WO2017014204A1 - Method and apparatus for recovering zinc and iron from electric furnace dust - Google Patents

Method and apparatus for recovering zinc and iron from electric furnace dust Download PDF

Info

Publication number
WO2017014204A1
WO2017014204A1 PCT/JP2016/071075 JP2016071075W WO2017014204A1 WO 2017014204 A1 WO2017014204 A1 WO 2017014204A1 JP 2016071075 W JP2016071075 W JP 2016071075W WO 2017014204 A1 WO2017014204 A1 WO 2017014204A1
Authority
WO
WIPO (PCT)
Prior art keywords
zinc
electric furnace
iron
furnace dust
carbon
Prior art date
Application number
PCT/JP2016/071075
Other languages
French (fr)
Japanese (ja)
Inventor
上川 清太
Original Assignee
株式会社テツゲン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社テツゲン filed Critical 株式会社テツゲン
Publication of WO2017014204A1 publication Critical patent/WO2017014204A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/08Making spongy iron or liquid steel, by direct processes in rotary furnaces
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/242Binding; Briquetting ; Granulating with binders
    • C22B1/244Binding; Briquetting ; Granulating with binders organic
    • C22B1/245Binding; Briquetting ; Granulating with binders organic with carbonaceous material for the production of coked agglomerates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B19/00Obtaining zinc or zinc oxide
    • C22B19/30Obtaining zinc or zinc oxide from metallic residues or scraps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/02Working-up flue dust
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention produces iron (reduced iron) from electric furnace dust containing iron oxide and zinc oxide (dust generated in the electric furnace steelmaking process), and in the gas generated by the reduction treatment (reduction treatment gas)
  • the present invention relates to a method and apparatus for recovering iron and zinc from electric furnace dust, which recovers contained metallic zinc.
  • the electric furnace (electric furnace) steelmaking process uses iron scrap as a raw material, and a large amount of galvanized steel sheet scrap is input. Therefore, the electric furnace dust contains about 25% zinc on average. Various efforts have been made to recover this zinc. In 2013, about 80% of the amount generated was intermediately processed in the zinc recovery industry, and the remaining 20% was landfilled at managed and closed disposal sites after detoxification such as chemical injection. Yes.
  • Non-patent Document 1 describes a method for producing crude zinc oxide (ZnO), which is a raw material for zinc, from steelmaking ash by the Wertz method.
  • Non-Patent Document 2 describes a method in which crude zinc oxide (ZnO) recovered by the Wertz method is finally treated by the ISP method and recovered as metallic zinc.
  • Non-Patent Document 1 Powder coke is mixed with electric furnace dust, charged into a rotary kiln (internally heated rotary kiln in Non-Patent Document 1), and 1200 in the rotary kiln. Heat to ° C. As a result, the charge moves while rolling in the rotary kiln, and during this movement, zinc oxide and iron oxide in the electric furnace dust are reduced by carbon. Zinc volatilizes as metallic zinc and is then reoxidized by oxygen in the exhaust gas to form crude zinc oxide (ZnO) powder. The crude zinc oxide powder is collected and collected by a dust chamber, an electrostatic precipitator or the like. On the other hand, iron oxide is discharged from the downstream side of the rotary kiln and collected as a clinker (lumps) containing metallic iron.
  • a clinker clinker
  • the crude zinc oxide recovered by the Welts method has a zinc quality of about 60%.
  • the dezincification rate (zinc recovery rate) from electric furnace dust is only about 60% to 70%, and the remaining 30 to 40% of zinc is contained in the clinker.
  • the obtained crude zinc oxide (ZnO) is recovered as zinc by the ISP method.
  • Zinc refining by the ISP method is roughly divided into a sintering process, a smelting process, and a refining process.
  • zinc and lead concentrate sulfide ore
  • the main raw material and crude zinc oxide recovered by the Welts method are mixed and granulated together with a solvent at a predetermined ratio, and desulfurized and sintered with a sintering machine for sintering.
  • the obtained sintered ore is charged into a blast furnace in a layered manner with lump coke preheated to 800 ° C., and hot air at 950 ° C. is blown from the tuyere.
  • Zinc in the sinter is reduced and evaporated in the furnace, and is discharged from the top of the blast furnace together with CO and CO 2 gas at a zinc concentration of about 8%.
  • Exhaust gas containing zinc enters the lead splash condenser.
  • the blast furnace exhaust gas is rapidly cooled to 550 ° C. by the lead droplets stirred and scattered by the rotor immersed in the lead bath, and the zinc vapor is condensed and dissolved in the lead droplets.
  • the lead in which zinc is dissolved is cooled to 440 ° C. with a cooling rod, and zinc is floated and separated using the difference in solubility depending on temperature. This is so-called blast furnace zinc, and the lead from which zinc has been separated is returned to the capacitor again.
  • the zinc in the blast furnace is sent to the casting furnace in a continuous furnace, where it is deleaded and deironed by temperature refining, and commercialized as distilled zinc having a zinc purity of 98.5% or more.
  • the combination of the Welts method and the ISP method has the following drawbacks as a method for recovering metallic zinc while producing reduced iron from electric furnace dust. That is, in the Wertz method, a large amount (300 kg / per ton of electric furnace dust) of carbonaceous material is added to reduce iron oxide and zinc oxide. At this time, despite being evaporated as metal zinc vapor, the metal zinc is reoxidized by the oxygen in the combustion exhaust gas present in the internal heat kiln to become crude zinc oxide. As a result, about 25% of crude zinc oxide in terms of zinc in the electric furnace dust is simply concentrated to about 60%.
  • the ISP method requires not only large equipment such as a sintering machine and a hot air furnace, but also has an economic problem that an expensive lump coke must be used. Further, in the current combination of the Welts method and the ISP method, the process is complicated because zinc oxide is reduced twice, so that energy is wasted and facilities are also complicated. For this reason, instead of these methods, when producing reduced iron from electric furnace dust, a method capable of recovering zinc with reduced process, energy saving, and high efficiency is required.
  • the present invention pays attention to a reduction treatment gas containing metallic zinc vapor generated when producing reduced iron from electric furnace dust containing iron oxide and zinc oxide, and from the viewpoint of process efficiency and energy efficiency.
  • Another object of the present invention is to propose a method for producing reduced iron, a method for recovering zinc, and an apparatus therefor that can efficiently recover zinc.
  • the reduction treatment By performing the reduction treatment in a closed space where the atmosphere is shut off, the reduction treatment can be performed in an oxygen-free atmosphere, and the reduction treatment gas containing mainly metal zinc vapor (mainly CO , CO 2 and metal zinc vapor) and found that solid reduced iron can be obtained.
  • the reduction treatment gas containing mainly metal zinc vapor mainly CO , CO 2 and metal zinc vapor
  • solid reduced iron In order to reduce iron oxide with carbon, a temperature of 950 ° C. or higher is necessary, and if it is 1000 ° C. or higher, stable reduction treatment can be performed.
  • the boiling point of zinc under atmospheric pressure is 907 ° C., both iron oxide and zinc oxide can be reduced at 950 ° C. or higher.
  • an apparatus having a closed space capable of performing such a high temperature treatment for example, there is an external heating type rotary kiln.
  • Electric furnace dust contains moisture and chlorine, and these must be removed in advance. For this reason, it has been found that preheating and drying should be performed before the electric furnace dust is reduced.
  • the preheating / drying and the reduction treatment may be performed in separate processes so that chlorides and moisture generated during the preheating / drying are not mixed into the reduction treatment gas.
  • Preheating / drying is desirably performed at a temperature lower than the temperature (907 ° C.) at which the reduction reaction occurs.
  • an internally heated rotary kiln currently used in the Welts method can be used for preheating and drying of electric furnace dust.
  • a cooling tube such as a water-cooled tube (pipe) is suitable for direct cooling of the reducing gas, but it cannot be used if it is made of metal (for example, Cu, Al, Fe, etc.) because it reacts with zinc.
  • metal for example, Cu, Al, Fe, etc.
  • a ceramic tube (pipe) for example, a ceramic (for example, SiC) tube having good thermal conductivity, zinc can be recovered without reacting. It was also found that SiC is preferable because it is difficult to wet with molten zinc.
  • the present inventors have made further studies to further increase the zinc recovery rate.
  • the gas that passes between the cooling tubes and does not come into contact with the tube surface still contains zinc vapor and molten zinc fine particles.
  • a ceramic pellet can be arranged downstream of the cooling tube to condense, aggregate and collect zinc. That is, when the gas containing zinc vapor or molten zinc fine particles passes through the gaps between the ceramic pellets, it comes into contact with the pellet surface, and the zinc is condensed, aggregated and separated. At this time, the condensed and agglomerated molten zinc becomes droplets and is dropped and recovered.
  • the material of the ceramic pellet is the same as that of the cooling tube, and silicon carbide (SiC) is preferable.
  • the reducing gas is mainly composed of CO (carbon monoxide) and CO 2 (carbon dioxide), and CO can be used as a fuel.
  • the combustion gas (mainly CO 2 ) of the external combustion burner of the external heating rotary kiln has a gas temperature of about 1000 ° C.
  • the combustion gas is introduced into the internal gas of the internal heating rotary kiln for preheating and drying.
  • the sensible heat of the combustion gas can be used effectively.
  • the reducing gas can be introduced not as a combustion burner for an external heating rotary kiln but as a combustion gas for an internal heating rotary kiln in a preheating / drying step.
  • the present inventors perform reforming to convert CO2 into CO (hereinafter referred to as CO2 reforming in the present specification, and performing the processing is referred to as CO2 reforming processing), and reducing the gas in the reduction processing gas. Worked on reducing CO2 concentration.
  • CO2 can be reformed to CO (CO2 + C ⁇ 2CO) by charging a powdered carbon material into an external heat rotary kiln, stirring in the rotary kiln and bringing it into contact with CO2 gas.
  • the CO2 reforming treatment is performed to reduce the CO2 concentration in the reduction treatment gas to 3% or less from the electric furnace dust according to any one of (1) to (4), Recovery method for iron and zinc.
  • the reduction treatment gas after the zinc is collected in the zinc collection step is used as a heating fuel in the reduction treatment step. Recovery method of iron and zinc.
  • the zinc recovery step recovers the iron and zinc from the electric furnace dust according to any one of (1) to (7), wherein the reduction treatment gas is cooled and the zinc is condensed and separated. Collection method.
  • the method for recovering iron and zinc from electric furnace dust as set forth in (9), wherein the zinc recovery step comprises bringing a silicon carbide tube whose interior has been cooled into contact with a reduction treatment gas.
  • the recovery apparatus of iron and zinc from the electric furnace dust as described in one.
  • the present invention not only high-quality reduced iron is produced from electric furnace dust containing iron oxide and zinc oxide, but also high-quality metallic zinc can be efficiently recovered with a compact facility. Furthermore, the energy efficiency can be increased by reusing the exhausted gas. That is, the following effects can be obtained.
  • a method for producing reduced iron from electric furnace dust and a method for recovering metallic zinc can be provided as an integrated system.
  • FIG. 4A shows an example in which a cooling tube is arranged.
  • FIG. 4B shows an example in which a ceramic pellet packed layer is further arranged on the cooling tube. It is a figure which shows the relationship between the reduction process temperature of a carbon-containing molded object, and residence time (reduction process time).
  • FIG. 1 the conceptual diagram shown in FIG. 1 as an example.
  • the embodiment shown below is an example, and the embodiment of the present invention is not limited to this.
  • Carbon-containing molded body manufacturing step In the carbon-containing molded product manufacturing step, the electric furnace dust 10 containing iron oxide and zinc oxide is mixed with a carbon material (carbon material) that serves as a reducing agent, a binder material that serves to connect the particles, and water. Thus, a carbon-containing molded body is manufactured (FIG. 2).
  • electric furnace dust which is dust generated in an electric furnace type steelmaking process at a steel mill or the like. Electric furnace dust has a high content of iron oxide, and there is a strong need for reuse.
  • the electric furnace dust contains not only iron oxide but also a lot of zinc oxide.
  • the present invention may be of any type as long as it is an electric furnace dust containing not only such iron oxide but also zinc oxide.
  • the present inventors conceived of using the electric furnace dust as fine powder in order to improve the reduction reactivity while keeping the specific surface area of the electric furnace dust particles large, and intensively studied the usage method. As a result, practically sufficient reduction reactivity can be obtained if the average particle size (D50: particle size corresponding to 50% cumulative frequency from fine particles in the cumulative particle size distribution) of the electric furnace dust is 3.0 ⁇ m or less. I found that I can do it.
  • D50 particle size corresponding to 50% cumulative frequency from fine particles in the cumulative particle size distribution
  • the collected electric furnace dust may be converted into pseudo particles (pellets) to prevent dust generation. Since the pellet diameter is about 8 mm, the pellet may be pulverized with a ball mill or the like to obtain a particle size of 3.0 ⁇ m or less before forming a carbon-containing molded body.
  • the converter dust generated in the converter at the steel works also contains iron oxide and zinc oxide, and is therefore a target material of the present invention.
  • the moisture of the converter dust is as high as about 25%, the moisture content may be adjusted by blending quick lime or the like, and then the carbon-containing molded body may be obtained.
  • the carbonaceous material is a reducing agent for reducing iron oxide to metallic iron, and is added so that the C equivalent is in the range of 0.7 to 1.3.
  • the C equivalent is a ratio to the theoretical carbon amount based on the following formulas 1 and 2. If the total amount of iron oxide in the electric furnace dust is Fe 2 O 3 and the total amount of zinc oxide is ZnO, in order to reduce 1 mol of Fe 2 O 3 to obtain 2 mol of metallic iron, 3 mol of C (carbon ) And 1 mol of C is required to reduce 1 mol of ZnO to obtain 1 mol of zinc. This is the theoretical carbon content. This means that 0.7 to 1.3 times the theoretical amount of carbon is added.
  • the binder is, for example, corn starch. It is added so that the crushing strength after drying of the carbon-containing molded product is 20 kg / cm 2 or more. The dried crush strength of less than 20 kg / cm 2 of the molded body, the molded body by tumbling in a handling and rotary kiln is because being partly destroyed.
  • the water of the molded body can be adjusted by adding water as necessary so that the water content is around 10%.
  • ⁇ ⁇ ⁇ Put these raw materials into the mixer and mix the raw materials.
  • a rotary batch type is usually used, but the method is not particularly limited as long as the raw materials can be mixed uniformly.
  • the blended raw material after mixing passes through a relay tank and is molded by an extrusion molding machine or a roll molding machine.
  • the mixed raw material body subjected to the molding process is referred to as a carbon-containing molded body 20.
  • electric furnace dust, carbonaceous material and binder are mixed with water and kneaded and granulated.
  • a high strength carbon-containing molded body can be obtained.
  • the properties of the electric furnace dust and charcoal, the amount of water to be added, and the hole diameter, depth, indentation pressure, and the like of the die conditions for producing a carbon-containing molded article suitable for the raw material powder can be obtained.
  • the shape of the carbon-containing molded body is generally spherical or cylindrical, but the shape is not limited to a cube, a rectangular parallelepiped, a triangular prism, or a briquette.
  • the size of the carbon-containing molded article is preferably a spherical shape having a diameter of about 10 to 30 mm or a cylindrical shape having a diameter of 10 to 30 mm and a length of 10 to 30 mm in consideration of the subsequent reduction treatment. If the diameter or length is smaller than 10 mm, the reduced iron after the reduction treatment becomes small.
  • the powdering rate accompanying rolling in the rotary kiln increases as the surface area increases, and in addition, the size of reduced iron (DRI) is reduced because it shrinks by about 40% with reduction. It becomes too much, and the handling problem at the time of recycling arises. Moreover, if it is larger than 30 mm, the powdering rate decreases, but the reduction required time increases. Therefore, if the residence time in the reduction furnace is constant, the metalization rate and the dezincification rate are reduced. This is because.
  • the diameter and length are preferably 10 to 30 mm, and more preferably 15 to 25 mm.
  • a molded body By using a molded body, reduced iron as a product is slightly contracted, but can be obtained as a molded body and used as an electric furnace raw material as it is.
  • An apparatus required for a series of processes from cutting out the raw material to selecting a carbon-containing molded body having a predetermined size is referred to as a carbon-containing molded body manufacturing apparatus 11.
  • Each individual apparatus forming the carbon-containing molded body manufacturing apparatus 11 is not particularly limited as long as the functions described above can be achieved.
  • Carbon-containing molded body production means As described above, the electric furnace dust 10 and other carbonaceous materials, binders, and water raw materials are charged into the mixer, and the raw materials are mixed and molded (FIG. 2). A series of devices for cutting out each raw material, mixing, molding, and delivering the molded carbon-containing molded body 20 is a carbon-containing molded body manufacturing means (carbon-containing molded single manufacturing apparatus) 11.
  • each raw material is not limited as long as it can be cut out by metering.
  • a vibration feeder or the like is applied.
  • the rotary batch type is usually used as the mixer, but the method is not particularly limited as long as the raw materials can be mixed uniformly.
  • the blended raw material after mixing passes through a relay tank and is molded by an extrusion molding machine or a roll molding machine.
  • the form of the molding machine is not limited as long as it can be molded into a predetermined shape.
  • the shape of the carbon-containing molded body is generally spherical or cylindrical, but the shape is not limited to a cube, a rectangular parallelepiped, a triangular prism, a briquette, or the like.
  • a high-strength carbon-containing molded body can be obtained.
  • the properties of the electric furnace dust and charcoal, the amount of water to be added, and the hole diameter, depth, indentation pressure, and the like of the die conditions for producing a carbon-containing molded article suitable for the raw material powder can be obtained.
  • the form of the carbon-containing molded body dispensing device is not particularly limited. However, it is better to avoid things that destroy the carbon-containing molded body.
  • the preheating step in the present invention refers to heating the carbon-containing molded body 20 manufactured in the carbon-containing molded body manufacturing step 11, thereby evaporating water contained in the carbon-containing molded body and volatilizing chlorine (Cl) or the like. It refers to a series of steps until discharging the carbon-containing molded product from which volatile impurities have been removed. Since the carbon-containing molded product is made of electric furnace dust, various impurities such as chlorine are mixed. In particular, volatile impurities such as chlorine are mixed in the reducing gas after the reduction treatment and cause corrosion of the equipment, and therefore are removed before the reduction treatment. Further, when moisture is mixed in the reducing gas, it is removed to promote reoxidation of vaporized zinc.
  • the boiling point of zinc is 907 ° C. Therefore, the heating temperature of the carbon-containing molded body in the preheating step is preferably 907 ° C. or lower. If it is 907 ° C. or higher, the possibility that zinc will evaporate increases. When zinc evaporates, it is mixed in exhaust gas, reoxidized, recovered as dust as zinc oxide (crude zinc oxide), and reused. This is not appropriate from the viewpoint of processing efficiency.
  • the heating temperature of the carbon-containing molded body is preferably 890 ° C. or less. Considering temperature variation in actual operation, it is better to set the temperature to 880 ° C. or lower.
  • the preheating temperature is preferably 740 ° C or higher. This is because if the temperature is lower than 740 ° C., there is a high possibility that zinc chloride is brought into the next reduction treatment step.
  • the heating temperature of the carbon-containing molded body in the preheating step is preferably 750 ° C. or higher, more preferably 780 ° C. or higher, and preferably 800 ° C. or higher.
  • the atmosphere is not particularly limited. Therefore, the aspect will not be ask
  • FIG. since the volatilized zinc chloride is cooled, agglomerated and recovered and used again as a raw material, a structure that does not dissipate the generated gas to the atmosphere is desirable. Furthermore, since it is necessary to avoid the mixing of oxygen (atmosphere) at the time of transfer to the subsequent reduction treatment step, treatment in a closed space is preferable.
  • an internal heating type rotary kiln as the preheating means 22. Since the internal heat type rotary kiln is also applied in the Wertz method, it has a track record of heating pellet-shaped electric furnace dust such as a carbon-containing molded body. In this invention, it demonstrates as an example preheating a carbon-containing molded object using an internal-heat-type rotary kiln.
  • the gangue components (SiO2 and CaO) in the raw material are between Fe 2 O 3 that is iron oxide and FeO that is its reduction intermediate. Therefore, it is easy to form a low melting point material as shown below.
  • Fe 2 O 3 ⁇ CaO Melting point 1206 ° C FeO ⁇ SiO 2 : Melting point 1180 ° C FeO ⁇ CaO: Melting point 1105 ° C
  • the gangue component content is high, the raw material temperature of the firing zone is too high, the temperature of the combustion flame (burner frame) is too high, the shape of the combustion flame (burner frame) is too wide, and the inner wall surface of the rotary kiln In the case of licking, it produces deposits on the inner surface of the rotary kiln. Since this deposit is formed in a ring shape, it is called a dam ring.
  • the dam ring hinders the movement of the object to be treated (raw material) in the rotary kiln, and the dam ring may fall off in a large amount continuously, which is not preferable from the viewpoint of stable operation.
  • the internal heating type rotary kiln used in the preheating step only heats up to about 900 ° C. as described above, no dam ring is formed. Further, since the internal heat type rotary kiln sucks and discharges the gas in the kiln from the upstream side, the exhaust gas containing volatile impurities and moisture can be quickly discharged outside the kiln.
  • the carbon-containing molded body 30 preheated and dried in the internal heat type rotary kiln 22 is discharged from the kiln and transferred to the reduction treatment apparatus in the next process.
  • the discharge device 23 from the internal heat type rotary kiln is preferably considered as an integral part of the charging device 31 to the reduction treatment facility. As will be described later, in the reduction process step, it is necessary to avoid mixing oxygen in the atmosphere as much as possible. Therefore, the discharge device 23 from the preheating means (preheating device) and the charging device 31 for the reduction process are shut off from the atmosphere. It preferably has a function.
  • the reduction treatment step in the present invention is to reduce the iron oxide and zinc oxide in the carbon-containing molded body by charging and heating the carbon-containing molded body 30 preheated and dried in the preheating step. It is a series of steps to make iron and zinc (steam). If air (especially oxygen) is mixed during the reduction treatment, the reduced iron or zinc is reoxidized. Therefore, it is important that the treatment be performed in a closed space where air contamination is blocked.
  • the carbon-containing molded body mixes the electric furnace dust with the carbonaceous material in the form of fine powder. Therefore, the specific surface area of the electric furnace dust is wide, and the reactivity with the carbonaceous material as the reducing agent can be increased, and the reduction treatment temperature can be lowered it can.
  • the inventors of the present invention have confirmed that the reduction reaction proceeds to an extent that there is no practical problem if the carbon-containing molded body according to the present invention is heated to about 980 ° C. to 1150 ° C. From the experimental results (Table 3), in order to reduce iron oxide with C (carbon) itself, a temperature of 980 ° C. or higher is necessary in practice. Therefore, the lower limit of the reduction treatment temperature is ideally 980 ° C. However, factors such as the contact state between finely divided iron oxide and carbon in the carbon-containing molded body also have an influence, so the reduction treatment temperature is preferably 1000 ° C. or higher.
  • the upper limit temperature of the reduction treatment depends on the heat resistance of the equipment.
  • the upper limit temperature of use is 1200 ° C.
  • the upper limit temperature of use should be 1150 ° C.
  • the upper limit is preferably 1130 ° C, more preferably 1100 ° C. Since the reduction process proceeds at about 1100 ° C., a lower temperature can be achieved compared to 1250 ° C. in the conventional rotary hearth type reduction method (RHF) and 1200 ° C. in the Welts method. If the facility heat resistance is improved, the reduction treatment temperature can naturally be raised.
  • the processing time of the reduction process is determined by the relationship with temperature.
  • T ° C. the relationship between the reduction treatment temperature (T ° C.) and the reduction treatment time (residence time) (H minutes) defined by the following Equation 3 is conventional. It was confirmed that reduced iron having a quality equivalent to or better than the Welts method and the RHF method can be obtained.
  • T is the carbon-containing molded body temperature (attainment temperature) inside the external heating rotary kiln
  • H is the minimum residence time (residence time at the attainment temperature) in the external heating rotary kiln.
  • the reduction reaction can be processed in a short time because the reaction proceeds faster as the processing temperature is higher.
  • the properties of the carbon-containing molded product are not always uniform. However, even if the heat resistance of equipment is improved and a high-temperature treatment at 1150 ° C. or higher can be performed, it is necessary to ensure a certain reaction time.
  • GLOSS metallization rate was adopted as a quality index of reduced iron, and the RHF method GROSS metallization rate of 60% or more was used as a pass criterion. Details will be described in an embodiment described later.
  • the gas generated by the reduction treatment of iron oxide is CO (carbon monoxide) gas as can be seen from the equations 1 and 2.
  • Gases generated by the reduction treatment of zinc oxide are zinc vapor (indicated as Zn (gas) for convenience) and CO (Formula 4). Some CO gas also becomes CO 2 (carbon dioxide).
  • ZnO + C ⁇ Zn (gas) + CO (Formula 4)
  • the gas generated in the reduction treatment step in the present invention is mainly composed of CO, containing zinc vapor and CO 2.
  • the present invention is characterized by having a zinc recovery step of recovering zinc from the reduction treatment gas 50. In this way, zinc is separated from the carbon-containing molded body, and the reduced iron 40 having a high metallization rate is recovered as a solid.
  • the metallic zinc 60 is recovered from the reduction treatment gas 50 containing zinc vapor in the subsequent zinc recovery step.
  • the reduction treatment In the reduction treatment step, the reduction treatment must be performed by heating in a closed space where the atmosphere (especially oxygen) is shut off.
  • the aspect is not particularly limited as long as it is a means capable of realizing this restriction.
  • the externally heated rotary kiln 32 can be applied as a means for realizing this restriction.
  • the inventors confirmed that the reduction reaction proceeds to a practically satisfactory level when heated to about 980 ° C. to 1150 ° C. by using a carbon-containing molded body.
  • a considerably low temperature can be achieved. This low temperature makes it possible to use an externally heated rotary kiln that could not be used conventionally.
  • the body of the external heat type rotary kiln is generally made of heat-resistant cast steel manufactured by centrifugal casting, and about 1200 ° C. is the upper limit for use.
  • the upper limit temperature is preferably 1150 ° C., preferably 1130 ° C., more preferably 1100 ° C., from the viewpoint of facility maintenance.
  • the reduction treatment temperature can be naturally increased.
  • the reduction processing means (reduction processing apparatus) will be described by taking the external heat type rotary kiln 32 as an example. Even when the preheated and dried carbon-containing molded body 30 is transferred and charged from the internal heat type rotary kiln 22 to the external heat type rotary kiln 32, it is desirable that air (strictly speaking, oxygen) should not be mixed. Similarly, when discharging reduced iron from the external heat type rotary kiln 32, it is necessary to maintain airtightness so that the atmosphere does not enter the kiln. As described above, the mode of the transfer / loading device 31 (hereinafter simply referred to as “charging device”) and the discharging device 35 are not limited as long as the airtightness can be secured. For example, it can be implemented using a double damper.
  • the amount of cut of the carbon-containing molded body 30 discharged from the internal heat type rotary kiln 22 is controlled by a rotary valve, and a double damper (for example, two hoppers are installed in series in the vertical direction, and an open / close type damper is installed below each hopper.
  • a double damper for example, two hoppers are installed in series in the vertical direction, and an open / close type damper is installed below each hopper.
  • the dampers of the double damper are alternately opened and closed, and the transferred carbon-containing molded body is transferred (dropped) from the upper hopper to the lower hopper. Then, the lower hopper is opened, and the carbon-containing molded body is charged into the external heating type rotary kiln 32. If the carbon-containing molded body is charged by this method, the mixing of air can be suppressed as much as possible.
  • the treatment temperature of the carbon-containing molded article according to the present invention is about 980 ° C. to 1150 ° C.
  • the CO / CO 2 ratio may be about 30 or less in order to promote the reduction of zinc oxide (ZnO). That is, the CO2 concentration may be about 3% or less.
  • the metal zinc recovery rate (recovered zinc amount with respect to the zinc amount contained in the electric furnace dust) can be secured 90% or more. It was.
  • the CO2 reforming process is for reforming CO2 in the reducing gas into CO.
  • the reducing gas can be brought into contact with carbon (C) by some method, and CO2 can be reformed to CO (CO2 + C ⁇ 2CO).
  • C carbon
  • an externally heated rotary kiln 33 is provided with a powdered carbon material charging device (device for charging powdered carbonaceous material) 36 and an externally heated rotary kiln.
  • a powdered carbon material charging device device for charging powdered carbonaceous material
  • a protrusion may be attached to the inner surface of the external heat type rotary kiln, and the powdered carbon material may be lifted and dropped onto the protrusion by rotation of the kiln and dropped.
  • natural gas (CH 4) may be blown into an externally heated rotary kiln. At this time, natural gas (CH4) reacts with CO2 in the reducing gas and is reformed to CO (CH4 + CO2 ⁇ 2CO + 2H2).
  • the method for the CO2 reforming treatment is not limited to the above method, and any method may be used as long as CO2 in the reducing gas can be reformed to CO.
  • the zinc recovery step in the present invention is a series of steps for recovering zinc from the reduction processing gas 50 generated in the reduction processing step. In order to suppress reoxidation of zinc in the gas, it is necessary to guide the reducing treatment gas so that the atmosphere does not enter.
  • the method for recovering zinc from a gas containing zinc is not particularly limited.
  • a method for separating and recovering zinc from the reducing gas for example, there is a method using a lead splash condenser.
  • the equipment becomes large and the recovery efficiency is not good.
  • the inventors have repeatedly studied and found that the reducing gas can be directly cooled to condense zinc and recover it as molten zinc.
  • the equipment configuration can be made compact, and zinc can be separated and recovered with high efficiency.
  • the gas may be directly cooled by a cooling tube.
  • the cooling tube is made of metal (for example, steel or copper), it reacts with zinc to produce an alloy. Therefore, the cooling tube material may be other than metal. For example, ceramic is good.
  • the inventors have confirmed that the reduction treatment gas can be cooled and the zinc can be condensed and recovered by a cooling tube made of silicon carbide (SiC) having good thermal conductivity.
  • Condensed zinc is collected as droplets. It may be stored as molten zinc in the lower part of the zinc recovery device, or may be recovered as zinc particles by cooling while being dropped as droplets.
  • the collection method is not particularly limited.
  • the aspect of the zinc recovery means is not particularly limited as long as it is a means capable of separating and recovering zinc contained in the reduction treatment gas.
  • a zinc splash capacitor may be applied as described above.
  • a device that directly cools the reducing treatment gas 50 containing zinc and condenses and recovers zinc may be used.
  • FIG. 4A shows a conceptual diagram thereof.
  • the zinc condensed by the cooling tube 56 falls in a molten state and accumulates in the lower part of the zinc condenser. Of course, after condensation, it can be cooled during the fall and recovered as zinc particles.
  • the cooling tube 56 is preferably arranged horizontally. This is because the molten zinc condensed on the cooling tube may move on the cooling tube due to gravity and solidify and be fixed if not horizontal. By arrange
  • the arrangement of the tubes is not particularly limited. What is necessary is just to set from a viewpoint of cooling efficiency.
  • the gas that passes between the cooling tubes and does not contact the tube surface still contains zinc vapor and molten zinc fine particles.
  • a plurality of pellets made of ceramics or coated with ceramics may be arranged downstream of the cooling tube in the direction of flow of the zinc vapor-containing gas (FIG. 4B). This is because when the gas containing zinc vapor and molten zinc fine particles passes through the gaps between the ceramic pellets, it contacts the pellet surface, and the zinc is condensed, aggregated and separated. At this time, the condensed and agglomerated molten zinc becomes droplets and is dropped and recovered.
  • the size of the pellet is not particularly limited, but it is easy to handle a cylindrical shape having a diameter of about 5 to 10 mm and a height of about 5 to 10 mm, or a spherical shape having a diameter of about 5 to 10 mm, and an appropriate void can be secured.
  • the material of the ceramic is not particularly limited, but silicon carbide (SiC) having good thermal conductivity is preferable like the cooling tube. SiC can be easily separated and recovered without getting wet by molten zinc.
  • the number of pellets to be arranged is not particularly limited as long as it is plural (two or more). However, since it is desirable that the gas uniformly contacts the pellet surface, the gas may be filled so as to fill a cross section through which the gas passes. Further, by overlapping the pellets in multiple layers, the gas and the pellet surface come into contact with each other, and the zinc recovery rate is improved.
  • the gas introduction pipe from the externally heated rotary kiln 32 to the zinc recovery device 51 needs to be airtight and good in air tightness so that zinc in the reducing gas does not reoxidize.
  • the blower 54 for sucking the reducing treatment gas is preferably installed downstream of the zinc recovery device. This is because zinc is not adhered to the blade (wing) of the blower because zinc is separated. From the viewpoint of protecting the blower equipment, the dust collector 53 may be disposed in front of the blower.
  • the zinc-containing gas when the zinc-containing gas is cooled, when the zinc-containing gas comes into contact with metallic iron, CO2 (carbon dioxide) is generated by a carbon deposition reaction (2CO ⁇ CO2 + C), and the vapor zinc is reoxidized by this CO2. It becomes crude zinc oxide (ZnO). As described above, once crude zinc oxide (ZnO) is obtained, metal zinc cannot be recovered. Therefore, it is desirable to suppress this carbon deposition reaction.
  • the zinc recovery device is made of steel, the inner surface thereof may be covered so that the zinc-containing gas does not come into direct contact with the steel.
  • the coating is not particularly limited, but may be painted, for example.
  • the paint is not limited, and examples thereof include heat resistant paint. Further, for example, lining may be performed. For example, there is a lining with ceramic paint or castable.
  • the reducing gas after zinc recovery is mainly composed of CO (partially CO 2 ) because zinc is separated. Of course, it may be emitted into the atmosphere, but it is better to effectively use CO as fuel.
  • CO gas
  • a recuperator 52 that recovers sensible heat of gas and lowers the gas temperature
  • a dust collector 53 that removes dust in the gas
  • a blower 54 and a gas holder 55 that stabilizes the gas pressure
  • the gas passing through these facilities can be used as fuel for the combustion burner 34 of the externally heated rotary kiln.
  • the refining gas purification method / equipment is not particularly limited to this embodiment, and the refining method and equipment may be appropriately selected according to the use of the gas.
  • the exhaust gas 80 generated after heating and drying the carbon-containing molded body contains dust containing zinc chloride, iron oxide, and zinc oxide as described above. Therefore, it is desirable to separate and recover these components from the exhaust gas generated in the preheating step. Therefore, for example, the exhaust gas 80 generated from the preheating device (for example, the internal heating rotary kiln) 22 is passed through a dust collector (bag filter) 81, and zinc chloride and dust 84 are collected and then released into the atmosphere.
  • the blower 82 for sucking the exhaust gas may be installed downstream of the dust collector. What is necessary is just to select a gas processing method and installation suitably according to the use of the waste gas in the preheating step.
  • Example 1 Hereinafter, examples of the present invention in a test plant will be described.
  • Table 1 shows the chemical components of the electric furnace dust used in the test operation and the powder coke as the carbonaceous material. A numerical value shows the mass%.
  • Table 2 shows the raw material blend ratio and blended raw material moisture of the carbon-containing molded body used in the test operation (almost the same as the carbon-containing molded body moisture).
  • a carbon-containing molded product 20 having a diameter of 20 mm and a length of 25 mm was produced.
  • the green strength of the carbon-containing molded product (strength immediately after molding) was 8.7 kg / cm 2 , and the strength after drying at 150 ° C. for 2 hours was 37.0 kg / cm 2 .
  • FIG. 1 A conceptual diagram of the entire test plant is shown in FIG.
  • the treatment capacity is 50 dkg of carbon-containing molded product (showing the weight (Kg) in the dry state; the same applies hereinafter) / h.
  • the external heating furnace of the external heating type rotary kiln is an electric heating type for simplicity.
  • a hot air generator (a preheater burner) was used to heat the internal heat rotary kiln.
  • the exhaust gas from the external heating rotary kiln was cooled by a zinc recovery device, burned with CO gas by an exhaust gas combustion device, rendered harmless, and then released outdoors.
  • a 20 mm thick heat insulating material and an 80 mm thick castable are arranged in this order. Further, the outer wall and the inner wall were separated by 50 mm, and nitrogen was allowed to flow between them so that air was not mixed into the reducing treatment gas.
  • the portion through which the reducing gas flows has a square cross section with a side of 250 mm.
  • ⁇ Test method> The test was conducted according to the following procedure. (1) After operating the hot air generator 24 of the internal heat type rotary kiln 22, the carbon-containing molded body manufactured by the above-described method through the charging device (double damper) 21 in the internal heat type rotary kiln 22. 20 was charged at a speed of 50 dkg / h. The fuel combustion amount of the hot air generator 24 and the rotation speed of the internal heating rotary kiln were controlled so that the temperature when the carbon-containing molded body was preheated and dried and discharged from the internal heating rotary kiln 22 was 900 ° C.
  • the externally heated rotary kiln 32 was heated to an external surface temperature of 1050 ° C. After the carbon-containing molded body heated to 900 ° C. is started to be charged into the external heating rotary kiln 32 via the charging device (two series water-cooled rotary valves) 31, The rotational speed of the external heating rotary kiln was adjusted so that the residence time was 30 minutes, and at the same time, the power input amount of the external heating furnace was controlled so that the external surface temperature of the external heating rotary kiln was maintained at 1050 ° C.
  • the carbon-containing molded body becomes reduced iron (DRI) 40.
  • the reduced iron at 1050 ° C. was cooled to 200 ° C. or less in a water-cooled box installed at the discharge port of the externally heated rotary kiln 32, and then discharged to the outside via a discharge device (double damper) 35 and collected.
  • NET metallization rate is a metallization rate increased by reduction.
  • the GLOSS metallization rate is the total metallization rate of the sample after reduction to which M ⁇ Fe (metallic iron (metallic Fe)) originally added in the electric furnace dust is added.
  • M ⁇ Fe metallic iron (metallic Fe)
  • NET metallization rate is a metallization rate increased by reduction.
  • the GLOSS metallization rate is the total metallization rate of the sample after reduction to which M ⁇ Fe (metallic iron (metallic Fe)) originally added in the electric furnace dust is added.
  • M ⁇ Fe metallic iron (metallic Fe)
  • GROSS metallization rate (M ⁇ Fe after reduction (% by weight)) / (T ⁇ Fe after reduction (% by weight)) (Formula 5)
  • NET metallization rate ⁇ [(M ⁇ Fe (% by weight) after reduction ⁇ total weight of the carbon-containing molded product after reduction) ⁇ (M ⁇ Fe (% by weight) before reduction ⁇ carbon-containing molded product before reduction) (Total weight after reduction)] / (total weight after reduction) ⁇ / (T ⁇ Fe (% by weight) after reduction) (Formula 6)
  • the results when electric furnace dust was treated by the Welts method and the RHF method are also shown in Table 3.
  • the RHF method using a carbon-containing molded product has better results than the Welts method.
  • the metallization rate of DRI reduced with RHF is 60 to 70%, and the entire amount of DRI is recycled in an electric furnace as an iron source, and the dezincification rate is as high as 70 to 90%. Therefore, the test results for obtaining the same GROSS metallization rate and dezincification rate as RHF are indicated by ⁇ , and the test results for the degreasing rate of RHF or less are indicated by ⁇ for the GLOSS metallization rate as RHF.
  • Example 2 In the same test apparatus as in Example 1, in order to reform CO2 in the reducing gas into CO, a powdered carbon material charging device 36 was installed in the external heating type rotary kiln 33. Furthermore, a protrusion was installed on the inner surface of the external heat type rotary kiln, and the powdered carbon material was lifted upward by the inner protrusion by the rotation of the kiln, and dropped into the kiln. First, a carbon-containing molded body not containing zinc was prepared. This was produced by molding fine iron ore, fine coke and binder. The zinc-containing carbon-containing molded body was charged into the modified test apparatus.
  • powder coke having a particle size of 1 mm or less was charged from the powdered carbon material charging device 36 for CO2 reforming.
  • the amount of powder coke charged at this time was 5 d-Kg / h per 50 d-Kg / h of the carbon-containing molded product.
  • SiC ceramic balls were filled in the downstream side (lower part) of the cooling tube 56 of the zinc recovery device 51 of the test device.
  • the SiC ceramic balls were 8 mm in diameter, and were filled with SiC ceramic balls so that the cross section (250 mm square cross section) of the zinc recovery device had a thickness of about 400 mm. There were about 49000 filled SiC ceramic balls.
  • the present invention can separate and recover reduced iron and zinc from electric furnace dust generated in an iron making plant using an electric furnace, it can be used in the iron making industry using an electric furnace.
  • Electric furnace dust 11 Carbon-containing molded body production equipment (means) 20 Carbon-containing molded body 21 Charging device 22 Preheating device (internal heat type rotary kiln) 23 Ejector 24 Preheater burner (hot air generator) 30 Preheated and dried carbon-containing molding 31 Charging equipment 32 Reduction processing equipment (external heating rotary kiln) 33 Heating device for reduction treatment device 34 Combustion burner 35 Discharge device 36 Powdered carbon material charging device 40 Reduced iron 50 Reduction treatment gas 51 Zinc recovery device 52 Recuperator 53 Dust collector 54 Blower 55 Gas holder 56 Cooling tube 57 Exhaust gas combustion device 59 Ceramic pellet packed bed 60 Zinc 70 Heater exhaust gas 80 Preheater exhaust gas 81 Dust collector 82 Blower 83 Chimney 84 Dust (recycle)

Abstract

With attention directed at the reduction treatment gas that contains metallic zinc vapor generated when reduced iron is manufactured from electric furnace dust that contains iron oxides and zinc oxide, the present invention addresses the problem of providing a method and apparatus for manufacturing reduced iron that allows zinc to be recovered efficiently with respect to process and energy efficiency perspectives as well. In view of the foregoing problem, the present invention is characterized in comprising: a carbon-containing molded article manufacturing step for admixing a binder with a charcoal material and electric furnace dust that contains zinc oxide and iron oxides, and molding the resulting mixture to manufacture a carbon-containing molded article; a preheating step for heating the carbon-containing molded article in an internally heated rotary kiln; a reduction treatment step in which the carbon-containing molded article heated in the preheating step is further heated in a hermetically sealed externally heated rotary kiln to manufacture reduced iron; and a zinc recovery step for recovering zinc from the reduction treatment gas generated in the reduction treatment step

Description

電炉ダストからの鉄および亜鉛の回収方法およびその装置Method and apparatus for recovering iron and zinc from electric furnace dust
 本発明は、酸化鉄と酸化亜鉛を含有する電炉ダスト(電気炉製鋼プロセスにおいて発生する粉塵)から鉄(還元鉄)を製造し、かつその還元処理にて発生するガス(還元処理ガス)中に含まれている金属亜鉛を回収する、電炉ダストからの鉄および亜鉛の回収方法およびその装置に関するものである。 The present invention produces iron (reduced iron) from electric furnace dust containing iron oxide and zinc oxide (dust generated in the electric furnace steelmaking process), and in the gas generated by the reduction treatment (reduction treatment gas) The present invention relates to a method and apparatus for recovering iron and zinc from electric furnace dust, which recovers contained metallic zinc.
 近年亜鉛価格の高騰により、亜鉛の有効利用が求められており、亜鉛を多量に含有する製鉄ダストからの回収が注目されている。製鉄ダスト、特に電気炉製鋼プロセスで発生する粉塵(電炉ダスト)の発生原単位は電気炉での粗鋼生産量の1.8%程度であり、日本国内の電炉ダストの発生量は1999年で約52万トン、2013年では約44万トン程度と推定されている。 In recent years, due to the rising price of zinc, effective use of zinc has been demanded, and recovery from iron-making dust containing a large amount of zinc has attracted attention. The basic unit of iron dust, especially dust (electric furnace dust) generated in the electric furnace steelmaking process is about 1.8% of the amount of crude steel produced in the electric furnace, and the amount of electric furnace dust generated in Japan was about 1999. It is estimated to be about 520,000 tons and about 440,000 tons in 2013.
 通常、電気炉(電炉)製鋼プロセスは、鉄スクラップを原料とし、亜鉛めっき鋼板のスクラップが大量に投入される。そのため、電炉ダスト中には平均して25%程度の亜鉛が含有されている。この亜鉛を回収するための各種の取り組みがなされている。2013年には発生量の約80%が亜鉛回収業で中間処理されており、残りの約20%は薬注処理等の無害化処理後に管理型処分場や遮断型処分場で埋め立て処分されている。 Usually, the electric furnace (electric furnace) steelmaking process uses iron scrap as a raw material, and a large amount of galvanized steel sheet scrap is input. Therefore, the electric furnace dust contains about 25% zinc on average. Various efforts have been made to recover this zinc. In 2013, about 80% of the amount generated was intermediately processed in the zinc recovery industry, and the remaining 20% was landfilled at managed and closed disposal sites after detoxification such as chemical injection. Yes.
 電炉ダストから金属亜鉛を回収する方法は、ウエルツ法とISP(Imperial Smelting Process)法を組合せた方法が提案されている(非特許文献1および2)。例えば、非特許文献1には、ウエルツ法により製鋼煙灰から亜鉛の原料である粗酸化亜鉛(ZnO)を製造する方法が記載されている。また、非特許文献2には、ウエルツ法で回収された粗酸化亜鉛(ZnO)をISP法で最終処理して金属亜鉛として回収する方法が記載されている。非特許文献1に開示されている工程(ウエルツ法)を簡単に説明すると、電炉ダストに粉コークスを混合し、ロータリーキルン(非特許文献1では内熱式ロータリーキルン)に装入し、ロータリーキルン内で1200℃に加熱する。この結果、装入物はロータリーキルン内を転動しながら移動し、この移動中に電炉ダスト中の酸化亜鉛と酸化鉄が炭素により還元される。亜鉛は金属亜鉛として揮発したのち排ガス中の酸素により再酸化され粗酸化亜鉛(ZnO)粉となる。粗酸化亜鉛粉は、ダストチャンバー・電気集塵機などで捕集され、回収される。一方、酸化鉄は金属鉄を含むクリンカー(塊)としてロータリーキルン下流側から排出され、回収される。 As a method for recovering metallic zinc from electric furnace dust, a method combining a Wertz method and an ISP (Imperial Melting Process) method has been proposed (Non-patent Documents 1 and 2). For example, Non-Patent Document 1 describes a method for producing crude zinc oxide (ZnO), which is a raw material for zinc, from steelmaking ash by the Wertz method. Non-Patent Document 2 describes a method in which crude zinc oxide (ZnO) recovered by the Wertz method is finally treated by the ISP method and recovered as metallic zinc. Briefly explaining the process (Weltz method) disclosed in Non-Patent Document 1, powder coke is mixed with electric furnace dust, charged into a rotary kiln (internally heated rotary kiln in Non-Patent Document 1), and 1200 in the rotary kiln. Heat to ° C. As a result, the charge moves while rolling in the rotary kiln, and during this movement, zinc oxide and iron oxide in the electric furnace dust are reduced by carbon. Zinc volatilizes as metallic zinc and is then reoxidized by oxygen in the exhaust gas to form crude zinc oxide (ZnO) powder. The crude zinc oxide powder is collected and collected by a dust chamber, an electrostatic precipitator or the like. On the other hand, iron oxide is discharged from the downstream side of the rotary kiln and collected as a clinker (lumps) containing metallic iron.
 ウエルツ法で回収された粗酸化亜鉛は亜鉛品位が60%程度である。電炉ダストからの脱亜鉛率(亜鉛回収率)は60%~70%程度しかなく、残りの30~40%の亜鉛はクリンカーに含まれている。
 また、最近は回転炉床法(RHF法)により電炉ダストの還元処理を行う例が出てきた。RHFはブリケットにより処理するため、ウエルツ法よりは、若干回収率が高くなる。
The crude zinc oxide recovered by the Welts method has a zinc quality of about 60%. The dezincification rate (zinc recovery rate) from electric furnace dust is only about 60% to 70%, and the remaining 30 to 40% of zinc is contained in the clinker.
Recently, there has been an example in which electric furnace dust is reduced by the rotary hearth method (RHF method). Since RHF is processed by briquette, the recovery rate is slightly higher than the Welts method.
 得られた粗酸化亜鉛(ZnO)は、ISP法で亜鉛として回収される。ISP法による亜鉛精錬は大別して焼結工程、溶鉱工程、精錬工程から成っている。
 焼結工程では、主原料の亜鉛・鉛精鉱(硫化鉱)とウエルツ法で回収した粗酸化亜鉛を溶剤とともに所定割合で混合・造粒し、焼結機で脱硫・焼結して焼結鉱とする。
The obtained crude zinc oxide (ZnO) is recovered as zinc by the ISP method. Zinc refining by the ISP method is roughly divided into a sintering process, a smelting process, and a refining process.
In the sintering process, zinc and lead concentrate (sulfide ore), the main raw material, and crude zinc oxide recovered by the Welts method are mixed and granulated together with a solvent at a predetermined ratio, and desulfurized and sintered with a sintering machine for sintering. Mines.
 得られた焼結鉱を800℃に予熱された塊コークスと共に溶鉱炉に層状に装入し、羽口より950℃の熱風を送風する。焼結鉱中の亜鉛は炉内で還元され蒸発し、約8%の亜鉛濃度でCO、COガスと共に溶鉱炉炉頂から排出される。亜鉛を含む排出ガスは、鉛スプラッシュ・コンデンサーに入る。当該コンデンサーでは鉛浴中に浸漬されたローターにより撹拌・飛散された鉛滴で、溶鉱炉排ガスが550℃まで急冷され、亜鉛蒸気は凝縮し鉛滴中に溶解する。
 亜鉛が溶解した鉛を冷却樋で440℃に冷却し、温度による溶解度差を利用して亜鉛を浮上析出させ分離する。これがいわゆる溶鉱炉亜鉛で、亜鉛が分離された鉛は再び前記コンデンサーに戻される。
The obtained sintered ore is charged into a blast furnace in a layered manner with lump coke preheated to 800 ° C., and hot air at 950 ° C. is blown from the tuyere. Zinc in the sinter is reduced and evaporated in the furnace, and is discharged from the top of the blast furnace together with CO and CO 2 gas at a zinc concentration of about 8%. Exhaust gas containing zinc enters the lead splash condenser. In the condenser, the blast furnace exhaust gas is rapidly cooled to 550 ° C. by the lead droplets stirred and scattered by the rotor immersed in the lead bath, and the zinc vapor is condensed and dissolved in the lead droplets.
The lead in which zinc is dissolved is cooled to 440 ° C. with a cooling rod, and zinc is floated and separated using the difference in solubility depending on temperature. This is so-called blast furnace zinc, and the lead from which zinc has been separated is returned to the capacitor again.
 精製工程では、前記溶鉱炉亜鉛は連続樋にて鋳造炉に送られ、ここで温度精錬による脱鉛と脱鉄を行い、亜鉛純度が98.5%以上の蒸留亜鉛として製品化される。 In the refining process, the zinc in the blast furnace is sent to the casting furnace in a continuous furnace, where it is deleaded and deironed by temperature refining, and commercialized as distilled zinc having a zinc purity of 98.5% or more.
 電炉ダストから還元鉄を製造しつつ、金属亜鉛を回収する方法としてウエルツ法とISP法の組合せには次の欠点がある。すなわち、ウエルツ法では大量(300kg/電炉ダスト1t当たり)の炭材を投入して酸化鉄と酸化亜鉛を還元する。この際、金属亜鉛蒸気として蒸発させたにも拘わらず、内熱キルン内に存在する燃焼排ガス中の酸素により金属亜鉛は再酸化され粗酸化亜鉛になってしまう。結果的に電炉ダスト中の亜鉛換算で25%程度の粗酸化亜鉛を60%程度に単純濃縮しているだけのことになってしまっている。 The combination of the Welts method and the ISP method has the following drawbacks as a method for recovering metallic zinc while producing reduced iron from electric furnace dust. That is, in the Wertz method, a large amount (300 kg / per ton of electric furnace dust) of carbonaceous material is added to reduce iron oxide and zinc oxide. At this time, despite being evaporated as metal zinc vapor, the metal zinc is reoxidized by the oxygen in the combustion exhaust gas present in the internal heat kiln to become crude zinc oxide. As a result, about 25% of crude zinc oxide in terms of zinc in the electric furnace dust is simply concentrated to about 60%.
 ISP法については、溶鉱炉に加えて焼結機と熱風炉などの大型設備が必要であるだけでなく、高価な塊コークスを使わざるを得ないといった経済的な問題もある。また、現在のウエルツ法とISP法の組合せでは、酸化亜鉛を二度にわたって還元しているためプロセスが複雑化しているため、エネルギーの無駄が生じており、さらに設備も複雑化する。このため、これらの方法に代わり、電炉ダストから還元鉄を製造する際に、省プロセス、省エネルギー、高効率に、亜鉛を回収することができる方法が求められている。 In addition to the blast furnace, the ISP method requires not only large equipment such as a sintering machine and a hot air furnace, but also has an economic problem that an expensive lump coke must be used. Further, in the current combination of the Welts method and the ISP method, the process is complicated because zinc oxide is reduced twice, so that energy is wasted and facilities are also complicated. For this reason, instead of these methods, when producing reduced iron from electric furnace dust, a method capable of recovering zinc with reduced process, energy saving, and high efficiency is required.
 そこで、本発明は、酸化鉄と酸化亜鉛を含有する電炉ダストから還元鉄を製造する際に発生する金属亜鉛蒸気を含有する還元処理ガスに着目し、プロセス上の観点からもエネルギー効率の観点からも効率的に亜鉛を回収可能な、還元鉄の製造と亜鉛の回収方法およびその装置を提案することを課題とする。 Therefore, the present invention pays attention to a reduction treatment gas containing metallic zinc vapor generated when producing reduced iron from electric furnace dust containing iron oxide and zinc oxide, and from the viewpoint of process efficiency and energy efficiency. Another object of the present invention is to propose a method for producing reduced iron, a method for recovering zinc, and an apparatus therefor that can efficiently recover zinc.
 本発明者らは、前記課題を解決するために鋭意検討を重ねた結果、以下の事項を見出した。
(a)大気を遮断した閉空間内で還元処理を行うことにより、無酸素雰囲気で還元処理ができ、還元鉄と亜鉛が再酸化されずに金属亜鉛蒸気を含んだ還元処理ガス(主にCO,COと金属亜鉛蒸気で構成されている)と固形の還元鉄を得ることができることを見出した。酸化鉄を炭素で還元するためには950℃以上の温度が必要であり、1000℃以上であれば安定した還元処理ができる。一方、大気圧下での亜鉛の沸点は907℃であるので、950℃以上であれば、酸化鉄も酸化亜鉛も還元することができる。このような高温処理のできる閉空間を有する装置として、例えば外熱式ロータリーキルンがある。
As a result of intensive studies to solve the above problems, the present inventors have found the following matters.
(A) By performing the reduction treatment in a closed space where the atmosphere is shut off, the reduction treatment can be performed in an oxygen-free atmosphere, and the reduction treatment gas containing mainly metal zinc vapor (mainly CO , CO 2 and metal zinc vapor) and found that solid reduced iron can be obtained. In order to reduce iron oxide with carbon, a temperature of 950 ° C. or higher is necessary, and if it is 1000 ° C. or higher, stable reduction treatment can be performed. On the other hand, since the boiling point of zinc under atmospheric pressure is 907 ° C., both iron oxide and zinc oxide can be reduced at 950 ° C. or higher. As an apparatus having a closed space capable of performing such a high temperature treatment, for example, there is an external heating type rotary kiln.
(b)電炉ダストは水分や塩素を含んでおり、事前にこれらを除去する必要がある。そのため、電炉ダストを還元処理する前に予熱・乾燥をするとよいことを見出した。予熱・乾燥時に発生する塩化物や水分が還元処理ガスに混入しないように、予熱・乾燥と還元処理を別個のプロセスで行うとよい。予熱・乾燥は、還元反応が発生する温度(907℃)より低温であることが望ましい。
 例えば、現在ウエルツ法で使用している内熱式ロータリーキルンを、電炉ダストの予熱・乾燥に使用することができる。
 内熱式ロータリーキルンで加熱する場合、高々900℃程度までにしか加熱しないため、ダムリング(原料中の脈石成分によるキルン内面の付着物)が形成されない。このため、従来のウェルツ法で問題となっていたダムリングに起因する問題を解消することができる。
(B) Electric furnace dust contains moisture and chlorine, and these must be removed in advance. For this reason, it has been found that preheating and drying should be performed before the electric furnace dust is reduced. The preheating / drying and the reduction treatment may be performed in separate processes so that chlorides and moisture generated during the preheating / drying are not mixed into the reduction treatment gas. Preheating / drying is desirably performed at a temperature lower than the temperature (907 ° C.) at which the reduction reaction occurs.
For example, an internally heated rotary kiln currently used in the Welts method can be used for preheating and drying of electric furnace dust.
When heating with an internal heat type rotary kiln, heating is performed only up to about 900 ° C., so that a dam ring (a deposit on the inner surface of the kiln due to a gangue component in the raw material) is not formed. For this reason, the problem resulting from the dam ring which has been a problem in the conventional Welts method can be solved.
(c)還元処理ガス中には金属亜鉛蒸気が含まれているため、還元処理ガスから直接亜鉛を回収する方法を検討した。その結果、亜鉛の回収方法は、既存の鉛スプラッシュ・コンデンサーでもよいが、前述したように設備が大がかりとなり、効率が悪く、取扱い性も悪い。そこで、還元処理ガスを直接冷却し、亜鉛を凝縮させ、溶融亜鉛として回収するとよいことを見出した。 (C) Since metal zinc vapor is contained in the reducing gas, a method for directly recovering zinc from the reducing gas was examined. As a result, the existing lead splash condenser may be used as the method for recovering zinc, but as mentioned above, the equipment becomes large, and the efficiency is poor and the handling is poor. Therefore, it has been found that the reduction treatment gas may be directly cooled to condense zinc and recover it as molten zinc.
 還元処理ガスの直接冷却には、水冷したチューブ(パイプ)などの冷却チューブが適しているが、金属製(例えばCu、Al、Fe、など)だと亜鉛と反応するため使用できない。そこで、セラミックス製チューブ(パイプ)、例えば熱伝導性の良好なセラミックス製(例えばSiC製)チューブを適用することにより、亜鉛が反応することなく回収できることを見出した。また、溶融亜鉛とぬれにくいことからもSiCが好ましいことを知見した。 A cooling tube such as a water-cooled tube (pipe) is suitable for direct cooling of the reducing gas, but it cannot be used if it is made of metal (for example, Cu, Al, Fe, etc.) because it reacts with zinc. Thus, it has been found that by applying a ceramic tube (pipe), for example, a ceramic (for example, SiC) tube having good thermal conductivity, zinc can be recovered without reacting. It was also found that SiC is preferable because it is difficult to wet with molten zinc.
 本発明者らは、さらに亜鉛回収率を上げるために検討を重ねた。その結果、冷却チューブ間を通り抜けチューブ表面に接触しなかったガスは、亜鉛蒸気や溶融亜鉛微粒子を含んだままになっている。そこで、冷却チューブの下流側にセラミックス製ペレットを配置して亜鉛を凝縮・凝集し、回収することができることを見出した。
 即ち、亜鉛蒸気や溶融亜鉛微粒子を含んだガスが、セラミックス製ペレットの間隙を通過する際に、ペレット表面に接触し、亜鉛が凝縮・凝集され分離されるからである。この時、凝縮・凝集し溶融亜鉛となったものは、液滴となって下方へ滴下し回収される。
 セラミックス・ペレットの材質は、冷却チューブと同様で、炭化珪素(SiC)が好ましい。
The present inventors have made further studies to further increase the zinc recovery rate. As a result, the gas that passes between the cooling tubes and does not come into contact with the tube surface still contains zinc vapor and molten zinc fine particles. Thus, it has been found that a ceramic pellet can be arranged downstream of the cooling tube to condense, aggregate and collect zinc.
That is, when the gas containing zinc vapor or molten zinc fine particles passes through the gaps between the ceramic pellets, it comes into contact with the pellet surface, and the zinc is condensed, aggregated and separated. At this time, the condensed and agglomerated molten zinc becomes droplets and is dropped and recovered.
The material of the ceramic pellet is the same as that of the cooling tube, and silicon carbide (SiC) is preferable.
(d)還元処理におけるエネルギー効率向上の観点から、亜鉛回収後の還元処理ガスを外熱式ロータリーキルンの燃焼バーナーの燃料に再利用できることを見出した。還元処理ガスは主にCO(一酸化炭素)とCO(二酸化炭素)で構成されており、燃料としてCOを使用することができる。 (D) From the viewpoint of improving the energy efficiency in the reduction treatment, it was found that the reduction treatment gas after zinc recovery can be reused as the fuel for the combustion burner of the externally heated rotary kiln. The reducing gas is mainly composed of CO (carbon monoxide) and CO 2 (carbon dioxide), and CO can be used as a fuel.
 さらに、外熱式ロータリーキルンの外燃バーナーの燃焼ガス(主にCO)は約1000℃のガス温であるため、その燃焼ガスを予熱・乾燥のための内熱式ロータリーキルンの内部ガスに導入することにより、燃焼ガスの持つ顕熱を有効利用することができる。 Furthermore, since the combustion gas (mainly CO 2 ) of the external combustion burner of the external heating rotary kiln has a gas temperature of about 1000 ° C., the combustion gas is introduced into the internal gas of the internal heating rotary kiln for preheating and drying. Thus, the sensible heat of the combustion gas can be used effectively.
 もちろん、還元処理ガスを、外熱式ロータリーキルンの燃焼バーナーではなく、予熱・乾燥ステップの内熱式ロータリーキルンの燃焼用ガスとして導入することもできる。 Of course, the reducing gas can be introduced not as a combustion burner for an external heating rotary kiln but as a combustion gas for an internal heating rotary kiln in a preheating / drying step.
 一方、金属亜鉛蒸気を含む還元処理ガスを冷却する過程で、還元処理ガス中にCO2が存在すると、金属亜鉛蒸気がCO2で酸化され、粗酸化亜鉛(ZnO)になり、金属亜鉛の回収ができないという問題があることが分かった。これは、CO/CO2比が低いほど、亜鉛が金属蒸気として存在できる平衡温度が高くなるからである。
 平均的な電炉ダストによる含炭成型体の還元処理ガス中には約20%のCO2が含まれている。発明者らが鋭意検討したところ、還元処理ガス中のCO2濃度を3%以下に下げれば、金属亜鉛蒸気の酸化が抑制され、金属亜鉛が効率よく回収できることを見出した。本発明者らの研究結果では、還元処理ガス中のCO2濃度が3%以下であれば、金属亜鉛回収率(電炉ダスト中に含有される亜鉛量に対する回収亜鉛量)は90%以上確保できることが分かった。
 そこで、本発明者らは、CO2をCOに変換する改質(以下、本明細書でCO2改質といい、その処理を行うことをCO2改質処理という。)を行い、還元処理ガス中のCO2濃度を低減させることに取り組んだ。例えば、外熱ロータリーキルン内に粉状炭材を装入し、ロータリーキルン内で撹拌させCO2ガスと接触させることによりCO2をCOに改質(CO2+C→2CO)できることを見出した。
On the other hand, if CO2 is present in the reducing gas in the process of cooling the reducing gas containing metal zinc vapor, the metal zinc vapor is oxidized with CO2 to become crude zinc oxide (ZnO), and metal zinc cannot be recovered. It turns out that there is a problem. This is because the lower the CO / CO2 ratio, the higher the equilibrium temperature at which zinc can exist as metal vapor.
About 20% of CO2 is contained in the reduction treatment gas of the carbon-containing molded article by the average electric furnace dust. As a result of intensive studies by the inventors, it has been found that if the CO2 concentration in the reducing gas is reduced to 3% or less, oxidation of metal zinc vapor is suppressed and metal zinc can be efficiently recovered. According to the research results of the present inventors, if the CO2 concentration in the reducing gas is 3% or less, the metal zinc recovery rate (the amount of recovered zinc with respect to the amount of zinc contained in the electric furnace dust) can be ensured to be 90% or more. I understood.
Therefore, the present inventors perform reforming to convert CO2 into CO (hereinafter referred to as CO2 reforming in the present specification, and performing the processing is referred to as CO2 reforming processing), and reducing the gas in the reduction processing gas. Worked on reducing CO2 concentration. For example, it has been found that CO2 can be reformed to CO (CO2 + C → 2CO) by charging a powdered carbon material into an external heat rotary kiln, stirring in the rotary kiln and bringing it into contact with CO2 gas.
 本発明は、上記知見を基に成されたものであり、その要旨とするところは以下のとおりである。
(1)
 酸化鉄と酸化亜鉛を含む電炉ダスト、炭材、バインダーおよび水を混合し成型して含炭成型体を製造する含炭成型体製造ステップと、
 前記含炭成型体を加熱し、乾燥させる予熱ステップと、
 前記予熱ステップで加熱し乾燥した含炭成型体を、閉空間内でさらに加熱して酸化鉄を還元し還元鉄にする還元処理ステップと、
 前記還元処理ステップにて発生した還元処理ガスから亜鉛を回収する亜鉛回収ステップを有することを特徴とする電炉ダストからの鉄および亜鉛の回収方法。
(2)
 前記予熱ステップでの含炭成型体の加熱温度が740℃以上907℃以下であることを特徴とする(1)に記載の電炉ダストからの鉄および亜鉛の回収方法。
(3)
 前記還元処理ステップでの含炭成型体の加熱温度が980℃以上1150℃以下であることを特徴とする(1)または(2)に記載の電炉ダストからの鉄および亜鉛の回収方法。
(4)
 前記予熱ステップを内熱式ロータリーキルンで処理し、前記還元処理ステップを外熱式ロータリーキルンで処理することを特徴とする(1)~(3)のいずれか1つに記載の電炉ダストからの鉄および亜鉛の回収方法。
(5)
 前記還元処理ステップにおいて、CO2改質処理を行い、還元処理ガス中のCO2濃度を3%以下にすることを特徴とする(1)~(4)のいずれか1つに記載の電炉ダストからの鉄および亜鉛の回収方法。
(6)前記CO2改質処理が、前記還元処理ステップにおいて粉状炭材を前記閉空間内に装入することを特徴とする(5)に記載の電炉ダストからの鉄および亜鉛の回収方法。
(7)
 前記亜鉛回収ステップにて亜鉛を回収した後の還元処理ガスを、前記還元処理ステップの加熱用燃料にすることを特徴とする(1)~(6)のいずれか1つに記載の電炉ダストからの鉄および亜鉛の回収方法。
(8)
 前記亜鉛回収ステップが鉛スプラッシュ・コンデンサーにより亜鉛を回収する手段を有することを特徴とする(1)~(7)のいずれか1つに記載の電炉ダストからの鉄および亜鉛の回収方法。
(9)
 前記亜鉛回収ステップが、還元処理ガスを冷却して亜鉛を凝縮分離することにより回収することを特徴とする(1)~(7)のいずれか1つに記載の電炉ダストからの鉄および亜鉛の回収方法。
(10)
 前記亜鉛回収ステップが、内部を冷却した炭化珪素製チューブと還元処理ガスを接触させることを特徴とする(9)に記載の電炉ダストからの鉄および亜鉛の回収方法。
(11)
 前記亜鉛回収ステップにおいて、炭化珪素製チューブと還元処理ガスを接触させた後、さらに炭化珪素製ペレットと還元処理ガスを接触させることを特徴とする(10)に記載の電炉ダストからの鉄および亜鉛の回収方法。
(12)
 酸化鉄と酸化亜鉛を含む電炉ダストから鉄および亜鉛を回収する装置において、
 酸化鉄と酸化亜鉛を含む電炉ダスト、炭材、バインダーおよび水を混合し成型して含炭成型体を製造する含炭成型体製造手段と、
 前記含炭成型体を加熱し乾燥させる予熱手段と、
 前記予熱設備で加熱した含炭成型体をさらに加熱して還元鉄を製造する還元処理手段と、
 前記還元処理手段で発生した還元処理ガスから亜鉛を回収する亜鉛回収手段を有することを特徴とする電炉ダストからの鉄および亜鉛の回収装置。
(13)
 前記予熱手段が内熱式ロータリーキルンであり、前記還元処理手段が外熱式ロータリーキルンであることを特徴とする(12)に記載の電炉ダストからの鉄および亜鉛の回収装置。
(14)
 前記外熱式ロータリーキルンに、粉状炭材装入装置を設置したことを特徴とする(13)に記載の電炉ダストからの鉄および亜鉛の回収装置。
(15)
 前記亜鉛回収手段において亜鉛を回収した後の還元処理ガスを前記還元処理手段の加熱用燃料にするための還元処理ガス再利用手段を有することを特徴とする(12)~(14)のいずれか1つに記載の電炉ダストからの鉄および亜鉛の回収装置。
(16)
 前記亜鉛回収手段が鉛スプラッシュ・コンデンサーを有することを特徴とする(12)~(15)のいずれか1つに記載の電炉ダストからの鉄および亜鉛の回収装置。
(17)
 前記亜鉛回収手段が内部を冷却した炭化珪素製チューブにより還元処理ガスを冷却し、亜鉛を凝縮させて分離回収する亜鉛凝縮器を有することを特徴とする(12)~(15)のいずれか1つに記載の電炉ダストからの鉄および亜鉛の回収装置。
(18)
 前記亜鉛凝縮器中に、1本または2本以上の前記炭化珪素製チューブが還元処理ガスの流れ方向に直交していることを特徴とする(17)に記載の電炉ダストからの鉄および亜鉛の回収装置。
(19)
 前記炭化珪素製チューブが水平に配置されていることを特徴とする(18)に記載の電炉ダストからの鉄および亜鉛の回収装置。
(20)
 前記亜鉛凝縮器において、炭化珪素製チューブの下流側に炭化珪素製ペレットを配置して、さらに亜鉛を凝縮させて分離回収することを特徴とする(17)~(19)のいずれか1つに記載の電炉ダストからの鉄および亜鉛の回収装置。
The present invention has been made on the basis of the above findings, and the gist thereof is as follows.
(1)
A carbon-containing molded body manufacturing step of manufacturing a carbon-containing molded body by mixing and molding an electric furnace dust containing iron oxide and zinc oxide, a carbonaceous material, a binder and water;
A preheating step of heating and drying the carbon-containing molded body;
A reduction treatment step in which the carbon-containing molded body heated and dried in the preheating step is further heated in a closed space to reduce iron oxide to reduced iron, and
A method for recovering iron and zinc from electric furnace dust, comprising a zinc recovery step of recovering zinc from the reduction processing gas generated in the reduction processing step.
(2)
The method for recovering iron and zinc from electric furnace dust according to (1), wherein the heating temperature of the carbon-containing molded body in the preheating step is 740 ° C or higher and 907 ° C or lower.
(3)
The method for recovering iron and zinc from electric furnace dust according to (1) or (2), wherein the heating temperature of the carbon-containing molded body in the reduction treatment step is from 980 ° C to 1150 ° C.
(4)
The preheating step is treated with an internal heating rotary kiln, and the reduction treatment step is treated with an external heating rotary kiln. The iron from the electric furnace dust according to any one of (1) to (3) and Zinc recovery method.
(5)
In the reduction treatment step, the CO2 reforming treatment is performed to reduce the CO2 concentration in the reduction treatment gas to 3% or less from the electric furnace dust according to any one of (1) to (4), Recovery method for iron and zinc.
(6) The method for recovering iron and zinc from electric furnace dust according to (5), wherein the CO2 reforming treatment is performed by charging powdered carbonaceous material into the closed space in the reduction treatment step.
(7)
From the electric furnace dust according to any one of (1) to (6), wherein the reduction treatment gas after the zinc is collected in the zinc collection step is used as a heating fuel in the reduction treatment step. Recovery method of iron and zinc.
(8)
The method for recovering iron and zinc from electric furnace dust according to any one of (1) to (7), wherein the zinc recovery step includes means for recovering zinc with a lead splash condenser.
(9)
The zinc recovery step recovers the iron and zinc from the electric furnace dust according to any one of (1) to (7), wherein the reduction treatment gas is cooled and the zinc is condensed and separated. Collection method.
(10)
The method for recovering iron and zinc from electric furnace dust as set forth in (9), wherein the zinc recovery step comprises bringing a silicon carbide tube whose interior has been cooled into contact with a reduction treatment gas.
(11)
In the zinc recovery step, after bringing the silicon carbide tube into contact with the reduction treatment gas, the silicon carbide pellets and the reduction treatment gas are further brought into contact with each other, and iron and zinc from the electric furnace dust according to (10) Recovery method.
(12)
In an apparatus for recovering iron and zinc from electric furnace dust containing iron oxide and zinc oxide,
A carbon-containing molded body manufacturing means for manufacturing a carbon-containing molded body by mixing and molding an electric furnace dust containing iron oxide and zinc oxide, a carbonaceous material, a binder and water;
Preheating means for heating and drying the carbon-containing molded body,
Reduction treatment means for producing reduced iron by further heating the carbon-containing molded body heated by the preheating equipment,
An apparatus for recovering iron and zinc from electric furnace dust, comprising zinc recovery means for recovering zinc from a reduction treatment gas generated by the reduction treatment means.
(13)
The apparatus for recovering iron and zinc from electric furnace dust according to (12), wherein the preheating means is an internal heating rotary kiln, and the reduction treatment means is an external heating rotary kiln.
(14)
The apparatus for recovering iron and zinc from electric furnace dust according to (13), wherein a powdered carbonaceous material charging device is installed in the externally heated rotary kiln.
(15)
Any one of (12) to (14), characterized in that it has a reduction processing gas reuse means for using the reduction processing gas after recovering zinc in the zinc recovery means as a heating fuel for the reduction processing means. The recovery apparatus of iron and zinc from the electric furnace dust as described in one.
(16)
The apparatus for recovering iron and zinc from electric furnace dust according to any one of (12) to (15), wherein the zinc recovery means has a lead splash capacitor.
(17)
Any one of (12) to (15), wherein the zinc recovery means has a zinc condenser that cools the reducing gas with a silicon carbide tube cooled inside and condenses and separates zinc. For recovery of iron and zinc from electric furnace dust.
(18)
In the zinc condenser, one or more of the silicon carbide tubes are orthogonal to the flow direction of the reducing gas, and the iron and zinc from the electric furnace dust according to (17) Recovery device.
(19)
The apparatus for recovering iron and zinc from electric furnace dust according to (18), wherein the silicon carbide tubes are horizontally disposed.
(20)
In the zinc condenser, a silicon carbide pellet is disposed downstream of the silicon carbide tube, and zinc is further condensed and separated and recovered. An apparatus for recovering iron and zinc from the described electric furnace dust.
 本発明によれば、酸化鉄と酸化亜鉛を有する電炉ダストから高品位の還元鉄を製造するだけでなく、高品位の金属亜鉛を効率よく、またコンパクトな設備により回収することができる。さらに、排出されるガスの再利用により、エネルギー効率を高めることができる。すなわち、以下の効果が得られる。 According to the present invention, not only high-quality reduced iron is produced from electric furnace dust containing iron oxide and zinc oxide, but also high-quality metallic zinc can be efficiently recovered with a compact facility. Furthermore, the energy efficiency can be increased by reusing the exhausted gas. That is, the following effects can be obtained.
(a)電炉ダストから金属亜鉛を回収する技術の現在の主流であるウエルツ法とISP法という2工程の組合せが、本発明により1工程で済むことになるため、大幅な省プロセス、省エネルギーが可能となる。 (A) The present mainstream technology for recovering metallic zinc from electric furnace dust is a combination of the two steps of the Welts method and the ISP method, which requires only one step according to the present invention. It becomes.
(b)前述のとおり2工程を1工程で済ますことができること、および重装備のISP法の投資を回避できることから、本発明により設備投資も大幅に圧縮することが可能となる。 (B) As described above, the two steps can be completed in one step, and the investment of the heavy equipment ISP method can be avoided, so that the present invention can greatly reduce the capital investment.
(c)本発明で製造される還元鉄(DRI)の金属化率は、従来のRHFよりも高く、条件を調整すれば95%と高いため、電炉メーカーでは鉄スクラップ代替として使用可能であり、電炉メーカーへの完全リサイクルが可能となる。 (C) Since the metallization rate of reduced iron (DRI) produced in the present invention is higher than conventional RHF and is as high as 95% if conditions are adjusted, it can be used as an iron scrap substitute in electric furnace manufacturers. Complete recycling to electric furnace manufacturers is possible.
(d)ウエルツ法の問題点の一つであるダムリングの生成を回避できることから安定操業が可能となる。 (D) Since the generation of dam rings, which is one of the problems of the Welts method, can be avoided, stable operation is possible.
(e)本発明によると、電炉ダストから還元鉄を製造する方法と金属亜鉛を回収する方法とを一貫システムとして提供できる。
(f)さらに還元処理ガスをCO2改質処理を行うことにより、効率よく金属亜鉛を回収することができる。
(E) According to the present invention, a method for producing reduced iron from electric furnace dust and a method for recovering metallic zinc can be provided as an integrated system.
(F) Further, by performing the CO2 reforming treatment on the reducing gas, metallic zinc can be efficiently recovered.
本発明に係る電炉ダストからの鉄および亜鉛の回収方法・設備の概念図である。It is a conceptual diagram of the recovery method and equipment of iron and zinc from electric furnace dust according to the present invention. 本発明に係る含炭成型体製造ステップの概念図である。It is a conceptual diagram of the carbon-containing molded object manufacturing step which concerns on this invention. 本発明に係る試験装置の概念図である。1 is a conceptual diagram of a test apparatus according to the present invention. 本発明に係る亜鉛回収装置の概念図である。図4(a)は、冷却チューブを配置した例である。図4(b)は冷却チューブにさらにセラミック・ペレット充填層を配置した例である。It is a conceptual diagram of the zinc collection | recovery apparatus which concerns on this invention. FIG. 4A shows an example in which a cooling tube is arranged. FIG. 4B shows an example in which a ceramic pellet packed layer is further arranged on the cooling tube. 含炭成型体の還元処理温度と滞留時間(還元処理時間)の関係を示す図である。It is a figure which shows the relationship between the reduction process temperature of a carbon-containing molded object, and residence time (reduction process time).
 以下に、本発明の詳細について図1に示す概念図を例にして説明する。なお、以下に示す実施態様は一例であり、本発明の実施態様はこれに限定されることはない。 Hereinafter, the details of the present invention will be described using the conceptual diagram shown in FIG. 1 as an example. In addition, the embodiment shown below is an example, and the embodiment of the present invention is not limited to this.
[含炭成型体製造ステップ]
 含炭成型体製造ステップにおいては、酸化鉄と酸化亜鉛を含む電炉ダスト10に、還元剤となる炭素材(炭材)、粒子間をつなぐ役目をもつバインダー材、そして水を混合し、成型して、含炭成型体を製造する(図2)。
[Carbon-containing molded body manufacturing step]
In the carbon-containing molded product manufacturing step, the electric furnace dust 10 containing iron oxide and zinc oxide is mixed with a carbon material (carbon material) that serves as a reducing agent, a binder material that serves to connect the particles, and water. Thus, a carbon-containing molded body is manufactured (FIG. 2).
 本発明における還元鉄の原料として、製鉄所等の電気炉式製鋼プロセスで発生するダストである電炉ダストを利用している。電炉ダストは、酸化鉄の含有量も多く再利用のニーズが強い。 As the raw material for reduced iron in the present invention, electric furnace dust, which is dust generated in an electric furnace type steelmaking process at a steel mill or the like, is used. Electric furnace dust has a high content of iron oxide, and there is a strong need for reuse.
 また、電気炉においてはスクラップを使用するため、電炉ダストには酸化鉄だけでなく酸化亜鉛も多く含まれている。本発明はこうした酸化鉄だけでなく酸化亜鉛を含有する電炉ダストであれば、その種類は問わない。 Also, since scrap is used in the electric furnace, the electric furnace dust contains not only iron oxide but also a lot of zinc oxide. The present invention may be of any type as long as it is an electric furnace dust containing not only such iron oxide but also zinc oxide.
 これらの電炉ダストは微粉であるため、その扱いが難しい。しかし、微粉であるがためその比表面積(単位重量あたりの表面積)が広くなり、還元反応が進みやすく、脱亜鉛性もよくなる。 These electric furnace dusts are fine and difficult to handle. However, since it is a fine powder, its specific surface area (surface area per unit weight) is widened, the reduction reaction easily proceeds, and the dezincing property is improved.
 そこで、本発明者らは、電炉ダスト粒子の比表面積が大きいまま還元反応性をよくするため、電炉ダストを微粉のまま使用することに着想し、その使用方法について鋭意検討した。その結果、電炉ダストの平均粒径(D50:累積粒径分布において細粒からの累積頻度が50%に相当する粒径)が3.0μm以下であれば、実用上十分な還元反応性を得ることができることを見出した。 Therefore, the present inventors conceived of using the electric furnace dust as fine powder in order to improve the reduction reactivity while keeping the specific surface area of the electric furnace dust particles large, and intensively studied the usage method. As a result, practically sufficient reduction reactivity can be obtained if the average particle size (D50: particle size corresponding to 50% cumulative frequency from fine particles in the cumulative particle size distribution) of the electric furnace dust is 3.0 μm or less. I found that I can do it.
 既存の電炉ダストの捕集はバグフィルターで行われている。回収された電炉ダストは発塵防止のため疑似粒子(ペレット)化される場合がある。ペレット径は約8mmあるため、ペレットをボールミル等で粉砕し、粒径3.0μm以下にしてから、含炭成型体にするとよい。 * Existing electric furnace dust is collected by a bag filter. The collected electric furnace dust may be converted into pseudo particles (pellets) to prevent dust generation. Since the pellet diameter is about 8 mm, the pellet may be pulverized with a ball mill or the like to obtain a particle size of 3.0 μm or less before forming a carbon-containing molded body.
 電炉ダスト以外にも、製鉄所の転炉で発生する転炉ダストも酸化鉄と酸化亜鉛を含むことから、本発明の対象原料となる。その場合は、転炉ダストの水分が25%程度と高いため、生石灰を配合するなどして水分調整をしてから含炭成型体とすればよい。 In addition to the electric furnace dust, the converter dust generated in the converter at the steel works also contains iron oxide and zinc oxide, and is therefore a target material of the present invention. In that case, since the moisture of the converter dust is as high as about 25%, the moisture content may be adjusted by blending quick lime or the like, and then the carbon-containing molded body may be obtained.
 炭材は、酸化鉄を金属鉄に還元するための還元剤であり、C当量で0.7~1.3の範囲となるように添加する。ここで、C当量とは、下記式1、式2に基づく理論炭素量に対する比率である。電炉ダストの酸化鉄が全量Fe2O3であり、酸化亜鉛が全量ZnOとすれば、Fe2O3の1モルを還元して2モルの金属鉄を得るためには3モルのC(炭素)が必要で、ZnOの1モルを還元して1モルの亜鉛を得るためには1モルのCが必要である。これが理論炭素量である。理論炭素量の0.7~1.3倍のCを添加するという意味である。 The carbonaceous material is a reducing agent for reducing iron oxide to metallic iron, and is added so that the C equivalent is in the range of 0.7 to 1.3. Here, the C equivalent is a ratio to the theoretical carbon amount based on the following formulas 1 and 2. If the total amount of iron oxide in the electric furnace dust is Fe 2 O 3 and the total amount of zinc oxide is ZnO, in order to reduce 1 mol of Fe 2 O 3 to obtain 2 mol of metallic iron, 3 mol of C (carbon ) And 1 mol of C is required to reduce 1 mol of ZnO to obtain 1 mol of zinc. This is the theoretical carbon content. This means that 0.7 to 1.3 times the theoretical amount of carbon is added.
 Fe2O3 + 3C + ΔH(1) → 2Fe + 3CO    ・・・(式1)
 ZnO + C + ΔH(2) → Zn + CO      ・・・(式2)
 上記式1、式2の化学反応はいずれも吸熱反応であり、吸熱量は、それぞれ
  ΔH(1)=966×103kcal/t(Fe)、
  ΔH(2)=882×103kcal/t(Zn) である。
 これらの反応を起こすためには、上記吸熱量に相当する熱量を、外部から加える必要がある。
Fe 2 O 3 + 3C + ΔH (1) → 2Fe + 3CO (Formula 1)
ZnO + C + ΔH (2) → Zn + CO (Formula 2)
The chemical reactions of the above formulas 1 and 2 are endothermic reactions, and the endothermic amount is ΔH (1) = 966 × 10 3 kcal / t (Fe),
ΔH (2) = 882 × 10 3 kcal / t (Zn).
In order to cause these reactions, it is necessary to add a heat amount corresponding to the endothermic amount from the outside.
 バインダーは、例えばコーンスターチである。含炭成型体の乾燥後圧潰強度が20kg/cm以上となるように添加する。成型体の乾燥後圧潰強度が20kg/cm未満では、ハンドリングおよびロータリーキルン内での転動により成型体が一部破壊されるからである。 The binder is, for example, corn starch. It is added so that the crushing strength after drying of the carbon-containing molded product is 20 kg / cm 2 or more. The dried crush strength of less than 20 kg / cm 2 of the molded body, the molded body by tumbling in a handling and rotary kiln is because being partly destroyed.
 成型体の水分は10%前後となるよう、必要に応じて水を添加して調整することができる。 The water of the molded body can be adjusted by adding water as necessary so that the water content is around 10%.
 これらの原料を混合機に投入し、原料を混合する。混合機は、回転式のバッチタイプが通常使用されるが、原料を均一に混合できれば、その方式は特に限定しない。混合後の配合原料は中継槽を経て、押し出し成型機やロール成形機などで成型処理される。成型処理された混合原料体を含炭成型体20と称する。 こ れ ら Put these raw materials into the mixer and mix the raw materials. As the mixer, a rotary batch type is usually used, but the method is not particularly limited as long as the raw materials can be mixed uniformly. The blended raw material after mixing passes through a relay tank and is molded by an extrusion molding machine or a roll molding machine. The mixed raw material body subjected to the molding process is referred to as a carbon-containing molded body 20.
 例えば、電炉ダストと炭材とバインダーに水分を加えて混練し、造粒する。この時、孔の開いたダイスに混練した材料を押し込み、圧力をかけて成型すると、高強度の含炭成型体を得ることができる。電炉ダストや炭材の性状と、添加する水分量、さらにはダイスの孔径、深さ、押し込み圧力などを調整することにより、原料粉に適合した含炭成型体の製造条件が得られる。 For example, electric furnace dust, carbonaceous material and binder are mixed with water and kneaded and granulated. At this time, when the kneaded material is pushed into a die having a hole and molded by applying pressure, a high strength carbon-containing molded body can be obtained. By adjusting the properties of the electric furnace dust and charcoal, the amount of water to be added, and the hole diameter, depth, indentation pressure, and the like of the die, conditions for producing a carbon-containing molded article suitable for the raw material powder can be obtained.
 含炭成型体の形は、球状または円柱状とすることが一般的であるが、立方体や直方体、もしくは三角柱、およびブリケットなど、その形は限定されない。含炭成型体の大きさは、後の還元処理を考慮して直径10~30mm程度の球状もしくは直径10~30mmで長さ10~30mmの円柱状とするとよい。直径や長さが10mmより小さいと還元処理後の還元鉄が小さくなる。また、10mmより小さいと、表面積の増大に伴いロータリーキルン内での転動に伴う粉化率が上昇し、加えて、還元に伴い約40%も収縮することから還元鉄(DRI)のサイズが小さくなり過ぎ、リサイクル時のハンドリング上の問題が生ずる。また、30mmより大きくすると、粉化率は減少するものの、還元所要時間が増加してしまうため、還元炉内の滞留時間が一定であれば金属化率、脱亜鉛率が低下してしまうという問題が生じるためである。好ましくは直径や長さが10~30mmにするとよく、さらには15~25mmにすることが好ましい。 The shape of the carbon-containing molded body is generally spherical or cylindrical, but the shape is not limited to a cube, a rectangular parallelepiped, a triangular prism, or a briquette. The size of the carbon-containing molded article is preferably a spherical shape having a diameter of about 10 to 30 mm or a cylindrical shape having a diameter of 10 to 30 mm and a length of 10 to 30 mm in consideration of the subsequent reduction treatment. If the diameter or length is smaller than 10 mm, the reduced iron after the reduction treatment becomes small. On the other hand, if it is smaller than 10 mm, the powdering rate accompanying rolling in the rotary kiln increases as the surface area increases, and in addition, the size of reduced iron (DRI) is reduced because it shrinks by about 40% with reduction. It becomes too much, and the handling problem at the time of recycling arises. Moreover, if it is larger than 30 mm, the powdering rate decreases, but the reduction required time increases. Therefore, if the residence time in the reduction furnace is constant, the metalization rate and the dezincification rate are reduced. This is because. The diameter and length are preferably 10 to 30 mm, and more preferably 15 to 25 mm.
 成型体とすることにより、成品としての還元鉄も若干収縮するものの成型体で得られ、そのまま電気炉原料とすることができる。原料の切り出しから、所定の大きさの含炭成形体を選別するまでの一連の工程に要する装置を含炭成型体製造装置11と呼ぶ。含炭成型体製造装置11を形成する各個別の装置は、前述した機能を達成できるものであれば、その態様は特に問わない。 By using a molded body, reduced iron as a product is slightly contracted, but can be obtained as a molded body and used as an electric furnace raw material as it is. An apparatus required for a series of processes from cutting out the raw material to selecting a carbon-containing molded body having a predetermined size is referred to as a carbon-containing molded body manufacturing apparatus 11. Each individual apparatus forming the carbon-containing molded body manufacturing apparatus 11 is not particularly limited as long as the functions described above can be achieved.
[含炭成型体製造手段]
 前述したように、電炉ダスト10を始めとして、炭材、バインダー、水の各原料を混合機に投入し、原料を混合し成型する(図2)。各原料の切り出しから、混合、成型し、成形処理された含炭成型体20を払い出す一連の装置が含炭成型体製造手段(含炭成型単製造装置)11である。
[Carbon-containing molded body production means]
As described above, the electric furnace dust 10 and other carbonaceous materials, binders, and water raw materials are charged into the mixer, and the raw materials are mixed and molded (FIG. 2). A series of devices for cutting out each raw material, mixing, molding, and delivering the molded carbon-containing molded body 20 is a carbon-containing molded body manufacturing means (carbon-containing molded single manufacturing apparatus) 11.
 各原料の切り出しは、計量切り出しができるものであれば、その態様は問わない。例えば、振動フィーダなどが適用される。 The cutting of each raw material is not limited as long as it can be cut out by metering. For example, a vibration feeder or the like is applied.
 混合機は、回転式のバッチタイプが通常使用されるが、原料を均一に混合できれば、その方式は特に限定しない。混合後の配合原料は中継槽を経て、押し出し成型機やロール成形機などで成型処理される。 The rotary batch type is usually used as the mixer, but the method is not particularly limited as long as the raw materials can be mixed uniformly. The blended raw material after mixing passes through a relay tank and is molded by an extrusion molding machine or a roll molding machine.
 成形機も、所定の形状に成型できればその態様は問わない。前述したように、含炭成型体の形は、球状または円柱状とすることが一般的であるが、立方体や直方体、もしくは三角柱、およびブリケットなど、その形は限定されない。例えば、孔の開いたダイスに混練した材料を押し込み、圧力をかけて成型すると、高強度の含炭成型体を得ることができる。電炉ダストや炭材の性状と、添加する水分量、さらにはダイスの孔径、深さ、押し込み圧力などを調整することにより、原料粉に適合した含炭成型体の製造条件が得られる。 The form of the molding machine is not limited as long as it can be molded into a predetermined shape. As described above, the shape of the carbon-containing molded body is generally spherical or cylindrical, but the shape is not limited to a cube, a rectangular parallelepiped, a triangular prism, a briquette, or the like. For example, when a kneaded material is pushed into a die having a hole and molded by applying pressure, a high-strength carbon-containing molded body can be obtained. By adjusting the properties of the electric furnace dust and charcoal, the amount of water to be added, and the hole diameter, depth, indentation pressure, and the like of the die, conditions for producing a carbon-containing molded article suitable for the raw material powder can be obtained.
 含炭成型体の払い出し装置も、特にその態様は問わない。ただし、含炭成型体を破壊するようなものは避けたほうがよい。 The form of the carbon-containing molded body dispensing device is not particularly limited. However, it is better to avoid things that destroy the carbon-containing molded body.
[予熱ステップ]
 本発明における予熱ステップとは、含炭成型体製造ステップ11で製造された含炭成型体20を加熱することにより、含炭成型体中に含まれる水分を蒸発させ、塩素(Cl)などの揮発性不純物を除去した含炭成型体を排出するまでの一連の工程を指す。含炭成型体は、電炉ダストを原料としているため、塩素などのいろいろな不純物が混入している。特に塩素などの揮発性不純物は、還元処理後の還元処理ガス中に混入し、設備腐食などの原因となるため、還元処理前に取り除く。また、水分も還元処理ガス中に混入すると、気化した亜鉛の再酸化を助長するため、これを取り除く。
[Preheating step]
The preheating step in the present invention refers to heating the carbon-containing molded body 20 manufactured in the carbon-containing molded body manufacturing step 11, thereby evaporating water contained in the carbon-containing molded body and volatilizing chlorine (Cl) or the like. It refers to a series of steps until discharging the carbon-containing molded product from which volatile impurities have been removed. Since the carbon-containing molded product is made of electric furnace dust, various impurities such as chlorine are mixed. In particular, volatile impurities such as chlorine are mixed in the reducing gas after the reduction treatment and cause corrosion of the equipment, and therefore are removed before the reduction treatment. Further, when moisture is mixed in the reducing gas, it is removed to promote reoxidation of vaporized zinc.
 亜鉛の沸点は907℃である。このことから、予熱ステップにおける含炭成型体の加熱温度は907℃以下にするとよい。907℃以上にすると亜鉛が蒸発する可能性が高くなる。亜鉛が蒸発すると、排ガス中に混入し、再酸化されて酸化亜鉛(粗酸化亜鉛)としてダストとして回収され、再利用される。これは、処理の効率性の観点から適当ではない。含炭成型体の加熱温度は、できれば890℃以下にするとよい。実操業における温度のばらつきを考慮すると880℃以下にするとさらによい。 The boiling point of zinc is 907 ° C. Therefore, the heating temperature of the carbon-containing molded body in the preheating step is preferably 907 ° C. or lower. If it is 907 ° C. or higher, the possibility that zinc will evaporate increases. When zinc evaporates, it is mixed in exhaust gas, reoxidized, recovered as dust as zinc oxide (crude zinc oxide), and reused. This is not appropriate from the viewpoint of processing efficiency. The heating temperature of the carbon-containing molded body is preferably 890 ° C. or less. Considering temperature variation in actual operation, it is better to set the temperature to 880 ° C. or lower.
 加熱温度の下限は低すぎると、揮発性不純物(特に塩素)を取り除くことができない。通常の電炉ダスト中には、亜鉛の10%は塩化亜鉛(ZnCl2)として存在している。塩化亜鉛の沸点が732℃であるので、予熱温度は740℃以上とするとよい。740℃より低い温度であると、塩化亜鉛が次の還元処理ステップに持ち込まれる可能性が高くなるからである。含炭成型体内の温度バラツキなどを考慮すると、予熱ステップでの含炭成型体の加熱温度は750℃以上が好ましく、780℃以上であればより好ましく、できれば800℃以上とするとよい。
 こうして、揮発性不純物除去し、加熱され、乾燥された含炭成型体30は、次の還元処理ステップへ移送される。
If the lower limit of the heating temperature is too low, volatile impurities (particularly chlorine) cannot be removed. In normal electric furnace dust, 10% of zinc is present as zinc chloride (ZnCl2). Since the boiling point of zinc chloride is 732 ° C, the preheating temperature is preferably 740 ° C or higher. This is because if the temperature is lower than 740 ° C., there is a high possibility that zinc chloride is brought into the next reduction treatment step. Considering temperature variation in the carbon-containing molded body, the heating temperature of the carbon-containing molded body in the preheating step is preferably 750 ° C. or higher, more preferably 780 ° C. or higher, and preferably 800 ° C. or higher.
Thus, the carbon-containing molded body 30 from which volatile impurities have been removed, heated and dried is transferred to the next reduction treatment step.
[予熱手段]
 予熱ステップでは、揮発性不純物や水分除去のための含炭成型体20の予熱・乾燥が目的であるため、特に雰囲気は問わない。したがって、含炭成型体20を加熱できる手段であれば、その態様は問わない。しかし、揮発した塩化亜鉛を冷却し凝集させて回収し、再度原料として使用するため、発生するガスを大気放散させない構造が望ましい。さらに、次工程の還元処理工程へ移送に際し、酸素(大気)の混入を避ける必要があることから、閉空間での処理が好ましい。この観点から、予熱手段22としては内熱式ロータリーキルンを適用することが好ましい。内熱式ロータリーキルンは、ウエルツ法でも適用されているため、含炭成型体のようなペレット状の電炉ダストを加熱することについて実績がある。本発明においては、内熱式ロータリーキルンを用いて含炭成型体を予熱することを例として説明する。
[Preheating means]
In the preheating step, since the purpose is to preheat and dry the carbon-containing molded body 20 for removing volatile impurities and moisture, the atmosphere is not particularly limited. Therefore, the aspect will not be ask | required if it is a means which can heat the carbon-containing molded object 20. FIG. However, since the volatilized zinc chloride is cooled, agglomerated and recovered and used again as a raw material, a structure that does not dissipate the generated gas to the atmosphere is desirable. Furthermore, since it is necessary to avoid the mixing of oxygen (atmosphere) at the time of transfer to the subsequent reduction treatment step, treatment in a closed space is preferable. From this viewpoint, it is preferable to apply an internal heating type rotary kiln as the preheating means 22. Since the internal heat type rotary kiln is also applied in the Wertz method, it has a track record of heating pellet-shaped electric furnace dust such as a carbon-containing molded body. In this invention, it demonstrates as an example preheating a carbon-containing molded object using an internal-heat-type rotary kiln.
 ウエルツ式に代表される内熱式ロータリーキルンでの還元処理の場合、原料中の脈石成分(SiO2やCaO)が、酸化鉄であるFe2O3、およびその還元中間物であるFeOとの間で、以下に示すような低融点物質を形成しやすい。
   Fe2O3・CaO:溶融点1206℃
   FeO・SiO2 :溶融点1180℃
   FeO・CaO :溶融点1105℃
In the case of reduction treatment in an internal heat rotary kiln represented by the Welts type, the gangue components (SiO2 and CaO) in the raw material are between Fe 2 O 3 that is iron oxide and FeO that is its reduction intermediate. Therefore, it is easy to form a low melting point material as shown below.
Fe 2 O 3 · CaO: Melting point 1206 ° C
FeO · SiO 2 : Melting point 1180 ° C
FeO ・ CaO: Melting point 1105 ° C
 脈石成分の含有量が多い場合や、焼成帯の原料温度が高すぎる場合、燃焼炎(バーナーフレーム)の温度が高すぎる場合、燃焼炎(バーナーフレーム)の形状が広角すぎてロータリーキルン内壁面をなめている場合などに、ロータリーキルン内壁面上に付着物の生成をもたらす。この付着物は、リング状に形成されるのでダムリングと呼ばれる。ダムリングは、ロータリーキルン内における被処理物(原料)の移動を妨げる上に、ダムリングが多量に連続して脱落する場合があり、安定操業の面から好ましくない。しかし、予熱ステップで用いる内熱式ロータリーキルンは、前述したように、高々900℃程度までしか加熱しないため、ダムリングは形成されない。
 また、内熱式ロータリーキルンは、その上流側からキルン内のガスを吸引排出するので、揮発性不純物や水分を含む排ガスを速やかにキルン外に排出することができる。
If the gangue component content is high, the raw material temperature of the firing zone is too high, the temperature of the combustion flame (burner frame) is too high, the shape of the combustion flame (burner frame) is too wide, and the inner wall surface of the rotary kiln In the case of licking, it produces deposits on the inner surface of the rotary kiln. Since this deposit is formed in a ring shape, it is called a dam ring. The dam ring hinders the movement of the object to be treated (raw material) in the rotary kiln, and the dam ring may fall off in a large amount continuously, which is not preferable from the viewpoint of stable operation. However, since the internal heating type rotary kiln used in the preheating step only heats up to about 900 ° C. as described above, no dam ring is formed.
Further, since the internal heat type rotary kiln sucks and discharges the gas in the kiln from the upstream side, the exhaust gas containing volatile impurities and moisture can be quickly discharged outside the kiln.
 内熱式ロータリーキルン22で予熱・乾燥された含炭成型体30は、キルンから排出され、次工程の還元処理装置へ移送される。内熱式ロータリーキルンからの排出装置23は、還元処理設備への装入装置31と一体として考えることが好ましい。後述するが、還元処理ステップにおいては、その雰囲気中に酸素の混入を極力避ける必要があるため、予熱手段(予熱装置)からの排出装置23、還元処理への装入装置31とも大気を遮断する機能を有することが好ましい。 The carbon-containing molded body 30 preheated and dried in the internal heat type rotary kiln 22 is discharged from the kiln and transferred to the reduction treatment apparatus in the next process. The discharge device 23 from the internal heat type rotary kiln is preferably considered as an integral part of the charging device 31 to the reduction treatment facility. As will be described later, in the reduction process step, it is necessary to avoid mixing oxygen in the atmosphere as much as possible. Therefore, the discharge device 23 from the preheating means (preheating device) and the charging device 31 for the reduction process are shut off from the atmosphere. It preferably has a function.
[還元処理ステップ]
 本発明における還元処理ステップとは、予熱ステップで予熱・乾燥された含炭成型体30を、閉空間内に装入し、加熱することにより含炭成型体中の酸化鉄および酸化亜鉛を還元し、鉄および亜鉛(蒸気)にする一連の工程である。還元処理中に大気(特に酸素)が混入すると、せっかく還元した鉄や亜鉛が再酸化するため、大気の混入を遮断した密閉された閉空間で処理することが重要である。
[Reduction processing step]
The reduction treatment step in the present invention is to reduce the iron oxide and zinc oxide in the carbon-containing molded body by charging and heating the carbon-containing molded body 30 preheated and dried in the preheating step. It is a series of steps to make iron and zinc (steam). If air (especially oxygen) is mixed during the reduction treatment, the reduced iron or zinc is reoxidized. Therefore, it is important that the treatment be performed in a closed space where air contamination is blocked.
 含炭成型体は、電炉ダストを微粉のまま炭材と混合するため、電炉ダストの比表面積が広く、還元剤となる炭材との反応性を高めることができ、還元処理温度を下げることができる。 The carbon-containing molded body mixes the electric furnace dust with the carbonaceous material in the form of fine powder. Therefore, the specific surface area of the electric furnace dust is wide, and the reactivity with the carbonaceous material as the reducing agent can be increased, and the reduction treatment temperature can be lowered it can.
 本発明者らは、本発明に係る含炭成型体を980℃~1150℃程度に加熱すれば実用上問題ない程度に還元反応が進むことを確認した。実験の結果(表3)から、酸化鉄をC(炭素)自体で還元するためには実用上980℃以上の温度が必要である。したがって、還元処理温度の下限は理想的には980℃である。しかし、含炭成型体内で微粉酸化鉄と炭素との接触状態などの因子も影響するので、還元処理温度は好ましくは1000℃以上であればよい。 The inventors of the present invention have confirmed that the reduction reaction proceeds to an extent that there is no practical problem if the carbon-containing molded body according to the present invention is heated to about 980 ° C. to 1150 ° C. From the experimental results (Table 3), in order to reduce iron oxide with C (carbon) itself, a temperature of 980 ° C. or higher is necessary in practice. Therefore, the lower limit of the reduction treatment temperature is ideally 980 ° C. However, factors such as the contact state between finely divided iron oxide and carbon in the carbon-containing molded body also have an influence, so the reduction treatment temperature is preferably 1000 ° C. or higher.
 還元処理の上限温度は、設備的耐熱性による。例えば、外熱式ロータリーキルンの場合、耐熱鋳鋼製が一般的であるので、その使用上限温度は1200℃である。設備の耐用を考慮して、使用上限温度を1150℃とするとよい。好ましくは1130℃、さらに好ましくは1100℃を上限とするとよい。1100℃程度で還元処理が進むため、従来の回転炉床式還元法(RHF)での1250℃や、ウエルツ法の1200℃に比べて低温化が達成できる。設備的耐熱性が上がれば、当然還元処理温度を上げることができる。 The upper limit temperature of the reduction treatment depends on the heat resistance of the equipment. For example, in the case of an external heat type rotary kiln, since it is generally made of heat-resistant cast steel, its upper limit temperature of use is 1200 ° C. In consideration of the durability of the equipment, the upper limit temperature of use should be 1150 ° C. The upper limit is preferably 1130 ° C, more preferably 1100 ° C. Since the reduction process proceeds at about 1100 ° C., a lower temperature can be achieved compared to 1250 ° C. in the conventional rotary hearth type reduction method (RHF) and 1200 ° C. in the Welts method. If the facility heat resistance is improved, the reduction treatment temperature can naturally be raised.
 還元処理の処理時間は温度との関係で決まる。本発明者らは、外熱式ロータリーキルンでの実験により、以下の式3で規定される還元処理温度(T℃)と還元処理時間(滞留時間)(H分)の関係であれば、従来のウエルツ法やRHF法と同等またはそれ以上の品質の還元鉄を得ることができることを確認した。 The processing time of the reduction process is determined by the relationship with temperature. As a result of experiments in an externally heated rotary kiln, the present inventors have found that the relationship between the reduction treatment temperature (T ° C.) and the reduction treatment time (residence time) (H minutes) defined by the following Equation 3 is conventional. It was confirmed that reduced iron having a quality equivalent to or better than the Welts method and the RHF method can be obtained.
 H≧120-0.1T              ・・・(式3)
 ただし980≦T≦1150
 T:含炭成型体の還元処理温度(℃)、
 H:含炭成型体の滞留時間(還元処理時間)(分)
H ≧ 120−0.1T (Formula 3)
However, 980 ≦ T ≦ 1150
T: Reduction treatment temperature (° C) of the carbon-containing molded product,
H: Residence time of carbon-containing molded product (reduction treatment time) (minutes)
 言い換えれば、Tは外熱式ロータリーキルン内部での含炭成型体温度(到達温度)であり、Hは外熱式ロータリーキルン内の最少滞留時間(到達温度での滞留時間)ということになる。還元反応は処理温度が高いほど反応が早く進むため短時間で処理できる。しかしながら、含炭成型体の性状が一様であるとは限らない。しかし、設備的耐熱性が向上し1150℃以上の高温処理ができるようになったとしても、ある程度の反応時間を確保する必要があることから、Hは最短でも10分とするとよい。なお、Hの上限は特に限定しないが、あまり長く滞留しても還元率の改善はあまりないので、40分または式3の右辺に10分ほど余裕を持たせればよい。すなわちH=130-0.1Tまたは40のどちらか少ない方とするとよい。 In other words, T is the carbon-containing molded body temperature (attainment temperature) inside the external heating rotary kiln, and H is the minimum residence time (residence time at the attainment temperature) in the external heating rotary kiln. The reduction reaction can be processed in a short time because the reaction proceeds faster as the processing temperature is higher. However, the properties of the carbon-containing molded product are not always uniform. However, even if the heat resistance of equipment is improved and a high-temperature treatment at 1150 ° C. or higher can be performed, it is necessary to ensure a certain reaction time. The upper limit of H is not particularly limited, but even if it stays for a long time, there is not much improvement in the reduction rate, so it is sufficient to allow 40 minutes or 10 minutes on the right side of Equation 3. That is, it is preferable that H = 130−0.1T or 40, whichever is smaller.
 還元鉄の品質指標として、GROSS金属化率を採用し、RHF法のGROSS金属化率60%以上を合格の基準とした。詳細については、後述の実施例にて説明する。 GLOSS metallization rate was adopted as a quality index of reduced iron, and the RHF method GROSS metallization rate of 60% or more was used as a pass criterion. Details will be described in an embodiment described later.
 また、酸化鉄の還元処理により発生するガスは、式1、式2からもわかるようにCO(一酸化炭素)ガスである。また、酸化亜鉛の還元処理により発生するガスは、亜鉛蒸気(便宜上Zn(gas)と表記する。)とCOである(式4)。一部のCOガスはCO(二酸化炭素)にもなる。
 ZnO + C → Zn(gas) + CO     ・・・(式4)
Further, the gas generated by the reduction treatment of iron oxide is CO (carbon monoxide) gas as can be seen from the equations 1 and 2. Gases generated by the reduction treatment of zinc oxide are zinc vapor (indicated as Zn (gas) for convenience) and CO (Formula 4). Some CO gas also becomes CO 2 (carbon dioxide).
ZnO + C → Zn (gas) + CO (Formula 4)
 以上のことから、本発明における還元処理ステップで発生するガス(還元処理ガス50)は、COを主体とし、亜鉛蒸気とCOを含む。本発明は、この還元処理ガス50から亜鉛を回収する亜鉛回収ステップを有することが特徴の一つである。
 このようにして、含炭成型体から亜鉛を分離し、高金属化率の還元鉄40を固形のまま回収する。その一方で、亜鉛蒸気を含む還元処理ガス50から、次工程の亜鉛回収工程で金属亜鉛60を回収する。
From the above, the gas generated in the reduction treatment step in the present invention (reducing process gas 50) is mainly composed of CO, containing zinc vapor and CO 2. The present invention is characterized by having a zinc recovery step of recovering zinc from the reduction treatment gas 50.
In this way, zinc is separated from the carbon-containing molded body, and the reduced iron 40 having a high metallization rate is recovered as a solid. On the other hand, the metallic zinc 60 is recovered from the reduction treatment gas 50 containing zinc vapor in the subsequent zinc recovery step.
[還元処理手段]
 還元処理ステップでは、大気(特に酸素)を遮断した閉空間で加熱し、還元処理を行わなければならない。この制約を具現化できる手段であれば、その態様は特に限定しない。現在、この制約を具現化できる手段として外熱式ロータリーキルン32を適用することができる。
[Reduction processing means]
In the reduction treatment step, the reduction treatment must be performed by heating in a closed space where the atmosphere (especially oxygen) is shut off. The aspect is not particularly limited as long as it is a means capable of realizing this restriction. Currently, the externally heated rotary kiln 32 can be applied as a means for realizing this restriction.
 前述したように、発明者らは、含炭成型体にすることにより、980℃~1150℃程度に加熱すれば実用上問題ない程度に還元反応が進むことを確認した。これは、既存の還元鉄製造装置であるウエルツ法の1200℃や回転炉床式還元法(RHF法)の1250℃に比べて、かなりの低温化が達成できる。この低温化により、従来は使用できなかった外熱式ロータリーキルンを使用することが可能となった。外熱式ロータリーキルンの胴体は遠心鋳造で製造する耐熱鋳鋼製が一般的であり、1200℃程度が使用上の上限である。温度のバラつき等を考慮すると設備保全性の観点から、上限温度は1150℃にするとよく、好ましくは1130℃に、さらに好ましくは1100℃とするとよいとするとよい。当然のことであるが、設備的耐熱性が上がれば、当然還元処理温度を上げることができる。 As described above, the inventors confirmed that the reduction reaction proceeds to a practically satisfactory level when heated to about 980 ° C. to 1150 ° C. by using a carbon-containing molded body. Compared to 1200 ° C. of the Wertz method, which is an existing reduced iron manufacturing apparatus, and 1250 ° C. of the rotary hearth type reduction method (RHF method), a considerably low temperature can be achieved. This low temperature makes it possible to use an externally heated rotary kiln that could not be used conventionally. The body of the external heat type rotary kiln is generally made of heat-resistant cast steel manufactured by centrifugal casting, and about 1200 ° C. is the upper limit for use. Considering temperature variation, the upper limit temperature is preferably 1150 ° C., preferably 1130 ° C., more preferably 1100 ° C., from the viewpoint of facility maintenance. As a matter of course, if the heat resistance of equipment is improved, the reduction treatment temperature can be naturally increased.
 以下、外熱式ロータリーキルン32を例として、還元処理手段(還元処理装置)の説明を行う。
 予熱・乾燥した含炭成型体30を、内熱式ロータリーキルン22から外熱式ロータリーキルン32へ移送・装入する際にも、大気(厳密には酸素)が混入しないようにすることが望ましい。同様に、外熱式ロータリーキルン32から還元鉄を排出するときも、キルン内に大気が入らないよう気密性を維持する必要がある。このように移送・装入装置31(以下、単に装入装置)も排出装置35も、気密性を確保できるものであれば、その態様は限定しない。例えば、2重ダンパーを用いて具現化することができる。
Hereinafter, the reduction processing means (reduction processing apparatus) will be described by taking the external heat type rotary kiln 32 as an example.
Even when the preheated and dried carbon-containing molded body 30 is transferred and charged from the internal heat type rotary kiln 22 to the external heat type rotary kiln 32, it is desirable that air (strictly speaking, oxygen) should not be mixed. Similarly, when discharging reduced iron from the external heat type rotary kiln 32, it is necessary to maintain airtightness so that the atmosphere does not enter the kiln. As described above, the mode of the transfer / loading device 31 (hereinafter simply referred to as “charging device”) and the discharging device 35 are not limited as long as the airtightness can be secured. For example, it can be implemented using a double damper.
 内熱式ロータリーキルン22から排出された含炭成型体30を、ロータリーバルブにより切り出し量を制御し、2重ダンパー(例えば、2つホッパーが上下直列に設置され、各ホッパー下部に開閉式ダンパーが設置されているもの)の上部ホッパーに移送する。2重ダンパーのダンパーを交互に開閉し、移送された含炭成型体を上部ホッパーから下部ホッパーに移送(落下)させる。そして、下部ホッパーを開いて含炭成型体を外熱式ロータリーキルン32内に装入する。この方法で含炭成型体を装入すれば、大気の混入を極力抑制することができる。 The amount of cut of the carbon-containing molded body 30 discharged from the internal heat type rotary kiln 22 is controlled by a rotary valve, and a double damper (for example, two hoppers are installed in series in the vertical direction, and an open / close type damper is installed below each hopper. To the upper hopper. The dampers of the double damper are alternately opened and closed, and the transferred carbon-containing molded body is transferred (dropped) from the upper hopper to the lower hopper. Then, the lower hopper is opened, and the carbon-containing molded body is charged into the external heating type rotary kiln 32. If the carbon-containing molded body is charged by this method, the mixing of air can be suppressed as much as possible.
 外熱式ロータリーキルン32から、還元鉄を排出する際も、同様に、2重ダンパーを適用することにより、キルン内に大気が混入することを抑制することができる。こうして、亜鉛を分離し、高金属化率の還元鉄40を固体のまま回収することができる。
 外熱式ロータリーキルン32内の還元処理ガス50は、キルンに接続された配管を経由して、大気に触れることなく次工程の亜鉛回収装置51に導かれる。こうすることにより、気化した亜鉛を再酸化させることなく、亜鉛回収することが可能となる。
Similarly, when discharging reduced iron from the external heat type rotary kiln 32, it is possible to prevent air from being mixed into the kiln by applying a double damper. Thus, zinc can be separated, and reduced iron 40 having a high metallization rate can be recovered as a solid.
The reducing gas 50 in the external heat type rotary kiln 32 is guided to the zinc recovery device 51 in the next step through the piping connected to the kiln without being exposed to the atmosphere. By doing so, it is possible to recover zinc without reoxidizing the vaporized zinc.
[CO2改質処理]
 金属亜鉛蒸気を含む還元処理ガスを冷却する過程で、還元処理ガス中にCO2が存在すると、金属亜鉛蒸気がCO2で酸化され粗酸化亜鉛(ZnO)になり、金属亜鉛の回収ができない。これは、CO/CO2比が低いほど(CO2濃度が高いほど)、亜鉛が金属蒸気として存在できる平衡温度が高くなるからである。
 例えば、CO/CO2比=4のとき、ZnOの還元(ZnO+CO→Zn+CO2)方向の平衡温度は1200℃程度であり、この温度以上になると酸化亜鉛の還元が進む。酸化物のエネルギー・温度図(エリンガムダイアグラム)によれば、CO/CO2比=10のときの平衡温度は1100℃、CO/CO2比=15のときの平衡温度は1050℃、CO/CO2比=20のときの平衡温度は1010℃、CO/CO2比=100のときの平衡温度は910℃である。
 本発明に係る含炭成型体の処理温度は980℃~1150℃程度であるので、酸化亜鉛(ZnO)の還元を促進するには、CO/CO2比が約30以下であればよい。即ち、CO2濃度で約3%以下であればよい。本発明者らの検討では、還元処理ガス中のCO2濃度が3%以下であれば、金属亜鉛回収率(電炉ダスト中に含有される亜鉛量に対する回収亜鉛量)は90%以上確保できることが分かった。
[CO2 reforming treatment]
If CO2 is present in the reduction gas in the process of cooling the reduction gas containing metal zinc vapor, the metal zinc vapor is oxidized with CO2 to become crude zinc oxide (ZnO), and metal zinc cannot be recovered. This is because the lower the CO / CO2 ratio (the higher the CO2 concentration), the higher the equilibrium temperature at which zinc can exist as metal vapor.
For example, when the CO / CO2 ratio = 4, the equilibrium temperature in the direction of ZnO reduction (ZnO + CO → Zn + CO2) is about 1200 ° C. When this temperature is exceeded, reduction of zinc oxide proceeds. According to the energy / temperature diagram of the oxide (Ellingham diagram), the equilibrium temperature when the CO / CO2 ratio = 10 is 1100 ° C., the equilibrium temperature when the CO / CO 2 ratio = 15 is 1050 ° C., and the CO / CO 2 ratio. The equilibrium temperature when 10 = 20 is 1010 ° C., and the equilibrium temperature when the CO / CO 2 ratio = 100 is 910 ° C.
Since the treatment temperature of the carbon-containing molded article according to the present invention is about 980 ° C. to 1150 ° C., the CO / CO 2 ratio may be about 30 or less in order to promote the reduction of zinc oxide (ZnO). That is, the CO2 concentration may be about 3% or less. According to the study by the present inventors, it is found that if the CO2 concentration in the reducing gas is 3% or less, the metal zinc recovery rate (recovered zinc amount with respect to the zinc amount contained in the electric furnace dust) can be secured 90% or more. It was.
 次に、CO2改質処理の具体的な方法について検討した。CO2改質処理は、還元処理ガス中のCO2をCOに改質するものである。例えば、還元処理ガスを何らかの方法で炭素(C)に接触させ、CO2をCOに改質(CO2+C→2CO)できる。
 炭素(C)によるCO2改質処理の具体的方法として、例えば、外熱式ロータリーキルン33に粉状炭材装入装置(粉状炭材を装入する装置)36を設置し、外熱式ロータリーキルン33内に粉状炭材を装入し、それを還元処理ガスに接触させる方法がある。一例として、外熱式ロータリーキルンの内面に突起を付けておき、キルンの回転により、粉状炭材をこの突起に乗せて上部へ持ち上げ、落下させればよい。
 その他の例として、例えば、外熱式ロータリーキルンの内部に天然ガス(CH4)を吹き込んでもよい。この時、天然ガス(CH4)と還元処理ガス中のCO2が反応し、COに改質される(CH4+CO2→2CO+2H2)。
 CO2改質処理の方法は、上記方法に限定されることはなく、還元処理ガス中のCO2をCOに改質できれば、どのような方法でも構わない。
Next, a specific method of CO2 reforming treatment was examined. The CO2 reforming process is for reforming CO2 in the reducing gas into CO. For example, the reducing gas can be brought into contact with carbon (C) by some method, and CO2 can be reformed to CO (CO2 + C → 2CO).
As a specific method of the CO2 reforming treatment with carbon (C), for example, an externally heated rotary kiln 33 is provided with a powdered carbon material charging device (device for charging powdered carbonaceous material) 36 and an externally heated rotary kiln. There is a method in which a powdered carbon material is charged into 33 and brought into contact with a reducing gas. As an example, a protrusion may be attached to the inner surface of the external heat type rotary kiln, and the powdered carbon material may be lifted and dropped onto the protrusion by rotation of the kiln and dropped.
As another example, for example, natural gas (CH 4) may be blown into an externally heated rotary kiln. At this time, natural gas (CH4) reacts with CO2 in the reducing gas and is reformed to CO (CH4 + CO2 → 2CO + 2H2).
The method for the CO2 reforming treatment is not limited to the above method, and any method may be used as long as CO2 in the reducing gas can be reformed to CO.
[亜鉛回収ステップ]
 本発明における亜鉛回収ステップとは、還元処理ステップで発生した還元処理ガス50から亜鉛を回収する一連の工程である。ガス中の亜鉛の再酸化を抑止するため、還元処理ガスは大気が混入しないように導くことが必要である。
[Zinc recovery step]
The zinc recovery step in the present invention is a series of steps for recovering zinc from the reduction processing gas 50 generated in the reduction processing step. In order to suppress reoxidation of zinc in the gas, it is necessary to guide the reducing treatment gas so that the atmosphere does not enter.
 亜鉛を含むガスから亜鉛を回収する方法については、特に限定しない。還元処理ガスから亜鉛を分離回収する方法は、例えば、鉛スプラッシュ・コンデンサーを適用する方法がある。しかし、設備が大型化し、また回収効率もよくない。そこで発明者らは検討を重ね、還元処理ガスを直接冷却し、亜鉛を凝縮させて溶融亜鉛として回収できることを見出した。これによれば、鉛スプラッッシュ・コンデンサーに比べ設備構成をコンパクトにすることができ、且つ高効率に亜鉛を分離回収することができる。例えば、冷却チューブによりガスを直接冷却すればよい。冷却チューブが金属製(例えば、鋼や銅製)の場合、亜鉛と反応して合金を生成する。したがって、冷却チューブ材質は金属以外がよい。例えば、セラミックスがよい。そこで、発明者らは、熱伝導のよい炭化珪素(SiC)製の冷却チューブにより、還元処理ガスを冷却し、亜鉛を凝縮し回収できることを確認した。 The method for recovering zinc from a gas containing zinc is not particularly limited. As a method for separating and recovering zinc from the reducing gas, for example, there is a method using a lead splash condenser. However, the equipment becomes large and the recovery efficiency is not good. Accordingly, the inventors have repeatedly studied and found that the reducing gas can be directly cooled to condense zinc and recover it as molten zinc. According to this, compared with a lead splash condenser, the equipment configuration can be made compact, and zinc can be separated and recovered with high efficiency. For example, the gas may be directly cooled by a cooling tube. When the cooling tube is made of metal (for example, steel or copper), it reacts with zinc to produce an alloy. Therefore, the cooling tube material may be other than metal. For example, ceramic is good. Thus, the inventors have confirmed that the reduction treatment gas can be cooled and the zinc can be condensed and recovered by a cooling tube made of silicon carbide (SiC) having good thermal conductivity.
 凝縮した亜鉛は、液滴として回収される。亜鉛回収装置下部に溶融亜鉛として貯蔵してもよいし、液滴で滴下している間に冷却して、亜鉛粒として回収してもよい。回収方法は、特に限定しない。 Condensed zinc is collected as droplets. It may be stored as molten zinc in the lower part of the zinc recovery device, or may be recovered as zinc particles by cooling while being dropped as droplets. The collection method is not particularly limited.
[亜鉛回収手段]
 亜鉛回収手段(亜鉛回収装置)は、還元処理ガス中に含まれる亜鉛を分離・回収できる手段であれば、その態様は特に限定されない。例えば、前述したように亜鉛スプラッシュ・コンデンサーを適用してもよい。
 しかし、前述したようなガスの直接冷却により亜鉛を凝縮して回収することが、効率性や亜鉛品質の観点から好ましい。この機能を有する手段であれば、その態様は特に限定しない。また、発明者らが見出したように、亜鉛を含む還元処理ガス50を直接冷却し、亜鉛を凝縮させ回収する装置であってもよい。特に、発明者らは、冷却チューブ56を直接ガスに接触させることによりガス中の亜鉛を凝縮する亜鉛凝縮器(亜鉛コンデンサー)が効率的であることを見出した。図4(a)にその概念図を示す。この冷却チューブ56により凝縮した亜鉛は溶融状態のまま落下し、亜鉛凝縮器の下部にたまる。もちろん、凝縮後に落下中に冷却し、亜鉛粒として回収することもできる。
[Zinc recovery means]
The aspect of the zinc recovery means (zinc recovery apparatus) is not particularly limited as long as it is a means capable of separating and recovering zinc contained in the reduction treatment gas. For example, a zinc splash capacitor may be applied as described above.
However, it is preferable from the viewpoint of efficiency and zinc quality that the zinc is condensed and recovered by direct cooling of the gas as described above. If it is a means which has this function, the aspect will not be specifically limited. Further, as found by the inventors, a device that directly cools the reducing treatment gas 50 containing zinc and condenses and recovers zinc may be used. In particular, the inventors have found that a zinc condenser (zinc condenser) that condenses zinc in the gas by bringing the cooling tube 56 into direct contact with the gas is efficient. FIG. 4A shows a conceptual diagram thereof. The zinc condensed by the cooling tube 56 falls in a molten state and accumulates in the lower part of the zinc condenser. Of course, after condensation, it can be cooled during the fall and recovered as zinc particles.
 冷却チューブ56は1本または複数本設置し、ガス流れに対し直交するように配置することが好ましい。ガス流れ方向に設置すると、配管上で凝固し固着してしまうからである。また、冷却チューブ56は、水平に配置することが好ましい。水平にしないと、冷却チューブ上で凝縮した溶融亜鉛が、重力により冷却チューブ上を移動し、凝固して固着する可能性があるからである。水平に配置することにより、溶融亜鉛が凝固する前に滴下させることができる。冷却チューブ56を複数本設置する場合、チューブの配置は特に限定されない。冷却効率の観点から設定すればよい。 It is preferable to install one or a plurality of cooling tubes 56 and to be orthogonal to the gas flow. This is because if it is installed in the gas flow direction, it solidifies and adheres on the pipe. The cooling tube 56 is preferably arranged horizontally. This is because the molten zinc condensed on the cooling tube may move on the cooling tube due to gravity and solidify and be fixed if not horizontal. By arrange | positioning horizontally, it can be dripped before a molten zinc solidifies. When a plurality of cooling tubes 56 are installed, the arrangement of the tubes is not particularly limited. What is necessary is just to set from a viewpoint of cooling efficiency.
 冷却チューブ間を通り抜け、チューブ表面に接触しないガスは、亜鉛蒸気や溶融亜鉛微粒子を含んだままになっている。このため、亜鉛回収率を上げるため、亜鉛蒸気含有ガスの流れ方向で冷却チューブの下流側に、セラミックス製またはセラミックス・コーティングを施したペレットを複数個配置するとよい(図4(b))。亜鉛蒸気や溶融亜鉛微粒子を含んだガスが、セラミックス製ペレットの間隙を通過する際に、ペレット表面に接触し、亜鉛が凝縮・凝集され分離されるからである。この時、凝縮・凝集し溶融亜鉛となったものは、液滴となって下方へ滴下し回収される。
 ペレットの大きさは特に限定しないが、直径5~10mm程度、高さ5~10mm程度の円柱形や、直径5~10mm程度の球形であると扱い易く、適度な空隙を確保することができる。
 セラミックスの材質は特に問わないが、冷却チューブと同様に、熱伝導性の良い炭化珪素(SiC)が好ましい。SiCであれば、溶融亜鉛にぬれることもなく、容易に分離回収することができる。
 配置するペレットの数は複数(2個以上)であれば特に限定されないが、ガスが万遍なくペレット表面に接触することが望ましいので、ガスが通過する断面を埋めるように充填するとよい。また、ペレットを多重に重ねることにより、よりガスとペレット表面が接触するようになり、亜鉛の回収率が向上する。
The gas that passes between the cooling tubes and does not contact the tube surface still contains zinc vapor and molten zinc fine particles. For this reason, in order to increase the zinc recovery rate, a plurality of pellets made of ceramics or coated with ceramics may be arranged downstream of the cooling tube in the direction of flow of the zinc vapor-containing gas (FIG. 4B). This is because when the gas containing zinc vapor and molten zinc fine particles passes through the gaps between the ceramic pellets, it contacts the pellet surface, and the zinc is condensed, aggregated and separated. At this time, the condensed and agglomerated molten zinc becomes droplets and is dropped and recovered.
The size of the pellet is not particularly limited, but it is easy to handle a cylindrical shape having a diameter of about 5 to 10 mm and a height of about 5 to 10 mm, or a spherical shape having a diameter of about 5 to 10 mm, and an appropriate void can be secured.
The material of the ceramic is not particularly limited, but silicon carbide (SiC) having good thermal conductivity is preferable like the cooling tube. SiC can be easily separated and recovered without getting wet by molten zinc.
The number of pellets to be arranged is not particularly limited as long as it is plural (two or more). However, since it is desirable that the gas uniformly contacts the pellet surface, the gas may be filled so as to fill a cross section through which the gas passes. Further, by overlapping the pellets in multiple layers, the gas and the pellet surface come into contact with each other, and the zinc recovery rate is improved.
 還元処理ガス中の亜鉛が再酸化しないように、外熱式ロータリーキルン32から亜鉛回収装置51までのガス導入管は、大気を遮断した気密性の良いものである必要がある。還元処理ガスを吸引するブロワー54は、亜鉛回収装置の下流に設置することが好ましい。亜鉛が分離されているため、ブロワーの羽根(翼)に亜鉛が凝着することがないからである。ブロワーの設備保護の観点から、ブロワー前に集塵機53を配置するとよい。 The gas introduction pipe from the externally heated rotary kiln 32 to the zinc recovery device 51 needs to be airtight and good in air tightness so that zinc in the reducing gas does not reoxidize. The blower 54 for sucking the reducing treatment gas is preferably installed downstream of the zinc recovery device. This is because zinc is not adhered to the blade (wing) of the blower because zinc is separated. From the viewpoint of protecting the blower equipment, the dust collector 53 may be disposed in front of the blower.
 さらに、亜鉛含有ガスを冷却する際に、亜鉛含有ガスが金属鉄に接触するとカーボン・デポジション反応(2CO→CO2+C)によってCO2(二酸化炭素)が発生し、このCO2により蒸気亜鉛が再酸化し、粗酸化亜鉛(ZnO)になる。前述したように、一旦粗酸化亜鉛(ZnO)になると金属亜鉛が回収できないため、このカーボン・デポジション反応を抑制することが望ましい。
 亜鉛回収装置が鋼で製造されている場合、その内面を被覆し、亜鉛含有ガスが直接鋼と接触させないようにするとよい。被覆は特に限定しないが、例えば塗装をすればよい。塗料は限定しないが、例えば耐熱塗料などがある。また、例えばライニングしてもよい。例えばセラミックス塗料やキャスタブルなどでのライニングなどがある。
Further, when the zinc-containing gas is cooled, when the zinc-containing gas comes into contact with metallic iron, CO2 (carbon dioxide) is generated by a carbon deposition reaction (2CO → CO2 + C), and the vapor zinc is reoxidized by this CO2. It becomes crude zinc oxide (ZnO). As described above, once crude zinc oxide (ZnO) is obtained, metal zinc cannot be recovered. Therefore, it is desirable to suppress this carbon deposition reaction.
When the zinc recovery device is made of steel, the inner surface thereof may be covered so that the zinc-containing gas does not come into direct contact with the steel. The coating is not particularly limited, but may be painted, for example. The paint is not limited, and examples thereof include heat resistant paint. Further, for example, lining may be performed. For example, there is a lining with ceramic paint or castable.
 以上、電炉ダストから鉄(還元鉄)、亜鉛(還元された亜鉛)を取り出す方法および設備について説明したが、さらに排出されるガスなどの有効利用のために付加することができる方法および設備について説明する。 As mentioned above, although the method and equipment which take out iron (reduced iron) and zinc (reduced zinc) from electric furnace dust were explained, the method and equipment which can be added for effective use of exhaust gas etc. are explained. To do.
[還元処理ガス再利用ステップ及び手段]
 亜鉛回収後の還元処理ガスは、亜鉛が分離されているので、主にCO(一部CO)で構成されている。もちろん、大気放散しても構わないが、燃料としてのCOを有効活用するとよい。例えば、還元処理手段の加熱手段(例えば、外熱式ロータリーキルン32の燃焼バーナー34)の燃料として利用してもよい。また、例えば、予熱装置22の加熱手段の燃料(例えば、内熱式ロータリーキルンの燃焼ガス)として再利用してもよい。もちろん、他の設備での再利用をしてもよい。
[Reduction treatment gas reuse step and means]
The reducing gas after zinc recovery is mainly composed of CO (partially CO 2 ) because zinc is separated. Of course, it may be emitted into the atmosphere, but it is better to effectively use CO as fuel. For example, you may utilize as a fuel of the heating means (for example, the combustion burner 34 of the external heating type rotary kiln 32) of a reduction process means. Further, for example, it may be reused as fuel for the heating means of the preheating device 22 (for example, combustion gas of an internal heat type rotary kiln). Of course, it may be reused in other facilities.
 そのためには、還元処理ガス50を精製する必要がある。例えば、ガスの顕熱を回収しガス温度を下げるレキュペレーター52や、ガス中のダスト除去する集塵機53、送風機54、さらにはガス圧力を安定化させるガスホルダー55などを設置するとよい。これらの設備を通したガスを外熱式ロータリーキルンの燃焼バーナー34の燃料として使用することができる。還元処理ガスの精製方法・設備は、特にこの態様に限定されることはなく、ガスの用途に応じて精製方法および設備を適宜選択すればよい。 For that purpose, it is necessary to purify the reducing gas 50. For example, a recuperator 52 that recovers sensible heat of gas and lowers the gas temperature, a dust collector 53 that removes dust in the gas, a blower 54, and a gas holder 55 that stabilizes the gas pressure may be installed. The gas passing through these facilities can be used as fuel for the combustion burner 34 of the externally heated rotary kiln. The refining gas purification method / equipment is not particularly limited to this embodiment, and the refining method and equipment may be appropriately selected according to the use of the gas.
[その他付帯装置]
 予熱ステップにおいて、含炭成型体を加熱・乾燥したのちに発生する排気ガス80中には、前述したように塩化亜鉛や酸化鉄・酸化亜鉛を含んだダストが含まれている。したがって、予熱ステップで発生した排ガス中からこれら成分を分離回収することが望ましい。そのため、例えば、予熱装置(例えば内熱式ロータリーキルン)22から発生した排ガス80を集塵機(バグフィルター)81に通し、塩化亜鉛やダスト84を回収したのち、大気放散するとよい。もちろん排ガスを吸引する送風機82は集塵機の下流に設置するとよい。予熱ステップでの排ガスの用途に応じて、ガス処理方法・設備を適宜選択すればよい。
[Other incidental devices]
In the preheating step, the exhaust gas 80 generated after heating and drying the carbon-containing molded body contains dust containing zinc chloride, iron oxide, and zinc oxide as described above. Therefore, it is desirable to separate and recover these components from the exhaust gas generated in the preheating step. Therefore, for example, the exhaust gas 80 generated from the preheating device (for example, the internal heating rotary kiln) 22 is passed through a dust collector (bag filter) 81, and zinc chloride and dust 84 are collected and then released into the atmosphere. Of course, the blower 82 for sucking the exhaust gas may be installed downstream of the dust collector. What is necessary is just to select a gas processing method and installation suitably according to the use of the waste gas in the preheating step.
[実施例1]
 以下、本発明について試験プラントでの実施例を説明する。
 表1に、試験操業で使用した電炉ダストおよび炭材としての粉コークスの化学成分を示した。数値は質量%を示す。この電炉ダストの粒度分布は、レーザー回折散乱式粒度分布測定装置(マイクロトラック)にて測定し、D50=1.5μm、同じく粉コークスのD50=36.2μmであった。D50とは、累積粒度分布において細粒からの累積頻度が50%に相当する粒径いう。
[Example 1]
Hereinafter, examples of the present invention in a test plant will be described.
Table 1 shows the chemical components of the electric furnace dust used in the test operation and the powder coke as the carbonaceous material. A numerical value shows the mass%. The particle size distribution of the electric furnace dust was measured by a laser diffraction scattering type particle size distribution measuring device (Microtrac), and was D50 = 1.5 μm, and D50 of powder coke was also 36.2 μm. D50 is a particle size corresponding to 50% of cumulative frequency from fine particles in the cumulative particle size distribution.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表2に、試験操業で使用した含炭成型体の原料配合割合と配合原料水分を(含炭成型体水分にほぼ同じ)示す。炭材としての粉コークスをC当量が1.0となるように添加し、水分調整用の水とバインダーとしてのコーンスターチを加え、双腕ニーダーでよく混合した後、半乾式押し出し成型機で底面直径20mmφ×長さ25mmの含炭成型品20を製造した。含炭成型品の生強度(成型直後の強度)は8.7kg/cm,150℃で2時間乾燥した後の乾燥後強度は37.0kg/cmであった。 Table 2 shows the raw material blend ratio and blended raw material moisture of the carbon-containing molded body used in the test operation (almost the same as the carbon-containing molded body moisture). Add powdered coke as charcoal so that the C equivalent is 1.0, add water for water adjustment and corn starch as binder, mix well with a double arm kneader, then use a semi-dry extrusion machine to measure the bottom diameter A carbon-containing molded product 20 having a diameter of 20 mm and a length of 25 mm was produced. The green strength of the carbon-containing molded product (strength immediately after molding) was 8.7 kg / cm 2 , and the strength after drying at 150 ° C. for 2 hours was 37.0 kg / cm 2 .
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<試験プラントの設備仕様>
 試験プラント全体概念図を図3に示した。処理能力は含炭成型体50dkg(ドライ状態での重量(Kg)を示す。以下同じ。)/hである。基本的構成は図1の実機設備に近いが、外熱式ロータリーキルンの外熱炉は簡便のため電気加熱式としている。内熱式ロータリーキルンの加熱には熱風発生装置(予熱装置用バーナー)を使用した。また、外熱式ロータリーキルンの排ガスは亜鉛回収装置で冷却した後、排ガス燃焼装置でCOガスを燃焼し無害化してから屋外放出する構造とした。
<Test plant equipment specifications>
A conceptual diagram of the entire test plant is shown in FIG. The treatment capacity is 50 dkg of carbon-containing molded product (showing the weight (Kg) in the dry state; the same applies hereinafter) / h. Although the basic configuration is close to the actual equipment shown in FIG. 1, the external heating furnace of the external heating type rotary kiln is an electric heating type for simplicity. A hot air generator (a preheater burner) was used to heat the internal heat rotary kiln. The exhaust gas from the external heating rotary kiln was cooled by a zinc recovery device, burned with CO gas by an exhaust gas combustion device, rendered harmless, and then released outdoors.
主な設備仕様を以下に示す。
[内熱式ロータリーキルン]
   ・ステンレス鋼製:内径500mm×長さ4m
   ・加熱方式:熱風発生装置
[外熱式ロータリーキルン]
   ・耐熱鋳鋼製:内径300mm×長さ4m、最高使用温度1150℃
   ・外熱炉:電気加熱式、全長2m
[含炭成型体供給・排出装置]
   ・内熱式ロータリーキルンへの供給装置:常温型2重ダンパー
   ・内熱式ロータリーキルンから外熱式ロータリーキルンへの移送装置:高温型水冷ロータリーバルブ直列2台
   ・外熱式ロータリーキルンからの排出装置:常温型2重ダンパー
[亜鉛回収装置]
   ・亜鉛回収装置は、正方形断面をもつ縦長の筒状容器であって、鋼板製の外壁と内壁の2重構造になっている。内壁の内側には、20mm厚の断熱材と80mm厚のキャスタブルがこの順に配置されている。また、外壁と内壁とは50mm離れており、それらの間には窒素を流し、還元処理ガス中に空気が混入しないようにした。還元処理ガスが流れる部分は、一辺250mmの正方形断面にした。
   ・亜鉛回収装置の上部に、冷却チューブとして、内部を水冷した外径30mm、内径20mmのSiCパイプ(SiC:99%)を千鳥状に25本配置した。パイプ上部にパイプと密着するように底辺を切削したSiCの三角柱(長さ25cm)を乗せることで、パイプ上への金属亜鉛の堆積を防止した。
   ・SiCパイプの加熱冷却に伴う膨張収縮を吸収し、外気を遮断するため、SiCパイプの取り付け部にOリング設置した。
   ・さらに、外熱式ロータリーキルンから亜鉛回収装置までの配管の内面には、カーボン・デポジション対策として、耐熱塗料を塗布した。また、亜鉛回収装置の内壁の内側面はキャスタブルでライニングしているが、念のため、内壁の内側面にも耐熱塗料を塗布した。
The main equipment specifications are shown below.
[Internal heat type rotary kiln]
・ Stainless steel: Inner diameter 500mm x Length 4m
・ Heating method: Hot air generator [externally heated rotary kiln]
-Made of heat-resistant cast steel: inner diameter 300mm x length 4m, maximum operating temperature 1150 ° C
・ External heating furnace: Electric heating type, total length 2m
[Carbon-containing molded body supply / discharge device]
・ Supply to internal heat type rotary kiln: Room temperature type double damper ・ Transfer device from internal heat type rotary kiln to external heat type rotary kiln: Two high temperature type water cooled rotary valves in series ・ Discharge device from external heat type rotary kiln: Room temperature type Double damper [Zinc recovery unit]
The zinc recovery device is a vertically long cylindrical container having a square cross section, and has a double structure of an outer wall and an inner wall made of steel plate. Inside the inner wall, a 20 mm thick heat insulating material and an 80 mm thick castable are arranged in this order. Further, the outer wall and the inner wall were separated by 50 mm, and nitrogen was allowed to flow between them so that air was not mixed into the reducing treatment gas. The portion through which the reducing gas flows has a square cross section with a side of 250 mm.
-In the upper part of the zinc recovery unit, 25 SiC pipes (SiC: 99%) having an outer diameter of 30 mm and an inner diameter of 20 mm, which were water-cooled inside, were arranged in a staggered manner as a cooling tube. By placing an SiC triangular prism (25 cm in length) whose bottom was cut so as to be in close contact with the pipe, the deposition of metallic zinc on the pipe was prevented.
-An O-ring was installed at the attachment part of the SiC pipe in order to absorb expansion and contraction accompanying heating and cooling of the SiC pipe and shut off the outside air.
・ Furthermore, heat-resistant paint was applied to the inner surface of the pipe from the externally heated rotary kiln to the zinc recovery unit as a measure against carbon deposition. Also, the inner surface of the inner wall of the zinc recovery unit is lined with a castable, but as a precaution, a heat resistant paint was also applied to the inner surface of the inner wall.
<試験方法>
 以下の手順により試験を行った。
 (1)内熱式ロータリーキルン22の熱風発生装置24を作動させたのち、内熱式ロータリーキルン22内に装入装置(2重ダンパー)21を経由して、前述した方法により製造した含炭成型体20を50dkg/hの速度で装入した。含炭成型体が予熱・乾燥されて内熱式ロータリーキルン22から排出される時の温度が900℃となるように熱風発生装置24の燃料燃焼量と内熱式ロータリーキルンの回転数を制御した。
<Test method>
The test was conducted according to the following procedure.
(1) After operating the hot air generator 24 of the internal heat type rotary kiln 22, the carbon-containing molded body manufactured by the above-described method through the charging device (double damper) 21 in the internal heat type rotary kiln 22. 20 was charged at a speed of 50 dkg / h. The fuel combustion amount of the hot air generator 24 and the rotation speed of the internal heating rotary kiln were controlled so that the temperature when the carbon-containing molded body was preheated and dried and discharged from the internal heating rotary kiln 22 was 900 ° C.
 (2)外熱式ロータリーキルン32は、外面温度を1050℃になるまで昇温させた。900℃まで加熱された含炭成型体が、装入装置(2台直列水冷ロータリーバルブ)31を経由して外熱式ロータリーキルン32に装入開始されたのちは、外熱炉長2mの間の滞留時間が30分となるように外熱式ロータリーキルンの回転数を調整すると同時に、外熱式ロータリーキルン外面温度が1050℃を維持するよう外熱炉の電力投入量を制御した。 (2) The externally heated rotary kiln 32 was heated to an external surface temperature of 1050 ° C. After the carbon-containing molded body heated to 900 ° C. is started to be charged into the external heating rotary kiln 32 via the charging device (two series water-cooled rotary valves) 31, The rotational speed of the external heating rotary kiln was adjusted so that the residence time was 30 minutes, and at the same time, the power input amount of the external heating furnace was controlled so that the external surface temperature of the external heating rotary kiln was maintained at 1050 ° C.
 (3)含炭成型体は還元が終了すると還元鉄(DRI)40となる。1050℃の還元鉄は外熱式ロータリーキルン32の排出口に設置された水冷ボックス内で200℃以下まで冷却したのち、排出装置(2重ダンパー)35を経由して外部に排出し回収した。 (3) When the reduction is completed, the carbon-containing molded body becomes reduced iron (DRI) 40. The reduced iron at 1050 ° C. was cooled to 200 ° C. or less in a water-cooled box installed at the discharge port of the externally heated rotary kiln 32, and then discharged to the outside via a discharge device (double damper) 35 and collected.
 (4)以上、還元処理温度が1050℃で還元処理時間が30分の場合について説明したが、還元処理温度については950℃から1150℃の間で、還元処理時間については10分から40分の間で種々変更して9水準の試験を実施し、回収したDRIの分析結果を表3に示した。 (4) Although the case where the reduction treatment temperature is 1050 ° C. and the reduction treatment time is 30 minutes has been described above, the reduction treatment temperature is between 950 ° C. and 1150 ° C., and the reduction treatment time is between 10 minutes and 40 minutes. Nine levels of tests were carried out with various changes, and the collected DRI analysis results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 (5)NET金属化率は還元によって増加した金属化率である。GROSS金属化率は電炉ダスト中にもともとあったM・Fe(金属鉄(メタリックFe))を加えた還元後サンプルの全金属化率である。GROSSとNETの金属化率の定義を式5、式6で示す。以下、T・FeはトータルFe(全鉄分)を示し、M・FeやT・Feの重量%は、含炭成型体に対する重量%を示す。
GROSS金属化率=(還元後のM・Fe(重量%))/(還元後のT・Fe(重量%))                       ・・・(式5)
NET金属化率 ={[(還元後のM・Fe(重量%)×還元後の含炭成形体の全重量)-(還元前のM・Fe(重量%)×還元前の含炭成形体の全重量)]/(還元後の全重量)}/(還元後のT・Fe(重量%))     ・・・(式6)
(5) NET metallization rate is a metallization rate increased by reduction. The GLOSS metallization rate is the total metallization rate of the sample after reduction to which M · Fe (metallic iron (metallic Fe)) originally added in the electric furnace dust is added. The definitions of the metallization ratios of GROSS and NET are shown in Equations 5 and 6. Hereinafter, T · Fe represents total Fe (total iron content), and the weight percent of M · Fe and T · Fe represents the weight percent of the carbon-containing molded body.
GROSS metallization rate = (M · Fe after reduction (% by weight)) / (T · Fe after reduction (% by weight)) (Formula 5)
NET metallization rate = {[(M · Fe (% by weight) after reduction × total weight of the carbon-containing molded product after reduction) − (M · Fe (% by weight) before reduction × carbon-containing molded product before reduction) (Total weight after reduction)] / (total weight after reduction)} / (T · Fe (% by weight) after reduction) (Formula 6)
 (6)表3には比較のために、電炉ダストをウエルツ法およびRHF法で処理した場合の成績を併記した。含炭成型体を使用するRHF法の方がウエルツ法よりも成績は良好である。RHFで還元処理されたDRIの金属化率は60~70%で、DRIは全量、鉄源として電気炉でリサイクルされており、また、脱亜鉛率も70~90%と高い。そこで、RHF並みのGROSS金属化率と脱亜鉛率が得られた試験結果を○で、GROSS金属化率はRHF並みでも脱亜鉛率がRHF以下の試験結果を△で示した。 (6) For comparison, the results when electric furnace dust was treated by the Welts method and the RHF method are also shown in Table 3. The RHF method using a carbon-containing molded product has better results than the Welts method. The metallization rate of DRI reduced with RHF is 60 to 70%, and the entire amount of DRI is recycled in an electric furnace as an iron source, and the dezincification rate is as high as 70 to 90%. Therefore, the test results for obtaining the same GROSS metallization rate and dezincification rate as RHF are indicated by ○, and the test results for the degreasing rate of RHF or less are indicated by Δ for the GLOSS metallization rate as RHF.
 (7)試験結果から外熱式ロータリーキルン内の還元処理温度T℃と滞留時間(還元処理時間)H分との関係を図5に示した。図5から分かるように還元処理温度T℃と還元処理時間H分との関係が、前記の式3を満足すれば、RHF並みの金属化率が得られることが確認された。また、1050℃で30分間還元処理すれば、95%以上の金属化率と脱亜鉛率が得られることも確認できた。 (7) From the test results, the relationship between the reduction treatment temperature T ° C. in the external heating rotary kiln and the residence time (reduction treatment time) H is shown in FIG. As can be seen from FIG. 5, it was confirmed that if the relationship between the reduction treatment temperature T ° C. and the reduction treatment time H minutes satisfies the above-described formula 3, a metallization rate comparable to RHF can be obtained. It was also confirmed that a metallization rate and dezincification rate of 95% or more can be obtained by reduction treatment at 1050 ° C. for 30 minutes.
 (8)外熱式ロータリーキルン32内部では、含炭成型体が還元されて、亜鉛蒸気とCOガスおよびCOガスが発生する。この排ガス50を排気ブロア54で吸引し、SiC製水冷パイプを並べた熱交換器(亜鉛回収装置)51に通して500℃に急冷した。この急冷により排ガス中の亜鉛蒸気は500℃の溶融亜鉛として滴下し、亜鉛回収装置下に設置した溶融亜鉛溜に貯留した。貯留した溶融亜鉛60は1時間置きに鋳型に流し込んで回収した。試験No.6で回収した金属亜鉛の分析値を表4に示した。この時の金属亜鉛の回収量は、平均4.8Kg/h(時間)であった。 (8) In the internal external heating rotary kiln 32, carbonaceous molded body is reduced, the zinc vapor and CO gas and CO 2 gas is generated. The exhaust gas 50 was sucked by an exhaust blower 54 and passed through a heat exchanger (zinc recovery device) 51 in which SiC water-cooled pipes were arranged to be rapidly cooled to 500 ° C. By this rapid cooling, the zinc vapor in the exhaust gas was dropped as molten zinc at 500 ° C. and stored in a molten zinc reservoir installed under the zinc recovery device. The stored molten zinc 60 was poured into a mold and collected every hour. Test No. The analytical values of the metal zinc recovered in 6 are shown in Table 4. At this time, the recovered amount of metallic zinc was 4.8 kg / h (hour) on average.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 (9)外熱式ロータリーキルン32の排ガス50を亜鉛回収装置51で急冷した後の500℃の排ガスは排ガス燃焼装置57で過剰空気の元で燃焼され、次いで大量の空気で希釈することで200℃以下に冷却し、更に集塵機(バグフィルター)53で徐塵した後大気に放散した。
 以上、一連の試験により、酸化鉄と酸化亜鉛を含む電炉ダストから鉄(還元鉄)と亜鉛(還元亜鉛)を分離回収できることが確認された。
(9) After the exhaust gas 50 of the externally heated rotary kiln 32 is rapidly cooled by the zinc recovery device 51, the exhaust gas at 500 ° C. is burned in the exhaust gas combustion device 57 under excess air, and then diluted with a large amount of air to 200 ° C. After cooling to the following, and further gradually dusting with a dust collector (bag filter) 53, it was diffused into the atmosphere.
As described above, it was confirmed that iron (reduced iron) and zinc (reduced zinc) can be separated and recovered from electric furnace dust containing iron oxide and zinc oxide by a series of tests.
[実施例2]
 実施例1と同様の試験装置において、還元処理ガス中のCO2をCOに改質するため、外熱式ロータリーキルン33に粉状炭材装入装置36を設置した。さらに、外熱式ロータリーキルンの内面に突起を設置し、キルンの回転により粉状炭材が内面突起によって上部へ持ち上げられ、そしてキルン内に落下する構造にした。
 まず、亜鉛を含まない含炭成型体を準備した。これは微粉鉄鉱石と粉コークスとバインダーを成形して製造した。この亜鉛を含まない含炭成型体を、前記の改造した試験装置に装入した。その後、CO2改質用に粒径1mm以下の粉コークスを粉状炭材装入装置36から装入した。この時の粉コークス装入量は、含炭成型体50d-Kg/h当たり、5d-Kg/hを装入した。
 この結果、還元処理ガス中のCO2を比較したところ、粉コークス装入前は20%あったCO2が、粉コークス装入後は3%に低下した。
[Example 2]
In the same test apparatus as in Example 1, in order to reform CO2 in the reducing gas into CO, a powdered carbon material charging device 36 was installed in the external heating type rotary kiln 33. Furthermore, a protrusion was installed on the inner surface of the external heat type rotary kiln, and the powdered carbon material was lifted upward by the inner protrusion by the rotation of the kiln, and dropped into the kiln.
First, a carbon-containing molded body not containing zinc was prepared. This was produced by molding fine iron ore, fine coke and binder. The zinc-containing carbon-containing molded body was charged into the modified test apparatus. Thereafter, powder coke having a particle size of 1 mm or less was charged from the powdered carbon material charging device 36 for CO2 reforming. The amount of powder coke charged at this time was 5 d-Kg / h per 50 d-Kg / h of the carbon-containing molded product.
As a result, when CO2 in the reducing gas was compared, CO2 that was 20% before charging the coke breeze was reduced to 3% after charging the coke breeze.
 次に、試験装置の亜鉛回収装置51の冷却チューブ56の下流側(下部)に、SiCセラミックス・ボールを充填した。SiCセラミックス・ボールは直径8mmであり、亜鉛回収装置の断面(250mm四方の断面)に厚さ400mm程度になるよう、SiCセラミックス・ボールを充填した。充填したSiCセラミックス・ボールは、約49000個であった。 Next, SiC ceramic balls were filled in the downstream side (lower part) of the cooling tube 56 of the zinc recovery device 51 of the test device. The SiC ceramic balls were 8 mm in diameter, and were filled with SiC ceramic balls so that the cross section (250 mm square cross section) of the zinc recovery device had a thickness of about 400 mm. There were about 49000 filled SiC ceramic balls.
 前記した還元処理ガス中のCO2のCOへの改質のための改造、および亜鉛回収装置へのSiCセラミックス・ボールの充填を行い、実施例1と同様に、電炉ダストによる含炭成型体を対象とした還元試験を実施した。
 その結果、金属亜鉛の回収量は、平均11.1Kg/h(時間)であった。これは電炉ダスト中に含まれる亜鉛の約90%を金属亜鉛として回収できたことを示している。
Remodeling of CO2 in the reduction gas to reform to CO, and filling the zinc recovery unit with SiC ceramic balls, and subjecting the carbon-containing molded body with electric furnace dust as in Example 1. A reduction test was conducted.
As a result, the recovery amount of metallic zinc was 11.1 kg / h (hour) on average. This indicates that about 90% of zinc contained in the electric furnace dust can be recovered as metallic zinc.
 本発明は、電気炉による製鉄プラントで発生する電炉ダストから還元鉄と亜鉛を分離回収することができることから、電気炉による製鉄業において利用することができる。 Since the present invention can separate and recover reduced iron and zinc from electric furnace dust generated in an iron making plant using an electric furnace, it can be used in the iron making industry using an electric furnace.
 10  電炉ダスト
 11  含炭成型体製造装置(手段)
 20  含炭成型体
 21  装入装置
 22  予熱装置(内熱式ロータリーキルン)
 23  排出装置
 24  予熱装置用バーナー(熱風発生装置)
 30  予熱・乾燥した含炭成型体
 31  装入装置
 32  還元処理装置(外熱式ロータリーキルン)
 33  還元処理装置の加熱装置
 34  燃焼バーナー
 35  排出装置
 36  粉状炭材装入装置
 40  還元鉄
 50  還元処理ガス
 51  亜鉛回収装置
 52  レキュペレーター
 53  集塵機
 54  送風機
 55  ガスホルダー
 56  冷却チューブ
 57  排ガス燃焼装置
 59  セラミック・ペレット充填層
 60  亜鉛
 70  加熱装置排ガス
 80  予熱装置排ガス
 81  集塵機
 82  送風機
 83  煙突
 84  ダスト(リサイクル)
10 Electric furnace dust 11 Carbon-containing molded body production equipment (means)
20 Carbon-containing molded body 21 Charging device 22 Preheating device (internal heat type rotary kiln)
23 Ejector 24 Preheater burner (hot air generator)
30 Preheated and dried carbon-containing molding 31 Charging equipment 32 Reduction processing equipment (external heating rotary kiln)
33 Heating device for reduction treatment device 34 Combustion burner 35 Discharge device 36 Powdered carbon material charging device 40 Reduced iron 50 Reduction treatment gas 51 Zinc recovery device 52 Recuperator 53 Dust collector 54 Blower 55 Gas holder 56 Cooling tube 57 Exhaust gas combustion device 59 Ceramic pellet packed bed 60 Zinc 70 Heater exhaust gas 80 Preheater exhaust gas 81 Dust collector 82 Blower 83 Chimney 84 Dust (recycle)

Claims (20)

  1.  酸化鉄と酸化亜鉛を含む電炉ダスト、炭材、バインダーおよび水を混合し成型して含炭成型体を製造する含炭成型体製造ステップと、
     前記含炭成型体を加熱し、乾燥させる予熱ステップと、
     前記予熱ステップで加熱し乾燥した含炭成型体を、閉空間内でさらに加熱して酸化鉄を還元し還元鉄にする還元処理ステップと、
     前記還元処理ステップにて発生した還元処理ガスから亜鉛を回収する亜鉛回収ステップを有することを特徴とする電炉ダストからの鉄および亜鉛の回収方法。
    A carbon-containing molded body manufacturing step of manufacturing a carbon-containing molded body by mixing and molding an electric furnace dust containing iron oxide and zinc oxide, a carbonaceous material, a binder and water;
    A preheating step of heating and drying the carbon-containing molded body;
    A reduction treatment step in which the carbon-containing molded body heated and dried in the preheating step is further heated in a closed space to reduce iron oxide to reduced iron, and
    A method for recovering iron and zinc from electric furnace dust, comprising a zinc recovery step of recovering zinc from the reduction processing gas generated in the reduction processing step.
  2.  前記予熱ステップでの含炭成型体の加熱温度が740℃以上907℃以下であることを特徴とする請求項1に記載の電炉ダストからの鉄および亜鉛の回収方法。 The method for recovering iron and zinc from electric furnace dust according to claim 1, wherein the heating temperature of the carbon-containing molded body in the preheating step is 740 ° C or higher and 907 ° C or lower.
  3.  前記還元処理ステップでの含炭成型体の加熱温度が980℃以上1150℃以下であることを特徴とする請求項1または2に記載の電炉ダストからの鉄および亜鉛の回収方法。 The method for recovering iron and zinc from electric furnace dust according to claim 1 or 2, wherein the heating temperature of the carbon-containing molded body in the reduction treatment step is 980 ° C or higher and 1150 ° C or lower.
  4.  前記予熱ステップを内熱式ロータリーキルンで処理し、前記還元処理ステップを外熱式ロータリーキルンで処理することを特徴とする請求項1~3のいずれか1項に記載の電炉ダストからの鉄および亜鉛の回収方法。 The iron and zinc from electric furnace dust according to any one of claims 1 to 3, wherein the preheating step is treated with an internal heating rotary kiln, and the reduction treatment step is treated with an external heating rotary kiln. Collection method.
  5.  前記還元処理ステップにおいて、CO2改質処理を行い、還元処理ガス中のCO2濃度を3%以下にすることを特徴とする請求項1~4のいずれか1項に記載の電炉ダストからの鉄および亜鉛の回収方法。 The iron from the electric furnace dust according to any one of claims 1 to 4, wherein in the reduction treatment step, CO2 reforming treatment is performed to reduce a CO2 concentration in the reduction treatment gas to 3% or less. Zinc recovery method.
  6.  前記CO2改質処理が、前記還元処理ステップにおいて粉状炭材を前記閉空間内に装入することを特徴とする請求項5に記載の電炉ダストからの鉄および亜鉛の回収方法。 6. The method for recovering iron and zinc from electric furnace dust according to claim 5, wherein the CO2 reforming treatment introduces powdered carbonaceous material into the closed space in the reduction treatment step.
  7.  前記亜鉛回収ステップにて亜鉛を回収した後の還元処理ガスを、前記還元処理ステップの加熱用燃料にすることを特徴とする請求項1~6のいずれか1項に記載の電炉ダストからの鉄および亜鉛の回収方法。 The iron from electric furnace dust according to any one of claims 1 to 6, wherein the reduction treatment gas after the zinc is collected in the zinc collection step is used as a heating fuel in the reduction treatment step. And zinc recovery method.
  8.  前記亜鉛回収ステップが鉛スプラッシュ・コンデンサーにより亜鉛を回収する手段を有することを特徴とする請求項1~7のいずれか1項に記載の電炉ダストからの鉄および亜鉛の回収方法。 The method for recovering iron and zinc from electric furnace dust according to any one of claims 1 to 7, wherein the zinc recovery step includes means for recovering zinc with a lead splash condenser.
  9.  前記亜鉛回収ステップが、還元処理ガスを冷却して亜鉛を凝縮分離することにより回収することを特徴とする請求項1~7のいずれか1項に記載の電炉ダストからの鉄および亜鉛の回収方法。 The method for recovering iron and zinc from electric furnace dust according to any one of claims 1 to 7, wherein the zinc recovery step recovers the gas by cooling the reduction treatment gas and condensing and separating the zinc. .
  10.  前記亜鉛回収ステップが、内部を冷却した炭化珪素製チューブと還元処理ガスを接触させることを特徴とする請求項9に記載の電炉ダストからの鉄および亜鉛の回収方法。 10. The method for recovering iron and zinc from electric furnace dust according to claim 9, wherein the zinc recovery step comprises bringing a silicon carbide tube whose interior is cooled into contact with a reduction treatment gas.
  11.  前記亜鉛回収ステップにおいて、炭化珪素製チューブと還元処理ガスを接触させた後、さらに炭化珪素製ペレットと還元処理ガスを接触させることを特徴とする請求項10に記載の電炉ダストからの鉄および亜鉛の回収方法。 11. The iron and zinc from electric furnace dust according to claim 10, wherein, in the zinc recovery step, after the silicon carbide tube and the reduction treatment gas are brought into contact with each other, the silicon carbide pellet and the reduction treatment gas are further brought into contact with each other. Recovery method.
  12.  酸化鉄と酸化亜鉛を含む電炉ダストから鉄および亜鉛を回収する装置において、
     酸化鉄と酸化亜鉛を含む電炉ダスト、炭材、バインダーおよび水を混合し成型して含炭成型体を製造する含炭成型体製造手段と、
     前記含炭成型体を加熱し乾燥させる予熱手段と、
     前記予熱設備で加熱した含炭成型体をさらに加熱して還元鉄を製造する還元処理手段と、
     前記還元処理手段で発生した還元処理ガスから亜鉛を回収する亜鉛回収手段を有することを特徴とする電炉ダストからの鉄および亜鉛の回収装置。
    In an apparatus for recovering iron and zinc from electric furnace dust containing iron oxide and zinc oxide,
    A carbon-containing molded body manufacturing means for manufacturing a carbon-containing molded body by mixing and molding an electric furnace dust containing iron oxide and zinc oxide, a carbonaceous material, a binder and water;
    Preheating means for heating and drying the carbon-containing molded body,
    Reduction treatment means for producing reduced iron by further heating the carbon-containing molded body heated by the preheating equipment,
    An apparatus for recovering iron and zinc from electric furnace dust, comprising zinc recovery means for recovering zinc from a reduction treatment gas generated by the reduction treatment means.
  13.  前記予熱手段が内熱式ロータリーキルンであり、前記還元処理手段が外熱式ロータリーキルンであることを特徴とする請求項12に記載の電炉ダストからの鉄および亜鉛の回収装置。 The apparatus for recovering iron and zinc from electric furnace dust according to claim 12, wherein the preheating means is an internal heating rotary kiln, and the reduction treatment means is an external heating rotary kiln.
  14.  前記外熱式ロータリーキルンに、粉状炭材装入装置を設置したことを特徴とする請求項13に記載の電炉ダストからの鉄および亜鉛の回収装置。 The apparatus for recovering iron and zinc from electric furnace dust according to claim 13, wherein a powder carbonaceous material charging device is installed in the externally heated rotary kiln.
  15.  前記亜鉛回収手段において亜鉛を回収した後の還元処理ガスを前記還元処理手段の加熱用燃料にするための還元処理ガス再利用手段を有することを特徴とする請求項12~14のいずれか1項に記載の電炉ダストからの鉄および亜鉛の回収装置。 15. The reduction processing gas reuse means for using the reduction processing gas after recovering zinc in the zinc recovery means as a heating fuel for the reduction processing means. An apparatus for recovering iron and zinc from electric furnace dust described in 1.
  16.  前記亜鉛回収手段が鉛スプラッシュ・コンデンサーを有することを特徴とする請求項12~15のいずれか1項に記載の電炉ダストからの鉄および亜鉛の回収装置。 The apparatus for recovering iron and zinc from electric furnace dust according to any one of claims 12 to 15, wherein the zinc recovery means has a lead splash capacitor.
  17.  前記亜鉛回収手段が内部を冷却した炭化珪素製チューブにより還元処理ガスを冷却し、亜鉛を凝縮させて分離回収する亜鉛凝縮器を有することを特徴とする請求項12~15のいずれか1項に記載の電炉ダストからの鉄および亜鉛の回収装置。 16. The zinc condenser according to any one of claims 12 to 15, wherein the zinc collecting means includes a zinc condenser that cools the reduction treatment gas using a silicon carbide tube cooled inside and condenses and separates zinc. An apparatus for recovering iron and zinc from the described electric furnace dust.
  18.  前記亜鉛凝縮器中に、1本または2本以上の前記炭化珪素製チューブが還元処理ガスの流れ方向に直交していることを特徴とする請求項17に記載の電炉ダストからの鉄および亜鉛の回収装置。 18. The iron and zinc from the electric furnace dust according to claim 17, wherein one or more of the silicon carbide tubes are orthogonal to the flow direction of the reducing gas in the zinc condenser. Recovery device.
  19.  前記炭化珪素製チューブが水平に配置されていることを特徴とする請求項18に記載の電炉ダストからの鉄および亜鉛の回収装置。 The apparatus for recovering iron and zinc from electric furnace dust according to claim 18, wherein the silicon carbide tube is disposed horizontally.
  20.  前記亜鉛凝縮器において、炭化珪素製チューブの下流側に炭化珪素製ペレットを配置して、さらに亜鉛を凝縮させて分離回収することを特徴とする請求項17~19のいずれか1項に記載の電炉ダストからの鉄および亜鉛の回収装置。 The zinc condenser according to any one of claims 17 to 19, wherein a silicon carbide pellet is disposed downstream of the silicon carbide tube, and zinc is further condensed and separated and recovered. Equipment for recovery of iron and zinc from electric furnace dust.
PCT/JP2016/071075 2015-07-22 2016-07-15 Method and apparatus for recovering zinc and iron from electric furnace dust WO2017014204A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015144964A JP5881886B1 (en) 2015-07-22 2015-07-22 Method and apparatus for recovering iron and zinc from electric furnace dust
JP2015-144964 2015-07-22

Publications (1)

Publication Number Publication Date
WO2017014204A1 true WO2017014204A1 (en) 2017-01-26

Family

ID=55453382

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/071075 WO2017014204A1 (en) 2015-07-22 2016-07-15 Method and apparatus for recovering zinc and iron from electric furnace dust

Country Status (2)

Country Link
JP (1) JP5881886B1 (en)
WO (1) WO2017014204A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108374066A (en) * 2018-03-30 2018-08-07 唐竹胜 A kind of method of the biradical association type low temperature fast deep direct reduced iron of the double kilns of powdery iron ore
PL424985A1 (en) * 2018-03-21 2019-09-23 Dobrzyński Michał P.P.H.U Stilmar Method for recovery of zinc and iron alloy from suspended metallurgical particulate matter
TWI707954B (en) * 2020-03-03 2020-10-21 中國鋼鐵股份有限公司 Recovery method of slag-steel/slag-iron
CN112111656A (en) * 2020-08-12 2020-12-22 北京科技大学 Method for co-processing zinc-containing and iron-containing dust by blast furnace and rotary kiln
CN114350959A (en) * 2021-12-03 2022-04-15 中冶赛迪技术研究中心有限公司 Device and process flow for preparing zinc powder from zinc-containing electric furnace ash
CN115491504A (en) * 2022-09-26 2022-12-20 董家驭 Vacuum short-flow zinc collecting system and method for electric furnace steelmaking smoke dust
JPWO2022264904A1 (en) * 2021-06-14 2022-12-22

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108411116A (en) * 2018-05-16 2018-08-17 金川集团股份有限公司 A kind of lateritic nickel ore RKEF smelting processes smoke gas comprehensive treatment system and method
JP7207153B2 (en) * 2019-05-16 2023-01-18 日本製鉄株式会社 agglomerates
CN113025813A (en) * 2021-02-26 2021-06-25 西安建筑科技大学 Method for treating zinc-containing carbon-containing industrial solid waste in steel production process
CN114395697A (en) * 2022-01-04 2022-04-26 中冶南方工程技术有限公司 Method for reducing carbon emission in reduction dezincification process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3463473A (en) * 1966-01-07 1969-08-26 Soc Metallurgique Imphy Installation for extracting zinc from fumes rich in zinc vapour
JPH04110427A (en) * 1990-08-30 1992-04-10 Sumitomo Heavy Ind Ltd Metal vapor condenser
JPH04232216A (en) * 1990-12-28 1992-08-20 Shinko Electric Co Ltd Device for removing low melting point metal
JPH05271799A (en) * 1992-03-27 1993-10-19 Aichi Steel Works Ltd Method for recovering valuable metal in electric furnace dust and device therefor
JP5116883B1 (en) * 2012-02-10 2013-01-09 株式会社 テツゲン Method and apparatus for producing reduced iron

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11193424A (en) * 1997-11-05 1999-07-21 Nkk Corp Method and device for separating and recovering metal source containing a plurality of kinds of metal oxides
EP2324135B1 (en) * 2008-08-07 2012-08-01 Zinchem, A Division Of Zimco Group (Pty) Ltd Method and plant for the production of zinc dust

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3463473A (en) * 1966-01-07 1969-08-26 Soc Metallurgique Imphy Installation for extracting zinc from fumes rich in zinc vapour
JPH04110427A (en) * 1990-08-30 1992-04-10 Sumitomo Heavy Ind Ltd Metal vapor condenser
JPH04232216A (en) * 1990-12-28 1992-08-20 Shinko Electric Co Ltd Device for removing low melting point metal
JPH05271799A (en) * 1992-03-27 1993-10-19 Aichi Steel Works Ltd Method for recovering valuable metal in electric furnace dust and device therefor
JP5116883B1 (en) * 2012-02-10 2013-01-09 株式会社 テツゲン Method and apparatus for producing reduced iron

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL424985A1 (en) * 2018-03-21 2019-09-23 Dobrzyński Michał P.P.H.U Stilmar Method for recovery of zinc and iron alloy from suspended metallurgical particulate matter
CN108374066A (en) * 2018-03-30 2018-08-07 唐竹胜 A kind of method of the biradical association type low temperature fast deep direct reduced iron of the double kilns of powdery iron ore
CN108374066B (en) * 2018-03-30 2019-07-16 唐竹胜 A kind of method of the biradical association type low temperature fast deep direct reduced iron of the double kilns of powdery iron ore
TWI707954B (en) * 2020-03-03 2020-10-21 中國鋼鐵股份有限公司 Recovery method of slag-steel/slag-iron
CN112111656A (en) * 2020-08-12 2020-12-22 北京科技大学 Method for co-processing zinc-containing and iron-containing dust by blast furnace and rotary kiln
JPWO2022264904A1 (en) * 2021-06-14 2022-12-22
JP7428266B2 (en) 2021-06-14 2024-02-06 Jfeスチール株式会社 Method for manufacturing reduced iron
CN114350959A (en) * 2021-12-03 2022-04-15 中冶赛迪技术研究中心有限公司 Device and process flow for preparing zinc powder from zinc-containing electric furnace ash
CN115491504A (en) * 2022-09-26 2022-12-20 董家驭 Vacuum short-flow zinc collecting system and method for electric furnace steelmaking smoke dust
CN115491504B (en) * 2022-09-26 2023-11-14 董家驭 Vacuum short-flow zinc collecting system and method for electric furnace steelmaking smoke dust

Also Published As

Publication number Publication date
JP5881886B1 (en) 2016-03-09
JP2017025376A (en) 2017-02-02

Similar Documents

Publication Publication Date Title
JP5881886B1 (en) Method and apparatus for recovering iron and zinc from electric furnace dust
WO1999016913A1 (en) Rotary hearth furnace for reducing oxides, and method of operating the furnace
CA2720896C (en) Titanium oxide-containing agglomerate for producing granular metallic iron
CN101538634A (en) Smelting process and device of pure iron
JP2010111941A (en) Method for producing ferrovanadium
CN104105802A (en) Base metal recovery
JP2010229525A (en) Method for producing ferronickel and ferrovanadium
KR100210649B1 (en) Method for recovering zinc oxide from dust and apparatus therefor
US7790099B2 (en) Process and apparatus for extracting zinc
JP6896011B2 (en) Method of recovering iron and zinc from electric furnace dust and its equipment
CZ301924B6 (en) Refining technology of and a device for treating metalline zinc-containing waste in revolving furnace
JPH0380850B2 (en)
JPS6112979B2 (en)
WO2009114155A2 (en) Feed material compostion and handling in a channel induction furnace
JPH11504985A (en) Method for recovering metals from iron oxide containing materials
JP3727232B2 (en) Zinc recovery method
CN103952540A (en) Technology for producing metallized furnace charge from iron-containing dust and high-silicon iron concentrate
JP4499306B2 (en) Method for dezincing zinc-containing iron oxide using a rotary kiln
JP2010090431A (en) Method for producing ferro-alloy containing nickel and vanadium
WO2009114159A2 (en) Feed material compostion and handling in a channel induction furnace
CN207130313U (en) A kind of system for handling utilising zinc containing waste residue
WO2009145348A1 (en) Method for manufacturing pig iron
RU2484153C2 (en) Method of arc-furnace dust recovery
EP3601625A1 (en) Process for preparing iron- and chrome-containing particles
JP2005126732A (en) Smelting-reduction method for material containing metallic oxide, and smelting-reduction apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16827764

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16827764

Country of ref document: EP

Kind code of ref document: A1