JP5378087B2 - System stabilization system with load compensation control function - Google Patents

System stabilization system with load compensation control function Download PDF

Info

Publication number
JP5378087B2
JP5378087B2 JP2009163269A JP2009163269A JP5378087B2 JP 5378087 B2 JP5378087 B2 JP 5378087B2 JP 2009163269 A JP2009163269 A JP 2009163269A JP 2009163269 A JP2009163269 A JP 2009163269A JP 5378087 B2 JP5378087 B2 JP 5378087B2
Authority
JP
Japan
Prior art keywords
load
amount
load control
control amount
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009163269A
Other languages
Japanese (ja)
Other versions
JP2011019361A (en
Inventor
裕 滝口
裕 小海
靖 比嘉
健一郎 山里
安洋 兼島
史尚 金城
敏克 大山
寿浩 仲松
幸人 宮城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2009163269A priority Critical patent/JP5378087B2/en
Publication of JP2011019361A publication Critical patent/JP2011019361A/en
Application granted granted Critical
Publication of JP5378087B2 publication Critical patent/JP5378087B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、電力系統の周波数安定化装置および制御方法に関わり、特に電力系統に接続されている発電機の脱落が生じた場合に、発電機脱落に応じた負荷遮断を行うことにより、系統の周波数動揺を防止する電力系統周波数安定化装置および制御方法に関する。   The present invention relates to a frequency stabilization device and a control method for a power system, and in particular, when a generator connected to the power system is dropped, the load is cut off according to the drop of the generator, thereby The present invention relates to a power system frequency stabilization device and a control method for preventing frequency fluctuation.

電力系統の運用において、発電機脱落等が発生した場合、系統の需給バランスが不平衡となり周波数偏差を生じる。これを解消して系統周波数を安定化させるには、系統内の需給不平衡分を迅速に是正する必要がある。その手段として、脱落した発電機の発電量相当の負荷を強制的に遮断することになる。これを目的に、従来から系統内おいて緊急に負荷制御を行う系統周波数安定化装置が設置されている。   In the operation of the electric power system, when a generator dropout occurs, the supply and demand balance of the system becomes unbalanced, resulting in a frequency deviation. In order to eliminate this and stabilize the system frequency, it is necessary to quickly correct the supply-demand imbalance in the system. As a means for that, the load corresponding to the power generation amount of the generator that has dropped off is forcibly cut off. For this purpose, a system frequency stabilizing device for urgently performing load control in the system has been installed.

従来のシステムでは、各電気所からのオンラインデータとして入手した系統情報を基に系統状態を推定し、発電機特性や系統の瞬動予備力を考慮して発電機毎の負荷制御量を事前に算出し負荷遮断することで、系統の需給バランスを保ち周波数を安定化させている。   In the conventional system, the system state is estimated based on the system information obtained as online data from each electric power station, and the load control amount for each generator is determined in advance in consideration of the generator characteristics and the instantaneous reserve capacity of the system. By calculating and cutting off the load, the supply and demand balance of the system is maintained and the frequency is stabilized.

この種の公知例として、特許文献1などが挙げられる。   As a known example of this kind, Patent Document 1 is cited.

また、特許文献2には、系統事故発生時に高速に安定度判定を行う電力系統安定化装置が開示されている。   Patent Document 2 discloses a power system stabilization device that performs stability determination at high speed when a system fault occurs.

特開平10−32927号公報Japanese Patent Laid-Open No. 10-32927 特開2007−189840号公報JP 2007-189840 A

特許文献1のように、事故発生前に計算を行ったのでは、実際の系統事故発生時には系統状態が変化している可能性がある。すなわち、事前に入手したオンラインデータからの算出に採用した発電機発電量と実際に脱落した時点の発電機発電量では、時間的遅延が発生し、必ずしも同一発電量とは限らない。このため、発電機発電量の相違により適正な制御量とならず過不足制御が生じる。このため、制御を実施したにもかかわらず基準となる許容周波数変動値及び基準周波数点を逸脱し、系統周波数の低下又は上昇となり擾乱を引起す問題がある。   If the calculation is performed before the occurrence of the accident as in Patent Document 1, there is a possibility that the system state is changed when an actual system accident occurs. That is, a time delay occurs between the generator power generation amount used for calculation from online data obtained in advance and the generator power generation amount at the time of actual dropout, and the power generation amount is not necessarily the same. For this reason, due to the difference in the power generation amount of the generator, the control amount is not appropriate, and excess / deficiency control occurs. For this reason, there is a problem that, despite the control being performed, it deviates from the reference allowable frequency fluctuation value and the reference frequency point, and the system frequency is lowered or raised, causing disturbance.

また、特許文献2のように、系統事故発生時に高速に安定度判定を行うためには、大きな能力を持った計算機が必要であり、対象電力系統毎にこのような大容量計算機を用意することはできない。   In addition, as in Patent Document 2, in order to perform stability determination at high speed when a system fault occurs, a computer having a large capacity is required, and such a large capacity computer must be prepared for each target power system. I can't.

本発明が解決しようとする課題は、実系統に近い適正制御量を適正な設備投資の範囲内で実現できる電力系統周波数安定化装置およびその制御方法を提供することにある。   The problem to be solved by the present invention is to provide a power system frequency stabilization device and a control method therefor capable of realizing an appropriate control amount close to a real system within a range of appropriate equipment investment.

本発明は、予めサンプリングデ−タとして入手した系統情報を基に現状系統の状態の推定を行い、同系統に接続されている発電機毎に、発電機脱落時に実行すべき負荷制御量を事前に算出する負荷制御量事前算出手段を備えた電力系統周波数安定化装置において、前記負荷制御量の事前算出に採用した各発電機の発電量を、事故直前の発電量と比較する発電量比較手段と、この発電量比較手段の出力に基いて、事前に算出された負荷制御量に対する過不足分の負荷補正制御量を演算する負荷補正制御量演算手段と、前記事前に算出された負荷制御量と前記負荷補正制御量とに応じて負荷制御を実行する負荷制御手段を備えたことを主特徴とする。   The present invention estimates the state of the current system based on the system information obtained as sampling data in advance, and sets the load control amount to be executed when the generator is disconnected for each generator connected to the system. In the power system frequency stabilization device provided with the load control amount pre-calculating means for calculating the power control amount, the power generation amount comparing means for comparing the power generation amount of each generator adopted for the prior calculation of the load control amount with the power generation amount immediately before the accident And a load correction control amount calculation means for calculating an excess / deficiency load correction control amount with respect to the load control amount calculated in advance based on the output of the power generation amount comparison means, and the load control calculated in advance The main feature is that load control means for executing load control according to the amount and the load correction control amount is provided.

本発明の望ましい実施態様によれば、実際に脱落した発電機の直前データを直接取り込むことにより、オンラインデータの時間差による発電機発電量の状態変化に対して柔軟に適応することができ、許容値以内の周波数変動を維持することが容易となる。   According to a preferred embodiment of the present invention, by directly capturing the data immediately before the generator that has actually dropped out, it is possible to flexibly adapt to the state change of the generator power generation amount due to the time difference of the online data, and the allowable value. It is easy to maintain the frequency fluctuation within.

特に、補正制御により、事前に入手したオンラインデータから算出した演算結果に対し、発電量の差分のみを補正することで、適正な制御量とすることが可能となる。   In particular, it is possible to obtain an appropriate control amount by correcting only the difference in power generation amount with respect to the calculation result calculated from online data obtained in advance by correction control.

また、発電機発電量のみの補正であることから、演算時間が短時間で済み、制御遅延無く適正な制御を確実に実施することができる。   In addition, since only the generator power generation amount is corrected, the calculation time is short, and appropriate control can be reliably performed without a control delay.

本発明のその他の目的と特徴は、以下に述べる実施例の中で明らかにする。   Other objects and features of the present invention will be made clear in the embodiments described below.

本発明の一実施例による電力系統周波数安定化装置の全体構成図である。1 is an overall configuration diagram of a power system frequency stabilization device according to an embodiment of the present invention. 本発明の一実施例による負荷制御量決定手段により求められる制御量算出図である。It is a control amount calculation figure calculated | required by the load control amount determination means by one Example of this invention. 本発明の一実施例による負荷制御対象決定手段により求められた許容周波数変動値及び基準周波数点を維持した変動周波数軌跡図である。It is the fluctuation frequency locus diagram which maintained the allowable frequency fluctuation value calculated | required by the load control object determination means by one Example of this invention, and a reference frequency point. 本発明の他の実施例による電力系統周波数安定化装置の全体構成図である。It is a whole block diagram of the electric power system frequency stabilization apparatus by the other Example of this invention. 事後周波数軌跡の算出と実際の周波数軌跡から求めた事後補正制御軌跡と周波数変化率の図である。It is a figure of the posterior correction control locus | trajectory calculated | required from calculation of the posterior frequency locus | trajectory, and an actual frequency locus | trajectory, and a frequency change rate.

以下、本発明の実施例を図面により説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の一実施例による系統周波数安定化装置の全体構成図である。   FIG. 1 is an overall configuration diagram of a system frequency stabilizing device according to an embodiment of the present invention.

図1において、中央の系統監視装置1は、オンラインデータを格納するオンラインデータベース11と、広範囲の電力系統における負荷の遮断対象優先順位や発電機等の運用整定値及び定数等を記憶するパラメータデータベース12を備えている。オンラインデータベース11のデータとパラメータデ−ベース12のデータは、それぞれ、送信ライン111および121により、単位電力系統毎の安定化装置2へ送信される。   In FIG. 1, a central system monitoring device 1 includes an online database 11 for storing online data, and a parameter database 12 for storing priority orders for interrupting loads in a wide range of power systems, operation set values such as generators, constants, and the like. It has. The data in the online database 11 and the data in the parameter database 12 are transmitted to the stabilization device 2 for each unit power system through transmission lines 111 and 121, respectively.

安定化装置2については、まず、オンラインデータを採用した事前演算に基く負荷制御だけについて説明する。安定化装置2は、事前演算に基く負荷制御のために、系統推定手段21,負荷制御量決定手段22および負荷制御対象決定手段23を備え、脱落発電機の発電量に見合った負荷制御量を決定し、負荷制御指令を出力する。系統推定手段21はオンラインデータから現在系統を推定し、負荷制御量決定手段22は各発電機の発電量に見合った負荷制御量を算出する。さらに、負荷制御対象決定手段23は、系統の周波数安定に最適な対象負荷の組合せを決定する。   Regarding the stabilization device 2, only load control based on pre-calculation using online data will be described first. The stabilization device 2 includes a system estimation unit 21, a load control amount determination unit 22, and a load control target determination unit 23 for load control based on pre-calculation, and a load control amount corresponding to the power generation amount of the dropout generator. Determine and output a load control command. The system estimation unit 21 estimates the current system from the online data, and the load control amount determination unit 22 calculates a load control amount corresponding to the power generation amount of each generator. Further, the load control target determining means 23 determines a target load combination that is optimal for frequency stabilization of the system.

系統5に接続される発電所3には、発電機31,32が設置されている。発電所3は、脱落指令伝送ライン33を通して、安定化装置2へ、系統故障や発電機異常により系統から脱落する脱落指令を伝える。系統5に接続される変電所4には、負荷41,42が設置されている。安定化装置2から、遮断指令伝送ライン43を通して、変電所4内の負荷41や42に遮断指令を伝える。現状の系統5の構成は、伝送ライン51を通して、系統全体のオンラインデータを、中央のオンラインデータベース11に入力する。   Generators 31 and 32 are installed in the power plant 3 connected to the grid 5. The power plant 3 transmits a drop command to drop from the system due to a system failure or a generator abnormality to the stabilization device 2 through the drop command transmission line 33. Loads 41 and 42 are installed at the substation 4 connected to the grid 5. The stabilization command is transmitted from the stabilization device 2 to the loads 41 and 42 in the substation 4 through the shutdown command transmission line 43. In the current configuration of the system 5, online data of the entire system is input to the central online database 11 through the transmission line 51.

次に、本実施例における電力系統周波数安定化装置の動作を説明する。   Next, the operation of the power system frequency stabilization device in the present embodiment will be described.

まず、系統監視装置1において、電力系統5からのオンラインデータを受信し、発電所3の発電機31,32の発電量及び変電所4の負荷41,42の潮流量等、系統全体データを周期的にサンプリングし、これらをオンラインデータベース11に格納する。   First, the grid monitoring device 1 receives online data from the power grid 5 and periodically cycles the entire grid data such as the power generation amount of the generators 31 and 32 of the power plant 3 and the tidal flow of the loads 41 and 42 of the substation 4. Are sampled and stored in the online database 11.

次に、系統監視装置1のオンラインデータベース11と諸定数のパラメータデータベース12のデータを、送信ライン111,121を介して安定化装置2へ周期的に送信する。   Next, the data of the online database 11 of the system monitoring device 1 and the parameter database 12 of various constants are periodically transmitted to the stabilization device 2 via the transmission lines 111 and 121.

次に、安定化装置2で受信したデータを基に、系統推定手段21によって最新の系統構成を推定する。   Next, the latest system configuration is estimated by the system estimation means 21 based on the data received by the stabilization device 2.

次に、推定された系統構成を基に、発電機毎の負荷制御量決定手段22によって系統に接続されている発電機単位に、現在の発電量に対して、発電機脱落が発生したことを想定し、当該発電機が脱落したケ−スでの負荷制御量を算出する。   Next, on the basis of the estimated system configuration, the fact that the generator dropout has occurred with respect to the current power generation amount in the generator unit connected to the system by the load control amount determination means 22 for each generator. Assuming that the load control amount is calculated in the case where the generator is dropped.

次に、算出された負荷制御量に基づき、負荷制御対象決定手段23によって、系統周波数が最も安定する負荷をパラメータデータの負荷遮断優先順位を用いて選択する。   Next, based on the calculated load control amount, the load control target determining unit 23 selects the load with the most stable system frequency using the load cutoff priority of the parameter data.

この一連の演算をオンラインデータが書き換わる度に実施し、常に最新データでの事前演算結果を保存して置く。   This series of operations is performed every time the online data is rewritten, and the pre-computation results with the latest data are always stored.

ここで、発電所3において、ある発電機31または32が脱落したと仮定する。発電所3は、脱落指令ライン33を介して、安定化装置2へ脱落指令を送信する。脱落指令を受信した安定化装置2では、脱落発電機の負荷制御演算結果を使用し、変電所4内の該当する負荷41および/または42へ、負荷遮断指令ライン43を介して遮断指令を送信し、当該負荷を遮断する。   Here, it is assumed that a certain generator 31 or 32 has dropped out at the power plant 3. The power plant 3 transmits a drop command to the stabilization device 2 via the drop command line 33. The stabilization device 2 that has received the dropout command uses the load control calculation result of the dropout generator, and transmits a cut-off command to the corresponding load 41 and / or 42 in the substation 4 via the load cut-off command line 43. And shut off the load.

ここで、発電機毎の負荷制御量決定手段22における演算例を図2及び図3を用いて説明する。   Here, a calculation example in the load control amount determining means 22 for each generator will be described with reference to FIGS.

図2は、発電機発電量が70MWの発電機が脱落したことを想定した負荷制御量を算出した一例グラフである。系統推定手段21で推定された系統構成から系統定数を算出し、これを用いて、式(1)及び(2)により算出できる。   FIG. 2 is an example graph for calculating a load control amount assuming that a generator with a generator power generation amount of 70 MW has dropped. A system constant is calculated from the system configuration estimated by the system estimation means 21 and can be calculated using equations (1) and (2).

ΔP=KΔf……………………………………………………(1)
ここで、ΔPは需給アンバランス率(%MW)、Kは系統定数、Δfは過渡周波数変動最下点(%Hz)である。
ΔP = KΔf …………………………………………………… (1)
Here, ΔP is a supply and demand imbalance rate (% MW), K is a system constant, and Δf is a transition frequency fluctuation lowest point (% Hz).

PG−PL=(1/fn)・M・df/dt………………(2)
ここで、PGは系統全体の発電量、PLは系統全体の負荷量、fnは定格周波数、Mは発電機の単位慣性定数(MW・s/MVA)である。
PG-PL = (1 / fn) · M · df / dt (2)
Here, PG is a power generation amount of the entire system, PL is a load amount of the entire system, fn is a rated frequency, and M is a unit inertia constant (MW · s / MVA) of the generator.

式(1)は、需給アンバランス量と最下点周波数との関係から算出し、式(2)では、各発電機の運動方程式を用いて周波数変化率との関係を求めることで、当該発電機の負荷制御量直線6を算出することができる。算出された負荷制御量直線6を用いて許容周波数変動に見合った負荷制御量点を求めることができる。許容周波数変動を−1.0Hzとした場合の負荷制御量点は、−1.0HZと負荷制御量直線6との交点61となり、このときの負荷制御量は、35MWであることが判る。   Equation (1) is calculated from the relationship between the supply and demand imbalance amount and the lowest point frequency, and in Equation (2), the relationship between the frequency change rate is calculated using the equation of motion of each generator, The load control amount straight line 6 of the machine can be calculated. Using the calculated load control amount straight line 6, it is possible to obtain a load control amount point corresponding to the allowable frequency fluctuation. When the allowable frequency fluctuation is −1.0 Hz, the load control amount point is an intersection 61 between −1.0 HZ and the load control amount straight line 6, and it can be seen that the load control amount at this time is 35 MW.

次に、負荷制御対象決定手段23において、発電機毎の負荷制御量決定手段22から算出された負荷制御量=35MWに対し、パラメータデータベースの負荷優先順位に基づき必要負荷制御量を上回り、かつ上回り量が最小値となる制御対象を決定する。   Next, the load control target determination unit 23 exceeds the load control amount calculated from the load control amount determination unit 22 for each generator = 35 MW, and exceeds the required load control amount based on the load priority of the parameter database. The control target whose amount is the minimum value is determined.

図3は、図2より算出された演算結果に基づき、負荷制御を実施した場合に求められる想定周波数変動軌跡図である。この場合の想定周波数変動軌跡62から、発電機毎の負荷制御量決定手段22にて求めた負荷制御を実施した場合の周波数変動は、−1.0Hzすなわち59.0Hzをボトムに安定することが判る。   FIG. 3 is an expected frequency fluctuation locus diagram obtained when load control is performed based on the calculation result calculated from FIG. 2. From the assumed frequency fluctuation locus 62 in this case, the frequency fluctuation when the load control obtained by the load control amount determining means 22 for each generator is performed can be stabilized at -1.0 Hz, that is, 59.0 Hz at the bottom. I understand.

次に、以上のオンラインデータを採用した事前演算に基く負荷制御に対し、本発明に基き、実際に遮断された発電機の発電量にて補正する負荷補正制御を説明する。   Next, the load correction control for correcting the load control based on the above-described online data based on the pre-computation based on the power generation amount of the actually shut off generator will be described based on the present invention.

図1に戻って、安定化装置2は、負荷補正制御のために、差分判定手段24,補正負荷制御量決定手段25,および補正負荷制御対象決定手段26を備えている。差分判定手段24は、事前演算で採用した演算用発電量と実際に脱落した発電機の直前の発電量との差分を判別する。補正負荷制御量決定手段25は、発電量の差分に見合った補正用負荷制御量を算出する。補正負荷制御対象決定手段26は、補正負荷制御量からパラメータデータの負荷遮断優先順位を用いて対象負荷を選択する。発電機発電量34は、オンラインデータとして、系統監視装置1のオンラインデータベース11へ格納される。発電量送信ライン35は、脱落直前の発電機発電量を送信する。脱落発電機発電量の差分により、追加遮断負荷、例えば負荷41が追加分として遮断される。   Returning to FIG. 1, the stabilization device 2 includes a difference determination unit 24, a correction load control amount determination unit 25, and a correction load control target determination unit 26 for load correction control. The difference determination unit 24 determines the difference between the calculation power generation amount adopted in the preliminary calculation and the power generation amount immediately before the generator that has actually dropped out. The corrected load control amount determining means 25 calculates a correction load control amount that is commensurate with the difference in power generation amount. The corrected load control target determining unit 26 selects a target load from the corrected load control amount using the load cutoff priority order of the parameter data. The generator power generation amount 34 is stored in the online database 11 of the system monitoring apparatus 1 as online data. The power generation amount transmission line 35 transmits the generator power generation amount immediately before dropping off. Due to the difference in the power generation amount of the dropout generator, an additional cut-off load, for example, the load 41 is cut off as an additional portion.

次に、図2及び図3を含めて差分判定手段24の動作について説明する。オンラインデータと格納されている発電機発電量34と、発電量送信ライン35によって送信される脱落直前の発電機発電量において、式(3)が成立する場合を説明する。   Next, the operation of the difference determination unit 24 will be described including FIG. 2 and FIG. A case will be described in which the expression (3) is established for the generator power generation amount 34 stored on-line data and the generator power generation amount just before dropping off transmitted by the power generation amount transmission line 35.

PG1<PG2………………………………………………(3)
ここで、PG1は事前演算に採用したオンライン格納データの発電量、PG2は脱落直前の発電量に相当する。
PG1 <PG2 ……………………………………………… (3)
Here, PG1 corresponds to the power generation amount of the online storage data adopted for the pre-calculation, and PG2 corresponds to the power generation amount immediately before dropping.

この場合、事前演算にて採用した発電量PG1に対し、脱落直前の発電量PG2が上回ることから事前演算で演算した結果より脱落量が多くなり、事前演算結果よりも実際の必要負荷制御量は当然に大きくなる。このため、負荷制御量が不足し、図3の事前演算にて求めた想定周波数変動62を実現できず、不足制御周波数変動73の軌跡を辿ることとなる。したがって、変動周波数許容点75である許容周波数変動−1.0Hzを確保できず、このままでは、系統周波数の擾乱を引起すこととなる。   In this case, since the power generation amount PG2 just before the dropout exceeds the power generation amount PG1 adopted in the precalculation, the dropout amount is larger than the result calculated in the precalculation, and the actual required load control amount is larger than the precalculation result. Naturally grows. For this reason, the load control amount is insufficient, and the assumed frequency fluctuation 62 obtained by the prior calculation in FIG. 3 cannot be realized, and the locus of the insufficient control frequency fluctuation 73 is traced. Therefore, the permissible frequency fluctuation of −1.0 Hz, which is the permissible frequency fluctuation point 75, cannot be ensured.

そこで、差分判定手段24が、この発電量の差分を判定する。差分判定手段は、式(4)により差分を求めることができる。   Therefore, the difference determination unit 24 determines the difference in power generation amount. The difference determination means can obtain the difference by the equation (4).

PG3=PG2−PG1……………………………………(4)
ここで、PG3は事前演算で採用した発電量と脱落直前発電量の差分発電量である。
PG3 = PG2-PG1 ……………………………… (4)
Here, PG3 is a differential power generation amount between the power generation amount employed in the pre-calculation and the power generation amount immediately before dropping.

次に、差分発電量PG3に基づき本来の負荷制御量を求める補正負荷制御量決定手段25の動作について説明する。事前演算にて求められた図2の負荷制御量61に対し、補正する負荷制御量は式(5)で求めることができる。   Next, the operation of the corrected load control amount determining means 25 for obtaining the original load control amount based on the differential power generation amount PG3 will be described. The load control amount to be corrected with respect to the load control amount 61 of FIG. 2 obtained by the pre-calculation can be obtained by Expression (5).

Figure 0005378087
ここで、ΔPFは事前演算時の総脱落発電量PGから事前演算の負荷制御量PG1で求められた直線6の傾きに対し、差分発電量PG3分を補正した傾きとなり、傾きΔPFから不足制御補正負荷制御量直線7を求めることができる。求められた不足制御補正負荷制御量直線7から、許容周波数変動−1.0Hzとした場合の不足制御負荷制御量点71は−1.0HZと不足制御負荷制御量直線7との交点となり、この時の負荷制御量は45MWとなる。図2から求まる不足制御補正負荷制御量点71と事前演算負荷制御量点61の差分が、追加負荷制御量72となり、10MWの負荷補正値を算出する。算出された負荷補正値を追加制御することにより、想定周波数変動62と不足制御周波数変動73の差分である不足制御周波数変動差分74を補正することで、想定周波数62の軌跡を実現することが可能となる。
Figure 0005378087
Here, ΔPF is a slope obtained by correcting the difference power generation amount PG3 with respect to the slope of the straight line 6 obtained from the total dropout power generation amount PG at the time of pre-calculation by the load control amount PG1, and the shortage control correction is performed from the slope ΔPF. A load control amount straight line 7 can be obtained. From the obtained shortage control correction load control amount straight line 7, the shortage control load control amount point 71 when the allowable frequency fluctuation is −1.0 Hz is an intersection of −1.0 HZ and the shortage control load control amount straight line 7. The load control amount at that time is 45 MW. The difference between the shortage control correction load control amount point 71 obtained from FIG. 2 and the pre-computed load control amount point 61 becomes the additional load control amount 72, and a 10 MW load correction value is calculated. By additionally controlling the calculated load correction value, the locus of the assumed frequency 62 can be realized by correcting the insufficient control frequency variation difference 74, which is the difference between the assumed frequency variation 62 and the insufficient control frequency variation 73. It becomes.

逆のケ−スとして式(6)が成立する場合を説明する。   A case where the formula (6) is established as an opposite case will be described.

PG1>PG2………………………………………………(6)
この場合、事前演算にて採用した発電量PG1に対し、脱落直前の発電量PG2が下回ることから事前演算で演算した結果より脱落量が少なくなり、事前演算結果よりも実際の必要負荷制御量は当然に少なくなる。このため、負荷制御量が多すぎることから、図3の事前演算にて求めた想定周波数変動62を実現できず、過制御周波数変動714の軌跡を辿ることとなり、仕上り周波数は基準周波数点716(60Hz)より上昇し系統周波数の擾乱を引起すこととなる。
PG1> PG2 ……………………………………………… (6)
In this case, since the power generation amount PG2 just before the drop-off is lower than the power generation amount PG1 adopted in the pre-calculation, the drop-off amount is smaller than the result calculated by the pre-calculation, and the actual required load control amount is less than the pre-calculation result Naturally it will be less. For this reason, since there is too much load control amount, the assumed frequency fluctuation | variation 62 calculated | required by the prior | preceding calculation of FIG. 60 Hz), causing disturbance of the system frequency.

そこで、式(3)と同様の処理を実施することにより、式(4)及び式(5)から求めた過制御補正負荷制御量711から許容周波数−1.0Hzとした場合の過制御負荷制御量点712は−1.0Hzと過制御負荷制御量直線711との交点となり、この時の負荷制御量は25MWとなる。図2から求まる負荷制御量点712と事前演算負荷制御量点61の差分が、削減制御量713となり−10MWの負荷補正値を算出する。算出された負荷補正値を削減制御することにより、想定周波数変動62と過制御周波数変動714の差分である過制御周波数変動差分715を補正することで想定周波数62の軌跡を実現することが可能となる。負荷制御量に対する周波数変動の関係を求める方法として、図2に示したように、線路を流れる電力の変動に対する周波数変動量の相関関係を求めておき、これを利用して、負荷補正制御量を求めることができる。   Therefore, by performing the same processing as in equation (3), overcontrol load control when the allowable frequency is set to -1.0 Hz from the overcontrol correction load control amount 711 obtained from equations (4) and (5). The quantity point 712 is an intersection of −1.0 Hz and the over-control load control amount straight line 711, and the load control amount at this time is 25 MW. The difference between the load control amount point 712 obtained from FIG. 2 and the pre-computed load control amount point 61 becomes the reduction control amount 713, and a load correction value of −10 MW is calculated. By performing reduction control on the calculated load correction value, the trajectory of the assumed frequency 62 can be realized by correcting the overcontrol frequency fluctuation difference 715 that is the difference between the assumed frequency fluctuation 62 and the overcontrol frequency fluctuation 714. Become. As shown in FIG. 2, as a method for obtaining the relationship of the frequency fluctuation with the load control amount, the correlation of the frequency fluctuation amount with the fluctuation of the power flowing through the line is obtained, and this is used to obtain the load correction control amount. Can be sought.

次に、補正負荷制御対象決定手段26の動作について説明する。事前演算より決定された制御対象負荷を除き、残ったパラメータデータの負荷遮断優先順位を基に、再度算出された図2の追加負荷制御量72、又は、削減負荷制御量713に見合った必要負荷制御量を上回る最小値となる制御対象を決定する。決定された補正負荷対象と事前演算にて決定された制御負荷対象を合せて、当該変電所4へ負荷遮断指令をライン42を介して送信し、事前演算で決定された負荷42と追加遮断負荷41又は事前演算選択結果の負荷42から削減された削減負荷421を遮断する。   Next, the operation of the correction load control target determination unit 26 will be described. Necessary load corresponding to the additional load control amount 72 or the reduced load control amount 713 of FIG. 2 calculated again based on the load cutoff priority order of the remaining parameter data, excluding the control target load determined by the prior calculation. The control target that is the minimum value exceeding the control amount is determined. The determined correction load object and the control load object determined in the pre-computation are combined, and a load shedding command is transmitted to the substation 4 via the line 42, and the load 42 and the additional interrupting load determined in the pre-computation are transmitted. 41 or the reduced load 421 reduced from the load 42 of the pre-calculation selection result is cut off.

次に、補正制御実施後の周波数補正制御について説明する。   Next, frequency correction control after correction control will be described.

事前演算と補正制御にて実施した負荷制御に対し、制御後の周波数軌跡を測定し、事前演算結果との比較を行い、再度補正制御を実施する方式である。   This is a method for measuring the frequency trajectory after the control with respect to the load control performed by the pre-computation and the correction control, comparing the result with the pre-computation result, and performing the correction control again.

図4は、本発明の第2の実施例による電力系統周波数安定化装置の全体構成図である。図1と同一の部分には同一符号を付し、重複説明を避け、異なる部分のみを説明する。   FIG. 4 is an overall configuration diagram of a power system frequency stabilizing device according to a second embodiment of the present invention. The same parts as those in FIG. 1 are denoted by the same reference numerals, and redundant description will be avoided, and only different parts will be described.

安定化装置2は、再度の負荷補正制御のために、周波数差分判定手段27,補正負荷制御量決定手段28,および補正負荷制御対象決定手段29を備えている。差分判定手段27は、事前演算で予測した複数の予測周波数と実際に脱落後の系統周波数との比較により差分を判別する。補正負荷制御量決定手段28は、周波数の差分に見合った補正用負荷制御量を算出する。補正負荷制御対象決定手段29は、補正負荷制御量からパラメータデータの負荷遮断優先順位を用いて対象負荷を選択する。周波数送信ライン52は、脱落直後の系統5の周波数を送信する。   The stabilizing device 2 includes a frequency difference determination unit 27, a correction load control amount determination unit 28, and a correction load control target determination unit 29 for the second load correction control. The difference determination means 27 determines the difference by comparing the plurality of predicted frequencies predicted by the prior calculation with the system frequency after the dropout. The correction load control amount determination means 28 calculates a correction load control amount corresponding to the frequency difference. The corrected load control target determining unit 29 selects a target load from the corrected load control amount using the load cutoff priority order of the parameter data. The frequency transmission line 52 transmits the frequency of the system 5 immediately after dropping.

図5は、事後補正制御の考え方の一例を説明するための周波数変動軌跡図である。図に示す如く、事前演算で求めた理想制御軌跡8に対し、負荷脱落等の影響を考慮した事後補正制御軌跡81〜83を事前演算で算出しておき、実際の周波数軌跡がどの事後補正制御軌跡81〜83に近似しているかを判断する。例えば、事後補正制御軌跡83に近似している場合、事前演算で算出した、事後補正制御軌跡83で求めた事後補正制御量を追加遮断することで理想制御軌跡8を実現することが可能となる。   FIG. 5 is a frequency fluctuation locus diagram for explaining an example of the concept of post-correction control. As shown in the figure, post-correction control trajectories 81 to 83 that take into account the influence of load drop and the like are calculated by pre-calculation with respect to the ideal control trajectory 8 obtained by pre-calculation, and which post-correction control the actual frequency trajectory is. It is determined whether or not the trajectories 81 to 83 are approximate. For example, when approximate to the posterior correction control locus 83, the ideal control locus 8 can be realized by additionally blocking the posterior correction control amount calculated by the posterior correction control locus 83, which is calculated by the pre-calculation. .

次に、以上の補正制御実施後の系統周波数の変化率と事後の系統に残った発電機の慣性定数を用いた更なる追加補正方式を式(7)にて説明する。   Next, a further additional correction method using the rate of change of the system frequency after performing the above correction control and the inertia constant of the generator remaining in the subsequent system will be described with Expression (7).

ΔPm=Mdf/dt……………………………………(7)
ここで、ΔPmは事後補正負荷制御量、Mは系統に残された発電機の単位慣性定数の容量加重平均である。
ΔPm = Mdf / dt ………………………… (7)
Here, ΔPm is a post-correction load control amount, and M is a capacity weighted average of the unit inertia constant of the generator left in the system.

事前演算結果および補正制御に基づいて制御を実施し、式(7)からその後の事後周波数変化率9(図5)を算出することで需給アンバランスを推定することが可能となる。したがって、事後算出された需給アンバランス量に見合った事後補正制御を追加実行することで、理想制御軌跡8を実現することが可能となる。   It is possible to estimate the supply and demand imbalance by performing control based on the pre-computation result and the correction control and calculating the subsequent posterior frequency change rate 9 (FIG. 5) from the equation (7). Therefore, the ideal control trajectory 8 can be realized by additionally executing the post-correction control corresponding to the post-calculated supply and demand imbalance amount.

以上に述べた本発明の実施例によれば、実際に脱落した発電機の直前データを直接取り込むことにより、オンラインデータの時間差による発電機発電量の状態変化に対して柔軟に適応することができ、又、許容周波数変動を維持することが容易となる。   According to the embodiment of the present invention described above, it is possible to flexibly adapt to the state change of the generator power generation amount due to the time difference of the online data by directly capturing the data immediately before the generator that has actually dropped. Moreover, it becomes easy to maintain the allowable frequency fluctuation.

1…系統監視装置、11…オンラインデータベース、12…パラメータデータベース、2…安定化装置、21…系統推定手段、22…負荷制御量決定手段、23…負荷制御対象決定手段、24…差分判定手段、25…補正負荷制御量決定手段、26…補正負荷制御対象決定手段、27…周波数差分判定手段、28…補正負荷制御量決定手段、29…補正負荷制御対象決定手段、3…発電所、31,32…発電機、33…発電機脱落指令ライン、34…発電機発電量オンラインデータ、35…脱落直前発電機発電量ライン、4…変電所、41,42…負荷、421…削減遮断負荷、43…負荷遮断指令ライン、5…電力系統、51…データ入力ライン、6…事前演算負荷制御量直線、61…事前演算負荷制御量点、62…想定周波数変動軌跡、7…不足制御補正負荷制御量直線、71…不足制御補正負荷制御量点、72…追加負荷制御量、73…不足制御周波数変動軌跡、74…不足制御周波数変動差分、75…許容周波数変動点、711…過制御補正負制御量直線、712…過制御補正負荷制御量点、713…削減負荷制御量、714…過制御周波数変動軌跡、715…過制御周波数変動差分、716…基準周波数点、8…事前演算周波数軌跡、81…事前演算による事後補正制御軌跡、82…事前演算による事後補正制御軌跡、83…事前演算による事後補正制御軌跡、9…事後周波数変化率。   DESCRIPTION OF SYMBOLS 1 ... System | strain monitoring apparatus, 11 ... Online database, 12 ... Parameter database, 2 ... Stabilizer, 21 ... System | strain estimation means, 22 ... Load control amount determination means, 23 ... Load control object determination means, 24 ... Difference determination means, 25 ... Correction load control amount determination means, 26 ... Correction load control object determination means, 27 ... Frequency difference determination means, 28 ... Correction load control amount determination means, 29 ... Correction load control object determination means, 3 ... Power plant, 31, 32 ... Generator drop-off command line, 34 ... Generator power generation amount online data, 35 ... Generator power generation amount line just before drop-off, 4 ... Substation, 41, 42 ... Load, 421 ... Reduced cut-off load, 43 ... load cutoff command line, 5 ... power system, 51 ... data input line, 6 ... pre-computed load control amount straight line, 61 ... pre-computed load control amount point, 62 ... assumed frequency fluctuation locus, ... Insufficient control correction load control amount straight line, 71 ... Insufficient control correction load control amount point, 72 ... Additional load control amount, 73 ... Insufficient control frequency fluctuation locus, 74 ... Insufficient control frequency fluctuation difference, 75 ... Allowable frequency fluctuation point, 711 ... overcontrol correction negative control amount straight line, 712 ... overcontrol correction load control amount point, 713 ... reduced load control amount, 714 ... overcontrol frequency fluctuation locus, 715 ... overcontrol frequency fluctuation difference, 716 ... reference frequency point, 8 ... Pre-calculation frequency trajectory, 81 .. Post-correction control trajectory by pre-calculation, 82 .. Post-correction control trajectory by pre-calculation, 83 .. Post-correction control trajectory by pre-calculation, 9.

Claims (6)

予めサンプリングデ−タとして入手した系統情報を基に現状系統の状態の推定を行い、同系統に接続されている発電機毎に、発電機脱落時に実行すべき負荷制御量を事前に算出する負荷制御量事前算出手段を備えた電力系統周波数安定化装置において、前記負荷制御量の事前算出に採用した各発電機の発電量を、事故直前の発電量と比較する発電量比較手段と、この発電量比較手段の出力に基いて、事前に算出された負荷制御量に対する過不足分の負荷補正制御量を演算する負荷補正制御量演算手段と、前記事前に算出された負荷制御量と前記負荷補正制御量とに応じて負荷制御を実行する負荷制御手段を備えたことを特徴とする電力系統周波数安定化装置。   A load that estimates the state of the current system based on system information obtained in advance as sampling data and calculates in advance the load control amount to be executed when the generator is disconnected for each generator connected to the system In the power system frequency stabilizing device provided with the control amount pre-calculation means, the power generation amount comparison means for comparing the power generation amount of each generator adopted for the prior calculation of the load control amount with the power generation amount immediately before the accident, and the power generation Load correction control amount calculation means for calculating an excess or deficiency load correction control amount with respect to the load control amount calculated in advance based on the output of the amount comparison means, the load control amount calculated in advance and the load A power system frequency stabilization device comprising load control means for performing load control according to a correction control amount. 請求項1において、前記負荷制御手段は、脱落発電機の事故直前の発電量が前記事前の算出に採用した発電量より少ないとき、その少ない分に応じて削減した負荷制御を実行することを特徴とする電力系統周波数安定化装置。   In Claim 1, when the power generation amount immediately before the accident of the drop-off generator is smaller than the power generation amount adopted in the advance calculation, the load control means executes load control reduced according to the small amount. A characteristic power system frequency stabilizer. 請求項1において、前記負荷制御手段は、脱落発電機の事故直前の発電量が前記事前の算出に採用した発電量より多いとき、その多い分に応じて増加した負荷制御を実行することを特徴とする電力系統周波数安定化装置。   In Claim 1, when the power generation amount immediately before the accident of the drop-off generator is larger than the power generation amount adopted in the advance calculation, the load control means executes load control increased according to the amount of power generation. A characteristic power system frequency stabilizer. 請求項1〜3のいずれかにおいて、発電機の脱落事故発生による電力系統の周波数低下量を複数段階予想する周波数低下予想手段と、実事故直後の電力系統の周波数低下実績と前記複数の周波数低下予想値とを比較する周波数低下比較手段と、この比較結果に基いて、事前に算出された負荷制御量に対する過不足分の第2の負荷補正制御量を演算する第2の負荷補正制御量演算手段と、前記事前に算出された負荷制御量と前記負荷補正制御量並びに前記第2の負荷補正制御量とに応じて負荷制御を実行する負荷制御手段を備えたことを特徴とする電力系統周波数安定化装置。   4. The frequency reduction prediction means for predicting a plurality of stages of the frequency reduction amount of the power system due to the occurrence of a generator dropout accident, the frequency reduction results of the power system immediately after the actual accident, and the plurality of frequency reductions Frequency reduction comparison means for comparing with an expected value, and second load correction control amount calculation for calculating a second load correction control amount for excess and deficiency with respect to a load control amount calculated in advance based on the comparison result And a load control means for executing load control in accordance with the load control amount calculated in advance, the load correction control amount, and the second load correction control amount. Frequency stabilizer. 請求項1〜4のいずれかにおいて、線路を流れる電力の変動に対する周波数変動量の相関関係を求める手段と、この相関関係に基いて、周波数変動を許容範囲内に抑える負荷補正制御量を算出する手段を備えたことを特徴とする電力系統周波数安定化装置。   5. The means for determining the correlation of the frequency fluctuation amount with the fluctuation of the power flowing through the line according to claim 1, and calculating the load correction control amount for suppressing the frequency fluctuation within an allowable range based on the correlation. A power system frequency stabilizing device comprising: means. 予めサンプリングデ−タとして入手した系統情報を基に現状系統の状態の推定を行い、同系統に接続されている発電機毎に、発電機脱落時に実行すべき負荷制御量を事前に算出する電力系統周波数安定化制御方法において、前記負荷制御量の事前算出に採用した各発電機の発電量を、事故直前の発電量と比較する発電量比較ステップと、この発電量比較ステップでの比較結果に基いて、事前に算出された負荷制御量に対する過不足分の負荷補正制御量を演算する負荷補正制御量演算ステップと、前記事前に算出された負荷制御量と前記負荷補正制御量とに応じて負荷制御を実行する負荷制御ステップを備えたことを特徴とする電力系統周波数安定化制御方法。   Electricity that estimates the state of the current grid based on grid information obtained in advance as sampling data, and calculates in advance the load control amount to be executed when the generator is disconnected for each generator connected to the grid In the system frequency stabilization control method, the power generation amount of each generator adopted in the calculation of the load control amount in advance is compared with the power generation amount comparison step for comparing with the power generation amount immediately before the accident, and the comparison result in this power generation amount comparison step. Based on the load correction control amount calculation step for calculating an excess / deficiency load correction control amount with respect to the load control amount calculated in advance, and the load control amount and the load correction control amount calculated in advance A power system frequency stabilization control method comprising a load control step for executing load control.
JP2009163269A 2009-07-10 2009-07-10 System stabilization system with load compensation control function Active JP5378087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009163269A JP5378087B2 (en) 2009-07-10 2009-07-10 System stabilization system with load compensation control function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009163269A JP5378087B2 (en) 2009-07-10 2009-07-10 System stabilization system with load compensation control function

Publications (2)

Publication Number Publication Date
JP2011019361A JP2011019361A (en) 2011-01-27
JP5378087B2 true JP5378087B2 (en) 2013-12-25

Family

ID=43596716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009163269A Active JP5378087B2 (en) 2009-07-10 2009-07-10 System stabilization system with load compensation control function

Country Status (1)

Country Link
JP (1) JP5378087B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109980654B (en) * 2019-03-18 2024-04-02 中国华电科工集团有限公司 Power grid high-frequency accident descending load prediction device and process
JP7450504B2 (en) 2020-09-16 2024-03-15 三菱電機株式会社 Grid stabilization system and grid stabilization method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0611168B2 (en) * 1984-08-07 1994-02-09 株式会社東芝 Power system stabilizer
JP3771116B2 (en) * 2000-06-12 2006-04-26 三菱電機株式会社 Power system stabilization control method and power system stabilization control apparatus
JP3820385B2 (en) * 2002-08-06 2006-09-13 三菱電機株式会社 Isolated system stabilization method and isolated system stabilization system
JP2007129859A (en) * 2005-11-04 2007-05-24 Toshiba Corp Frequency stabilization system, method thereof, and program thereof

Also Published As

Publication number Publication date
JP2011019361A (en) 2011-01-27

Similar Documents

Publication Publication Date Title
JP4189930B2 (en) Microgrid power monitoring measurement control system, power monitoring measurement control method thereof, and power monitoring measurement control program thereof
JP4860960B2 (en) Power network control system
JP5843956B2 (en) System stabilization device
KR101398400B1 (en) Time-variant droop based inertial control method for wind power plant
JP6335641B2 (en) Frequency stabilizer for single system
JP5436958B2 (en) System stabilization system with post-correction function
KR101197576B1 (en) Online Intelligent Special Protection Scheme using PMUPhasor Measurement Units Data in Power Systems
JP2011504087A (en) Active network management
JP4119077B2 (en) Frequency stabilizer for power system
JP2007189840A (en) Power system stabilizing apparatus
JP7131971B2 (en) Power system stabilization system and power system stabilization method
JP5378087B2 (en) System stabilization system with load compensation control function
JP6410696B2 (en) System control device and system stabilization system
CN109888797B (en) Situation awareness-based frequency control method for system with wind power access transmitting end
WO2016067438A1 (en) System stabilizing control device and method
JP5651495B2 (en) Power system stabilization control method and apparatus
JP2008022612A (en) Emergent frequency controller and control method
JP7005444B2 (en) Server equipment, control system, and control method
CN108767878B (en) Control method for frequency deviation safety of power system
JP4044512B2 (en) Power system stabilization control device and power system stabilization control method
JP7106348B2 (en) System stabilizer
JP4727566B2 (en) Frequency control apparatus and frequency control method
JP2020005336A (en) System stabilization method and system stabilizer
JPH1146447A (en) Frequency maintenance system for power system
JP2016214036A (en) Control system, distribution method, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130925

R150 Certificate of patent or registration of utility model

Ref document number: 5378087

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150