WO2017013314A1 - Penetrateur comportant un cœur entoure d'une gaine ductile et procede de fabrication d'un tel penetrateur - Google Patents

Penetrateur comportant un cœur entoure d'une gaine ductile et procede de fabrication d'un tel penetrateur Download PDF

Info

Publication number
WO2017013314A1
WO2017013314A1 PCT/FR2016/000122 FR2016000122W WO2017013314A1 WO 2017013314 A1 WO2017013314 A1 WO 2017013314A1 FR 2016000122 W FR2016000122 W FR 2016000122W WO 2017013314 A1 WO2017013314 A1 WO 2017013314A1
Authority
WO
WIPO (PCT)
Prior art keywords
tungsten
sheath
core
weight
cobalt
Prior art date
Application number
PCT/FR2016/000122
Other languages
English (en)
Inventor
Rafael CURY
Laurent DARTUS
Fabien ISSARTEL
Hervé COUQUE
Nicolas Eches
Original Assignee
Cime Bocuze
Nexter Munitions
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cime Bocuze, Nexter Munitions filed Critical Cime Bocuze
Priority to PL16757687.5T priority Critical patent/PL3349929T3/pl
Priority to EP16757687.5A priority patent/EP3349929B1/fr
Priority to CN201680042805.XA priority patent/CN107848036B/zh
Priority to US15/737,899 priority patent/US10240906B2/en
Priority to ES16757687T priority patent/ES2963820T3/es
Priority to KR1020187005016A priority patent/KR102203134B1/ko
Publication of WO2017013314A1 publication Critical patent/WO2017013314A1/fr
Priority to IL256732A priority patent/IL256732B/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/02Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
    • F42B12/04Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of armour-piercing type
    • F42B12/06Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of armour-piercing type with hard or heavy core; Kinetic energy penetrators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/72Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material
    • F42B12/74Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material of the core or solid body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B14/00Projectiles or missiles characterised by arrangements for guiding or sealing them inside barrels, or for lubricating or cleaning barrels
    • F42B14/06Sub-calibre projectiles having sabots; Sabots therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B14/00Projectiles or missiles characterised by arrangements for guiding or sealing them inside barrels, or for lubricating or cleaning barrels
    • F42B14/06Sub-calibre projectiles having sabots; Sabots therefor
    • F42B14/061Sabots for long rod fin stabilised kinetic energy projectiles, i.e. multisegment sabots attached midway on the projectile

Definitions

  • the technical field of the invention - . is that of the heavy metal penetrators and in particular that of the indenters used to make sub-sized projectiles of large caliber (calibrated greater than or equal to 25 mm).
  • projectiles are most often called arrow projectiles. They include a sub-calibrated indenter or bar that is pulled by a weapon using a weapon-sized hoof.
  • the indenter For a projectile of 120 mm caliber, the indenter generally has a diameter of 20 to 30 mm and the hoof allowing the firing is formed of a set of sectors of light material (aluminum alloy for example).
  • Patents FR-2521717 and FR-2661739 describe examples of arrow projectiles.
  • the penetrators are most often made . in an alloy with a high tungsten content.
  • Such alloys are sensitive to transverse stresses they receive during impact against a: inclined target or when interacting with a reactive protection.
  • the transverse shocks cause the breaking of the penetrator which reduces the piercing power of the indenter after passing such targets.
  • penetrators a liner device in a more ductile material ensuring resistance: a bending to the indenter.
  • EP-1940574 an indenter comprising an alloy core comprising 90 to 97% by weight of tungsten and which is surrounded by a peripheral sheath of a tungsten alloy more ductile than the material of the heart.
  • the sheath of this indenter has a proportion of tungsten between 85% and 91%.
  • the tungsten percentage of the sheath is relatively close to that of the core and this penetrator therefore has insufficient flexural strength performance.
  • Such an indenter is not adapted to the current needs of producing projectiles arrows having an elongation, ie a ratio (L / D) of the length (L) of the indenter on the diameter (D) of the indenter, which is important.
  • patent EP-194 0574 proposes to sinter the core and the sheath in the same mold.
  • the separation between sheath and heart is provided by a special funnel associated with a tube that separates the heart zone and the heart . sheath area. After placing materials of the cladding and the heart ', and the tube; the funnel are removed. The sheath and core materials are then in contact and sintering can be performed.
  • Such a method has the disadvantage of leaving between sheath and core a " transition zone having a thickness between 25 micrometers and 200 micrometers.
  • This zone is formed of a material whose composition and characteristics are intermediate between those of the core.
  • the transition zone associates, as well as the core and the sheath, nodules : tungsten and a gamma phase
  • the size of the tungsten nodules and the composition of the gamma phase of this zone are obligatorily different from those of the heart and the sheath. If it were otherwise, there would not be such a transition zone.
  • this transition zone thickness, positioning with respect to the axis of the indenter .
  • the ductility of the sheath obtained with this process is therefore little greater than that of the core, of the order of 5 to 10%. .
  • the invention aims to propose a . penetrator structure in which the adhesion between sheath and core is excellent, even with a difference in tungsten content between sheath and core.
  • the indenter according to the invention may then have a sheath ductility which. is superior to that of known tungsten sheath indenters.
  • the subject of the invention is an indenter : a heavy metal with a high tungsten content, comprising a central part or core formed of an alloy comprising from 85 to 97% by weight of tungsten associated with additional metals and which is surrounded by a peripheral sheath: a tungsten alloy more ductile than the material of the core, indenter characterized in that.
  • the sheath is made of an alloy comprising 30% to 72% by weight of tungsten
  • heart comprising tungsten nodules bound by a matrix of gamma phase incl combining tungsten with additional metals, the two phases being gamma connected to each other continuously without a transition zone.
  • the gamma phases of the core y c and sheath y G will have an associating composition, tungsten, nickel, cobalt and optionally iron.
  • the heart may comprise 85% by weight: tungsten and the sheath 38% by weight of tungsten, gamma phases of the heart are c and sheath y G having compositions combining Tungsten, Nickel:: and Cobalt.
  • the core may comprise: 89% by weight of tungsten and the sheath 68% by mass of tungsten, the gamma phases of the core y c and sheath y G having compositions combining Tungsten, Nickel and Cobalt .
  • the alloy of the core may comprise 95% by weight of tungsten, 2% by weight of nickel, 1.5% by weight of cobalt and 2% by weight of Fe and the sheath 70% by weight.
  • tungsten mass, gamma phases of the heart are c and YG sheath having compositions combining tungsten, Nickel, Cobalt and Iron.
  • the invention also relates to a method for producing such an indenter.
  • the method of manufacturing a heavy metal penetrator high tungsten content is characterized in that it comprises: steps following (which :: lead to the realization of a sketched: this penetrator):
  • a sheath composed of compacted powders comprising from 30% to 72% by weight of tungsten combined with additional metals, comprising nickel and cobalt with or without iron,
  • FIG. 1 shows the general architecture of a projectile under calibrated arrow type
  • FIG. 2 shows in partial longitudinal section an indenter according to the invention
  • FIG. 3 is a micrograph showing the structure of the core of the indenter according to the invention.
  • FIG. 4 is a micrograph showing the structure of the indenter sheath according to the invention.
  • FIG. 5a is a micrograph showing the connection between the sheath and the heart.
  • Figure 5b is a magnification of the micrograph of Figure 5a.
  • FIG. 1 shows an arrow projectile 1 which conventionally comprises a shoe 2 made of light material (such as an aluminum alloy), a shoe formed of several segments and which surrounds a sub-calibrated indenter 3. :
  • the indenter comprises a conical front part 3a and carries at its rear part 3b a stabilizer 4 ensuring its stabilization on trajectory.
  • the very structure of the indenter 3 will be described later.
  • the shoe wears a belt 5, made of plastic material, which seals the propellant gases when firing into the barrel of a weapon (not shown).
  • the propellant charge gases (not shown): exert their thrust at the level of a rear portion 6 of the shoe which is the gauge and which constitutes what is called the thrust plate.
  • the shoe 2 .. is intended to allow the shot of the projectile in the weapon. It consists of several segments (most often three) that surround the indenter. 3 and which are in contact two by two at joint planes.
  • the segments of the shoe 2 deviate from the penetrator 3 under the action of the aerodynamic pressure exerted on the front portion (AV) of the shoe 2.
  • the spacing of the segments leads to the rupture of the belt 5 and the shoe thus releases the penetrator 3 which continues its trajectory.
  • Means form concordance (not shown), for example a thread, are interposed between the shoe 2 and the indenter 3 to ensure the drive of the latter.
  • FIG. 2 shows more precisely the structure of the indenter 3 which comprises a central part or core 7 which is surrounded by a sheath: peripheral 8.
  • the: heart is formed of an alloy comprising 85% to 97% by mass tungsten: and the sheath is made of an alloy comprising 30% to 72% by weight tungsten.
  • Tungsten is alloyed, both in the core and sheath, with addition metals such as nickel, which will always be associated with cobalt with or without iron.
  • the material comprises nodules 9 of tungsten phase. with a cubic crystalline structure centered which are bonded together by a matrix of a gamma phase c associating tungsten nickel, cobalt with or without iron (Fe), with a cubic crystal structure face-centered.
  • the tungsten content of the heart is between 85% and 97%, which leads to a core density of the order of 17 g / cm 3 .
  • the core 7 is formulated to have a yield strength greater than or equal to 1100 MPa (Mega Pascals).
  • Ductility is of the order of 6% and a Charpy impact (unnotched test according to ISO 179-1 is' 80 J / cm 2.
  • composition of the heart will comprise (proportions in mass): 85 to 97% of tungsten,
  • composition of the heart will comprise (proportions by mass):
  • the material essentially comprises a matrix 11 of a gamma YG phase essentially associating tungsten with nickel and cobalt with or without Fe, and with a cubic crystalline structure with a centered face which is the sign that this sheath has a high resilience.
  • the percentage of tungsten of the sheath 8 is between 30% and 72%, which leads to: a density of this sheath which can vary between 10 g / cm3 and 15 g / cm3.
  • the sheath 8 alloy will be formulated to have a ductility greater than 7% and a high resilience: Charpy resilience (non-notched test according to ISO 179-1) greater than or equal to 200 J / cm 2 .
  • composition of the sheath will comprise (proportions in mass):
  • composition of the sheath include (proportions by weight):
  • the sheath 8 Given the difference in concentration of tungsten in the sheath and the core, the sheath 8 is therefore more ductile than. the heart 7.
  • the gamma phase yc of the heart associates tungsten with nickel and cobalt (with or without iron)
  • the gamma YG phase of the cladding will also include nickel and cobalt (with or without iron) as additional metals.
  • FIGS. 5a and 5b show that, after forming the penetrator 3, the dies 10 and 11 of the core 8 and of the sheath 7 (matrices formed by the gamma phases of the core and the sheath) are connected to each other. the other continuously without a transition zone.
  • FIGS. 5b is at twice the magnification of that of FIG. 5a). It is In FIGS. 5a and 5b, it is clear that the gamma phases of the core and the cladding are interpenetrating and that there is therefore no transition zone with the invention as described by the patent EP-1940574.
  • the tungsten, nickel, cobalt and optionally iron powders are homogeneously mixed and pre-compressed in the form of a bar that will constitute. the heart.
  • a sheath 8 is made of an alloy comprising from 30% to 72% by weight of tungsten associated with additional metals comprising nickel, cobalt and optionally iron.
  • the materials are homogeneously mixed and then compressed into a tool that has a cylindrical core having a diameter equal to or larger than the desired inner diameter for the sheath.
  • the rest of the compression tooling is classic.
  • the sintering takes place in the presence of liquid phase.
  • the high-power sintering method described in patent application WO 03/027340 can be implemented and employs induction heating.
  • the alloys are consolidated at temperatures between 1400 ° C and 1600 ° C.
  • Sintering makes it possible to ensure the continuity of the gamma phases between the sheath and the core.
  • the thickness of the sheath 8 can thus vary between 5 mm and 9 mm for an indenter of 35 mm external diameter.
  • penetrators following:
  • Diameter of the heart equal to 0.5-0.7 times the diameter of the sheath.
  • the core is 85% by weight tungsten, having a density of 16.5 g / cm 3 , an elastic limit of 1800 MPa, a ductility of 10% and a non-notched Charpy resilience of 150 J / cm3. cm 2 .
  • the core alloy comprises 85% by weight of tungsten, 15% by weight of nickel and 5% by weight of cobalt.
  • the sheath has a density of 11.2 g / cm 2, a yield strength of 1400 MPa: a ductility of 18% and a Charpy unnotched 400 J / cm 2.
  • the alloy of the sheath comprises (proportions by mass): 38.0% of Tungsten, 40% of Nickel and 22% of Cobalt.
  • This indenter (and its sketch) was manufactured using the previously described method.
  • Core diameter equal to 0.5-0.7 times the diameter of the sheath.
  • the core is 89% by weight tungsten, and having a density of 17.1 g / cm 3 , a yield strength of 1500 MPa, one. ductility of: 9% and Charpy resilience not slashed 300 J / cm.
  • the alloy of the core comprises 89% by weight of Tungsten, 7.5% by weight of. Nickel and 3.5% by weight of cobalt.
  • the sheath is formed of 68% by weight of tungsten and having a density of 14.1 g / cm 2 , a yield strength of 2000 MPa, ductility of 11% and non-notched Charpy resilience of 400 J / cm 2 .
  • the alloy of the sheath comprises (proportions by mass): 68% of Tungsten, 22% of Nickel and 10% of Cobalt. This indenter (and its outline) was manufactured using the previously described method.
  • Core diameter equal to 0.5-0.7 times the diameter of the sheath.
  • the core is 95% by weight tungsten, having a density of 18.3 g / cm 3 , a yield strength of 1300 MPa, a ductility of 7% and a Charpy resilience. not slashed 50 J / cm 2 .
  • the core alloy comprises 95% by weight of Tungsten, 2% by weight of nickel, 1.5% by weight of cobalt and 2% by weight of iron.
  • the sheath is formed of 70.0% by weight of tungsten and having a density of 14.0 g / cm 2, a yield strength of 2000 MPa, - a ..9% of ductility and unnotched Charpy resilience 300 J / cm 2 ..
  • the alloy of the sheath comprises, (proportions by mass): 70.0% by weight of tungsten, 18% by weight of nickel, 10% by weight of cobalt and 2% by weight of Fe .
  • This indenter (and its sketch) was manufactured using the previously described method .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Braking Arrangements (AREA)

Abstract

L'invention concerne un pénétrateur (3) en métal lourd à haute teneur en tungstène comportant une partie centrale ou cœur (7) formé d'un alliage comprenant de 85% à 97% en masse de tungstène associé à des métaux additionnels et qui est entouré d'une gaine (8) périphérique d'un alliage de tungstène plus ductile que le matériau du cœur. La gaine (8) est réalisée en un alliage comprenant de 30% à 72% en masse de tungstène, le cœur (7) comprenant des nodules de tungstène liés par une matrice d'une phase gamma Yc associant le tungstène aux métaux additionnels, les deux phases gamma étant reliées l'une à l'autre de façon continue sans zone de transition. L'invention a également pour objet un procédé de fabrication d'un tel pénétrateur.

Description

PENETRATEUR COMPORTANT UN CŒUR ENTOURE D ' UNE GAINE DUCTILE ET PROCEDE DE FABRICATION D ' UN TEL PENETRATEUR
Le domaine technique de l'invention -. est celui des pénétrateurs en métal lourd et en particulier celui des pénétrateurs utilisés pour réaliser des projectiles sous calibrés de gros calibre (calibré supérieur ou égal à 25 mm) .
Ces projectiles sont le plus souvent appelés projectiles flèches. Ils comportent un pénétrateur ou barreau sous- calibré qui est tiré par une arme à l'aide d'un sabot au calibre de l'arme.
Pour un projectile de calibre 120 mm, le pénétrateur a généralement un diamètre de 20 à 30 mm et le sabot permettant le tir est formé d'un ensemble de secteurs en matériau léger (alliage d'aluminium par . exemple) .
Les brevets FR-2521717 et FR-2661739 décrivent des exemples de projectiles flèches.
Pour augmenter l'efficacité pénétrante des projectiles flèches,, les pénétrateurs sont le plus souvent réalisés-. en un alliage à haute teneur en tungstène.
De tels alliages sont sensibles aux sollicitations transversales qu'ils reçoivent lors de l'impact sur une: cible inclinée ou bien lors de l'interaction avec une protection réactive. Les chocs transversaux provoquent la rupture du pénétrateur ce qui réduit le pouvoir perforant du pénétrateur après passage de telles cibles .
Il est connu de doter; les pénétrateurs d'une chemise périphérique en un matériau plus ductile assurant une résistance: a la flexion pour le pénétrateur.
On connaît par ^exemple par :. le: brevet EP-1940574 un pénétrateur comportant un cœur formé d'un alliage comprenant de 90 à 97% en masse de tungstène et qui est entouré d'une gaine périphérique d'un alliage de tungstène plus ductile que le matériau du cœu .
La gaine de ce pénétrateur a une proportion en tungstène comprise entre 85% et 91%. Le pourcentage en tungstène de la gaine est relativement proche de celui du cœur et ce pénétrateur a donc des performances de résistance à la flexion insuffisantes.
Un tel pénétrateur n'est pas adapté aux besoins actuels de réalisation de projectiles flèches ayant un allongement, c'est à dire un rapport (L/D) de la longueur (L) du pénétrateur sur le diamètre (D) du pénétrateur, qui est important.
On cherche en effet à réaliser aujourd'hui des pénétrateurs ayant un allongement dépassant 20 (L/D > 20) . Ceci conduit à des pénétrateurs de plus de 500 mm de long pour un diamètre de 25 à 35 mm. De tels pénétrateurs sont particulièrement sensibles aux impacts sur des cibles inclinées.
II n'est cependant pas aisé de donner à la gaine une ductilité supérieure à celle du cœur. Par ailleurs, il est également nécessaire d'assurer une liaison entre le matériau du cœur et celui de la gaine.. Si cette liaison est insuffisante, les efforts radiaux ou longitudinaux conduisent à une séparation de ces éléments lors de l'impact ou même comme suite au tir.
Pour assurer la liaison, le brevet EP-194Û574 propose de procéder à un frittage du cœur et de la gaine dans un même moule. La séparation, entre gaine et cœur est assurée par un entonnoir particulier associé à un tube qui sépare la zone de cœur et la. zone de gaine. Après mise en place des matériaux de la gaine et du cœur,' , le tube et; l'entonnoir sont retirés. Les matériaux de gaine et de cœur sont alors en contact et le frittage peut être réalisé.
Un tel procédé présente l'inconvénient de laisser subsister entre gaine et cœur une " zone de transition ayant une épaisseur entre 25 micromètres et 200 micromètres. Cette zone, est formée d'un matériau dont la composition et les caractéristiques sont intermédiaires entre celles du cœur et de la gaine. Une telle zone de transition associe, tout comme le cœur et la gaine, des nodules : de tungstène et une phase gamma. La taille des nodules de tungstène et la composition de la phase gamma de cette zone sont obligatoirement différentes de celles du cœur et de la gaine. S'il en était autrement, il n'y aurait pas une telle zone de transition.
L'inconvénient d'une telle zone de transition est qu'elle constitue une interface fragilisant le barreau ainsi réalisé.
Plus spécifiquement encore, la géométrie de cette zone de transition (épaisseur, positionnement par rapport à l'axe du pénétrateur...) n'est pas maîtrisée.
Il en ..résulte des variations du positionnement radial de cette zone de transition le long du pénétrateur, variations d'autant plus marquées pour un pénétrateur de grand allongement. Il en résulte également une résistance de-cette interface qui est très variable le long du pénétrateur, ce qui diminue les performances de perforation.
Par ailleurs, le procédé décrit par le brevet EP-1940574 impose un taux de tungstène de la gaine qui :est relativement proche du taux de tungstène du cœur.
La. ductilité de la gaine obtenue avec ce procédé est donc peu supérieure à celle du cœur, de l'ordre de 5 à 10%. .
L'invention a pour but de proposer une .structure de pénétrateur dans laquelle l'adhérence entre gaine et cœur est excellente, même avec une différence de taux de tungstène entre gaine et cœur. :
Le pénétrateur selon ...l' invention : peut alors avoir une ductilité de gaine qui . est supérieure à celle des pénétrateurs à gaine de tungstène connus .
Ainsi, l'invention a pour objet un pénétrateur: en métal lourd à haute ^teneur en tungstène^ comportant une partie centrale ou cœur formé d'un alliage comprenant de 85 à 97% en masse de tungstène associé à des métaux additionnels et qui est entouré d'une : gaine périphérique: d'un alliage de tungstène plus ductile que le matériau du cœur, pénétrateur Caractérisé en ce que . la gaine est réalisée en un alliage comprenant de 30% à 72% en masse de tungstène, le cœur comprenant des nodules de tungstène : liés par une matrice d'une phase gamma yc associant le tungstène aux métaux additionnels, les deux phases gamma étant reliées l'une à l'autre de façon continue sans zone de transition. Avantageusement, les phases gamma du cœur yc et de la gaine yG auront une composition associant, le tungstène, le nickel, le cobalt et éventuellement le fer. :
Selon un mode de réalisation, le cœur pourra comprendre 85% en masse: de tungstène et la gaine 38% en masse de tungstène, les phases gamma du cœur yc et de la gaine yG ayant des compositions associant Tungstène, Nickel : : et Cobalt.
Selon un autre mode de réalisation, le cœur pourra comprendre : 89% en masse de tungstène et la gaine 68% en masse de tungstène, les phases gamma du cœur yc et de la gaine yG ayant des composition associant Tungstène, Nickel et Cobalt.
Selon encore un autre mode de réalisation, l'alliage du cœur pourra comprendre 95% en masse de Tungstène, 2% en masse de Nickel, 1,5% en masse de Cobalt et 2% en masse de Fe et la gaine 70% en masse de tungstène, les phases gamma du cœur yc et de la gaine YG ayant des compositions associant Tungstène, Nickel, Cobalt et Fer.
L'invention a également pour objet un procédé permettant de réaliser un tel pénétrateur.
Ce procédé de fabrication d'un pénétrateur en métal lourd à haute teneur en tungstène est caractérisé en ce qu'il comprend les: étapes : suivantes (qui :: conduisent à la réalisation d'un ébauché: de ce pénétrateur) :
- fabrication d'un cœur composé de poudres compactées comprenant . de 85% a 97% en masse de tungstène associe a des métaux additionnels comprenant le: nickel, le . cobalt avec ou sans Fer,
- fabrication d'une gaine composée de poudres compactées comprenant de 30% à 72% en masse de tungstène associé à des métaux additionnels comprenant, le nickel, le cobalt avec ou sans Fer,
- assemblage par frittage de la gaine et du cœur.
L'invention sera mieux comprise à la lecture de la description qui ::. va suivre de modes particuliers de réalisation, description faite en référence aux dessins annexés et dans lesquels :
la figure 1 montre l'architecture générale d'un projectile sous calibré de type flèche, - la figure 2 montre en coupe longitudinale partielle un pénétrateur selon l'invention,
- la figure 3 est une micrographie montrant la structure du cœur du pénétrateur selon l'invention,
- la figure 4 est une micrographie montrant la structure de la gaine du pénétrateur selon l'invention,
- la figure 5a est une micrographie montrant la liaison entre gaine et cœur, et..
- la figure 5b est un grossissement de la micrographie de la figure 5a.
La figure 1 montre un projectile flèche 1 qui comporte d'une façon classique un sabot 2 réalisé en matériau léger (tel qu'un alliage d'aluminium), sabot formé de plusieurs segments et qui entoure un pénétrateur 3 sous-calibré . :
Le pénétrateur comporte une partie avant 3a conique et porte à sa partie arrière 3b un empennage 4 assurant sa stabilisation sur trajectoire. La structure même du pénétrateur 3 sera décrite par la suite.
Le sabot porte une ceinture 5, réalisée en matière plastique, et qui assure l'étanchéité aux gaz propulsifs lors du tir dans le tube d'une arme (non représenté) .
Lors du tir, les gaz du chargement propulsif (non représenté): exercent leur poussée au ..niveau d'une partie arrière 6 du sabot qui est au calibre et qui constitue ce qu'on appelle la plaque de poussée.
Une telle configuration générale d'un projectile sous calibré stabilisé par empennage (projectile flèche) est bien connue. On pourra notamment considérer les brevets FR-2521717 et FR-2661739 qui décrivent des projectiles flèches connus.
Le sabot 2.. est destiné à permettre le tir du projectile dans l'arme. Il est constitué de plusieurs segments (le plus souvent trois) qui entourent le pénétrateur. 3 et qui sont en contact deux à deux au niveau de plans de joints.
A la sortie du tube de l'arme, les segments du sabot 2 s'écartent du pénétrateur 3 sous l'action de la pression aérodynamique qui s'exerce au niveau de la partie avant (AV) du sabot 2. L'écartement des segments conduit à la rupture de la ceinture 5 et le sabot libère donc le pénétrateur 3 qui poursuit sa trajectoire.
Des moyens à concordance de forme (non représentés), par exemple un filetage, sont interposés entre le sabot 2 et le pénétrateur 3 pour assurer l'entraînement de ce dernier.
La figure 2 montre de façon plus précise la structure du pénétrateur 3 qui comporte une partie centrale ou cœur 7 qui est entourée d'une gaine: périphérique 8.
Conformément à l'invention, le : cœur est formé d'un alliage comprenant de 85% à 97% en masse de tungstène: et la gaine est réalisée en un alliage comprenant de 30% à 72% en masse de tungstène.
Le tungstène est allié, tant au niveau du cœur que de la gaine, à des métaux d'addition comme le Nickel qui sera toujours associé au Cobalt avec ou sans fer.
Plus précisément et en référence à la figure 3, au niveau du cœur 7, le matériau comprend des nodules 9 de tungstène de phase . à structure cristalline cubique centré qui sont liés entre eux par une matrice 10 d'une phase gamma yc associant le tungstène au Nickel, au cobalt avec ou sans fer (Fe) , avec une structure cristalline cubique à face centrée.
Le taux de tungstène du cœur est compris entre 85% et 97%, ce qui conduit à une densité du cœur de l'ordre de 17 g/cm3. Le cœur 7 est formulé de façon à avoir une limite élastique supérieure ou égale à 1100 MPa (Méga Pascals) . La ductilité est de l'ordre de 6% et sa résilience Charpy (essai non entaillé selon norme ISO 179-1 est' de 80 J/cm2.
La composition du cœur comportera (proportions en masse) : 85 à 97% de tungstène,
l à 10% de Nickel,
1 à 6% de Cobalt. ...
Selon un autre mode de réalisation, la., composition du cœur comportera (proportions en masse) :
85 à 97% de tungstène,
1 à 10% de Nickel,
0.5 à 10% de Fer,
1 à 8% de Cobalt. En référence à la figure 4, au niveau de la gaine 8, le matériau comprend essentiellement une matrice 11 d'une phase gamma YG associant essentiellement le tungstène au Nickel et au Cobalt avec ou sans Fe, et avec une structure cristalline cubique à face centrée qui est le signe que cette gaine a une haute résilience.
.Le pourcentage de tungstène de la gaine 8 est compris entre 30% et 72%, ce qui conduit à: une densité de cette gaine qui peut varier entre 10 g/cm3 et 15 g/cm3. L'alliage de la gaine 8 sera formulé de façon à avoir une ductilité supérieure à 7% et une résilience élevée : résilience Charpy (essai non entaillé selon norme ISO 179-1) supérieure ou égale à 200 J/cm2.
La composition de la gaine comportera (proportions en masse) :
30 à 72% de tungstène,
20 à 44% de Nickel,
5 à 25% de Cobalt.
Selon un autre mode de réalisation, la composition, de la gaine comportera (proportions en masse) :
30 à 72% de tungstène,
30 à 44% de Nickel,
0.5 à 10% de Fer,
5 à 25% de Cobalt.
Etant donné la différence de concentration du tungstène dans la gaine et le cœur, la gaine 8 est donc plus ductile que. le cœur 7.
Si la phase gamma yc du cœur associe le tungstène au nickel et au cobalt (avec ou sans Fer) , la phase gamma YG de la gaine comportera aussi le nickel et :1e cobalt (avec ou sans Fer) comme métaux additionnels.
Les figures 5a et 5b montrent qu'après, mise en forme du pénétrateur 3, les matrices 10 et 11 du cœur 8 et de la gaine 7 (matrices formées par les phases gamma du cœur et de la gaine) sont reliées l'une à l'autre de façon continue sans zone de transition. On pourra en particulier se référer aux zones repérées par les flèches ZI et Z2 (la figure 5b est à un grossissement double de celui de la figure 5a) . Il est clair sur les figures 5a et 5b que les phases gamma du cœur et de la gaine s'inter pénètrent et qu'il n'y a donc pas avec l'invention de zone de transition comme décrite par le brevet EP-1940574.
II en résulte une liaison intime de la gaine 7 sur le cœur 8 et une résistance extrêmement forte de cette liaison.
Pour réaliser un tel pénétrateur 3 on :mét en œuvre un procédé décrit de la façon suivante : .. .
Au cours d'une étape A, pour fabriquer un alliage comprenant de 85% à 97% en masse de tungstène, les poudres de Tungstène,: Nickel, Cobalt et éventuellement de Fer sont mélangées de façon homogène et pré comprimés sous forme d'un barreau qui constituera. le cœur.
Au cours d'une étape B, on élabore une gaine 8 d'un alliage comprenant de 30% à 72%: en masse de tungstène associé à des métaux additionnels comprenant le Nickel, le Cobalt et éventuellement du Fer.
Les matériaux sont mélangés de façon homogène puis comprimés dans un outillage qui comporte un noyau cylindrique- ayant un diamètre égal ou supérieur au diamètre interne souhaité pour la gaine. Le reste de l'outillage de compression est classique.
Au cours d'une étape: C. on assemble par frittage la gaine et le cœur.
Le frittage a lieu en présence de phase liquide. On pourra mettre en œuvre le procédé de frittage à haute puissance décrit dans la demande de brevet O03/027340 et qui met en œuvre un chauffage par induction.
Les alliages sont consolidés à des températures comprises entre 1400°C et 1600°C.
Le frittage permet d'assurer la continuité des phases gamma entre la gaine et le cœur.
Ces étapes A à C conduisent ainsi à la réalisation d'un ébauché du pénétrateur.
On procède ensuite aux différents usinages de l'ébauché permettant de réaliser le pénétrateur 3 souhaité. On réalisera en particulier le filetage externe porté par la gaine et permettant l'assemblage du pénétrateur 3 et de son sabot de lancement 2.
On pourra ; réaliser des gaines dont le diamètre est compris entre 1,4 et 2,0 fois le diamètre du cœur. L'épaisseur de la gaine 8 pourra ainsi varier entre 5 mm et 9mm pour un pénétrateur de 35 mm de diamètre externe.
A titre d'exemple, on a ainsi fabriqué les pénétrateurs: suivants :
Exemple 1
Diamètre du cœur égal à 0,5-0,7 fois le diamètre, de la gaine .
Le cœur est formé de 85% en masse de tungstène, et ayant une densité de 16,5 g/cm3, une limite, élastique de 1 800. MPa, une ductilité de 10% et une résilience Charpy non entaillé de 150 J/cm2.
L'alliage du cœur comprend 85% en masse de Tungstène, 15% en masse de Nickel et 5% en masse de Cobalt.
La gaine a une densité de 11,2 g/cm2, une limite élastique de 1 400 MPa, : une ductilité de 18% et une résilience Charpy non entaillée de 400 J/cm2. L'alliage de la gaine comprend (proportions en masse) : 38,0% de Tungstène, 40% de Nickel et 22% de Cobalt.
Ce pénétrateur (et son. ébauché) a été fabriqué en mettant en œuvre le procédé précédemment décrit.
Exemple 2
Diamètre du cœur égal à 0,5-0,7 fois le diamètre de la gaine.
Le cœur est formé de 89% en masse de tungstène, et ayant une densité de 17,1 g/cm3, une limite élastique de 1 500 MPa, une. ductilité de : 9% et une résilience Charpy non entaillé de 300 J/cm . L'alliage du cœur comprend 89% en masse de Tungstène, 7,5% en masse de. Nickel et 3,5% en masse de Cobalt.
La gaine est formée de 68% en masse de tungstène et ayant une densité de 14,1 g/cm2, une limite élastique de 2 000 MPa, une ductilité de 11% et une résilience Charpy non entaillée de 400 J/cm2. L'alliage de la gaine comprend (proportions en masse) : 68% de Tungstène, 22% de Nickel et 10% de Cobalt. Ce pénétrateur (et son ébauché) a été fabriqué en mettant en œuvre le procédé précédemment décrit.
Exemple 3
Diamètre du cœur égal à 0,5-0,7 fois le diamètre de la gaine.
Le cœur est formé de 95% en masse de tungstène, et ayant une densité de 18,3 g/cm3, une limite élastique de 1 300 MPa, une ductilité de 7% et une résilience Charpy. non entaillée de 50 J/cm2. L'alliage du cœur comprend 95% en masse de Tungstène, 2% en masse de nickel, 1,5% en masse de cobalt et 2% en masse de fer.
La gaine' est formée de 70,0% en masse de tungstène et ayant une densité de 14,0 g/cm2, une limite élastique de 2000 MPa, - une ductilité de ..9% et une résilience Charpy non entaillé de 300 J/cm2.. L'alliage de la - gaine comprend, (proportions en masse) : 70,0% en masse de Tungstène, 18% en masse de Nickel, 10% en masse de Cobalt et 2% en masse de Fe .
Ce pénétrateur (et son ébauché) a été fabriqué en mettant en œuvre le procédé précédemment décrit.-.

Claims

REVENDICATIONS
1. Pénétrateur (3) en métal lourd à haute teneur en tungstène comportant une partie centrale ou cœur (7) formé d'un alliage comprenant de 85 à 97% en masse de tungstène associé à des métaux additionnels: et qui est entouré: d'une gaine périphérique (8) d'un alliage de tungstène plus ductile que le matériau du cœu (7), pénétrateur caractérisé en ce que la gaine (8) est réalisée .en un alliage comprenant de 30% à 72% en masse de tungstène, le cœur (7); comprenant des nodules (9) de tungstène liés par une matrice (10) d'une phase gamma Yc associant le tungstène aux métaux additionnels, les phases gamma du cœur (7) et de la gaine (8) étant reliées l'une à l'autre de façon continue sans zone de transition.
2. Pénétrateur en métal lourd selon la revendication 1, caractérisé en ce que les phases gamma du cœur yc et de la gaine YG ont une composition associant le tungstène, le nickel, le cobalt et éventuellement le fer.
3. Pénétrateur en métal; lourd selon la revendication 2, caractérisé en ce que le cœur (7) comprend 85% en masse de tungstène et la gaine (8) 38% en masse de tungstène, les phases gamma du cœur yc et de la gaine YG ayant des compositions associant Tungstène, Nickel et Cobalt.
4. Pénétrateur en métal lourd selon la revendication 2, caractérisé en ce que le cœur (7) comprend 89% en masse de tungstène et la gaine (8) 68% en masse de tungstène, les phases gamma ; du cœur yc et de la gaine YG ayant des composition associant Tungstène, Nickel et Cobalt.
5. Pénétrateur en métal lourd selon la revendication 2, caractérisé en ce que l'alliage du. cœur (7) comprend 95% en masse de Tungstène, 2% en masse de Nickel, 1,5% en masse de Cobalt et 2% en masse de Fe et la gaine (8) 70% en masse de tungstène, les phases gamma du cœur yc et de la gaine YG ayant des compositions associant Tungstène, Nickel, Cobalt et Fer.
6. Procédé de fabrication d'un pénétrateur en métal lourd à haute teneur en tungstène selon une des revendications 1 à 5, caractérisé en ce qu'il comprend les étapes suivantes : - fabrication d'un cœur (7) composé de poudres compactées comprenant de 85% à 97% en masse de tungstène associé à des métaux additionnels comprenant le nickel, le cobalt avec ou sans Fer,
- fabrication d'une gaine (8) composée de poudres compactées comprenant de 30% à 72% en masse de tungstène associé à dès métaux additionnels comprenant le nickel, le cobalt avec ou sans Fer,
- assemblage par frittage de la gaine (8) et du cœur (7).
PCT/FR2016/000122 2015-07-22 2016-07-20 Penetrateur comportant un cœur entoure d'une gaine ductile et procede de fabrication d'un tel penetrateur WO2017013314A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PL16757687.5T PL3349929T3 (pl) 2015-07-22 2016-07-20 Penetrator zawierający rdzeń otoczony plastyczną osłoną oraz sposób wytwarzania takiego penetratora
EP16757687.5A EP3349929B1 (fr) 2015-07-22 2016-07-20 Penetrateur comportant un coeur entoure d'une gaine ductile et procede de fabrication d'un tel penetrateur
CN201680042805.XA CN107848036B (zh) 2015-07-22 2016-07-20 包含由延展性护套围绕的芯的穿透器及这种穿透器的制造方法
US15/737,899 US10240906B2 (en) 2015-07-22 2016-07-20 Penetrator incorporating a core enclosed in a ductile sheath and manufacturing process for such a penetrator
ES16757687T ES2963820T3 (es) 2015-07-22 2016-07-20 Penetrador que comprende un núcleo rodeado por una vaina dúctil y procedimiento de fabricación de un penetrador de este tipo
KR1020187005016A KR102203134B1 (ko) 2015-07-22 2016-07-20 연성 외장에 의해 둘러싸인 코어를 포함하는 관통자 및 그 관통자의 제조방법
IL256732A IL256732B (en) 2015-07-22 2018-01-04 A penetrant containing a core wrapped by a flexible sheath and a process for producing a similar penetrant

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1501552A FR3039266B1 (fr) 2015-07-22 2015-07-22 Penetrateur comportant un coeur entoure d'une gaine ductile et procede de fabrication d'un tel penetrateur
FR1501552 2015-07-22

Publications (1)

Publication Number Publication Date
WO2017013314A1 true WO2017013314A1 (fr) 2017-01-26

Family

ID=54545190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/000122 WO2017013314A1 (fr) 2015-07-22 2016-07-20 Penetrateur comportant un cœur entoure d'une gaine ductile et procede de fabrication d'un tel penetrateur

Country Status (10)

Country Link
US (1) US10240906B2 (fr)
EP (1) EP3349929B1 (fr)
KR (1) KR102203134B1 (fr)
CN (1) CN107848036B (fr)
ES (1) ES2963820T3 (fr)
FR (1) FR3039266B1 (fr)
HU (1) HUE064184T2 (fr)
IL (1) IL256732B (fr)
PL (1) PL3349929T3 (fr)
WO (1) WO2017013314A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10996037B2 (en) * 2018-09-04 2021-05-04 The United States Of America As Represented By The Secretary Of The Army Obturator for robust and uniform discard
CN114147233B (zh) * 2022-02-10 2022-04-12 北京煜鼎增材制造研究院有限公司 一种导弹战斗部壳体及其增材制造方法
CN115625337A (zh) * 2022-12-06 2023-01-20 成都虹波实业股份有限公司 一种新型钨合金复合材料及制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU56486A1 (fr) * 1968-07-15 1969-05-21
FR2521717A1 (fr) 1982-02-16 1983-08-19 France Etat Projectile a energie cinetique et procede de lancement de celui-ci
FR2661739A1 (fr) 1990-05-04 1991-11-08 Giat Ind Sa Dispositif d'etancheite d'un projectile fleche.
FR2765677A1 (fr) * 1988-06-25 1999-01-08 Rheinmetall Gmbh Projectile a effet multiple sous-calibre, stabilise par rotation
WO2003027340A1 (fr) 2001-09-26 2003-04-03 Cime Bocuze Alliage base tungstene fritte a haute puissance
EP1940574A1 (fr) 2005-10-18 2008-07-09 Rheinmetall Waffe Munition GmbH Procede de fabrication d'un penetrateur
US20140260808A1 (en) * 2013-03-15 2014-09-18 Sandvik Intellectual Property Ab Method of joining sintered parts of different sizes and shapes

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3946673A (en) * 1974-04-05 1976-03-30 The United States Of America As Represented By The Secretary Of The Navy Pyrophoris penetrator
FR2610715A1 (fr) * 1987-02-11 1988-08-12 Munitions Ste Fse Projectile perforant a noyau dur et guide ductile
FR2622209B1 (fr) * 1987-10-23 1990-01-26 Cime Bocuze Alliages lourds de tungstene-nickel-fer a tres hautes caracteristiques mecaniques et procede de fabrication desdits alliages
DE19700349C2 (de) * 1997-01-08 2002-02-07 Futurtec Ag Geschoß oder Gefechtskopf zur Bekämpfung gepanzerter Ziele
KR100467393B1 (ko) * 2002-07-13 2005-01-24 주식회사 풍산 파편확산 관통형 텅스텐 중합금 관통자 소재 및 그 제조방법
DE102005021982B4 (de) * 2005-05-12 2007-04-05 Rheinmetall Waffe Munition Gmbh Verfahren zur Herstellung eines Penetrators
US8985026B2 (en) * 2011-11-22 2015-03-24 Alliant Techsystems Inc. Penetrator round assembly

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU56486A1 (fr) * 1968-07-15 1969-05-21
FR2521717A1 (fr) 1982-02-16 1983-08-19 France Etat Projectile a energie cinetique et procede de lancement de celui-ci
FR2765677A1 (fr) * 1988-06-25 1999-01-08 Rheinmetall Gmbh Projectile a effet multiple sous-calibre, stabilise par rotation
FR2661739A1 (fr) 1990-05-04 1991-11-08 Giat Ind Sa Dispositif d'etancheite d'un projectile fleche.
WO2003027340A1 (fr) 2001-09-26 2003-04-03 Cime Bocuze Alliage base tungstene fritte a haute puissance
EP1940574A1 (fr) 2005-10-18 2008-07-09 Rheinmetall Waffe Munition GmbH Procede de fabrication d'un penetrateur
US8580188B2 (en) * 2005-10-18 2013-11-12 Rheinmetall Waffe Munition Gmbh Method for producing a penetrator
US20140260808A1 (en) * 2013-03-15 2014-09-18 Sandvik Intellectual Property Ab Method of joining sintered parts of different sizes and shapes

Also Published As

Publication number Publication date
IL256732A (en) 2018-03-29
CN107848036A (zh) 2018-03-27
EP3349929B1 (fr) 2023-09-06
ES2963820T3 (es) 2024-04-02
US20180231358A1 (en) 2018-08-16
EP3349929A1 (fr) 2018-07-25
US10240906B2 (en) 2019-03-26
FR3039266B1 (fr) 2017-09-01
CN107848036B (zh) 2020-04-14
IL256732B (en) 2021-04-29
FR3039266A1 (fr) 2017-01-27
KR102203134B1 (ko) 2021-01-14
EP3349929C0 (fr) 2023-09-06
PL3349929T3 (pl) 2024-05-20
HUE064184T2 (hu) 2024-02-28
KR20180033244A (ko) 2018-04-02

Similar Documents

Publication Publication Date Title
US8156871B2 (en) Liner for shaped charges
EP3349929B1 (fr) Penetrateur comportant un coeur entoure d'une gaine ductile et procede de fabrication d'un tel penetrateur
US6446558B1 (en) Shaped-charge projectile having an amorphous-matrix composite shaped-charge liner
US8777527B2 (en) Drill production method
EP0279732A1 (fr) Projectile perforant à noyau dur et guide ductile et son procédé de fabrication
CA2493445C (fr) Piece mecanique, et procede de fabrication d'une telle piece mecanique
US9441924B1 (en) User configurable shape charge liner and housing
FR2652643A1 (fr) Projectile a effet cinetique stabilise par ailettes.
FR2713662A1 (fr) Procédé d'obtention d'une pièce circulaire métallique renforcée par des fibres.
EP2636985A1 (fr) Projectile sous calibre à structure de tête aménagée
JPH11513474A (ja) 金属製バンドを備えた回転の安定した弾丸
EP2426455B1 (fr) Procédé de compression d'un matériau explosif dans un corps de projectile et outillage permettant la mise en oeuvre d'un tel procédé
EP3663703B1 (fr) Tête militaire perforante
EP4003937B1 (fr) Pièce dense en matériau composite céramique-céramique ternaire et son procédé de fabrication
FR3088016A1 (fr) Procede de fabrication d’une piece par densification sous charge
EP0580511B1 (fr) Ceinture d'étanchéité de projectile flèche
EP3122500A1 (fr) Procede de fabrication d'une boucle fermee de fil de decoupe
FR2923003A1 (fr) Obus d'exercice fragmentable.
US20080314233A1 (en) Process for the Production of a Jacketed Penetrator
FR2685076A1 (fr) Projectile a effet cinetique.
WO2022184992A1 (fr) Elément tubulaire fileté à segment
EP3985345A1 (fr) Projectile perforant et explosif doté d'un empennage de stabilisation
FR2711786A1 (fr) Projectile à effet cinétique, sous-calibré et stabilisé par ailettes.
FR2902869A1 (fr) Tete militaire engendrant un noyau tubulaire.
BE820205A (fr) Materiau presentant des proprietes de durete ameliorees

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16757687

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15737899

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 256732

Country of ref document: IL

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20187005016

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016757687

Country of ref document: EP