WO2017013769A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
WO2017013769A1
WO2017013769A1 PCT/JP2015/070836 JP2015070836W WO2017013769A1 WO 2017013769 A1 WO2017013769 A1 WO 2017013769A1 JP 2015070836 W JP2015070836 W JP 2015070836W WO 2017013769 A1 WO2017013769 A1 WO 2017013769A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor chip
inductor
signal
signal path
chip
Prior art date
Application number
PCT/JP2015/070836
Other languages
French (fr)
Japanese (ja)
Inventor
孝靜 朴
一修 田島
Original Assignee
サンケン電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンケン電気株式会社 filed Critical サンケン電気株式会社
Priority to PCT/JP2015/070836 priority Critical patent/WO2017013769A1/en
Publication of WO2017013769A1 publication Critical patent/WO2017013769A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H04B5/48
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05554Shape in top view being square
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements

Definitions

  • the present invention relates to a semiconductor device having a plurality of semiconductor chips that are insulated from each other.
  • the number of components can be reduced and space can be saved. realizable. It is also effective for space saving to mount a high-voltage semiconductor chip and a semiconductor chip that controls the operation of the high-voltage semiconductor chip in one semiconductor device.
  • An object of the present invention is to provide a semiconductor device having an improved signal propagation speed between insulated semiconductor chips.
  • the first semiconductor chip and the second semiconductor chip that are electrically insulated from each other, and the first magnetic field coupling by the chip transformer in which the conductor layer and the insulating layer are stacked.
  • a first signal path and a second signal path for transmitting a signal from the semiconductor chip to the second semiconductor chip, and the first control signal and the second signal transmitted via the first signal path A semiconductor device is provided in which the operation of the second semiconductor chip is controlled by the second control signal transmitted through the path.
  • FIG. 4 It is a schematic diagram which shows the structural example of the semiconductor device which concerns on embodiment of this invention. 4 is a timing chart for explaining an operation example of the semiconductor device according to the embodiment of the present invention. It is typical sectional drawing which shows the structural example of the chip transformer used for the semiconductor device which concerns on embodiment of this invention. It is a typical perspective view showing the 1st inductor of the chip transformer used for the semiconductor device concerning the embodiment of the present invention. It is a typical perspective view showing the 2nd inductor of the chip transformer used for the semiconductor device concerning the embodiment of the present invention. It is a typical perspective view which shows the shield of the chip transformer used for the semiconductor device which concerns on embodiment of this invention.
  • the semiconductor device 1 includes a first semiconductor chip 11, a second semiconductor chip 12, a third semiconductor chip 13, a first transmission transformer 21, and a second semiconductor chip 11.
  • the transmission transformer 22 is provided.
  • the first semiconductor chip 11, the second semiconductor chip 12, and the third semiconductor chip 13 are disposed so as to be electrically insulated from each other.
  • the first transmission transformer 21 and the second transmission transformer 22 are chip transformers having a structure in which a conductor layer and an insulating layer are stacked.
  • the first transmission transformer 21 has a first signal path 201 and a second signal path 202 through which signals propagate due to magnetic field coupling in the chip transformer.
  • the second transmission transformer 22 includes a third signal path 203 and a fourth signal path 204 through which signals propagate due to magnetic field coupling in the chip transformer. Details of the structure of the chip transformer will be described later.
  • the first semiconductor chip 11, the second semiconductor chip 12, the third semiconductor chip 13, the first transmission transformer 21 and the second transmission transformer 22 are molded and sealed with a molding material 15 such as an insulating resin. It is mounted on one package.
  • the first semiconductor chip 11 outputs a first control signal Sc1 and a second control signal Sc2 that control the operation of the second semiconductor chip 12. Further, the first semiconductor chip 11 outputs a third control signal Sc3 and a fourth control signal Sc4 that control the operation of the third semiconductor chip 13. The operation of the first semiconductor chip 11 is controlled by, for example, the microprocessor 2.
  • the first control signal Sc1 and the second control signal Sc2 are transmitted from the first semiconductor chip 11 to the second semiconductor chip 12 via the first transmission transformer 21. That is, the transmission side terminal Tx1 of the first signal path 201 of the first transmission transformer 21 and the transmission side terminal Tx2 of the second signal path 202 are connected to the first semiconductor chip 11. In addition, the reception-side terminal Rx 1 of the first signal path 201 of the first transmission transformer 21 and the reception-side terminal Rx 2 of the second signal path 202 are connected to the second semiconductor chip 12.
  • a terminal to which a signal propagating through the chip transformer is input from the outside is referred to as a “transmission side terminal”, and a terminal from which the signal is output to the outside is referred to as a “reception side terminal”.
  • the first control signal Sc ⁇ b> 1 is transmitted from the first semiconductor chip 11 to the second semiconductor chip 12 through the first signal path 201.
  • the second control signal Sc ⁇ b> 2 is transmitted from the first semiconductor chip 11 to the second semiconductor chip 12 through the second signal path 202.
  • the third control signal Sc3 and the fourth control signal Sc4 are transmitted from the first semiconductor chip 11 to the third semiconductor chip 13 via the second transmission transformer 22. That is, the transmission side terminal Tx3 of the third signal path 203 of the second transmission transformer 22 and the transmission side terminal Tx4 of the fourth signal path 204 are connected to the first semiconductor chip 11. Further, the reception-side terminal Rx3 of the third signal path 203 of the second transmission transformer 22 and the reception-side terminal Rx4 of the fourth signal path 204 are connected to the third semiconductor chip 13. As a result, the third control signal Sc3 is transmitted from the first semiconductor chip 11 to the third semiconductor chip 13 via the third signal path 203. Then, the fourth control signal Sc4 is transmitted from the first semiconductor chip 11 to the third semiconductor chip 13 through the fourth signal path 204.
  • transmission side terminal Tx1, the transmission side terminal Tx2, the transmission side terminal Tx3, and the transmission side terminal Tx4 are collectively referred to as “transmission side terminal Tx”.
  • reception side terminal Rx1, the reception side terminal Rx2, the reception side terminal Rx3, and the reception side terminal Rx4 are collectively referred to as “reception side terminal Rx”.
  • the channel through which the first control signal Sc1 and the second control signal Sc2 propagate from the first semiconductor chip 11 to the second semiconductor chip 12 has an insulating structure using the first transmission transformer 21. is there.
  • the channel through which the third control signal Sc3 and the fourth control signal Sc4 propagate from the first semiconductor chip 11 to the third semiconductor chip 13 has an insulating structure using the second transmission transformer 22. Therefore, the first semiconductor chip 11, the second semiconductor chip 12, and the third semiconductor chip 13 can be electrically insulated from each other. For this reason, the safety and operational stability of the semiconductor device 1 are improved.
  • the second semiconductor chip 12 and the third semiconductor chip 13 are formed with drive circuits for driving external elements.
  • a drive signal Sd 1 for driving the external element 31 is output from the second semiconductor chip 12 to the external element 31.
  • a drive signal Sd 2 for driving the external element 32 is output from the third semiconductor chip 13 to the external element 32.
  • the external elements 31 and 32 are, for example, power MOSFETs. At this time, the driving capabilities of the second semiconductor chip 12 and the third semiconductor chip 13 may be the same or different.
  • the first semiconductor chip 11 is a control chip for controlling the drive chip.
  • the first control signal Sc ⁇ b> 1 is transmitted to the second semiconductor chip 12 as a set signal for turning on the external element 31 by the second semiconductor chip 12.
  • a second control signal Sc2 is transmitted to the second semiconductor chip 12 as a reset signal that causes the external element 31 to be turned off by the second semiconductor chip 12. That is, the semiconductor device 1 employs a set reset (SR) method in which the set signal and the reset signal are transmitted through different signal paths.
  • SR set reset
  • FIG. 2 shows an operation example of the first transmission transformer 21.
  • an input signal IN is input to the first semiconductor chip 11.
  • the first semiconductor chip 11 transmits the first control signal Sc1 to the second semiconductor chip 12. That is, the first semiconductor chip 11 outputs a pulse signal to the transmission side terminal Tx1 of the first signal path 201 of the first transmission transformer 21. As a result, a pulse signal is output to the reception-side terminal Rx1 of the first signal path 201.
  • This pulse signal propagating through the first signal path 201 is input to the second semiconductor chip 12 as a set signal, and the second semiconductor chip 12 turns on the external element 31. For example, the drive signal Sd1 becomes high level and the external element 31 is turned on.
  • the first semiconductor chip 11 transmits the second control signal Sc2 to the second semiconductor chip 12. That is, the first semiconductor chip 11 outputs a pulse signal to the transmission-side terminal Tx2 of the second signal path 202 of the first transmission transformer 21. As a result, a pulse signal is output to the reception-side terminal Rx2 of the second signal path 202.
  • This pulse signal propagating through the second signal path 202 is input to the second semiconductor chip 12 as a reset signal, and the second semiconductor chip 12 turns off the external element 31. For example, the drive signal Sd1 becomes a low level and the external element 31 is turned off.
  • the first signal path 201 is used as a signal path for transmitting a set signal
  • the second signal path 202 is used as a signal path for transmitting a reset signal.
  • the external element 31 can be operated at high speed by the SR method in which the set signal and the reset signal are transmitted through different signal paths.
  • the input / output delay time is shortened.
  • the input / output delay time is about 400 nanoseconds
  • the input / output delay time is about 80 nanoseconds.
  • the third signal path 203 and the fourth signal path 204 can also be used as signal paths for transmitting the set signal and the reset signal.
  • the third control signal Sc3 is transmitted to the third semiconductor chip 13 as a set signal for turning on the external element 32 by the third semiconductor chip 13.
  • the fourth control signal Sc4 is transmitted to the third semiconductor chip 13 as a reset signal that causes the external element 32 to be turned off by the third semiconductor chip 13.
  • FIG. 3 a structure as shown in FIG. 3 can be adopted for the chip transformer used in the semiconductor device 1.
  • the chip transformer 100 shown in FIG. 3 has a laminated structure in which a plurality of conductor layers are laminated with an insulating layer interposed therebetween.
  • a stacked body 130 including a plurality of conductor layers is disposed over a semiconductor substrate 110 such as a silicon substrate with an insulating film 120 such as a silicon oxide film interposed therebetween.
  • the stacked body 130 has a structure in which a first conductor layer 1M, a second conductor layer 2M, a third conductor layer 3M, and a fourth conductor layer 4M are stacked with an insulating layer 135 interposed therebetween. is there.
  • the thickness of the semiconductor substrate 110 is about 400 ⁇ m
  • the thickness of the stacked body 130 is about 10 to 30 ⁇ m.
  • the second conductor layer 2M is a first inductor layer in which a first inductor L1 having a spiral conductive pattern as shown in FIG. 4 is formed.
  • One end of the first inductor L1 located at the center of the conductive pattern is electrically connected to the first conductor layer 1M by the plug 101 disposed in the insulating layer 135.
  • the “plug” has a structure in which a conductive material is embedded in a through hole formed in the insulating layer 135.
  • the first conductor layer 1M is electrically connected to the pad P1a disposed on the upper surface of the chip transformer 100 via the plug 102. That is, the first conductor layer 1M is used as part of the wiring that electrically connects the first inductor L1 and the pad P1a. On the other hand, the other end located at the outer edge of the first inductor L1 is electrically connected to the pad P1b disposed on the upper surface of the chip transformer 100 via the plug 103.
  • the fourth conductor layer 4M is exposed on the surface of the stacked body 130 and disposed on the upper surface of the chip transformer 100.
  • the fourth conductor layer 4M is a second inductor layer in which a second inductor L2 having a spiral conductive pattern as shown in FIG. 5 is formed.
  • One end of the second inductor L2 located at the center of the conductive pattern is electrically connected to the pad P2a disposed on the inner side of the conductive pattern on the upper surface of the chip transformer 100.
  • the other end located at the outer edge of the second inductor L2 is electrically connected to a pad P2b disposed outside the conductive pattern on the upper surface of the chip transformer 100.
  • the chip transformer 100 signal propagation due to magnetic field coupling between the pads P1a and P1b and the pads P2a and P2b is achieved by the above structure in which the first inductor layer and the second inductor layer are stacked via the insulating layer. Done. It is preferable to form the first inductor L1 and the second inductor L2 so that the respective center positions coincide in plan view. According to the chip transformer 100, high-speed pulse signal communication having a pulse width of about several nanoseconds is possible.
  • a conductive shield 136 as shown in FIG. 6 between the first inductor L1 and the second inductor L2.
  • the shield 136 is formed on the third conductor layer 3M. This is due to the following reason.
  • a parasitic capacitance is formed between the first inductor L1 and the second inductor L2.
  • the charges accumulated in the parasitic capacitance move to an external circuit and an abnormal voltage or current is generated.
  • the shield 136 By arranging the shield 136 between the first inductor L1 and the second inductor L2, the charge of the parasitic capacitance is discharged through the shield 136. Thereby, it can suppress that noise generate
  • the shield 136 is formed so as not to disturb the magnetic field communication in the chip transformer 100.
  • a U-shaped plate-shaped conductor shield 136 as shown in FIG. 6 is used so that the shield 136 does not shield between the centers of the first inductor L1 and the second inductor L2.
  • the shield 136 is electrically connected to the pad Ps disposed on the upper surface of the chip transformer 100 via the plug 106.
  • the pad Ps is grounded via a semiconductor chip to which the receiving side terminal Rx of the chip transformer 100 is connected, for example.
  • the thickness of the second conductor layer 2M is set to about 1 ⁇ m
  • the thickness of the fourth conductor layer 4M is set to about 4 ⁇ m.
  • the on-resistance on the transmission side is smaller than that on the reception side in order to stably perform high-frequency signal propagation.
  • the pad P2a and the pad P2b connected to the second inductor L2 formed in the fourth conductor layer 4M having a large thickness are used as the transmission side terminal Tx.
  • the pads P1a and P1b connected to the first inductor L1 formed on the second conductor layer 2M having a small film thickness are used as the reception-side terminal Rx. This facilitates the manufacture of the chip transformer 100 with good flatness.
  • the film thickness of the second conductor layer 2M may be set to the same thickness as the film thickness of the fourth conductor layer 4M. Or you may make the film thickness of the 2nd conductor layer 2M thicker than the film thickness of the 4th conductor layer 4M.
  • the first inductor L1 formed in the second conductor layer 2M may be used as a transmitting inductor
  • the second inductor L2 formed in the fourth conductor layer 4M may be used as a receiving inductor. it can.
  • Examples of the material of the first conductor layer 1M, the second conductor layer 2M, the third conductor layer 3M, and the fourth conductor layer 4M include aluminum (Al), copper (Cu), and AlCu. Conductive materials can be used. Further, the above conductive material can be used for the plug embedded in the insulating layer 135.
  • the first transmission transformer 21 has a structure in which a chip transformer constituting the first signal path 201 and a chip transformer constituting the second signal path 202 are formed on the same semiconductor substrate 110.
  • the first inductor L1 hereinafter referred to as “inductor L11”
  • the first inductor L1 that constitutes the second signal path 202 (
  • the second inductor L2 (hereinafter referred to as “inductor L21”) constituting the first signal path 201 and the second inductor L2 (hereinafter referred to as “inductor L22”) constituting the second signal path 202.
  • inductor L21 constituting the first signal path 201
  • inductor L22 constituting the second signal path 202.
  • the end located at the center of the inductor L21 is electrically connected to the pad P21a disposed inside the inductor L21 on the upper surface of the first transmission transformer 21. Further, the end portion located at the center portion of the inductor L22 is electrically connected to the pad P22a disposed inside the inductor L22 on the upper surface of the first transmission transformer 21.
  • the plugs connected to the inductor L11 and the inductor L12, the first conductor layer 1M, and the third conductor layer 3M are not shown.
  • the end portion located at the center of the inductor L11 has a pad P11a disposed on the upper surface of the first transmission transformer 21 via the plug 1011, the first conductor layer 1M, and the plug 1021. And electrically connected.
  • An end portion located at the outer edge portion of the inductor L11 is electrically connected to a pad P11b disposed on the upper surface of the first transmission transformer 21 via a plug 1031.
  • the end portion located at the center of the inductor L12 is electrically connected to the pad P12a disposed on the upper surface of the first transmission transformer 21 through the plug 1012, the first conductor layer 1M, and the plug 1022. Is done.
  • the end located at the outer edge of the inductor L12 is electrically connected to the pad P12b disposed on the upper surface of the first transmission transformer 21 via the plug 1032.
  • the number of pads can be reduced by connecting one end of each of the inductor L21 and the inductor L22 to the common pad P20b. Further, as shown in FIG. 8, by connecting the shield of the chip transformer constituting the first signal path 201 and the chip transformer constituting the second signal path 202, the shield pad Ps can be made common.
  • a signal is propagated by magnetic field coupling between the pads P11a and P11b and the pads P21a and P20b by a structure in which the inductor L11 and the inductor L21 are stacked via an insulating layer.
  • a signal is propagated by magnetic field coupling between the pads P12a and P12b and the pads P22a and P20b by a structure in which the inductor L12 and the inductor L22 are stacked via an insulating layer.
  • FIG. 8 by using a common pad, the number of pads of the first transmission transformer 21 can be reduced as compared with the case where two chip transformers 100 are arranged.
  • FIG. 9 shows a pad arrangement example of the first transmission transformer 21. Further, by using the first transmission transformer 21 including two chip transformers, the area required for the chip transformer arrangement can be reduced as compared with the case where the two chip transformers 100 are arranged side by side.
  • the second transmission transformer 22 it is possible to adopt a structure in which the chip transformer constituting the third signal path 203 and the chip transformer constituting the fourth signal path 204 are formed on the same semiconductor substrate 110.
  • the structure of the second transmission transformer 22 can be made the same as the structure of the first transmission transformer 21 shown in FIGS. That is, the inductor L11 constituting the third signal path 203 and the inductor L12 constituting the fourth signal path 204 are formed in the same first inductor layer. Then, the inductor L21 constituting the third signal path 203 and the inductor L22 constituting the fourth signal path 204 are formed in the same second inductor layer.
  • the input / output of signals to / from the semiconductor device 1 is performed through external leads 16 that penetrate the molding material 15 as shown in FIG. That is, the connection between the first semiconductor chip 11 and the microprocessor 2, the connection between the second semiconductor chip 12 and the external element 31, and the connection between the third semiconductor chip 13 and the external element 32 are the external leads 16. Is done through.
  • bonding wires are used to connect the first semiconductor chip 11, the second semiconductor chip, the third semiconductor chip, and the external leads 16.
  • the connection between the first semiconductor chip 11 and the first transmission transformer 21 and the second transmission transformer 22 the connection between the first transmission transformer 21 and the second semiconductor chip 12, and the second transmission transformer.
  • a bonding wire is used for the connection between 22 and the third semiconductor chip 13.
  • the region where the second semiconductor chip 12 is disposed and the region where the third semiconductor chip 13 is disposed are the first semiconductor chip 11, the first transmission transformer 21, and the second semiconductor chip 13.
  • the transmission transformer 22 is arranged so as to face each other. For this reason, in the semiconductor device 1, the electromagnetic noise generated in the second semiconductor chip 12 or the third semiconductor chip 13 is suppressed from interfering with the other semiconductor chip.
  • the die pad that is the semiconductor chip mounting portion of the metal frame is divided into three parts, and the first semiconductor chip 11, the second semiconductor chip 12, The third semiconductor chip 13 is mounted on a separate die pad.
  • the semiconductor chips are electrically and electromagnetically isolated from each other.
  • the first transmission transformer 21 can be mounted on a die pad on which the second semiconductor chip 12 is mounted.
  • the second transmission transformer 22 can be mounted on a die pad on which the third semiconductor chip 13 is mounted.
  • the semiconductor device 1 can be used for a part of an in-vehicle electronic circuit system of a hybrid vehicle.
  • the second semiconductor chip 12 and the third semiconductor chip 13 are used as a driving device for driving a high-voltage system circuit of a hybrid car, and the first semiconductor chip 11 is driven to drive a low-voltage system circuit of a hybrid car.
  • the low voltage system circuit is a circuit that is powered by a 12V system or 24V system battery, such as an in-vehicle electronic circuit, lights such as a headlight and a winker, and an ignition device for an internal combustion engine such as a gasoline engine or a diesel engine. It is.
  • the high voltage system circuit is a circuit that drives an electric motor. In order to drive the electric motor, for example, the output of the 200V battery is boosted to a high voltage of 500V to 900V.
  • the signal propagation speed between the insulated semiconductor chips is improved by using the chip transformer in the signal propagation path. Can do.
  • the light receiving characteristic of the light receiving element is deteriorated due to the deterioration of the luminance of the light emitting element such as a light emitting diode, and the signal transmission response is lowered.
  • the optical device is placed in a high temperature environment, the luminance of the light emitting element is deteriorated and the light receiving characteristics of the light receiving element are rapidly deteriorated, and the service life is shortened.
  • the semiconductor device 1 according to the embodiment of the present invention since a chip transformer is used instead of an optical device in the signal propagation path, the signal transmission responsiveness is not deteriorated and the useful life is shortened. Absent.
  • the semiconductor device 1 according to the embodiment is suitable for in-vehicle use in which the environmental temperature is high.
  • the chip transformer is smaller than the substrate transformer and has a smaller coupling capacity. For this reason, the propagation speed of a signal can be improved by using a chip transformer.
  • the size of the entire semiconductor device 1 can be reduced by using a chip transformer.
  • the size of the chip transformer is small, the influence of the external magnetic field received by the semiconductor device 1 can be suppressed. For example, when an external element having a large element current is arranged around the semiconductor device 1, the first transmission transformer 21 and the second transmission transformer 22 are affected by the magnetic field generated due to the operation of the external element. Can be suppressed.
  • a pair of signal paths including the first signal path 201 and the second signal path 202 and a pair of signal paths including the third signal path 203 and the fourth signal path 204 are used.
  • a two-channel semiconductor device 1 is shown.
  • the present invention can also be applied to a one-channel semiconductor device 1 having a pair of signal paths.
  • the semiconductor device of the present invention can be used for a semiconductor device in which a plurality of semiconductor chips are arranged so as to be insulated from each other.

Abstract

This semiconductor device is provided with: a first semiconductor chip and a second semiconductor chip, which are disposed by being electrically insulated from each other; and a first signal path and a second signal path, which transmit signals from the first semiconductor chip to the second semiconductor chip by means of magnetic field coupling in a chip transformer wherein a conductor layer and an insulating layer are laminated. Operations of the second semiconductor chip are controlled by means of first control signals transmitted via the first signal path, and second control signals transmitted via the second signal path.

Description

半導体装置Semiconductor device
 本発明は、互いに絶縁分離された複数の半導体チップを有する半導体装置に関する。 The present invention relates to a semiconductor device having a plurality of semiconductor chips that are insulated from each other.
 例えば、高い電源電圧で駆動される高電圧系の半導体チップと低い電源電圧で駆動される低電圧系の半導体チップとを1つの半導体装置に搭載することにより、部品数の低減や省スペース化を実現できる。また、高電圧系の半導体チップと高電圧系の半導体チップの動作を制御する半導体チップとを1つの半導体装置に搭載することも、省スペース化などに有効である。 For example, by mounting a high-voltage semiconductor chip driven by a high power supply voltage and a low-voltage semiconductor chip driven by a low power supply voltage on one semiconductor device, the number of components can be reduced and space can be saved. realizable. It is also effective for space saving to mount a high-voltage semiconductor chip and a semiconductor chip that controls the operation of the high-voltage semiconductor chip in one semiconductor device.
 これらの場合、安全性や安定動作のために、半導体チップを互いに電気的に絶縁分離することが好ましい。半導体チップ間の絶縁分離には、信号伝達にオプティカルデバイスやトランスを使用することが有効である。例えば、基板トランスを用いることによって信号の伝播速度を高速化する方法が提案されている(例えば、特許文献1参照。)。 In these cases, it is preferable to electrically isolate and isolate the semiconductor chips from each other for safety and stable operation. For insulation separation between semiconductor chips, it is effective to use an optical device or a transformer for signal transmission. For example, a method of increasing the signal propagation speed by using a substrate transformer has been proposed (see, for example, Patent Document 1).
国際公開第2013/027454号International Publication No. 2013/027454
 しかしながら、トランスを使用して高速な信号の伝播を行う技術については、十分な検討がなされていない。本発明は、絶縁分離された半導体チップ間の信号伝播速度が向上された半導体装置を提供することを目的とする。 However, sufficient studies have not been made on techniques for high-speed signal propagation using a transformer. An object of the present invention is to provide a semiconductor device having an improved signal propagation speed between insulated semiconductor chips.
 本発明の一態様によれば、互いに電気的に絶縁して配置された第1の半導体チップ及び第2の半導体チップと、導電体層と絶縁層が積層されたチップトランスにおける磁界結合によって第1の半導体チップから第2の半導体チップに信号を送信する第1の信号経路及び第2の信号経路とを備え、第1の信号経路を介して送信される第1の制御信号と第2の信号経路を介して送信される第2の制御信号とによって、第2の半導体チップの動作が制御される半導体装置が提供される。 According to one aspect of the present invention, the first semiconductor chip and the second semiconductor chip that are electrically insulated from each other, and the first magnetic field coupling by the chip transformer in which the conductor layer and the insulating layer are stacked. A first signal path and a second signal path for transmitting a signal from the semiconductor chip to the second semiconductor chip, and the first control signal and the second signal transmitted via the first signal path A semiconductor device is provided in which the operation of the second semiconductor chip is controlled by the second control signal transmitted through the path.
 本発明によれば、絶縁分離された半導体チップ間の信号伝播速度が向上された半導体装置を提供できる。 According to the present invention, it is possible to provide a semiconductor device in which the signal propagation speed between insulated semiconductor chips is improved.
本発明の実施形態に係る半導体装置の構造例を示す模式図である。It is a schematic diagram which shows the structural example of the semiconductor device which concerns on embodiment of this invention. 本発明の実施形態に係る半導体装置の動作例を説明するためのタイミングチャートである。4 is a timing chart for explaining an operation example of the semiconductor device according to the embodiment of the present invention. 本発明の実施形態に係る半導体装置に使用されるチップトランスの構造例を示す模式的な断面図である。It is typical sectional drawing which shows the structural example of the chip transformer used for the semiconductor device which concerns on embodiment of this invention. 本発明の実施形態に係る半導体装置に使用されるチップトランスの第1のインダクタを示す模式的な斜視図である。It is a typical perspective view showing the 1st inductor of the chip transformer used for the semiconductor device concerning the embodiment of the present invention. 本発明の実施形態に係る半導体装置に使用されるチップトランスの第2のインダクタを示す模式的な斜視図である。It is a typical perspective view showing the 2nd inductor of the chip transformer used for the semiconductor device concerning the embodiment of the present invention. 本発明の実施形態に係る半導体装置に使用されるチップトランスのシールドを示す模式的な斜視図である。It is a typical perspective view which shows the shield of the chip transformer used for the semiconductor device which concerns on embodiment of this invention. 本発明の実施形態に係る半導体装置の送信トランスに使用される第1のインダクタ及び第2のインダクタを示す模式的な斜視図である。It is a typical perspective view showing the 1st inductor and the 2nd inductor used for the transmission transformer of the semiconductor device concerning the embodiment of the present invention. 本発明の実施形態に係る半導体装置の送信トランスの構造例を示す模式的な断面図である。It is typical sectional drawing which shows the structural example of the transmission transformer of the semiconductor device which concerns on embodiment of this invention. 本発明の実施形態に係る半導体装置の送信トランスのパッド配置を示す模式的な平面図である。It is a typical top view showing pad arrangement of a transmission transformer of a semiconductor device concerning an embodiment of the present invention. 本発明の実施形態に係る半導体装置のレイアウト例を示す模式図である。It is a schematic diagram which shows the example of a layout of the semiconductor device which concerns on embodiment of this invention.
 次に、図面を参照して、本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各部の長さの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な寸法は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることはもちろんである。 Next, an embodiment of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between the thickness and the planar dimensions, the ratio of the lengths of the respective parts, and the like are different from the actual ones. Therefore, specific dimensions should be determined in consideration of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.
 また、以下に示す実施形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は、構成部品の形状、構造、配置等を下記のものに特定するものでない。この発明の実施形態は、請求の範囲において、種々の変更を加えることができる。 Further, the embodiments described below exemplify apparatuses and methods for embodying the technical idea of the present invention, and the technical idea of the present invention includes the shape, structure, arrangement, etc. of components. It is not specified to the following. The embodiment of the present invention can be variously modified within the scope of the claims.
 本発明の実施形態に係る半導体装置1は、図1に示すように、第1の半導体チップ11、第2の半導体チップ12、第3の半導体チップ13、第1の送信トランス21、及び第2の送信トランス22を備える。第1の半導体チップ11、第2の半導体チップ12及び第3の半導体チップ13は、互いに電気的に絶縁して配置されている。 As shown in FIG. 1, the semiconductor device 1 according to the embodiment of the present invention includes a first semiconductor chip 11, a second semiconductor chip 12, a third semiconductor chip 13, a first transmission transformer 21, and a second semiconductor chip 11. The transmission transformer 22 is provided. The first semiconductor chip 11, the second semiconductor chip 12, and the third semiconductor chip 13 are disposed so as to be electrically insulated from each other.
 第1の送信トランス21及び第2の送信トランス22は、導電体層と絶縁層が積層された構造を有するチップトランスである。第1の送信トランス21は、チップトランスにおける磁界結合により信号が伝播する第1の信号経路201と第2の信号経路202を有する。第2の送信トランス22は、チップトランスにおける磁界結合により信号が伝播する第3の信号経路203と第4の信号経路204を有する。チップトランスの構造の詳細については後述する。 The first transmission transformer 21 and the second transmission transformer 22 are chip transformers having a structure in which a conductor layer and an insulating layer are stacked. The first transmission transformer 21 has a first signal path 201 and a second signal path 202 through which signals propagate due to magnetic field coupling in the chip transformer. The second transmission transformer 22 includes a third signal path 203 and a fourth signal path 204 through which signals propagate due to magnetic field coupling in the chip transformer. Details of the structure of the chip transformer will be described later.
 第1の半導体チップ11、第2の半導体チップ12、第3の半導体チップ13、第1の送信トランス21及び第2の送信トランス22は、絶縁性樹脂などのモールド材15によってモールド封止されて、1つのパッケージに搭載されている。 The first semiconductor chip 11, the second semiconductor chip 12, the third semiconductor chip 13, the first transmission transformer 21 and the second transmission transformer 22 are molded and sealed with a molding material 15 such as an insulating resin. It is mounted on one package.
 第1の半導体チップ11は、第2の半導体チップ12の動作を制御する第1の制御信号Sc1及び第2の制御信号Sc2を出力する。更に、第1の半導体チップ11は、第3の半導体チップ13の動作を制御する第3の制御信号Sc3及び第4の制御信号Sc4を出力する。第1の半導体チップ11の動作は、例えばマイクロプロセッサ2によって制御される。 The first semiconductor chip 11 outputs a first control signal Sc1 and a second control signal Sc2 that control the operation of the second semiconductor chip 12. Further, the first semiconductor chip 11 outputs a third control signal Sc3 and a fourth control signal Sc4 that control the operation of the third semiconductor chip 13. The operation of the first semiconductor chip 11 is controlled by, for example, the microprocessor 2.
 第1の制御信号Sc1及び第2の制御信号Sc2は、第1の送信トランス21を介して、第1の半導体チップ11から第2の半導体チップ12に送信される。即ち、第1の送信トランス21の第1の信号経路201の送信側端子Tx1及び第2の信号経路202の送信側端子Tx2が、第1の半導体チップ11に接続する。また、第1の送信トランス21の第1の信号経路201の受信側端子Rx1及び第2の信号経路202の受信側端子Rx2が、第2の半導体チップ12に接続する。ここで、チップトランスを伝播する信号が外部から入力する端子を「送信側端子」、外部に信号が出力される端子を「受信側端子」という。上記接続により、第1の信号経路201を介して、第1の制御信号Sc1が第1の半導体チップ11から第2の半導体チップ12に送信される。そして、第2の信号経路202を介して、第2の制御信号Sc2が第1の半導体チップ11から第2の半導体チップ12に送信される。 The first control signal Sc1 and the second control signal Sc2 are transmitted from the first semiconductor chip 11 to the second semiconductor chip 12 via the first transmission transformer 21. That is, the transmission side terminal Tx1 of the first signal path 201 of the first transmission transformer 21 and the transmission side terminal Tx2 of the second signal path 202 are connected to the first semiconductor chip 11. In addition, the reception-side terminal Rx 1 of the first signal path 201 of the first transmission transformer 21 and the reception-side terminal Rx 2 of the second signal path 202 are connected to the second semiconductor chip 12. Here, a terminal to which a signal propagating through the chip transformer is input from the outside is referred to as a “transmission side terminal”, and a terminal from which the signal is output to the outside is referred to as a “reception side terminal”. With the above connection, the first control signal Sc <b> 1 is transmitted from the first semiconductor chip 11 to the second semiconductor chip 12 through the first signal path 201. Then, the second control signal Sc <b> 2 is transmitted from the first semiconductor chip 11 to the second semiconductor chip 12 through the second signal path 202.
 また、第3の制御信号Sc3及び第4の制御信号Sc4は、第2の送信トランス22を介して、第1の半導体チップ11から第3の半導体チップ13に送信される。即ち、第2の送信トランス22の第3の信号経路203の送信側端子Tx3及び第4の信号経路204の送信側端子Tx4が、第1の半導体チップ11に接続する。また、第2の送信トランス22の第3の信号経路203の受信側端子Rx3及び第4の信号経路204の受信側端子Rx4が、第3の半導体チップ13に接続する。これにより、第3の信号経路203を介して、第3の制御信号Sc3が第1の半導体チップ11から第3の半導体チップ13に送信される。そして、第4の信号経路204を介して、第4の制御信号Sc4が第1の半導体チップ11から第3の半導体チップ13に送信される。 In addition, the third control signal Sc3 and the fourth control signal Sc4 are transmitted from the first semiconductor chip 11 to the third semiconductor chip 13 via the second transmission transformer 22. That is, the transmission side terminal Tx3 of the third signal path 203 of the second transmission transformer 22 and the transmission side terminal Tx4 of the fourth signal path 204 are connected to the first semiconductor chip 11. Further, the reception-side terminal Rx3 of the third signal path 203 of the second transmission transformer 22 and the reception-side terminal Rx4 of the fourth signal path 204 are connected to the third semiconductor chip 13. As a result, the third control signal Sc3 is transmitted from the first semiconductor chip 11 to the third semiconductor chip 13 via the third signal path 203. Then, the fourth control signal Sc4 is transmitted from the first semiconductor chip 11 to the third semiconductor chip 13 through the fourth signal path 204.
 以下において、送信側端子Tx1、送信側端子Tx2、送信側端子Tx3及び送信側端子Tx4を総称して「送信側端子Tx」という。また、受信側端子Rx1、受信側端子Rx2、受信側端子Rx3及び受信側端子Rx4を総称して「受信側端子Rx」という。 Hereinafter, the transmission side terminal Tx1, the transmission side terminal Tx2, the transmission side terminal Tx3, and the transmission side terminal Tx4 are collectively referred to as “transmission side terminal Tx”. The reception side terminal Rx1, the reception side terminal Rx2, the reception side terminal Rx3, and the reception side terminal Rx4 are collectively referred to as “reception side terminal Rx”.
 上記のように、第1の制御信号Sc1及び第2の制御信号Sc2が第1の半導体チップ11から第2の半導体チップ12に伝播するチャンネルは、第1の送信トランス21を用いた絶縁構造である。また、第3の制御信号Sc3及び第4の制御信号Sc4が第1の半導体チップ11から第3の半導体チップ13に伝播するチャンネルは、第2の送信トランス22を用いた絶縁構造である。したがって、第1の半導体チップ11、第2の半導体チップ12及び第3の半導体チップ13を、互いに電気的に絶縁することができる。このため、半導体装置1の安全性や動作の安定性が向上する。 As described above, the channel through which the first control signal Sc1 and the second control signal Sc2 propagate from the first semiconductor chip 11 to the second semiconductor chip 12 has an insulating structure using the first transmission transformer 21. is there. The channel through which the third control signal Sc3 and the fourth control signal Sc4 propagate from the first semiconductor chip 11 to the third semiconductor chip 13 has an insulating structure using the second transmission transformer 22. Therefore, the first semiconductor chip 11, the second semiconductor chip 12, and the third semiconductor chip 13 can be electrically insulated from each other. For this reason, the safety and operational stability of the semiconductor device 1 are improved.
 第2の半導体チップ12及び第3の半導体チップ13には、外部素子を駆動する駆動回路が形成されている。第2の半導体チップ12から、外部素子31を駆動する駆動信号Sd1が外部素子31に出力される。第3の半導体チップ13から、外部素子32を駆動する駆動信号Sd2が外部素子32に出力される。外部素子31、32は、例えばパワーMOSFETなどである。このとき、第2の半導体チップ12と第3の半導体チップ13の駆動能力は同等でもよいし、異なっていてもよい。 The second semiconductor chip 12 and the third semiconductor chip 13 are formed with drive circuits for driving external elements. A drive signal Sd 1 for driving the external element 31 is output from the second semiconductor chip 12 to the external element 31. A drive signal Sd 2 for driving the external element 32 is output from the third semiconductor chip 13 to the external element 32. The external elements 31 and 32 are, for example, power MOSFETs. At this time, the driving capabilities of the second semiconductor chip 12 and the third semiconductor chip 13 may be the same or different.
 パワーICを駆動する駆動チップとして第2の半導体チップ12や第3の半導体チップを使用する場合は、第1の半導体チップ11は駆動チップを制御する制御チップである。例えば、第2の半導体チップ12によって外部素子31をオン状態にさせるセット信号として、第1の制御信号Sc1が第2の半導体チップ12に送信される。また、第2の半導体チップ12によって外部素子31をオフ状態にさせるリセット信号として、第2の制御信号Sc2が第2の半導体チップ12に送信される。つまり、半導体装置1は、セット信号とリセット信号とを異なる信号経路によって送信するセットリセット(SR)方式を採用している。 When the second semiconductor chip 12 or the third semiconductor chip is used as a drive chip for driving the power IC, the first semiconductor chip 11 is a control chip for controlling the drive chip. For example, the first control signal Sc <b> 1 is transmitted to the second semiconductor chip 12 as a set signal for turning on the external element 31 by the second semiconductor chip 12. In addition, a second control signal Sc2 is transmitted to the second semiconductor chip 12 as a reset signal that causes the external element 31 to be turned off by the second semiconductor chip 12. That is, the semiconductor device 1 employs a set reset (SR) method in which the set signal and the reset signal are transmitted through different signal paths.
 上記動作のタイミングチャートを、図2を参照して以下に説明する。図2は、第1の送信トランス21の動作例である。 The timing chart of the above operation will be described below with reference to FIG. FIG. 2 shows an operation example of the first transmission transformer 21.
 まず、第1の半導体チップ11に入力信号INが入力される。入力信号INの立ち上がりに応答して、第1の半導体チップ11が、第2の半導体チップ12に第1の制御信号Sc1を送信する。即ち、第1の半導体チップ11が、第1の送信トランス21の第1の信号経路201の送信側端子Tx1にパルス信号を出力する。これにより、第1の信号経路201の受信側端子Rx1にパルス信号が出力される。第1の信号経路201を伝播するこのパルス信号がセット信号として第2の半導体チップ12に入力され、第2の半導体チップ12が外部素子31をオン状態にする。例えば、駆動信号Sd1がハイレベルになって外部素子31がオンする。 First, an input signal IN is input to the first semiconductor chip 11. In response to the rising edge of the input signal IN, the first semiconductor chip 11 transmits the first control signal Sc1 to the second semiconductor chip 12. That is, the first semiconductor chip 11 outputs a pulse signal to the transmission side terminal Tx1 of the first signal path 201 of the first transmission transformer 21. As a result, a pulse signal is output to the reception-side terminal Rx1 of the first signal path 201. This pulse signal propagating through the first signal path 201 is input to the second semiconductor chip 12 as a set signal, and the second semiconductor chip 12 turns on the external element 31. For example, the drive signal Sd1 becomes high level and the external element 31 is turned on.
 その後、入力信号INの立ち下がりに応答して、第1の半導体チップ11が、第2の半導体チップ12に第2の制御信号Sc2を送信する。即ち、第1の半導体チップ11が、第1の送信トランス21の第2の信号経路202の送信側端子Tx2にパルス信号を出力する。これにより、第2の信号経路202の受信側端子Rx2にパルス信号が出力される。第2の信号経路202を伝播するこのパルス信号がリセット信号として第2の半導体チップ12に入力され、第2の半導体チップ12が外部素子31をオフ状態にする。例えば、駆動信号Sd1がローレベルになって外部素子31がオフする。 Thereafter, in response to the fall of the input signal IN, the first semiconductor chip 11 transmits the second control signal Sc2 to the second semiconductor chip 12. That is, the first semiconductor chip 11 outputs a pulse signal to the transmission-side terminal Tx2 of the second signal path 202 of the first transmission transformer 21. As a result, a pulse signal is output to the reception-side terminal Rx2 of the second signal path 202. This pulse signal propagating through the second signal path 202 is input to the second semiconductor chip 12 as a reset signal, and the second semiconductor chip 12 turns off the external element 31. For example, the drive signal Sd1 becomes a low level and the external element 31 is turned off.
 上記のように、第1の信号経路201がセット信号を送信する信号経路として使用され、第2の信号経路202がリセット信号を送信する信号経路として使用される。このようにセット信号とリセット信号を異なる信号経路で送信するSR方式によって、外部素子31の高速動作が可能である。例えば、入出力遅延時間が短縮される。本発明者らの検討によれば、同一の信号経路でセット信号とリセット信号を送信する従来の方式の場合には入出力遅延時間が400ナノ秒程度であるのに対し、セット信号とリセット信号を異なる信号経路で送信する場合には入出力遅延時間は80ナノ秒程度である。 As described above, the first signal path 201 is used as a signal path for transmitting a set signal, and the second signal path 202 is used as a signal path for transmitting a reset signal. Thus, the external element 31 can be operated at high speed by the SR method in which the set signal and the reset signal are transmitted through different signal paths. For example, the input / output delay time is shortened. According to the study by the present inventors, in the case of the conventional method in which the set signal and the reset signal are transmitted through the same signal path, the input / output delay time is about 400 nanoseconds, whereas the set signal and the reset signal Is transmitted through a different signal path, the input / output delay time is about 80 nanoseconds.
 第3の信号経路203と第4の信号経路204についても、セット信号とリセット信号を送信する信号経路として使用できる。例えば、第3の制御信号Sc3が、第3の半導体チップ13によって外部素子32をオン状態にさせるセット信号として、第3の半導体チップ13に送信される。また、第4の制御信号Sc4が、第3の半導体チップ13によって外部素子32をオフ状態にさせるリセット信号として、第3の半導体チップ13に送信される。 The third signal path 203 and the fourth signal path 204 can also be used as signal paths for transmitting the set signal and the reset signal. For example, the third control signal Sc3 is transmitted to the third semiconductor chip 13 as a set signal for turning on the external element 32 by the third semiconductor chip 13. In addition, the fourth control signal Sc4 is transmitted to the third semiconductor chip 13 as a reset signal that causes the external element 32 to be turned off by the third semiconductor chip 13.
 以下に、チップトランスの構造例について説明する。半導体装置1に使用されるチップトランスには、例えば図3に示すような構造を採用可能である。 Below, an example of the structure of a chip transformer will be described. For example, a structure as shown in FIG. 3 can be adopted for the chip transformer used in the semiconductor device 1.
 図3に示すチップトランス100は、複数の導電体層が絶縁層を挟んで積層された積層構造である。例えばシリコン基板などの半導体基板110上に、酸化シリコン膜などの絶縁膜120を介して、複数の導電体層を含む積層体130が配置されている。積層体130は、第1の導電体層1M、第2の導電体層2M、第3の導電体層3M、及び第4の導電体層4Mが、絶縁層135を介して積層された構造である。例えば、半導体基板110の膜厚は400μm程度、積層体130の膜厚は10~30μm程度である。 The chip transformer 100 shown in FIG. 3 has a laminated structure in which a plurality of conductor layers are laminated with an insulating layer interposed therebetween. For example, a stacked body 130 including a plurality of conductor layers is disposed over a semiconductor substrate 110 such as a silicon substrate with an insulating film 120 such as a silicon oxide film interposed therebetween. The stacked body 130 has a structure in which a first conductor layer 1M, a second conductor layer 2M, a third conductor layer 3M, and a fourth conductor layer 4M are stacked with an insulating layer 135 interposed therebetween. is there. For example, the thickness of the semiconductor substrate 110 is about 400 μm, and the thickness of the stacked body 130 is about 10 to 30 μm.
 第2の導電体層2Mは、図4に示すような渦巻き状の導電性パターンを有する第1のインダクタL1が形成された第1のインダクタ層である。導電性パターンの中心部に位置する第1のインダクタL1の一方の端部が、絶縁層135に配置されたプラグ101によって第1の導電体層1Mと電気的に接続する。「プラグ」は、絶縁層135に形成されたスルーホールに導電性材料を埋め込んだ構造である。 The second conductor layer 2M is a first inductor layer in which a first inductor L1 having a spiral conductive pattern as shown in FIG. 4 is formed. One end of the first inductor L1 located at the center of the conductive pattern is electrically connected to the first conductor layer 1M by the plug 101 disposed in the insulating layer 135. The “plug” has a structure in which a conductive material is embedded in a through hole formed in the insulating layer 135.
 第1の導電体層1Mは、プラグ102を介して、チップトランス100の上面に配置されたパッドP1aと電気的に接続されている。つまり、第1の導電体層1Mは、第1のインダクタL1とパッドP1aとを電気的に接続する配線の一部として使用される。一方、第1のインダクタL1の外縁部に位置する他方の端部は、プラグ103を介して、チップトランス100の上面に配置されたパッドP1bと電気的に接続されている。 The first conductor layer 1M is electrically connected to the pad P1a disposed on the upper surface of the chip transformer 100 via the plug 102. That is, the first conductor layer 1M is used as part of the wiring that electrically connects the first inductor L1 and the pad P1a. On the other hand, the other end located at the outer edge of the first inductor L1 is electrically connected to the pad P1b disposed on the upper surface of the chip transformer 100 via the plug 103.
 第4の導電体層4Mは、積層体130表面に露出してチップトランス100の上面に配置されている。第4の導電体層4Mは、図5に示すような渦巻き状の導電性パターンを有する第2のインダクタL2が形成された第2のインダクタ層である。導電性パターンの中心部に位置する第2のインダクタL2の一方の端部が、チップトランス100の上面で導電性パターンの内側に配置されたパッドP2aと電気的に接続されている。第2のインダクタL2の外縁部に位置する他方の端部は、チップトランス100の上面で導電性パターンの外側に配置されたパッドP2bと電気的に接続されている。 The fourth conductor layer 4M is exposed on the surface of the stacked body 130 and disposed on the upper surface of the chip transformer 100. The fourth conductor layer 4M is a second inductor layer in which a second inductor L2 having a spiral conductive pattern as shown in FIG. 5 is formed. One end of the second inductor L2 located at the center of the conductive pattern is electrically connected to the pad P2a disposed on the inner side of the conductive pattern on the upper surface of the chip transformer 100. The other end located at the outer edge of the second inductor L2 is electrically connected to a pad P2b disposed outside the conductive pattern on the upper surface of the chip transformer 100.
 チップトランス100では、第1のインダクタ層と第2のインダクタ層とが絶縁層を介して積層された上記構造によって、パッドP1a、P1bとパッドP2a、P2bとの間で磁界結合による信号の伝播が行われる。それぞれの中心位置が平面視で一致するように、第1のインダクタL1と第2のインダクタL2とを形成することが好ましい。チップトランス100によれば、パルス幅が数ナノ秒程度の高速なパルス信号通信が可能である。 In the chip transformer 100, signal propagation due to magnetic field coupling between the pads P1a and P1b and the pads P2a and P2b is achieved by the above structure in which the first inductor layer and the second inductor layer are stacked via the insulating layer. Done. It is preferable to form the first inductor L1 and the second inductor L2 so that the respective center positions coincide in plan view. According to the chip transformer 100, high-speed pulse signal communication having a pulse width of about several nanoseconds is possible.
 なお、チップトランス100では、第1のインダクタL1と第2のインダクタL2との間に、図6に示すような導電性のシールド136を配置することが好ましい。シールド136は、第3の導電体層3Mに形成される。これは、以下の理由による。 In the chip transformer 100, it is preferable to dispose a conductive shield 136 as shown in FIG. 6 between the first inductor L1 and the second inductor L2. The shield 136 is formed on the third conductor layer 3M. This is due to the following reason.
 チップトランス100では、第1のインダクタL1と第2のインダクタL2の間に寄生容量が形成される。寄生容量に蓄積された電荷が外部回路に移動して、異常な電圧や電流が発生するおそれがある。第1のインダクタL1と第2のインダクタL2の間にシールド136を配置することによって、寄生容量の電荷がシールド136を介して放出される。これにより、半導体装置1の出力にノイズが発生することを抑制できる。 In the chip transformer 100, a parasitic capacitance is formed between the first inductor L1 and the second inductor L2. There is a possibility that the charges accumulated in the parasitic capacitance move to an external circuit and an abnormal voltage or current is generated. By arranging the shield 136 between the first inductor L1 and the second inductor L2, the charge of the parasitic capacitance is discharged through the shield 136. Thereby, it can suppress that noise generate | occur | produces in the output of the semiconductor device 1. FIG.
 シールド136は、チップトランス100での磁界通信を妨害しないように形成される。例えば図6に示すようなU字形状の板状導電体のシールド136を使用し、第1のインダクタL1と第2のインダクタL2の中心間をシールド136によって遮蔽しないようする。シールド136は、プラグ106を介してチップトランス100の上面に配置されたパッドPsと電気的に接続される。パッドPsは、例えばチップトランス100の受信側端子Rxが接続される半導体チップを介して接地される。 The shield 136 is formed so as not to disturb the magnetic field communication in the chip transformer 100. For example, a U-shaped plate-shaped conductor shield 136 as shown in FIG. 6 is used so that the shield 136 does not shield between the centers of the first inductor L1 and the second inductor L2. The shield 136 is electrically connected to the pad Ps disposed on the upper surface of the chip transformer 100 via the plug 106. The pad Ps is grounded via a semiconductor chip to which the receiving side terminal Rx of the chip transformer 100 is connected, for example.
 ところで、積層体130の下層側である第2の導電体層2Mの膜厚を厚くすると、平坦性が悪くなり、第2の導電体層2M以降の工程で不良が生じるなどの問題が起こる。このため、第4の導電体層4Mの膜厚を厚くすることは比較的容易であるが、第2の導電体層2Mの膜厚を厚くすることは難しい。例えば、第2の導電体層2Mの膜厚を1μm程度、第4の導電体層4Mの膜厚を4μm程度に設定する。 By the way, when the film thickness of the second conductor layer 2M, which is the lower layer side of the laminated body 130, is increased, the flatness is deteriorated, and there arises a problem that a defect occurs in the processes after the second conductor layer 2M. For this reason, it is relatively easy to increase the thickness of the fourth conductor layer 4M, but it is difficult to increase the thickness of the second conductor layer 2M. For example, the thickness of the second conductor layer 2M is set to about 1 μm, and the thickness of the fourth conductor layer 4M is set to about 4 μm.
 チップトランス100を用いて磁界結合による信号伝播を行う場合、安定して高周波の信号伝播を行うためには受信側よりも送信側のオン抵抗が小さいことが好ましい。このため、膜厚が厚い第4の導電体層4Mに形成された第2のインダクタL2に接続するパッドP2a及びパッドP2bを送信側端子Txとする。そして、膜厚が薄い第2の導電体層2Mに形成された第1のインダクタL1に接続するパッドP1a及びパッドP1bを受信側端子Rxとする。これにより、平坦性の良いチップトランス100の製造が容易になる。 When performing signal propagation by magnetic field coupling using the chip transformer 100, it is preferable that the on-resistance on the transmission side is smaller than that on the reception side in order to stably perform high-frequency signal propagation. For this reason, the pad P2a and the pad P2b connected to the second inductor L2 formed in the fourth conductor layer 4M having a large thickness are used as the transmission side terminal Tx. The pads P1a and P1b connected to the first inductor L1 formed on the second conductor layer 2M having a small film thickness are used as the reception-side terminal Rx. This facilitates the manufacture of the chip transformer 100 with good flatness.
 なお、平坦性が確保できる場合や平坦性が問題にならない場合には、第2の導電体層2Mの膜厚を第4の導電体層4Mの膜厚と同程度にしてもよい。或いは第2の導電体層2Mの膜厚を第4の導電体層4Mの膜厚よりも厚くしてもよい。その場合、第2の導電体層2Mに形成される第1のインダクタL1を送信側のインダクタとし、第4の導電体層4Mに形成される第2のインダクタL2受信側のインダクタとすることができる。 In addition, when flatness can be ensured or when flatness is not a problem, the film thickness of the second conductor layer 2M may be set to the same thickness as the film thickness of the fourth conductor layer 4M. Or you may make the film thickness of the 2nd conductor layer 2M thicker than the film thickness of the 4th conductor layer 4M. In that case, the first inductor L1 formed in the second conductor layer 2M may be used as a transmitting inductor, and the second inductor L2 formed in the fourth conductor layer 4M may be used as a receiving inductor. it can.
 第1の導電体層1M、第2の導電体層2M、第3の導電体層3M及び第4の導電体層4Mの材料には、例えばアルミニウム(Al)、銅(Cu)、AlCuなどの導電性材料を使用可能である。また、絶縁層135に埋め込まれるプラグにも上記の導電性材料を使用可能である。 Examples of the material of the first conductor layer 1M, the second conductor layer 2M, the third conductor layer 3M, and the fourth conductor layer 4M include aluminum (Al), copper (Cu), and AlCu. Conductive materials can be used. Further, the above conductive material can be used for the plug embedded in the insulating layer 135.
 なお、第1の送信トランス21は、第1の信号経路201を構成するチップトランスと第2の信号経路202を構成するチップトランスを、同一の半導体基板110上に形成した構造である。この場合、図7に示すように、第1の信号経路201を構成する第1のインダクタL1(以下において「インダクタL11」という。)と第2の信号経路202を構成する第1のインダクタL1(以下において「インダクタL12」という。)を、同一の第1のインダクタ層(第2の導電体層2M)に形成する。そして、第1の信号経路201を構成する第2のインダクタL2(以下において「インダクタL21」という。)と第2の信号経路202を構成する第2のインダクタL2(以下において「インダクタL22」という。)を、同一の第2のインダクタ層(第4の導電体層4M)に形成する。 Note that the first transmission transformer 21 has a structure in which a chip transformer constituting the first signal path 201 and a chip transformer constituting the second signal path 202 are formed on the same semiconductor substrate 110. In this case, as shown in FIG. 7, the first inductor L1 (hereinafter referred to as “inductor L11”) that constitutes the first signal path 201 and the first inductor L1 that constitutes the second signal path 202 ( Hereinafter, “inductor L12” is formed on the same first inductor layer (second conductor layer 2M). The second inductor L2 (hereinafter referred to as “inductor L21”) constituting the first signal path 201 and the second inductor L2 (hereinafter referred to as “inductor L22”) constituting the second signal path 202. Are formed on the same second inductor layer (fourth conductor layer 4M).
 なお、図7に示すように、第4の導電体層4Mにおいて、インダクタL21とインダクタL22のそれぞれ外縁部に位置する端部を連結することが好ましい。この連結箇所は、第1の送信トランス21の上面で導電性パターンの外側に配置されたパッドP20bと電気的に接続される。 In addition, as shown in FIG. 7, it is preferable to connect the edge part located in each outer edge part of the inductor L21 and the inductor L22 in the 4th conductor layer 4M. This connection location is electrically connected to a pad P20b disposed outside the conductive pattern on the upper surface of the first transmission transformer 21.
 一方、インダクタL21の中心部に位置する端部は、第1の送信トランス21の上面でインダクタL21の内側に配置されたパッドP21aと電気的に接続される。また、インダクタL22の中心部に位置する端部は、第1の送信トランス21の上面でインダクタL22の内側に配置されたパッドP22aと電気的に接続される。なお、図7では、インダクタL11とインダクタL12に接続するプラグ、及び第1の導電体層1M、第3の導電体層3Mは図示を省略している。 On the other hand, the end located at the center of the inductor L21 is electrically connected to the pad P21a disposed inside the inductor L21 on the upper surface of the first transmission transformer 21. Further, the end portion located at the center portion of the inductor L22 is electrically connected to the pad P22a disposed inside the inductor L22 on the upper surface of the first transmission transformer 21. In FIG. 7, the plugs connected to the inductor L11 and the inductor L12, the first conductor layer 1M, and the third conductor layer 3M are not shown.
 図8に示すように、インダクタL11の中心部に位置する端部は、プラグ1011、第1の導電体層1M及びプラグ1021を介して、第1の送信トランス21の上面に配置されたパッドP11aと電気的に接続される。インダクタL11の外縁部に位置する端部は、プラグ1031を介して、第1の送信トランス21の上面に配置されたパッドP11bと電気的に接続される。 As shown in FIG. 8, the end portion located at the center of the inductor L11 has a pad P11a disposed on the upper surface of the first transmission transformer 21 via the plug 1011, the first conductor layer 1M, and the plug 1021. And electrically connected. An end portion located at the outer edge portion of the inductor L11 is electrically connected to a pad P11b disposed on the upper surface of the first transmission transformer 21 via a plug 1031.
 また、インダクタL12の中心部に位置する端部は、プラグ1012、第1の導電体層1M及びプラグ1022を介して、第1の送信トランス21の上面に配置されたパッドP12aと電気的に接続される。インダクタL12の外縁部に位置する端部は、プラグ1032を介して、第1の送信トランス21の上面に配置されたパッドP12bと電気的に接続される。 Further, the end portion located at the center of the inductor L12 is electrically connected to the pad P12a disposed on the upper surface of the first transmission transformer 21 through the plug 1012, the first conductor layer 1M, and the plug 1022. Is done. The end located at the outer edge of the inductor L12 is electrically connected to the pad P12b disposed on the upper surface of the first transmission transformer 21 via the plug 1032.
 図7及び図8に示したように、インダクタL21とインダクタL22のそれぞれの一方の端部を共通のパッドP20bに接続することによって、パッドの個数を減らすことができる。更に、図8に示すように、第1の信号経路201を構成するチップトランスと第2の信号経路202を構成するチップトランスのシールドを連結することにより、シールド用のパッドPsを共通にできる。 As shown in FIGS. 7 and 8, the number of pads can be reduced by connecting one end of each of the inductor L21 and the inductor L22 to the common pad P20b. Further, as shown in FIG. 8, by connecting the shield of the chip transformer constituting the first signal path 201 and the chip transformer constituting the second signal path 202, the shield pad Ps can be made common.
 第1の信号経路201では、インダクタL11とインダクタL21とが絶縁層を介して積層された構造によって、パッドP11a、P11bとパッドP21a、P20bとの間で磁界結合による信号の伝播が行われる。第2の信号経路202では、インダクタL12とインダクタL22とが絶縁層を介して積層された構造によって、パッドP12a、P12bとパッドP22a、P20bとの間で磁界結合による信号の伝播が行われる。 In the first signal path 201, a signal is propagated by magnetic field coupling between the pads P11a and P11b and the pads P21a and P20b by a structure in which the inductor L11 and the inductor L21 are stacked via an insulating layer. In the second signal path 202, a signal is propagated by magnetic field coupling between the pads P12a and P12b and the pads P22a and P20b by a structure in which the inductor L12 and the inductor L22 are stacked via an insulating layer.
 図8に示したように共通のパッドを使用することによって、第1の送信トランス21のパッド数を、チップトランス100を2つ並べた場合よりも少なくできる。図9に、第1の送信トランス21のパッド配置例を示す。また、2つのチップトランスを含む第1の送信トランス21を使用することにより、2つのチップトランス100を並べて配置する場合よりも、チップトランスの配置に必要な面積を小さくすることができる。 As shown in FIG. 8, by using a common pad, the number of pads of the first transmission transformer 21 can be reduced as compared with the case where two chip transformers 100 are arranged. FIG. 9 shows a pad arrangement example of the first transmission transformer 21. Further, by using the first transmission transformer 21 including two chip transformers, the area required for the chip transformer arrangement can be reduced as compared with the case where the two chip transformers 100 are arranged side by side.
 第2の送信トランス22についても、第3の信号経路203を構成するチップトランスと第4の信号経路204を構成するチップトランスを同一の半導体基板110上に形成した構造を採用可能である。この場合、第2の送信トランス22の構造を、図7から図9に示した第1の送信トランス21の構造と同様にできる。即ち、第3の信号経路203を構成するインダクタL11と第4の信号経路204を構成するインダクタL12を、同一の第1のインダクタ層に形成する。そして、第3の信号経路203を構成するインダクタL21と第4の信号経路204を構成するインダクタL22を、同一の第2のインダクタ層に形成する。 Also for the second transmission transformer 22, it is possible to adopt a structure in which the chip transformer constituting the third signal path 203 and the chip transformer constituting the fourth signal path 204 are formed on the same semiconductor substrate 110. In this case, the structure of the second transmission transformer 22 can be made the same as the structure of the first transmission transformer 21 shown in FIGS. That is, the inductor L11 constituting the third signal path 203 and the inductor L12 constituting the fourth signal path 204 are formed in the same first inductor layer. Then, the inductor L21 constituting the third signal path 203 and the inductor L22 constituting the fourth signal path 204 are formed in the same second inductor layer.
 半導体装置1に対する信号の入出力は、例えば図10に示すようにモールド材15を貫通する外部リード16を介して行われる。即ち、第1の半導体チップ11とマイクロプロセッサ2との接続、第2の半導体チップ12と外部素子31との接続、及び、第3の半導体チップ13と外部素子32との接続は、外部リード16を介して行われる。第1の半導体チップ11、第2の半導体チップ及び第3の半導体チップと外部リード16との接続には、例えばボンディングワイヤが使用される。また、第1の半導体チップ11と第1の送信トランス21及び第2の送信トランス22との接続、第1の送信トランス21と第2の半導体チップ12との接続、及び、第2の送信トランス22と第3の半導体チップ13との接続に、例えばボンディングワイヤが使用される。 The input / output of signals to / from the semiconductor device 1 is performed through external leads 16 that penetrate the molding material 15 as shown in FIG. That is, the connection between the first semiconductor chip 11 and the microprocessor 2, the connection between the second semiconductor chip 12 and the external element 31, and the connection between the third semiconductor chip 13 and the external element 32 are the external leads 16. Is done through. For example, bonding wires are used to connect the first semiconductor chip 11, the second semiconductor chip, the third semiconductor chip, and the external leads 16. In addition, the connection between the first semiconductor chip 11 and the first transmission transformer 21 and the second transmission transformer 22, the connection between the first transmission transformer 21 and the second semiconductor chip 12, and the second transmission transformer. For example, a bonding wire is used for the connection between 22 and the third semiconductor chip 13.
 図10に示すように、第2の半導体チップ12が配置された領域と第3の半導体チップ13が配置された領域とは、第1の半導体チップ11、第1の送信トランス21及び第2の送信トランス22を挟んで対向するように配置されている。このため、半導体装置1においては、第2の半導体チップ12又は第3の半導体チップ13において生じる電磁ノイズが他方の半導体チップに干渉することが抑制される。 As shown in FIG. 10, the region where the second semiconductor chip 12 is disposed and the region where the third semiconductor chip 13 is disposed are the first semiconductor chip 11, the first transmission transformer 21, and the second semiconductor chip 13. The transmission transformer 22 is arranged so as to face each other. For this reason, in the semiconductor device 1, the electromagnetic noise generated in the second semiconductor chip 12 or the third semiconductor chip 13 is suppressed from interfering with the other semiconductor chip.
 なお、半導体装置1に銅合金材料などの金属フレームを使用する場合には、金属フレームの半導体チップ搭載部であるダイパッドを3分割して、第1の半導体チップ11、第2の半導体チップ12、第3の半導体チップ13をそれぞれ別個のダイパッドに搭載する。これにより、各半導体チップは、電気的電磁的に互いに絶縁分離される。なお、第1の送信トランス21は第2の半導体チップ12の搭載されたダイパッドに搭載可能である。また、第2の送信トランス22は第3の半導体チップ13の搭載されたダイパッドに搭載可能である。 When a metal frame such as a copper alloy material is used for the semiconductor device 1, the die pad that is the semiconductor chip mounting portion of the metal frame is divided into three parts, and the first semiconductor chip 11, the second semiconductor chip 12, The third semiconductor chip 13 is mounted on a separate die pad. As a result, the semiconductor chips are electrically and electromagnetically isolated from each other. The first transmission transformer 21 can be mounted on a die pad on which the second semiconductor chip 12 is mounted. The second transmission transformer 22 can be mounted on a die pad on which the third semiconductor chip 13 is mounted.
 半導体装置1は、ハイブリッド車の車載電子回路システムの一部などに使用することができる。例えば、第2の半導体チップ12と第3の半導体チップ13をハイブリッド車の高電圧系回路を駆動する駆動装置として使用し、第1の半導体チップ11をハイブリッド車の低電圧系回路を駆動する駆動装置として使用する。ここで、低電圧系回路は、車載電子回路、ヘッドライトやウィンカーなどの灯光類、ガソリンエンジンやディーゼルエンジンなどの内燃機関の発火装置などの、12V系若しくは24V系バッテリーによって電源が供給される回路である。高電圧系回路は、電気モータを駆動する回路などである。電気モータを駆動するためには、例えば200V系バッテリーの出力を500V~900Vの高電圧に昇圧する。 The semiconductor device 1 can be used for a part of an in-vehicle electronic circuit system of a hybrid vehicle. For example, the second semiconductor chip 12 and the third semiconductor chip 13 are used as a driving device for driving a high-voltage system circuit of a hybrid car, and the first semiconductor chip 11 is driven to drive a low-voltage system circuit of a hybrid car. Use as a device. Here, the low voltage system circuit is a circuit that is powered by a 12V system or 24V system battery, such as an in-vehicle electronic circuit, lights such as a headlight and a winker, and an ignition device for an internal combustion engine such as a gasoline engine or a diesel engine. It is. The high voltage system circuit is a circuit that drives an electric motor. In order to drive the electric motor, for example, the output of the 200V battery is boosted to a high voltage of 500V to 900V.
 以上に説明したように、本発明の実施形態に係る半導体装置1によれば、信号が伝播する経路にチップトランスを使用することにより、絶縁分離された半導体チップ間の信号伝播速度を向上することができる。 As described above, according to the semiconductor device 1 according to the embodiment of the present invention, the signal propagation speed between the insulated semiconductor chips is improved by using the chip transformer in the signal propagation path. Can do.
 本発明の実施形態と異なり、信号伝播経路にオプティカルデバイスを使用した場合には、発光ダイオードなどの発光素子の輝度が劣化することにより受光素子の受光特性が低下し、信号伝達応答性が低くなる。更に、オプティカルデバイスが高温環境下に置かれると発光素子の輝度の劣化や受光素子の受光特性の低下が速くなり、耐用年数が短くなる。 Unlike the embodiment of the present invention, when an optical device is used in the signal propagation path, the light receiving characteristic of the light receiving element is deteriorated due to the deterioration of the luminance of the light emitting element such as a light emitting diode, and the signal transmission response is lowered. . Further, when the optical device is placed in a high temperature environment, the luminance of the light emitting element is deteriorated and the light receiving characteristics of the light receiving element are rapidly deteriorated, and the service life is shortened.
 これに対し、本発明の実施形態に係る半導体装置1では、信号伝播経路にオプティカルデバイスではなくチップトランスを使用するため、信号の伝達応答性が低下することなく、且つ耐用年数が短くなることもない。例えば、環境温度が高温になる車載用としても、実施形態に係る半導体装置1は好適である。 On the other hand, in the semiconductor device 1 according to the embodiment of the present invention, since a chip transformer is used instead of an optical device in the signal propagation path, the signal transmission responsiveness is not deteriorated and the useful life is shortened. Absent. For example, the semiconductor device 1 according to the embodiment is suitable for in-vehicle use in which the environmental temperature is high.
 更に、チップトランスは基板トランスよりもサイズが小さく、結合容量が小さい。このため、チップトランスを使用することにより、信号の伝播速度を向上できる。また、チップトランスを使用することによって、半導体装置1全体のサイズを小さくすることができる。更に、チップトランスのサイズが小さいことにより、半導体装置1が受ける外部磁界の影響を抑制することができる。例えば素子電流の大きな外部素子が半導体装置1の周囲に配置された場合などに、外部素子の動作に起因して発生する磁界によって第1の送信トランス21や第2の送信トランス22が受ける影響を抑制できる。 Furthermore, the chip transformer is smaller than the substrate transformer and has a smaller coupling capacity. For this reason, the propagation speed of a signal can be improved by using a chip transformer. In addition, the size of the entire semiconductor device 1 can be reduced by using a chip transformer. Furthermore, since the size of the chip transformer is small, the influence of the external magnetic field received by the semiconductor device 1 can be suppressed. For example, when an external element having a large element current is arranged around the semiconductor device 1, the first transmission transformer 21 and the second transmission transformer 22 are affected by the magnetic field generated due to the operation of the external element. Can be suppressed.
 (その他の実施形態)
 上記のように、本発明は実施形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかとなろう。
(Other embodiments)
As mentioned above, although this invention was described by embodiment, it should not be understood that the description and drawing which form a part of this indication limit this invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art.
 既に述べた実施形態の説明においては、第1の信号経路201と第2の信号経路202からなる一対の信号経路と、第3の信号経路203と第4の信号経路204からなる一対の信号経路とを有する、2チャンネルの半導体装置1を示した。しかし、一対の信号経路を有する1チャンネルの半導体装置1にも本発明は適用可能である。 In the description of the above-described embodiment, a pair of signal paths including the first signal path 201 and the second signal path 202 and a pair of signal paths including the third signal path 203 and the fourth signal path 204 are used. A two-channel semiconductor device 1 is shown. However, the present invention can also be applied to a one-channel semiconductor device 1 having a pair of signal paths.
 このように、本発明はここでは記載していない様々な実施形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な請求の範囲に係る発明特定事項によってのみ定められるものである。 Thus, it goes without saying that the present invention includes various embodiments that are not described herein. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.
 本発明の半導体装置は、複数の半導体チップが互いに絶縁分離されて配置された半導体装置の用途に利用可能である。 The semiconductor device of the present invention can be used for a semiconductor device in which a plurality of semiconductor chips are arranged so as to be insulated from each other.

Claims (10)

  1.  互いに電気的に絶縁して配置された第1の半導体チップ及び第2の半導体チップと、
     導電体層と絶縁層が積層されたチップトランスにおける磁界結合によって前記第1の半導体チップから前記第2の半導体チップに信号を送信する第1の信号経路及び第2の信号経路と
     を備え、
     前記第1の信号経路を介して送信される第1の制御信号と前記第2の信号経路を介して送信される第2の制御信号とによって、前記第2の半導体チップの動作が制御されることを特徴とする半導体装置。
    A first semiconductor chip and a second semiconductor chip, which are arranged to be electrically insulated from each other;
    A first signal path and a second signal path for transmitting a signal from the first semiconductor chip to the second semiconductor chip by magnetic field coupling in a chip transformer in which a conductor layer and an insulating layer are stacked;
    The operation of the second semiconductor chip is controlled by the first control signal transmitted via the first signal path and the second control signal transmitted via the second signal path. A semiconductor device.
  2.  前記第1の信号経路及び前記第2の信号経路を有する送信トランスを備えることを特徴とする請求項1に記載の半導体装置。 The semiconductor device according to claim 1, further comprising a transmission transformer having the first signal path and the second signal path.
  3.  前記第2の半導体チップが外部素子を駆動する駆動回路を有し、
     前記第1の制御信号が、前記第2の半導体チップによって前記外部素子をオン状態にさせるセット信号であり、
     前記第2の制御信号が、前記第2の半導体チップによって前記外部素子をオフ状態にさせるリセット信号である
     ことを特徴とする請求項1に記載の半導体装置。
    The second semiconductor chip has a drive circuit for driving an external element;
    The first control signal is a set signal for turning on the external element by the second semiconductor chip;
    The semiconductor device according to claim 1, wherein the second control signal is a reset signal that causes the external element to be turned off by the second semiconductor chip.
  4.  前記チップトランスが、
     渦巻き状の導電性パターンを有する第1のインダクタが形成された第1のインダクタ層と、
     渦巻き状の導電性パターンを有する第2のインダクタが形成された第2のインダクタ層と、
     前記第1のインダクタ層と前記第2のインダクタ層との間に配置された絶縁層と
     を備えることを特徴とする請求項1に記載の半導体装置。
    The chip transformer is
    A first inductor layer on which a first inductor having a spiral conductive pattern is formed;
    A second inductor layer on which a second inductor having a spiral conductive pattern is formed;
    The semiconductor device according to claim 1, further comprising: an insulating layer disposed between the first inductor layer and the second inductor layer.
  5.  前記第1のインダクタ層の上方に配置される前記第2のインダクタ層の膜厚が前記第1のインダクタ層の膜厚よりも厚く、
     前記第1のインダクタが前記第2の半導体チップに接続し、
     前記第2のインダクタが前記第1の半導体チップに接続する
     ことを特徴とする請求項4に記載の半導体装置。
    The film thickness of the second inductor layer disposed above the first inductor layer is larger than the film thickness of the first inductor layer,
    The first inductor is connected to the second semiconductor chip;
    The semiconductor device according to claim 4, wherein the second inductor is connected to the first semiconductor chip.
  6.  前記第1のインダクタと前記第2のインダクタとの間で前記絶縁層の内部に配置された導電性のシールドを更に備えることを特徴とする請求項4に記載の半導体装置。 The semiconductor device according to claim 4, further comprising a conductive shield disposed inside the insulating layer between the first inductor and the second inductor.
  7.  2つの前記第1のインダクタが互いに離間して前記第1のインダクタ層に形成され、
     2つの前記第2のインダクタが互いに離間し、且つそれぞれの一方の端子同士が接続して、前記第2のインダクタ層に形成され、
     前記第1のインダクタ、前記絶縁層及び前記第2のインダクタが積層された構造をそれぞれ有する前記第1の信号経路と前記第2の信号経路が、同一の半導体基板に形成されていることを特徴とする請求項4に記載の半導体装置。
    Two first inductors are formed in the first inductor layer apart from each other;
    The two second inductors are spaced apart from each other and one of the terminals is connected to each other, formed on the second inductor layer;
    The first signal path and the second signal path each having a structure in which the first inductor, the insulating layer, and the second inductor are laminated are formed on the same semiconductor substrate. The semiconductor device according to claim 4.
  8.  前記第1の半導体チップ及び前記第2の半導体チップと電気的に絶縁して配置された第3の半導体チップと、
     導電体層と絶縁層が積層されたチップトランスにおける磁界結合によって前記第1の半導体チップから前記第3の半導体チップに信号を送信する第3の信号経路及び第4の信号経路と
     を更に備え、
     前記第3の信号経路を介して送信される第3の制御信号と前記第4の信号経路を介して送信される第4の制御信号とによって、前記第3の半導体チップの動作が制御されることを特徴とする請求項1に記載の半導体装置。
    A third semiconductor chip disposed electrically insulated from the first semiconductor chip and the second semiconductor chip;
    A third signal path and a fourth signal path for transmitting a signal from the first semiconductor chip to the third semiconductor chip by magnetic field coupling in a chip transformer in which a conductor layer and an insulating layer are stacked;
    The operation of the third semiconductor chip is controlled by the third control signal transmitted through the third signal path and the fourth control signal transmitted through the fourth signal path. The semiconductor device according to claim 1.
  9.  前記第3の信号経路及び前記第4の信号経路を有する送信トランスを備えることを特徴とする請求項8に記載の半導体装置。 9. The semiconductor device according to claim 8, further comprising a transmission transformer having the third signal path and the fourth signal path.
  10.  前記第3の半導体チップが外部素子を駆動する駆動回路を有し、
     前記第3の制御信号が、前記第3の半導体チップによって前記外部素子をオン状態にさせるセット信号であり、
     前記第4の制御信号が、前記第3の半導体チップによって前記外部素子をオフ状態にさせるリセット信号である
     ことを特徴とする請求項8に記載の半導体装置。
    The third semiconductor chip has a drive circuit for driving an external element;
    The third control signal is a set signal for turning on the external element by the third semiconductor chip;
    The semiconductor device according to claim 8, wherein the fourth control signal is a reset signal that causes the external element to be turned off by the third semiconductor chip.
PCT/JP2015/070836 2015-07-22 2015-07-22 Semiconductor device WO2017013769A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/070836 WO2017013769A1 (en) 2015-07-22 2015-07-22 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/070836 WO2017013769A1 (en) 2015-07-22 2015-07-22 Semiconductor device

Publications (1)

Publication Number Publication Date
WO2017013769A1 true WO2017013769A1 (en) 2017-01-26

Family

ID=57834264

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070836 WO2017013769A1 (en) 2015-07-22 2015-07-22 Semiconductor device

Country Status (1)

Country Link
WO (1) WO2017013769A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04133408A (en) * 1990-09-26 1992-05-07 Toshiba Lighting & Technol Corp Plane-surface transformer
WO2013027454A1 (en) * 2011-08-25 2013-02-28 サンケン電気株式会社 Semiconductor device
JP2013229812A (en) * 2012-04-26 2013-11-07 Renesas Electronics Corp Transmission circuit and semiconductor integrated circuit having the same
JP2015015697A (en) * 2013-06-07 2015-01-22 ローム株式会社 Signal transmission device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04133408A (en) * 1990-09-26 1992-05-07 Toshiba Lighting & Technol Corp Plane-surface transformer
WO2013027454A1 (en) * 2011-08-25 2013-02-28 サンケン電気株式会社 Semiconductor device
JP2013229812A (en) * 2012-04-26 2013-11-07 Renesas Electronics Corp Transmission circuit and semiconductor integrated circuit having the same
JP2015015697A (en) * 2013-06-07 2015-01-22 ローム株式会社 Signal transmission device

Similar Documents

Publication Publication Date Title
US9099979B2 (en) High-frequency circuit module
CN105470243B (en) Semiconductor device with a plurality of semiconductor chips
US7956566B2 (en) Driver IC with HV-isolation, especially hybrid electric vehicle motor drive concept
JP5332374B2 (en) Semiconductor device
JP6237909B1 (en) Isolator and method of manufacturing isolator
US20170148732A1 (en) Semiconductor device
JP5599260B2 (en) High frequency switch
WO2017013768A1 (en) Semiconductor device
JP5088059B2 (en) Isolator and method of manufacturing isolator
WO2017013769A1 (en) Semiconductor device
JP4860517B2 (en) Power module
JP5782919B2 (en) Semiconductor device
JP2010123953A (en) Power semiconductor module having control function and incorporated with transmitter
US11961830B2 (en) Module
CN109872869B (en) Isolation coupling structure
US9190397B2 (en) Semiconductor device
JP2012069997A (en) Power module
JPH1174452A (en) Power module
US20240096542A1 (en) Signal transmission device
WO2023282040A1 (en) Semiconductor device
US11503725B2 (en) Driver circuit device for driving external device having semiconductor element
US20230402443A1 (en) Semiconductor device
US20240022246A1 (en) Isolation transformer, isolation module, and gate driver
CN110504532B (en) Inductive charging antenna structure, wireless charging module and motor vehicle
JP2024008561A (en) semiconductor relay

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15898928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15898928

Country of ref document: EP

Kind code of ref document: A1