WO2017010743A1 - Optical transmission module, optical transceiver, and optical communication system including same - Google Patents

Optical transmission module, optical transceiver, and optical communication system including same Download PDF

Info

Publication number
WO2017010743A1
WO2017010743A1 PCT/KR2016/007413 KR2016007413W WO2017010743A1 WO 2017010743 A1 WO2017010743 A1 WO 2017010743A1 KR 2016007413 W KR2016007413 W KR 2016007413W WO 2017010743 A1 WO2017010743 A1 WO 2017010743A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
light
layer
light emitting
emitting diode
Prior art date
Application number
PCT/KR2016/007413
Other languages
French (fr)
Korean (ko)
Inventor
심종인
신동수
최원진
Original Assignee
한양대학교 에리카산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160082991A external-priority patent/KR101848804B1/en
Priority claimed from KR1020160082995A external-priority patent/KR101801779B1/en
Application filed by 한양대학교 에리카산학협력단 filed Critical 한양대학교 에리카산학협력단
Priority to CN201680052425.4A priority Critical patent/CN108141285B/en
Priority to EP16824660.1A priority patent/EP3322109B1/en
Priority to US15/743,284 priority patent/US10451905B2/en
Publication of WO2017010743A1 publication Critical patent/WO2017010743A1/en
Priority to US16/591,640 priority patent/US10663774B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water

Definitions

  • Embodiments relate to an optical module, an optical transceiver, and an optical communication system including the same.
  • the wired network performance may be determined by an optical transceiver module (optical transceiver) and other optical components.
  • An optical transceiver of a general wired optical communication network includes an optical transmission module and an optical reception module, and the optical transmission module may include a light emitting device and an optical modulator.
  • a light emitting device for an optical communication network using a silica optical fiber as a transmission line uses an infrared laser diode (LD) having an oscillation wavelength of 1 ⁇ m, and the light emitting device and the optical modulator are free-space connections using a lens, a polymer, etc.
  • the waveguide of the material of the material, or in the process of integrally forming the light emitting device and the optical modulator may be connected by forming a waveguide on the wafer.
  • Laser diode can output high-quality light of high output (e.g. light having a narrow half width of spectrum), which is an advantage as a light source for long-distance large capacity optical signal transmission.
  • a temperature compensator TEC
  • the operating characteristics are very unstable when the emitted light is reflected from the surroundings and re-entered into the laser diode LD, the use of an optical isolator is inevitable, and the laser diode LD may The manufacturing cost is also a high problem.
  • the Internet of Things (IOT) era is coming.
  • an optical communication network composed of optical transmission / reception modules is essential. Accordingly, there is a need for an optical transceiver module that can operate without a temperature compensation device and an optical isolator even in extreme environments from -50 ° C to 150 ° C.
  • the temperature range of -50 ° C to 150 ° C is an allowable temperature range for the normal operation of the Si IC used in various electronic circuits.
  • laser diodes have a problem in that reliability cannot be guaranteed in various temperature environments without a temperature compensating device and an optical isolator, and have a high price.
  • the embodiment provides a light transmitting module using a light emitting diode as a light source.
  • the embodiment provides a horizontal optical transmission module.
  • the embodiment provides an optical module capable of transmitting a high speed optical signal within a short distance of several tens to hundreds of meters by adjusting the half width of the light spectrum.
  • the embodiment provides an optical module that can operate at a low temperature of ⁇ 50 ° C. or less or a high temperature of 150 ° C. or more.
  • An optical transmission module a light emitting diode; And an optical modulator for modulating the first light emitted from the light emitting diode, wherein the light emitting diode and the light modulator include GaN, and the light modulator transmits the first light when voltage is applied.
  • the optical modulator may pass the first light when a reverse bias voltage is applied.
  • the first light may be light in the visible light wavelength band.
  • the light emitting diode and the optical modulator may include a nitride semiconductor layer.
  • the light emitting diode may include a first lower semiconductor layer; An active layer disposed on the first lower semiconductor layer; And a first upper semiconductor layer disposed on the active layer.
  • the optical modulator includes: a second lower semiconductor layer; A light absorption layer disposed on the second lower semiconductor layer to absorb light output from the light emitting diode; And a second upper semiconductor layer disposed on the light absorption layer.
  • the active layer and the light absorption layer may include GaN.
  • the light absorption layer may have a large energy band gap when a reverse bias voltage is applied.
  • the light absorption layer may have an absorption wavelength band shorter than that of the first light when a reverse bias voltage is applied.
  • a filter for adjusting the wavelength width of the first light wherein the optical modulator modulates the second light passing through the filter, and the half width of the second light is smaller than the half width of the first light.
  • the full width at half maximum of the first light may be 10 nm to 35 nm.
  • the half width of the second light may be 2 nm to 10 nm.
  • the filter includes a first reflecting portion, a cavity, and a second reflecting portion that are sequentially stacked, and the first reflecting portion and the second reflecting portion alternately stack a first optical layer and a second optical layer including different oxides.
  • the cavity may be formed by stacking a plurality of second optical layers, and the cavity may be thicker than the first optical layer or the second optical layer.
  • the second optical layer may have a higher refractive index than the first optical layer.
  • the first optical layer may have a refractive index of 1.4 to 1.5, and the second optical layer may have a refractive index of 2.0 to 3.0.
  • the first optical layer is one of SiO X (1 ⁇ X ⁇ 3) or MgF 2
  • the second optical layer is formed of TiOx (1 ⁇ X ⁇ 3), TaOx (1 ⁇ X ⁇ 3) or ZrO 2 . It can be one.
  • the active layer of the light emitting diode and the light absorbing layer of the light modulator may have the same composition.
  • It may include a first lens disposed between the light emitting diode and the optical modulator.
  • an optical module may be manufactured using a light emitting diode (LED) and an optical modulator. Therefore, since the separate isolator and the temperature control device TEC can be omitted, the manufacturing cost of the optical module can be reduced.
  • LED light emitting diode
  • the half width of the light spectrum may be adjusted to transmit a high speed optical signal within a short distance of several tens to hundreds of meters.
  • the light emitting diode and the light modulator may be made of a gallium nitride (GaN) -based material to provide an optical module operable even at a high driving temperature.
  • GaN gallium nitride
  • FIG. 1 is a conceptual diagram of an optical communication system according to an embodiment of the present invention.
  • FIG. 2 is a conceptual diagram of an optical transmission module according to an embodiment of the present invention
  • FIG. 3 is a cross-sectional view of the light emitting diode of FIG.
  • FIG. 4 is a modification of FIG. 3,
  • FIG. 5 is a cross-sectional view of the filter of FIG. 2,
  • FIG. 10 is a view illustrating a state in which an energy band gap is changed by applying a reverse bias
  • 11 is a graph showing a state in which the absorption wavelength band of the optical modulator changes as the reverse bias is applied
  • FIG. 12 is a graph showing a state in which the intensity of light output from a light emitting device changes as a reverse bias is applied;
  • FIG. 13 is a conceptual diagram illustrating a process in which an optical signal is modulated by an optical module
  • FIG. 14 is a conceptual diagram of an optical transceiver module according to an embodiment of the present invention.
  • optical transmission module 15 is a conceptual diagram of an optical transmission module according to an embodiment of the present invention.
  • FIG. 16 is a first modified example of FIG. 15;
  • FIG. 17 is a second modified example of FIG. 15;
  • FIG. 19 is a conceptual diagram of an optical receiving module according to an embodiment of the present invention.
  • FIG. 20 is a first modification of FIG. 19,
  • FIG. 21 is a second modified example of FIG. 19;
  • FIG. 22 is a third modified example of FIG. 19;
  • FIG. 23 is a conceptual diagram of an optical transmission module according to another embodiment of the present invention.
  • FIG. 24 is a first modified example of FIG. 23;
  • FIG. 25 is a second modified example of FIG. 23;
  • FIG. 26 is a third modified example of FIG. 23.
  • FIG. 27 is a view showing the hollow tube of FIG.
  • FIG. 28 is a fourth modified example of FIG. 23;
  • 29 is a graph showing the changing wavelength width through the filter.
  • the embodiments described herein will be described with reference to cross-sectional views and / or plan views, which are ideal exemplary views of the present invention.
  • the thicknesses of films and regions are exaggerated for effective explanation of technical content. Accordingly, shapes of the exemplary views may be modified by manufacturing techniques and / or tolerances. Therefore, the exemplary embodiments of the present invention are not limited to the specific forms shown, but include changes in forms generated according to manufacturing processes.
  • the etched region shown at right angles may be inclined, rounded, or have a predetermined curvature.
  • the regions illustrated in the figures have schematic attributes, and the shape of the regions illustrated in the figures is intended to illustrate a particular form of region of the device and not to limit the scope of the invention.
  • FIG. 1 is a conceptual diagram of an optical communication system according to an exemplary embodiment.
  • an optical communication module includes a first optical transceiver 3 communicating with a first host 1, a second optical transceiver 4 communicating with a second host 2, and a first optical transceiver 3 communicating with a second host 2. And a channel connected between the first optical transceiver 3 and the second optical transceiver 4.
  • the first host 1 and the second host 2 are not particularly limited as long as they are various electronic devices that can communicate with each other.
  • the first host 1 may be a controller ECU of the vehicle
  • the second host 2 may be various sensors (camera modules, lighting sensors, etc.) disposed in the vehicle.
  • the first optical transceiver 3 and the second optical transceiver 4 may each be a bidirectional communication module including a transmission module 5 and a reception module 6, but embodiments of the present invention are not necessarily limited thereto.
  • the first optical transceiver 3 may be an optical transmission module and the second optical transceiver 4 may be an optical reception module.
  • a bidirectional communication method will be described.
  • the transmission module 5 of the first optical transceiver 3 may be connected by the reception module 6 of the second optical transceiver 4 and the first optical fiber 8.
  • the transmission module 5 may convert an electric signal of the host into an optical signal.
  • the control unit 7 may modulate the optical signal according to the electrical signal of the host.
  • the controller 7 may include a driver IC.
  • the receiving module 6 of the first optical transceiver 3 may be connected by the transmitting module 5 of the second optical transceiver 4 and the second optical fiber 9.
  • the receiving module 6 may convert an optical signal into an electrical signal.
  • the controller 7 may amplify the converted electrical signal (TIA) or extract packet information from the electrical signal and transmit the packet information to the host.
  • channels of a transmission signal and a reception signal are differently configured by using the first optical fiber 8 and the second optical fiber 9, but are not necessarily limited thereto. That is, bidirectional communication may be performed using a single optical fiber. In addition, a plurality of first optical modules and a plurality of second optical modules may bidirectionally communicate using a multiplexer. It can also be applied to wireless communication that does not use a wired channel.
  • FIG. 2 is a perspective view showing a transmission module according to an embodiment of the present invention.
  • the light transmission module 5 may include a light emitting diode 20, a filter 60, an optical channel 40, an optical modulator 30, and an optical interface 50.
  • the light emitting diode 20, the filter 60, and the optical modulator 30 may be disposed on the carrier substrate 10.
  • the present disclosure is not limited thereto, and the light emitting diodes 20, the filters 60, and the optical modulators 30 may be sequentially disposed along the emission direction of the light.
  • the light emitting diodes 20 and LEDs are insensitive to changes in operating temperature because of large energy band gaps. Therefore, the temperature compensation device can be omitted.
  • the band gap of the active layer may be about 2.0 to 3.0 eV.
  • the light emitting diode 20 generates less noise than the laser diode due to light incident again. Therefore, the optical isolator can be omitted. In addition, the light emitting diode 20 is lower in price than the laser diode. Therefore, when the light emitting diode is used, the manufacturing cost of the optical transmitting module can be lowered.
  • the laser diode LD is sensitive to changes in ambient temperature, a temperature compensating device is required to obtain stable operation.
  • the operating characteristic is decreased. Since it becomes very unstable, the use of an optical isolator is inevitable, and the manufacturing cost of the laser diode LD itself has a high problem.
  • the filter 60 may control the wavelength width (light emission line width) of the light emitted from the light emitting diodes. Since the wavelength of a nitride-based light emitting diode is generally about 20 nm wide, there is a problem that the operating voltage of the optical modulator 30 becomes large in order to obtain a sufficient extinction ratio.
  • the optical channel 40 may optically connect the light emitting diodes 20 and the optical modulator 30. Therefore, the light output from the light emitting diode 20 may be provided to the optical modulator 30 through the optical channel 40.
  • the optical channel 40 may be an optical waveguide, but is not limited thereto.
  • the optical channel 40 may be an empty passage through which light may pass, or may be a plurality of optical components (lens, etc.) disposed on the optical path.
  • the optical modulator 30 may modulate the input light.
  • the optical modulator 30 will be described as an electro-absorption modulator (EAM), but the configuration of the optical modulator is not necessarily limited thereto.
  • EAM electro-absorption modulator
  • the field absorption type optical modulator (EAM) can be driven at a low voltage, and the device can be miniaturized.
  • the optical modulator 30 changes the degree of light absorption according to the applied voltage.
  • the optical modulator 30 may modulate the optical signal by emitting the incident light to the outside or off-state according to a change in the applied voltage.
  • the optical interface 50 may include a connector connected to an external optical fiber.
  • the optical signal modulated by the optical modulator 30 may be transmitted to the outside through the optical interface 50.
  • FIG. 3 is a cross-sectional view of the light emitting diode of FIG. 2.
  • the light emitting diode 20 may include a first substrate 21, a first lower semiconductor layer 22, a first active layer 23, and a first upper semiconductor layer 24.
  • the first lower semiconductor layer 22, the first active layer 23, and the first upper semiconductor layer 24 may be sequentially stacked on the first substrate 21.
  • the first substrate 21 may include, for example, one of a sapphire substrate, a silicon substrate, a silicon carbide substrate, a plastic substrate, or a glass substrate. The substrate can be removed as needed.
  • a buffer layer (not shown) may be disposed between the first lower semiconductor layer 22 and the first substrate 21.
  • the buffer layer may mitigate lattice mismatch between the light emitting structure and the first substrate 21.
  • the buffer layer may have a form in which Group III and Group V elements are combined or include any one of GaN, InN, AlN, InGaN, AlGaN, InAlGaN, and AlInN.
  • the dopant may be doped in the buffer layer, but is not limited thereto.
  • the buffer layer may grow as a single crystal on the substrate 21, and the buffer layer grown as the single crystal may improve crystallinity of the first lower semiconductor layer.
  • the first lower semiconductor layer 22 may be disposed on the first substrate 21.
  • the first lower semiconductor layer 22 may be an n-type semiconductor layer including a gallium nitride (GaN) -based material.
  • the first lower semiconductor layer 22 may be formed of a nitride doped with an n-type dopant.
  • the n-type dopant may include silicon (Si), germanium (Ge), tin (Sn), or the like.
  • the first lower semiconductor layer 22 may have a structure in which a first layer doped with an n-type dopant and a second layer not doped with an n-type dopant are alternately stacked.
  • the first lower semiconductor layer 22 may be grown as a single n-type nitride layer.
  • the first electrode 25 may be formed on the upper surface of the exposed first lower semiconductor layer 22.
  • the first electrode 25 may include a Cr / Au film, a Cr / Ni / Au film, a Ti / Al / Au film, or a Ti / Ni / pt / Au film.
  • the first active layer 23 may be disposed on the first lower semiconductor layer 22.
  • the first active layer 23 may cover a portion of the upper portion of the first lower semiconductor layer 22 and may be spaced apart from the first electrode 25.
  • the first active layer 23 may generate light by a power source applied from the outside. The generated light may travel to the first lower semiconductor layer 22 and the first upper semiconductor layer 24.
  • the first active layer 23 may have a multi-quantum well (MQW) structure formed of a plurality of quantum well structures.
  • MQW multi-quantum well
  • the first active layer 23 may have a quantum barrier layer and a quantum well layer, and the quantum barrier layer and the quantum well layer of the first active layer 23 of the multi-quantum well structure have different x, y, and z composition ratios, respectively.
  • the band gap of the quantum well layer should be smaller than the quantum barrier layer, the first lower semiconductor layer 22 and the first upper semiconductor layer 24.
  • the well layer / barrier layer of the first active layer 23 is at least one of AlGaN / AlGaN, InGaN / GaN, InGaN / InGaN, GaN / AlGaN, InAlGaN / GaN, GaAs (InGaAs) / AlGaAs, GaP (InGaP) / AlGaP It may be formed in a pair structure, but is not limited thereto.
  • the well layer may be formed of a material having a band gap smaller than the band gap of the barrier layer.
  • the first upper semiconductor layer 24 may be disposed on the first active layer 23.
  • the first upper semiconductor layer 24 may be a p-type semiconductor layer including a gallium nitride (GaN) -based material.
  • the first upper semiconductor layer 24 may be any one of p-type gallium nitride (GaN), p-type aluminum gallium nitride (AlGaN), and p-type aluminum gallium indium nitride (AlGaInN).
  • the first upper semiconductor layer 24 is formed by stacking at least two of p-type gallium nitride (GaN), p-type aluminum gallium nitride (AlGaN), and p-type aluminum gallium indium nitride (AlGaInN). It may be a structure.
  • the second electrode 26 may be disposed on the first upper semiconductor layer 24.
  • the second electrode 26 may include a transparent electrode layer, a Cr / Au film, a Ni / Au film, a Ni / Ti / Au film, or a pt / Au film.
  • the transparent electrode layer is made of a transparent conductive oxide, and may be formed of any one of indium tin oxide (ITO), indium oxide (CIO), zinc oxide (ZnO), or nickel oxide (NiO).
  • An electron blocking layer EBL may be disposed between the first active layer 23 and the first upper semiconductor layer 24.
  • the electron blocking layer blocks the flow of electrons supplied from the first lower semiconductor layer 22 to the first upper semiconductor layer 24, thereby increasing the probability of recombination of electrons and holes in the first active layer 23.
  • the energy band gap of the electron blocking layer may be greater than the energy band gap of the first active layer 23 and / or the first upper semiconductor layer 24.
  • the electron blocking layer may be selected from a semiconductor material having a composition formula of Inx1Aly1Ga1-x1-y1N (0 ⁇ x1 ⁇ 1, 0 ⁇ y1 ⁇ 1, 0 ⁇ x1 + y1 ⁇ 1), for example, AlGaN, InGaN, InAlGaN, or the like. It is not limited to this.
  • the structure of the light emitting diode according to the embodiment is not limited thereto.
  • the light emitting diode may be a vertical light emitting diode in which a first electrode is disposed below and a second electrode is disposed above.
  • the light emitting diode may be a flip chip light emitting diode in which both the first electrode 25 and the second electrode 26 are disposed on one side.
  • the first electrode 25 and the second electrode 26 may be electrically connected to the submount phase 27.
  • FIG. 5 is a cross-sectional view of the filter of FIG. 2
  • FIG. 6 is a graph measuring reflectivity of each filter of the wavelength band
  • FIG. 7 is a graph measuring the wavelength width of the light emitted from the light emitting diode and the wavelength of the light passing through the filter
  • 8 is a graph measuring the wavelength width of the light passing through the band pass filter.
  • the filter 60 may control the wavelength width of the light emitted from the light emitting diodes.
  • the filter 60 may have a structure in which a silicon dioxide optical layer and a titanium dioxide optical layer are alternately stacked.
  • the filter 60 includes the first optical layer 64, which is either SiOX (1 ⁇ X ⁇ 3) or MgF 2 , and TiOx (1 ⁇ X ⁇ 3), TaOx (1 ⁇ X ⁇ 3) or ZrO 2.
  • One of the second optical layers 65 may have a structure stacked alternately.
  • the first optical layer 64 may have a refractive index of 1.4 to 1.5, and the second optical layer 65 may have a refractive index of 2.0 to 3.0.
  • the filter 60 may include a first reflecting portion 61, a cavity 62, and a second reflecting portion 63 that are sequentially stacked on a substrate.
  • the first reflecting portion 61 and the second reflecting portion 63 may have a structure in which the first optical layer 64 and the second optical layer 65 including different oxides are stacked in an intersection, and the cavity 62 is disposed.
  • the second optical layer 65 may have a structure in which a plurality of layers are stacked.
  • the first optical layer 64 may be a silicon dioxide optical layer
  • the second optical layer 65 may be a titanium dioxide optical layer.
  • the cavity 62 may have a thickness thicker than the first optical layer 64 or the second optical layer 65.
  • Each of the optical layers may have an optical thickness QWOT corresponding to one quarter of the wavelength of light.
  • the first reflector 61 may have a structure in which four silicon dioxide optical layers and three titanium dioxide optical layers are stacked alternately.
  • the cavity 62 may be a structure provided with four titanium dioxide optical layers.
  • the second reflector 63 may have a structure in which two silicon dioxide optical layers and two titanium dioxide optical layers are laminated in alternating fashion.
  • the cavity 62 is composed only of the titanium dioxide optical layer, and thus may serve to resonate and transmit the light input to the filter 60.
  • the spectral half width of the light passing through the filter 60 may decrease. As the half width of the spectrum decreases, the wavelength of a specific band can be selectively transmitted.
  • Light emitted from the light emitting diode may be incident to the second reflector 63 and exit to the substrate 65.
  • the filter is designed to transmit only about 450 nm wavelength band and reflect all remaining wavelength bands in the wavelength band of 350 nm to 500 nm.
  • the spectral half width of the first light B that passes through the filter is smaller than the spectral half width of the second light A that does not pass through the DVB filter.
  • the half width of the first light B may be 10 nm to 35 nm, and the half width of the second light A may be 2 nm to 10 nm.
  • the spectral half width of the first light A that does not pass through the filter is 18 nm
  • the spectral half width of the second light B that has passed through the DVB filter is 5 nm.
  • the light intensity may be reduced by about 5 to 25% compared to before the filtering.
  • the light intensity of a typical blue LED is tens to hundreds of mW, it may not affect optical signal transmission.
  • the filter can control the half width of the transmitted light spectrum.
  • the use of a filter can provide light having a wavelength of 440 nm to 460 nm and a half width of 2 to 10 nm.
  • the filter may be manufactured by combining a low band pass filter and a high band pass filter. That is, light of 450 nm or less may be blocked by a high band pass filter and light exceeding 450 nm may be blocked by a low band pass filter so as to transmit only light in the 450 nm wavelength band. Thus, only light having a wavelength band of about 450 nm can pass through the filter.
  • FIG. 9 is a conceptual diagram of an optical modulator
  • FIG. 10 is a view illustrating a state in which an energy band gap is changed by applying a reverse bias
  • FIG. 11 is a view illustrating a state in which an absorption wavelength band of the optical modulator is changed by applying a reverse bias
  • 12 is a graph showing a state in which the intensity of light output from the light emitting device changes as a reverse bias is applied
  • FIG. 13 is a conceptual diagram illustrating a process in which an optical signal is modulated by the optical module.
  • the optical modulator 30 may modulate the light (incident light) output from the light emitting diode 20.
  • the structure of the optical modulator 30 is not particularly limited.
  • the optical modulator 30 may be applied to all of the horizontal, vertical, and flip chip structures.
  • a horizontal structure will be described as an example.
  • the optical modulator 30 may include a second substrate 31, a second lower semiconductor layer 32, a light absorption layer 33, and a second upper semiconductor layer 34.
  • the second substrate 31 may be stacked on the carrier substrate.
  • the second substrate 31 may be, for example, a sapphire substrate, a gallium nitride (GaN) substrate, a zinc oxide (ZnO) substrate, a gallium arsenide (GaAs) substrate, a gallium phosphorus (GaP) substrate, or lithium aluminium oxide. It may include one of a (LiAl 2 O 3) substrate, a boron nitride (BN) substrate, an aluminum nitride (AlN) substrate, a plastic substrate, or a glass substrate.
  • a sapphire substrate a gallium nitride (GaN) substrate, a zinc oxide (ZnO) substrate, a gallium arsenide (GaAs) substrate, a gallium phosphorus (GaP) substrate, or lithium aluminium oxide. It may include one of a (LiAl 2 O 3) substrate, a boron nitride (BN
  • the second lower semiconductor layer 32 may be disposed on the second substrate 31.
  • the second lower semiconductor layer 32 may be an n-type semiconductor layer including a gallium nitride (GaN) -based material.
  • the second lower semiconductor layer 32 may be formed of a nitride doped with an n-type dopant.
  • the n-type dopant may include silicon (Si), germanium (Ge), tin (Sn), or the like.
  • the second lower semiconductor layer 32 may have a structure in which a first layer doped with an n-type dopant and a second layer not doped with an n-type dopant are alternately stacked.
  • the second lower semiconductor layer 32 may be grown as a single n-type nitride layer.
  • the third electrode 35 may be formed on an upper surface of the exposed second lower semiconductor layer 32.
  • the third electrode 35 may include a Cr / Au film, a Cr / Ni / Au film, a Ti / Al / Au film, or a Ti / Ni / pt / Au film.
  • the light absorbing layer 33 may be directly connected to the optical channel to receive the light generated from the light emitting diodes 20.
  • the light absorbing layer 33 may have an energy band gap substantially similar to the active layer of the light emitting diode so as to absorb or transmit light output from the light emitting diode.
  • the light absorbing layer 33 may cover a portion of the second lower semiconductor layer 32 and may be spaced apart from the third electrode 35.
  • the light absorbing layer 33 may modulate light by an electrical signal provided from the outside (for example, a driving chip).
  • the light absorption layer 33 may have a multi-quantum well (MQW) structure composed of a plurality of quantum well structures.
  • the light absorption layer 33 may include gallium nitride (GaN) -based material.
  • the light absorption layer 33 may have a quantum barrier layer and a quantum well layer, and the quantum barrier layer and the quantum well layer of the light absorption layer 33 having a multi-quantum well structure have aluminum x gallium oxides having different x, y, and z composition ratios, respectively.
  • the band gap of the quantum well layer may be smaller than that of the quantum barrier layer, the second lower semiconductor layer 32, and the second upper semiconductor layer 34.
  • the band gap of the light absorbing layer 33 may be adjusted to be equal to the band gap of the light emitting diode at zero bias. However, applying the reverse bias to the optical modulator causes the bandgap of the modulator to be larger than the bandgap of the light emitting diode.
  • the full width at half maximum of the light spectrum is about 15 to 40 nm in a band gap of 2.0 to 3.0 eV.
  • An external bias should be applied to the optical modulator to cover about 0.5 to 3 times the 15 nm to 40 nm wavelength band. Therefore, the energy band gap of the light absorption layer may be 0.85 times to 1.15 times the energy band gap of the active layer.
  • the energy bandgap of the light absorption layer which can be adjusted by reverse bias, may be 50 meV to 300 meV.
  • the second upper semiconductor layer 34 may be disposed on the light absorption layer 33.
  • the second upper semiconductor layer 34 may be a p-type semiconductor layer including a gallium nitride (GaN) -based material.
  • the second upper semiconductor layer 34 may be any one of p-type gallium nitride (GaN), p-type aluminum gallium nitride (AlGaN), and p-type aluminum gallium indium nitride (AlGaInN).
  • the second upper semiconductor layer 34 is formed by stacking at least two of p-type gallium nitride (GaN), p-type aluminum gallium nitride (AlGaN), and p-type aluminum gallium indium nitride (AlGaInN) at the intersection with each other. It may be a structure.
  • the energy band gap G1 of the quantum well layer and the quantum barrier layer is asymmetrically formed. This is due to the presence of a strong piezoelectric field inside the light absorption layer.
  • Such piezoelectric electric fields can be caused by a variety of causes.
  • the piezoelectric magnetic field may be caused by strain due to lattice constant mismatch.
  • the energy band G2 may be relatively flat and the band gap may increase (G3).
  • the wavelength absorbed by the light absorbing layer is determined by the energy band gap. Referring to FIG. 11, in the zero bias, when the first absorption wavelength band 201 is applied and the reverse bias voltage is applied, the absorption wavelength band 202 may be shifted to a shorter wavelength.
  • the intensity of light output from the light emitting device is hardly observed until the reverse bias voltage is applied (203). That is, most of the light output from the light emitting element is absorbed by the light absorbing layer.
  • the reverse bias voltage after the reverse bias voltage is applied, it can be confirmed that the light intensity is increased (204). That is, it can be confirmed that the absorption wavelength band of the light absorption layer is changed by the reverse bias voltage so that the light output from the light emitting device is not absorbed.
  • the optical transmission module 5 may modulate the optical signal L1 using the electrical signal E1.
  • the electric signal E1 When the electric signal E1 is provided, it may be referred to as a "1 state", and when the electric signal E1 is not provided as an "0 state”.
  • the electrical signal E1 may be a reverse bias voltage.
  • the optical transmission module 5 When in the "1 state", the optical transmission module 5 can emit an optical signal L1 (On-state), and when in the "0 state", the optical transmission module 5 emits an optical signal L1. Off-state. Accordingly, the optical transmission module 5 may output a pulsed light signal having a period and emitting (On-state) or not emitting (Off-state) the optical signal L1.
  • the optical transmission module 5 may be used for short-range communication.
  • the optical transmission module 5 may include intelligent transportation system (ITS), visual communication, short distance optical fiber communication, intranet, home networking and wired / wireless IoT. IoT) and the like.
  • ITS intelligent transportation system
  • the optical transmission module 5 according to the embodiment of the present invention may be used in a data transmission network having a transmission speed of several hundred Mbps to several tens of Gbps in the future.
  • FIG. 14 is a conceptual diagram of an optical transmission and reception module according to an embodiment of the present invention
  • FIG. 15 is a conceptual diagram of an optical transmission module according to an embodiment of the present invention
  • FIG. 16 is a first modified example of FIG. 15, and FIG. 17.
  • Is a second modified example of FIG. 15, and FIG. 18 is a third modified example of FIG.
  • the light transmitting module may include a light emitting diode 20, a filter 60, a first lens 71, an optical modulator 30, a second lens 72, and a holder disposed in the housing 90. 91).
  • the refractive index adjusting member 80 may be disposed in the region 83.
  • the refractive index adjusting member 80 may match the refractive index between the light emitting diode 20 and the filter 60, between the filter 60 and the first lens 71, and between the first lens 71 and the light modulator 30. Can be. Thus, the yield of light transmitted from the light emitting diodes to the optical fiber can be increased.
  • Refractive index adjusting member 80 may be selected from a variety of resins or oils that can match the refractive index.
  • the first lens 71 may be disposed on the filter 60.
  • the first lens 71 may be convex toward the filter.
  • the first lens 71 may condense the light passing through the filter 60 to the light modulator 30.
  • the light passing through the filter 60 may be emitted with a wide radiation angle of several tens to 150 degrees. Some of the light having a wide emission angle is not incident to the light modulator 30 may cause light loss.
  • the second lens may serve to condense the modulated light to be effectively incident on the optical fiber.
  • the ferrule 93 connected with the optical fiber 8 may be fixed to the holder 91. Since the ferrule 93 is connected in a plug and play manner, the ferrule 93 may be optically coupled by an operation of inserting an optical fiber.
  • the housing 90 may accommodate the light emitting diode 20, the filter 60, the first lens 71, the light modulator 30, the second lens 72, and the holder 91.
  • the housing 90 may include a holder 91 into which the ferrule 93 is inserted.
  • the holder 91 may be made of a flexible material to facilitate insertion of the ferrule 93 to which the optical fiber is connected.
  • An antireflection layer 93a may be provided between the second lens 72 and the ferrule 93.
  • the antireflection layer 93a may prevent the light from returning back to the light emitting diode 20.
  • the anti-reflection layer 93a may include an inclined incident surface.
  • the present invention is not limited thereto, and as illustrated in FIG. 15, the antireflection layer 93b may have a structure in which irregular irregularities are continuous.
  • a filter may be disposed between the first lens and the optical modulator.
  • the filter may be integrated with an optical modulator formed on the incident light side surface of the optical modulator 30.
  • FIG. 19 is a conceptual diagram of an optical receiving module according to an embodiment of the present invention
  • FIG. 20 is a first modified example of FIG. 19
  • FIG. 21 is a second modified example of FIG. 19
  • FIG. 22 is a third example of FIG. 19. It is a variation example.
  • the vertical light receiving module 6 may include a light receiving element 100, a second lens 72, and a holder 91.
  • the light receiving device 100 may be a diode including a light absorption layer.
  • the second lens 72 may condense the light transmitted through the optical fiber to the light receiving element 100.
  • the housing 90 accommodates the light receiving element 100, the lens 72, and may include a holder 91.
  • the light receiving element 100 may convert the incident optical signal into an electrical signal by an applied power source.
  • the light receiving device 100 may include a third lower semiconductor layer 130, a photodetection layer 110, and a third upper semiconductor layer 120.
  • the third lower semiconductor layer 130, the photodetection layer 110, and the third upper semiconductor layer 120 may be sequentially stacked on the substrate 140.
  • the light receiving device 100 may detect light in the visible light region transmitted through the optical transmission path at high speed.
  • the light receiving device 100 may include one of silicon, gallium arsenide, aluminum indium gallium nitride (AlInGaN), indium gallium arsenide (InGaAs), and germanium (Ge).
  • the substrate 140 may include, for example, a sapphire substrate, a silicon carbide substrate, a gallium nitride (GaN) substrate, a zinc oxide (ZnO) substrate, a gallium arsenide (GaAs) substrate, a gallium phosphorus (GaP) substrate, and lithium aluminium. It may include one of a cerium oxide (LiAl 2 O 3) substrate, a boron nitride (BN) substrate, an aluminum nitride (AlN) substrate, a plastic substrate, or a glass substrate.
  • a cerium oxide (LiAl 2 O 3) substrate a boron nitride (BN) substrate, an aluminum nitride (AlN) substrate, a plastic substrate, or a glass substrate.
  • the third lower semiconductor layer 130 may be disposed on the substrate 140.
  • the third lower semiconductor layer 130 may be an n-type semiconductor layer including a gallium nitride (GaN) -based material.
  • the third lower semiconductor layer 130 may be formed of a nitride doped with an n-type dopant.
  • the n-type dopant may include silicon (Si), germanium (Ge), tin (Sn), or the like.
  • the third lower semiconductor layer 130 may have a structure in which a first layer doped with an n-type dopant and a second layer not doped with an n-type dopant are alternately stacked.
  • the third lower semiconductor layer 130 may be grown as a single n-type nitride layer.
  • the photodetection layer 110 may be disposed on the third lower semiconductor layer 130.
  • the photodetection layer 110 may have a multi-quantum well (MQW) structure including a plurality of quantum well structures.
  • the photodetection layer 110 may include a gallium nitride (GaN) -based material.
  • the photodetection layer 110 may have a quantum barrier layer and a quantum well layer, and the quantum barrier layer and the quantum well layer of the photodetection layer 110 having a multi-quantum well structure have different x, y, z composition ratios, respectively.
  • Aluminum gallium indium nitride (AlxGayInzN, x + y + z 1, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ z ⁇ 1).
  • the band gap of the quantum well layer should be smaller than the quantum barrier layer, the third lower semiconductor layer 130 and the third upper semiconductor layer 120.
  • the third upper semiconductor layer 120 may be disposed on the photodetection layer 110.
  • the third upper semiconductor layer 120 may be a p-type semiconductor layer including a gallium nitride (GaN) -based material.
  • the third upper semiconductor layer 120 may be any one of p-type gallium nitride (GaN), p-type aluminum gallium nitride (AlGaN), and p-type aluminum gallium indium nitride (AlGaInN).
  • the third upper semiconductor layer 120 is a structure in which any two or more of p-type gallium nitride (GaN), p-type aluminum gallium nitride (AlGaN), and p-type aluminum gallium indium nitride (AlGaInN) are stacked on each other. Can be.
  • the sixth electrode 1145 may be disposed on the third upper semiconductor layer 120.
  • An antireflection layer 93a may be provided between the second lens 72 and the ferrule 93.
  • the antireflection layer 93a may prevent the light from returning back to the light emitting diode 20.
  • the anti-reflection layer 93a may include an inclined incident surface.
  • the present invention is not limited thereto, and the antireflection layer 93b may have a structure in which irregular irregularities are continuous.
  • the optical receiving module 6 may modulate the provided optical signal into an electrical signal.
  • On-state when not providing the optical signal (L2) may be referred to as "Off-state”.
  • the optical receiving module 6 When in the "On-state”, the optical receiving module 6 may output an electrical signal E2 (0 state), and in the "Off-state", the optical receiving module 6 may be an electrical signal E2. May not output (1 state). Accordingly, the light receiving module 6 may output an electric pulse signal wave having a period and outputting the electric signal E2 (1 state) or not (2 state).
  • An optical filter may be applied to the optical receiver module similarly to the optical transmitter. This is necessary when implementing a multi-wavelength optical reception module. That is, when the optical filter is applied to the incident light side of the light receiving element 100 in the multi-wavelength light receiving module, it is possible to provide good noise characteristics.
  • the optical filter may be all of the above-described filter structure.
  • the bandpass optical filter when the bandpass optical filter is mounted to receive only the desired wavelength in front of the optical receiver, only the desired wavelength can be received among the transmitted light, thereby realizing a multiplex optical reception module having multiple wavelengths.
  • the filter 60 may not only be positioned between the second lens 72 and the light receiving element 100, but may be formed on the incident light side of the light receiving element 100 as illustrated in FIG. 22. It is also possible to use a filter integrated with 100). That is, the position of the filter is not particularly limited.
  • the optical receiving module 6 may be used for short range communication.
  • the optical receiving module 6 may be used for the ITS, visual communication, short distance optical fiber communication, intranet, home networking and IoT. Can be used.
  • the optical receiving module 6 according to the embodiment of the present invention may be used in a data transmission network having a transmission speed of several hundred Mbps to several tens of Gbps in the future.
  • FIG. 23 is a conceptual diagram of an optical transmission module according to an embodiment of the present disclosure
  • FIG. 24 is a first modification example of FIG. 23
  • FIG. 25 is a second modification example of FIG. 23
  • FIG. 26 is a third modification of FIG. 23
  • 27 is a view showing the hollow tube of FIG. 26
  • FIG. 28 is a fourth modified example of FIG. 23, and
  • FIG. 29 is a graph showing the wavelength width that changes while passing through the filter.
  • the light transmitting module 5A includes a light emitting diode 20, an optical modulator 30 for modulating the first light L11 emitted from the light emitting diode 20, and a light emitting diode 20 and light.
  • the modulator 30 may include an optical member 10 disposed thereon.
  • the optical member 10 includes a first region 11 in which a light emitting diode 20 is disposed, a second region 12 in which an optical modulator 30 is disposed, and a first region 11 and a second region 12. It may include a third region 13 for optically connecting the.
  • the optical member 10 may be a silicon optical bench (SiOB).
  • the optical transmission module 5A may be an integrated circuit chip based on silicon photonics.
  • a light emitting diode, an optical modulator, an optical waveguide, or the like may be integrally implemented in the optical bench.
  • a light receiving element, a light separator (Y-branch), an optical filter, a grating coupler (edge coupler) for optical coupling with the outside may be additionally implemented.
  • the light emitting diode 20 may be disposed in the first region 11.
  • the light emitting diodes 20 may be inserted into the first direction.
  • the first direction may be a direction parallel to the thickness direction of the light emitting diode 20 (X direction). Accordingly, the light emitting diode 20 may output light in the first direction.
  • the light emitting diode 20 may be connected to each of the electrodes 15a and 15b to apply a driving current.
  • the kind of light emitting diode 20 is not particularly limited. Although the horizontal type is illustrated in the drawing, a vertical type and flip chip structure may also be selected. According to the structure of the light emitting diode, the electrode arrangement may be properly adjusted. The light emitting diode 20 may be applied as described above.
  • the optical modulator 30 may be disposed in the second region 12.
  • the optical modulator 30 may be inserted in the first direction in the same manner as the light emitting diodes 20. Specific configuration of the optical modulator 30 may be applied as described above.
  • the optical modulator 30 may pass light when the reverse bias voltage is applied, and absorb the light at zero bias.
  • the reflector 16 may be disposed in the third region 13 of the optical member 10.
  • the reflector 16 may reflect the first light output in the first direction in the second direction (Y direction).
  • the second direction is a direction intersecting with the first direction.
  • the first direction and the second direction may be perpendicular to each other. This structure enables a horizontal light transmission module.
  • the light L12 may be guided by the optical waveguide 17 provided in the third region 13 and injected into the side of the optical modulator 30. That is, the third region 13 may be an optical channel for injecting light output from the light emitting diodes 20 into the light absorption layer 33 of the light modulator 30.
  • the light L13 passing through the light absorbing layer may be incident on the external optical fiber 211 and transmitted to the outside.
  • a lens or the like may be further disposed between the optical modulator 30 and the external optical fiber 211 for optical coupling.
  • an inclined surface 17a may be formed in the optical waveguide 17 so that the diameter thereof decreases as the optical waveguide 17 approaches the optical modulator 30. According to such a structure, the phenomenon which light spreads at the end of the optical waveguide 17 can be suppressed.
  • the optical waveguide 17 may be a bundle waveguide in which a plurality of waveguides are modular. However, the structure of the optical waveguide 17 is not necessarily limited thereto, and a general optical waveguide 18 may be selected as shown in FIG. 25.
  • the optical waveguide may have an inclined surface 18a.
  • the third region 13 may include a hollow tube 19 having a tubular shape, and a filter 60 disposed on the hollow tube 19.
  • Filter 60 may be a low band pass filter, a high band pass filter, and a combination thereof. According to such a structure, the filter 60 can filter only the light of a desired wavelength band.
  • the hollow tube 19 may have a reflective layer 19a formed therein.
  • the reflective layer 19a may include Al, Ag, or the like having high reflectance, but is not limited thereto.
  • the reflective layer 19a can maintain reflectivity even at low and high temperatures (150 degrees or more), thereby minimizing temperature effects.
  • the material of the reflective layer may be appropriately selected depending on the material of the hollow tube 19.
  • the hollow tube 19 may be a plastic or metal tube.
  • the inner diameter of the hollow tube 19 may be from several tens of um to several mm.
  • the inner diameter of the hollow tube 19 can be appropriately adjusted according to the transmission distance and the use.
  • a plurality of gratings 14 may be formed in the third region 13.
  • the plurality of gratings 14 may control the first light L11 to a desired wavelength.
  • a separate filter 60 may be further disposed between the grating 14 and the optical modulator 30.
  • the spectrum 213 of the light output from the light emitting diode 20 has the largest width and the spectrum 211 of the light passing through the filter 60 has a small false width.
  • the light output from the light emitting diodes 20 gradually decreases in wavelength and decreases in intensity. According to such a configuration, it is possible to filter only light in a desired wavelength band, so that it can be driven at a relatively low operating voltage.

Abstract

An embodiment includes an optical transmission module, an optical transceiver, and an optical communication system including the same, the optical transmission module comprising: a light emitting diode; and an optical modulator for modulating first light emitted from the light emitting diode, wherein the light emitting diode and the optical modulator include GaN, and the optical modulator transmits the first light therethrough when a voltage is applied.

Description

광 송신모듈, 광 트랜시버, 및 이를 포함하는 광통신 시스템Optical transmission module, optical transceiver, and optical communication system comprising the same
실시 예는 광 모듈, 광 트랜시버, 및 이를 포함하는 광통신 시스템에 관한 것이다. Embodiments relate to an optical module, an optical transceiver, and an optical communication system including the same.
광섬유를 이용한 디지털 전송 시스템은 현재 유선 통신 분야에서 가장 널리 사용하고 있다. 유선 통신망 또는 유무선 통합 가입자 통신망을 운용하는데 있어서 유선통신망 성능은 광 송수신모듈(광 트랜시버) 및 기타 광 부품들에 의해 결정될 수 있다.Digital transmission systems using fiber optics are the most widely used in the field of wired communication. In operating a wired network or a wired / wireless integrated subscriber network, the wired network performance may be determined by an optical transceiver module (optical transceiver) and other optical components.
일반적인 유선 광통신망의 광 트랜시버는 광 송신모듈과 광 수신모듈로 구성되며, 광 송신모듈은 발광소자, 및 광변조기를 포함할 수 있다.An optical transceiver of a general wired optical communication network includes an optical transmission module and an optical reception module, and the optical transmission module may include a light emitting device and an optical modulator.
일반적으로 실리카 광섬유를 전송선으로 사용하고 있는 광통신망용 발광소자는 발진파장 1㎛ 영역의 적외선 레이저 다이오드(LD)가 사용되며, 발광소자와 광변조기는 렌즈(lens)를 사용한 free-space연결, 폴리머 등의 소재의 도파로를 이용한 연결, 또는 발광소자와 광 변조기를 일체로 형성하는 과정에서 웨이퍼 상에 도파로를 형성하여 연결될 수 있다.In general, a light emitting device for an optical communication network using a silica optical fiber as a transmission line uses an infrared laser diode (LD) having an oscillation wavelength of 1 μm, and the light emitting device and the optical modulator are free-space connections using a lens, a polymer, etc. The waveguide of the material of the material, or in the process of integrally forming the light emitting device and the optical modulator may be connected by forming a waveguide on the wafer.
레이저 다이오드(LD)는 높은 출력의 고품질 광(예: 스펙트럼의 반치폭이 좁은 광)을 출력할 수 있어 장거리 대용량 광신호 전송용 광원으로 장점이 있다. 그러나, 레이저 다이오드(LD)의 동작특성이 주변온도에 민감하므로 안정된 동작을 얻기 위하여서는 온도 보상 장치(TEC, thermoelectric cooler)가 필요하다.Laser diode (LD) can output high-quality light of high output (e.g. light having a narrow half width of spectrum), which is an advantage as a light source for long-distance large capacity optical signal transmission. However, since the operating characteristics of the laser diode LD are sensitive to the ambient temperature, a temperature compensator (TEC) is required to obtain stable operation.
또한, 레이저 다이오드(LD)는 출사광이 주변으로부터 반사되어 레이저 다이오드(LD)로 재입사되면 동작특성이 매우 불안정하게 되기 때문에 광 아이솔레이터(isolator)의 사용이 불가피하며, 레이저 다이오드(LD) 자체의 제작 비용 또한 높은 문제가 있다.In addition, since the operating characteristics are very unstable when the emitted light is reflected from the surroundings and re-entered into the laser diode LD, the use of an optical isolator is inevitable, and the laser diode LD may The manufacturing cost is also a high problem.
최근 네트워크 기술, 센서 기술, RFID기술 및 소프트웨어 기술의 발전에 따라 사물 인터넷(IOT, Internet Of Things) 시대가 도래하고 있다. 수많은 디바이스들을 연결하기 위해 광 송수신 모듈로 구성된 광통신망이 필수적이다. 따라서, -50℃ 에서 150℃까지의 극한 환경에서도 온도 보상 장치 및 광 아이솔레이터 없이 동작 가능한 광 송수신 모듈에 대한 개발이 필요하다. 여기서, -50℃에서 150℃의 온도 범위는 각종 전자회로에 사용되고 있는 Si IC의 정상동작을 위한 허용온도 범위이다. Recently, with the development of network technology, sensor technology, RFID technology and software technology, the Internet of Things (IOT) era is coming. In order to connect many devices, an optical communication network composed of optical transmission / reception modules is essential. Accordingly, there is a need for an optical transceiver module that can operate without a temperature compensation device and an optical isolator even in extreme environments from -50 ° C to 150 ° C. Here, the temperature range of -50 ° C to 150 ° C is an allowable temperature range for the normal operation of the Si IC used in various electronic circuits.
그러나, 레이저 다이오드는 온도 보상 장치 및 광 아이솔레이터 없이는 다양한 온도 환경에서 신뢰성을 보장할 수 없는 문제가 있으며, 가격이 높은 문제가 있다.However, laser diodes have a problem in that reliability cannot be guaranteed in various temperature environments without a temperature compensating device and an optical isolator, and have a high price.
실시 예는 발광다이오드를 광원으로 사용한 광 송신모듈을 제공한다.The embodiment provides a light transmitting module using a light emitting diode as a light source.
실시 예는 수평형 광 송신모듈을 제공한다.The embodiment provides a horizontal optical transmission module.
실시 예는 광 스펙트럼의 반치폭을 조절하여 수십 내지 수백 미터의 단거리 내 고속 광신호를 전송을 할 수 있는 광 모듈을 제공한다.The embodiment provides an optical module capable of transmitting a high speed optical signal within a short distance of several tens to hundreds of meters by adjusting the half width of the light spectrum.
실시 예는 -50℃ 이하의 저온 또는 150℃ 이상의 고온에서도 동작할 수 있는 광 모듈을 제공한다.The embodiment provides an optical module that can operate at a low temperature of −50 ° C. or less or a high temperature of 150 ° C. or more.
본 발명의 일 실시 예에 따른 광 송신모듈은, 발광다이오드; 및 상기 발광다이오드에서 출사된 제1광을 변조하는 광변조기를 포함하고, 상기 발광다이오드와 광변조기는 GaN을 포함하고, 상기 광변조기는 전압 인가시 상기 제1광을 투과한다.An optical transmission module according to an embodiment of the present invention, a light emitting diode; And an optical modulator for modulating the first light emitted from the light emitting diode, wherein the light emitting diode and the light modulator include GaN, and the light modulator transmits the first light when voltage is applied.
상기 광변조기는 역바이어스 전압 인가시 상기 제1광을 통과시킬 수 있다.The optical modulator may pass the first light when a reverse bias voltage is applied.
상기 제1광은 가시광 파장대의 광일 수 있다.The first light may be light in the visible light wavelength band.
상기 발광다이오드와 상기 광변조기는 질화물 반도체층을 포함할 수 있다.The light emitting diode and the optical modulator may include a nitride semiconductor layer.
상기 발광다이오드는, 제1하부 반도체층; 상기 제1하부 반도체층 상에 배치된 활성층; 및 상기 활성층 상에 배치된 제1상부 반도체층을 포함할 수 있다.The light emitting diode may include a first lower semiconductor layer; An active layer disposed on the first lower semiconductor layer; And a first upper semiconductor layer disposed on the active layer.
상기 광변조기는, 제2하부 반도체층; 상기 제2하부 반도체층 상에 배치되어 상기 발광다이오드에서 출력된 광을 흡수하는 광흡수층; 및 상기 광흡수층 상에 배치되는 제2상부 반도체층을 포함할 수 있다.The optical modulator includes: a second lower semiconductor layer; A light absorption layer disposed on the second lower semiconductor layer to absorb light output from the light emitting diode; And a second upper semiconductor layer disposed on the light absorption layer.
상기 활성층 및 광흡수층은 GaN을 포함할 수 있다.The active layer and the light absorption layer may include GaN.
상기 광흡수층은 역바이어스 전압 인가시 에너지 밴드갭이 커질 수 있다.The light absorption layer may have a large energy band gap when a reverse bias voltage is applied.
상기 광흡수층은 역바이어스 전압 인가시 흡수 파장대가 상기 제1광의 파장대보다 짧아질 수 있다.The light absorption layer may have an absorption wavelength band shorter than that of the first light when a reverse bias voltage is applied.
상기 제1광의 파장폭을 조절하는 필터를 포함하고, 상기 광변조기는 상기 필터를 통과한 제2광을 변조하고, 상기 제2광의 반치폭은 상기 제1광의 반치폭보다 좁을 수 있다.And a filter for adjusting the wavelength width of the first light, wherein the optical modulator modulates the second light passing through the filter, and the half width of the second light is smaller than the half width of the first light.
상기 제1광의 반치폭은 10nm 내지 35nm일 수 있다.The full width at half maximum of the first light may be 10 nm to 35 nm.
상기 제2광의 반치폭은 2nm 내지 10nm일 수 있다.The half width of the second light may be 2 nm to 10 nm.
상기 필터는 순차적으로 적층되는 제1반사부, 캐비티 및 제2반사부를 포함하고, 상기 제1반사부 및 상기 제2반사부는 서로 상이한 산화물을 포함하는 제1광학층과 제2광학층이 교차로 적층되고, 상기 캐비티는 제2광학층이 복수 개로 적층되고, 상기 캐비티는 상기 제1광학층 또는 상기 제2광학층보다 두꺼울 수 있다.The filter includes a first reflecting portion, a cavity, and a second reflecting portion that are sequentially stacked, and the first reflecting portion and the second reflecting portion alternately stack a first optical layer and a second optical layer including different oxides. The cavity may be formed by stacking a plurality of second optical layers, and the cavity may be thicker than the first optical layer or the second optical layer.
상기 제2광학층은 상기 제1광학층보다 굴절률이 높을 수 있다.The second optical layer may have a higher refractive index than the first optical layer.
상기 제1광학층은 1.4 내지 1.5의 굴절률을 가지고, 상기 제2광학층은 2.0 내지 3.0의 굴절률을 가질 수 있다.The first optical layer may have a refractive index of 1.4 to 1.5, and the second optical layer may have a refractive index of 2.0 to 3.0.
상기 제1광학층은 SiOX(1≤X≤3) 또는 MgF2 중 어느 하나이고, 상기 제2광학층은 TiOx(1≤X≤3), TaOx(1≤X≤3) 또는 ZrO2 중 하나일 수 있다.The first optical layer is one of SiO X (1 ≦ X ≦ 3) or MgF 2 , and the second optical layer is formed of TiOx (1 ≦ X ≦ 3), TaOx (1 ≦ X ≦ 3) or ZrO 2 . It can be one.
상기 발광다이오드의 활성층과 상기 광변조기의 광흡수층은 조성이 동일할 수 있다.The active layer of the light emitting diode and the light absorbing layer of the light modulator may have the same composition.
상기 발광다이오드와 광변조기 사이에 배치되는 제1렌즈를 포함할 수 있다.It may include a first lens disposed between the light emitting diode and the optical modulator.
실시 예에 따르면, 발광다이오드(LED)와 광변조기를 이용하여 광 모듈을 제작할 수 있다. 따라서, 별도의 아이솔레이터, 및 온도 조절장치(TEC)를 생략할 수 있으므로 광 모듈의 제조 단가를 절감할 수 있다.According to an embodiment, an optical module may be manufactured using a light emitting diode (LED) and an optical modulator. Therefore, since the separate isolator and the temperature control device TEC can be omitted, the manufacturing cost of the optical module can be reduced.
실시 예에 따르면, 광 스펙트럼의 반치폭을 조절하여 수십 내지 수백 미터의 단거리 내 고속 광신호를 전송할 수 있다.According to an embodiment, the half width of the light spectrum may be adjusted to transmit a high speed optical signal within a short distance of several tens to hundreds of meters.
실시 예에 따르면, 발광다이오드 및 광 변조기를 갈륨 나이트라이드(GaN) 계 물질로 구성하여 높은 구동온도에서도 동작 가능한 광 모듈을 제공할 수 있다.According to an embodiment, the light emitting diode and the light modulator may be made of a gallium nitride (GaN) -based material to provide an optical module operable even at a high driving temperature.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않으며, 본 발명의 구체적인 실시형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.Various and advantageous advantages and effects of the present invention are not limited to the above description, and will be more readily understood in the course of describing specific embodiments of the present invention.
도 1은 본 발명의 일 실시 예에 따른 광통신 시스템의 개념도이고,1 is a conceptual diagram of an optical communication system according to an embodiment of the present invention;
도 2는 본 발명의 일 실시 예에 따른 광 송신모듈의 개념도이고,2 is a conceptual diagram of an optical transmission module according to an embodiment of the present invention,
도 3은 도 2의 발광다이오드의 단면도이고,3 is a cross-sectional view of the light emitting diode of FIG.
도 4는 도 3의 변형예이고,4 is a modification of FIG. 3,
도 5는 도 2의 필터의 단면도이고,5 is a cross-sectional view of the filter of FIG. 2,
도 6은 필터의 파장대별 반사도를 측정한 그래프이고,6 is a graph measuring the reflectance of each filter of the wavelength band,
도 7은 발광다이오드에서 출사된 광의 파장폭과 필터를 통과한 광의 파장폭을 측정한 그래프이고,7 is a graph measuring the wavelength width of the light emitted from the light emitting diode and the wavelength of the light passing through the filter;
도 8은 밴드 패스필터를 통과한 광의 파장폭을 측정한 그래프이고,8 is a graph measuring the wavelength width of the light passing through the band pass filter,
도 9는 광변조기의 개념도이고,9 is a conceptual diagram of an optical modulator,
도 10은 역바이어스를 인가함에 따라 에너지 밴드갭이 변화하는 상태를 보여주는 도면이고,10 is a view illustrating a state in which an energy band gap is changed by applying a reverse bias,
도 11은 역 바이어스를 인가함에 따라 광변조기의 흡수 파장대가 변화하는 상태를 보여주는 그래프이고,11 is a graph showing a state in which the absorption wavelength band of the optical modulator changes as the reverse bias is applied,
도 12는 역 바이어스를 인가함에 따라 발광소자에서 출력된 광의 세기가 변화하는 상태를 보여주는 그래프이고,12 is a graph showing a state in which the intensity of light output from a light emitting device changes as a reverse bias is applied;
도 13은 광 모듈에 의해 광 신호가 변조되는 과정을 보여주는 개념도이고,13 is a conceptual diagram illustrating a process in which an optical signal is modulated by an optical module,
도 14는 본 발명의 일 실시 예에 따른 광 송수신모듈의 개념도이고,14 is a conceptual diagram of an optical transceiver module according to an embodiment of the present invention;
도 15는 본 발명의 일 실시 예에 따른 광 송신모듈의 개념도이고,15 is a conceptual diagram of an optical transmission module according to an embodiment of the present invention;
도 16은 도 15의 제1변형 예이고,FIG. 16 is a first modified example of FIG. 15;
도 17은 도 15의 제2변형 예이고,FIG. 17 is a second modified example of FIG. 15;
도 18은 도 16의 제3변형 예이고,18 is a third modified example of FIG. 16,
도 19는 본 발명의 일 실시 예에 따른 광 수신모듈의 개념도이고,19 is a conceptual diagram of an optical receiving module according to an embodiment of the present invention;
도 20은 도 19의 제1변형 예이고,20 is a first modification of FIG. 19,
도 21은 도 19의 제2변형 예이고,FIG. 21 is a second modified example of FIG. 19;
도 22는 도 19의 제3변형 예이고,FIG. 22 is a third modified example of FIG. 19;
도 23은 본 발명의 다른 실시 예에 따른 광 송신모듈의 개념도이고,23 is a conceptual diagram of an optical transmission module according to another embodiment of the present invention;
도 24는 도 23의 제1변형 예이고,FIG. 24 is a first modified example of FIG. 23;
도 25는 도 23의 제2변형 예이고,FIG. 25 is a second modified example of FIG. 23;
도 26은 도 23의 제3변형 예이고,FIG. 26 is a third modified example of FIG. 23;
도 27은 도 26의 중공관을 보여주는 도면이고,27 is a view showing the hollow tube of FIG.
도 28은 도 23의 제4변형 예이고,FIG. 28 is a fourth modified example of FIG. 23;
도 29는 필터를 통과하면서 변화하는 파장폭을 보여주는 그래프이다.29 is a graph showing the changing wavelength width through the filter.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예를 참조하면 명확해질 것이다. 본 실시 예는 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의된다. 명세서 전문에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.Advantages and features of the present invention, and methods for achieving them will be apparent with reference to the embodiments described below in detail with reference to the accompanying drawings. This embodiment is provided to complete the disclosure of the present invention and to fully inform those skilled in the art to which the present invention pertains, and the present invention is defined by the scope of the claims. . Like reference numerals refer to like elements throughout the specification.
본 실시 예들은 다른 형태로 변형되거나 여러 실시 예가 서로 조합될 수 있으며, 본 발명의 범위가 이하 설명하는 각각의 실시 예로 한정되는 것은 아니다. The embodiments may be modified in other forms or in various embodiments, and the scope of the present invention is not limited to the embodiments described below.
특정 실시 예에서 설명된 사항이 다른 실시 예에서 설명되어 있지 않더라도, 다른 실시 예에서 그 사항과 반대되거나 모순되는 설명이 없는 한, 다른 실시 예에 관련된 설명으로 이해될 수 있다. Although matters described in a specific embodiment are not described in other embodiments, it may be understood as descriptions related to other embodiments unless there is a description that is contrary to or contradictory to the matters in other embodiments.
예를 들어, 특정 실시 예에서 구성 A에 대한 특징을 설명하고 다른 실시 예에서 구성 B에 대한 특징을 설명하였다면, 구성 A와 구성 B가 결합된 실시 예가 명시적으로 기재되지 않더라도 본 발명의 권리범위에 속하는 것으로 이해되어야 한다.For example, if a feature is described for component A in a particular embodiment and a feature for component B in another embodiment, the scope of the present invention is not included if the embodiment in which component A and component B are combined is not explicitly described. It should be understood to belong to.
또한, 본 명세서에서 기술하는 실시 예들은 본 발명의 이상적인 예시도인 단면도 및/또는 평면도들을 참고하여 설명될 것이다. 도면들에 있어서, 막 및 영역들의 두께는 기술적 내용의 효과적인 설명을 위해 과장된 것이다. 따라서, 제조 기술 및/또는 허용 오차 등에 의해 예시도의 형태가 변형될 수 있다. 따라서, 본 발명의 실시 예들은 도시된 특정 형태로 제한되는 것이 아니라 제조 공정에 따라 생성되는 형태의 변화도 포함되는 것이다. 예를 들면, 직각으로 도시된 식각 영역은 기울어지거나 라운드지거나 또는 소정 곡률을 가지는 형태일 수 있다. 따라서, 도면에서 예시된 영역들은 개략적인 속성을 가지며, 도면에서 예시된 영역들의 모양은 소자의 영역의 특정 형태를 예시하기 위한 것이며 발명의 범주를 제한하기 위한 것이 아니다.In addition, the embodiments described herein will be described with reference to cross-sectional views and / or plan views, which are ideal exemplary views of the present invention. In the drawings, the thicknesses of films and regions are exaggerated for effective explanation of technical content. Accordingly, shapes of the exemplary views may be modified by manufacturing techniques and / or tolerances. Therefore, the exemplary embodiments of the present invention are not limited to the specific forms shown, but include changes in forms generated according to manufacturing processes. For example, the etched region shown at right angles may be inclined, rounded, or have a predetermined curvature. Accordingly, the regions illustrated in the figures have schematic attributes, and the shape of the regions illustrated in the figures is intended to illustrate a particular form of region of the device and not to limit the scope of the invention.
도 1은 본 발명의 일 실시 예에 따른 광통신 시스템의 개념도이다.1 is a conceptual diagram of an optical communication system according to an exemplary embodiment.
도 1을 참고하면, 실시 예에 따른 광통신 모듈은 제1호스트(1)와 통신하는 제1광트랜시버(3)와, 제2호스트(2)와 통신하는 제2광트랜시버(4), 및 제1광트랜시버(3)와 제2광트랜시버(4) 사이에 연결된 채널을 포함한다.Referring to FIG. 1, an optical communication module according to an embodiment includes a first optical transceiver 3 communicating with a first host 1, a second optical transceiver 4 communicating with a second host 2, and a first optical transceiver 3 communicating with a second host 2. And a channel connected between the first optical transceiver 3 and the second optical transceiver 4.
제1호스트(1)와 제2호스트(2)는 통신 가능한 각종 전자 디바이스이면 특별히 제한되지 않는다. 예시적으로 제1호스트(1)는 차량의 컨트롤러(ECU)이고 제2호스트(2)는 차량에 배치된 각종 센서(카메라 모듈, 조명 센서 등)일 수 있다.The first host 1 and the second host 2 are not particularly limited as long as they are various electronic devices that can communicate with each other. For example, the first host 1 may be a controller ECU of the vehicle, and the second host 2 may be various sensors (camera modules, lighting sensors, etc.) disposed in the vehicle.
제1광트랜시버(3)와 제2광트랜시버(4)는 각각 송신모듈(5)과 수신모듈(6)을 포함하는 양방향 통신 모듈일 수 있으나, 본 발명의 실시 예는 반드시 이에 한정하지 않는다. 예시적으로 제1광트랜시버(3)는 광 송신모듈일 수 있고 제2광트랜시버(4)는 광 수신모듈일 수도 있다. 이하에서는 양방향 통신방법을 설명한다.The first optical transceiver 3 and the second optical transceiver 4 may each be a bidirectional communication module including a transmission module 5 and a reception module 6, but embodiments of the present invention are not necessarily limited thereto. For example, the first optical transceiver 3 may be an optical transmission module and the second optical transceiver 4 may be an optical reception module. Hereinafter, a bidirectional communication method will be described.
제1광트랜시버(3)의 송신모듈(5)은 제2광트랜시버(4)의 수신모듈(6)과 제1광섬유(8)에 의해 연결될 수 있다. 송신모듈(5)은 호스트의 전기신호를 광신호로 변환할 수 있다. 제어부(7)는 호스트의 전기신호에 따라 광신호를 변조할 수 있다. 예시적으로 제어부(7)는 드라이버 IC를 포함할 수 있다.The transmission module 5 of the first optical transceiver 3 may be connected by the reception module 6 of the second optical transceiver 4 and the first optical fiber 8. The transmission module 5 may convert an electric signal of the host into an optical signal. The control unit 7 may modulate the optical signal according to the electrical signal of the host. In exemplary embodiments, the controller 7 may include a driver IC.
제1광트랜시버(3)의 수신모듈(6)은 제2광트랜시버(4)의 송신모듈(5)과 제2광섬유(9)에 의해 연결될 수 있다. 수신모듈(6)은 광신호를 전기신호로 변환할 수 있다. 제어부(7)는 변환된 전기신호를 증폭(TIA)하거나, 전기신호에서 패킷 정보를 추출하여 호스트에 전송할 수 있다.The receiving module 6 of the first optical transceiver 3 may be connected by the transmitting module 5 of the second optical transceiver 4 and the second optical fiber 9. The receiving module 6 may convert an optical signal into an electrical signal. The controller 7 may amplify the converted electrical signal (TIA) or extract packet information from the electrical signal and transmit the packet information to the host.
도 1에서는 예시적으로 제1광섬유(8)과 제2광섬유(9)를 이용하여 송신신호와 수신신호의 채널을 다르게 구성하였으나 반드시 이에 한정하지 않는다. 즉, 단일 광섬유를 이용하여 양방향 통신할 수도 있다. 또한, 멀티플렉서를 이용하여 복수 개의 제1광모듈과 복수 개의 제2광모듈이 양방향 통신할 수도 있다. 또한, 유선 채널을 사용하지 않는 무선 통신에도 적용될 수 있다.In FIG. 1, channels of a transmission signal and a reception signal are differently configured by using the first optical fiber 8 and the second optical fiber 9, but are not necessarily limited thereto. That is, bidirectional communication may be performed using a single optical fiber. In addition, a plurality of first optical modules and a plurality of second optical modules may bidirectionally communicate using a multiplexer. It can also be applied to wireless communication that does not use a wired channel.
도 2는 본 발명의 일 실시 예에 따른 송신모듈을 나타내는 사시도이다.2 is a perspective view showing a transmission module according to an embodiment of the present invention.
도 2를 참조하면, 광 송신모듈(5)은 발광다이오드(20), 필터(60), 광학채널(40), 광변조기(30) 및 광학적 인터페이스(50)를 포함할 수 있다. 발광다이오드(20), 필터(60), 광변조기(30)는 캐리어 기판(10) 상에 배치될 수 있다. 그러나, 반드시 이에 한정하는 것은 아니고, 발광다이오드(20), 필터(60), 광변조기(30)는 광의 출사 방향으로 따라 차례로 배치될 수 있다.Referring to FIG. 2, the light transmission module 5 may include a light emitting diode 20, a filter 60, an optical channel 40, an optical modulator 30, and an optical interface 50. The light emitting diode 20, the filter 60, and the optical modulator 30 may be disposed on the carrier substrate 10. However, the present disclosure is not limited thereto, and the light emitting diodes 20, the filters 60, and the optical modulators 30 may be sequentially disposed along the emission direction of the light.
발광다이오드(20, LED)는 에너지 밴드갭이 크기 때문에 동작온도 변화에 둔감하다. 따라서, 온도 보상 장치를 생략할 수 있다. 발광다이오드(20)가 질화물 반도체의 경우 활성층의 밴드갭은 약 2.0 내지 3.0eV일 수 있다.The light emitting diodes 20 and LEDs are insensitive to changes in operating temperature because of large energy band gaps. Therefore, the temperature compensation device can be omitted. When the light emitting diode 20 is a nitride semiconductor, the band gap of the active layer may be about 2.0 to 3.0 eV.
또한, 발광다이오드(20)는 재입사되는 광에 의한 노이즈 발생이 레이저 다이오드에 비해 적다. 따라서, 광 아이솔레이터(isolator)를 생략할 수 있다. 또한, 발광다이오드(20)는 레이저 다이오드에 비해 가격이 낮다. 따라서, 발광다이오드를 이용하는 경우 광송신 모듈의 제작 비용을 낮출 수 있다.In addition, the light emitting diode 20 generates less noise than the laser diode due to light incident again. Therefore, the optical isolator can be omitted. In addition, the light emitting diode 20 is lower in price than the laser diode. Therefore, when the light emitting diode is used, the manufacturing cost of the optical transmitting module can be lowered.
이에 반해, 레이저 다이오드(LD)는 동작특성이 주변온도 변화에 민감하므로 안정된 동작을 얻기 위하여서는 온도보상 장치가 필요하고, 출사광이 주변으로부터 반사되어 레이저 다이오드(LD)로 재입사되면 동작특성이 매우 불안정하게 되기 때문에 광 아이솔레이터(isolator)의 사용이 불가피하며, 레이저 다이오드(LD) 자체의 제작 비용 또한 높은 문제가 있다.On the contrary, since the laser diode LD is sensitive to changes in ambient temperature, a temperature compensating device is required to obtain stable operation. When the emitted light is reflected from the surroundings and re-entered into the laser diode LD, the operating characteristic is decreased. Since it becomes very unstable, the use of an optical isolator is inevitable, and the manufacturing cost of the laser diode LD itself has a high problem.
필터(60)는 발광다이오드에서 방출된 광의 파장폭(발광선폭)을 제어할 수 있다. 통상 질화물계 발광다이오드의 파장폭은 약 20nm 정도로 넓기 때문에 충분한 소광비를 얻기 위하여서는 광변조기(30)의 동작전압이 커지는 문제가 있다. The filter 60 may control the wavelength width (light emission line width) of the light emitted from the light emitting diodes. Since the wavelength of a nitride-based light emitting diode is generally about 20 nm wide, there is a problem that the operating voltage of the optical modulator 30 becomes large in order to obtain a sufficient extinction ratio.
필터(60)를 이용하여 광의 파장폭을 제어하면, 수십 내지 수백 미터의 단거리 내 충분한 소광비를 달성하면서 고속 광신호를 전송을 할 수 있다.By controlling the wavelength of light using the filter 60, it is possible to transmit a high speed optical signal while achieving a sufficient extinction ratio within a short distance of tens to hundreds of meters.
광학채널(40)은 발광다이오드(20)와 광변조기(30)를 광학적으로 연결할 수 있다. 따라서, 발광다이오드(20)에서 출력된 광은 광학채널(40)를 통해 광변조기(30)로 제공될 수 있다. 광학채널(40)은 광 도파로일 수 있으나 반드시 이에 한정하지 않는다. 예시적으로 광학채널(40)은 광이 통과할 수 있는 빈 통로이거나, 광 경로 상에 배치된 복수 개의 광학부품(렌즈 등)일 수도 있다.The optical channel 40 may optically connect the light emitting diodes 20 and the optical modulator 30. Therefore, the light output from the light emitting diode 20 may be provided to the optical modulator 30 through the optical channel 40. The optical channel 40 may be an optical waveguide, but is not limited thereto. For example, the optical channel 40 may be an empty passage through which light may pass, or may be a plurality of optical components (lens, etc.) disposed on the optical path.
광변조기(30)는 입력되는 광을 변조할 수 있다. 이하에서는 예시적으로 광변조기(30)를 전계 흡수형 광변조기(electro-absorption modulator, EAM)로 설명하나 광변조기의 구성은 반드시 이에 한정하지 않는다.The optical modulator 30 may modulate the input light. Hereinafter, the optical modulator 30 will be described as an electro-absorption modulator (EAM), but the configuration of the optical modulator is not necessarily limited thereto.
전계 흡수형 광변조기(EAM)은 저전압에서 구동이 가능하고, 소자를 소형화할 수 있다. 광변조기(30)는 인가되는 전압에 따라 광흡수의 정도가 변하게 된다. The field absorption type optical modulator (EAM) can be driven at a low voltage, and the device can be miniaturized. The optical modulator 30 changes the degree of light absorption according to the applied voltage.
광변조기(30)는 인가되는 전압의 변화에 따라 입사되는 광을 외부로 방출하거나(on-state) 방출하지 않음으로써(off-state) 광신호를 변조할 수 있다. The optical modulator 30 may modulate the optical signal by emitting the incident light to the outside or off-state according to a change in the applied voltage.
광학적 인터페이스(50)는 외부의 광섬유와 연결되는 커넥터를 포함할 수 있다. 광변조기(30)에 의해 변조된 광신호는 광학적 인터페이스(50)를 통해 외부로 전송될 수 있다.The optical interface 50 may include a connector connected to an external optical fiber. The optical signal modulated by the optical modulator 30 may be transmitted to the outside through the optical interface 50.
도 3은 도 2의 발광다이오드의 단면도이다.3 is a cross-sectional view of the light emitting diode of FIG. 2.
도 3을 참고하면 발광다이오드(20)는 제1기판(21), 제1하부 반도체층(22), 제1활성층(23) 및 제1상부 반도체층(24)을 포함할 수 있다.Referring to FIG. 3, the light emitting diode 20 may include a first substrate 21, a first lower semiconductor layer 22, a first active layer 23, and a first upper semiconductor layer 24.
제1기판(21)상에는 제1하부 반도체층(22), 제1활성층(23) 및 제1상부 반도체층(24)이 순차적으로 적층될 수 있다. 제1기판(21)은 예를 들어, 사파이어(sapphire) 기판, 실리콘 기판, 실리콘 카바이드 기판, 플라스틱 기판 또는 글래스 기판 중 하나를 포함할 수 있다. 필요에 따라 기판은 제거될 수 있다.The first lower semiconductor layer 22, the first active layer 23, and the first upper semiconductor layer 24 may be sequentially stacked on the first substrate 21. The first substrate 21 may include, for example, one of a sapphire substrate, a silicon substrate, a silicon carbide substrate, a plastic substrate, or a glass substrate. The substrate can be removed as needed.
제1하부 반도체층(22)과 제1기판(21) 사이에는 버퍼층(미도시)이 배치될 수 있다. 버퍼층은 발광 구조물과 제1기판(21)의 격자 부정합을 완화할 수 있다.A buffer layer (not shown) may be disposed between the first lower semiconductor layer 22 and the first substrate 21. The buffer layer may mitigate lattice mismatch between the light emitting structure and the first substrate 21.
버퍼층은 Ⅲ족과 Ⅴ족 원소가 결합된 형태이거나 GaN, InN, AlN, InGaN, AlGaN, InAlGaN, AlInN 중에서 어느 하나를 포함할 수 있다. 버퍼층에는 도펀트가 도핑될 수도 있으나, 이에 한정하지 않는다.The buffer layer may have a form in which Group III and Group V elements are combined or include any one of GaN, InN, AlN, InGaN, AlGaN, InAlGaN, and AlInN. The dopant may be doped in the buffer layer, but is not limited thereto.
버퍼층은 기판(21) 상에 단결정으로 성장할 수 있으며, 단결정으로 성장한 버퍼층은 제1하부 반도체층의 결정성을 향상시킬 수 있다.The buffer layer may grow as a single crystal on the substrate 21, and the buffer layer grown as the single crystal may improve crystallinity of the first lower semiconductor layer.
제1하부 반도체층(22)은 제1기판(21) 상에 배치될 수 있다. 제1하부 반도체층(22)은 갈륨 나이트라이드(GaN)계 물질을 포함하는 n형 반도체층일 수 있다. The first lower semiconductor layer 22 may be disposed on the first substrate 21. The first lower semiconductor layer 22 may be an n-type semiconductor layer including a gallium nitride (GaN) -based material.
예를 들어, 제1하부 반도체층(22)은 갈륨 나이트라이드(GaN), 알루미늄 갈륨 나이트라이드(AlGaN), 인듐 갈륨 나이트라이드(InGaN) 또는 알루미늄 갈륨 인듐 나이트라이드(AlxGayInzN, x+y+z=1, 0≤x≤1, 0≤y≤1, 0≤z≤1) 중 어느 하나일 수 있다. For example, the first lower semiconductor layer 22 may be gallium nitride (GaN), aluminum gallium nitride (AlGaN), indium gallium nitride (InGaN), or aluminum gallium indium nitride (AlxGayInzN, x + y + z = 1, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1, and 0 ≦ z ≦ 1).
제1하부 반도체층(22)은 n형 도판트가 도핑되어 있는 질화물로 형성될 수 있다. n형 도판트는 실리콘(Si), 게르마늄(Ge) 또는 주석(Sn) 등을 포함할 수 있다. 제1하부 반도체층(22)은 n형 도판트로 도핑된 제1층과 n형 도판트로 도핑되지 않은 제2층이 교차로 적층된 구조일 수 있다. The first lower semiconductor layer 22 may be formed of a nitride doped with an n-type dopant. The n-type dopant may include silicon (Si), germanium (Ge), tin (Sn), or the like. The first lower semiconductor layer 22 may have a structure in which a first layer doped with an n-type dopant and a second layer not doped with an n-type dopant are alternately stacked.
제1하부 반도체층(22)은 단층의 n형 질화물층으로 성장시키는 것도 가능할 수 있다. 노출되는 제1하부 반도체층(22)의 상면에는 제1전극(25)이 형성될 수 있다. 제1전극(25)은 Cr/Au막, Cr/Ni/Au막, Ti/Al/Au막 또는 Ti/Ni/pt/Au막을 포함할 수 있다.The first lower semiconductor layer 22 may be grown as a single n-type nitride layer. The first electrode 25 may be formed on the upper surface of the exposed first lower semiconductor layer 22. The first electrode 25 may include a Cr / Au film, a Cr / Ni / Au film, a Ti / Al / Au film, or a Ti / Ni / pt / Au film.
제1활성층(23)은 제1하부 반도체층(22) 상에 배치될 수 있다. 제1활성층(23)은 제1하부 반도체층(22) 상부의 일부를 덮을 수 있고, 제1전극(25)과 이격되어 배치될 수 있다. The first active layer 23 may be disposed on the first lower semiconductor layer 22. The first active layer 23 may cover a portion of the upper portion of the first lower semiconductor layer 22 and may be spaced apart from the first electrode 25.
제1활성층(23)은 외부로부터 인가되는 전원에 의해 광을 생성 할 수 있다. 생성된 광은 제1하부 반도체층(22) 및 제1상부 반도체층(24)으로 진행할 수 있다. 제1활성층(23)은 다수의 양자 우물(Quantum Well) 구조로 이루어진 다중 양자 우물(Multi-Quantum Well, MQW) 구조를 가질 수 있다. The first active layer 23 may generate light by a power source applied from the outside. The generated light may travel to the first lower semiconductor layer 22 and the first upper semiconductor layer 24. The first active layer 23 may have a multi-quantum well (MQW) structure formed of a plurality of quantum well structures.
제1활성층(23)은 양자장벽층과 양자우물층을 가질 수 있고, 다중양자우물구조의 제1활성층(23)의 양자장벽층과 양자우물층은 각각 서로 다른 x, y, z조성비를 갖는 알루미늄 갈륨 인듐 나이트라이드(AlxGayInzN, x+y+z=1, 0≤x≤1, 0≤y≤1, 0≤z≤1)로 이루어질 수 있다. 이 때, 양자우물층의 밴드갭은 양자장벽층, 제1하부 반도체층(22) 및 제1상부 반도체층(24)보다 작아야 한다. The first active layer 23 may have a quantum barrier layer and a quantum well layer, and the quantum barrier layer and the quantum well layer of the first active layer 23 of the multi-quantum well structure have different x, y, and z composition ratios, respectively. Aluminum gallium indium nitride (AlxGayInzN, x + y + z = 1, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1). At this time, the band gap of the quantum well layer should be smaller than the quantum barrier layer, the first lower semiconductor layer 22 and the first upper semiconductor layer 24.
제1활성층(23)의 우물층/장벽층은 AlGaN/AlGaN, InGaN/GaN, InGaN/InGaN, GaN/AlGaN, InAlGaN/GaN, GaAs(InGaAs)/AlGaAs, GaP(InGaP)/AlGaP 중 어느 하나 이상의 페어 구조로 형성될 수 있으나 이에 한정되지 않는다. 우물층은 장벽층의 밴드 갭보다 작은 밴드 갭을 갖는 물질로 형성될 수 있다.The well layer / barrier layer of the first active layer 23 is at least one of AlGaN / AlGaN, InGaN / GaN, InGaN / InGaN, GaN / AlGaN, InAlGaN / GaN, GaAs (InGaAs) / AlGaAs, GaP (InGaP) / AlGaP It may be formed in a pair structure, but is not limited thereto. The well layer may be formed of a material having a band gap smaller than the band gap of the barrier layer.
제1상부 반도체층(24)은 제1활성층(23) 상에 배치될 수 있다. 제1상부 반도체층(24)은 갈륨 나이트라이드(GaN)계 물질을 포함하는 p형 반도체층일 수 있다. 예를 들어, 제1상부 반도체층(24)은 p형 갈륨 나이트라이드(GaN), p형 알루미늄 갈륨 나이트라이드(AlGaN) 또는 p형 알루미늄 갈륨 인듐나이트라이드(AlGaInN) 중 어느 하나일 수 있다. 또한, 제1상부 반도체층(24)은 p형 갈륨 나이트라이드(GaN), p형 알루미늄 갈륨 나이트라이드(AlGaN) 또는 p형 알루미늄 갈륨 인듐나이트라이드(AlGaInN) 중 어느 2개 이상을 서로 교차로 적층한 구조일 수 있다. 제1상부 반도체층(24) 상에는 제2전극(26)이 배치될 수 있다. The first upper semiconductor layer 24 may be disposed on the first active layer 23. The first upper semiconductor layer 24 may be a p-type semiconductor layer including a gallium nitride (GaN) -based material. For example, the first upper semiconductor layer 24 may be any one of p-type gallium nitride (GaN), p-type aluminum gallium nitride (AlGaN), and p-type aluminum gallium indium nitride (AlGaInN). In addition, the first upper semiconductor layer 24 is formed by stacking at least two of p-type gallium nitride (GaN), p-type aluminum gallium nitride (AlGaN), and p-type aluminum gallium indium nitride (AlGaInN). It may be a structure. The second electrode 26 may be disposed on the first upper semiconductor layer 24.
제2전극(26)은 투명 전극층, Cr/Au막, Ni/Au막, Ni/Ti/Au막 또는 pt/Au막을 포함할 수 있다. 투명 전극층은 투명 전도성 산화물로 이루어지고, 산화 인듐 주석(ITO), 인듐 산화물(CIO), 산화 아연(ZnO) 또는 니켈 산화물(NiO) 중 어느 하나로 형성될 수 있다.The second electrode 26 may include a transparent electrode layer, a Cr / Au film, a Ni / Au film, a Ni / Ti / Au film, or a pt / Au film. The transparent electrode layer is made of a transparent conductive oxide, and may be formed of any one of indium tin oxide (ITO), indium oxide (CIO), zinc oxide (ZnO), or nickel oxide (NiO).
제1활성층(23)과 제1상부 반도체층(24) 사이에는 전자 차단층(EBL)이 배치될 수 있다. 전자 차단층은 제1하부 반도체층(22)에서 공급된 전자가 제1상부 반도체층(24)으로 빠져나가는 흐름을 차단하여, 제1활성층(23) 내에서 전자와 정공이 재결합할 확률을 높일 수 있다. 전자 차단층의 에너지 밴드갭은 제1활성층(23) 및/또는 제1상부 반도체층(24)의 에너지 밴드갭보다 클 수 있다.An electron blocking layer EBL may be disposed between the first active layer 23 and the first upper semiconductor layer 24. The electron blocking layer blocks the flow of electrons supplied from the first lower semiconductor layer 22 to the first upper semiconductor layer 24, thereby increasing the probability of recombination of electrons and holes in the first active layer 23. Can be. The energy band gap of the electron blocking layer may be greater than the energy band gap of the first active layer 23 and / or the first upper semiconductor layer 24.
전자 차단층은 Inx1Aly1Ga1-x1-y1N(0≤x1≤1, 0≤y1≤1, 0≤x1+y1≤1)의 조성식을 갖는 반도체 재료, 예를 들어 AlGaN, InGaN, InAlGaN 등에서 선택될 수 있으나 이에 한정하지 않는다.The electron blocking layer may be selected from a semiconductor material having a composition formula of Inx1Aly1Ga1-x1-y1N (0≤x1≤1, 0≤y1≤1, 0≤x1 + y1≤1), for example, AlGaN, InGaN, InAlGaN, or the like. It is not limited to this.
이하에서는 수평형 발광다이오드로 설명하였으나, 실시 예에 따른 발광다이오드의 구조는 이에 한정하지 않는다. 예시적으로 발광다이오드는 제1전극은 하부에 배치되고 제2전극은 상부에 배치되는 수직형 발광다이오드일 수도 있다.Hereinafter, although described as a horizontal light emitting diode, the structure of the light emitting diode according to the embodiment is not limited thereto. For example, the light emitting diode may be a vertical light emitting diode in which a first electrode is disposed below and a second electrode is disposed above.
도 4를 참고하면, 발광다이오드는 제1전극(25)과 제2전극(26)이 모두 일 측에 배치된 플립칩 발광다이오드일 수도 있다. 제1전극(25)과 제2전극(26)은 서브마운트상(27)에 전기적으로 연결될 수도 있다.Referring to FIG. 4, the light emitting diode may be a flip chip light emitting diode in which both the first electrode 25 and the second electrode 26 are disposed on one side. The first electrode 25 and the second electrode 26 may be electrically connected to the submount phase 27.
도 5는 도 2의 필터의 단면도이고, 도 6은 필터의 파장대별 반사도를 측정한 그래프이고, 도 7은 발광다이오드에서 출사된 광의 파장폭과 필터를 통과한 광의 파장폭을 측정한 그래프이고, 도 8은 밴드 패스필터를 통과한 광의 파장폭을 측정한 그래프이다.5 is a cross-sectional view of the filter of FIG. 2, FIG. 6 is a graph measuring reflectivity of each filter of the wavelength band, FIG. 7 is a graph measuring the wavelength width of the light emitted from the light emitting diode and the wavelength of the light passing through the filter. 8 is a graph measuring the wavelength width of the light passing through the band pass filter.
도 5를 참고하면, 필터(60)는 발광다이오드에서 방출된 광의 파장폭을 제어할 수 있다. 필터(60)는 이산화규소 광학층과 이산화티타늄 광학층이 교차로 적층된 구조일 수 있다. 또한, 필터(60)는 SiOX(1≤X≤3) 또는 MgF2 중 어느 하나인 제1광학층(64)과 TiOx(1≤X≤3), TaOx(1≤X≤3) 또는 ZrO2 중 하나인 제2광학층(65)이 교차로 적층된 구조일 수 있다. Referring to FIG. 5, the filter 60 may control the wavelength width of the light emitted from the light emitting diodes. The filter 60 may have a structure in which a silicon dioxide optical layer and a titanium dioxide optical layer are alternately stacked. In addition, the filter 60 includes the first optical layer 64, which is either SiOX (1 ≦ X ≦ 3) or MgF 2 , and TiOx (1 ≦ X ≦ 3), TaOx (1 ≦ X ≦ 3) or ZrO 2. One of the second optical layers 65 may have a structure stacked alternately.
제1광학층(64)은 1.4 내지 1.5의 굴절률을 가지고, 제2광학층(65)은 2.0 내지 3.0의 굴절률을 가질 수 있다. The first optical layer 64 may have a refractive index of 1.4 to 1.5, and the second optical layer 65 may have a refractive index of 2.0 to 3.0.
필터(60)는 기판상에 순차적으로 적층되는 제1반사부(61), 캐비티(62) 및 제2반사부(63)를 포함할 수 있다. The filter 60 may include a first reflecting portion 61, a cavity 62, and a second reflecting portion 63 that are sequentially stacked on a substrate.
제1반사부(61)와 제2반사부(63)는 서로 상이한 산화물을 포함하는 제1광학층(64)과 제2광학층(65)이 교차로 적층된 구조일 수 있고, 캐비티(62)는 제2광학층(65)이 복수 개로 적층된 구조일 수 있다. 예를 들어, 제1광학층(64)은 이산화규소 광학층일 수 있고, 제2광학층(65)은 이산화티타늄 광학층일 수 있다. The first reflecting portion 61 and the second reflecting portion 63 may have a structure in which the first optical layer 64 and the second optical layer 65 including different oxides are stacked in an intersection, and the cavity 62 is disposed. The second optical layer 65 may have a structure in which a plurality of layers are stacked. For example, the first optical layer 64 may be a silicon dioxide optical layer, and the second optical layer 65 may be a titanium dioxide optical layer.
캐비티(62)는 제1광학층(64) 또는 제2광학층(65) 보다 두꺼운 두께를 가질 수 있다. 광학층들의 각각은 광의 파장의 1/4에 해당하는 광학 두께(QWOT)를 가질 수 있다. 본 발명의 실시 예에 따르면, 제1반사부(61)는 4개의 이산화규소 광학층들과 3개의 이산화티타늄 광학층들이 교차로 적층된 구조일 수 있다. The cavity 62 may have a thickness thicker than the first optical layer 64 or the second optical layer 65. Each of the optical layers may have an optical thickness QWOT corresponding to one quarter of the wavelength of light. According to the exemplary embodiment of the present invention, the first reflector 61 may have a structure in which four silicon dioxide optical layers and three titanium dioxide optical layers are stacked alternately.
캐비티(62)는 4개의 이산화티타늄 광학층들이 제공된 구조일 수 있다. 제2반사부(63)는 이산화규소 광학층과 이산화티타늄 광학층이 각각 2개가 교차로 적층된 구조일 수 있다. 캐비티(62)는 이산화티타늄 광학층으로만 구성되어 있어 필터(60)로 입력되는 광을 공진 투과시키는 역할을 할 수 있다. 이산화규소 광학층과 이산화티타늄 광학층이 교차로 적층된 한 쌍의 층의 수가 많을수록 필터(60)를 투과하는 광의 스펙트럼 반치폭(half width)이 감소할 수 있다. 스펙트럼의 반치폭(half width)이 감소할수록 특정 대역의 파장을 선택적으로 투과시킬 수 있다. The cavity 62 may be a structure provided with four titanium dioxide optical layers. The second reflector 63 may have a structure in which two silicon dioxide optical layers and two titanium dioxide optical layers are laminated in alternating fashion. The cavity 62 is composed only of the titanium dioxide optical layer, and thus may serve to resonate and transmit the light input to the filter 60. As the number of pairs of layers in which the silicon dioxide optical layer and the titanium dioxide optical layer are laminated at the intersection increases, the spectral half width of the light passing through the filter 60 may decrease. As the half width of the spectrum decreases, the wavelength of a specific band can be selectively transmitted.
발광다이오드에서 방출된 광은 제2반사부(63)로 입사되어 기판(65)으로 출사될 수 있다.Light emitted from the light emitting diode may be incident to the second reflector 63 and exit to the substrate 65.
도 6을 참고하면, 필터는 350nm 내지 500nm대의 파장대역에서 약 450nm 파장대역만을 투과하고 나머지 파장대역은 모두 반사하도록 설계됨을 알 수 있다.Referring to FIG. 6, it can be seen that the filter is designed to transmit only about 450 nm wavelength band and reflect all remaining wavelength bands in the wavelength band of 350 nm to 500 nm.
도 7을 참조하면, 필터를 통과한 제1광(B)의 스펙트럼 반치폭(half width)은 디비알(DBR) 필터를 통과하지 않은 제2광(A)의 스펙트럼 반치폭(half width)보다 좁다. Referring to FIG. 7, the spectral half width of the first light B that passes through the filter is smaller than the spectral half width of the second light A that does not pass through the DVB filter.
제1광(B)의 반치폭은 10nm 내지 35nm이고, 제2광(A)의 반치폭은 2nm 내지 10nm일 수 있다.The half width of the first light B may be 10 nm to 35 nm, and the half width of the second light A may be 2 nm to 10 nm.
예시적으로 필터를 통과하지 않은 제1광(A)의 스펙트럼 반치폭(half width)은 18nm이고, 디비알(DBR) 필터를 통과한 제2광(B)의 스펙트럼 반치폭(half width)은 5nm일 수 있다. 이때, 광의 세기는 필터링 전 대비 약 5 내지 25%정도 약해질 수 있다. 그러나, 일반적인 청색 LED의 광 세기는 수십 내지 수백 mW이므로 광신호 전송에는 영향을 미치지 않을 수 있다.For example, the spectral half width of the first light A that does not pass through the filter is 18 nm, and the spectral half width of the second light B that has passed through the DVB filter is 5 nm. Can be. In this case, the light intensity may be reduced by about 5 to 25% compared to before the filtering. However, since the light intensity of a typical blue LED is tens to hundreds of mW, it may not affect optical signal transmission.
필터는 투과하는 광 스펙트럼의 반치폭(half width)을 제어할 수 있다. 따라서, 필터를 이용하면 파장이 440nm 내지 460nm이고 반치폭이 2 내지 10nm인 광을 제공할 수 있다.The filter can control the half width of the transmitted light spectrum. Thus, the use of a filter can provide light having a wavelength of 440 nm to 460 nm and a half width of 2 to 10 nm.
도 8을 참고하면, 필터는 로우밴드 패스필터와 하이밴드 패스필터를 결합하여 제작할 수도 있다. 즉, 450nm 파장대의 광만을 투과시키도록 450nm이하의 광은 하이밴드 패스필터에 의해 차단하고 450nm를 초과하는 광은 로우밴드 패스필터에 의해 차단할 수도 있다. 따라서, 약 450nm의 파장대를 갖는 광만이 필터를 통과할 수 있다.Referring to FIG. 8, the filter may be manufactured by combining a low band pass filter and a high band pass filter. That is, light of 450 nm or less may be blocked by a high band pass filter and light exceeding 450 nm may be blocked by a low band pass filter so as to transmit only light in the 450 nm wavelength band. Thus, only light having a wavelength band of about 450 nm can pass through the filter.
도 9는 광변조기의 개념도이고, 도 10은 역바이어스를 인가함에 따라 에너지 밴드갭이 변화하는 상태를 보여주는 도면이고, 도 11은 역 바이어스를 인가함에 따라 광변조기의 흡수 파장대가 변화하는 상태를 보여주는 그래프이고, 도 12는 역 바이어스를 인가함에 따라 발광소자에서 출력된 광의 세기가 변화하는 상태를 보여주는 그래프이고, 도 13은 광 모듈에 의해 광 신호가 변조되는 과정을 보여주는 개념도이다.9 is a conceptual diagram of an optical modulator, FIG. 10 is a view illustrating a state in which an energy band gap is changed by applying a reverse bias, and FIG. 11 is a view illustrating a state in which an absorption wavelength band of the optical modulator is changed by applying a reverse bias. 12 is a graph showing a state in which the intensity of light output from the light emitting device changes as a reverse bias is applied, and FIG. 13 is a conceptual diagram illustrating a process in which an optical signal is modulated by the optical module.
도 9를 참고하면, 광변조기(30)는 발광다이오드(20)에서 출력된 광(입사광)을 변조할 수 있다. 광변조기(30)의 구조는 특별히 제한하지 않는다. 예시적으로 광변조기(30)는 수평형, 수직형, 및 플립칩 구조가 모두 적용될 수 있다. 이하에서는 수평형 구조를 예시적으로 설명한다.Referring to FIG. 9, the optical modulator 30 may modulate the light (incident light) output from the light emitting diode 20. The structure of the optical modulator 30 is not particularly limited. For example, the optical modulator 30 may be applied to all of the horizontal, vertical, and flip chip structures. Hereinafter, a horizontal structure will be described as an example.
광변조기(30)는 제2기판(31), 제2하부 반도체층(32), 광흡수층(33), 제2상부 반도체층(34)을 포함할 수 있다. The optical modulator 30 may include a second substrate 31, a second lower semiconductor layer 32, a light absorption layer 33, and a second upper semiconductor layer 34.
제2기판(31)은 캐리어 기판 상에 적층될 수 있다. 제2기판(31)은 예를 들어, 사파이어(sapphire) 기판, 갈륨 나이트라이드(GaN) 기판, 산화 아연(ZnO) 기판, 갈륨비소(GaAs) 기판, 갈륨인(GaP) 기판, 리튬 알루미륨 산화물(LiAl2O3) 기판, 보론 나이트라이드(BN) 기판, 알루미늄 나이트라이드(AlN) 기판, 플라스틱 기판 또는 글래스 기판 중 하나를 포함할 수 있다. The second substrate 31 may be stacked on the carrier substrate. The second substrate 31 may be, for example, a sapphire substrate, a gallium nitride (GaN) substrate, a zinc oxide (ZnO) substrate, a gallium arsenide (GaAs) substrate, a gallium phosphorus (GaP) substrate, or lithium aluminium oxide. It may include one of a (LiAl 2 O 3) substrate, a boron nitride (BN) substrate, an aluminum nitride (AlN) substrate, a plastic substrate, or a glass substrate.
제2하부 반도체층(32)은 제2기판(31) 상에 배치될 수 있다. 제2하부 반도체층(32)은 갈륨 나이트라이드(GaN)계 물질을 포함하는 n형 반도체층일 수 있다. 예를 들어, 제2하부 반도체층(32)은 갈륨 나이트라이드(GaN), 알루미늄 갈륨 나이트라이드(AlGaN), 인듐 갈륨 나이트라이드(InGaN) 또는 알루미늄 갈륨 인듐 나이트라이드(AlxGayInzN, x+y+z=1, 0≤x≤1, 0≤y≤1, 0≤z≤1) 중 어느 하나일 수 있다. The second lower semiconductor layer 32 may be disposed on the second substrate 31. The second lower semiconductor layer 32 may be an n-type semiconductor layer including a gallium nitride (GaN) -based material. For example, the second lower semiconductor layer 32 may be gallium nitride (GaN), aluminum gallium nitride (AlGaN), indium gallium nitride (InGaN) or aluminum gallium indium nitride (AlxGayInzN, x + y + z = 1, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1, and 0 ≦ z ≦ 1).
제2하부 반도체층(32)은 n형 도판트가 도핑되어 있는 질화물로 형성될 수 있다. n형 도판트는 실리콘(Si), 게르마늄(Ge) 또는 주석(Sn) 등을 포함할 수 있다. 제2하부 반도체층(32)은 n형 도판트로 도핑된 제1층과 n형 도판트로 도핑되지 않은 제2층이 교차로 적층된 구조일 수 있다. The second lower semiconductor layer 32 may be formed of a nitride doped with an n-type dopant. The n-type dopant may include silicon (Si), germanium (Ge), tin (Sn), or the like. The second lower semiconductor layer 32 may have a structure in which a first layer doped with an n-type dopant and a second layer not doped with an n-type dopant are alternately stacked.
제2하부 반도체층(32)은 단층의 n형 질화물층으로 성장시키는 것도 가능할 수 있다. 노출되는 제2하부 반도체층(32)의 상면에는 제3전극(35)이 형성될 수 있다. 제3전극(35)은 Cr/Au막, Cr/Ni/Au막, Ti/Al/Au막 또는 Ti/Ni/pt/Au막을 포함할 수 있다.The second lower semiconductor layer 32 may be grown as a single n-type nitride layer. The third electrode 35 may be formed on an upper surface of the exposed second lower semiconductor layer 32. The third electrode 35 may include a Cr / Au film, a Cr / Ni / Au film, a Ti / Al / Au film, or a Ti / Ni / pt / Au film.
광흡수층(33)은 광학채널에 직접 연결되어 발광다이오드(20)에서 발생되는 빛을 전달받을 수 있다. 광흡수층(33)는 발광다이오드에서 출력된 광을 흡수 또는 투과할 수 있도록 발광다이오드의 활성층과 거의 유사한 에너지 밴드갭을 가질 수 있다. The light absorbing layer 33 may be directly connected to the optical channel to receive the light generated from the light emitting diodes 20. The light absorbing layer 33 may have an energy band gap substantially similar to the active layer of the light emitting diode so as to absorb or transmit light output from the light emitting diode.
광흡수층(33)은 제2하부 반도체층(32) 일부를 덮을 수 있고, 제3전극(35)과 이격되어 배치될 수 있다. 광흡수층(33)은 외부(예를 들면, 구동칩)로부터 제공되는 전기적 신호에 의해 광을 변조할 수 있다. The light absorbing layer 33 may cover a portion of the second lower semiconductor layer 32 and may be spaced apart from the third electrode 35. The light absorbing layer 33 may modulate light by an electrical signal provided from the outside (for example, a driving chip).
광흡수층(33)은 다수의 양자 우물(Quantum Well) 구조로 이루어진 다중 양자 우물(Multi-Quntum Well, MQW) 구조를 가질 수 있다. 광흡수층(33)은 갈륨 나이트라이드(GaN)계 물질을 포함할 수 있다. The light absorption layer 33 may have a multi-quantum well (MQW) structure composed of a plurality of quantum well structures. The light absorption layer 33 may include gallium nitride (GaN) -based material.
광흡수층(33)은 양자장벽층과 양자우물층을 가질 수 있고, 다중양자우물구조의 광흡수층(33)의 양자장벽층과 양자우물층은 각각 서로 다른 x, y, z조성비를 갖는 알루미늄 갈륨 인듐 나이트라이드 (AlxGayInzN, x+y+z=1, 0≤x≤1, 0≤y≤1, 0≤z≤1)으로 이루어질 수 있다. 이 때, 양자우물층의 밴드갭은 양자장벽층, 제2하부 반도체층(32) 및 제2상부 반도체층(34)보다 작을 수 있다.The light absorption layer 33 may have a quantum barrier layer and a quantum well layer, and the quantum barrier layer and the quantum well layer of the light absorption layer 33 having a multi-quantum well structure have aluminum x gallium oxides having different x, y, and z composition ratios, respectively. Indium nitride (AlxGayInzN, x + y + z = 1, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1). In this case, the band gap of the quantum well layer may be smaller than that of the quantum barrier layer, the second lower semiconductor layer 32, and the second upper semiconductor layer 34.
광흡수층(33)이 Ga polar InGaN 양자우물층/ GaN 양자장벽층 구조를 갖는 경우, 제로 바이어스(Zero bias)에서 광흡수층(33)의 밴드갭이 발광다이오드의 밴드갭과 같게 조절될 수 있다. 그러나, 역바이어스를 광변조기에 가하면 변조기의 밴드갭이 발광다이오드의 밴드갭보다 커지게 된다. When the light absorbing layer 33 has a Ga polar InGaN quantum well layer / GaN quantum barrier layer structure, the band gap of the light absorbing layer 33 may be adjusted to be equal to the band gap of the light emitting diode at zero bias. However, applying the reverse bias to the optical modulator causes the bandgap of the modulator to be larger than the bandgap of the light emitting diode.
발광다이오드의 밴드갭이 2.0 내지 3.0eV인 구간에서 광 스펙트럼의 반치폭은 약 15~40nm이다. 광변조기에 외부 바이어스를 인가하여 15nm 내지 40nm파장 대역의 약 0.5배 내지 3배를 커버하여야 한다. 따라서, 광흡수층의 에너지 밴드갭은 활성층의 에너지 밴드갭의 0.85배 내지 1.15배일 수 있다. 역바이어스에 의해 조절될 수 있는 광흡수층의 에너지 밴드갭은 50meV 내지 300meV일 수 있다.The full width at half maximum of the light spectrum is about 15 to 40 nm in a band gap of 2.0 to 3.0 eV. An external bias should be applied to the optical modulator to cover about 0.5 to 3 times the 15 nm to 40 nm wavelength band. Therefore, the energy band gap of the light absorption layer may be 0.85 times to 1.15 times the energy band gap of the active layer. The energy bandgap of the light absorption layer, which can be adjusted by reverse bias, may be 50 meV to 300 meV.
제2상부 반도체층(34)은 광흡수층(33) 상에 배치될 수 있다. 제2상부 반도체층(34)은 갈륨 나이트라이드(GaN)계 물질을 포함하는 p형 반도체층일 수 있다. 예를 들어, 제2상부 반도체층(34)은 p형 갈륨 나이트라이드(GaN), p형 알루미늄 갈륨 나이트라이드(AlGaN) 또는 p형 알루미늄 갈륨 인듐나이트라이드(AlGaInN) 중 어느 하나일 수 있다. 또한, 제2상부 반도체층(34)은 p형 갈륨 나이트라이드(GaN), p형 알루미늄 갈륨 나이트라이드(AlGaN) 또는 p형 알루미늄 갈륨 인듐나이트라이드(AlGaInN) 중 어느 2개 이상을 서로 교차로 적층한 구조일 수 있다. The second upper semiconductor layer 34 may be disposed on the light absorption layer 33. The second upper semiconductor layer 34 may be a p-type semiconductor layer including a gallium nitride (GaN) -based material. For example, the second upper semiconductor layer 34 may be any one of p-type gallium nitride (GaN), p-type aluminum gallium nitride (AlGaN), and p-type aluminum gallium indium nitride (AlGaInN). In addition, the second upper semiconductor layer 34 is formed by stacking at least two of p-type gallium nitride (GaN), p-type aluminum gallium nitride (AlGaN), and p-type aluminum gallium indium nitride (AlGaInN) at the intersection with each other. It may be a structure.
도 10의 (a)를 참고하면, GaN 계열의 반도체 소자는 양자우물층 및 양자장벽층의 에너지 밴드갭(G1)이 비대칭하게 형성된다. 이는 광흡수층 내부에 강한 압전 전기장(piezoelectric field)이 존재하기 때문이다. 이러한 압전 전기장은 다양한 원인에 의해 유발될 수 있다. 예시적으로 압전 자기장은 격자 상수 부정합에 의한 스트레인(strain)에 의해 유발될 수 있다.Referring to FIG. 10A, in the GaN-based semiconductor device, the energy band gap G1 of the quantum well layer and the quantum barrier layer is asymmetrically formed. This is due to the presence of a strong piezoelectric field inside the light absorption layer. Such piezoelectric electric fields can be caused by a variety of causes. For example, the piezoelectric magnetic field may be caused by strain due to lattice constant mismatch.
그러나, 도 10의 (b)와 같이 광흡수층에 역바이어스가 인가되면 에너지 밴드(G2)는 상대적으로 평탄해지면서 밴드갭이 커질 수 있다(G3). However, when the reverse bias is applied to the light absorbing layer as shown in FIG. 10B, the energy band G2 may be relatively flat and the band gap may increase (G3).
광흡수층이 흡수하는 파장은 에너지 밴드갭에 의해 결정된다. 도 11을 참고하면, 제로 바이어스에서는 제1흡수파장대역(201)을 갖다가 역바이어스 전압이 인가되면 단파장으로 흡수파장대역(202)이 시프트될 수 있다.The wavelength absorbed by the light absorbing layer is determined by the energy band gap. Referring to FIG. 11, in the zero bias, when the first absorption wavelength band 201 is applied and the reverse bias voltage is applied, the absorption wavelength band 202 may be shifted to a shorter wavelength.
도 12를 참고하면, 역바이어스 전압이 인가되기 전에는 발광소자가 출력한 광의 강도는 거의 관찰되지 않는다(203). 즉 발광소자에서 출력된 광은 대부분 광흡수층에 의해 흡수된다.Referring to FIG. 12, the intensity of light output from the light emitting device is hardly observed until the reverse bias voltage is applied (203). That is, most of the light output from the light emitting element is absorbed by the light absorbing layer.
그러나, 역바이어스 전압이 인가된 후에는 광이 강도가 높아짐을 확인할 수 있다(204). 즉, 역바이어스 전압에 의해 광흡수층의 흡수 파장대가 변화하여 발광소자에서 출력된 광을 흡수하지 않는 것을 확인할 수 있다.However, after the reverse bias voltage is applied, it can be confirmed that the light intensity is increased (204). That is, it can be confirmed that the absorption wavelength band of the light absorption layer is changed by the reverse bias voltage so that the light output from the light emitting device is not absorbed.
도 13을 참조하면, 광 송신모듈(5)은 전기신호(E1)를 이용하여 광신호(L1)를 변조할 수 있다. 전기신호(E1)를 제공할 때를 “1 상태”, 전기적인 신호(E1)를 제공하지 않을 때를 “0 상태”라 할 수 있다. 여기서 전기신호(E1)는 역바이어스 전압일 수 있다.Referring to FIG. 13, the optical transmission module 5 may modulate the optical signal L1 using the electrical signal E1. When the electric signal E1 is provided, it may be referred to as a "1 state", and when the electric signal E1 is not provided as an "0 state". The electrical signal E1 may be a reverse bias voltage.
“1 상태”일 때, 광 송신모듈(5)은 광신호(L1)를 방출할 수 있고(On-state), “0 상태”일 때 광 송신모듈(5)은 광신호(L1)를 방출하지 않을 수 있다(Off-state). 이에 따라, 광 송신모듈(5)은 주기를 가지며 광신호(L1)를 방출하거나(On-state) 방출하지 않는(Off-state) 펄스 광신호(Pulsed light signal)를 출력할 수 있다. When in the "1 state", the optical transmission module 5 can emit an optical signal L1 (On-state), and when in the "0 state", the optical transmission module 5 emits an optical signal L1. Off-state. Accordingly, the optical transmission module 5 may output a pulsed light signal having a period and emitting (On-state) or not emitting (Off-state) the optical signal L1.
실시 예에 따른 광 송신모듈(5)은 단거리 통신에 이용될 수 있다. The optical transmission module 5 according to the embodiment may be used for short-range communication.
예를 들어, 광 송신모듈(5)은 지능형 교통시스템(ITS), 영상 통신(visual communication), 유선 근거리 광통신(Short distance optical fiber communication), 인트라넷(intranet), 홈 네트워킹 및 유/무선 사물인터넷(IoT) 등에 이용될 수 있다. 본 발명의 실시 예에 따른 광 송신모듈(5)은 향후 수백 Mbps 내지 수십 Gbps의 전송속도를 가지는 테이터 전송망에 이용될 수 있다.For example, the optical transmission module 5 may include intelligent transportation system (ITS), visual communication, short distance optical fiber communication, intranet, home networking and wired / wireless IoT. IoT) and the like. The optical transmission module 5 according to the embodiment of the present invention may be used in a data transmission network having a transmission speed of several hundred Mbps to several tens of Gbps in the future.
도 14는 본 발명의 일 실시 예에 따른 광 송수신모듈의 개념도이고, 도 15는 본 발명의 일 실시 예에 따른 광 송신모듈의 개념도이고, 도 16은 도 15의 제1변형 예이고, 도 17은 도 15의 제2변형 예이고, 도 18은 도 16의 제3변형 예이다.14 is a conceptual diagram of an optical transmission and reception module according to an embodiment of the present invention, FIG. 15 is a conceptual diagram of an optical transmission module according to an embodiment of the present invention, FIG. 16 is a first modified example of FIG. 15, and FIG. 17. Is a second modified example of FIG. 15, and FIG. 18 is a third modified example of FIG.
도 14를 참고하면 광 송신모듈은 하우징(90) 내에 배치된 발광다이오드(20), 필터(60), 제1렌즈(71), 광 변조기(30), 제2렌즈(72), 및 홀더(91)를 포함할 수 있다.Referring to FIG. 14, the light transmitting module may include a light emitting diode 20, a filter 60, a first lens 71, an optical modulator 30, a second lens 72, and a holder disposed in the housing 90. 91).
발광다이오드(20)와 필터(60)의 사이 영역(81), 필터(60)와 제1렌즈(71)의 사이 영역(82), 및 제1렌즈(71)와 광변조기(30)의 사이 영역(83)에는 굴절률 조절부재(80)가 배치될 수 있다. The area 81 between the light emitting diodes 20 and the filter 60, the area 82 between the filter 60 and the first lens 71, and between the first lens 71 and the light modulator 30. The refractive index adjusting member 80 may be disposed in the region 83.
굴절률 조절부재(80)는 발광다이오드(20)와 필터(60) 사이, 필터(60)와 제1렌즈(71) 사이 및 제1렌즈(71)와 광 변조기(30) 사이의 굴절률을 매칭시킬 수 있다. 따라서, 발광다이오드에서 출력된 광이 광섬유에 전달되는 수율이 상승될 수 있다. The refractive index adjusting member 80 may match the refractive index between the light emitting diode 20 and the filter 60, between the filter 60 and the first lens 71, and between the first lens 71 and the light modulator 30. Can be. Thus, the yield of light transmitted from the light emitting diodes to the optical fiber can be increased.
굴절률 조절부재(80)는 굴절률을 매칭시킬 수 있는 다양한 종류의 레진 또는 오일이 선택될 수 있다. Refractive index adjusting member 80 may be selected from a variety of resins or oils that can match the refractive index.
제1렌즈(71)는 필터(60) 상에 배치될 수 있다. 제1렌즈(71)는 필터를 향해 볼록한 형태일 수 있다. 제1렌즈(71)는 필터(60)를 통과한 광을 광 변조기(30)에 집광할 수 있다. The first lens 71 may be disposed on the filter 60. The first lens 71 may be convex toward the filter. The first lens 71 may condense the light passing through the filter 60 to the light modulator 30.
제1렌즈(71)가 없는 경우, 필터(60)를 통과한 광은 수십 내지 150°의 넓은 방사각을 가지면서 방출될 수 있다. 이러한 넓은 방사각을 갖는 광 중에서 일부는 광 변조기(30)에 입사되지 못하여 광손실이 발생할 수 있다. 제2렌즈는 변조된 광이 광섬유에 유효하게 입사되도록 집광하는 역할을 수행할 수 있다.In the absence of the first lens 71, the light passing through the filter 60 may be emitted with a wide radiation angle of several tens to 150 degrees. Some of the light having a wide emission angle is not incident to the light modulator 30 may cause light loss. The second lens may serve to condense the modulated light to be effectively incident on the optical fiber.
광섬유(8)와 연결된 페룰(93)은 홀더(91)에 고정될 수 있다. 페룰(93)은 플러그 앤드 플레이(Plug and Play) 방식으로 접속되므로 광섬유를 삽입하는 동작에 의해 광학적으로 커플링될 수 있다.The ferrule 93 connected with the optical fiber 8 may be fixed to the holder 91. Since the ferrule 93 is connected in a plug and play manner, the ferrule 93 may be optically coupled by an operation of inserting an optical fiber.
하우징(90)은 발광다이오드(20), 필터(60), 제1렌즈(71), 광 변조기(30), 제2렌즈(72) 및 홀더(91)를 수용할 수 있다. 하우징(90)은 페룰(93)이 삽입되는 홀더(91)를 포함할 수 있다.The housing 90 may accommodate the light emitting diode 20, the filter 60, the first lens 71, the light modulator 30, the second lens 72, and the holder 91. The housing 90 may include a holder 91 into which the ferrule 93 is inserted.
홀더(91)는 광섬유가 연결된 페룰(93)의 삽입이 용이하도록 연성이 있는 소재로 이루어질 수 있다. The holder 91 may be made of a flexible material to facilitate insertion of the ferrule 93 to which the optical fiber is connected.
제2렌즈(72)와 페룰(93) 사이에는 반사방지층(93a)이 제공될 수 있다. 반사방지층(93a)은 광이 다시 발광다이오드(20)를 향하는 방향으로 되돌아가는 것을 방지할 수 있다. 예시적으로, 반사방지층(93a)은 경사지는 입사면을 포함할 수 있다. 그러나 반드시 이에 한정되는 것은 아니고 도 15와 같이 반사방지층(93b)은 불규칙한 요철이 연속되는 구조일 수 있다.An antireflection layer 93a may be provided between the second lens 72 and the ferrule 93. The antireflection layer 93a may prevent the light from returning back to the light emitting diode 20. In exemplary embodiments, the anti-reflection layer 93a may include an inclined incident surface. However, the present invention is not limited thereto, and as illustrated in FIG. 15, the antireflection layer 93b may have a structure in which irregular irregularities are continuous.
그러나, 반드시 이에 한정되는 것은 아니고 필터의 위치는 가변될 수 있다. 예시적으로 도 16을 참고하면, 필터는 제1렌즈와 광변조기 사이에 배치될 수 있다. 도 17을 참고하면, 필터는 혹은 광변조기(30)의 입사광측 면에 형성 광변조기와 집적될 수도 있다.However, the present invention is not limited thereto, and the position of the filter may vary. For example, referring to FIG. 16, a filter may be disposed between the first lens and the optical modulator. Referring to FIG. 17, the filter may be integrated with an optical modulator formed on the incident light side surface of the optical modulator 30.
도 19는 본 발명의 일 실시 예에 따른 광 수신모듈의 개념도이고, 도 20은 도 19의 제1변형 예이고, 도 21은 도 19의 제2변형 예이고, 도 22는 도 19의 제3변형 예이다.19 is a conceptual diagram of an optical receiving module according to an embodiment of the present invention, FIG. 20 is a first modified example of FIG. 19, FIG. 21 is a second modified example of FIG. 19, and FIG. 22 is a third example of FIG. 19. It is a variation example.
도 19를 참고하면, 수직형 광 수신모듈(6)은 수광 소자(100), 제2렌즈(72) 및 홀더(91)를 포함할 수 있다. 수광 소자(100)는 광흡수층을 포함하는 다이오드일 수 있다. 제2렌즈(72)는 광섬유를 통해 전달된 광을 수광 소자(100)로 집광할 수 있다. 하우징(90)은 수광 소자(100), 렌즈(72)를 수용하며, 홀더(91)를 포함할 수 있다. Referring to FIG. 19, the vertical light receiving module 6 may include a light receiving element 100, a second lens 72, and a holder 91. The light receiving device 100 may be a diode including a light absorption layer. The second lens 72 may condense the light transmitted through the optical fiber to the light receiving element 100. The housing 90 accommodates the light receiving element 100, the lens 72, and may include a holder 91.
수광 소자(100)는 입사된 광신호를 인가되는 전원에 의해 전기적인 신호로 변환시킬 수 있다. 수광소자(100)는 제3하부 반도체층(130), 광검출층(110) 및 제3상부 반도체층(120)을 포함할 수 있다. 기판(140) 상에 제3하부 반도체층(130), 광검출층(110) 및 제3상부 반도체층(120)이 순차적으로 적층될 수 있다. The light receiving element 100 may convert the incident optical signal into an electrical signal by an applied power source. The light receiving device 100 may include a third lower semiconductor layer 130, a photodetection layer 110, and a third upper semiconductor layer 120. The third lower semiconductor layer 130, the photodetection layer 110, and the third upper semiconductor layer 120 may be sequentially stacked on the substrate 140.
수광소자(100)는 광전송로를 통하여 전송된 가시광 영역의 빛을 고속으로 검출할 수 있다. 수광소자(100)는 실리콘, 갈륨비소, 알루미늄 인듐갈륨나이트라이드(AlInGaN), 인듐갈륨아세나이드(InGaAs), 저메늄(Ge) 중 하나의 물질을 포함할 수 있다. The light receiving device 100 may detect light in the visible light region transmitted through the optical transmission path at high speed. The light receiving device 100 may include one of silicon, gallium arsenide, aluminum indium gallium nitride (AlInGaN), indium gallium arsenide (InGaAs), and germanium (Ge).
기판(140)은 예를 들어, 사파이어(sapphire) 기판, 실리콘 카바이드 기판, 갈륨 나이트라이드(GaN) 기판, 산화 아연(ZnO) 기판, 갈륨비소(GaAs) 기판, 갈륨인(GaP) 기판, 리튬 알루미륨 산화물(LiAl2O3) 기판, 보론 나이트라이드(BN) 기판, 알루미늄 나이트라이드(AlN) 기판, 플라스틱 기판 또는 글래스 기판 중 하나를 포함할 수 있다. The substrate 140 may include, for example, a sapphire substrate, a silicon carbide substrate, a gallium nitride (GaN) substrate, a zinc oxide (ZnO) substrate, a gallium arsenide (GaAs) substrate, a gallium phosphorus (GaP) substrate, and lithium aluminium. It may include one of a cerium oxide (LiAl 2 O 3) substrate, a boron nitride (BN) substrate, an aluminum nitride (AlN) substrate, a plastic substrate, or a glass substrate.
제3하부 반도체층(130)은 기판(140) 상에 배치될 수 있다. 제3하부 반도체층(130)은 갈륨 나이트라이드(GaN)계 물질을 포함하는 n형 반도체층일 수 있다. 예를 들어, 제3하부 반도체층(130)은 갈륨 나이트라이드(GaN), 알루미늄 갈륨 나이트라이드(AlGaN), 인듐 갈륨 나이트라이드(InGaN) 또는 알루미늄 갈륨 인듐 나이트라이드(AlxGayInzN, x+y+z=1, 0≤x≤1, 0≤y≤1, 0≤z≤1) 중 어느 하나일 수 있다. The third lower semiconductor layer 130 may be disposed on the substrate 140. The third lower semiconductor layer 130 may be an n-type semiconductor layer including a gallium nitride (GaN) -based material. For example, the third lower semiconductor layer 130 may be gallium nitride (GaN), aluminum gallium nitride (AlGaN), indium gallium nitride (InGaN), or aluminum gallium indium nitride (AlxGayInzN, x + y + z = 1, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1, and 0 ≦ z ≦ 1).
제3하부 반도체층(130)은 n형 도판트가 도핑되어 있는 질화물로 형성될 수 있다. n형 도판트는 실리콘(Si), 게르마늄(Ge) 또는 주석(Sn) 등을 포함할 수 있다. 제3하부 반도체층(130)은 n형 도판트로 도핑된 제1층과 n형 도판트로 도핑되지 않은 제2층이 교차로 적층된 구조일 수 있다. 제3하부 반도체층(130)은 단층의 n형 질화물층으로 성장시키는 것도 가능할 수 있다. The third lower semiconductor layer 130 may be formed of a nitride doped with an n-type dopant. The n-type dopant may include silicon (Si), germanium (Ge), tin (Sn), or the like. The third lower semiconductor layer 130 may have a structure in which a first layer doped with an n-type dopant and a second layer not doped with an n-type dopant are alternately stacked. The third lower semiconductor layer 130 may be grown as a single n-type nitride layer.
광검출층(110)은 제3하부 반도체층(130) 상에 배치될 수 있다. 광검출층(110)은 다수의 양자 우물(Quantum Well) 구조로 이루어진 다중 양자 우물(Multi-Quantum Well, MQW) 구조를 가질 수 있다. 광검출층(110)은 갈륨 나이트라이드(GaN)계 물질을 포함할 수 있다. The photodetection layer 110 may be disposed on the third lower semiconductor layer 130. The photodetection layer 110 may have a multi-quantum well (MQW) structure including a plurality of quantum well structures. The photodetection layer 110 may include a gallium nitride (GaN) -based material.
광검출층(110)은 양자장벽층과 양자우물층을 가질 수 있고, 다중양자우물구조의 광검출층(110)의 양자장벽층과 양자우물층은 각각 서로 다른 x, y, z조성비를 갖는 알루미늄 갈륨 인듐 나이트라이드(AlxGayInzN, x+y+z=1, 0≤x≤1, 0≤y≤1, 0≤z≤1)으로 이루어질 수 있다. 이 때, 양자우물층의 밴드갭은 양자장벽층, 제3하부 반도체층(130) 및 제3상부 반도체층(120)보다 작아야 한다.The photodetection layer 110 may have a quantum barrier layer and a quantum well layer, and the quantum barrier layer and the quantum well layer of the photodetection layer 110 having a multi-quantum well structure have different x, y, z composition ratios, respectively. Aluminum gallium indium nitride (AlxGayInzN, x + y + z = 1, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1). At this time, the band gap of the quantum well layer should be smaller than the quantum barrier layer, the third lower semiconductor layer 130 and the third upper semiconductor layer 120.
제3상부 반도체층(120)은 광검출층(110) 상에 배치될 수 있다. 제3상부 반도체층(120)은 갈륨 나이트라이드(GaN)계 물질을 포함하는 p형 반도체층일 수 있다. 예를 들어, 제3상부 반도체층(120)은 p형 갈륨 나이트라이드(GaN), p형 알루미늄 갈륨 나이트라이드(AlGaN) 또는 p형 알루미늄 갈륨 인듐나이트라이드(AlGaInN) 중 어느 하나일 수 있다. The third upper semiconductor layer 120 may be disposed on the photodetection layer 110. The third upper semiconductor layer 120 may be a p-type semiconductor layer including a gallium nitride (GaN) -based material. For example, the third upper semiconductor layer 120 may be any one of p-type gallium nitride (GaN), p-type aluminum gallium nitride (AlGaN), and p-type aluminum gallium indium nitride (AlGaInN).
제3상부 반도체층(120)은 p형 갈륨 나이트라이드(GaN), p형 알루미늄 갈륨 나이트라이드(AlGaN) 또는 p형 알루미늄 갈륨 인듐나이트라이드(AlGaInN) 중 어느 2개 이상을 서로 교차로 적층한 구조일 수 있다. 제3상부 반도체층(120) 상에는 제 6 전극(1145)이 배치될 수 있다. The third upper semiconductor layer 120 is a structure in which any two or more of p-type gallium nitride (GaN), p-type aluminum gallium nitride (AlGaN), and p-type aluminum gallium indium nitride (AlGaInN) are stacked on each other. Can be. The sixth electrode 1145 may be disposed on the third upper semiconductor layer 120.
제2렌즈(72)와 페룰(93) 사이에는 반사방지층(93a)이 제공될 수 있다. 반사방지층(93a)은 광이 다시 발광다이오드(20)를 향하는 방향으로 되돌아가는 것을 방지할 수 있다. 예시적으로, 반사방지층(93a)은 경사지는 입사면을 포함할 수 있다. 그러나 반드시 이에 한정되는 것은 아니고 도 14에서는 반사방지층(93b)은 불규칙한 요철이 연속되는 구조일 수 있다.An antireflection layer 93a may be provided between the second lens 72 and the ferrule 93. The antireflection layer 93a may prevent the light from returning back to the light emitting diode 20. In exemplary embodiments, the anti-reflection layer 93a may include an inclined incident surface. However, the present invention is not limited thereto, and the antireflection layer 93b may have a structure in which irregular irregularities are continuous.
광 수신모듈(6)은 제공되는 광신호를 전기 신호로 변조할 수 있다. 광신호(L2)를 제공할 때를 “On-state”, 광신호(L2)를 제공하지 않을 때를 “Off-state”라 할 수 있다. “On-state”일 때 광 수신모듈(6)은 전기적인 신호(E2)를 출력할 수 있고(0 상태), “Off-state”일 때 광 수신모듈(6)은 전기적인 신호(E2)를 출력하지 않을 수 있다(1 상태). 이에 따라, 광 수신모듈(6)은 주기를 가지며 전기적인 신호(E2)를 출력하거나(1 상태) 출력하지 않는(2 상태) 전기펄스 신호파를 출력할 수 있다. The optical receiving module 6 may modulate the provided optical signal into an electrical signal. When providing the optical signal (L2) may be referred to as "On-state", when not providing the optical signal (L2) may be referred to as "Off-state". When in the "On-state", the optical receiving module 6 may output an electrical signal E2 (0 state), and in the "Off-state", the optical receiving module 6 may be an electrical signal E2. May not output (1 state). Accordingly, the light receiving module 6 may output an electric pulse signal wave having a period and outputting the electric signal E2 (1 state) or not (2 state).
광 수신기 모듈에는 광송신기와 마찬가지로 광학 필터를 적용할 수 있다. 이는 다중 파장용 광수신 모듈을 구현할 때 반드시 필요하다. 즉, 다중 파장 광수신 모듈에서 광학 필터를 수광소자(100)의 입사광 측에 적용될 경우, 양호한 잡음특성을 제공할 수 있다. 광학필터는 전술한 필터 구조가 모두 적용될 수 있다.An optical filter may be applied to the optical receiver module similarly to the optical transmitter. This is necessary when implementing a multi-wavelength optical reception module. That is, when the optical filter is applied to the incident light side of the light receiving element 100 in the multi-wavelength light receiving module, it is possible to provide good noise characteristics. The optical filter may be all of the above-described filter structure.
또한, 광 수신소자 앞단에 원하는 파장만을 수신할 수 있도록 밴드패스 광학 필터를 탑재하면 송신광 가운데 원하는 파장만을 수신할 수 있어 다중 파장의 멀티플렉스용 광수신 모듈을 구현할 수 있다.In addition, when the bandpass optical filter is mounted to receive only the desired wavelength in front of the optical receiver, only the desired wavelength can be received among the transmitted light, thereby realizing a multiplex optical reception module having multiple wavelengths.
도 21을 참고하면 필터(60)는 제2렌즈(72)와 수광소자(100) 사이에 위치 할 수 있을 뿐 아니라, 도 22와 같이 수광소자(100)의 입사광측 면에 형성하여 수광소자(100)와 집적된 필터를 사용할 수도 있다. 즉, 필터의 위치는 특별히 제한하지 않는다.Referring to FIG. 21, the filter 60 may not only be positioned between the second lens 72 and the light receiving element 100, but may be formed on the incident light side of the light receiving element 100 as illustrated in FIG. 22. It is also possible to use a filter integrated with 100). That is, the position of the filter is not particularly limited.
광 수신모듈(6)은 단거리 통신에 이용될 수 있다. 예를 들어, 광 수신모듈(6)은 능형 교통시스템(ITS), 영상 통신(visual communication), 유선 근거리 광통신(Short distance optical fiber communication), 인트라넷(intranet), 홈 네트워킹 및 사물인터넷(IoT) 등에 이용될 수 있다. 본 발명의 실시 예에 따른 광 수신모듈(6)은 향후 수백 Mbps 내지 수십 Gbps의 전송속도를 가지는 테이터 전송망에 이용될 수 있다. The optical receiving module 6 may be used for short range communication. For example, the optical receiving module 6 may be used for the ITS, visual communication, short distance optical fiber communication, intranet, home networking and IoT. Can be used. The optical receiving module 6 according to the embodiment of the present invention may be used in a data transmission network having a transmission speed of several hundred Mbps to several tens of Gbps in the future.
도 23은 본 발명의 일 실시 예에 따른 광 송신모듈의 개념도이고, 도 24는 도 23의 제1변형 예이고, 도 25는 도 23의 제2변형 예이고, 도 26은 도 23의 제3변형 예이고, 도 27은 도 26의 중공관을 보여주는 도면이고, 도 28은 도 23의 제4변형 예이고, 도 29는 필터를 통과하면서 변화하는 파장폭을 보여주는 그래프이다.FIG. 23 is a conceptual diagram of an optical transmission module according to an embodiment of the present disclosure, FIG. 24 is a first modification example of FIG. 23, FIG. 25 is a second modification example of FIG. 23, and FIG. 26 is a third modification of FIG. 23. 27 is a view showing the hollow tube of FIG. 26, FIG. 28 is a fourth modified example of FIG. 23, and FIG. 29 is a graph showing the wavelength width that changes while passing through the filter.
도 23을 참고하면, 광 송신모듈(5A)은 발광다이오드(20), 발광다이오드(20)에서 출사된 제1광(L11)을 변조하는 광변조기(30), 및 발광다이오드(20)와 광변조기(30)가 배치되는 광학부재(10)를 포함할 수 있다.Referring to FIG. 23, the light transmitting module 5A includes a light emitting diode 20, an optical modulator 30 for modulating the first light L11 emitted from the light emitting diode 20, and a light emitting diode 20 and light. The modulator 30 may include an optical member 10 disposed thereon.
광학부재(10)는 발광다이오드(20)가 배치되는 제1영역(11), 광변조기(30)가 배치되는 제2영역(12), 및 제1영역(11)과 제2영역(12)을 광학적으로 연결하는 제3영역(13)을 포함할 수 있다. 광학부재(10)는 SiOB(Silicon Optical Bench)일 수 있다.The optical member 10 includes a first region 11 in which a light emitting diode 20 is disposed, a second region 12 in which an optical modulator 30 is disposed, and a first region 11 and a second region 12. It may include a third region 13 for optically connecting the. The optical member 10 may be a silicon optical bench (SiOB).
실시 예에 따른 광 송신모듈(5A)은, 실리콘 포토닉스 기반의 일체형 회로 칩일 수 있다. 예시적으로 광학벤치에 발광다이오드, 광변조기, 광도파로 등이 일체로 구현될 수 있다. 또한, 수광소자, 광 분리기(Y-branch), 광 필터, 외부와 광결합을 위한 광결합기(grating coupler, edge coupler) 등이 추가적으로 구현될 수도 있다.The optical transmission module 5A according to the embodiment may be an integrated circuit chip based on silicon photonics. For example, a light emitting diode, an optical modulator, an optical waveguide, or the like may be integrally implemented in the optical bench. In addition, a light receiving element, a light separator (Y-branch), an optical filter, a grating coupler (edge coupler) for optical coupling with the outside may be additionally implemented.
발광다이오드(20)는 제1영역(11)에 배치될 수 있다. 발광다이오드(20)는 제1방향으로 삽입 배치될 수 있다. 제1방향은 발광다이오드(20)의 두께 방향과 평행한 방향(X방향)일 수 있다. 따라서, 발광다이오드(20)는 제1방향으로 광을 출력할 수 있다.The light emitting diode 20 may be disposed in the first region 11. The light emitting diodes 20 may be inserted into the first direction. The first direction may be a direction parallel to the thickness direction of the light emitting diode 20 (X direction). Accordingly, the light emitting diode 20 may output light in the first direction.
발광다이오드(20)는 각 전극(15a, 15b)과 연결되어 구동전류가 인가될 수 있다. 발광다이오드(20)의 종류는 특별히 한정하지 않는다. 도면상에서는 수평형을 도시하였으나, 수직형, 플립칩 구조도 선택될 수 있다. 발광다이오드의 구조에 따라 전극 배치는 적절히 조절될 수 있다. 발광다이오드(20)는 전술한 내용이 그대로 적용될 수 있다.The light emitting diode 20 may be connected to each of the electrodes 15a and 15b to apply a driving current. The kind of light emitting diode 20 is not particularly limited. Although the horizontal type is illustrated in the drawing, a vertical type and flip chip structure may also be selected. According to the structure of the light emitting diode, the electrode arrangement may be properly adjusted. The light emitting diode 20 may be applied as described above.
광변조기(30)는 제2영역(12)에 배치될 수 있다. 광변조기(30)는 발광다이오드(20)와 동일하게 제1방향으로 삽입될 수 있다. 광변조기(30)의 구체적인 구성은 전술한 내용이 그대로 적용될 수 있다. 광변조기(30)는 역바이어스 전압이 인가되면 광을 통과시키고, 제로 바이어스에서는 광을 흡수할 수 있다.The optical modulator 30 may be disposed in the second region 12. The optical modulator 30 may be inserted in the first direction in the same manner as the light emitting diodes 20. Specific configuration of the optical modulator 30 may be applied as described above. The optical modulator 30 may pass light when the reverse bias voltage is applied, and absorb the light at zero bias.
광학부재(10)의 제3영역(13)에는 반사경(16)이 배치될 수 있다. 반사경(16)은 제1방향으로 출력된 제1광을 제2방향(Y방향)으로 반사할 수 있다. 제2방향은 제1방향과 교차하는 방향이다. 예시적으로 제1방향과 제2방향은 서로 수직할 수 있다. 이러한 구조는 수평형 광 송신모듈을 가능하게 한다.The reflector 16 may be disposed in the third region 13 of the optical member 10. The reflector 16 may reflect the first light output in the first direction in the second direction (Y direction). The second direction is a direction intersecting with the first direction. In exemplary embodiments, the first direction and the second direction may be perpendicular to each other. This structure enables a horizontal light transmission module.
광(L12)은 제3영역(13)에 마련된 광 도파로(17)에 의해 가이드되어 광변조기(30)의 측면으로 주입될 수 있다. 즉, 제3영역(13)은 발광다이오드(20)에서 출력된 광을 광변조기(30)의 광흡수층(33)에 주입하는 광학적 채널일 수 있다.The light L12 may be guided by the optical waveguide 17 provided in the third region 13 and injected into the side of the optical modulator 30. That is, the third region 13 may be an optical channel for injecting light output from the light emitting diodes 20 into the light absorption layer 33 of the light modulator 30.
광흡수층을 통과한 광(L13)은 외부 광섬유(211)에 입사되어 외부로 전송될 수 있다. 광학적 결합을 위해 광변조기(30)와 외부 광섬유(211)사이에는 렌즈 등이 더 배치될 수 있다.The light L13 passing through the light absorbing layer may be incident on the external optical fiber 211 and transmitted to the outside. A lens or the like may be further disposed between the optical modulator 30 and the external optical fiber 211 for optical coupling.
도 24를 참고하면, 광 도파로(17)는 광변조기(30)에 가까워질수록 직경이 작아지도록 경사면(17a)이 형성될 수 있다. 이러한 구성에 의하면 광 도파로(17)의 끝단에서 광이 퍼지는 현상을 억제할 수 있다.Referring to FIG. 24, an inclined surface 17a may be formed in the optical waveguide 17 so that the diameter thereof decreases as the optical waveguide 17 approaches the optical modulator 30. According to such a structure, the phenomenon which light spreads at the end of the optical waveguide 17 can be suppressed.
광 도파로(17)는 복수 개의 도파로가 모듈화된 구조(bundle waveguide)일 수 있다. 그러나, 광 도파로(17)의 구조는 반드시 이에 한정하지 않고, 도 25과 같이 일반적인 광 도파로(18)가 선택될 수도 있다. 광 도파로는 경사면(18a)을 가질 수 있다.The optical waveguide 17 may be a bundle waveguide in which a plurality of waveguides are modular. However, the structure of the optical waveguide 17 is not necessarily limited thereto, and a general optical waveguide 18 may be selected as shown in FIG. 25. The optical waveguide may have an inclined surface 18a.
도 26 및 도 27을 참고하면, 제3영역(13)은 튜브 형상의 중공관(19), 및 중공관(19)에 배치되는 필터(60)를 포함할 수 있다. Referring to FIGS. 26 and 27, the third region 13 may include a hollow tube 19 having a tubular shape, and a filter 60 disposed on the hollow tube 19.
필터(60)는 로우밴드 패스필터, 하이밴드 패스필터, 및 이들이 결합된 필터일 수 있다. 이러한 구성에 의하면, 필터(60)에 의해 원하는 파장대의 광만을 필터링할 수 있다. Filter 60 may be a low band pass filter, a high band pass filter, and a combination thereof. According to such a structure, the filter 60 can filter only the light of a desired wavelength band.
중공관(19)은 내부에 반사층(19a)이 형성될 수 있다. 반사층(19a)은 반사율이 높은 Al, Ag등을 포함할 수 있으나 이에 한정하지 않는다. 반사층(19a)은 저온 및 고온(150도 이상)에서도 반사도를 유지할 수 있어 온도 영향을 최소화할 수 있다. 반사층의 재질은 중공관(19)의 재질에 따라 적절히 선택될 수 있다.The hollow tube 19 may have a reflective layer 19a formed therein. The reflective layer 19a may include Al, Ag, or the like having high reflectance, but is not limited thereto. The reflective layer 19a can maintain reflectivity even at low and high temperatures (150 degrees or more), thereby minimizing temperature effects. The material of the reflective layer may be appropriately selected depending on the material of the hollow tube 19.
예시적으로 중공관(19)은 플라스틱 또는 금속관일 수 있다. 중공관(19)의 내경은 수십um에서 수 mm일 수 있다. 중공관(19)의 내경은 전송거리 및 용도에 따라 적절히 조절될 수 있다.By way of example, the hollow tube 19 may be a plastic or metal tube. The inner diameter of the hollow tube 19 may be from several tens of um to several mm. The inner diameter of the hollow tube 19 can be appropriately adjusted according to the transmission distance and the use.
도 28을 참고하면, 제3영역(13)은 복수 개의 격자(grating, 14)가 형성될 수 있다. 이러한 복수 개의 격자(14)는 제1광(L11)을 원하는 파장대로 제어할 수 있다. 격자(14)와 광변조기(30) 사이에는 별도의 필터(60)가 더 배치될 수 있다.Referring to FIG. 28, a plurality of gratings 14 may be formed in the third region 13. The plurality of gratings 14 may control the first light L11 to a desired wavelength. A separate filter 60 may be further disposed between the grating 14 and the optical modulator 30.
도 29를 참고하면, 발광다이오드(20)에서 출력된 광의 스펙트럼(213)이 가장 폭이 넓고 필터(60)를 통과한 광의 스펙트럼(211)이 가작 폭이 작음을 알 수 있다. Referring to FIG. 29, it can be seen that the spectrum 213 of the light output from the light emitting diode 20 has the largest width and the spectrum 211 of the light passing through the filter 60 has a small false width.
즉, 발광다이오드(20)에서 출력된 광은 점차 파장폭이 좁아지고 강도가 낮아짐을 알 수 있다. 이러한 구성에 의하면 원하는 파장대의 광만을 필터링할 수 있어 상대적으로 낮은 동작전압으로 구동할 수 있다.That is, it can be seen that the light output from the light emitting diodes 20 gradually decreases in wavelength and decreases in intensity. According to such a configuration, it is possible to filter only light in a desired wavelength band, so that it can be driven at a relatively low operating voltage.

Claims (20)

  1. 발광다이오드; 및Light emitting diodes; And
    상기 발광다이오드에서 출사된 제1광을 변조하는 광변조기를 포함하고,An optical modulator for modulating the first light emitted from the light emitting diode,
    상기 발광다이오드와 광변조기는 GaN을 포함하고,The light emitting diode and the light modulator include GaN,
    상기 광변조기는 전압 인가시 상기 제1광을 투과하는 광 송신모듈.The optical modulator transmits the first light when a voltage is applied.
  2. 제1항에 있어서,The method of claim 1,
    상기 광변조기는 역바이어스 전압 인가시 상기 제1광을 통과시키는 광 송신모듈.And the optical modulator passes the first light when a reverse bias voltage is applied.
  3. 제1항에 있어서,The method of claim 1,
    상기 제1광은 가시광 파장대의 광인 광 송신모듈.And the first light is light in a visible light wavelength band.
  4. 제1항에 있어서,The method of claim 1,
    상기 발광다이오드와 상기 광변조기는 질화물 반도체층을 포함하는 광 송신모듈.The light emitting diode and the optical modulator comprises a nitride semiconductor layer.
  5. 제1항에 있어서,The method of claim 1,
    상기 발광다이오드는,The light emitting diode,
    제1하부 반도체층;A first lower semiconductor layer;
    상기 제1하부 반도체층 상에 배치된 활성층; 및 An active layer disposed on the first lower semiconductor layer; And
    상기 활성층 상에 배치된 제1상부 반도체층을 포함하는 광 송신모듈.And a first upper semiconductor layer disposed on the active layer.
  6. 제5항에 있어서,The method of claim 5,
    상기 광변조기는,The optical modulator,
    제2하부 반도체층;A second lower semiconductor layer;
    상기 제2하부 반도체층 상에 배치되어 상기 발광다이오드에서 출력된 광을 흡수하는 광흡수층; 및A light absorption layer disposed on the second lower semiconductor layer to absorb light output from the light emitting diode; And
    상기 광흡수층 상에 배치되는 제2상부 반도체층을 포함하는 광 송신모듈.And a second upper semiconductor layer disposed on the light absorption layer.
  7. 제6항에 있어서,The method of claim 6,
    상기 활성층 및 광흡수층은 GaN을 포함하는 광 송신모듈.And the active layer and the light absorbing layer comprise GaN.
  8. 제6항에 있어서,The method of claim 6,
    상기 광흡수층은 역바이어스 전압 인가시 에너지 밴드갭이 커지는 광 송신모듈.The light absorption layer is an optical transmission module that the energy band gap is increased when the reverse bias voltage is applied.
  9. 제6항에 있어서,The method of claim 6,
    상기 광흡수층은 역바이어스 전압 인가시 흡수 파장대가 상기 제1광의 파장대보다 짧아지는 광 송신모듈.The light absorbing layer is a light transmitting module, the absorption wavelength band is shorter than the wavelength band of the first light when the reverse bias voltage is applied.
  10. 제1항에 있어서,The method of claim 1,
    상기 제1광의 파장폭을 조절하는 필터를 포함하고,A filter for adjusting a wavelength width of the first light,
    상기 광변조기는 상기 필터를 통과한 제2광을 변조하고, The optical modulator modulates the second light passing through the filter,
    상기 제2광의 반치폭은 상기 제1광의 반치폭보다 좁은 광 송신모듈.And a half width of the second light is narrower than a half width of the first light.
  11. 제10항에 있어서,The method of claim 10,
    상기 제1광의 반치폭은 10 내지 35nm인 광 송신모듈.The full width at half maximum of the first light is 10 to 35nm.
  12. 제10항에 있어서,The method of claim 10,
    상기 제2광의 반치폭은 2nm 내지 10nm인 광 송신모듈.The full width at half maximum of the second light is 2nm to 10nm.
  13. 제10항에 있어서,The method of claim 10,
    상기 필터는 순차적으로 적층되는 제1반사부, 캐비티 및 제2반사부를 포함하고,The filter includes a first reflecting portion, a cavity and a second reflecting portion sequentially stacked,
    상기 제1반사부 및 상기 제2반사부는 서로 상이한 산화물을 포함하는 제1광학층과 제2광학층이 교차로 적층되고,The first and second reflective parts are laminated with a first optical layer and a second optical layer including different oxides alternately.
    상기 캐비티는 제2광학층이 복수 개로 적층되고, The cavity has a plurality of second optical layers are stacked,
    상기 캐비티는 상기 제1광학층 또는 상기 제2광학층보다 두꺼운 광 송신모듈.And the cavity is thicker than the first optical layer or the second optical layer.
  14. 제13항에 있어서,The method of claim 13,
    상기 제2광학층은 상기 제1광학층보다 굴절률이 높은 광 송신모듈.And the second optical layer has a higher refractive index than the first optical layer.
  15. 제14항에 있어서,The method of claim 14,
    상기 제1광학층은 1.4 내지 1.5의 굴절률을 가지고, 상기 제2광학층은 2.0 내지 3.0의 굴절률을 가지는 광 송신모듈.The first optical layer has a refractive index of 1.4 to 1.5, the second optical layer has a refractive index of 2.0 to 3.0.
  16. 제14항에 있어서,The method of claim 14,
    상기 제1광학층은 SiOX(1≤X≤3) 또는 MgF2 중 어느 하나이고, The first optical layer is any one of SiO X (1 ≦ X ≦ 3) or MgF 2 ,
    상기 제2광학층은 TiOx(1≤X≤3), TaOx(1≤X≤3) 또는 ZrO2 중 하나인 광 송신모듈.And the second optical layer is one of TiOx (1 ≦ X ≦ 3), TaOx (1 ≦ X ≦ 3) or ZrO 2 .
  17. 제1항에 있어서,The method of claim 1,
    상기 발광다이오드의 활성층과 상기 광변조기의 광흡수층은 조성이 동일한 광 송신모듈.And an active layer of the light emitting diode and a light absorbing layer of the light modulator having the same composition.
  18. 제1항에 있어서,The method of claim 1,
    상기 발광다이오드와 광변조기 사이에 배치되는 제1렌즈를 포함하는 광 송신모듈.And a first lens disposed between the light emitting diode and the optical modulator.
  19. 제1항에 따른 광 송신모듈; 및The optical transmission module according to claim 1; And
    외부에서 입사된 광신호를 전기신호를 변환하는 광 수신모듈을 포함하는 광트랜시버.An optical transceiver comprising an optical receiving module for converting an electrical signal into an optical signal incident from the outside.
  20. 제19항에 따른 복수 개의 광트랜시버; 및A plurality of optical transceivers according to claim 19; And
    상기 복수 개의 광트랜시버를 연결하는 광섬유를 포함하는 광통신 시스템.And an optical fiber connecting the plurality of optical transceivers.
PCT/KR2016/007413 2015-07-10 2016-07-08 Optical transmission module, optical transceiver, and optical communication system including same WO2017010743A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680052425.4A CN108141285B (en) 2015-07-10 2016-07-08 Optical transmission module, optical transceiver, and optical communication system including the same
EP16824660.1A EP3322109B1 (en) 2015-07-10 2016-07-08 Optical transmission module, optical transceiver, and optical communication system including same
US15/743,284 US10451905B2 (en) 2015-07-10 2016-07-08 Optical transmission module, optical transceiver, and optical communication system including same
US16/591,640 US10663774B2 (en) 2015-07-10 2019-10-03 Optical transmission module, optical transceiver, and optical communication system including same

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
KR20150098562 2015-07-10
KR10-2015-0098562 2015-07-10
KR10-2015-0098561 2015-07-10
KR20150098561 2015-07-10
KR1020160082991A KR101848804B1 (en) 2015-07-10 2016-06-30 Optical module, optical transceiver and communication system including the same
KR1020160082995A KR101801779B1 (en) 2015-07-10 2016-06-30 Optical module, optical transceiver and communication system including the same
KR1020160082986A KR101876949B1 (en) 2015-07-10 2016-06-30 Optical module, optical transceiver and communication system including the same
KR10-2016-0082991 2016-06-30
KR10-2016-0082986 2016-06-30
KR10-2016-0082995 2016-06-30

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/743,284 A-371-Of-International US10451905B2 (en) 2015-07-10 2016-07-08 Optical transmission module, optical transceiver, and optical communication system including same
US16/591,640 Continuation US10663774B2 (en) 2015-07-10 2019-10-03 Optical transmission module, optical transceiver, and optical communication system including same

Publications (1)

Publication Number Publication Date
WO2017010743A1 true WO2017010743A1 (en) 2017-01-19

Family

ID=57758195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/007413 WO2017010743A1 (en) 2015-07-10 2016-07-08 Optical transmission module, optical transceiver, and optical communication system including same

Country Status (1)

Country Link
WO (1) WO2017010743A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10451905B2 (en) 2015-07-10 2019-10-22 Industry-University Cooperation Foundation Hanyang University Erica Campus Optical transmission module, optical transceiver, and optical communication system including same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010027717A (en) * 1999-09-15 2001-04-06 정선종 High speed semiconductor optical modulator and its fabrication method
US20020167710A1 (en) * 2001-03-19 2002-11-14 Chan Wee Piak Full spectrum optical communication system and methods thereof
US20080210957A1 (en) * 2006-01-06 2008-09-04 Yoshiaki Watanabe Light emitting diode, method for manufacturing light emitting diode, integrated light emitting diode, method for manufacturing integrated light emitting diode, light emitting diode backlight, light emitting diode illumination device, light emitting diode display, electronic apparatus, electronic device, and method for manufacturing electronic device
KR20100066842A (en) * 2008-12-10 2010-06-18 한국전자통신연구원 Optical loss modulator and manufacturing method thereof
JP2012137541A (en) * 2010-12-24 2012-07-19 Toyota Industries Corp Modulator, transmitter, and communication system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010027717A (en) * 1999-09-15 2001-04-06 정선종 High speed semiconductor optical modulator and its fabrication method
US20020167710A1 (en) * 2001-03-19 2002-11-14 Chan Wee Piak Full spectrum optical communication system and methods thereof
US20080210957A1 (en) * 2006-01-06 2008-09-04 Yoshiaki Watanabe Light emitting diode, method for manufacturing light emitting diode, integrated light emitting diode, method for manufacturing integrated light emitting diode, light emitting diode backlight, light emitting diode illumination device, light emitting diode display, electronic apparatus, electronic device, and method for manufacturing electronic device
KR20100066842A (en) * 2008-12-10 2010-06-18 한국전자통신연구원 Optical loss modulator and manufacturing method thereof
JP2012137541A (en) * 2010-12-24 2012-07-19 Toyota Industries Corp Modulator, transmitter, and communication system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10451905B2 (en) 2015-07-10 2019-10-22 Industry-University Cooperation Foundation Hanyang University Erica Campus Optical transmission module, optical transceiver, and optical communication system including same
US10663774B2 (en) 2015-07-10 2020-05-26 Industry-University Cooperation Foundation Hanyang University Erica Campus Optical transmission module, optical transceiver, and optical communication system including same

Similar Documents

Publication Publication Date Title
US3952265A (en) Monolithic dual mode emitter-detector terminal for optical waveguide transmission lines
US10901244B2 (en) Method and system for a low parasitic silicon high-speed phase modulator using PN finger waveguides
US10663774B2 (en) Optical transmission module, optical transceiver, and optical communication system including same
CN110730917B (en) Method and system for integrated photodetector with configuration emission for bandwidth boosting and selective illumination of adaptive junction distribution
CN109791315A (en) Method and system for vertical junction High speed phase modulators
EP3360210A1 (en) An apparatus comprising a waveguide-modulator and laser-diode and a method of manufacture thereof
WO2020122491A1 (en) Active optical cable
WO2017010743A1 (en) Optical transmission module, optical transceiver, and optical communication system including same
WO2020231171A1 (en) Connector plug and active optical cable assembly using same
Kanazawa et al. Compact flip-chip interconnection 112-Gbit/s EADFB laser array module with high eye-mask margin
Djordjevic et al. Packet switching performance at 10 gb/s across a 4/spl times/4 optical crosspoint switch matrix
WO2014200189A1 (en) Laser device having wavelength stabilizer
WO2019035653A1 (en) Surface emitting laser package
KR101876949B1 (en) Optical module, optical transceiver and communication system including the same
WO2020091383A1 (en) Surface-emitting laser element and light-emitting device comprising same
WO2020045934A1 (en) Surface-emitting laser element and light-emitting device comprising same
WO2014208892A1 (en) Optical receiver using wavelength tunable filter
Oguro et al. 1.25 Gb/s WDM bi directional transceiver module using DFB-LD and PLC with spot-size conversion region
US20180307063A1 (en) Far field spatial modulation
WO2018074885A1 (en) Semiconductor device and semiconductor device package comprising same
KR101801582B1 (en) Optical signal transmitter and receiver module
Makino et al. Uncooled electroabsorption modulator integrated DFB laser
EP4207519A1 (en) Laser chip, transmitting optical sub-assembly, optical module, and laser generation device
Yoshino et al. Three-optical-port module for monolithic optical gate integrated with photodiode and electroabsorption modulator
Sumi et al. Semi-Cooled Operation (TLD= 50? C) of 10.7-Gbit/s 1.55-μm Electro-Absorption Modulator Integrated DFB Laser for 80 km Transmission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16824660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016824660

Country of ref document: EP