WO2017014255A1 - Metal-containing cellulose fiber, sanitary thin paper using same, and absorbent article - Google Patents

Metal-containing cellulose fiber, sanitary thin paper using same, and absorbent article Download PDF

Info

Publication number
WO2017014255A1
WO2017014255A1 PCT/JP2016/071352 JP2016071352W WO2017014255A1 WO 2017014255 A1 WO2017014255 A1 WO 2017014255A1 JP 2016071352 W JP2016071352 W JP 2016071352W WO 2017014255 A1 WO2017014255 A1 WO 2017014255A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose fiber
metal
containing cellulose
metal ion
fiber
Prior art date
Application number
PCT/JP2016/071352
Other languages
French (fr)
Japanese (ja)
Inventor
かおり 山邊
金野 晴男
村田 剛
克 水口
Original Assignee
日本製紙株式会社
日本製紙クレシア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015144512A external-priority patent/JP2018178263A/en
Application filed by 日本製紙株式会社, 日本製紙クレシア株式会社 filed Critical 日本製紙株式会社
Priority to JP2017529917A priority Critical patent/JP6767977B2/en
Priority to KR1020187001833A priority patent/KR102116907B1/en
Priority to CN201680041257.9A priority patent/CN107849800B/en
Publication of WO2017014255A1 publication Critical patent/WO2017014255A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/83Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47KSANITARY EQUIPMENT NOT OTHERWISE PROVIDED FOR; TOILET ACCESSORIES
    • A47K10/00Body-drying implements; Toilet paper; Holders therefor
    • A47K10/16Paper towels; Toilet paper; Holders therefor
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/20Chemically or biochemically modified fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes

Definitions

  • the present invention relates to a metal-containing cellulose fiber, a sanitary thin paper using the same, and an absorbent article.
  • Patent Documents 1 and 2 Coexistence of cellulosic material (cellulosic fiber) with 2,2,6,6-tetramethyl-1-piperidine-N-oxy radical (hereinafter referred to as TEMPO) and an inexpensive oxidizing agent sodium hypochlorite
  • TEMPO 2,2,6,6-tetramethyl-1-piperidine-N-oxy radical
  • an inexpensive oxidizing agent sodium hypochlorite When the treatment is performed under the condition, carboxyl groups can be efficiently introduced on the surface of the cellulosic raw material, and oxidized cellulose fibers can be obtained (Patent Documents 1 and 2).
  • the oxidized cellulose fiber has a carboxyl group or a carboxylate group localized on the surface, and is expected to be developed for various uses.
  • Patent Document 1 discloses use of TEMPO oxidized pulp as a deodorant
  • Patent Document 2 discloses use as a reinforcing material.
  • Patent Documents 1 to 2 Although the deodorizing effect and the reinforcing effect are improved, further improvement is required.
  • an object of the present invention is to provide a metal-containing cellulose fiber excellent in deodorizing effect and reinforcing effect, a sanitary thin paper and an absorbent article using the same.
  • the metal ion-containing cellulose fiber of the present invention has a carboxyl group or carboxylate group content of 0.1 to 2.0 mmol / g with respect to the absolutely dry mass of the oxidized cellulose fiber.
  • Canadian standard freeness of the metal ion-containing cellulose fiber containing ions of one or more metal elements selected from the group consisting of Ag, Au, Pt, Pd, Ni, Mn, Fe, Ti, Al, Zn and Cu Is 30 to 400 ml.
  • the Canadian standard freeness of the metal ion-containing cellulose fibers is preferably 50 to 200 ml.
  • the metal ion-containing cellulose fibers preferably have an average fiber length of 0.5 to 2.5 mm and an average fiber diameter of 10 to 40 ⁇ m.
  • the content of the metal element ions with respect to the absolute dry mass of the metal-containing cellulose fiber is preferably 10 to 60 mg / g.
  • the sanitary thin paper of the present invention contains the metal-containing cellulose fiber.
  • the sanitary thin paper of the present invention preferably contains 2 to 30% by mass of the metal-containing cellulose fiber.
  • the absorbent article of the present invention includes an absorbent core, a core wrap sheet that covers or is laminated on the absorbent core, and a liquid-permeable outer layer sheet that covers at least one surface of the core wrap sheet.
  • the core wrap sheet is the sanitary thin paper.
  • the present invention it is possible to provide a metal-containing cellulose fiber excellent in deodorizing effect and reinforcing effect, and a sanitary thin paper and an absorbent article using the same.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG. 2 is an electron microscopic image of the oxidized cellulose fiber of Example 1.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG. 2 is an electron microscopic image of the oxidized cellulose fiber of Example 1.
  • the method for producing oxidized cellulose fibers is not limited, and the cellulose raw material (cellulose fibers) such as wood pulp is selected from the group consisting of N-oxyl compounds and bromides, iodides or mixtures thereof.
  • the manufacturing method which oxidizes in water using an oxidizing agent in presence of the compound which oxidizes, or the manufacturing method etc. which oxidize by making the gas containing ozone and a cellulose raw material contact are illustrated.
  • the cellulose raw material is produced by oxidizing in water using an oxidizing agent in the presence of an N-oxyl compound and a compound selected from the group consisting of bromide, iodide or a mixture thereof.
  • the primary hydroxyl group at the C6 position of the glucopyranose ring is selectively oxidized, and an oxidized cellulose fiber having a carboxyl group (—COOH) or a carboxylate group (—COO—) on the surface can be obtained.
  • the concentration of cellulose during the reaction is not particularly limited, but is preferably 5% by mass or less.
  • the carboxyl group or carboxylate group is also referred to as an “acid group”.
  • the content of acid groups can be measured by the method disclosed in paragraph 0021 of JP-A-2008-001728. That is, 60 mL of a 0.5 to 1 mass% slurry is prepared using a precisely weighed dry cellulose sample, and the pH is adjusted to about 2.5 with a 0.1 mol / L hydrochloric acid aqueous solution. Then, 0.05 mol / L sodium hydroxide aqueous solution is dripped and electrical conductivity measurement is performed. The measurement is continued until the pH is about 11.
  • N-oxyl compound refers to a compound capable of generating a nitroxy radical.
  • any compound can be used as long as it promotes the target oxidation reaction.
  • TEMPO 2,2,6,6-tetramethylpiperidine-1-oxy radical
  • its derivatives for example, 4-hydroxy TEMPO
  • the amount of N-oxyl compound used is not particularly limited as long as it is a catalytic amount capable of oxidizing cellulose as a raw material.
  • 0.01 to 10 mmol is preferable, 0.01 to 1 mmol is more preferable, and 0.05 to 0.5 mmol is more preferable with respect to 1 g of absolutely dry cellulose. Further, it is preferably about 0.1 to 4 mmol / L with respect to the reaction system.
  • Bromide is a compound containing bromine, and examples thereof include alkali metal bromide that can be dissociated and ionized in water.
  • an iodide is a compound containing iodine, and examples thereof include alkali metal iodide.
  • the amount of bromide or iodide used can be selected as long as the oxidation reaction can be promoted.
  • the total amount of bromide and iodide is, for example, preferably 0.1 to 100 mmol, more preferably 0.1 to 10 mmol, and further preferably 0.5 to 5 mmol with respect to 1 g of absolutely dry cellulose.
  • oxidizing agent known ones can be used, and for example, halogen, hypohalous acid, halous acid, perhalogen acid or salts thereof, halogen oxide, peroxide and the like can be used.
  • sodium hypochlorite is preferable because it is inexpensive and has a low environmental impact.
  • the appropriate amount of the oxidizing agent used is, for example, preferably 0.5 to 500 mmol, more preferably 0.5 to 50 mmol, still more preferably 1 to 25 mmol, and most preferably 3 to 10 mmol with respect to 1 g of absolutely dry cellulose. . Further, for example, 1 to 40 mol is preferable with respect to 1 mol of the N-oxyl compound.
  • the reaction temperature is preferably 4 to 40 ° C., and may be room temperature of about 15 to 30 ° C.
  • a carboxyl group is generated in the cellulose, so that the pH of the reaction solution is reduced.
  • an alkaline solution such as an aqueous sodium hydroxide solution is added to maintain the pH of the reaction solution at about 8 to 12, preferably about 10 to 11.
  • the reaction medium is preferably water because it is easy to handle and hardly causes side reactions.
  • the reaction time in the oxidation reaction can be appropriately set according to the progress of oxidation, and is usually 0.5 to 6 hours, for example, about 0.5 to 4 hours.
  • the oxidation reaction may be carried out in two stages. For example, by oxidizing the oxidized cellulose obtained by filtration after the completion of the first-stage reaction again under the same or different reaction conditions, the efficiency is not affected by the reaction inhibition by the salt generated as a by-product in the first-stage reaction. Can be oxidized well.
  • a cellulose chain will decompose
  • the ozone concentration in the gas containing ozone is preferably 50 to 250 g / m 3, and more preferably 50 to 220 g / m 3.
  • the amount of ozone added to the cellulose raw material is preferably 0.1 to 30 parts by mass, and more preferably 5 to 30 parts by mass, when the solid content of the cellulose raw material is 100 parts by mass.
  • the ozone treatment temperature is preferably 0 to 50 ° C., and more preferably 20 to 50 ° C.
  • the ozone treatment time is not particularly limited, but is about 1 to 360 minutes, and preferably about 30 to 360 minutes. When the conditions for the ozone treatment are within these ranges, the cellulose can be prevented from being excessively oxidized and decomposed, and the yield of oxidized cellulose is improved.
  • an additional oxidation treatment may be performed using an oxidizing agent.
  • the oxidizing agent used for the additional oxidation treatment is not particularly limited, and examples thereof include chlorine compounds such as chlorine dioxide and sodium chlorite, oxygen, hydrogen peroxide, persulfuric acid, and peracetic acid. For example, these oxidizing agents can be dissolved in a polar organic solvent such as water or alcohol to prepare an oxidizing agent solution, and a cellulose raw material can be immersed in the solution for additional oxidation treatment.
  • the amount of carboxyl groups in the oxidized cellulose can be adjusted by controlling the reaction conditions such as the amount of the oxidant added and the reaction time.
  • the fiber length and the fiber diameter can be determined from an electron microscope image or an atomic force microscope image of the cellulose fiber.
  • Canadian standard freeness can be measured based on the Canadian standard freeness measurement method (JIS P 8121: 2012).
  • the amount of carboxyl groups or carboxylate groups relative to the absolutely dry mass of the oxidized cellulose fiber is 0.1 to 2.0 mmol / g.
  • the amount of acid groups is less than 0.1 mmol / g, the amount of metal ions described below existing on the surface of the cellulose fiber is not sufficient, and the deodorizing function is poor.
  • the amount of acid groups exceeds 2.0 mmol / g, the drainage during paper making using oxidized cellulose fibers deteriorates and the dehydration load increases.
  • the metal ion-containing cellulose fiber of the present invention is composed of one or more metal elements selected from the group consisting of Ag, Au, Pt, Pd, Ni, Mn, Fe, Ti, Al, Zn and Cu with respect to the oxidized cellulose fiber.
  • the Canadian standard freeness (CSF) of the metal ion-containing cellulose fiber is 30 to 400 ml.
  • the lower limit of the total content of ions of the above metal elements relative to the metal-containing cellulose fiber is preferably 10 mg / g.
  • the total content of ions of the above metal elements relative to the metal-containing cellulose fiber is preferably 10 to 60 mg / g.
  • the total content of ions of the metal elements is less than 10 mg / g, the amount of metal ions described below existing on the surface of the cellulose fiber is not sufficient, and the deodorizing function may be inferior. If the total content of metal element ions exceeds 60 mg / g, the cost may increase.
  • the freeness (CSF) of the metal ion-containing cellulose fiber is 30 to 400 ml.
  • CSF freeness
  • the surface area is increased at the nanofiber portion, and the deodorizing effect and the antibacterial effect can be enhanced.
  • the deodorizing effect in a wet state is improved.
  • the fiber is completely made into nanofibers, the fiber is completely disaggregated, and the yield decreases when paper is made by blending with pulp. Deodorizing effect is reduced.
  • nanofibration refers to making a fiber obtained by defibrating metal ion-containing cellulose fibers to a fiber diameter of 100 nm or less.
  • the degree of nanofiber formation is reflected in the freeness (CSF). That is, when the freeness (CSF) of the metal ion-containing cellulose fiber is less than 30 ml, the nano-fiber is too much, the deodorizing effect is reduced due to the decrease in yield to the sheet, and the freeness (CSF) exceeds 400 ml. In addition, the deodorizing effect is reduced due to insufficient nanofiber formation. Thus, by setting the freeness (CSF) of the metal ion-containing cellulose fiber to 30 to 400 ml, the deodorizing effect and the antibacterial effect are improved, and in particular, the deodorizing effect in a wet state is improved.
  • the freeness (CSF) of the metal ion-containing cellulose fiber is 50 to 200 ml, the deodorizing effect and the antibacterial effect are improved, and in particular, the deodorizing effect in a wet state is improved.
  • the freeness of the metal ion-containing cellulose fibers can be adjusted by adding metal ions to the oxidized cellulose fibers subjected to the beating treatment, or by applying beating treatment to the cellulose fibers containing the metal ions.
  • the average fiber length of the metal ion-containing cellulose fiber is 0.5 to 2.5 mm and the average fiber diameter is 10 to 40 ⁇ m, it can be neatly dispersed when mixed with other components (general pulp, etc.) and cellulose It is preferable because properties such as a high specific surface area derived from fibers can be obtained.
  • the average fiber length and the average fiber diameter are obtained by separating 0.1 g of metal ion-containing cellulose fibers and calculating the length weighted average fiber length and the length weighted average fiber diameter using a fiber tester manufactured by L & W.
  • the metal ion-containing cellulose fiber can be obtained by bringing a metal compound aqueous solution into contact with oxidized cellulose fiber having a carboxyl group or a carboxylate group on the surface.
  • the metal ions derived from the metal compound form an ionic bond or coordinate with the carboxylate group by bringing the aqueous solution containing the oxidized metal fiber and the above metal compound into contact.
  • the metal compound aqueous solution is an aqueous solution of a metal salt.
  • metal salts include complexes (complex ions), halides, nitrates, sulfates, and acetates.
  • the concentration of the aqueous metal compound solution is not particularly limited, but is preferably 10 to 80 parts by mass, more preferably 30 to 60 parts by mass with respect to 100 parts by mass of the cellulose fibers.
  • the time for contacting the metal compound may be appropriately adjusted.
  • the temperature at the time of contact is not particularly limited, but 20 to 40 ° C. is preferable.
  • the pH of the liquid at the time of contacting is not particularly limited. However, when the pH is low, it is difficult for metal ions to bind to the carboxyl group, so 7 to 13 is preferable, and pH 8 to 12 is particularly preferable.
  • a method for producing a metal ion-containing cellulose fiber is exemplified below.
  • Canadian standard freeness, average fiber diameter, average fiber of cellulose fibers containing metal ions after adding metal ions to oxidized cellulose fibers having a carboxyl group or carboxylate group content of 0.1 to 2.0 mmol / g Adjust the length to the above range.
  • Metal ions are added to oxidized cellulose fibers having a carboxyl group or carboxylate group amount of 0.1 to 2.0 mmol / g, adjusted for Canadian standard freeness, average fiber diameter, and average fiber length.
  • the residual amount of metal ions can be kept low, and in the manufacturing method of 2), metal ions can be added efficiently.
  • the oxidized cellulose fiber contains metal ions can be confirmed by a scanning electron microscope image and ICP emission analysis of the extract with a strong acid. That is, the presence of metal ions cannot be confirmed in the scanning electron microscope image, while it can be confirmed that the metal ions are contained in the ICP emission analysis.
  • the metal particles can be confirmed by a scanning electron microscope image, so the presence or absence of metal ions can be determined.
  • the presence or absence of metal ions can also be determined by scanning electron microscope images and element mapping. That is, metal ions cannot be confirmed in a scanning electron microscope image, but the presence of metal ions can be confirmed by elemental mapping.
  • the sanitary thin paper of the present invention contains the metal-containing cellulose fibers described above.
  • the sanitary thin paper of the present invention preferably contains 2 to 30% by mass of the above metal-containing cellulose fiber.
  • CSF freeness
  • the proportion of the metal ion-containing cellulose fibers in the sanitary thin paper is less than 2% by mass, the deodorizing function may be lowered. If the ratio of the metal ion-containing cellulose fiber exceeds 30% by mass, the cost may increase.
  • the sanitary thin paper according to the embodiment of the present invention can be manufactured by making a papermaking raw material containing cellulose fibers.
  • a papermaking raw material other than the cellulose fiber for example, virgin pulp such as softwood pulp (NBKP) or hardwood pulp (LBKP), or used paper pulp regenerated from used paper can be used. These pulps are appropriately blended in predetermined types and blending ratios according to the required quality of sanitary paper.
  • Various chemicals may be added (internally added) to the papermaking raw material for the required quality and stable operation. These chemicals include softeners, bulking agents, dyes, dispersants, wet paper strength enhancers, and drying agents. Examples thereof include paper strength agents, drainage improvers, pitch control agents, yield improvers, and the like.
  • the basis weight of the obtained sanitary thin paper can be set to 7 to 40 g / m 2 , for example. Further, as the strength of the sanitary thin paper, the GMT value ⁇ (DMD ⁇ DCD) 1/2 ⁇ can be set to 60 to 420 (N / m). DMD and DCD are the tensile strengths in the MD direction and CD direction when drying sanitary thin paper, respectively, and are measured according to JIS P8113. However, the sample width at the time of measurement is 25 mm, and the unit of DMD and DCD is “N / m”.
  • the sanitary paper according to the embodiment of the present invention can be manufactured by a known papermaking method.
  • the metal ion-containing cellulose fiber is defibrated (beaten) to a freeness (CSF) of 30 to 400 ml.
  • CSF freeness
  • the metal ions may be supported.
  • the freeness tends to increase, so the freeness of oxidized cellulose fibers before containing metal ions is lower than 30 to 400 ml. What is necessary is just to set so that the freeness may fall in the range of 30-400 ml by adjusting to a predetermined value and containing a metal ion.
  • a papermaking raw material obtained by appropriately mixing the beaten metal ion-containing cellulose fibers and pulp is supplied from a raw material tank, and further diluted with white water to prepare a paper stock.
  • This debris is degassed for screening and sent to the stock inlet with a fan pump.
  • the stock inlet supplies paper with a proper concentration, speed, and angle over the entire wire width of the paper machine, with a uniform, floc-free (small lump), and well-dispersed fiber so as not to cause flow streaks.
  • As the stock inlet there are a head box, a pressurization type, a hydraulic type, etc. which are installed in a high place with the atmosphere open, and any of them may be adopted.
  • a stock is jetted from the stock inlet between the wire and the felt to form a sheet (web, wet paper) on the felt.
  • the web formed between the wire and the felt is closely transferred to the Yankee dryer with a pressure roll.
  • the web is dried by a Yankee dryer and a Yankee dryer hood, peeled off from the Yankee dryer while being creped by a creping doctor, and wound on a reel via a reel drum.
  • a Yankee dryer is a drum made of cast iron or cast steel for drying a web, and its outer diameter is generally 2.4 to 6 m.
  • creping is a method in which a paper is mechanically compressed in the longitudinal direction (machine traveling direction) to form a wavy wrinkle called crepe, and the bulk (feeling of bulk), softness, water absorption on sanitary paper. Properties, surface smoothness, aesthetics (crepe shape) and the like. Then, a crepe is formed by the creping doctor due to the speed difference between the Yankee dryer and the reel (reel speed ⁇ yankee dryer speed). Although the crepe characteristics depend on the speed difference, if the basis weight of the base paper on the Yankee dryer is 7 to 40 g / m 2 , the basis weight on the reel is approximately 9 to 50 g / m 2 . It becomes larger than the above basis weight.
  • the quality of the crepe and the operability of the creping are substantially determined by the crepe rate.
  • the crepe rate is preferably in the range of 10 to 50%.
  • FIG. 1 is an external view of an absorbent article (pants-type paper diaper) 200 according to the first embodiment of the present invention.
  • the absorbent article 200 includes a water absorbent article main body 20 having water absorption, and an exterior body 100 that holds the water absorbent article main body 20 inside and forms a pants shape.
  • the exterior body 100 can be made of a nonwoven fabric made of a thermoplastic resin such as polypropylene, polyester, or polyethylene and manufactured by a spunbond or air-through manufacturing method.
  • the exterior body 100 is preferably configured by laminating two or more sheets having at least an exterior sheet and an interior sheet.
  • the water-absorbent article main body 20 is elongated, the width near the center in the longitudinal direction is slightly narrower, and is disposed between the crotch of the absorbent article 200.
  • FIG. 2 is a cross-sectional view of the water absorbent article main body 20 taken along the line AA in FIG.
  • the water absorbent article main body 20 includes a liquid-permeable hydrophilic surface sheet (top sheet, outer layer sheet) 2 that forms a body contact side surface (upper surface in FIG. 2), a liquid-impermeable back sheet 6, and a hydrophilic It arrange
  • the absorbent cores 4a and 4b are covered with core wrap sheets 10a and 10b, respectively.
  • both side portions of the water absorbent article main body portion 20 stand up as a three-dimensional gather 30 composed of a water-repellent side sheet to prevent side leakage of urine and the like.
  • the absorbent cores 4a and 4b respectively covered with the core wrap sheets 10a and 10b are laminated so that the absorbent core 4a faces the hydrophilic surface sheet 2 side, and the width of the absorbent core 4a.
  • the width of the absorbent core 4b is about 1 ⁇ 2 compared to FIG.
  • One absorbent core and one core wrap sheet for wrapping the absorbent core may be provided for each water absorbent article main body 20.
  • the hydrophilic surface sheet 2 is made of a non-woven fabric and is in contact with the wearer's skin, so it is preferable that the hydrophilic surface sheet 2 be formed of a material that is soft to the touch and does not irritate the skin.
  • an air-through nonwoven fabric, a point bond nonwoven fabric, a spunbond nonwoven fabric, a spunlace nonwoven fabric, or the like made of a synthetic fiber such as polypropylene, polyethylene, or polyester can be used.
  • an air-through nonwoven fabric with a small liquid return amount is suitable.
  • the back sheet 6 only needs to be formed from a liquid-impermeable material having a waterproof property so that liquid or the like held in the water-absorbent article main body 20 does not leak into the underwear, such as a breathable polyethylene film.
  • a liquid-impermeable material having a waterproof property so that liquid or the like held in the water-absorbent article main body 20 does not leak into the underwear, such as a breathable polyethylene film.
  • a thin plastic film such as a breathable polyethylene film.
  • a moisture-permeable film may be used as the back sheet 6 to reduce stuffiness.
  • the absorbent cores 4a and 4b can be formed by mixing hydrophilic fibers (fluff) such as wood fluff pulp and particles of super absorbent polymer (SAP). Moreover, you may use what is called a SAP sheet which made SAP a sheet form. As the hydrophilic fiber, synthetic fiber, polymer fiber, or the like may be used instead of the wood pulp fluff. Moreover, you may mix
  • the present invention is not limited to the above-described embodiments, and extends to various modifications and equivalents included in the spirit and scope of the present invention.
  • the metal ion-containing cellulose fibers are made on sanitary thin paper, but other various papers (such as cardboard, copy paper, printing paper, etc.) may be made, and the type of paper is not limited.
  • an absorptive article is not restricted to the above-mentioned underpants type paper diaper, for example, it is a long and slender piece like a sanitary napkin, and the type which hits a local part may be sufficient.
  • the liquid-permeable outer layer sheet 2 covers only one surface (body contact side surface) of the absorbent core 4a. However, both surfaces of the absorbent core are covered with the liquid-permeable outer layer sheet, and the absorbent article. It may be possible to absorb urine and the like from both the front and back surfaces.
  • the core wrap sheet is not limited to the one covering the absorbent core, and may be used by being laminated on the surface of the absorbent core. When a plurality of absorbent cores are stacked, a core wrap sheet may be interposed between the absorbent cores.
  • Example 1 500 g of cellulose raw material (bleached unbeaten kraft pulp derived from coniferous tree) (absolutely dried) was added to 500 ml of an aqueous solution in which 780 mg of TEMPO (Sigma Aldrich) and 75.5 g of sodium bromide were dissolved, and stirred until the pulp was uniformly dispersed. .
  • An aqueous sodium hypochlorite solution was added to the reaction system to 6.0 mmol / g to initiate the oxidation reaction. During the reaction, the pH in the system was lowered, but a 3M sodium hydroxide aqueous solution was sequentially added to adjust the pH to 10.
  • the reaction was terminated when sodium hypochlorite was consumed and the pH in the system no longer changed.
  • the mixture after the reaction was filtered through a glass filter, and the pulp was separated and washed with water to obtain an oxidized cellulose fiber having an acid value of 1.6 mmol / g.
  • the oxidized cellulose fiber obtained above was beaten using a Niagara beater until the Canadian standard freeness (CSF) reached 230 ml.
  • the fiber length / fiber diameter of the oxidized cellulose fiber after the beating treatment was 0.80 mm / 20 ⁇ m.
  • FIG. 3 when the oxidized cellulose fiber after beating of Example 1 was observed with a transmission electron microscope, a part of the cellulose fiber was converted to a nanofiber, and the fine nanofiber was in the region indicated by the arrow. It was confirmed that the surface area was increased by spreading (spreading).
  • ⁇ Measuring method of average fiber length and average fiber diameter The metal ion containing cellulose fiber 0.1g was disaggregated, and length weighted average fiber length and length weighted average fiber diameter were computed using Fiber Tester by L & W.
  • the carboxyl group content of the obtained oxidized pulp was 1.64 mmol / g.
  • the reaction was terminated when sodium hypochlorite was consumed and the pH in the system no longer changed.
  • the mixture after the reaction was filtered through a glass filter, and the pulp was separated and washed with water to obtain an oxidized cellulose fiber having an acid value of 1.6 mmol / g.
  • the oxidized cellulose fiber obtained above was beaten using a Niagara beater until the Canadian standard freeness (CSF) reached 230 ml.
  • the fiber length / fiber diameter of the oxidized cellulose fiber after the beating treatment was 0.8 mm / 20 ⁇ m.
  • Example 2 The oxidized cellulose fiber (freezing degree 230 ml) after the beating treatment of Reference Example 1 is adjusted to pH 9, 1.6 mmol of metal salt (CuCl2) aqueous solution per 1 g of oxidized cellulose fiber is added and stirred, and Cu ions are contained in the oxidized cellulose fiber. Thereafter, washing was performed to remove unreacted metal salts.
  • the metal ion content of the obtained metal ion-containing cellulose fiber was 32 mg per 1 g of the metal ion-containing cellulose fiber.
  • Example 3 Metal ion-containing cellulose fibers were obtained in the same manner as in Example 2 except that CuCl2 was changed to an AgNO3 aqueous solution, pH 7, as the metal salt aqueous solution.
  • the metal ion content of the obtained metal ion-containing cellulose fiber was 20 mg per 1 g of the metal ion-containing cellulose fiber.
  • Example 4 The oxidized cellulose fiber (before beating treatment) obtained in Reference Example 1 was beaten using a Niagara beater until the Canadian standard freeness (CSF) reached 35 ml.
  • the fiber length / fiber diameter of the oxidized cellulose fiber after the beating treatment was 0.6 mm / 18 ⁇ m.
  • the oxidized cellulose fiber is adjusted to pH 9, 1.6 mmol of metal salt (CuCl2) aqueous solution per 1 g of oxidized cellulose fiber is added and stirred to contain Cu ions in the oxidized cellulose fiber, and then washed to remove unreacted metal salt. Removed.
  • the metal ion content of the obtained metal ion-containing cellulose fiber was 33 mg per 1 g of the metal ion-containing cellulose fiber.
  • Example 5 The oxidized cellulose fiber (before beating treatment) obtained in Reference Example 1 was beaten using a Niagara beater until the Canadian standard freeness (CSF) reached 380 ml. The fiber length / fiber diameter of the oxidized cellulose fiber after the beating treatment was 2.2 mm / 25 ⁇ m.
  • the oxidized cellulose fiber obtained above was adjusted to pH 9, 1.6 mmol of metal salt (CuCl2) aqueous solution per gram of oxidized cellulose fiber was added and stirred to contain Cu ions in the oxidized cellulose fiber, washed and unreacted. The metal salt was removed.
  • the metal ion content of the obtained metal ion-containing cellulose fiber was 30 mg per 1 g of the metal ion-containing cellulose fiber.
  • Example 6 The oxidized cellulose fiber (freezing degree 230 ml) after the beating treatment of Reference Example 1 is adjusted to pH 9, 1.6 mmol of metal salt (CuCl2) aqueous solution per 1 g of oxidized cellulose fiber is added and stirred, and Cu ions are contained in the oxidized cellulose fiber. Thereafter, washing was performed to remove unreacted metal salts.
  • the metal ion content of the obtained metal ion-containing cellulose fiber was 50 mg per 1 g of the metal ion-containing cellulose fiber.
  • Example 7 The oxidized cellulose fiber (freeness 230 ml) after the beating treatment of Reference Example 1 is adjusted to pH 9, and 0.5 mmol of a metal salt (CuCl2) aqueous solution is added per 1 g of oxidized cellulose fiber and stirred to contain Cu ions in the oxidized cellulose fiber. Thereafter, washing was performed to remove unreacted metal salts.
  • the metal ion content of the obtained metal ion-containing cellulose fiber was 15 mg per 1 g of the metal ion-containing cellulose fiber.
  • Example 2 The oxidized cellulose fiber (before beating treatment) obtained in Reference Example 1 was beaten using a Niagara beater until the Canadian standard freeness (CSF) reached 50 ml. The fiber length / fiber diameter of the oxidized cellulose fiber after the beating treatment was 0.7 mm / 18 ⁇ m.
  • the oxidized cellulose fiber obtained above was adjusted to pH 9, 1.6 mmol of metal salt (CuCl2) aqueous solution per gram of oxidized cellulose fiber was added and stirred to contain Cu ions in the oxidized cellulose fiber, washed and unreacted. The metal salt was removed.
  • the metal ion content of the obtained metal ion-containing cellulose fiber was 30 mg per 1 g of the metal ion-containing cellulose fiber.
  • Example 3 The oxidized cellulose fiber (before beating treatment) obtained in Reference Example 1 was beaten using a Niagara beater until the Canadian standard freeness (CSF) reached 180 ml.
  • the fiber length / fiber diameter of the oxidized cellulose fiber after the beating treatment was 0.8 mm / 20 ⁇ m.
  • the oxidized cellulose fiber obtained above was adjusted to pH 9, 1.6 mmol of metal salt (CuCl2) aqueous solution per gram of oxidized cellulose fiber was added and stirred to contain Cu ions in the oxidized cellulose fiber, washed and unreacted. The metal salt was removed.
  • the metal ion content of the obtained metal ion-containing cellulose fiber was 30 mg per 1 g of the metal ion-containing cellulose fiber.
  • the reaction was terminated when sodium hypochlorite was consumed and the pH in the system no longer changed.
  • the mixture after the reaction was filtered through a glass filter, and the pulp was separated and washed with water to obtain an oxidized cellulose fiber having an acid value of 1.6 mmol / g.
  • the oxidized cellulose fiber obtained above was beaten using a Niagara beater until the Canadian standard freeness (CSF) reached 230 ml.
  • the fiber length / fiber diameter of the oxidized cellulose fiber after the beating treatment was 0.8 mm / 20 ⁇ m.
  • the oxidized cellulose fiber obtained above was adjusted to pH 9, 1.6 mmol of metal salt (CuCl2) aqueous solution per gram of oxidized cellulose fiber was added and stirred to contain Cu ions, and then boron hydride was added. A sodium aqueous solution was added and reduced to produce particles.
  • the unreacted metal salt was removed by washing to obtain a metal particle-supporting cellulose fiber having a metal particle content of 30 mg / g.
  • the presence of metal particles was confirmed with a scanning electron microscope image.
  • the metal particle carrying amount is a value obtained by the same measurement as the above-mentioned metal ion content.
  • Oxidized cellulose fiber, metal ion-containing cellulose fiber, metal particle-supporting cellulose fiber, and kraft pulp are each inserted into 10g (absolutely dry) cocked gas bag with saturated aqueous ammonia solution (2mL ammonia water: 2mL water) with a 1.2mL syringe. Furthermore, 1.5 L of air was filled with an air pump. The saturated gas was collected from the gas phase in a sealed container containing an aqueous ammonia solution. The ammonia gas concentration in the gas bag after filling with saturated gas and air was 80 to 90 ppm. Next, the suction tube and the rubber tube were connected to the detection tube, and the rubber tube was connected to the gas bag. And the ammonia gas concentration in the gas bag 50 minutes after filling with air was measured.
  • Deodorizing effect is very good ⁇ : Deodorizing effect is good ⁇ : Deodorizing effect is slightly ⁇ : Deodorizing effect is scarce
  • Example A Production of metal ion-containing cellulose fiber> After dispersing 5.00 g dry softwood bleached kraft pulp, 39 mg 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and 514 mg sodium bromide in 500 ml water, The reaction was started by adding 15 mass% sodium hypochlorite aqueous solution so that the amount of sodium hypochlorite was 5.5 mmol with respect to 1 g of pulp (absolutely dry). During the reaction, a 3M NaOH aqueous solution was added dropwise to maintain the pH at 10.0.
  • TEMPO 2,2,6,6-tetramethylpiperidine-1-oxyl
  • the reaction product is filtered through a glass filter, washed with a sufficient amount of water and filtered twice to impregnate water with a solid content of 15% by mass.
  • TEMPO oxidized cellulose fibers were obtained. This TEMPO oxidized cellulose fiber has a carboxyl group or a carboxylate group on its surface. Table 1 shows the acid group amount (per gram of oxidized cellulose fiber) of the TEMPO oxidized cellulose fiber before containing metal ions.
  • the obtained TEMPO oxidized cellulose fibers (which do not contain metal ions at this time) are defibrated (beaten), and the pH and concentration shown in Table 1 are obtained with respect to the obtained TEMPO oxidized cellulose fibers.
  • An aqueous metal salt solution (per gram of TEMPO-oxidized cellulose fiber) was added and stirred. As a result, metal ions were supported on the TEMPO oxidized cellulose fiber.
  • Table 1 shows the content of metal ions with respect to the TEMPO oxidized cellulose fiber.
  • Example B Production of core wrap sheet> Next, the metal ion-containing cellulose fiber after beating and pulp (NBKP and LBKP) are blended at the blending ratio shown in Table 2 to prepare a pulp slurry, papermaking, and core wrap of each example and comparative example A sheet was produced.
  • a commercially available metal (Cu and Ag) ion-carrying zeolite high-density crystallized pulp (trade name Sergaia (registered trademark)) was blended and paper-made to produce a core wrap sheet.
  • the core wrap sheet of each Example was observed with a scanning electron microscope, only paper fibers were confirmed. Further, the core wrap sheet of each example was subjected to ICP ((high frequency inductively coupled plasma) emission analysis of the extract after dissolving with strong acid, and it was confirmed that all contained metal. It turns out that the core wrap sheet
  • ICP (high frequency inductively coupled plasma) emission analysis of the extract after dissolving with strong acid
  • the obtained core wrap sheet was evaluated as follows. ⁇ Basis weight> The basis weight of the obtained core wrap sheet was measured according to JIS P 8124. ⁇ Strength> When the obtained core wrap sheet was inserted into an absorbent article processing machine to produce an absorbent article, the core wrap sheet was inspected for paper breakage and evaluated for strength. If the evaluation is ⁇ or ⁇ , there is no practical problem. A: Very good (no paper breaks during 12 hours production) ⁇ : Good (12 hours or less during 12 hours production) X: Bad (3 times or more during 12 hours production)
  • a saturated gas of an aqueous ammonia solution (2 mL of ammonia water: 2 mL of water) was inserted into a gas bag with a cock containing four test pieces of 5 cm ⁇ 5 cm with a 1.2 mL syringe, and 1.5 L of air was filled with an air pump.
  • the saturated gas was collected from the gas phase in a sealed container containing an aqueous ammonia solution.
  • the ammonia gas concentration in the gas bag after filling with saturated gas and air was 80 to 90 ppm.
  • the suction tube and the rubber tube were connected to the detection tube, and the rubber tube was connected to the gas bag. And the ammonia gas concentration in the gas bag 50 minutes after filling with air was measured.
  • Very good residual concentration is 1/5 or less of the initial value
  • Good Residual concentration exceeds 1/5 of the initial value and 1/4 or less
  • Normal Residual concentration exceeds 1/4 of the initial value and 1/3 or less
  • Poor residual concentration exceeded 1/3 of the initial value.
  • Purified water was added dropwise at a rate of 5 g to 1 g of the test piece, and then evaluated in the same manner to evaluate the deodorizing effect in a wet state. If the evaluation is ⁇ or ⁇ , there is no practical problem.
  • Comparative Examples 12 and 14 in which the freeness of the metal ion-containing cellulose fibers exceeded 200 ml, the deodorization in a wet state was coupled with the small proportion (10% by mass) of the metal ion-containing cellulose fibers. The function was significantly inferior to each example.
  • Comparative Example 14 the metal ion-containing cellulose fiber was used without beating.
  • Comparative Example 13 in which paper was made by blending metal-supported zeolite high-density crystallized pulp (trade name Sergaia (registered trademark)), the fall of fine powder such as paper powder was remarkable, and the strength was lowered. Further, the zeolite adsorbed moisture in a wet state, and the deodorizing function was significantly inferior to each example.

Abstract

[Problem] To provide an oxidized cellulose fiber having an adequate deodorizing function, a sanitary thin paper using same, and an absorbent article. [Solution] A metal-ion-containing cellulose fiber having a Canadian Standard Freeness of 30-400 ml, the metal-ion-containing cellulose fiber containing one or more metal-element ions selected from the group consisting of Ag, Au, Pt, Pd, Ni, Mn, Fe, Ti, Al, Zn, and Cu, in an oxidized cellulose fiber in which the amount of a carboxyl group or a carboxylate group is 0.1-2.0 mmol/g in relation to the absolute mass of the oxidized cellulose fiber.

Description

金属含有セルロース繊維、それを用いた衛生薄葉紙及び吸収性物品Metal-containing cellulose fiber, sanitary thin paper and absorbent article using the same
 本発明は、金属含有セルロース繊維、それを用いた衛生薄葉紙及び吸収性物品に関する。 The present invention relates to a metal-containing cellulose fiber, a sanitary thin paper using the same, and an absorbent article.
 セルロース系原料(セルロース系繊維)を2,2,6,6-テトラメチル-1-ピペリジン-N-オキシラジカル(以下、TEMPOと称する)と安価な酸化剤である次亜塩素酸ナトリウムとの共存下で処理すると、セルロース系原料の表面にカルボキシル基を効率よく導入することができ、酸化セルロース繊維を得ることができる(特許文献1、2)。
 この酸化セルロース繊維は表面にカルボキシル基又はカルボキシレート基が局在化しており、様々な用途への展開が期待されている。具体的な利用については、特許文献1にはTEMPO酸化パルプの消臭剤への利用、特許文献2には補強材としての利用が開示されている。
Coexistence of cellulosic material (cellulosic fiber) with 2,2,6,6-tetramethyl-1-piperidine-N-oxy radical (hereinafter referred to as TEMPO) and an inexpensive oxidizing agent sodium hypochlorite When the treatment is performed under the condition, carboxyl groups can be efficiently introduced on the surface of the cellulosic raw material, and oxidized cellulose fibers can be obtained (Patent Documents 1 and 2).
The oxidized cellulose fiber has a carboxyl group or a carboxylate group localized on the surface, and is expected to be developed for various uses. Regarding specific use, Patent Document 1 discloses use of TEMPO oxidized pulp as a deodorant, and Patent Document 2 discloses use as a reinforcing material.
国際公開WO2014/097929号International Publication No. WO2014 / 097929 特開2015-000935号公報Japanese Patent Laying-Open No. 2015-000935
 しかしながら、特許文献1~特許文献2のいずれの利用においても、消臭効果、補強効果の向上は見られるものの、更なる改善が求められている。 However, in any use of Patent Documents 1 to 2, although the deodorizing effect and the reinforcing effect are improved, further improvement is required.
 そこで、本発明は、消臭効果、補強効果に優れる金属含有セルロース繊維、それを用いた衛生薄葉紙及び吸収性物品を提供することを目的とする。 Therefore, an object of the present invention is to provide a metal-containing cellulose fiber excellent in deodorizing effect and reinforcing effect, a sanitary thin paper and an absorbent article using the same.
 上記課題を解決するため、本発明の金属イオン含有セルロース繊維は、酸化セルロース繊維の絶乾質量に対するカルボキシル基又はカルボキシレート基量が0.1~2.0mmol/gである酸化セルロース繊維に対し、Ag、Au、Pt、Pd、Ni、Mn、Fe、Ti、Al、Zn及びCuの群から選ばれる1種以上の金属元素のイオンを含有し、前記金属イオン含有セルロース繊維のカナダ標準濾水度が30~400mlである。 In order to solve the above-mentioned problems, the metal ion-containing cellulose fiber of the present invention has a carboxyl group or carboxylate group content of 0.1 to 2.0 mmol / g with respect to the absolutely dry mass of the oxidized cellulose fiber. Canadian standard freeness of the metal ion-containing cellulose fiber containing ions of one or more metal elements selected from the group consisting of Ag, Au, Pt, Pd, Ni, Mn, Fe, Ti, Al, Zn and Cu Is 30 to 400 ml.
 前記金属イオン含有セルロース繊維のカナダ標準濾水度が50~200mlであることが好ましい。
 前記金属イオン含有セルロース繊維の平均繊維長が0.5~2.5mm、平均繊維径が10~40μmであることが好ましい。
 前記金属含有セルロース繊維の絶乾質量に対する前記金属元素イオンの含有量が10~60mg/gであることが好ましい。
The Canadian standard freeness of the metal ion-containing cellulose fibers is preferably 50 to 200 ml.
The metal ion-containing cellulose fibers preferably have an average fiber length of 0.5 to 2.5 mm and an average fiber diameter of 10 to 40 μm.
The content of the metal element ions with respect to the absolute dry mass of the metal-containing cellulose fiber is preferably 10 to 60 mg / g.
 本発明の衛生薄葉紙は、前記金属含有セルロース繊維を含有する。
 本発明の衛生薄葉紙は、前記金属含有セルロース繊維を2~30質量%含有することが好ましい。
The sanitary thin paper of the present invention contains the metal-containing cellulose fiber.
The sanitary thin paper of the present invention preferably contains 2 to 30% by mass of the metal-containing cellulose fiber.
 本発明の吸収性物品は、吸収コアと、前記吸収コアを被覆し、又は前記吸収コアに積層されるコアラップシートと、前記コアラップシートの少なくとも一方の面を覆う液透過性の外層シートと、を有する吸収性物品であって、前記コアラップシートは、前記衛生薄葉紙である。 The absorbent article of the present invention includes an absorbent core, a core wrap sheet that covers or is laminated on the absorbent core, and a liquid-permeable outer layer sheet that covers at least one surface of the core wrap sheet. The core wrap sheet is the sanitary thin paper.
 本発明によれば、消臭効果、補強効果に優れる金属含有セルロース繊維、それを用いた衛生薄葉紙及び吸収性物品を提供することができる。 According to the present invention, it is possible to provide a metal-containing cellulose fiber excellent in deodorizing effect and reinforcing effect, and a sanitary thin paper and an absorbent article using the same.
本発明の実施形態に係る吸収性物品の外観を示す斜視図である。It is a perspective view which shows the external appearance of the absorbent article which concerns on embodiment of this invention. 図1のA-A線に沿う断面図である。FIG. 2 is a cross-sectional view taken along line AA in FIG. 実施例1の酸化セルロース繊維の電子顕微鏡像を示す図である。2 is an electron microscopic image of the oxidized cellulose fiber of Example 1. FIG.
(酸化セルロース繊維)
 本発明において、酸化セルロース繊維の製造方法は限定されるものではなく、木材パルプなどのセルロース原料(セルロース繊維)を、N-オキシル化合物と、臭化物、ヨウ化物若しくはこれらの混合物からなる群から選択される化合物との存在下で酸化剤を用いて水中で酸化する製造方法、又はオゾンを含む気体とセルロース原料とを接触させることにより酸化する製造方法などを例示することができる。
(Oxidized cellulose fiber)
In the present invention, the method for producing oxidized cellulose fibers is not limited, and the cellulose raw material (cellulose fibers) such as wood pulp is selected from the group consisting of N-oxyl compounds and bromides, iodides or mixtures thereof. The manufacturing method which oxidizes in water using an oxidizing agent in presence of the compound which oxidizes, or the manufacturing method etc. which oxidize by making the gas containing ozone and a cellulose raw material contact are illustrated.
 本発明において、セルロース原料を、N-オキシル化合物と、臭化物、ヨウ化物若しくはこれらの混合物からなる群から選択される化合物との存在下で酸化剤を用いて水中で酸化して製造すると、セルロース表面のグルコピラノース環のC6位の一級水酸基が選択的に酸化され、表面にカルボキシル基(-COOH)またはカルボキシレート基(-COO-)とを有する酸化セルロース繊維を得ることができる。反応時のセルロースの濃度は特に限定されないが、5質量%以下が好ましい。 In the present invention, the cellulose raw material is produced by oxidizing in water using an oxidizing agent in the presence of an N-oxyl compound and a compound selected from the group consisting of bromide, iodide or a mixture thereof. The primary hydroxyl group at the C6 position of the glucopyranose ring is selectively oxidized, and an oxidized cellulose fiber having a carboxyl group (—COOH) or a carboxylate group (—COO—) on the surface can be obtained. The concentration of cellulose during the reaction is not particularly limited, but is preferably 5% by mass or less.
 なお、カルボキシル基またはカルボキシレート基を合わせて「酸基」ともいう。
 酸基の含有量は、特開2008-001728号公報の段落0021に開示されている方法によって測定できる。すなわち、精秤した乾燥セルロース試料を用いて0.5~1質量%のスラリー60mLを調製し、0.1mol/Lの塩酸水溶液によってpHを約2.5とする。その後、0.05mol/Lの水酸化ナトリウム水溶液を滴下して電気伝導度測定を行う。測定はpHが約11になるまで続ける。電気伝導度の変化が緩やかな弱酸の中和段階を示すまでに消費された水酸化ナトリウム量(V)から、下式を用いて酸基量X1を求める。
 X1(mmol/g)=V(mL)×0.05/セルロースの質量(g)
The carboxyl group or carboxylate group is also referred to as an “acid group”.
The content of acid groups can be measured by the method disclosed in paragraph 0021 of JP-A-2008-001728. That is, 60 mL of a 0.5 to 1 mass% slurry is prepared using a precisely weighed dry cellulose sample, and the pH is adjusted to about 2.5 with a 0.1 mol / L hydrochloric acid aqueous solution. Then, 0.05 mol / L sodium hydroxide aqueous solution is dripped and electrical conductivity measurement is performed. The measurement is continued until the pH is about 11. From the amount (V) of sodium hydroxide consumed until the neutralization step of the weak acid, where the change in electrical conductivity shows a gradual change, the acid group amount X1 is determined using the following equation.
X1 (mmol / g) = V (mL) × 0.05 / mass of cellulose (g)
 N-オキシル化合物とは、ニトロキシラジカルを発生しうる化合物をいう。N-オキシル化合物としては、目的の酸化反応を促進する化合物であれば、いずれの化合物も使用できる。例えば、2,2,6,6-テトラメチルピペリジン-1-オキシラジカル(TEMPO)及びその誘導体(例えば4-ヒドロキシTEMPO)が挙げられる。 N-oxyl compound refers to a compound capable of generating a nitroxy radical. As the N-oxyl compound, any compound can be used as long as it promotes the target oxidation reaction. For example, 2,2,6,6-tetramethylpiperidine-1-oxy radical (TEMPO) and its derivatives (for example, 4-hydroxy TEMPO) can be mentioned.
 N-オキシル化合物の使用量は、原料となるセルロースを酸化できる触媒量であればよく、特に制限されない。例えば、絶乾1gのセルロースに対して、0.01~10mmolが好ましく、0.01~1mmolがより好ましく、0.05~0.5mmolがさらに好ましい。また、反応系に対し0.1~4mmol/L程度がよい。 The amount of N-oxyl compound used is not particularly limited as long as it is a catalytic amount capable of oxidizing cellulose as a raw material. For example, 0.01 to 10 mmol is preferable, 0.01 to 1 mmol is more preferable, and 0.05 to 0.5 mmol is more preferable with respect to 1 g of absolutely dry cellulose. Further, it is preferably about 0.1 to 4 mmol / L with respect to the reaction system.
 臭化物とは臭素を含む化合物であり、その例には、水中で解離してイオン化可能な臭化アルカリ金属が含まれる。また、ヨウ化物とはヨウ素を含む化合物であり、その例には、ヨウ化アルカリ金属が含まれる。臭化物またはヨウ化物の使用量は、酸化反応を促進できる範囲で選択できる。臭化物およびヨウ化物の合計量は、例えば、絶乾1gのセルロースに対して、0.1~100mmolが好ましく、0.1~10mmolがより好ましく、0.5~5mmolがさらに好ましい。 Bromide is a compound containing bromine, and examples thereof include alkali metal bromide that can be dissociated and ionized in water. Further, an iodide is a compound containing iodine, and examples thereof include alkali metal iodide. The amount of bromide or iodide used can be selected as long as the oxidation reaction can be promoted. The total amount of bromide and iodide is, for example, preferably 0.1 to 100 mmol, more preferably 0.1 to 10 mmol, and further preferably 0.5 to 5 mmol with respect to 1 g of absolutely dry cellulose.
 酸化剤としては、公知のものを使用でき、例えば、ハロゲン、次亜ハロゲン酸、亜ハロゲン酸、過ハロゲン酸またはそれらの塩、ハロゲン酸化物、過酸化物などを使用できる。中でも、安価で環境負荷の少ない次亜塩素酸ナトリウムは好ましい。酸化剤の適切な使用量は、例えば、絶乾1gのセルロースに対して、0.5~500mmolが好ましく、0.5~50mmolがより好ましく、1~25mmolがさらに好ましく、3~10mmolが最も好ましい。また、例えば、N-オキシル化合物1molに対して1~40molが好ましい。 As the oxidizing agent, known ones can be used, and for example, halogen, hypohalous acid, halous acid, perhalogen acid or salts thereof, halogen oxide, peroxide and the like can be used. Of these, sodium hypochlorite is preferable because it is inexpensive and has a low environmental impact. The appropriate amount of the oxidizing agent used is, for example, preferably 0.5 to 500 mmol, more preferably 0.5 to 50 mmol, still more preferably 1 to 25 mmol, and most preferably 3 to 10 mmol with respect to 1 g of absolutely dry cellulose. . Further, for example, 1 to 40 mol is preferable with respect to 1 mol of the N-oxyl compound.
 セルロースの酸化工程は、比較的温和な条件であっても反応を効率よく進行させられる。よって、反応温度は4~40℃が好ましく、また15~30℃程度の室温であってもよい。反応の進行に伴ってセルロース中にカルボキシル基が生成するため、反応液のpHの低下が認められる。酸化反応を効率よく進行させるためには、水酸化ナトリウム水溶液などのアルカリ性溶液を添加して、反応液のpHを8~12、好ましくは10~11程度に維持することが好ましい。反応媒体は、取扱い性の容易さや、副反応が生じにくいこと等から、水が好ましい。 The cellulose oxidation process allows the reaction to proceed efficiently even under relatively mild conditions. Therefore, the reaction temperature is preferably 4 to 40 ° C., and may be room temperature of about 15 to 30 ° C. As the reaction proceeds, a carboxyl group is generated in the cellulose, so that the pH of the reaction solution is reduced. In order to make the oxidation reaction proceed efficiently, an alkaline solution such as an aqueous sodium hydroxide solution is added to maintain the pH of the reaction solution at about 8 to 12, preferably about 10 to 11. The reaction medium is preferably water because it is easy to handle and hardly causes side reactions.
 酸化反応における反応時間は、酸化の進行の程度に従って適宜設定することができ、通常は0.5~6時間、例えば、0.5~4時間程度である。 The reaction time in the oxidation reaction can be appropriately set according to the progress of oxidation, and is usually 0.5 to 6 hours, for example, about 0.5 to 4 hours.
 また、酸化反応は、2段階に分けて実施してもよい。例えば、1段目の反応終了後に濾別して得られた酸化セルロースを、再度、同一または異なる反応条件で酸化させることにより、1段目の反応で副生する食塩による反応阻害を受けることなく、効率よく酸化させることができる。 Moreover, the oxidation reaction may be carried out in two stages. For example, by oxidizing the oxidized cellulose obtained by filtration after the completion of the first-stage reaction again under the same or different reaction conditions, the efficiency is not affected by the reaction inhibition by the salt generated as a by-product in the first-stage reaction. Can be oxidized well.
 また、セルロース原料をオゾンを含む気体と接触させることにより酸化セルロース繊維を製造する場合、グルコピラノース環の少なくとも2位及び6位の水酸基が酸化されると共に、セルロース鎖の分解が起こる。オゾンを含む気体中のオゾン濃度は、50~250g/m3であることが好ましく、50~220g/m3であることがより好ましい。セルロース原料に対するオゾン添加量は、セルロース原料の固形分を100質量部とした際に、0.1~30質量部であることが好ましく、5~30質量部であることがより好ましい。オゾン処理温度は、0~50℃であることが好ましく、20~50℃であることがより好ましい。オゾン処理時間は、特に限定されないが、1~360分程度であり、30~360分程度が好ましい。オゾン処理の条件がこれらの範囲内であると、セルロースが過度に酸化及び分解されることを防ぐことができ、酸化セルロースの収率が良好となる。
 オゾン処理を施した後に、酸化剤を用いて、追酸化処理を行ってもよい。追酸化処理に用いる酸化剤は、特に限定されないが、二酸化塩素、亜塩素酸ナトリウム等の塩素系化合物や、酸素、過酸化水素、過硫酸、過酢酸などが挙げられる。例えば、これらの酸化剤を水またはアルコール等の極性有機溶媒中に溶解して酸化剤溶液を作成し、溶液中にセルロース原料を浸漬させることにより追酸化処理を行うことができる。
Moreover, when manufacturing an oxidized cellulose fiber by making a cellulose raw material contact with the gas containing ozone, while the hydroxyl group of the glucopyranose ring at least 2nd-position and 6-position is oxidized, a cellulose chain will decompose | disassemble. The ozone concentration in the gas containing ozone is preferably 50 to 250 g / m 3, and more preferably 50 to 220 g / m 3. The amount of ozone added to the cellulose raw material is preferably 0.1 to 30 parts by mass, and more preferably 5 to 30 parts by mass, when the solid content of the cellulose raw material is 100 parts by mass. The ozone treatment temperature is preferably 0 to 50 ° C., and more preferably 20 to 50 ° C. The ozone treatment time is not particularly limited, but is about 1 to 360 minutes, and preferably about 30 to 360 minutes. When the conditions for the ozone treatment are within these ranges, the cellulose can be prevented from being excessively oxidized and decomposed, and the yield of oxidized cellulose is improved.
After the ozone treatment, an additional oxidation treatment may be performed using an oxidizing agent. The oxidizing agent used for the additional oxidation treatment is not particularly limited, and examples thereof include chlorine compounds such as chlorine dioxide and sodium chlorite, oxygen, hydrogen peroxide, persulfuric acid, and peracetic acid. For example, these oxidizing agents can be dissolved in a polar organic solvent such as water or alcohol to prepare an oxidizing agent solution, and a cellulose raw material can be immersed in the solution for additional oxidation treatment.
 酸化セルロースのカルボキシル基の量は、上記した酸化剤の添加量、反応時間等の反応条件をコントロールすることで調整することができる。 The amount of carboxyl groups in the oxidized cellulose can be adjusted by controlling the reaction conditions such as the amount of the oxidant added and the reaction time.
 本発明において、繊維長及び繊維径は、セルロース繊維の電子顕微鏡像または原子間力顕微鏡像から求めることができる。 In the present invention, the fiber length and the fiber diameter can be determined from an electron microscope image or an atomic force microscope image of the cellulose fiber.
 また、カナダ標準濾水度は、カナダ標準濾水度測定法(JIS P 8121:2012)に基づき測定することができる。 In addition, Canadian standard freeness can be measured based on the Canadian standard freeness measurement method (JIS P 8121: 2012).
(酸基の量)
 本発明において、酸化セルロース繊維の絶乾質量に対するカルボキシル基又はカルボキシレート基量が0.1~2.0mmol/gである。
 酸基の量が0.1mmol/g未満であると、セルロース繊維表面に存在する後述の金属イオンの量が十分でなく、消臭機能に劣る。酸基の量が2.0mmol/gを超えると、酸化セルロース繊維を用いた抄紙の際のろ水性が悪化し、脱水負荷が大きくなる。
(Amount of acid groups)
In the present invention, the amount of carboxyl groups or carboxylate groups relative to the absolutely dry mass of the oxidized cellulose fiber is 0.1 to 2.0 mmol / g.
When the amount of acid groups is less than 0.1 mmol / g, the amount of metal ions described below existing on the surface of the cellulose fiber is not sufficient, and the deodorizing function is poor. When the amount of acid groups exceeds 2.0 mmol / g, the drainage during paper making using oxidized cellulose fibers deteriorates and the dehydration load increases.
(金属イオン含有セルロース繊維)
 本発明の金属イオン含有セルロース繊維は、上記酸化セルロース繊維に対し、Ag、Au、Pt、Pd、Ni、Mn、Fe、Ti、Al、Zn及びCuの群から選ばれる1種以上の金属元素のイオンを含有し、該金属イオン含有セルロース繊維のカナダ標準濾水度(CSF)が30 ~400mlである。
 上述の金属イオンを用いることにより、抗菌機能が付与される。一方、酸化セルロース繊維の酸基のすべてに金属イオンが結合しなくても良く、残存した酸基も臭い成分であるアンモニア等を中和することができ、消臭機能が発揮される。
(Metal ion-containing cellulose fiber)
The metal ion-containing cellulose fiber of the present invention is composed of one or more metal elements selected from the group consisting of Ag, Au, Pt, Pd, Ni, Mn, Fe, Ti, Al, Zn and Cu with respect to the oxidized cellulose fiber. The Canadian standard freeness (CSF) of the metal ion-containing cellulose fiber is 30 to 400 ml.
By using the above metal ions, an antibacterial function is imparted. On the other hand, metal ions do not have to be bonded to all of the acid groups of the oxidized cellulose fiber, and the remaining acid groups can neutralize odorous components such as ammonia, thereby exhibiting a deodorizing function.
 金属含有セルロース繊維に対する上記金属元素のイオンの含有量の合計の下限は、10mg/gであることが好ましい。
 金属含有セルロース繊維に対する上記金属元素のイオンの含有量の合計が10~60mg/gであることが好ましい。金属元素のイオンの含有量の合計が10mg/g未満であると、セルロース繊維表面に存在する後述の金属イオンの量が十分でなく、消臭機能に劣ることがある。金属元素のイオンの含有量の合計が60mg/gを超えると、コストアップになることがある。
The lower limit of the total content of ions of the above metal elements relative to the metal-containing cellulose fiber is preferably 10 mg / g.
The total content of ions of the above metal elements relative to the metal-containing cellulose fiber is preferably 10 to 60 mg / g. When the total content of ions of the metal elements is less than 10 mg / g, the amount of metal ions described below existing on the surface of the cellulose fiber is not sufficient, and the deodorizing function may be inferior. If the total content of metal element ions exceeds 60 mg / g, the cost may increase.
 金属イオン含有セルロース繊維のろ水度(CSF)が30 ~400mlである。金属イオン含有セルロース繊維の一部をナノファイバー化することで、ナノファイバー化した部位では表面積が増大し、消臭効果や抗菌効果を高めることができる。特に、湿潤状態での消臭効果が向上する。一方、繊維を完全にナノファイバー化し過ぎると、繊維が完全離解し、パルプと配合して抄紙する際に歩留まりが低下したり、紙中に留まらず(残らず)、金属イオン含有セルロース繊維が有する消臭効果が低下する。ここで、ナノファイバー化とは、金属イオン含有セルロース繊維を繊維径100nm以下まで解繊した繊維にすることをいう。 The freeness (CSF) of the metal ion-containing cellulose fiber is 30 to 400 ml. By converting a part of the metal ion-containing cellulose fiber into a nanofiber, the surface area is increased at the nanofiber portion, and the deodorizing effect and the antibacterial effect can be enhanced. In particular, the deodorizing effect in a wet state is improved. On the other hand, if the fiber is completely made into nanofibers, the fiber is completely disaggregated, and the yield decreases when paper is made by blending with pulp. Deodorizing effect is reduced. Here, nanofibration refers to making a fiber obtained by defibrating metal ion-containing cellulose fibers to a fiber diameter of 100 nm or less.
 そして、ナノファイバー化の程度は、ろ水度(CSF)に反映されることがわかった。すなわち、金属イオン含有セルロース繊維のろ水度(CSF)が30ml未満であると、ナノファイバー化し過ぎてシートへの歩留まり減少により消臭効果が低下し、ろ水度(CSF)が400mlを超えると、ナノファイバー化が不十分で消臭効果が低下する。
 このように、金属イオン含有セルロース繊維のろ水度(CSF)を30~400mlとすることで、消臭効果や抗菌効果が向上し、特に、湿潤状態での消臭効果が向上する。
 金属イオン含有セルロース繊維のろ水度(CSF)を50~200mlとすると、消臭効果や抗菌効果が向上し、特に、湿潤状態での消臭効果が向上するので特に好ましい。
 金属イオン含有セルロース繊維のろ水度は、叩解処理を施した酸化セルロース繊維に金属イオンを含有させるか、又は金属イオンを含有させたセルロース繊維に叩解処理を施すことによって調整することができる。
It was also found that the degree of nanofiber formation is reflected in the freeness (CSF). That is, when the freeness (CSF) of the metal ion-containing cellulose fiber is less than 30 ml, the nano-fiber is too much, the deodorizing effect is reduced due to the decrease in yield to the sheet, and the freeness (CSF) exceeds 400 ml. In addition, the deodorizing effect is reduced due to insufficient nanofiber formation.
Thus, by setting the freeness (CSF) of the metal ion-containing cellulose fiber to 30 to 400 ml, the deodorizing effect and the antibacterial effect are improved, and in particular, the deodorizing effect in a wet state is improved.
When the freeness (CSF) of the metal ion-containing cellulose fiber is 50 to 200 ml, the deodorizing effect and the antibacterial effect are improved, and in particular, the deodorizing effect in a wet state is improved.
The freeness of the metal ion-containing cellulose fibers can be adjusted by adding metal ions to the oxidized cellulose fibers subjected to the beating treatment, or by applying beating treatment to the cellulose fibers containing the metal ions.
 又、金属イオン含有セルロース繊維の平均繊維長を0.5~2.5mm、平均繊維径を10~40μmとすると、他の成分(一般のパルプ等)と混合する時にきれいに分散でき、かつ、セルロース繊維由来の高比表面積などの特性が得られるので好ましい。
 平均繊維長、平均繊維径は、金属イオン含有セルロース繊維0.1gを離解し、L&W社製Fiber Testerを用いて長さ加重平均繊維長と、長さ加重平均繊維径を算出して求める。
Further, when the average fiber length of the metal ion-containing cellulose fiber is 0.5 to 2.5 mm and the average fiber diameter is 10 to 40 μm, it can be neatly dispersed when mixed with other components (general pulp, etc.) and cellulose It is preferable because properties such as a high specific surface area derived from fibers can be obtained.
The average fiber length and the average fiber diameter are obtained by separating 0.1 g of metal ion-containing cellulose fibers and calculating the length weighted average fiber length and the length weighted average fiber diameter using a fiber tester manufactured by L & W.
 この金属イオン含有セルロース繊維は、表面にカルボキシル基又はカルボキシレート基が存在する酸化セルロース繊維に対し、金属化合物水溶液を接触させることによって得ることができる。 The metal ion-containing cellulose fiber can be obtained by bringing a metal compound aqueous solution into contact with oxidized cellulose fiber having a carboxyl group or a carboxylate group on the surface.
 酸化セルロース繊維と上記金属の化合物を含む水溶液を接触させ、金属化合物に由来する金属イオンが、カルボキシレート基とイオン結合を形成、又は配位していると推測される。 It is presumed that the metal ions derived from the metal compound form an ionic bond or coordinate with the carboxylate group by bringing the aqueous solution containing the oxidized metal fiber and the above metal compound into contact.
 金属化合物水溶液とは、金属塩の水溶液である。金属塩の例には、錯体(錯イオン)、ハロゲン化物、硝酸塩、硫酸塩、および酢酸塩が挙げられる。 The metal compound aqueous solution is an aqueous solution of a metal salt. Examples of metal salts include complexes (complex ions), halides, nitrates, sulfates, and acetates.
 金属化合物水溶液の濃度は特に限定されないが、セルロース繊維100質量部に対して10~80質量部が好ましく、30~60質量部がより好ましい。 The concentration of the aqueous metal compound solution is not particularly limited, but is preferably 10 to 80 parts by mass, more preferably 30 to 60 parts by mass with respect to 100 parts by mass of the cellulose fibers.
 金属化合物を接触させる時間は適宜調整してよい。接触させる際の温度は特に限定されないが20~40℃が好ましい。また、接触させる際の液のpHは特に限定されないが、pHが低いと、カルボキシル基に金属イオンが結合しにくくなるため、7~13が好ましく、pH8~12が特に好ましい。 The time for contacting the metal compound may be appropriately adjusted. The temperature at the time of contact is not particularly limited, but 20 to 40 ° C. is preferable. Further, the pH of the liquid at the time of contacting is not particularly limited. However, when the pH is low, it is difficult for metal ions to bind to the carboxyl group, so 7 to 13 is preferable, and pH 8 to 12 is particularly preferable.
 本発明において、金属イオン含有セルロース繊維の製造方法を以下に例示する。1)カルボキシル基又はカルボキシレート基量が0.1 ~2.0mmol/gである酸化セルロース繊維に金属イオンを付加した後に、金属イオン含有セルロース繊のカナダ標準濾水度、平均繊維径、平均繊維長を上記範囲に調整する。2)カナダ標準濾水度、平均繊維径、平均繊維長を調整したカルボキシル基又はカルボキシレート基量が0.1 ~2.0mmol/gである酸化セルロース繊維に金属イオンを付加する。 In the present invention, a method for producing a metal ion-containing cellulose fiber is exemplified below. 1) Canadian standard freeness, average fiber diameter, average fiber of cellulose fibers containing metal ions after adding metal ions to oxidized cellulose fibers having a carboxyl group or carboxylate group content of 0.1 to 2.0 mmol / g Adjust the length to the above range. 2) Metal ions are added to oxidized cellulose fibers having a carboxyl group or carboxylate group amount of 0.1 to 2.0 mmol / g, adjusted for Canadian standard freeness, average fiber diameter, and average fiber length.
 なお、上記1)の製造方法では金属イオンの残留量を低く抑えることができ、上記2)の製造方法では効率よく金属イオンを付加することができる。 In addition, in the manufacturing method of 1), the residual amount of metal ions can be kept low, and in the manufacturing method of 2), metal ions can be added efficiently.
 酸化セルロース繊維が金属イオンを含有していることは、走査型電子顕微鏡像、及び強酸による抽出液のICP発光分析で確認できる。つまり、金属イオンは走査型電子顕微鏡像では存在を確認できず、一方でICP発光分析では金属を含有していることを確認できる。これに対し、例えば上記金属がイオンから還元されて金属粒子として存在している場合は、走査型電子顕微鏡像で金属粒子を確認することができるので、金属イオンの有無を判定できる。また、走査型電子顕微鏡像と元素マッピングによっても金属イオンの有無を判定できる。つまり、走査型電子顕微鏡像では金属イオンを確認できないが、元素マッピングをすることで金属イオンが存在することを確認できる。 The fact that the oxidized cellulose fiber contains metal ions can be confirmed by a scanning electron microscope image and ICP emission analysis of the extract with a strong acid. That is, the presence of metal ions cannot be confirmed in the scanning electron microscope image, while it can be confirmed that the metal ions are contained in the ICP emission analysis. On the other hand, for example, when the metal is reduced from ions and exists as metal particles, the metal particles can be confirmed by a scanning electron microscope image, so the presence or absence of metal ions can be determined. The presence or absence of metal ions can also be determined by scanning electron microscope images and element mapping. That is, metal ions cannot be confirmed in a scanning electron microscope image, but the presence of metal ions can be confirmed by elemental mapping.
(衛生薄葉紙)
 本発明の衛生薄葉紙は、上記した金属含有セルロース繊維を含有する。本発明の衛生薄葉紙が上記した金属含有セルロース繊維を2~30質量%含有することが好ましい。
 上記したように、金属イオン含有セルロース繊維のろ水度(CSF)を30~400mlとすることで、消臭効果や抗菌効果が向上する。このため、衛生薄葉紙中の金属イオン含有セルロース繊維の含有割合を少なくしても、消臭機能が低下しないので、高価な金属イオン含有セルロース繊維を低減してコストダウンを図ることができる。
 衛生薄葉紙中の金属イオン含有セルロース繊維の割合が2質量%未満であると、消臭機能が低下する場合がある。金属イオン含有セルロース繊維の割合が30質量%を超えるとコストアップとなる場合がある。
(Sanitary thin paper)
The sanitary thin paper of the present invention contains the metal-containing cellulose fibers described above. The sanitary thin paper of the present invention preferably contains 2 to 30% by mass of the above metal-containing cellulose fiber.
As described above, by setting the freeness (CSF) of the metal ion-containing cellulose fiber to 30 to 400 ml, the deodorizing effect and the antibacterial effect are improved. For this reason, even if it reduces the content rate of the metal ion containing cellulose fiber in sanitary thin paper, since a deodorizing function does not fall, an expensive metal ion containing cellulose fiber can be reduced and cost reduction can be aimed at.
If the proportion of the metal ion-containing cellulose fibers in the sanitary thin paper is less than 2% by mass, the deodorizing function may be lowered. If the ratio of the metal ion-containing cellulose fiber exceeds 30% by mass, the cost may increase.
 本発明の実施形態に係る衛生薄葉紙は、セルロース繊維を含む抄紙原料を抄紙して製造することができる。上記セルロース繊維以外の抄紙原料としては、例えば針葉樹パルプ(NBKP)又は広葉樹パルプ(LBKP)などのバージンパルプや、古紙から再生した古紙パルプを用いることができる。これらパルプは衛生用紙の要求品質に合わせて、適宜所定の種類及び配合割合で適宜配合される。抄紙原料は、要求品質及び操業の安定のために様々な薬品を添加(内添)してもよく、これら薬品としては、柔軟剤、嵩高剤、染料、分散剤、湿潤紙力増強剤、乾燥紙力剤、濾水向上剤、ピッチコントロール剤、歩留向上剤などが挙げられる。 The sanitary thin paper according to the embodiment of the present invention can be manufactured by making a papermaking raw material containing cellulose fibers. As a papermaking raw material other than the cellulose fiber, for example, virgin pulp such as softwood pulp (NBKP) or hardwood pulp (LBKP), or used paper pulp regenerated from used paper can be used. These pulps are appropriately blended in predetermined types and blending ratios according to the required quality of sanitary paper. Various chemicals may be added (internally added) to the papermaking raw material for the required quality and stable operation. These chemicals include softeners, bulking agents, dyes, dispersants, wet paper strength enhancers, and drying agents. Examples thereof include paper strength agents, drainage improvers, pitch control agents, yield improvers, and the like.
 得られた衛生薄葉紙の坪量を例えば7~40g/m2とすることができる。又、衛生薄葉紙の強度として、GMT値{(DMD×DCD)1/2}を60~420(N/m)とすることができる。
 DMD及びDCDは、それぞれ衛生薄葉紙の乾燥時のMD方向及びCD方向の引張り強さであり、JIS P8113に従って測定する。但し、測定時の試料幅は25mmとし、DMD及びDCDの単位は「N/m」とする。
The basis weight of the obtained sanitary thin paper can be set to 7 to 40 g / m 2 , for example. Further, as the strength of the sanitary thin paper, the GMT value {(DMD × DCD) 1/2 } can be set to 60 to 420 (N / m).
DMD and DCD are the tensile strengths in the MD direction and CD direction when drying sanitary thin paper, respectively, and are measured according to JIS P8113. However, the sample width at the time of measurement is 25 mm, and the unit of DMD and DCD is “N / m”.
 本発明の実施形態に係る衛生用紙は、公知の抄紙法により製造することができる。まず、金属イオン含有セルロース繊維をろ水度(CSF)30~400mlに解繊(叩解)する。金属イオンを含有する前の酸化セルロース繊維を叩解した後、金属イオンを担持させてもよい。後者の場合、叩解後の繊維に金属イオンを含有(担持)させると、ろ水度が高くなる傾向にあるので、金属イオンを含む前の酸化セルロース繊維のろ水度を30~400mlよりも低い所定の値に調整し、金属イオンを含有させることにより、ろ水度が30~400mlの範囲に入るように設定すれば良い。 The sanitary paper according to the embodiment of the present invention can be manufactured by a known papermaking method. First, the metal ion-containing cellulose fiber is defibrated (beaten) to a freeness (CSF) of 30 to 400 ml. After beating the oxidized cellulose fiber before containing metal ions, the metal ions may be supported. In the latter case, when metal ions are contained (supported) in the beaten fibers, the freeness tends to increase, so the freeness of oxidized cellulose fibers before containing metal ions is lower than 30 to 400 ml. What is necessary is just to set so that the freeness may fall in the range of 30-400 ml by adjusting to a predetermined value and containing a metal ion.
 そして、叩解後の金属イオン含有セルロース繊維と、パルプとを適宜混合してなる抄紙原料を原料タンクから供給し、さらに白水により希釈して紙料を調製する。この紙料を脱気スクリーニング除塵後、ファンポンプでストックインレットに送る。ストックインレットは、抄紙機のワイヤー全幅に、均一でフロック(小さな塊)がなく、流れ縞を生じないように繊維をよく分散させた紙料を、適正な濃度、速度、角度でワイヤー上に供給する。ストックインレットとしては、高所に大気開放で設置されるヘッドボックス、加圧式、ハイドローリック式などがあるがいずれを採用しても良い。そして、ストックインレットからワイヤー及びフェルトの間に紙料をジェット吐出し、フェルト上にシート(ウェブ、湿紙)を形成する。 Then, a papermaking raw material obtained by appropriately mixing the beaten metal ion-containing cellulose fibers and pulp is supplied from a raw material tank, and further diluted with white water to prepare a paper stock. This debris is degassed for screening and sent to the stock inlet with a fan pump. The stock inlet supplies paper with a proper concentration, speed, and angle over the entire wire width of the paper machine, with a uniform, floc-free (small lump), and well-dispersed fiber so as not to cause flow streaks. To do. As the stock inlet, there are a head box, a pressurization type, a hydraulic type, etc. which are installed in a high place with the atmosphere open, and any of them may be adopted. Then, a stock is jetted from the stock inlet between the wire and the felt to form a sheet (web, wet paper) on the felt.
 ワイヤー及びフェルトの間に形成されたウェブは、プレッシャーロールでヤンキードライヤーに密着転送される。次に、ウェブはヤンキードライヤー及びヤンキードライヤーフードにより乾燥され、さらにクレーピングドクターによりクレーピング処理されながらヤンキードライヤーから剥がされ、リールドラムを介してリールに巻き取られる。ヤンキードライヤーは、ウェブを乾燥させるための鋳鉄又は鋳鋼製のドラムであり、外径は一般には2.4~6mである。 The web formed between the wire and the felt is closely transferred to the Yankee dryer with a pressure roll. Next, the web is dried by a Yankee dryer and a Yankee dryer hood, peeled off from the Yankee dryer while being creped by a creping doctor, and wound on a reel via a reel drum. A Yankee dryer is a drum made of cast iron or cast steel for drying a web, and its outer diameter is generally 2.4 to 6 m.
 ここで、クレーピングは、紙を縦方向(マシン走行方向)に機械的に圧縮してクレープと称される波状の皺を形成する方法であり、衛生用紙に嵩(バルク感)、柔らかさ、吸水性、表面の滑らかさ、美観(クレープの形状)などを付与する。そして、ヤンキードライヤーとリールの速度差(リールの速度≦ヤンキードライヤーの速度)により、クレーピングドクターでクレープが形成される。クレープの特性は、上記速度差にもよるが、ヤンキードライヤー上の原紙の坪量が7~40g/m2であれば、リール上での坪量は概略9~50g/m2となり、ヤンキードライヤー上の坪量より大きくなる。
 ヤンキードライヤーとリールの速度差に基づくクレープ率は次式により定義される。
  クレープ率(%)=100×(ヤンキードライヤー速度(m/分)-リール速度(m/分))÷リール速度(m/分)
 クレープの品質やクレーピングの操業性は、クレープ率によってほぼ決まり、本発明において、クレープ率は10~50%の範囲が好適である。
Here, creping is a method in which a paper is mechanically compressed in the longitudinal direction (machine traveling direction) to form a wavy wrinkle called crepe, and the bulk (feeling of bulk), softness, water absorption on sanitary paper. Properties, surface smoothness, aesthetics (crepe shape) and the like. Then, a crepe is formed by the creping doctor due to the speed difference between the Yankee dryer and the reel (reel speed ≦ yankee dryer speed). Although the crepe characteristics depend on the speed difference, if the basis weight of the base paper on the Yankee dryer is 7 to 40 g / m 2 , the basis weight on the reel is approximately 9 to 50 g / m 2 . It becomes larger than the above basis weight.
The crepe rate based on the speed difference between the Yankee dryer and the reel is defined by the following equation.
Crepe rate (%) = 100 x (Yankee dryer speed (m / min)-reel speed (m / min)) ÷ reel speed (m / min)
The quality of the crepe and the operability of the creping are substantially determined by the crepe rate. In the present invention, the crepe rate is preferably in the range of 10 to 50%.
(吸収性物品)
 次に、本発明の実施形態に係る吸収性物品について説明する。
 図1は、本発明の第1の実施形態に係る吸収性物品(パンツ型紙おむつ)200の外観図である。吸収性物品200は、吸水性を有する吸水性物品本体部20と、吸水性物品本体部20を内部に保持してパンツ形状をなす外装体100とを備えている。
 外装体100には、ポリプロピレン、ポリエステル、ポリエチレン等の熱可塑性樹脂からなり、スパンボンドやエアースルー製法で製造された不織布を用いることができる。又、外装体100は、少なくとも外装シートと内装シートとを有する2枚以上のシートを積層して構成することが好ましい。
 吸水性物品本体部20は細長く、長手方向中央部付近がやや幅狭になっていて、吸収性物品200の股間に配置されている。
(Absorbent article)
Next, the absorbent article which concerns on embodiment of this invention is demonstrated.
FIG. 1 is an external view of an absorbent article (pants-type paper diaper) 200 according to the first embodiment of the present invention. The absorbent article 200 includes a water absorbent article main body 20 having water absorption, and an exterior body 100 that holds the water absorbent article main body 20 inside and forms a pants shape.
The exterior body 100 can be made of a nonwoven fabric made of a thermoplastic resin such as polypropylene, polyester, or polyethylene and manufactured by a spunbond or air-through manufacturing method. The exterior body 100 is preferably configured by laminating two or more sheets having at least an exterior sheet and an interior sheet.
The water-absorbent article main body 20 is elongated, the width near the center in the longitudinal direction is slightly narrower, and is disposed between the crotch of the absorbent article 200.
 図2は、図1のA-A線に沿う吸水性物品本体部20の断面図である。吸水性物品本体部20は、身体接触側表面(図2の上面)を形成する液透過性の親水性表面シート(トップシート、外層シート)2と、液不透過性のバックシート6と、親水性表面シート2とバックシート6の間に配置され、親水性繊維と高吸水性樹脂とを有する吸収コア4a、4bと、を含んで構成されている。又、各吸収コア4a、4bは、それぞれコアラップシート10a、10bで被覆されている。さらに、吸水性物品本体部20の両側部が撥水性のサイドシートからなる立体ギャザー30として立ち上がって尿等の横漏れを防止する。 FIG. 2 is a cross-sectional view of the water absorbent article main body 20 taken along the line AA in FIG. The water absorbent article main body 20 includes a liquid-permeable hydrophilic surface sheet (top sheet, outer layer sheet) 2 that forms a body contact side surface (upper surface in FIG. 2), a liquid-impermeable back sheet 6, and a hydrophilic It arrange | positions between the surface sheet 2 and the backsheet 6, and is comprised including the absorption cores 4a and 4b which have a hydrophilic fiber and highly water-absorbent resin. The absorbent cores 4a and 4b are covered with core wrap sheets 10a and 10b, respectively. Further, both side portions of the water absorbent article main body portion 20 stand up as a three-dimensional gather 30 composed of a water-repellent side sheet to prevent side leakage of urine and the like.
 なお、本実施形態では、それぞれコアラップシート10a、10bで被覆された各吸収コア4a、4bは、吸収コア4aが親水性表面シート2側を向くように積層されていて、吸収コア4aの幅に比べて吸収コア4bの幅がおよそ1/2になっている。
 1つの吸水性物品本体部20につき、吸収コアとそれを包むコアラップシートは1つでもよく、複数でもよい。
In the present embodiment, the absorbent cores 4a and 4b respectively covered with the core wrap sheets 10a and 10b are laminated so that the absorbent core 4a faces the hydrophilic surface sheet 2 side, and the width of the absorbent core 4a. The width of the absorbent core 4b is about ½ compared to FIG.
One absorbent core and one core wrap sheet for wrapping the absorbent core may be provided for each water absorbent article main body 20.
 親水性表面シート2は不織布からなり、着用者の皮膚に接するため、感触が柔らかで、皮膚に刺激を与えない材料から形成されるとよい。親水性表面シート2は、ポリプロピレン、ポリエチレン、ポリエステルなどの合成繊維による、エアースルー不織布、ポイントボンド不織布、スパンボンド不織布、スパンレース不織布などが使用できる。特に液戻り量の少ないエアースルー不織布が好適である。
 バックシート6は、吸水性物品本体部20内において保持している液体などが下着に漏れないような防水性を有する液不透過性の材料から形成されていればよく、通気性のポリエチレンフィルムなどの薄いプラスチックフィルムとすることができる。また、バックシート6として透湿性のフィルムを用い、ムレを低減してもよい。
The hydrophilic surface sheet 2 is made of a non-woven fabric and is in contact with the wearer's skin, so it is preferable that the hydrophilic surface sheet 2 be formed of a material that is soft to the touch and does not irritate the skin. As the hydrophilic surface sheet 2, an air-through nonwoven fabric, a point bond nonwoven fabric, a spunbond nonwoven fabric, a spunlace nonwoven fabric, or the like made of a synthetic fiber such as polypropylene, polyethylene, or polyester can be used. In particular, an air-through nonwoven fabric with a small liquid return amount is suitable.
The back sheet 6 only needs to be formed from a liquid-impermeable material having a waterproof property so that liquid or the like held in the water-absorbent article main body 20 does not leak into the underwear, such as a breathable polyethylene film. A thin plastic film. Moreover, a moisture-permeable film may be used as the back sheet 6 to reduce stuffiness.
 吸収コア4a、4bは、木材フラッフパルプのような親水性繊維(フラッフ)と、高吸水性樹脂(SAP)の粒子とを混合して形成することができる。また、SAPをシート状とした、いわゆるSAPシートを使用してもよい。親水性繊維としては、木材パルプフラッフの代わりに、合成繊維、ポリマー繊維などを使用してもよい。また、親水性繊維として抗菌性の繊維を配合しても良い。 The absorbent cores 4a and 4b can be formed by mixing hydrophilic fibers (fluff) such as wood fluff pulp and particles of super absorbent polymer (SAP). Moreover, you may use what is called a SAP sheet which made SAP a sheet form. As the hydrophilic fiber, synthetic fiber, polymer fiber, or the like may be used instead of the wood pulp fluff. Moreover, you may mix | blend antimicrobial fiber as a hydrophilic fiber.
 次に、コアラップシート10a、10bについて説明する。本発明の実施形態に係る吸収性物品においては、コアラップシート10a、10bに上述した本発明の衛生用紙を用いることで、消臭効果や抗菌効果が向上する。 Next, the core wrap sheets 10a and 10b will be described. In the absorbent article which concerns on embodiment of this invention, a deodorizing effect and an antimicrobial effect improve by using the sanitary paper of this invention mentioned above for the core wrap sheet | seat 10a, 10b.
 本発明は上記した実施形態に限定されず、本発明の思想と範囲に含まれる様々な変形及び均等物に及ぶことはいうまでもない。
 上記した実施形態では、金属イオン含有セルロース繊維を衛生薄葉紙に抄紙したが、他の各種紙(段ボール、コピー用紙、印刷用紙等)を抄紙してもよく、紙の種類は限定されない。
It goes without saying that the present invention is not limited to the above-described embodiments, and extends to various modifications and equivalents included in the spirit and scope of the present invention.
In the above-described embodiment, the metal ion-containing cellulose fibers are made on sanitary thin paper, but other various papers (such as cardboard, copy paper, printing paper, etc.) may be made, and the type of paper is not limited.
 吸収性物品は、上記したパンツ型紙おむつに限られず、例えば生理用ナプキンのように細長い片状であって、局部に当てるタイプであってもよい。又、上記した実施形態では、液透過性の外層シート2が吸収コア4aの片面(身体接触側表面)のみを覆ったが、吸収コアの両面を液透過性の外層シートで覆い、吸収性物品の表面と裏面の両方の面から尿等を吸収可能としてもよい。
 又、上記コアラップシートは、吸収コアを被覆するものにかぎらず、吸収コアの表面に積層して使用してもよい。又、吸収コアを複数積層する場合には、各吸収コアの間にコアラップシートを介装してもよい。
An absorptive article is not restricted to the above-mentioned underpants type paper diaper, for example, it is a long and slender piece like a sanitary napkin, and the type which hits a local part may be sufficient. In the above-described embodiment, the liquid-permeable outer layer sheet 2 covers only one surface (body contact side surface) of the absorbent core 4a. However, both surfaces of the absorbent core are covered with the liquid-permeable outer layer sheet, and the absorbent article. It may be possible to absorb urine and the like from both the front and back surfaces.
The core wrap sheet is not limited to the one covering the absorbent core, and may be used by being laminated on the surface of the absorbent core. When a plurality of absorbent cores are stacked, a core wrap sheet may be interposed between the absorbent cores.
 以下、実施例を挙げて、本発明を具体的に説明するが、本発明は勿論これらの例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
<第1実験>
[実施例1]
 セルロース原料(針葉樹由来の漂白済み未叩解クラフトパルプ)500g(絶乾)をTEMPO(Sigma Aldrich社)780mgと臭化ナトリウム75.5gを溶解した水溶液500mlに加え、パルプが均一に分散するまで撹拌した。反応系に次亜塩素酸ナトリウム水溶液を6.0mmol/gになるように添加し、酸化反応を開始した。反応中は系内のpHが低下するが、3M水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。次亜塩素酸ナトリウムを消費し、系内のpHが変化しなくなった時点で反応を終了した。反応後の混合物をガラスフィルターで濾過してパルプを分離・水洗することで酸価1.6mmol/gの酸化セルロース繊維を得た。
<First experiment>
[Example 1]
500 g of cellulose raw material (bleached unbeaten kraft pulp derived from coniferous tree) (absolutely dried) was added to 500 ml of an aqueous solution in which 780 mg of TEMPO (Sigma Aldrich) and 75.5 g of sodium bromide were dissolved, and stirred until the pulp was uniformly dispersed. . An aqueous sodium hypochlorite solution was added to the reaction system to 6.0 mmol / g to initiate the oxidation reaction. During the reaction, the pH in the system was lowered, but a 3M sodium hydroxide aqueous solution was sequentially added to adjust the pH to 10. The reaction was terminated when sodium hypochlorite was consumed and the pH in the system no longer changed. The mixture after the reaction was filtered through a glass filter, and the pulp was separated and washed with water to obtain an oxidized cellulose fiber having an acid value of 1.6 mmol / g.
 次に上記で得られた酸化セルロース繊維を、ナイアガラビーターを用いて、カナダ標準濾水度(CSF)が230mlになるまで叩解処理を行った。叩解処理を施した後の酸化セルロース繊維の繊維長/繊維径は、0.80mm/20μmであった。
 なお、図3に示すように、実施例1の叩解後の酸化セルロース繊維を透過型電子顕微鏡で観察したところ、セルロース繊維の一部がナノファイバー化され、この微細なナノファイバーが矢印の領域で分散して(広がって)、表面積が増大していることが確認された。
Next, the oxidized cellulose fiber obtained above was beaten using a Niagara beater until the Canadian standard freeness (CSF) reached 230 ml. The fiber length / fiber diameter of the oxidized cellulose fiber after the beating treatment was 0.80 mm / 20 μm.
In addition, as shown in FIG. 3, when the oxidized cellulose fiber after beating of Example 1 was observed with a transmission electron microscope, a part of the cellulose fiber was converted to a nanofiber, and the fine nanofiber was in the region indicated by the arrow. It was confirmed that the surface area was increased by spreading (spreading).
 <平均繊維長、平均繊維径の測定方法>
 金属イオン含有セルロース繊維0.1gを離解し、L&W社製Fiber Testerを用いて長さ加重平均繊維長と、長さ加重平均繊維径を算出した。
<Measuring method of average fiber length and average fiber diameter>
The metal ion containing cellulose fiber 0.1g was disaggregated, and length weighted average fiber length and length weighted average fiber diameter were computed using Fiber Tester by L & W.
 <酸化処理したパルプのカルボキシル基量の測定>
 酸化パルプのカルボキシル基量は、次の方法で測定した:
 酸化パルプの0.5質量%スラリーを60ml調製し、0.1M塩酸水溶液を加えてpH2.5とした後、0.05Nの水酸化ナトリウム水溶液を滴下してpHが11になるまで電気伝導度を測定し、電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(a)から、下式を用いて算出した:カルボキシル基量〔mmol/g酸化パルプ〕= a〔ml〕× 0.05/酸化パルプ質量〔g〕。
<Measurement of carboxyl group content of oxidized pulp>
The carboxyl group content of oxidized pulp was measured by the following method:
Prepare 60 ml of 0.5% by weight slurry of oxidized pulp, add 0.1 M hydrochloric acid aqueous solution to pH 2.5, then add 0.05 N aqueous sodium hydroxide solution dropwise until the pH is 11 Was calculated from the amount of sodium hydroxide (a) consumed in the neutralization step of the weak acid with a gradual change in electrical conductivity using the following formula: carboxyl group amount [mmol / g oxidized pulp] = a [Ml] × 0.05 / oxidized pulp mass [g].
 この測定の結果、得られた酸化パルプのカルボキシル基量は1.64mmol/gであった。 As a result of this measurement, the carboxyl group content of the obtained oxidized pulp was 1.64 mmol / g.
[参考例1]
 セルロース原料(針葉樹由来の漂白済み未叩解クラフトパルプ)500g(絶乾)をTEMPO(Sigma Aldrich社)780mgと臭化ナトリウム75.5gを溶解した水溶液500mlに加え、パルプが均一に分散するまで撹拌した。反応系に次亜塩素酸ナトリウム水溶液を6.0mmol/gになるように添加し、酸化反応を開始した。反応中は系内のpHが低下するが、3M水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。次亜塩素酸ナトリウムを消費し、系内のpHが変化しなくなった時点で反応を終了した。反応後の混合物をガラスフィルターで濾過してパルプを分離・水洗することで酸価1.6mmol/gの酸化セルロース繊維を得た。
 次に上記で得られた酸化セルロース繊維を、ナイアガラビーターを用いて、カナダ標準濾水度(CSF)が230mlになるまで叩解処理を行った。叩解処理を施した後の酸化セルロース繊維の繊維長/繊維径は、0.8mm/20μmであった。
[Reference Example 1]
500 g of cellulose raw material (bleached unbeaten kraft pulp derived from coniferous tree) (absolutely dried) was added to 500 ml of an aqueous solution in which 780 mg of TEMPO (Sigma Aldrich) and 75.5 g of sodium bromide were dissolved, and stirred until the pulp was uniformly dispersed. . An aqueous sodium hypochlorite solution was added to the reaction system to 6.0 mmol / g to initiate the oxidation reaction. During the reaction, the pH in the system was lowered, but a 3M sodium hydroxide aqueous solution was sequentially added to adjust the pH to 10. The reaction was terminated when sodium hypochlorite was consumed and the pH in the system no longer changed. The mixture after the reaction was filtered through a glass filter, and the pulp was separated and washed with water to obtain an oxidized cellulose fiber having an acid value of 1.6 mmol / g.
Next, the oxidized cellulose fiber obtained above was beaten using a Niagara beater until the Canadian standard freeness (CSF) reached 230 ml. The fiber length / fiber diameter of the oxidized cellulose fiber after the beating treatment was 0.8 mm / 20 μm.
[実施例2]
 参考例1の叩解処理後の酸化セルロース繊維(濾水度230ml)を、pH9にし、酸化セルロース繊維1g当たり1.6mmolの金属塩(CuCl2)水溶液を加えて撹拌し酸化セルロース繊維にCuイオンを含有させ後に、洗浄して未反応の金属塩を除去した。得られた金属イオン含有セルロース繊維の金属イオン含有量は金属イオン含有セルロース繊維1g当たり、32mgであった。
[Example 2]
The oxidized cellulose fiber (freezing degree 230 ml) after the beating treatment of Reference Example 1 is adjusted to pH 9, 1.6 mmol of metal salt (CuCl2) aqueous solution per 1 g of oxidized cellulose fiber is added and stirred, and Cu ions are contained in the oxidized cellulose fiber. Thereafter, washing was performed to remove unreacted metal salts. The metal ion content of the obtained metal ion-containing cellulose fiber was 32 mg per 1 g of the metal ion-containing cellulose fiber.
<金属イオン含有量の測定>
 金属イオン酸化セルロース繊維を、60℃にて絶乾とした。その後、乾燥させたこの試料0.04gを採取し、濃硝酸を10mL加えた。この抽出液を10倍希釈し、誘導結合プラズマ発行分光分析法(ICP-OES、島津製作所製:ICPE-9000)を用いて金属イオン含有量を測定した。
<Measurement of metal ion content>
The metal ion oxidized cellulose fiber was completely dried at 60 ° C. Thereafter, 0.04 g of this dried sample was collected, and 10 mL of concentrated nitric acid was added. This extract was diluted 10 times, and the metal ion content was measured using inductively coupled plasma emission spectroscopy (ICP-OES, manufactured by Shimadzu Corporation: ICPE-9000).
[実施例3]
 金属塩水溶液としてCuCl2をAgNO3水溶液、pH7に変更した以外は実施例2と同様にして金属イオン含有セルロース繊維を得た。得られた金属イオン含有セルロース繊維の金属イオン含有量は金属イオン含有セルロース繊維1g当たり、20mgであった。
[Example 3]
Metal ion-containing cellulose fibers were obtained in the same manner as in Example 2 except that CuCl2 was changed to an AgNO3 aqueous solution, pH 7, as the metal salt aqueous solution. The metal ion content of the obtained metal ion-containing cellulose fiber was 20 mg per 1 g of the metal ion-containing cellulose fiber.
[実施例4]
 参考例1で得られた酸化セルロース繊維(叩解処理前)を、ナイアガラビーターを用いて、カナダ標準濾水度(CSF)が35mlになるまで叩解処理を行った。叩解処理を施した後の酸化セルロース繊維の繊維長/繊維径は、0.6mm/18μmであった。
 この酸化セルロース繊維を、pH9にし、酸化セルロース繊維1g当たり1.6mmolの金属塩(CuCl2)水溶液を加えて撹拌し酸化セルロース繊維にCuイオンを含有させた後に、洗浄して未反応の金属塩を除去した。得られた金属イオン含有セルロース繊維の金属イオン含有量は金属イオン含有セルロース繊維1g当たり、33mgであった。
[Example 4]
The oxidized cellulose fiber (before beating treatment) obtained in Reference Example 1 was beaten using a Niagara beater until the Canadian standard freeness (CSF) reached 35 ml. The fiber length / fiber diameter of the oxidized cellulose fiber after the beating treatment was 0.6 mm / 18 μm.
The oxidized cellulose fiber is adjusted to pH 9, 1.6 mmol of metal salt (CuCl2) aqueous solution per 1 g of oxidized cellulose fiber is added and stirred to contain Cu ions in the oxidized cellulose fiber, and then washed to remove unreacted metal salt. Removed. The metal ion content of the obtained metal ion-containing cellulose fiber was 33 mg per 1 g of the metal ion-containing cellulose fiber.
[実施例5]
 参考例1で得られた酸化セルロース繊維(叩解処理前)を、ナイアガラビーターを用いて、カナダ標準濾水度(CSF)が380mlになるまで叩解処理を行った。叩解処理を施した後の酸化セルロース繊維の繊維長/繊維径は、2.2mm/25μmであった。
 上記で得られた酸化セルロース繊維を、pH9にし、酸化セルロース繊維1g当たり1.6mmolの金属塩(CuCl2)水溶液を加えて撹拌し酸化セルロース繊維にCuイオンを含有させ後に、洗浄して未反応の金属塩を除去した。得られた金属イオン含有セルロース繊維の金属イオン含有量は金属イオン含有セルロース繊維1g当たり、30mgであった。
[Example 5]
The oxidized cellulose fiber (before beating treatment) obtained in Reference Example 1 was beaten using a Niagara beater until the Canadian standard freeness (CSF) reached 380 ml. The fiber length / fiber diameter of the oxidized cellulose fiber after the beating treatment was 2.2 mm / 25 μm.
The oxidized cellulose fiber obtained above was adjusted to pH 9, 1.6 mmol of metal salt (CuCl2) aqueous solution per gram of oxidized cellulose fiber was added and stirred to contain Cu ions in the oxidized cellulose fiber, washed and unreacted. The metal salt was removed. The metal ion content of the obtained metal ion-containing cellulose fiber was 30 mg per 1 g of the metal ion-containing cellulose fiber.
[実施例6]
 参考例1の叩解処理後の酸化セルロース繊維(濾水度230ml)を、pH9にし、酸化セルロース繊維1g当たり1.6mmolの金属塩(CuCl2)水溶液を加えて撹拌し酸化セルロース繊維にCuイオンを含有させ後に、洗浄して未反応の金属塩を除去した。得られた金属イオン含有セルロース繊維の金属イオン含有量は金属イオン含有セルロース繊維1g当たり、50mgであった。
[Example 6]
The oxidized cellulose fiber (freezing degree 230 ml) after the beating treatment of Reference Example 1 is adjusted to pH 9, 1.6 mmol of metal salt (CuCl2) aqueous solution per 1 g of oxidized cellulose fiber is added and stirred, and Cu ions are contained in the oxidized cellulose fiber. Thereafter, washing was performed to remove unreacted metal salts. The metal ion content of the obtained metal ion-containing cellulose fiber was 50 mg per 1 g of the metal ion-containing cellulose fiber.
[実施例7]
 参考例1の叩解処理後の酸化セルロース繊維(濾水度230ml)を、pH9にし、酸化セルロース繊維1g当たり0.5mmolの金属塩(CuCl2)水溶液を加えて撹拌し酸化セルロース繊維にCuイオンを含有させ後に、洗浄して未反応の金属塩を除去した。得られた金属イオン含有セルロース繊維の金属イオン含有量は金属イオン含有セルロース繊維1g当たり、15mgであった。
[Example 7]
The oxidized cellulose fiber (freeness 230 ml) after the beating treatment of Reference Example 1 is adjusted to pH 9, and 0.5 mmol of a metal salt (CuCl2) aqueous solution is added per 1 g of oxidized cellulose fiber and stirred to contain Cu ions in the oxidized cellulose fiber. Thereafter, washing was performed to remove unreacted metal salts. The metal ion content of the obtained metal ion-containing cellulose fiber was 15 mg per 1 g of the metal ion-containing cellulose fiber.
[実施例2]
 参考例1で得られた酸化セルロース繊維(叩解処理前)を、ナイアガラビーターを用いて、カナダ標準濾水度(CSF)が50mlになるまで叩解処理を行った。叩解処理を施した後の酸化セルロース繊維の繊維長/繊維径は、0.7mm/18μmであった。
 上記で得られた酸化セルロース繊維を、pH9にし、酸化セルロース繊維1g当たり1.6mmolの金属塩(CuCl2)水溶液を加えて撹拌し酸化セルロース繊維にCuイオンを含有させ後に、洗浄して未反応の金属塩を除去した。得られた金属イオン含有セルロース繊維の金属イオン含有量は金属イオン含有セルロース繊維1g当たり、30mgであった。
[Example 2]
The oxidized cellulose fiber (before beating treatment) obtained in Reference Example 1 was beaten using a Niagara beater until the Canadian standard freeness (CSF) reached 50 ml. The fiber length / fiber diameter of the oxidized cellulose fiber after the beating treatment was 0.7 mm / 18 μm.
The oxidized cellulose fiber obtained above was adjusted to pH 9, 1.6 mmol of metal salt (CuCl2) aqueous solution per gram of oxidized cellulose fiber was added and stirred to contain Cu ions in the oxidized cellulose fiber, washed and unreacted. The metal salt was removed. The metal ion content of the obtained metal ion-containing cellulose fiber was 30 mg per 1 g of the metal ion-containing cellulose fiber.
[実施例3]
 参考例1で得られた酸化セルロース繊維(叩解処理前)を、ナイアガラビーターを用いて、カナダ標準濾水度(CSF)が180mlになるまで叩解処理を行った。叩解処理を施した後の酸化セルロース繊維の繊維長/繊維径は、0.8mm/20μmであった。
 上記で得られた酸化セルロース繊維を、pH9にし、酸化セルロース繊維1g当たり1.6mmolの金属塩(CuCl2)水溶液を加えて撹拌し酸化セルロース繊維にCuイオンを含有させ後に、洗浄して未反応の金属塩を除去した。得られた金属イオン含有セルロース繊維の金属イオン含有量は金属イオン含有セルロース繊維1g当たり、30mgであった。
[Example 3]
The oxidized cellulose fiber (before beating treatment) obtained in Reference Example 1 was beaten using a Niagara beater until the Canadian standard freeness (CSF) reached 180 ml. The fiber length / fiber diameter of the oxidized cellulose fiber after the beating treatment was 0.8 mm / 20 μm.
The oxidized cellulose fiber obtained above was adjusted to pH 9, 1.6 mmol of metal salt (CuCl2) aqueous solution per gram of oxidized cellulose fiber was added and stirred to contain Cu ions in the oxidized cellulose fiber, washed and unreacted. The metal salt was removed. The metal ion content of the obtained metal ion-containing cellulose fiber was 30 mg per 1 g of the metal ion-containing cellulose fiber.
[比較例1]
 針葉樹由来の漂白済み未叩解クラフトパルプを用いた。金属イオンは含有させなかった。
[Comparative Example 1]
Bleached unbeaten kraft pulp derived from conifers was used. Metal ions were not included.
[比較例2]
 参考例1で得られた酸化セルロース繊維(叩解処理前)を、ナイアガラビーターを用いて、カナダ標準濾水度(CSF)が550mlになるまで叩解処理を行った。叩解処理を施した後の酸化セルロース繊維の繊維長/繊維径は、3.0mm/29μmであった。
 この酸化セルロース繊維を、pH9にし、酸化セルロース繊維1g当たり1.6mmolの金属塩(CuCl2)水溶液を加えて撹拌し酸化セルロース繊維にCuイオンを含有させ後に、洗浄して未反応の金属塩を除去した。得られた金属イオン含有セルロース繊維の金属イオン含有量は金属イオン含有セルロース繊維1g当たり、31mgであった。
[Comparative Example 2]
The oxidized cellulose fiber (before beating treatment) obtained in Reference Example 1 was beaten using a Niagara beater until the Canadian standard freeness (CSF) reached 550 ml. The fiber length / fiber diameter of the oxidized cellulose fiber after the beating treatment was 3.0 mm / 29 μm.
This oxidized cellulose fiber is adjusted to pH 9, 1.6 mmol of metal salt (CuCl2) aqueous solution is added per gram of oxidized cellulose fiber, stirred to contain Cu ions in the oxidized cellulose fiber, and then washed to remove unreacted metal salt. did. The metal ion content of the obtained metal ion-containing cellulose fiber was 31 mg per 1 g of the metal ion-containing cellulose fiber.
[比較例3]
 セルロース原料(針葉樹由来の漂白済み未叩解クラフトパルプ)500g(絶乾)をTEMPO(Sigma Aldrich社)780mgと臭化ナトリウム75.5gを溶解した水溶液500mlに加え、パルプが均一に分散するまで撹拌した。反応系に次亜塩素酸ナトリウム水溶液を6.0mmol/gになるように添加し、酸化反応を開始した。反応中は系内のpHが低下するが、3M水酸化ナトリウム水溶液を逐次添加し、pH10に調整した。次亜塩素酸ナトリウムを消費し、系内のpHが変化しなくなった時点で反応を終了した。反応後の混合物をガラスフィルターで濾過してパルプを分離・水洗することで酸価1.6mmol/gの酸化セルロース繊維を得た。
[Comparative Example 3]
500 g of cellulose raw material (bleached unbeaten kraft pulp derived from coniferous tree) (absolutely dried) was added to 500 ml of an aqueous solution in which 780 mg of TEMPO (Sigma Aldrich) and 75.5 g of sodium bromide were dissolved, and stirred until the pulp was uniformly dispersed. . An aqueous sodium hypochlorite solution was added to the reaction system to 6.0 mmol / g to initiate the oxidation reaction. During the reaction, the pH in the system was lowered, but a 3M sodium hydroxide aqueous solution was sequentially added to adjust the pH to 10. The reaction was terminated when sodium hypochlorite was consumed and the pH in the system no longer changed. The mixture after the reaction was filtered through a glass filter, and the pulp was separated and washed with water to obtain an oxidized cellulose fiber having an acid value of 1.6 mmol / g.
 次に上記で得られた酸化セルロース繊維を、ナイアガラビーターを用いて、カナダ標準濾水度(CSF)が230mlになるまで叩解処理を行った。叩解処理を施した後の酸化セルロース繊維の繊維長/繊維径は、0.8mm/20μmであった。
 さらに、上記で得られた酸化セルロース繊維を、pH9にし、酸化セルロース繊維1g当たり1.6mmolの金属塩(CuCl2)水溶液を加えて撹拌し酸化セルロース繊維にCuイオンを含有させた後に、水素化ホウ素ナトリウム水溶液を加えて還元して粒子を生成させた。洗浄して未反応の金属塩を除去し、金属粒子が30mg/gの金属粒子担持セルロース繊維を得た。
 なお、金属粒子の存在は走査型電子顕微鏡像で確認した。また、金属粒子担持量は上述の金属イオン含有量と同様の測定で得られた値である。
Next, the oxidized cellulose fiber obtained above was beaten using a Niagara beater until the Canadian standard freeness (CSF) reached 230 ml. The fiber length / fiber diameter of the oxidized cellulose fiber after the beating treatment was 0.8 mm / 20 μm.
Further, the oxidized cellulose fiber obtained above was adjusted to pH 9, 1.6 mmol of metal salt (CuCl2) aqueous solution per gram of oxidized cellulose fiber was added and stirred to contain Cu ions, and then boron hydride was added. A sodium aqueous solution was added and reduced to produce particles. The unreacted metal salt was removed by washing to obtain a metal particle-supporting cellulose fiber having a metal particle content of 30 mg / g.
The presence of metal particles was confirmed with a scanning electron microscope image. Moreover, the metal particle carrying amount is a value obtained by the same measurement as the above-mentioned metal ion content.
<消臭効果>
 酸化セルロース繊維、金属イオン含有セルロース繊維、金属粒子担持セルロース繊維、クラフトパルプをそれぞれ10g(絶乾)コック付きガスバッグに、アンモニア水溶液(アンモニア水2mL:水2mL)の飽和ガスを1.2mL注射器で挿入し、さらにエアーポンプにて空気を1.5L充填した。上記飽和ガスは、アンモニア水溶液が入っている密閉容器の気相から採取した。飽和ガス及び空気を充填後のガスバッグ中のアンモニアガス濃度は80~90ppmであった。次に、検知管に吸引器とゴムチューブを繋ぎ、ゴムチューブをガスバッグに繋いだ。そして、空気を充填してから50分経過後のガスバッグ内のアンモニアガス濃度を測定した。
<Deodorizing effect>
Oxidized cellulose fiber, metal ion-containing cellulose fiber, metal particle-supporting cellulose fiber, and kraft pulp are each inserted into 10g (absolutely dry) cocked gas bag with saturated aqueous ammonia solution (2mL ammonia water: 2mL water) with a 1.2mL syringe. Furthermore, 1.5 L of air was filled with an air pump. The saturated gas was collected from the gas phase in a sealed container containing an aqueous ammonia solution. The ammonia gas concentration in the gas bag after filling with saturated gas and air was 80 to 90 ppm. Next, the suction tube and the rubber tube were connected to the detection tube, and the rubber tube was connected to the gas bag. And the ammonia gas concentration in the gas bag 50 minutes after filling with air was measured.
 実施例、比較例の繊維1g(水分量7%)を入れたガスバック(PVDFバック2L A-6SN 近江オドエアサービス社製)に空気1.5Lを注入後、試験片を入れていないガスバック内に注入したときの2分後のアンモニア濃度が90~100ppmとなるように濃度を調整したアンモニアガスを一定量注入し、2時間後のガスバック中の臭気を以下の基準で評価した。評価が○、◎であれば十分な消臭効果がある。なお、本試験は、湿潤状態の消臭効果を評価しており、乾燥状態より消臭し難い。特に吸収性物品等のコアラップシートは尿等によって湿潤状態となるため、湿潤状態での消臭効果が高いと有利である。 Gas bag without test piece after injecting 1.5L of air into gas bag (PVDF bag 2L, A-6SN, manufactured by Omi Odo Air Service Co., Ltd.) containing 1 g of fiber of Example and Comparative Example (water content 7%) A fixed amount of ammonia gas having a concentration adjusted so that the ammonia concentration after 2 minutes when it was injected into the tube was 90 to 100 ppm was injected, and the odor in the gas bag after 2 hours was evaluated according to the following criteria. If evaluation is (circle) and (double-circle), there exists sufficient deodorizing effect. In addition, this test is evaluating the deodorizing effect of a wet state, and it is hard to deodorize from a dry state. In particular, since core wrap sheets such as absorbent articles are wetted by urine or the like, it is advantageous if the deodorizing effect in the wet state is high.
  ◎:消臭効果が非常に良い
  ○:消臭効果が良い
  △:消臭効果がわずかにある
  ×:消臭効果がほとんどない
◎: Deodorizing effect is very good ○: Deodorizing effect is good △: Deodorizing effect is slightly ×: Deodorizing effect is scarce
 得られた結果を表1に示す。 The results obtained are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、酸化セルロース繊維に金属元素のイオンを含有し、カナダ標準ろ水度が30~400mlである各実施例の場合、十分な消臭効果を有していた。特に、ろ水度が50~200mlの範囲内である実施例8,9の場合、他の実施例に比べて消臭効果がさらに優れていた。
 一方、酸化セルロース繊維を用いず、金属元素のイオンも含有しない比較例1の場合、消臭効果がほとんど無かった。
 カナダ標準濾水度が400mlを超えた比較例2、及び金属元素のイオンの代わりに金属粒子を含有した比較例3の場合、消臭効果が十分ではなかった。
 なお、金属元素のイオンを含有しないが、カルボキシル基を有し、濾水度が30~400mlである酸化セルロース繊維を用いた参考例の場合、消臭効果がわずかに見られた。これは、酸化セルロース繊維の一部が叩解でナノファイバー化され、ナノファイバー化した部位では表面積が増大し、消臭効果を生じたためと考えられる。
As is apparent from Table 1, each of the Examples in which the oxidized cellulose fiber contained metal element ions and the Canadian freeness was 30 to 400 ml had a sufficient deodorizing effect. In particular, in Examples 8 and 9 where the freeness was in the range of 50 to 200 ml, the deodorizing effect was further superior to the other examples.
On the other hand, in the case of the comparative example 1 which does not use an oxidized cellulose fiber and does not contain metal element ions, there was almost no deodorizing effect.
In Comparative Example 2 in which the Canadian standard freeness exceeded 400 ml, and in Comparative Example 3 containing metal particles instead of ions of metal elements, the deodorizing effect was not sufficient.
In the case of the reference example using the oxidized cellulose fiber which does not contain metal element ions but has a carboxyl group and a freeness of 30 to 400 ml, a slight deodorizing effect was observed. This is considered to be because a part of the oxidized cellulose fiber was nanofibered by beating, and the surface area increased at the nanofiberized portion, resulting in a deodorizing effect.
<第2実験> <Second experiment>
<実験A:金属イオン含有セルロース繊維の製造>
 乾燥重量で5.00gの未乾燥の針葉樹漂白クラフトパルプ、39mgの2,2,6,6-テトラメチルピペリジン-1-オキシル(TEMPO)及び514mgの臭化ナトリウムを水500mlに分散させた後、15質量%次亜塩素酸ナトリウム水溶液を、1gのパルプ(絶乾)に対して次亜塩素酸ナトリウムの量が5.5mmolとなるように加えて反応を開始した。反応中は3MのNaOH水溶液を滴下してpHを10.0に保った。pHに変化が見られなくなった時点で反応終了と見なし、反応物をガラスフィルターにてろ過した後、十分な量の水による水洗、ろ過を2回繰り返し、固形分量15質量%の水を含浸させたTEMPO酸化セルロース繊維を得た。
 このTEMPO酸化セルロース繊維はその表面にカルボキシル基またはカルボキシレート基を有する。金属イオンを含有する前のTEMPO酸化セルロース繊維の酸基量(酸化セルロース繊維1g当たり)を表1に示す。
<Experiment A: Production of metal ion-containing cellulose fiber>
After dispersing 5.00 g dry softwood bleached kraft pulp, 39 mg 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and 514 mg sodium bromide in 500 ml water, The reaction was started by adding 15 mass% sodium hypochlorite aqueous solution so that the amount of sodium hypochlorite was 5.5 mmol with respect to 1 g of pulp (absolutely dry). During the reaction, a 3M NaOH aqueous solution was added dropwise to maintain the pH at 10.0. When the pH no longer changes, the reaction is considered to be complete, the reaction product is filtered through a glass filter, washed with a sufficient amount of water and filtered twice to impregnate water with a solid content of 15% by mass. TEMPO oxidized cellulose fibers were obtained.
This TEMPO oxidized cellulose fiber has a carboxyl group or a carboxylate group on its surface. Table 1 shows the acid group amount (per gram of oxidized cellulose fiber) of the TEMPO oxidized cellulose fiber before containing metal ions.
 次に、得られたTEMPO酸化セルロース繊維(この時点では金属イオンを含有していない)を解繊(叩解)し、得られた叩解後のTEMPO酸化セルロース繊維に対し、表1に示すpHと濃度(TEMPO酸化セルロース繊維1g当たり)の金属塩水溶液を加えて撹拌した。これにより、TEMPO酸化セルロース繊維に金属イオンを担持させた。TEMPO酸化セルロース繊維に対する金属イオンの含有量を表1に示す。金属イオンを担持させた後のTEMPO酸化セルロース繊維のろ水度をカナダ標準濾水度測定法(JIS P 8121:2012)に基づき測定したところ、表2に示すろ水度(CSF/フリーネス)であった。
 なお、図3、図4に示すように、実施例14の叩解後の金属イオン含有セルロース繊維を透過型電子顕微鏡で観察したところ、セルロース繊維の一部がナノファイバー化され、この微細なナノファイバーが矢印の領域で分散して(広がって)、表面積が増大していることが確認された。
Next, the obtained TEMPO oxidized cellulose fibers (which do not contain metal ions at this time) are defibrated (beaten), and the pH and concentration shown in Table 1 are obtained with respect to the obtained TEMPO oxidized cellulose fibers. An aqueous metal salt solution (per gram of TEMPO-oxidized cellulose fiber) was added and stirred. As a result, metal ions were supported on the TEMPO oxidized cellulose fiber. Table 1 shows the content of metal ions with respect to the TEMPO oxidized cellulose fiber. When the freeness of TEMPO-oxidized cellulose fibers after supporting metal ions was measured based on the Canadian standard freeness measurement method (JIS P 8121: 2012), the freeness (CSF / freeness) shown in Table 2 was obtained. there were.
As shown in FIGS. 3 and 4, when the metal ion-containing cellulose fiber after beating in Example 14 was observed with a transmission electron microscope, a part of the cellulose fiber was converted into nanofibers, and the fine nanofibers were observed. Was dispersed (expanded) in the region of the arrow, and it was confirmed that the surface area was increased.
<実験B:コアラップシートの製造>
 次に、叩解後の金属イオン含有セルロース繊維と、パルプ(NBKP及びLBKP)とを、表2に示す配合比で配合してパルプスラリーを調製し、抄紙して各実施例及び比較例のコアラップシートを製造した。
 比較例13として、市販の金属(Cu及びAg)イオン担持ゼオライト高密度結晶化パルプ(商品名セルガイア(登録商標))を配合し、抄紙してコアラップシートを製造した。
<Experiment B: Production of core wrap sheet>
Next, the metal ion-containing cellulose fiber after beating and pulp (NBKP and LBKP) are blended at the blending ratio shown in Table 2 to prepare a pulp slurry, papermaking, and core wrap of each example and comparative example A sheet was produced.
As Comparative Example 13, a commercially available metal (Cu and Ag) ion-carrying zeolite high-density crystallized pulp (trade name Sergaia (registered trademark)) was blended and paper-made to produce a core wrap sheet.
 なお、各実施例のコアラップシートを走査型電子顕微鏡で観察したところ、紙の繊維のみが確認された。また、各実施例のコアラップシートにつき、強酸で溶解した後の抽出液のICP((高周波誘導結合プラズマ)発光分析を行い、いずれも金属が含有されていることが確認された。以上のことより、各実施例のコアラップシートは酸化セルロース繊維に金属イオンを含有していることがわかる。 In addition, when the core wrap sheet of each Example was observed with a scanning electron microscope, only paper fibers were confirmed. Further, the core wrap sheet of each example was subjected to ICP ((high frequency inductively coupled plasma) emission analysis of the extract after dissolving with strong acid, and it was confirmed that all contained metal. It turns out that the core wrap sheet | seat of each Example contains a metal ion in an oxidized cellulose fiber.
 得られたコアラップシートにつき、以下の評価を行った。
<坪量>
 得られたコアラップシートの坪量を、JIS P 8124に従って測定した。
<強度>
 得られたコアラップシートを、吸収性物品加工機に装入して吸収性物品を製造する際、コアラップシートの紙切れの有無を検査し、強度を評価した。評価が◎か○であれば、実用上問題はない。
  ◎:非常に良い(12時間製造の間、紙切れ発生なし)
  〇:良い(12時間製造の間、紙切れ2回以下)
  ×:悪い(12時間製造の間、紙切れ3回以上)
The obtained core wrap sheet was evaluated as follows.
<Basis weight>
The basis weight of the obtained core wrap sheet was measured according to JIS P 8124.
<Strength>
When the obtained core wrap sheet was inserted into an absorbent article processing machine to produce an absorbent article, the core wrap sheet was inspected for paper breakage and evaluated for strength. If the evaluation is ◎ or ○, there is no practical problem.
A: Very good (no paper breaks during 12 hours production)
◯: Good (12 hours or less during 12 hours production)
X: Bad (3 times or more during 12 hours production)
<消臭効果>
 5cm×5cmの試験片が4枚入ったコック付きガスバッグに、アンモニア水溶液(アンモニア水2mL:水2mL)の飽和ガスを1.2mL注射器で挿入し、さらにエアーポンプにて空気を1.5L充填した。上記飽和ガスは、アンモニア水溶液が入っている密閉容器の気相から採取した。飽和ガス及び空気を充填後のガスバッグ中のアンモニアガス濃度は80~90ppmであった。次に、検知管に吸引器とゴムチューブを繋ぎ、ゴムチューブをガスバッグに繋いだ。そして、空気を充填してから50分経過後のガスバッグ内のアンモニアガス濃度を測定した。
  ◎:非常に良い 残存濃度が初期の1/5以下
  ○:良い    残存濃度が初期の1/5を超え1/4以下
  △:普通    残存濃度が初期の1/4を超え1/3以下
  ×:悪い    残存濃度が初期の1/3超え
 また、試験片1gに対して5gの割合で精製水を滴下した後、同様に評価して湿潤状態の消臭効果を評価した。
 評価が◎か○であれば、実用上問題はない。
<Deodorizing effect>
A saturated gas of an aqueous ammonia solution (2 mL of ammonia water: 2 mL of water) was inserted into a gas bag with a cock containing four test pieces of 5 cm × 5 cm with a 1.2 mL syringe, and 1.5 L of air was filled with an air pump. The saturated gas was collected from the gas phase in a sealed container containing an aqueous ammonia solution. The ammonia gas concentration in the gas bag after filling with saturated gas and air was 80 to 90 ppm. Next, the suction tube and the rubber tube were connected to the detection tube, and the rubber tube was connected to the gas bag. And the ammonia gas concentration in the gas bag 50 minutes after filling with air was measured.
◎: Very good residual concentration is 1/5 or less of the initial value ○: Good Residual concentration exceeds 1/5 of the initial value and 1/4 or less △: Normal Residual concentration exceeds 1/4 of the initial value and 1/3 or less ×: Poor residual concentration exceeded 1/3 of the initial value. Purified water was added dropwise at a rate of 5 g to 1 g of the test piece, and then evaluated in the same manner to evaluate the deodorizing effect in a wet state.
If the evaluation is ◎ or ○, there is no practical problem.
<リント(紙粉等の微粉落下)>
 JIS B9923(タンブリング法)に準じてコアラップシートの発塵試験を行い、パーティクルカウンター(リオン製、製品名「KC-01D1」)にて測定を行った。次の基準で評価した。評価が良いほど紙粉やゼオライト等の微粉の落下が少ない。評価が◎か○であれば、実用上問題はない。
  ◎:非常に良い
  ○:普通
  ×:悪い
<Lint (dropping fine powder such as paper powder)>
A dust generation test of the core wrap sheet was performed according to JIS B9923 (tumbling method), and measurement was performed with a particle counter (product name “KC-01D1” manufactured by Rion). Evaluation was made according to the following criteria. The better the evaluation, the smaller the fall of fine powder such as paper powder and zeolite. If the evaluation is ◎ or ○, there is no practical problem.
◎: Very good ○: Normal ×: Bad
 得られた結果を表2、表3に示す。なお、表3の比較例11のろ水度は、ろ水度が測定できないほど小さく、金属イオン含有セルロース繊維が完全にナノファイバー化しているとみなした。 The obtained results are shown in Tables 2 and 3. In addition, the freeness of Comparative Example 11 in Table 3 was so small that the freeness could not be measured, and the metal ion-containing cellulose fibers were considered to be completely nanofibers.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3から明らかなように、各実施例の場合、十分な消臭機能を有すると共に強度が高く、かつ金属イオン含有セルロース繊維の割合を少なくして低コストを実現できた。特に、湿潤状態での消臭効果が乾燥状態の消臭効果と同等であった。
 一方、金属イオン含有セルロース繊維のろ水度が50ml未満である比較例11の場合、金属イオン含有セルロース繊維が完全にナノファイバー化(完全離解)して紙中に残る割合が少なく、消臭機能が各実施例よりも大幅に劣った。
 金属イオン含有セルロース繊維のろ水度が200mlを超えた比較例12,14の場合も、金属イオン含有セルロース繊維の割合が少ない(10質量%)ことと相俟って、湿潤状態での消臭機能が各実施例よりも大幅に劣った。なお、比較例14は、金属イオン含有セルロース繊維を叩解せずに用いた。
 金属担持ゼオライト高密度結晶化パルプ(商品名セルガイア(登録商標))を配合して抄紙した比較例13の場合、紙粉等の微粉の落下が顕著であり、強度が低下した。又、湿潤状態でゼオライトが水分を吸着してしまい、消臭機能が各実施例よりも大幅に劣った。
As is clear from Table 3, in each of the examples, it had a sufficient deodorizing function, had high strength, and reduced the ratio of metal ion-containing cellulose fibers to achieve low cost. In particular, the deodorizing effect in the wet state was equivalent to the deodorizing effect in the dry state.
On the other hand, in the case of Comparative Example 11 in which the freeness of the metal ion-containing cellulose fibers is less than 50 ml, the metal ion-containing cellulose fibers are completely nanofibrous (completely disaggregated) and the ratio remaining in the paper is small, and the deodorizing function However, it was significantly inferior to each Example.
In the case of Comparative Examples 12 and 14 in which the freeness of the metal ion-containing cellulose fibers exceeded 200 ml, the deodorization in a wet state was coupled with the small proportion (10% by mass) of the metal ion-containing cellulose fibers. The function was significantly inferior to each example. In Comparative Example 14, the metal ion-containing cellulose fiber was used without beating.
In the case of Comparative Example 13 in which paper was made by blending metal-supported zeolite high-density crystallized pulp (trade name Sergaia (registered trademark)), the fall of fine powder such as paper powder was remarkable, and the strength was lowered. Further, the zeolite adsorbed moisture in a wet state, and the deodorizing function was significantly inferior to each example.
 2 外層シート(親水性表面シート)
 4a、4b 吸収コア
 20 吸水性物品本体部
 10a、10b コアラップシート
 200 吸水性物品
2 Outer layer sheet (hydrophilic surface sheet)
4a, 4b Absorbent core 20 Water-absorbent article main body 10a, 10b Core wrap sheet 200 Water-absorbent article

Claims (7)

  1.  酸化セルロース繊維の絶乾質量に対するカルボキシル基又はカルボキシレート基量が0.1~2.0mmol/gである酸化セルロース繊維に対し、Ag、Au、Pt、Pd、Ni、Mn、Fe、Ti、Al、Zn及びCuの群から選ばれる1種以上の金属元素のイオンを含有し、
     前記金属イオン含有セルロース繊維のカナダ標準濾水度が30~400mlである金属イオン含有セルロース繊維。
    For oxidized cellulose fiber having a carboxyl group or carboxylate group amount of 0.1 to 2.0 mmol / g based on the absolute dry mass of oxidized cellulose fiber, Ag, Au, Pt, Pd, Ni, Mn, Fe, Ti, Al Containing ions of one or more metal elements selected from the group consisting of Zn and Cu,
    A metal ion-containing cellulose fiber having a Canadian standard freeness of 30 to 400 ml of the metal ion-containing cellulose fiber.
  2.  前記金属イオン含有セルロース繊維のカナダ標準濾水度が50~200mlである請求項1記載の金属イオン含有セルロース繊維。 The metal ion-containing cellulose fiber according to claim 1, wherein the metal ion-containing cellulose fiber has a Canadian standard freeness of 50 to 200 ml.
  3.  前記金属イオン含有セルロース繊維の平均繊維長が0.5~2.5mm、平均繊維径が10~40μmである請求項1又は2に記載の金属イオン含有セルロース繊維。 The metal ion-containing cellulose fiber according to claim 1 or 2, wherein the metal ion-containing cellulose fiber has an average fiber length of 0.5 to 2.5 mm and an average fiber diameter of 10 to 40 µm.
  4.  前記金属含有セルロース繊維の絶乾質量に対する前記金属元素イオンの含有量が10~60mg/gである請求項1又は2記載の金属イオン含有セルロース繊維。 The metal ion-containing cellulose fiber according to claim 1 or 2, wherein a content of the metal element ion with respect to an absolutely dry mass of the metal-containing cellulose fiber is 10 to 60 mg / g.
  5.  請求項1~4のいずれか一項記載の金属含有セルロース繊維を含有する衛生薄葉紙。 Sanitary thin paper containing the metal-containing cellulose fiber according to any one of claims 1 to 4.
  6.  前記金属含有セルロース繊維を2~30質量%含有する請求項5記載の衛生薄葉紙。 The sanitary thin paper according to claim 5, wherein the metal-containing cellulose fiber is contained in an amount of 2 to 30% by mass.
  7.  吸収コアと、前記吸収コアを被覆し、又は前記吸収コアに積層されるコアラップシートと、前記コアラップシートの少なくとも一方の面を覆う液透過性の外層シートと、を有する吸収性物品であって、
     前記コアラップシートは、請求項5又は6に記載の衛生薄葉紙である、吸収性物品。
    An absorbent article having an absorbent core, a core wrap sheet that covers or is laminated on the absorbent core, and a liquid-permeable outer layer sheet that covers at least one surface of the core wrap sheet. And
    The said core wrap sheet | seat is an absorptive article which is the sanitary thin paper of Claim 5 or 6.
PCT/JP2016/071352 2015-07-22 2016-07-21 Metal-containing cellulose fiber, sanitary thin paper using same, and absorbent article WO2017014255A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017529917A JP6767977B2 (en) 2015-07-22 2016-07-21 Cellulose fiber containing metal ions, sanitary tissue paper using it, and absorbent articles
KR1020187001833A KR102116907B1 (en) 2015-07-22 2016-07-21 Cellulose fiber containing metal ion, hygienic thin paper and absorbent article using the same
CN201680041257.9A CN107849800B (en) 2015-07-22 2016-07-21 Cellulose fiber containing metal ion, sanitary tissue paper and absorbent article using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-144841 2015-07-22
JP2015-144512 2015-07-22
JP2015144512A JP2018178263A (en) 2015-07-22 2015-07-22 Oxidized cellulose fiber and metal-containing cellulose fiber
JP2015144841 2015-07-22

Publications (1)

Publication Number Publication Date
WO2017014255A1 true WO2017014255A1 (en) 2017-01-26

Family

ID=57834411

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071352 WO2017014255A1 (en) 2015-07-22 2016-07-21 Metal-containing cellulose fiber, sanitary thin paper using same, and absorbent article

Country Status (3)

Country Link
KR (1) KR102116907B1 (en)
CN (1) CN107849800B (en)
WO (1) WO2017014255A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017133135A (en) * 2016-01-29 2017-08-03 日本製紙クレシア株式会社 Deodorant antibacterial paper board and paper container
JP2019081988A (en) * 2017-10-31 2019-05-30 日本製紙株式会社 Functional material and use thereof
JP2019112756A (en) * 2017-12-25 2019-07-11 エレテン株式会社 Bactericidal polymer nanofiber assembly and dry hygiene paper using the same
WO2019189595A1 (en) * 2018-03-30 2019-10-03 日本製紙株式会社 Carboxymethylated microfibrillar cellulose fibers and composition thereof
WO2019189588A1 (en) * 2018-03-30 2019-10-03 日本製紙株式会社 Oxidized microfibrillar cellulose fibers and composition thereof
WO2019189611A1 (en) * 2018-03-30 2019-10-03 日本製紙株式会社 Paper containing microfibril cellulose fiber
JP2019172849A (en) * 2018-03-29 2019-10-10 日本製紙株式会社 Process for producing modified pulp
JP2019170546A (en) * 2018-03-27 2019-10-10 王子ホールディングス株式会社 Absorbent article
CN110546322A (en) * 2017-04-27 2019-12-06 日本制纸株式会社 Method for producing inorganic particle composite fiber
WO2020195671A1 (en) * 2019-03-28 2020-10-01 日本製紙株式会社 Fibrillated chemically modified cellulose fiber
WO2021054274A1 (en) * 2019-09-17 2021-03-25 日本製紙株式会社 Production method for chemically-modified microfibril cellulose fibers
EP3777800A4 (en) * 2018-03-29 2022-02-23 Daio Paper Corporation Absorbent article

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0252660A (en) * 1988-08-13 1990-02-22 Kohjin Co Ltd Deodorizing material consisting of oxidized cellulose system
JPH07204148A (en) * 1994-01-21 1995-08-08 New Oji Paper Co Ltd Antimicrobial wiping paper
JPH11315499A (en) * 1998-04-27 1999-11-16 Toyobo Co Ltd Deodorizing sheet and deodorizing product using the same
JP2002537503A (en) * 1999-02-24 2002-11-05 エスシーエー ハイジーン プロダクツ ゲゼルシャフト ミト ベシュレンクテル ハフツング Oxidized cellulose-containing fibrous materials and articles made therefrom
JP2011055884A (en) * 2009-09-07 2011-03-24 Dai Ichi Kogyo Seiyaku Co Ltd Gel-like aromatic deodorant composition and gel-like aromatic deodorant using the same
JP2015045113A (en) * 2013-08-29 2015-03-12 日本製紙株式会社 Sanitary tissue paper

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH111895A (en) * 1997-04-17 1999-01-06 Rengo Co Ltd Sanitary article
JP2004098322A (en) * 2002-09-05 2004-04-02 Toppan Printing Co Ltd Electrophoresis display panel installation type book cover and electrophoresis display panel installation type file
JP2006077367A (en) * 2004-09-10 2006-03-23 Kyodo Printing Co Ltd Deodorant coating and deodorant decorative paper
CN101137789B (en) * 2005-03-30 2012-09-05 花王株式会社 Deodorizing and antibacterial fiber product
JP6257526B2 (en) 2012-12-19 2018-01-10 日本製紙株式会社 Paper base
JP6442730B2 (en) * 2013-05-16 2018-12-26 日本製紙株式会社 Method for producing composite of metal nanoparticles and cellulose fiber
JP6095497B2 (en) 2013-06-14 2017-03-15 花王株式会社 Method for producing resin composition containing cellulose nanofiber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0252660A (en) * 1988-08-13 1990-02-22 Kohjin Co Ltd Deodorizing material consisting of oxidized cellulose system
JPH07204148A (en) * 1994-01-21 1995-08-08 New Oji Paper Co Ltd Antimicrobial wiping paper
JPH11315499A (en) * 1998-04-27 1999-11-16 Toyobo Co Ltd Deodorizing sheet and deodorizing product using the same
JP2002537503A (en) * 1999-02-24 2002-11-05 エスシーエー ハイジーン プロダクツ ゲゼルシャフト ミト ベシュレンクテル ハフツング Oxidized cellulose-containing fibrous materials and articles made therefrom
JP2011055884A (en) * 2009-09-07 2011-03-24 Dai Ichi Kogyo Seiyaku Co Ltd Gel-like aromatic deodorant composition and gel-like aromatic deodorant using the same
JP2015045113A (en) * 2013-08-29 2015-03-12 日本製紙株式会社 Sanitary tissue paper

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017133135A (en) * 2016-01-29 2017-08-03 日本製紙クレシア株式会社 Deodorant antibacterial paper board and paper container
CN110546322B (en) * 2017-04-27 2022-06-03 日本制纸株式会社 Method for producing inorganic particle composite fiber
CN110546322A (en) * 2017-04-27 2019-12-06 日本制纸株式会社 Method for producing inorganic particle composite fiber
JP2019081988A (en) * 2017-10-31 2019-05-30 日本製紙株式会社 Functional material and use thereof
JP7068802B2 (en) 2017-10-31 2022-05-17 日本製紙株式会社 Functional materials and their use
JP2019112756A (en) * 2017-12-25 2019-07-11 エレテン株式会社 Bactericidal polymer nanofiber assembly and dry hygiene paper using the same
JP2019170546A (en) * 2018-03-27 2019-10-10 王子ホールディングス株式会社 Absorbent article
US11963857B2 (en) 2018-03-29 2024-04-23 Daio Paper Corporation Absorbent article
JP7068884B2 (en) 2018-03-29 2022-05-17 日本製紙株式会社 Method for manufacturing modified pulp
EP3777800A4 (en) * 2018-03-29 2022-02-23 Daio Paper Corporation Absorbent article
JP2019172849A (en) * 2018-03-29 2019-10-10 日本製紙株式会社 Process for producing modified pulp
JPWO2019189590A1 (en) * 2018-03-30 2021-04-08 日本製紙株式会社 Carboxymethylated Microfibril Cellulose Fibers and Their Compositions
US11525015B2 (en) 2018-03-30 2022-12-13 Nippon Paper Industries Co., Ltd. Oxidized microfibrillated cellulose fibers and composition thereof
CN112105776A (en) * 2018-03-30 2020-12-18 日本制纸株式会社 Paper containing microfibrillated cellulose fibers
JPWO2019189593A1 (en) * 2018-03-30 2021-02-12 日本製紙株式会社 Oxidized microfibril cellulose fiber and its composition
JPWO2019189588A1 (en) * 2018-03-30 2021-02-18 日本製紙株式会社 Oxidized microfibril cellulose fiber and its composition
WO2019189595A1 (en) * 2018-03-30 2019-10-03 日本製紙株式会社 Carboxymethylated microfibrillar cellulose fibers and composition thereof
JPWO2019189611A1 (en) * 2018-03-30 2021-04-01 日本製紙株式会社 Paper containing microfibril cellulose fibers
JP7239561B2 (en) 2018-03-30 2023-03-14 日本製紙株式会社 Paper containing microfibril cellulose fibers
JPWO2019189595A1 (en) * 2018-03-30 2021-04-08 日本製紙株式会社 Carboxymethylated Microfibril Cellulose Fibers and Their Compositions
JP7233413B2 (en) 2018-03-30 2023-03-06 日本製紙株式会社 Carboxymethylated microfibril cellulose fibers and compositions thereof
JP7233414B2 (en) 2018-03-30 2023-03-06 日本製紙株式会社 Carboxymethylated microfibril cellulose fibers and compositions thereof
EP3779038A4 (en) * 2018-03-30 2022-01-05 Nippon Paper Industries Co., Ltd. Oxidized microfibrillar cellulose fibers and composition thereof
WO2019189611A1 (en) * 2018-03-30 2019-10-03 日本製紙株式会社 Paper containing microfibril cellulose fiber
WO2019189590A1 (en) * 2018-03-30 2019-10-03 日本製紙株式会社 Carboxymethylated microfibrillar cellulose fibers and composition thereof
WO2019189593A1 (en) * 2018-03-30 2019-10-03 日本製紙株式会社 Oxidized microfibrillar cellulose fibers and composition thereof
WO2019189588A1 (en) * 2018-03-30 2019-10-03 日本製紙株式会社 Oxidized microfibrillar cellulose fibers and composition thereof
US11453728B2 (en) 2018-03-30 2022-09-27 Nippon Paper Industries Co., Ltd. Carboxymethylated microfibrillated cellulose fibers and composition thereof
US11466405B2 (en) 2018-03-30 2022-10-11 Nippon Paper Industries Co., Ltd. Carboxymethylated microfibrillated cellulose fibers and composition thereof
US11512432B2 (en) 2018-03-30 2022-11-29 Nippon Paper Industries Co., Ltd. Oxidized microfibrillated cellulose fibers and composition thereof
CN111918999A (en) * 2018-03-30 2020-11-10 日本制纸株式会社 Carboxymethylated microfibrillated cellulose fibres and compositions thereof
WO2020195671A1 (en) * 2019-03-28 2020-10-01 日本製紙株式会社 Fibrillated chemically modified cellulose fiber
CN113728138B (en) * 2019-09-17 2022-12-27 日本制纸株式会社 Method for producing chemically modified microfibrillar cellulose fiber
CN113728138A (en) * 2019-09-17 2021-11-30 日本制纸株式会社 Method for producing chemically modified microfibrillar cellulose fiber
JP6857289B1 (en) * 2019-09-17 2021-04-14 日本製紙株式会社 Method for Producing Chemically Modified Microfibril Cellulose Fiber
WO2021054274A1 (en) * 2019-09-17 2021-03-25 日本製紙株式会社 Production method for chemically-modified microfibril cellulose fibers

Also Published As

Publication number Publication date
KR20180030544A (en) 2018-03-23
KR102116907B1 (en) 2020-05-29
CN107849800A (en) 2018-03-27
CN107849800B (en) 2020-09-22

Similar Documents

Publication Publication Date Title
WO2017014255A1 (en) Metal-containing cellulose fiber, sanitary thin paper using same, and absorbent article
US9518364B2 (en) Wet laid sheet material of a microfibrillated material composition
JP2002537503A (en) Oxidized cellulose-containing fibrous materials and articles made therefrom
JP6721350B2 (en) Core paper tube and sheet roll including the same
JP2015045113A (en) Sanitary tissue paper
JP6681335B2 (en) Sanitary thin paper and absorbent article using the same
JP2015043940A (en) Absorbent article
JP6596331B2 (en) Water dissipating wiper
JP6629638B2 (en) Non woven sheet
JP6767977B2 (en) Cellulose fiber containing metal ions, sanitary tissue paper using it, and absorbent articles
JP2018172802A (en) Cleaning sheet and method for manufacturing the same
CA2904503C (en) Modified cellulose from chemical kraft fiber and methods of making and using the same
JP4619110B2 (en) Method for producing hydrolyzed paper and method for producing hydrolyzable wiping article
JP7177228B2 (en) Antiviral sheet containing cellulose fiber
JP6929073B2 (en) Hydrolyzable sheet and method for manufacturing the hydrolyzable sheet
WO2021251329A1 (en) Antiviral sheet
JP6469421B2 (en) Absorbent articles
JP6255215B2 (en) Absorbent articles
JP6684590B2 (en) Laminated wet sheet
JPH10314284A (en) Cellulose base deodorizing material and manufacture therefor
WO2021124655A1 (en) Cellulose nanofiber manufacturing method and cellulose nanofiber
JP2023084324A (en) Antiviral sheet containing cellulose fiber
JP2021195629A (en) Mask base material and mask
JP2017133135A (en) Deodorant antibacterial paper board and paper container

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16827815

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017529917

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187001833

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16827815

Country of ref document: EP

Kind code of ref document: A1