larger maximum power fluctuation value of the commercial grid point power from the power consumer facility demand power predicted value of the microgrid power receiving point,
The power monitoring measurement control system for a microgrid according to claim 1 or 2, wherein a power generation plan value for the next day of the distributed power source in the instantaneous time zone is determined.
前記分散型電源を発電コストの安い順から、前記最大発電計画値以下の電力供給量まで積み上げ選定することを特徴とする請求項3に記載のマイクログリッドの電力監視計測制御システム。   4. The microgrid power monitoring measurement control system according to claim 3, wherein the distributed power source is selected in a descending order of power generation cost from a power supply amount below the maximum power generation plan value. 5. 前記最大発電計画値以下の電力供給量までの前記分散型電源の積み上げ選定が、前記分散型電源のいずれかの故障をも予測して行われることを特徴とする請求項4に記載のマイクログリッドの電力監視計測制御システム。   5. The microgrid according to claim 4, wherein the selection of stacking of the distributed power sources up to a power supply amount equal to or less than the maximum power generation plan value is performed by predicting any failure of the distributed power sources. Power monitoring measurement control system. 商用系統点電力の計測値に異常検知の閾値を設定し、この計測値が前記閾値を超えた場合、直ちに修正発電計画を演算し前記分散型電源へ再指令することを特徴とする請求項1乃至5のいずれか1項に記載のマイクログリッドの電力監視計測制御システム。   2. An abnormality detection threshold value is set for a measured value of commercial system point power, and when the measured value exceeds the threshold value, a corrected power generation plan is immediately calculated and re-commanded to the distributed power source. The microgrid power monitoring measurement control system according to any one of items 1 to 5. 一般電気事業者電力網から商用系統電力の供給を受けるマイクログリッド受電点の電力需要家設備と、他の電力需要家設備と、これらに電力を供給する1以上の分散型電源とを含むマイクログリッドにおける電力監視計測制御システムであって、
瞬時時間帯毎の商用系統点電力と商用連系点潮流電力の各々の最大値と最小値の計測値を受けて、それぞれの最大電力変動値を演算し、それぞれ同時刻瞬時時間帯の中で過去最大の最大電力変動値と比較して大きい方の最大電力変動値に基づき、前記各分散型電源の翌日の発電計画を行い、この発電計画に基づき当日の運用制御を行うことを特徴とするマイクログリッドの電力監視計測制御システム。
In a microgrid including a power consumer facility at a microgrid receiving point that receives commercial grid power from a general electric utility power grid, another power consumer facility, and one or more distributed power sources that supply power to these facilities A power monitoring measurement control system,
Receiving the maximum and minimum measured values of commercial grid point power and commercial interconnection point power flow for each instantaneous time zone, calculate each maximum power fluctuation value, and within each instantaneous time zone at the same time Based on the maximum power fluctuation value that is larger than the maximum power fluctuation value in the past, the power generation plan for the next day of each of the distributed power sources is performed, and the operation control on the day is performed based on the power generation plan. Microgrid power monitoring measurement control system.
前記各分散型電源の翌日の発電計画と当日の運用制御とが、商用系統点への分散型電源発電電力の逆潮流防止と、マイクログリッド内の商用連系点から前記他の電力需要設備への商用電力の転売防止を条件とすることを特徴とする請求項7に記載のマイクログリッドの電力監視計測制御システム。   The power generation plan for the next day of each of the distributed power sources and the operation control on that day prevent the reverse power flow of the distributed power generation power to the commercial grid point, and from the commercial interconnection point in the microgrid to the other power demand facility The power monitoring measurement control system for a microgrid according to claim 7, which is subject to prevention of resale of commercial power. 前記瞬時時間帯毎に、
前記全需要家設備需要電力予測値から前記商用系統点電力の前記比較して大きい方の最大電力変動値を引いた最大発電計画値と、
マイクログリッド受電点の需要家設備以外の全電力需要家設備需要電力予測値に、前記商用連系点潮流電力の前記比較して大きい方の最大電力変動値を加えた最小発電計画値との間に、
前記瞬時時間帯の前記分散型電源の翌日の発電計画値を定めることを特徴とする請求項7又は8項に記載のマイクログリッドの電力監視計測制御システム。
For each instantaneous time period,
A maximum power generation plan value obtained by subtracting the larger maximum power fluctuation value of the commercial grid point power from the all-customer facility power demand predicted value,
Between the power generation forecast value of all electric power consumer equipment other than the customer equipment at the power receiving point of the microgrid, and the minimum power generation plan value obtained by adding the larger maximum power fluctuation value of the commercial interconnection point power In addition,
The power monitoring measurement control system for a microgrid according to claim 7 or 8, wherein a power generation plan value for the next day of the distributed power source in the instantaneous time zone is determined.
前記最大発電計画値と、前記最小発電計画値とが、逆転した大きさの値となる場合にもその間に前記瞬時時間帯の分散型電源の翌日の発電計画値を定めることを特徴とする請求項9に記載のマイクログリッドの電力監視計測制御システム。   The power generation plan value for the next day of the distributed power source in the instantaneous time zone is determined between the maximum power generation plan value and the minimum power generation plan value when the values are reversed. Item 10. The microgrid power monitoring measurement control system according to Item 9. 前記その間の前記瞬時時間帯の分散型電源の翌日の発電計画値を、商用系統点電力の最大電力変動値と商用連系点潮流電力の最大電力変動値より、マイクログリッド受電点の需要家設備以外の全電力需要家設備需要電力予測値に、マイクログリッド受電点の電力需要家設備需要電力予測値に〔商用連系点潮流最大電力変動値÷(商用連系点潮流最大電力変動値+商用系統点最大電力変動値)〕を掛けたものを加えた値に定めることを特徴とする請求項10に記載のマイクログリッドの電力監視計測制御システム。   The power generation plan value for the next day of the distributed power source in the instantaneous time period between the maximum power fluctuation value of the commercial grid point power and the maximum power fluctuation value of the commercial interconnection point power flow, the customer facility of the microgrid power receiving point The estimated power demand for all power customers except for the power demand for the power demand for the facility at the microgrid receiving point is calculated as [maximum power fluctuation value for commercial interconnection point ÷ (maximum power fluctuation value for commercial interconnection point + commercial power) 11. The microgrid power monitoring measurement control system according to claim 10, wherein a value obtained by multiplying by the system point maximum power fluctuation value)] is determined. 前記分散型電源を発電コストの安い順に積み上げ選定を行い前記全電力需要家設備需要電力予測値から積み上げた発電電力を引いた値を商用電力とする運転制御手段を含み、通常は、商用電力コストより安い発電コストの前記分散型電源を前記マイクログリッド受電点需要家設備以外の全電力需要家設備需要電力予測値に前記商用連系点潮流電力の前記比較して大きい方の最大電力変動値を加えた最小発電計画値を越えて、前記全電力需要家設備需要電力予測値から前記商用系統点電力の前記比較して大きい方の最大電力変動値を引いた最大発電計画値を越えない発電電力まで発電コストの安い順に積み上げ選定を行い前記全電力需要家設備需要電力予測値から積み上げた発電電力を引いた値を商用電力とし、
前記最小発電計画値に商用電力より安い発電コストの分散型電源のみで積み上げできない場合は、更に商用電力より高い分散型電源を発電コストの安い順に、最小発電計画値丁度になるまで積み上げ選定を行い、前記全電力需要家設備需要電力予測値から積み上げた発電電力を引いた値を商用電力とし、
前記最大発電計画値以上に商用電力より安い発電コストの分散型電源のみで積み上げられる場合は、最大発電計画値丁度になるまで積み上げ選定を行い、前記全電力需要家設備需要電力予測値から積み上げた発電電力を引いた値を商用電力とすることを特徴とする請求項7乃至9に記載のマイクログリッドの電力監視計測制御システム。
It includes an operation control means for selecting the distributed power source in order of increasing power generation cost and setting the value obtained by subtracting the generated power accumulated from the estimated power demand for all power consumer facilities as commercial power. For the distributed power source having a lower power generation cost, the maximum power fluctuation value of the larger one of the commercial interconnection point power is compared to the predicted power demand value of all the power customer facilities other than the micro grid receiving point customer facility. Generated power that does not exceed the maximum power generation plan value obtained by subtracting the larger maximum power fluctuation value of the commercial grid point power from the total power customer facility power demand prediction value exceeding the minimum power generation plan value added The value obtained by subtracting the accumulated generated power from the predicted value of the total power consumer equipment demand power is selected as the commercial power until the power generation cost is low.
If the minimum power generation plan value cannot be stacked only with a distributed power source having a power generation cost lower than that of commercial power, the power generation cost of the distributed power source higher than that of the commercial power is selected in order from the lowest power generation cost until the minimum power generation plan value is reached. , The value obtained by subtracting the generated power accumulated from the predicted power demand value of all power consumer equipment is commercial power,
When only the distributed power source with power generation cost cheaper than commercial power is more than the maximum power generation plan value, the stacking selection is performed until the maximum power generation plan value is just reached, and the power generation facility is estimated from the power demand forecast value for all power customers. 10. The microgrid power monitoring measurement control system according to claim 7, wherein a value obtained by subtracting the generated power is used as commercial power.
前記最大発電計画値と、前記最小発電計画値とが、逆転した大きさの値となる場合に、前記発電計画値から受電一定制御する分散型電源の送電可能容量の1/2を引いた値まで発電コストの安い順に分散型電源を積み上げ、前記全電力需要家設備需要電力予測値から前記発電計画値を引いた値を商用電力とすることを特徴とする請求項10又は11に記載のマイクログリッドの電力監視計測制御システム。   When the maximum power generation plan value and the minimum power generation plan value are reversed values, a value obtained by subtracting 1/2 of the transmittable capacity of the distributed power source that performs constant power reception control from the power generation plan value 12. The micro power supply according to claim 10, wherein distributed power sources are stacked in ascending order of power generation cost, and commercial power is obtained by subtracting the power generation plan value from the predicted power demand value of all power customers' facilities. Grid power monitoring measurement control system. 前記全電力需要家設備電力の需要を越えない電力供給量までの前記分散型電源の積み上げ選定が、前記分散型電源のいずれかの故障を予測して行われることを特徴とする請求項12又は13に記載のマイクログリッドの電力監視計測制御システム。   The stacked selection of the distributed power source up to a power supply amount that does not exceed the demand of the total power customer facility power is performed by predicting any failure of the distributed power source. 14. A power monitoring measurement control system for a microgrid according to 13. 商用系統点電力の計測値と商用連系点潮流電力の計測値との両方に異常検知の閾値を設定し、これらいずれかの計測値が前記閾値を超えた場合、前記閾値から前記計測値を引いた値に前記同時刻瞬時時間帯の中で過去最大の最大電力変動値を加えた値を前記同時刻瞬時時間帯の新しい過去最大の最大電力変動値として、直ちに修正発電計画を演算し前記分散型電源へ再指令することを特徴とする請求項7乃至14のいずれか1項に記載のマイクログリッドの電力監視計測制御システム。   An abnormality detection threshold is set for both the measured value of commercial grid point power and the measured value of commercial grid point power, and when any of these measured values exceeds the threshold, the measured value is calculated from the threshold. The value obtained by adding the maximum maximum power fluctuation value in the past at the same time instant time zone to the subtracted value is immediately calculated as the new maximum maximum power fluctuation value in the same time instant time zone, and the corrected power generation plan is immediately calculated. The microgrid power monitoring measurement control system according to any one of claims 7 to 14, wherein a re-command is issued to the distributed power source. 一般電気事業者電力網から商用系統電力の供給を受けるマイクログリッド受電点の電力需要家設備と、これに電力を供給する1以上の分散型電源とを含むマイクログリッドにおける電力監視計測制御方法であって、
瞬時時間帯毎の前記商用系統点電力の最大値と最小値の電力計測値を受けて最大電力変動値を演算するステップと、同時刻瞬時時間帯の中で過去最大の最大電力変動値を受けて、前記演算した最大電力変動値と比較して大きい方の最大電力変動値を選定するステップと、この比較して大きい方の最大電力変動値に基づき、前記各分散型電源の翌日の発電計画を行うステップと、この発電計画に基づき当日の運用制御を行うステップと、を含むことを特徴とするマイクログリッドの電力監視計測制御方法。
A power monitoring measurement control method in a microgrid including a power consumer facility at a microgrid receiving point that receives commercial grid power from a general electric utility power grid, and one or more distributed power sources that supply power to the power grid ,
The step of calculating the maximum power fluctuation value by receiving the maximum and minimum power measurement values of the commercial system point power for each instantaneous time zone, and receiving the maximum maximum power fluctuation value in the same time instant time zone. A step of selecting a larger maximum power fluctuation value compared to the calculated maximum power fluctuation value, and a power generation plan for the next day of each distributed power source based on the larger maximum power fluctuation value And a step of performing operational control of the day based on the power generation plan.
前記各分散型電源の前記翌日の発電計画を行うステップと前記当日の運用制御を行うステップとが、商用系統点への分散型電源発電電力の逆潮流防止を条件とすることを特徴とする請求項16に記載のマイクログリッドの電力監視計測制御方法。   The step of performing the power generation plan for the next day for each of the distributed power sources and the step of performing the operation control for the current day are conditional on prevention of reverse power flow of the distributed power generation power to a commercial grid point. Item 17. The microgrid power monitoring measurement control method according to Item 16. 前記各分散型電源の翌日の発電計画を行うステップが、前記瞬時時間帯毎に、
前記電力需要家設備需要電力予測値から前記商用系統点電力の前記比較して大きい方の最大電力変動値を引いた最大発電計画値以下に、
前記瞬時時間帯の分散型電源の翌日の発電計画値を定めることを特徴とする請求項16又は17に記載のマイクログリッドの電力監視計測制御方法。
The step of performing the power generation plan for the next day of each of the distributed power sources, for each instantaneous time zone,
Below the maximum power generation plan value obtained by subtracting the larger maximum power fluctuation value of the commercial grid point power from the power consumer facility demand power predicted value,
The power monitoring measurement control method for a microgrid according to claim 16 or 17, wherein a power generation plan value for the next day of the distributed power source in the instantaneous time zone is determined.
前記分散型電源を発電コストの安い順から、前記最大発電計画値以下の電力供給量まで積み上げ選定するステップを含むことを特徴とする請求項18に記載のマイクログリッドの電力監視計測制御方法。   19. The microgrid power monitoring and measurement control method according to claim 18, further comprising a step of selecting the distributed power sources in order from the lowest power generation cost to the power supply amount equal to or less than the maximum power generation plan value. 前記最大発電計画値以下の電力供給量までの前記分散型電源の積み上げ選定ステップが、前記分散型電源のいずれかの故障をも予測して行われることを特徴とする請求項19に記載のマイクログリッドの電力監視計測制御方法。   21. The micro of claim 19, wherein the step of selecting and stacking the distributed power sources up to a power supply amount equal to or less than the maximum power generation plan value is performed by predicting any failure of the distributed power sources. Grid power monitoring measurement control method. 商用系統点電力の計測値に異常検知の閾値が設定され、この計測値が前記閾値を超えた場合、直ちに修正発電計画を演算し前記分散型電源へ再指令するステップを含むことを特徴とする請求項16乃至21のいずれか1項に記載のマイクログリッドの電力監視計測制御方法。   A threshold value for detecting an abnormality is set in the measured value of the commercial grid point power, and when the measured value exceeds the threshold value, a corrected power generation plan is immediately calculated and re-commanded to the distributed power source. The power monitoring measurement control method for a microgrid according to any one of claims 16 to 21. 一般電気事業者電力網から商用系統電力の供給を受けるマイクログリッド受電点の電力需要家設備と、他の電力需要家設備と、これらに電力を供給する1以上の分散型電源とを含むマイクログリッドにおける電力監視計測制御方法であって、
瞬時時間帯毎の商用系統点電力と商用連系点潮流電力の各々の最大値と最小値の計測値を受けて、それぞれの最大電力変動値を演算するステップと、それぞれ同時刻瞬時時間帯の中で過去最大の最大電力変動値と比較して大きい方の最大電力変動値を選定するステップと、それぞれの比較して大きい方の最大電力変動値に基づき、前記各分散型電源の翌日の発電計画を行うステップと、この発電計画に基づき当日の運用制御を行うステップと、を含むことを特徴とするマイクログリッドの電力監視計測制御方法。
In a microgrid including a power consumer facility at a microgrid receiving point that receives commercial grid power from a general electric utility power grid, another power consumer facility, and one or more distributed power sources that supply power to these facilities A power monitoring measurement control method,
Receiving the maximum and minimum measured values of commercial grid point power and commercial interconnection point power for each instantaneous time zone, and calculating each maximum power fluctuation value; The step of selecting a larger maximum power fluctuation value compared to the maximum power fluctuation value in the past, and the next day power generation of each of the distributed power sources based on the larger maximum power fluctuation value compared to each other A power monitoring measurement control method for a microgrid, comprising: a step of performing a plan; and a step of performing operation control of the day based on the power generation plan.
前記各分散型電源の翌日の発電計画を行うステップと当日の運用制御を行うステップとが、商用系統点への分散型電源発電電力の逆潮流防止と、マイクログリッド内の商用連系点から前記他の電力需要設備への商用電力の転売防止を条件とすることを特徴とする請求項22に記載のマイクログリッドの電力監視計測制御方法。   The step of performing the power generation plan for the next day of each of the distributed power sources and the step of performing the operation control on the day include the prevention of reverse power flow of the distributed power generation power to the commercial grid point and the commercial grid point in the microgrid. 23. The power monitoring measurement control method for a microgrid according to claim 22, wherein the commercial power is prevented from being resold to another power demand facility. 前記各分散型電源の翌日の発電計画を行うステップが、
前記瞬時時間帯毎に、
前記全需要家設備需要電力予測値から前記商用系統点電力の前記比較して大きい方の最大電力変動値を引いた最大発電計画値と、
マイクログリッド受電点の需要家設備以外の全電力需要家設備需要電力予測値に、前記商用連系点潮流電力の前記比較して大きい方の最大電力変動値を加えた最小発電計画値との間に、
前記瞬時時間帯の前記分散型電源の翌日の発電計画値を定めることを特徴とする請求項22又は23項に記載のマイクログリッドの電力監視計測制御方法。
The step of performing a power generation plan for the next day of each of the distributed power sources,
For each instantaneous time period,
A maximum power generation plan value obtained by subtracting the larger maximum power fluctuation value of the commercial grid point power from the all-customer facility power demand predicted value,
Between the power generation forecast value of all electric power consumer equipment other than the customer equipment at the power receiving point of the microgrid, and the minimum power generation plan value obtained by adding the larger maximum power fluctuation value of the commercial interconnection point power In addition,
The power monitoring measurement control method for a microgrid according to claim 22 or 23, wherein a power generation plan value for the next day of the distributed power source in the instantaneous time zone is determined.
前記各分散型電源の翌日の発電計画を行うステップが、
前記最大発電計画値と、前記最小発電計画値とが、逆転した大きさの値となる場合にもその間に前記瞬時時間帯の前記分散型電源の翌日の発電計画値を定めることを特徴とする請求項24に記載のマイクログリッドの電力監視計測制御方法。
The step of performing a power generation plan for the next day of each of the distributed power sources,
Even when the maximum power generation plan value and the minimum power generation plan value are reversed, the power generation plan value for the next day of the distributed power source in the instantaneous time zone is determined between them. The microgrid power monitoring measurement control method according to claim 24.
前記各分散型電源の翌日の発電計画を行うステップが、
前記その間の前記瞬時時間帯の分散型電源の翌日の発電計画値を、商用系統点電力の最大電力変動値と商用連系点潮流電力の最大電力変動値より、マイクログリッド受電点の需要家設備以外の全電力需要家設備需要電力予測値に、マイクログリッド受電点の需要家設備需要電力予測値に〔商用連系点潮流最大電力変動値÷(商用連系点潮流最大電力変動値+商用系統点最大電力変動値)〕を掛けたものを加えた値に定めることを特徴とする請求項25に記載のマイクログリッドの電力監視計測制御方法。
The step of performing a power generation plan for the next day of each of the distributed power sources,
The power generation plan value for the next day of the distributed power source in the instantaneous time period between the maximum power fluctuation value of the commercial grid point power and the maximum power fluctuation value of the commercial interconnection point power flow, the customer facility of the microgrid power receiving point The predicted power demand value of all power customers except for the power demand forecast value at the microgrid power receiving point is calculated as [Maximum power fluctuation value of commercial grid connection point ÷ (Maximum power fluctuation value of commercial grid power flow + Commercial grid 26. The microgrid power monitoring measurement control method according to claim 25, wherein a value obtained by multiplying the value obtained by multiplying the maximum point power fluctuation value)] is determined.
前記分散型電源を発電コストの安い順に積み上げ選定を行い前記全電力需要家設備需要電力予測値から積み上げた発電電力を引いた値を商用電力とするステップを含み、このステップが、通常は、商用電力コストより安い発電コストの前記分散型電源を前記マイクログリッド受電点需要家設備以外の全電力需要家設備需要電力予測値に前記商用連系点潮流電力の前記比較して大きい方の最大電力変動値を加えた最小発電計画値を越えて、前記全電力需要家設備需要電力予測値から前記商用系統点電力の前記比較して大きい方の最大電力変動値を引いた最大発電計画値を越えない発電電力まで発電コストの安い順に積み上げ選定を行い前記全電力需要家設備需要電力予測値から積み上げた発電電力を引いた値を商用電力とし、
前記最小発電計画値に商用電力より安い発電コストの分散型電源のみで積み上げできない場合は、更に商用電力より高い分散型電源を発電コストの安い順に、最小発電計画値丁度になるまで積み上げ選定を行い、前記全電力需要家設備需要電力予測値から積み上げた発電電力を引いた値を商用電力とし、
前記最大発電計画値以上に商用電力より安い発電コストの分散型電源のみで積み上げられる場合は、最大発電計画値丁度になるまで積み上げ選定を行い、前記全電力需要家設備需要電力予測値から積み上げた発電電力を引いた値を商用電力とすることを特徴とする請求項22乃至24に記載のマイクログリッドの電力監視計測制御方法。
The distributed power source includes a step of selecting and stacking the distributed power source in ascending order of power generation cost, and subtracting the power generation power accumulated from the total power consumer facility demand power predicted value to obtain commercial power. The distributed power source having a power generation cost lower than the power cost is set to the predicted power demand value of all power consumer facilities other than the microgrid power receiving point customer facility. The maximum power generation plan value obtained by subtracting the larger maximum power fluctuation value of the commercial grid point power from the total power consumer facility demand power prediction value does not exceed the minimum power generation plan value added with the value. The value obtained by subtracting the generated power accumulated from the predicted power demand value of all the power customer facilities is selected as the commercial power, and the power generation cost is selected in ascending order of the power generation cost.
If the minimum power generation plan value cannot be stacked only with a distributed power source having a power generation cost lower than that of commercial power, the power generation cost of the distributed power source higher than that of the commercial power is selected in order from the lowest power generation cost until the minimum power generation plan value is reached. , The value obtained by subtracting the generated power accumulated from the predicted power demand value of all power consumer equipment is commercial power,
When only the distributed power source with power generation cost cheaper than commercial power is more than the maximum power generation plan value, the stacking selection is performed until the maximum power generation plan value is just reached, and the power generation facility is estimated from the power demand forecast value for all power customers. 25. The microgrid power monitoring measurement control method according to claim 22, wherein a value obtained by subtracting the generated power is used as commercial power.
前記最大発電計画値と、前記最小発電計画値とが、逆転した大きさの値となる場合に、前記発電計画値から受電一定制御する分散型電源の送電可能容量の1/2を引いた値まで発電コストの安い順に分散型電源を積み上げ、前記全電力需要家設備需要電力予測値から前記発電計画値を引いた値を商用電力とするステップを含むことを特徴とする請求項25又は26に記載のマイクログリッドの電力監視計測制御方法。   When the maximum power generation plan value and the minimum power generation plan value are reversed values, a value obtained by subtracting 1/2 of the transmittable capacity of the distributed power source that performs constant power reception control from the power generation plan value 27. The method according to claim 25 or 26, further comprising the step of stacking distributed power sources in ascending order of power generation cost and setting commercial power as a value obtained by subtracting the power generation plan value from the total power consumer facility demand power predicted value. The microgrid power monitoring measurement control method described. 前記全電力需要家設備電力の需要を越えない電力供給量までの前記分散型電源の積み上げ選定を行うステップが、前記分散型電源のいずれかの故障を予測して行われることを特徴とする請求項27又は28に記載のマイクログリッドの電力監視計測制御方法。   The step of selecting and stacking the distributed power sources up to a power supply amount that does not exceed the demand of the total power customer facility power is performed by predicting any failure of the distributed power sources. Item 29. The microgrid power monitoring measurement control method according to Item 27 or 28. 商用系統点電力の計測値と商用連系点潮流電力の計測値との両方に異常検知の閾値が設定され、これらいずれかの計測値が前記閾値を超えた場合、前記閾値から前記計測値を引いた値に前記同時刻瞬時時間帯の中で過去最大の最大電力変動値を加えた値を前記同時刻瞬時時間帯の新しい過去最大の最大電力変動値として、直ちに修正発電計画を演算し前記分散型電源へ再指令するステップを含むことを特徴とする請求項22乃至29のいずれか1項に記載のマイクログリッドの電力監視計測制御方法。   An abnormality detection threshold is set for both the measured value of commercial grid point power and the measured value of commercial grid point power, and if any of these measured values exceeds the threshold, the measured value is calculated from the threshold. The value obtained by adding the maximum maximum power fluctuation value in the past at the same time instant time zone to the subtracted value is immediately calculated as the new maximum maximum power fluctuation value in the same time instant time zone, and the corrected power generation plan is immediately calculated. 30. The microgrid power monitoring measurement control method according to any one of claims 22 to 29, further comprising a step of re-commanding to the distributed power source. 一般電気事業者電力網から商用系統電力の供給を受けるマイクログリッド受電点の電力需要家設備と、これに電力を供給する1以上の分散型電源とを含むマイクログリッドにおける電力監視計測制御をコンピュータに実行させるためのマイクログリッドの電力監視計測制御プログラムであって、
コンピュータに、瞬時時間帯毎の商用系統点電力の最大値と最小値の電力計測値を受けて最大電力変動値を演算する手順と、同時刻瞬時時間帯の中で過去最大の最大電力変動値を受けて、前記演算した最大電力変動値と比較して大きい方の最大電力変動値を選定する手順と、この比較して大きい方の最大電力変動値に基づき、前記各分散型電源の翌日の発電計画を行う手順と、この発電計画に基づき当日の運用制御を行う手順と、を実行させるための、マイクログリッドの電力監視計測制御プログラム。
Power monitoring and measurement control in a microgrid including a power consumer facility at a microgrid receiving point that receives commercial grid power from a general electric utility power grid and one or more distributed power sources that supply power to the computer. A microgrid power monitoring measurement control program for
The procedure to calculate the maximum power fluctuation value by receiving the maximum and minimum power measurement values of the commercial grid point power for each instantaneous time zone, and the largest maximum power fluctuation value in the same time instant time zone In response, the procedure for selecting the larger maximum power fluctuation value compared to the calculated maximum power fluctuation value, and the next day of each of the distributed power sources based on this larger maximum power fluctuation value A microgrid power monitoring measurement control program for executing a procedure for performing a power generation plan and a procedure for performing operation control on the day based on the power generation plan.
前記各分散型電源の前記翌日の発電計画を行う手順と前記当日の運用制御を行う手順とが、商用系統点への分散型電源発電電力の逆潮流防止を条件とすることを特徴とする請求項31に記載のマイクログリッドの電力監視計測制御プログラム。   The procedure for performing the power generation plan for the next day for each of the distributed power sources and the procedure for performing the operation control for the current day are conditional on prevention of reverse power flow of the distributed power generation power to the commercial grid point. Item 32. The microgrid power monitoring measurement control program according to Item 31. 前記各分散型電源の翌日の発電計画を行う手順が、前記瞬時時間帯毎に、
前記電力需要家設備需要電力予測値から前記商用系統点電力の前記比較して大きい方の最大電力変動値を引いた最大発電計画値以下に、前記瞬時時間帯の分散型電源の翌日の発電計画値を定めることを特徴とする請求項31又は32に記載のマイクログリッドの電力監視計測制御プログラム。
The procedure for performing the power generation plan for the next day of each of the distributed power sources is, for each instantaneous time zone,
The power generation plan for the next day of the distributed power source in the instantaneous time zone is less than or equal to the maximum power generation plan value obtained by subtracting the larger maximum power fluctuation value of the commercial grid point power from the power consumer facility power demand prediction value. 33. The microgrid power monitoring measurement control program according to claim 31 or 32, wherein a value is determined.
さらに前記分散型電源を発電コストの安い順から、前記最大発電計画値以下の電力供給量まで積み上げ選定する手順を、コンピュータに実行させるための請求項33に記載のマイクログリッドの電力監視計測制御プログラム。   34. The microgrid power monitoring measurement control program according to claim 33, further causing a computer to execute a procedure for stacking and selecting the distributed power source from the lowest power generation cost to a power supply amount equal to or less than the maximum power generation plan value. . 前記最大発電計画値以下の電力供給量までの前記分散型電源の積み上げ選定する手順が、前記分散型電源のいずれかの故障をも予測して行われることを特徴とする請求項34に記載のマイクログリッドの電力監視計測制御プログラム。   36. The procedure for selecting and stacking the distributed power sources up to a power supply amount equal to or less than the maximum power generation plan value is performed by predicting any failure of the distributed power sources. Microgrid power monitoring measurement control program. さらに商用系統点電力の計測値に異常検知の閾値が設定され、この計測値が前記閾値を超えた場合、直ちに修正発電計画を演算し前記分散型電源へ再指令する手順をコンピュータに実行させるための請求項31乃至35のいずれか1項に記載のマイクログリッドの電力監視計測制御プログラム。   Further, when a threshold value for abnormality detection is set to the measured value of the commercial grid point power, and when this measured value exceeds the threshold value, the computer immediately executes a procedure for calculating a corrected power generation plan and re-instructing the distributed power source. The power monitoring measurement control program for a microgrid according to any one of claims 31 to 35. 一般電気事業者電力網から商用系統電力の供給を受けるマイクログリッド受電点の電力需要家設備と、他の電力需要家設備と、これらに電力を供給する1以上の分散型電源とを含むマイクログリッドにおける電力監視計測制御をコンピュータに実行させるためのマイクログリッドの電力監視計測制御プログラムであって、
コンピュータに、瞬時時間帯毎の商用系統点電力と商用連系点潮流電力の各々の最大値と最小値の計測値を受けて、それぞれの最大電力変動値を演算する手順と、それぞれ同時刻瞬時時間帯の中で過去最大の最大電力変動値と比較して大きい方の最大電力変動値を選定する手順と、それぞれの比較して大きい方の最大電力変動値に基づき、前記各分散型電源の翌日の発電計画を行う手順と、この発電計画に基づき当日の運用制御を行う手順と、を実行させるための、マイクログリッドの電力監視計測制御プログラム。
In a microgrid including a power consumer facility at a microgrid receiving point that receives commercial grid power from a general electric utility power grid, another power consumer facility, and one or more distributed power sources that supply power to these facilities A microgrid power monitoring measurement control program for causing a computer to execute power monitoring measurement control,
The computer receives the maximum and minimum measured values of the commercial grid point power and commercial interconnection point power flow for each instantaneous time period, and calculates the maximum power fluctuation value, Based on the procedure for selecting the larger maximum power fluctuation value compared to the maximum power fluctuation value in the time period and the maximum power fluctuation value larger than each other, the distributed power sources A microgrid power monitoring measurement control program for executing a procedure for performing a power generation plan for the next day and a procedure for performing operation control for the current day based on the power generation plan.
前記各分散型電源の翌日の発電計画を行う手順と前記当日の運用制御を行う手順とが、商用系統点への分散型電源発電電力の逆潮流防止と、マイクログリッド内の商用連系点から前記他の電力需要設備への商用電力の転売防止を条件とすることを特徴とする請求項37に記載のマイクログリッドの電力監視計測制御プログラム。   The procedure for performing the power generation plan for the next day of each of the distributed power sources and the procedure for performing the operation control on the same day include the prevention of reverse power flow of the distributed power generation power to the commercial grid point, and the commercial grid point in the microgrid. 38. The microgrid power monitoring measurement control program according to claim 37, wherein the condition is that the commercial power is not resold to the other power demand facility. 前記各分散型電源の翌日の発電計画を行う手順が、
前記瞬時時間帯毎に、
前記全需要家設備の電力の需要予測値から前記商用系統点電力の前記比較して大きい方の最大電力変動値を引いた最大発電計画値と、
マイクログリッド受電点の需要家設備以外の全電力需要家設備需要電力予測値に、前記商用連系点潮流電力の前記比較して大きい方の最大電力変動値を加えた最小発電計画値との間に、
前記瞬時時間帯の前記分散型電源の翌日の発電計画値を定めることを特徴とする請求項37又は38項に記載のマイクログリッドの電力監視計測制御プログラム。
The procedure for performing the power generation plan for the next day of each distributed power source is as follows:
For each instantaneous time period,
The maximum power generation plan value obtained by subtracting the larger maximum power fluctuation value of the commercial grid point power from the demand forecast value of the power of all the customer facilities,
Between the power generation forecast value of all electric power consumer equipment other than the customer equipment at the power receiving point of the microgrid, and the minimum power generation plan value obtained by adding the larger maximum power fluctuation value of the commercial interconnection point power In addition,
39. The microgrid power monitoring measurement control program according to claim 37 or 38, wherein a power generation plan value for the next day of the distributed power source in the instantaneous time zone is determined.
前記各分散型電源の翌日の発電計画を行う手順が、
前記最大発電計画値と、前記最小発電計画値とが、逆転した大きさの値となる場合にもその間に前記瞬時時間帯の前記分散型電源の翌日の発電計画値を定めることを特徴とする請求項39に記載のマイクログリッドの電力監視計測制御プログラム。
The procedure for performing the power generation plan for the next day of each distributed power source is as follows:
Even when the maximum power generation plan value and the minimum power generation plan value are reversed, the power generation plan value for the next day of the distributed power source in the instantaneous time zone is determined between them. 40. The microgrid power monitoring measurement control program according to claim 39.
前記各分散型電源の翌日の発電計画を行う手順が、
前記その間の前記瞬時時間帯の分散型電源の翌日の発電計画値を、商用系統点電力の最大電力変動値と商用連系点潮流電力の最大電力変動値より、マイクログリッド受電点の需要家設備以外の全電力需要家設備需要電力予測値に、マイクログリッド受電点の需要家設備需要電力予測値に〔商用連系点潮流最大電力変動値÷(商用連系点潮流最大電力変動値+商用系統点最大電力変動値)〕を掛けたものを加えた値に定めることを特徴とする請求項40に記載のマイクログリッドの電力監視計測制御プログラム。
The procedure for performing the power generation plan for the next day of each distributed power source is as follows:
The power generation plan value for the next day of the distributed power source in the instantaneous time period between the maximum power fluctuation value of the commercial grid point power and the maximum power fluctuation value of the commercial interconnection point power flow, the customer facility of the microgrid power receiving point The predicted power demand value of all power customers except for the power demand forecast value at the microgrid power receiving point is calculated as [Maximum power fluctuation value of commercial grid connection point ÷ (Maximum power fluctuation value of commercial grid power flow + Commercial grid 41. The microgrid power monitoring and measurement control program according to claim 40, wherein a value obtained by multiplying the value obtained by multiplying the maximum point power fluctuation value)] is determined.
前記分散型電源を発電コストの安い順に積み上げ選定を行い前記全電力需要家設備需要電力予測値から積み上げた発電電力を引いた値を商用電力とする手順をコンピュータに実行させるための部分を含み、このステップが、通常は、商用電力コストより安い発電コストの前記分散型電源を前記マイクログリッド受電点需要家設備以外の全電力需要家設備需要電力予測値に前記商用連系点潮流電力の前記比較して大きい方の最大電力変動値を加えた最小発電計画値を越えて、前記全電力需要家設備需要電力予測値から前記商用系統点電力の前記比較して大きい方の最大電力変動値を引いた最大発電計画値を越えない発電電力まで発電コストの安い順に積み上げ選定を行い前記全電力需要家設備需要電力予測値から積み上げた発電電力を引いた値を商用電力とし、
前記最小発電計画値に商用電力より安い発電コストの分散型電源のみで積み上げできない場合は、更に商用電力より高い分散型電源を発電コストの安い順に、最小発電計画値丁度になるまで積み上げ選定を行い、前記全電力需要家設備需要電力予測値から積み上げた発電電力を引いた値を商用電力とし、
前記最大発電計画値以上に商用電力より安い発電コストの分散型電源のみで積み上げられる場合は、最大発電計画値丁度になるまで積み上げ選定を行い、前記全電力需要家設備需要電力予測値から積み上げた発電電力を引いた値を商用電力とすることを特徴とする請求項37乃至38に記載のマイクログリッドの電力監視計測制御プログラム。
Including a part for causing a computer to execute a procedure of selecting a value obtained by subtracting the generated power accumulated from the predicted value of the total power consumer equipment demand power by selecting the distributed power source in order from the lowest power generation cost, In this step, the comparison of the commercial interconnection point power flow to the predicted power demand value of all the power consumer equipment other than the microgrid power receiving point customer equipment is normally used for the distributed power source having a power generation cost lower than the commercial power cost. Then, exceeding the minimum power generation plan value including the larger maximum power fluctuation value, subtracting the comparatively larger maximum power fluctuation value of the commercial grid point power from the predicted power demand value of all power consumers. A value obtained by subtracting the generated power from the predicted value of the total power consumer equipment demand power by selecting and stacking in order from the lowest power generation cost until the generated power not exceeding the maximum planned power generation value. And commercial power,
If the minimum power generation plan value cannot be stacked only with a distributed power source having a power generation cost lower than that of commercial power, the power generation cost of the distributed power source higher than that of the commercial power is selected in order from the lowest power generation cost until the minimum power generation plan value is reached. , The value obtained by subtracting the generated power accumulated from the predicted power demand value of all power consumer equipment is commercial power,
When only the distributed power source with power generation cost cheaper than commercial power is more than the maximum power generation plan value, the stacking selection is performed until the maximum power generation plan value is just reached, and the power generation facility is estimated from the power demand forecast value for all power customers. 39. The microgrid power monitoring measurement control program according to claim 37, wherein a value obtained by subtracting the generated power is commercial power.
前記最大発電計画値と、前記最小発電計画値とが、逆転した大きさの値となる場合に、前記発電計画値から受電一定制御する分散型電源の送電可能容量の1/2を引いた値まで発電コストの安い順に分散型電源を積み上げ、前記全電力需要家設備需要電力予測値から前記発電計画値を引いた値を商用電力とする手順をコンピュータに実行させるための部分を含むことを特徴とする請求項40又は41に記載のマイクログリッドの電力監視計測制御プログラム。   When the maximum power generation plan value and the minimum power generation plan value are reversed values, a value obtained by subtracting 1/2 of the transmittable capacity of the distributed power source that performs constant power reception control from the power generation plan value A portion for causing a computer to execute a procedure of stacking distributed power sources in ascending order of power generation cost and setting commercial power as a value obtained by subtracting the power generation planned value from the predicted power demand value of all power consumers The power monitoring measurement control program for a microgrid according to claim 40 or 41. 前記全電力需要家設備電力の需要を越えない電力供給量までの前記分散型電源の積み上げ選定を行う手順が、前記分散型電源のいずれかの故障を予測して行われることを特徴とする請求項42又は43に記載のマイクログリッドの電力監視計測制御プログラム。   The procedure for selecting and stacking the distributed power sources up to a power supply amount that does not exceed the demand of the total power customer facility power is performed by predicting any failure of the distributed power sources. Item 44. The microgrid power monitoring measurement control program according to Item 42 or 43. 商用系統点電力の計測値と商用連系点潮流電力の計測値との両方に異常検知の閾値が設定され、これらいずれかの計測値が前記閾値を超えた場合、前記閾値から前記計測値を引いた値に前記同時刻瞬時時間帯の中で過去最大の最大電力変動値を加えた値を前記同時刻瞬時時間帯の新しい過去最大の最大電力変動値として、直ちに修正発電計画を演算し前記分散型電源へ再指令する手順をコンピュータに実行させるための部分を含むことを特徴とする請求項37乃至44のいずれか1項に記載のマイクログリッドの電力監視計測制御プログラム。
An abnormality detection threshold is set for both the measured value of commercial grid point power and the measured value of commercial grid point power, and if any of these measured values exceeds the threshold, the measured value is calculated from the threshold. The value obtained by adding the maximum maximum power fluctuation value in the past at the same time instant time zone to the subtracted value is immediately calculated as the new maximum maximum power fluctuation value in the same time instant time zone and the corrected power generation plan is immediately calculated. 45. The microgrid power monitoring measurement control program according to any one of claims 37 to 44, further comprising: a part for causing a computer to execute a procedure for re-commanding the distributed power source.
JP2006157896A 2006-06-06 2006-06-06 Microgrid power monitoring measurement control system, power monitoring measurement control method thereof, and power monitoring measurement control program thereof Expired - Fee Related JP4189930B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006157896A JP4189930B2 (en) 2006-06-06 2006-06-06 Microgrid power monitoring measurement control system, power monitoring measurement control method thereof, and power monitoring measurement control program thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006157896A JP4189930B2 (en) 2006-06-06 2006-06-06 Microgrid power monitoring measurement control system, power monitoring measurement control method thereof, and power monitoring measurement control program thereof

Publications (2)

Publication Number Publication Date
JP2007330002A true JP2007330002A (en) 2007-12-20
JP4189930B2 JP4189930B2 (en) 2008-12-03

Family

ID=38930086

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006157896A Expired - Fee Related JP4189930B2 (en) 2006-06-06 2006-06-06 Microgrid power monitoring measurement control system, power monitoring measurement control method thereof, and power monitoring measurement control program thereof

Country Status (1)

Country Link
JP (1) JP4189930B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009232605A (en) * 2008-03-24 2009-10-08 Osaka Gas Co Ltd Power demand and supply system
WO2009157342A1 (en) * 2008-06-27 2009-12-30 シャープ株式会社 Power control system for distributing power to power demanding facilities
CN101807797A (en) * 2010-04-14 2010-08-18 华中科技大学 Rapid fault diagnosis method used for microgrid
JP2010220363A (en) * 2009-03-16 2010-09-30 Toshiba Corp Device, method and program for estimating power supply capacity of small-scale power system
EP2290779A1 (en) * 2008-05-26 2011-03-02 Kabushiki Kaisha Toshiba Power supply/demand control device and power supply/demand control method
WO2011140840A1 (en) * 2010-05-11 2011-11-17 珠海兴业新能源科技有限公司 Networking method for hierarchical control micro-grids
CN102567484A (en) * 2011-12-19 2012-07-11 天津市电力公司 Process control method and system for realizing micro-grid system control strategy
CN102709946A (en) * 2012-06-05 2012-10-03 国电南瑞科技股份有限公司 Method for realizing seamless switching of micro-grid from grid-connection operation to isolated network operation
CN104218606A (en) * 2014-09-02 2014-12-17 南方电网科学研究院有限责任公司 Micro-power-grid central control unit
JP2015006078A (en) * 2013-06-21 2015-01-08 三菱電機株式会社 Power supply management system
JP2015510386A (en) * 2012-03-01 2015-04-02 シズベル テクノロジー エス.アール.エル. Method and apparatus for managing electrical energy generated locally for self-consumption and distributed to multiple users belonging to one or multiple communities of multiple users
JP2015082896A (en) * 2013-10-22 2015-04-27 中国電力株式会社 Control device, control method, power adjustment system
CN105048507A (en) * 2015-09-06 2015-11-11 苏州健雄职业技术学院 Automatic switching control device for photovoltaic micro-grid power generation system
CN105098773A (en) * 2015-08-24 2015-11-25 中国南方电网有限责任公司电网技术研究中心 Droop control method and droop control system in multi-micro power grid interconnection scene
CN105244869A (en) * 2015-10-13 2016-01-13 国网山东省电力公司电力科学研究院 Dynamic random scheduling control method for power distribution network containing micro-grid
CN106058915A (en) * 2016-05-30 2016-10-26 华南理工大学 Active grid-connected-to-off-network switching control method based on single-phase multiple microgrids
WO2017090519A1 (en) * 2015-11-26 2017-06-01 日本電気株式会社 Information processing device, information processing method, and recording medium
CN109217349A (en) * 2017-06-30 2019-01-15 国网山西省电力公司经济技术研究院 Based under more micro-grid connection scenes and the micro-capacitance sensor external characteristics method for solving of operation reserve
CN110533311A (en) * 2019-08-21 2019-12-03 三峡大学 Intelligent Community coordinated scheduling system and method based on energy source router
JPWO2022157956A1 (en) * 2021-01-25 2022-07-28

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009232605A (en) * 2008-03-24 2009-10-08 Osaka Gas Co Ltd Power demand and supply system
EP2290779A4 (en) * 2008-05-26 2014-05-21 Toshiba Kk Power supply/demand control device and power supply/demand control method
EP2290779A1 (en) * 2008-05-26 2011-03-02 Kabushiki Kaisha Toshiba Power supply/demand control device and power supply/demand control method
WO2009157342A1 (en) * 2008-06-27 2009-12-30 シャープ株式会社 Power control system for distributing power to power demanding facilities
JPWO2009157342A1 (en) * 2008-06-27 2011-12-08 シャープ株式会社 Power control system that distributes power to power demand facilities
JP5179582B2 (en) * 2008-06-27 2013-04-10 シャープ株式会社 Power control system that distributes power to power demand facilities
US8578184B2 (en) 2008-06-27 2013-11-05 Sharp Kabushiki Kaisha Power control system for distributing power to power demanding facility
JP2010220363A (en) * 2009-03-16 2010-09-30 Toshiba Corp Device, method and program for estimating power supply capacity of small-scale power system
CN101807797A (en) * 2010-04-14 2010-08-18 华中科技大学 Rapid fault diagnosis method used for microgrid
WO2011140840A1 (en) * 2010-05-11 2011-11-17 珠海兴业新能源科技有限公司 Networking method for hierarchical control micro-grids
CN102567484A (en) * 2011-12-19 2012-07-11 天津市电力公司 Process control method and system for realizing micro-grid system control strategy
JP2015510386A (en) * 2012-03-01 2015-04-02 シズベル テクノロジー エス.アール.エル. Method and apparatus for managing electrical energy generated locally for self-consumption and distributed to multiple users belonging to one or multiple communities of multiple users
CN102709946A (en) * 2012-06-05 2012-10-03 国电南瑞科技股份有限公司 Method for realizing seamless switching of micro-grid from grid-connection operation to isolated network operation
JP2015006078A (en) * 2013-06-21 2015-01-08 三菱電機株式会社 Power supply management system
JP2015082896A (en) * 2013-10-22 2015-04-27 中国電力株式会社 Control device, control method, power adjustment system
CN104218606A (en) * 2014-09-02 2014-12-17 南方电网科学研究院有限责任公司 Micro-power-grid central control unit
CN105098773A (en) * 2015-08-24 2015-11-25 中国南方电网有限责任公司电网技术研究中心 Droop control method and droop control system in multi-micro power grid interconnection scene
CN105048507A (en) * 2015-09-06 2015-11-11 苏州健雄职业技术学院 Automatic switching control device for photovoltaic micro-grid power generation system
CN105244869A (en) * 2015-10-13 2016-01-13 国网山东省电力公司电力科学研究院 Dynamic random scheduling control method for power distribution network containing micro-grid
WO2017090519A1 (en) * 2015-11-26 2017-06-01 日本電気株式会社 Information processing device, information processing method, and recording medium
JPWO2017090519A1 (en) * 2015-11-26 2018-09-20 日本電気株式会社 Information processing apparatus, information processing method, and recording medium
US10511175B2 (en) 2015-11-26 2019-12-17 Nec Corporation Information processing device, information processing method, and recording medium
CN106058915A (en) * 2016-05-30 2016-10-26 华南理工大学 Active grid-connected-to-off-network switching control method based on single-phase multiple microgrids
CN109217349A (en) * 2017-06-30 2019-01-15 国网山西省电力公司经济技术研究院 Based under more micro-grid connection scenes and the micro-capacitance sensor external characteristics method for solving of operation reserve
CN110533311A (en) * 2019-08-21 2019-12-03 三峡大学 Intelligent Community coordinated scheduling system and method based on energy source router
CN110533311B (en) * 2019-08-21 2022-07-15 三峡大学 Intelligent community coordination scheduling system and method based on energy router
JPWO2022157956A1 (en) * 2021-01-25 2022-07-28
WO2022157956A1 (en) * 2021-01-25 2022-07-28 三菱電機株式会社 Operation planning device, operation planning method, and operation planning program
JP7211574B2 (en) 2021-01-25 2023-01-24 三菱電機株式会社 Operation planning device, operation planning method, and operation planning program

Also Published As

Publication number Publication date
JP4189930B2 (en) 2008-12-03

Similar Documents

Publication Publication Date Title
JP4189930B2 (en) Microgrid power monitoring measurement control system, power monitoring measurement control method thereof, and power monitoring measurement control program thereof
JP3753113B2 (en) Generator control device
US10642241B2 (en) Systems, methods and apparatus for improved generation control of microgrid energy systems
EP2293406B1 (en) Energy storage systems
JP4890920B2 (en) Power quality maintenance support method and power quality maintenance support system for a distribution system in which a plurality of distributed power sources are connected
JP5393934B1 (en) Voltage monitoring control device, voltage control device, and voltage monitoring control method
US20140070756A1 (en) Method for balancing frequency instability on an electric grid using networked distributed energy storage systems
US8554382B2 (en) Multivariable control of regulation and fast demand response in electrical grids
JP6170236B2 (en) Power management system, power management method, and control apparatus
JP2016036252A (en) Distribution system voltage control system, distribution system voltage control method, centralized voltage control device, and local voltage control device
JP5501293B2 (en) Distribution system control system and control method
KR20160091896A (en) Portfolio managed, demand-side response system
WO2008039759A2 (en) System and method for resource management
JP5766364B1 (en) Voltage monitoring control device and voltage control device
JP6899807B2 (en) Aggregator device, program and supply / demand adjustment method to control the charge / discharge power of each storage battery
US20180366951A1 (en) Renewable power system and sizing method for controllable plant associated with renewable power system
KR102232513B1 (en) A Device and Method for Predictively Operating An ESS Charging Based On Artificial Intelligence
JP4926461B2 (en) Generator control device and generator control method
JP2017050911A (en) Operation plan calculation device and calculation method, and computer program
JP6365686B2 (en) Power system
US20070211887A1 (en) Method and system for controlling an operation of an electrical power network
JP5378087B2 (en) System stabilization system with load compensation control function
US20200272118A1 (en) Method of controlling a microgrid, power management system, and energy management system
WO2020044743A1 (en) Power control device and power system
JP4031412B2 (en) Power generation control device and program for power consignment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080430

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees