WO2017010522A1 - Work vehicle - Google Patents

Work vehicle Download PDF

Info

Publication number
WO2017010522A1
WO2017010522A1 PCT/JP2016/070709 JP2016070709W WO2017010522A1 WO 2017010522 A1 WO2017010522 A1 WO 2017010522A1 JP 2016070709 W JP2016070709 W JP 2016070709W WO 2017010522 A1 WO2017010522 A1 WO 2017010522A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
engine speed
load
value
work vehicle
Prior art date
Application number
PCT/JP2016/070709
Other languages
French (fr)
Japanese (ja)
Inventor
祥太 木村
秀一 森木
忠史 尾坂
徳孝 伊藤
幸次 兵藤
武田 和也
Original Assignee
株式会社Kcm
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Kcm filed Critical 株式会社Kcm
Publication of WO2017010522A1 publication Critical patent/WO2017010522A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/04Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/06Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving electric generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a work vehicle.
  • the engine control of the work vehicle is configured as so-called rotational speed control in which the engine rotational speed is approximately proportional to the amount of depression of the accelerator pedal, unlike an automobile. This is for adjusting the discharge flow rate of the hydraulic pump driven by the engine, that is, the speed of the working machine with the accelerator pedal.
  • the engine speed and the traveling speed that is, the amount of depression of the accelerator pedal and the traveling speed are approximately proportional to each other because of its characteristics.
  • the engine output required when continuously operating at a constant speed without operating the work machine in the wheel loader is used when operating the work machine while running during excavation work or the like (hereinafter referred to as “composite operation”). It is smaller than the required engine power. Nevertheless, the operator depresses the accelerator pedal to the maximum amount in order to increase the productivity by traveling at a high speed during continuous travel, so the engine speed becomes a high speed corresponding to the amount of depression of the accelerator pedal. However, in such a situation, the engine is operated at a high speed even though the required engine output is small, so energy loss due to friction is large, and engine control is improved in terms of fuel efficiency. There was room.
  • some work vehicles including a wheel loader, a dump truck, and a forklift include a continuously variable transmission mechanism in a power transmission device that transmits engine power to wheels.
  • a work vehicle having a hydrostatic continuously variable transmission (HST) drives a hydraulic pump by an engine to send pressure oil to a hydraulic motor, and drives wheels by the hydraulic motor.
  • HST hydrostatic continuously variable transmission
  • the driving force and traveling speed are linked to the engine speed when the gear stage is fixed.
  • the driving force and traveling speed does not depend on the engine rotational speed, and the driving force, traveling speed, and engine rotational speed can be controlled independently.
  • Patent Document 1 discloses that the upper limit of the accelerator opening (engine speed) becomes closer to the maximum traveling speed when traveling near a predetermined maximum traveling speed.
  • a work vehicle for reducing the size of the vehicle is disclosed.
  • Patent Document 2 when the low load condition indicating that the vehicle is in a low load condition is satisfied, the upper limit value of the engine output torque is reduced more than when the low load condition is not satisfied.
  • a work vehicle having a control unit for controlling the engine is disclosed.
  • Patent Document 1 is only intended for high-speed traveling on flat ground, and does not control the upper limit value of the accelerator opening (engine speed) in consideration of the combined operation. For this reason, there is a possibility that the engine speed cannot be increased quickly when the shift from the high speed traveling to the combined operation is performed, resulting in insufficient output.
  • the invention described in Patent Document 2 estimates the vehicle load in the current work phase, and lowers the engine speed when the load satisfies a low load condition. ) The engine speed is not controlled with due consideration of the load. For this reason, if the next work phase is a high load, priority is given to avoiding engine output shortage, so the engine speed cannot be lowered sufficiently, and the effect of reducing fuel consumption may be insufficient.
  • the above indications are not limited to HST type work vehicles, but apply to any power transmission device that transmits engine power to wheels provided with a continuously variable transmission function.
  • a hydraulic mechanical system that drives a hydraulic pump through an axle mechanically connected to the engine while driving a hydraulic pump by driving a hydraulic pump by the engine and driving the wheels by the hydraulic motor.
  • HMT continuously variable transmission
  • the above indication is applicable not only to the work vehicle having the above-described mechanical continuously variable transmission including the CVT but also to the work vehicle having the electric continuously variable transmission.
  • a work vehicle having an electric continuously variable transmission for example, a plurality of electric motors connected to an axle are driven using electric power generated by a motor / generator using the rotational force of an engine, thereby There are hybrid work vehicles that drive wheels.
  • An object of the present invention is to provide a work vehicle that can effectively reduce fuel consumption during high-speed traveling while avoiding engine output shortage in a high load state.
  • a work vehicle includes an engine, wheels, a work device driven by at least one actuator, an operation device for controlling the operation of the at least one actuator, A power transmission device that converts hydraulic power or electric power output from the engine into hydraulic pressure or electricity and transmits it to the wheels, and controls the engine speed within a range below a limit value according to the engine load or accelerator operation amount.
  • the control device configured as described above, when the actual traveling speed of the work vehicle exceeds a threshold value determined according to the load amount of the work vehicle, the actual traveling speed is less than the threshold value or less.
  • a control device configured to execute a restriction process for setting the restriction value to a low value.
  • the load state of the work vehicle is predicted based on the load amount and the actual traveling speed, and the engine speed is reduced when the possibility of the high load state is low. Fuel consumption during high-speed traveling can be effectively reduced while avoiding insufficient output.
  • FIG. The side view of the wheel loader concerning an embodiment of the invention.
  • the system block diagram of the wheel loader 100 shown in FIG. The block diagram of the processing function performed with the control apparatus 240.
  • FIG. The flowchart of the control which the high load estimation part 331 performs.
  • Flowchart of control executed by hydraulic pump upper limit torque setting unit 333 An example of the control output when the load is large.
  • An example of a control output when the amount of cargo is small.
  • FIG. The system block diagram of an HST type wheel loader.
  • FIG. 1 is a side view of a wheel loader according to an embodiment of the present invention.
  • the wheel loader 100 in this figure includes a vehicle body 110 and an articulated work machine 150 attached to the front of the vehicle body 110.
  • the working machine 150 is a working device driven by at least one actuator, and the working machine 150 shown in the drawing is driven to extend and contract to drive the lift arm 155 and the bucket 151 and the lift arm 155 and the bucket 151.
  • a lift cylinder 152 and a bucket cylinder 153 are provided as hydraulic actuators (hydraulic cylinders). Although one lift arm 155 and one lift cylinder 152 are provided on the left and right sides of the vehicle body 112, the right lift arm and lift cylinder hidden in FIG.
  • the lift arm 155 pivots up and down (up and down) as the lift cylinder 152 extends and contracts.
  • the bucket 151 rotates (dump operation or cloud operation) as the bucket cylinder 153 expands and contracts.
  • the illustrated wheel loader 100 includes a Z link type (bell crank type) link mechanism for operating the bucket 151.
  • Wheels 1a, 1b, 1c, and 1d are driven by a power transmission device 210 (described later) using an engine 201 (described later) as a power source.
  • the driving force is transmitted to the ground via tires disposed on the outer periphery of the vehicle 1 to move the vehicle body 110 forward or backward.
  • FIG. 2 is a system configuration diagram of the wheel loader 100 shown in FIG. Note that the same parts as those in the previous figure may be denoted by the same reference numerals and description thereof may be omitted (the same applies to the subsequent figures).
  • the engine 201 supplies power to the power transmission device 210 and the hydraulic pump 211 via the output shaft. Control of the engine 201 will be described later.
  • the power transmission device (power transmission mechanism) 210 includes a continuously variable transmission mechanism, and converts a part of the power output from the engine 201 to hydraulic pressure or electricity and transmits it to the wheel 1.
  • the power transmission device 210 in FIG. 11 employs an HST system that converts engine power into hydraulic pressure and transmits it to the wheel 1.
  • the power transmission device 210 in FIG. And the engine 201 drives the hydraulic pump 171 via the power transmission mechanical unit 173 to send the hydraulic oil to the hydraulic motor 172, and adopts the HMT type in which the hydraulic motor 172 drives the wheels 1;
  • the hydraulic pump 211 is driven by at least one of the power transmission device 210 and the engine 201.
  • the hydraulic pump 211 supplies pressure oil to the plurality of hydraulic actuators (for example, the lift cylinder 152 and the bucket cylinder 153) related to the work machine 150 via the control valve 212, and appropriately drives the plurality of hydraulic actuators. Since the hydraulic pump 211 uses the engine 201 as an indirect power source, the plurality of hydraulic actuators using the hydraulic pump 211 as a drive source also use the engine 201 as an indirect power source.
  • the control valve 212 is operated by a pilot pressure or an electric signal output from a work implement lever (operation device) 222 for controlling operations of a plurality of hydraulic actuators related to the work implement 150.
  • a work implement lever operation device
  • the control valve 212 operates, the amount and direction of the pressure oil supplied from the hydraulic pump 211 to the hydraulic actuator (lift cylinder 152, bucket cylinder 153) are adjusted.
  • the control device 240 is a computer (for example, a microcomputer) for executing various types of information processing related to the vehicle.
  • the control device 240 is configured to control the engine speed within a range equal to or less than the limit value in accordance with an engine output request command such as a load on the engine 201 or an operation amount of the accelerator pedal 224.
  • the “limit value” here is the maximum value on the horizontal axis in the engine performance curve defined on the plane with the engine torque (or engine output) as the vertical axis and the engine speed as the horizontal axis.
  • the “range below” indicates a range below the maximum value. Therefore, the engine speed control here refers to normal control for controlling the engine speed within a normally usable range allowed by the performance of the engine.
  • this limit value may be referred to as a “reference limit value”.
  • a traveling speed threshold value (details will be described later) determined according to the load amount of the wheel loader 100 (the weight of the transported material in the bucket 151).
  • the process of setting the limit value to a value lower than the value (reference limit value) when the actual travel speed is less than or equal to the travel speed threshold (this process is referred to as “engine speed limit process” or “limit process” in this paper) Is configured to run). Details of the control processing performed by the control device 240 will be described later.
  • FIG. 10 shows the hardware configuration of the control device 240.
  • the control device 240 includes an input unit 91, a central processing unit (CPU) 92 that is a processor, a read-only memory (ROM) 93 and a random access memory (RAM) 94 that are storage devices, and an output unit 95. ing.
  • the input unit 91 inputs information and signals from an external device, and performs A / D conversion as necessary.
  • the ROM 93 is a recording medium in which a program or the like is stored, and the CPU 92 performs predetermined arithmetic processing on signals taken from the input unit 91 and the memories 93 and 94 in accordance with the program stored in the ROM 93.
  • the output unit 95 creates an output signal according to the calculation result in the CPU 92 and outputs the signal to an external device.
  • 10 includes a semiconductor memory such as a ROM 93 and a RAM 94 as storage devices, but may include a magnetic storage device such as a hard disk drive and store programs therein.
  • the work machine lever operation amount detector 225 detects the operation amount of the work machine lever 222 and outputs it to the control device 240.
  • the accelerator operation amount detector 227 detects the operation amount (depression amount) of the accelerator pedal 224 and outputs it to the control device 240.
  • the traveling speed detector 223 detects the traveling speed of the wheel loader 100 where the wheels 1 are driven by the power transmission device 210 and outputs the detected traveling speed to the control device 240.
  • the lift cylinder pressure detector 220 detects the bottom side pressure of the lift cylinder 152 and outputs it to the control device 240.
  • Bucket cylinder pressure detector 221 detects the bottom side pressure of bucket cylinder 153 and outputs it to control device 240.
  • the hydraulic pump pressure detector 235 detects the discharge pressure of the hydraulic pump 211 and outputs it to the control device 240.
  • the hydraulic pump displacement detector 236 detects the displacement (or tilt angle) of the hydraulic pump 211 and outputs it to the control device 240.
  • the work implement lever 222 is not limited to one type in which both the lift cylinder 152 and the bucket cylinder 153 can be operated individually or simultaneously with one lever, and the lift cylinder 152 and the bucket cylinder 153 can be operated with separate levers, respectively. Two types may be used. In the latter case, the work machine lever operation amount detector 225 may detect two lever operation amounts.
  • the traveling speed detector 223 detects the speed of the wheel 1 (the number of revolutions), the output number of revolutions of the power transmission device 210 (the number of revolutions of the output shaft), the number of revolutions of the propeller shaft 215, and the like. Thus, the traveling speed of the wheel loader 100 can be calculated.
  • the engine 201 has an electronic governor 230 that controls the fuel injection amount, and an engine speed detector 226 that detects the speed of the engine 201.
  • the control device 240 compares the engine speed command with the actual engine speed detected by the engine speed detector 226, and increases the fuel injection amount when the actual engine speed is lower than the engine speed command value. Command the electronic governor 230. On the contrary, when the actual engine speed is higher than the engine speed command value, a command is given to reduce the fuel injection amount.
  • the engine load estimation device 231 mounted on the engine 201 estimates the engine load from the fuel injection amount by the electronic governor 230 and the like. The engine load estimation by the engine load estimation device 231 may be executed in place of the control device 240 by inputting necessary information such as the fuel injection amount by the electronic governor 230 to the control device 240.
  • Control device 240 A block diagram of processing functions executed by the control device 240 is shown in FIG.
  • the control device 240 controls the engine speed within a range equal to or less than a reference limit value according to the engine load input from the engine load estimation device 231 or the accelerator operation amount input from the accelerator operation amount detector 227. May function as an engine control device.
  • the control device 240 includes a first engine speed command value setting unit 336, a second engine speed command value setting unit 330, an engine speed command value processing unit 335, and a high load prediction. Functions as a unit 331, a work implement load calculation unit 345, an engine speed limit unit 332, a torque reduction flag output unit 334, and a hydraulic pump upper limit torque setting unit 333.
  • the first engine speed command value setting unit 336 increases the engine speed command value (first command value) as the engine load 320 estimated by the engine load estimation device 231 increases.
  • the second engine speed command value setting unit 330 increases the engine speed command value (second command value) as the accelerator operation amount 310 detected by the accelerator operation amount detector 227 increases.
  • the engine speed command value processing unit 335 includes an engine speed command value (first command value) determined by the first engine speed command value setting unit 336 and an engine determined by the second engine speed command value setting unit 330. Of the rotational speed command values (second command values), the larger one is selected and output to the engine rotational speed limiter 332.
  • the high load prediction unit 331 predicts a future high load state of the wheel loader 100 (vehicle), and outputs an engine speed limit command to the engine speed limit unit 332 when a high load is not expected. When the load is expected, the engine speed limit command is not output.
  • an index for predicting a high load state there are, for example, the weight of the load in the bucket 151 (load amount), the traveling speed of the vehicle, the engine load, the working machine lever operation amount, and the load of the working machine 150 (working machine load). .
  • the high load prediction unit 331 of the present embodiment detects the lift cylinder pressure 315 detected by the lift cylinder pressure detector 220 and the bucket cylinder pressure detector 221.
  • the bucket cylinder pressure 350, the traveling speed 314 detected by the traveling speed detector 223, and the engine load 320 estimated by the engine load estimating device 231 are input.
  • the work machine load calculation unit 345 is detected by the actual engine speed 317 detected by the engine speed detector 226, the hydraulic pump pressure 340 detected by the hydraulic pump pressure detector 235, and the hydraulic pump capacity detector 236.
  • the working machine load is calculated based on the hydraulic pump capacity 341 and output to the engine speed limiter 332.
  • the engine speed limit unit 332 is commanded by the work machine load calculated by the work machine load calculation unit 345, the work machine lever operation amount 316 detected by the work machine lever operation amount detector 225, and the high load prediction unit 331. Based on the engine speed limit command and the actual engine speed 317 detected by the engine speed detector 226, the engine speed command value output by the engine speed command value processing unit 335 is limited (engine speed). It is determined whether or not to perform processing for reducing the rotational speed specified by the command value. Then, engine speed limiter 332 outputs to engine governor 230 an engine speed command value that is appropriately limited in accordance with the determination.
  • the torque reduction flag output unit 334 is commanded by the actual engine speed 317 detected by the engine speed detector 226, the engine speed limit command commanded by the high load prediction unit 331, and the engine speed limit unit 332.
  • a torque reduction flag is set based on the engine speed command value 360 and output to the hydraulic pump upper limit torque setting unit 333.
  • the hydraulic pump upper limit torque setting unit 333 sets the hydraulic pump upper limit torque command value based on the actual engine speed 317 detected by the engine speed detector 226 and the torque reduction flag output from the torque reduction flag output unit 334. Set and output to the hydraulic pump 211.
  • the first engine speed command value setting unit 336 is not necessarily provided as a part for outputting the engine speed command value to the engine speed command value processing unit 335, and the second engine speed command value setting unit is not necessarily provided. 330 may be comprised only.
  • the high load predicting unit 331 may use only the lift cylinder pressure 315 by the lift cylinder pressure detector 220 when calculating the load amount in the bucket 151, but not limited thereto, as shown in FIG. A bucket cylinder pressure by the pressure detector 221 may be input.
  • FIG. 4 is a flowchart of the control related to the high load prediction unit 331 in the control shown in FIG.
  • the high load prediction unit 331 inputs the engine load 320 estimated by the engine load estimation device 231, and when the engine load 320 is equal to or less than a predetermined engine load threshold, the load amount detection step 410 proceeds. In other cases (when the engine load 320 exceeds the threshold value), the routine proceeds to step 421 and the engine speed command value is not issued.
  • the high load prediction unit 331 calculates the load amount in the bucket 151 based on the lift cylinder pressure 315.
  • the high load prediction unit 331 sets a threshold (travel speed threshold) related to the travel speed determined according to the load amount of the wheel loader 100 at that time.
  • the travel speed threshold is set so as to decrease as the load amount detected in the load amount detection step 410 decreases.
  • the travel speed threshold is set so as to decrease linearly as the load amount decreases, but the travel speed threshold monotonously decreases as the load amount decreases. (Including a monotonous decrease in a broad sense including a section in which the traveling speed position is kept constant as the load amount decreases).
  • the routine proceeds to step 420, where an engine speed limit command is issued, and when the traveling speed 314 is lower than the traveling speed threshold, it is predicted that a high load may occur. Then, the routine proceeds to step 421, where the engine speed limit command is not issued.
  • the control device 240 is configured not to issue an engine speed limit command.
  • the engine speed threshold may be set so that the time until the travel speed decreases and the excavation starts is longer than the time required for the engine 201 to increase the output. preferable.
  • the load amount may be detected not only from the lift cylinder pressure 315 but also from the bucket cylinder pressure 350. Further, instead of the cylinder pressures 315 and 350, the load amount may be detected from information obtained by measuring the amount of soil loaded in the bucket 151 using a camera or a radar.
  • the engine load determination step 414 can be omitted, and the process may proceed to step 410 immediately after the start of the flow.
  • FIG. 5 is a flowchart of the control related to the engine speed limiter 332 in the control shown in FIG.
  • the engine speed limiter 332 includes a work implement lever operation amount 316 detected by the work implement lever operation amount detector 225 and a predetermined work implement lever operation amount threshold (see FIG. 8, which will be described later). 9 is compared with the threshold value 630) in FIG.
  • the work implement lever operation amount threshold is a value for detecting whether or not the work implement lever is operated, and for example, a value slightly higher than the pilot pressure value when the work implement lever is in the neutral position may be set. .
  • the engine speed limit unit 332 determines that there is no operation of the work implement lever 222, and proceeds to the work implement load determination step 520.
  • the process returns to the beginning of the flowchart.
  • the engine speed limiter 332 compares the work machine load 355 calculated by the work machine load calculator 345 with a predetermined work load threshold.
  • the work load threshold is a value for detecting the presence or absence of a load on the work implement 150, and may be set to a value slightly higher than the value of the work load in the no-load state, for example.
  • the engine speed limiter 332 determines that there is no work implement load, and proceeds to the engine speed limit command determination step 511, and otherwise returns to the beginning of the flowchart. .
  • the engine speed limit unit 332 determines the presence or absence of the engine speed limit command 313 from the high load prediction unit 331. If there is an output of the engine speed limit command 313, the process proceeds to the first engine speed limit value setting step 512; otherwise, the process proceeds to the second engine speed limit value setting step 513.
  • the engine speed limit value is set to a first engine speed limit value lower than the second engine speed limit value.
  • the engine speed limit value is set to the second engine speed limit value.
  • the second engine speed limit value is set to a value lower than the maximum engine speed value (reference limit value) in the engine performance curve described above.
  • the second engine speed limit value is set to an engine speed at which the engine can output the maximum torque (in other words, the engine speed at which the torque is maximum on the engine performance curve).
  • the second engine speed limit value may be set to an engine speed at which the fuel consumption rate is highest on the engine performance curve.
  • the engine speed limit unit 332 replaces the engine speed command value output from the engine speed command value processing unit 335 with the first engine set in step 512 or step 513.
  • the engine speed limit value or the engine speed limit value is output as the engine speed command value (the process according to step 514 corresponds to the above “engine speed limit process” or “limit process”).
  • the values of the first engine speed limit value and the second engine speed limit value in step 512 and step 513 may be held at preset values, but input devices such as buttons, dials, and monitors are used. Then, the desired value may be changed afterwards.
  • the actual engine speed is acquired, and when there is a difference between the actual engine speed and the engine speed limit value, the engine speed command value is output at a constant rate of change. Processing may be performed so as to reach the rotation speed limit value.
  • the work implement lever operation determination step 510 and / or the work implement load determination step 520 can be omitted. If work implement lever operation determination step 510 is omitted, the engine speed limit value is set to the maximum value of the engine speed in the engine performance curve described above in place of the second engine speed limit value in step 513. Also good.
  • Torque reduction flag output unit 334 It is predicted that the engine will not be in a high load state, an engine speed limit command is issued, and the work implement lever is operated in a state where the engine speed is lowered to the first engine speed limit value or the second engine speed limit value. For example, when shifting to a high load state, the engine may run out of output. In order to avoid this, the controller 240 of the present embodiment uses the torque reduction flag output unit 334 to load the hydraulic pump 211 on the engine 201 based on the comparison between the actual engine speed 317 and the engine speed command value 360. It is determined whether or not it is necessary to reduce.
  • FIG. 6 is a flowchart of the control related to the torque reduction flag output unit 334 in the control shown in FIG.
  • the torque reduction flag output unit 334 determines whether or not the engine speed limit command 313 is issued from the high load prediction unit 331. If the engine speed limit command 313 has been issued, the process proceeds to a torque reduction flag setting step 910. Otherwise, the process proceeds to a torque reduction flag determination step 921.
  • the torque reduction flag output unit 334 determines whether there is a torque reduction flag.
  • the torque reduction flag is used in the processing in the hydraulic pump upper limit torque setting unit 333, which will be described later with reference to FIG. 7, and in this embodiment, the processing content is changed depending on the presence or absence of the torque reduction flag.
  • “present” indicates that the torque reduction flag is “present” and “torn” indicates that “the flag is not set”.
  • step 921 if the torque reduction flag is present, the process proceeds to engine speed determination step 922. Otherwise, the process proceeds to torque reduction flag release step 912.
  • the torque reduction flag output unit 334 determines whether the actual engine speed 317 and the engine speed command value 360 are large or small. If the actual engine speed 317 is smaller than the engine speed command value 360, the process proceeds to the torque reduction flag setting step 910. Otherwise, the process proceeds to the torque reduction flag release step 912.
  • the torque reduction flag output unit 334 sets the torque reduction flag to be present.
  • the torque reduction flag release step 912 the torque reduction flag is set to none. Both steps 910 and 912 then proceed to step 913 and perform processing (torque reduction flag output processing) for outputting the presence or absence of a torque reduction flag to the hydraulic pump upper limit torque setting unit 333.
  • the torque reduction flag output unit 334 outputs the hydraulic pump It is determined that the load of 211 needs to be reduced, and the torque reduction flag is set to “present”.
  • FIG. 7 is a flowchart of the control related to the hydraulic pump upper limit torque setting unit 333 in the control shown in FIG.
  • the hydraulic pump upper limit torque setting unit 333 determines whether there is a torque reduction flag output from the torque reduction flag output unit 334. If the torque reduction flag output from the torque reduction flag output unit 334 is present, the process proceeds to the second hydraulic pump upper limit torque setting step 812. Otherwise (if the torque reduction flag is not present), the first hydraulic pump upper limit torque setting is performed. Proceed to step 811.
  • the hydraulic pump upper limit torque setting unit 333 sets the hydraulic pump upper limit torque based on the actual engine speed 317 detected by the engine speed detector 226 and the graph in FIG. 7. To do.
  • the engine speed indicated by a dotted line (dotted line labeled “second”) in the graph of FIG. 7 indicates a second engine speed limit value (step 513 in FIG. 5).
  • the hydraulic pump upper limit torque is kept constant at an engine speed 317 equal to or higher than the second engine speed limit value, and the engine speed decreases at an engine speed 317 less than the second engine speed limit value.
  • the hydraulic pump upper limit torque is set to decrease.
  • the hydraulic pump upper limit torque setting unit 333 sets the hydraulic pump upper limit torque based on the actual engine speed 317 and the graph in FIG.
  • the one on the right side of the two dotted lines in the graph of FIG. 7 indicates the second engine speed limit value (step 513 in FIG. 5), and the one on the left side (“first”
  • the dotted line marked with “” indicates the first engine speed limit value (step 512 in FIG. 5).
  • the hydraulic pump upper limit torque is kept constant at an engine speed 317 equal to or higher than the second engine speed limit value. When the engine speed 317 is less than the second engine speed limit value, the hydraulic pump upper limit torque is minimized while reaching a value between the second engine speed limit value and the first engine speed limit value. Is set to decrease rapidly.
  • the upper limit torque setting process executed in the first hydraulic pump upper limit torque setting step 811 and the second hydraulic pump upper limit torque setting step 812 is the same as the graph in FIG.
  • the upper limit torque of the hydraulic pump is increased as the engine speed 317 increases.
  • the set value of the second hydraulic pump upper limit torque is set to a value equal to or smaller than the first hydraulic pump upper limit torque set value for the same engine speed. This is to prioritize acceleration of the actual engine speed when there is a torque reduction flag.
  • the hydraulic pump upper limit torque setting unit 333 outputs the hydraulic pump upper limit torque value set in step 812 or step 811 to the hydraulic pump 211 as the hydraulic pump upper limit torque command value.
  • the upper limit torque value of the hydraulic pump 211 is limited to the value set in step 812 or step 811.
  • the upper limit torque value limit control of the hydraulic pump 211 is performed, for example, by setting the displacement (tilt angle) of the hydraulic pump 211 to the discharge pressure so that the product of the discharge pressure and the displacement of the hydraulic pump 211 is kept below a predetermined value. It is possible by appropriately controlling accordingly.
  • the engine speed is set to the first engine speed limit value or the second engine speed limit value.
  • the engine output is first used to increase the engine speed. After that, when the engine speed is increased moderately, the amount of engine output allocated to the hydraulic pump is increased, so that a smooth transition to high-load work is possible without causing engine stall.
  • the torque reduction flag output unit 334 and the hydraulic pump upper limit torque setting unit 333 can be omitted.
  • FIG. 8 and 9 show an example of the operation of the wheel loader according to the present embodiment configured as described above.
  • a graph 620 represents a load amount transition
  • a graph 621 represents a travel speed transition (actual travel speed transition)
  • a graph 622 represents an engine speed limit command transition
  • a graph 623 represents a work implement lever operation amount transition
  • a graph 624 Indicates the engine speed command value transition.
  • the graph 623 shows a work implement lever operation amount threshold value 630
  • the graph 624 shows an engine speed determined by the engine speed command value processing unit 335 (see FIG. 3) based on the engine load or the accelerator operation amount. 604 is shown.
  • FIG. 8 shows an example in which the load amount is relatively larger than that in FIG.
  • the high load prediction unit 331 sets the travel speed threshold (step 411 in FIG. 4) to be higher. For this reason, even if the accelerator pedal depression amount is increased from time 0 600 and the travel speed is increased, the travel speed is smaller than the travel speed threshold and the time is relatively long. Is not issued.
  • the engine speed limiter 332 sets the second engine speed limit value (second limit) as the engine speed limit value, and the engine speed command value does not reach the second limit depending on the depression of the accelerator pedal. To rise.
  • the engine speed limit command 313 is issued to the engine speed limit unit 332.
  • the engine speed limit unit 332 sets the first engine speed limit value (first limit) as the engine speed limit value, so that the limit value of the engine speed command value is from the second limit to the first limit. descend.
  • the high load predicting unit 331 predicts that a high load may occur, and limits the engine speed. Release the command 313. Thereby, the limit value of the engine speed command value increases from the first limit to the second limit.
  • the engine speed limit unit 332 interrupts the execution of the engine speed limit processing, and the accelerator operation amount and load at that time are reduced.
  • the engine speed is increased to a corresponding engine speed 604 (a value determined by the engine speed command value processing unit 335 in FIG. 3).
  • FIG. 9 shows an example of the operation of the wheel loader incorporating the present invention, as in FIG. FIG. 8 shows an example when the load amount is large, whereas FIG. 9 shows an example when the load amount is relatively small. Also in this case, even if the amount of depression of the accelerator pedal is increased from time 700, the traveling speed is smaller than the traveling speed threshold, and the high load predicting unit 331 does not issue an engine speed limit command. Therefore, the engine speed limit unit 332 sets the second limit as the engine speed limit value, and the engine speed command value increases until the second limit.
  • the traveling speed reaches the traveling speed type position at a time point 701 earlier than the case of FIG. 8 (time point 601).
  • the limit value of the engine speed command is the first value until the time point 702 when the travel speed decreases and falls below the travel speed threshold value by, for example, decreasing the accelerator pedal depression amount. Keep in limits. As a result, it takes longer to travel at the first engine speed than when the load is large, so that the fuel consumption can be reduced.
  • the engine speed limit unit 332 interrupts execution of the engine speed limit process, and according to the accelerator operation amount and load at that time Increases to engine speed.
  • the engine speed is set. It was set as the structure which positively increases the time to reduce. By controlling in this way, the smaller the load amount and the higher the traveling speed, the longer the time during which the engine speed is reduced, and the shortage of the engine output during high load conditions is avoided, while the fuel consumption during high-speed traveling is reduced. It can be effectively reduced.
  • FIG. 11 is a system configuration diagram of an example of a wheel loader that employs an HST system that converts engine power into hydraulic pressure and transmits it to the wheel 1 as the power transmission device 210.
  • the wheel loader shown in this figure includes a hydraulic pump 171 connected to the output shaft of the engine 201 and a hydraulic motor 172 that is rotationally driven by pressure oil discharged from the hydraulic pump 171.
  • the hydraulic motor 172 rotationally drives each wheel 1 via an axle (propeller shaft) 215.
  • the power transmission device 210 of FIG. 12 drives the wheel 1 via the power transmission mechanical unit 173 by the engine 201 and also drives the hydraulic pump 171 via the power transmission mechanical unit 173 by the engine 201 to apply pressure oil to the hydraulic motor 172.
  • 1 is a system configuration diagram of an example of a wheel loader adopting an HMT system in which a hydraulic motor 172 drives a wheel 1.
  • the power transmission mechanical unit 173 is a mechanical mechanism that mechanically connects the output shaft of the engine 201, the axle 215, and the hydraulic pumps 211 and 171. For example, there is one using a planetary gear. .
  • FIG. 13 is a system configuration diagram of an example of a wheel loader that employs a hybrid system that converts engine power into electricity and transmits it to the wheel 1 as the power transmission device 210.
  • the wheel loader shown in this figure includes a motor generator (motor / generator (M / G)) 176 that is mechanically connected to and driven by the engine 201, an inverter device 177 that controls the motor generator 176, and A traveling motor 179 that is attached to the propeller shaft 215 via the differential gear (Dif) and the gear (G) and drives the four wheels 1, an inverter device 180 that controls the traveling motor 179, and an inverter 177 via the DCDC converter 182.
  • M / G motor generator
  • the hybrid system shown in FIG. 13 has a so-called series type (series type) configuration, but a parallel type (parallel type) hybrid system can also be used.
  • the engine speed limit value is changed depending on whether the travel speed exceeds the travel speed threshold (whether there is an engine speed limit command). However, after the travel speed exceeds the travel speed threshold, You may perform control which makes an engine speed limit value small, so that the difference of a driving speed threshold value becomes large.
  • the travel speed threshold is determined based on the load amount in the bucket 151, but the travel speed threshold may be determined based on the increased weight from the vehicle weight.
  • the increased weight may or may not include the actual weight (body weight) of the passenger or the like, which is a variable value, or the assumed weight. In this paper, it is a concept including these, and the increased weight from a predetermined vehicle weight value is called “loading amount”.
  • the work vehicle to which the present invention is applied includes not only the wheel loader described above but also a forklift and a dump truck.
  • the work machine includes a hydraulic cylinder and a dump truck bed in a lifting device that lifts and lowers the fork of the forklift. This corresponds to a hydraulic cylinder (hoist cylinder) for raising and lowering (vessel).
  • the present invention is not limited to the above-described embodiment, and includes various modifications within the scope not departing from the gist thereof.
  • the present invention is not limited to the one having all the configurations described in the above embodiment, and includes a configuration in which a part of the configuration is deleted.
  • part of the configuration according to one embodiment can be added to or replaced with the configuration according to another embodiment.
  • Each configuration related to the above-described control device 240, functions and execution processing of each configuration, etc. are realized by hardware (for example, logic for executing each function is designed by an integrated circuit). Also good.
  • the configuration related to the control device 240 may be a program (software) that realizes each function related to the configuration of the control device 240 by being read and executed by an arithmetic processing device (for example, a CPU).
  • Information related to the program can be stored in, for example, a semiconductor memory (flash memory, SSD, etc.), a magnetic storage device (hard disk drive, etc.), a recording medium (magnetic disk, optical disc, etc.), and the like.

Abstract

The present invention is provided with: a work machine (150) driven by a plurality of actuators; a work machine lever (222) for controlling operation of the plurality of actuators; a hydraulic pump (171) and a hydraulic motor (172) which convert motive power outputted by an engine (201) to hydraulic pressure and transmit the same to wheels (1); and a control device (240) configured so as to control the rotation speed of the engine in a range at or below a standard limit value according to an output request command to the engine. The control device (240) performs a limiting process to limit the rotation speed of the engine to a value lower than the standard limit value if the actual traveling speed of a wheel loader has exceeded a traveling speed threshold which is established according to a cargo amount.

Description

作業車両Work vehicle
本発明は作業車両に関する。 The present invention relates to a work vehicle.
 トルクコンバータを用いた自動変速装置を備えるホイールローダ等の作業車両では、オペレータはアクセルペダルを最大量踏み込み、変速段の切り替えで走行速度を調節することが多い。これは、掘削作業のしやすさを考慮して車体にサスペンションが無く、揺れが大きいことから、オペレータがアクセルワークで走行速度を調節することが困難なためである。また、作業車両のエンジン制御は、自動車と異なり、アクセルペダルの踏み込み量に対してエンジン回転数が略比例する、いわゆる回転数制御として構成されている。これは、エンジンで駆動する油圧ポンプの吐出流量、すなわち作業機の速度をアクセルペダルで調整するためである。この結果、トルクコンバータを備えた作業車両では、その特性上、エンジン回転数と走行速度、すなわちアクセルペダルの踏み込み量と走行速度がほぼ比例関係となる。 In a work vehicle such as a wheel loader equipped with an automatic transmission device using a torque converter, the operator often depresses the accelerator pedal to the maximum amount and adjusts the traveling speed by switching the gear position. This is because it is difficult for the operator to adjust the traveling speed with the accelerator work because there is no suspension in the vehicle body and the shaking is large considering the ease of excavation work. The engine control of the work vehicle is configured as so-called rotational speed control in which the engine rotational speed is approximately proportional to the amount of depression of the accelerator pedal, unlike an automobile. This is for adjusting the discharge flow rate of the hydraulic pump driven by the engine, that is, the speed of the working machine with the accelerator pedal. As a result, in a work vehicle equipped with a torque converter, the engine speed and the traveling speed, that is, the amount of depression of the accelerator pedal and the traveling speed are approximately proportional to each other because of its characteristics.
 一方で、ホイールローダにおいて作業機を動作させず一定速度で継続走行する場合に必要なエンジン出力は、掘削作業時等に走行しながら作業機を動作させる場合(以下「複合動作」と称することがある)に必要なエンジン出力に比べて小さい。それにも関わらず、オペレータは継続走行時に高速走行して生産性を上げるためにアクセルペダルを最大量踏み込むため、エンジン回転数がアクセルペダルの踏み込み量に応じた高回転数になる。しかし、このような実情では、必要なエンジン出力が小さいにも関わらず、エンジンを高回転数で運転することになるため、摩擦などによるエネルギ損失が大きく、燃費効率の面でエンジン制御に改善の余地があった。 On the other hand, the engine output required when continuously operating at a constant speed without operating the work machine in the wheel loader is used when operating the work machine while running during excavation work or the like (hereinafter referred to as “composite operation”). It is smaller than the required engine power. Nevertheless, the operator depresses the accelerator pedal to the maximum amount in order to increase the productivity by traveling at a high speed during continuous travel, so the engine speed becomes a high speed corresponding to the amount of depression of the accelerator pedal. However, in such a situation, the engine is operated at a high speed even though the required engine output is small, so energy loss due to friction is large, and engine control is improved in terms of fuel efficiency. There was room.
 ところで、ホイールローダ、ダンプトラック、フォークリフトを含む作業車両には、エンジン動力を車輪に伝達する動力伝達装置に無段変速機構を備えるものがある。例えば、静油圧式無段変速機(HST)を有する作業車両は、エンジンで油圧ポンプを駆動して油圧モータに圧油を送り、その油圧モータで車輪を駆動している。有段変速機構を備える作業車両では、変速段を固定した状態では駆動力や走行速度がエンジン回転数に連動するが、この種の無段変速機構を備える作業車両では、駆動力や走行速度(車輪の回転数)がエンジン回転数に依存せず、駆動力や走行速度とエンジン回転数とを独立して制御できる。 Incidentally, some work vehicles including a wheel loader, a dump truck, and a forklift include a continuously variable transmission mechanism in a power transmission device that transmits engine power to wheels. For example, a work vehicle having a hydrostatic continuously variable transmission (HST) drives a hydraulic pump by an engine to send pressure oil to a hydraulic motor, and drives wheels by the hydraulic motor. In a work vehicle equipped with a stepped transmission mechanism, the driving force and traveling speed are linked to the engine speed when the gear stage is fixed. However, in a work vehicle equipped with this type of continuously variable transmission mechanism, the driving force and traveling speed ( The rotational speed of the wheel) does not depend on the engine rotational speed, and the driving force, traveling speed, and engine rotational speed can be controlled independently.
 HST式の作業車両の燃料消費量を低減する発明として、特許文献1には、所定の最高走行速度付近において走行する際に、最高走行速度に近づくほどアクセル開度の上限値(エンジン回転数)を小さくする作業車両が開示されている。また、特許文献2には、車両が低負荷状態であることを示す低負荷条件が満たされているときには、低負荷条件が満たされていないときよりもエンジンの出力トルクの上限値を低減するように、エンジンを制御する制御部を有した作業車両が開示されている。 As an invention for reducing the fuel consumption of an HST-type work vehicle, Patent Document 1 discloses that the upper limit of the accelerator opening (engine speed) becomes closer to the maximum traveling speed when traveling near a predetermined maximum traveling speed. A work vehicle for reducing the size of the vehicle is disclosed. Further, in Patent Document 2, when the low load condition indicating that the vehicle is in a low load condition is satisfied, the upper limit value of the engine output torque is reduced more than when the low load condition is not satisfied. A work vehicle having a control unit for controlling the engine is disclosed.
特許第5059969号Japanese Patent No. 5059969 特許第5222895号Japanese Patent No. 5222895
 特許文献1に記載の発明は、平地を高速走行する場合を想定したものに過ぎず、複合動作を考慮してアクセル開度の上限値(エンジン回転数)を制御していない。そのため、高速走行から複合動作に移行した際に速やかにエンジン回転数を上昇できず出力不足に陥る可能性がある。特許文献2に記載の発明は、現在の作業局面における車両の負荷を推定し、その負荷が低負荷条件を満たしているときはエンジン回転数を下げるが、次の作業局面(近い将来の作業局面)の負荷を十分に考慮してエンジン回転数を制御していない。そのため、次の作業局面が高負荷だった場合のエンジン出力不足回避を優先するあまりエンジン回転数を十分に下げられず、燃料消費量の低減効果が不十分になる可能性がある。 The invention described in Patent Document 1 is only intended for high-speed traveling on flat ground, and does not control the upper limit value of the accelerator opening (engine speed) in consideration of the combined operation. For this reason, there is a possibility that the engine speed cannot be increased quickly when the shift from the high speed traveling to the combined operation is performed, resulting in insufficient output. The invention described in Patent Document 2 estimates the vehicle load in the current work phase, and lowers the engine speed when the load satisfies a low load condition. ) The engine speed is not controlled with due consideration of the load. For this reason, if the next work phase is a high load, priority is given to avoiding engine output shortage, so the engine speed cannot be lowered sufficiently, and the effect of reducing fuel consumption may be insufficient.
 上記の指摘はHST式の作業車両に限らず、エンジン動力を車輪に伝達する動力伝達装置に無段変速機能を備えるものであれば当てはまる。具体的には、エンジンで油圧ポンプを駆動して油圧モータに圧油を送り、その油圧モータで車輪を駆動しつつ、エンジンと機械的に連結された車軸を介して車輪を駆動する油圧機械式無段変速機(HMT)を有する作業車両にも当てはまる。さらに、CVTを含む上記の機械式の無段変速機を有する作業車両に限らず、電気式の無段変速機を有する作業車両にも上記指摘は当てはまる。電気式の無段変速機を有する作業車両としては、例えば、エンジンの回転力を利用してモータ・ジェネレータにより発電した電力を使って、車軸に接続された複数の電動モータを駆動し、それにより車輪を駆動するハイブリッド式の作業車両がある。 The above indications are not limited to HST type work vehicles, but apply to any power transmission device that transmits engine power to wheels provided with a continuously variable transmission function. Specifically, a hydraulic mechanical system that drives a hydraulic pump through an axle mechanically connected to the engine while driving a hydraulic pump by driving a hydraulic pump by the engine and driving the wheels by the hydraulic motor. This also applies to work vehicles having a continuously variable transmission (HMT). Furthermore, the above indication is applicable not only to the work vehicle having the above-described mechanical continuously variable transmission including the CVT but also to the work vehicle having the electric continuously variable transmission. As a work vehicle having an electric continuously variable transmission, for example, a plurality of electric motors connected to an axle are driven using electric power generated by a motor / generator using the rotational force of an engine, thereby There are hybrid work vehicles that drive wheels.
 本発明の目的は、高負荷状態時のエンジンの出力不足を回避しつつ、高速走行中の燃料消費量を効果的に低減できる作業車両を提供することにある。 An object of the present invention is to provide a work vehicle that can effectively reduce fuel consumption during high-speed traveling while avoiding engine output shortage in a high load state.
 上記課題を解決するために、本発明の作業車両は、エンジンと、車輪と、少なくとも1つのアクチュエータにより駆動される作業装置と、前記少なくとも1つのアクチュエータの動作を制御するための操作装置と、前記エンジンから出力される動力を油圧または電気に変換して前記車輪へ伝達する動力伝達装置と、前記エンジンの負荷またはアクセル操作量に応じて前記エンジンの回転数を制限値以下の範囲で制御するように構成された制御装置であって、前記作業車両の実走行速度が前記作業車両の積載量に応じて定められる閾値を超えた場合には、前記実走行速度が前記閾値以下の場合よりも前記制限値を低い値に設定する制限処理を実行するように構成された制御装置とを備える。 In order to solve the above problems, a work vehicle according to the present invention includes an engine, wheels, a work device driven by at least one actuator, an operation device for controlling the operation of the at least one actuator, A power transmission device that converts hydraulic power or electric power output from the engine into hydraulic pressure or electricity and transmits it to the wheels, and controls the engine speed within a range below a limit value according to the engine load or accelerator operation amount. In the control device configured as described above, when the actual traveling speed of the work vehicle exceeds a threshold value determined according to the load amount of the work vehicle, the actual traveling speed is less than the threshold value or less. And a control device configured to execute a restriction process for setting the restriction value to a low value.
 本発明によれば、積載量と実走行速度に基づいて作業車両の負荷状態を予測し、高負荷状態が起こる可能性が低いときにエンジン回転数を低減するので、高負荷状態時のエンジンの出力不足を回避しつつ、高速走行中の燃料消費量を効果的に低減できる。 According to the present invention, the load state of the work vehicle is predicted based on the load amount and the actual traveling speed, and the engine speed is reduced when the possibility of the high load state is low. Fuel consumption during high-speed traveling can be effectively reduced while avoiding insufficient output.
本発明の実施の形態に係るホイールローダの側面図。The side view of the wheel loader concerning an embodiment of the invention. 図1に示したホイールローダ100のシステム構成図。The system block diagram of the wheel loader 100 shown in FIG. 制御装置240で実行される処理機能のブロック図。The block diagram of the processing function performed with the control apparatus 240. FIG. 高負荷予測部331が実行する制御のフローチャート。The flowchart of the control which the high load estimation part 331 performs. エンジン回転数制限部332が実行する制御のフローチャート。The flowchart of the control which the engine speed limitation part 332 performs. トルク減フラグ出力部334が実行する制御のフローチャート。The flowchart of the control which the torque reduction flag output part 334 performs. 油圧ポンプ上限トルク設定部333が実行する制御のフローチャートFlowchart of control executed by hydraulic pump upper limit torque setting unit 333 積荷量が大きい場合の制御出力の一例。An example of the control output when the load is large. 積荷量が小さい場合の制御出力の一例。An example of a control output when the amount of cargo is small. 制御装置240のハードウェア構成図。The hardware block diagram of the control apparatus 240. FIG. HST式ホイールローダのシステム構成図。The system block diagram of an HST type wheel loader. HMT式ホイールローダのシステム構成図。The system block diagram of a HMT type wheel loader. ハイブリッド式ホイールローダのシステム構成図。The system block diagram of a hybrid type wheel loader.
 以下、本発明の実施形態について、図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 [ホイールローダ100の構成]
 図1は本発明の実施の形態に係るホイールローダの側面図である。この図のホイールローダ100は、車体110と、車体110の前方に取り付けた多関節型の作業機150を備えている。
[Configuration of Wheel Loader 100]
FIG. 1 is a side view of a wheel loader according to an embodiment of the present invention. The wheel loader 100 in this figure includes a vehicle body 110 and an articulated work machine 150 attached to the front of the vehicle body 110.
 作業機150は、少なくとも1つのアクチュエータにより駆動される作業装置であり、図に示した作業機150は、リフトアーム155およびバケット151と、リフトアーム155及びバケット151を駆動するために伸縮駆動される油圧アクチュエータ(油圧シリンダ)としてリフトシリンダ152及びバケットシリンダ153を備えている。なお、リフトアーム155とリフトシリンダ152は車体112の左右に1つずつ装備されているが、図1で隠れている右側のリフトアームとリフトシリンダは省略して説明する。 The working machine 150 is a working device driven by at least one actuator, and the working machine 150 shown in the drawing is driven to extend and contract to drive the lift arm 155 and the bucket 151 and the lift arm 155 and the bucket 151. A lift cylinder 152 and a bucket cylinder 153 are provided as hydraulic actuators (hydraulic cylinders). Although one lift arm 155 and one lift cylinder 152 are provided on the left and right sides of the vehicle body 112, the right lift arm and lift cylinder hidden in FIG.
 リフトアーム155は、リフトシリンダ152の伸縮駆動に伴って上下方向に回動(俯仰動)する。バケット151は、バケットシリンダ153の伸縮駆動に伴って回動(ダンプ動作又はクラウド動作)する。なお、図示したホイールローダ100は、バケット151を作動させるためのリンク機構として、Zリンク式(ベルクランク式)のものを備えている。 The lift arm 155 pivots up and down (up and down) as the lift cylinder 152 extends and contracts. The bucket 151 rotates (dump operation or cloud operation) as the bucket cylinder 153 expands and contracts. The illustrated wheel loader 100 includes a Z link type (bell crank type) link mechanism for operating the bucket 151.
 車輪1a、1b、1c、1d(以下、簡略して「車輪1」と表記することがある)は、エンジン201(後述)を動力源とする動力伝達装置210(後述)によって駆動され、各車輪1の外周に配設されたタイヤを介して駆動力を地面に伝えて車体110を前進または後退させる。 Wheels 1a, 1b, 1c, and 1d (hereinafter may be simply referred to as “wheel 1”) are driven by a power transmission device 210 (described later) using an engine 201 (described later) as a power source. The driving force is transmitted to the ground via tires disposed on the outer periphery of the vehicle 1 to move the vehicle body 110 forward or backward.
 図2は図1に示したホイールローダ100のシステム構成図である。なお、先の図と同じ部分には同じ符号を付して説明を省略することがある(後の図についても同様とする)。 FIG. 2 is a system configuration diagram of the wheel loader 100 shown in FIG. Note that the same parts as those in the previous figure may be denoted by the same reference numerals and description thereof may be omitted (the same applies to the subsequent figures).
 エンジン201は、出力軸を介して動力伝達装置210および油圧ポンプ211に動力を供給する。エンジン201の制御については後述する。 The engine 201 supplies power to the power transmission device 210 and the hydraulic pump 211 via the output shaft. Control of the engine 201 will be described later.
 動力伝達装置(動力伝達機構)210は、無段変速機構を備えており、エンジン201から出力される動力の一部を油圧または電気に変換して車輪1へ伝達する。動力伝達装置210の具体例については図11から図13を用いて後述する。図11の動力伝達装置210はエンジン動力を油圧に変換して車輪1に伝達するHST式を採用しており、図12の動力伝達装置210はエンジン201で動力伝達機械部173を介して車輪1を駆動するとともに、エンジン201で動力伝達機械部173を介して油圧ポンプ171を駆動して油圧モータ172に圧油を送り、その油圧モータ172で車輪1を駆動するHMT式を採用しており、図13のものはエンジン動力を電気に変換して車輪1に伝達するハイブリッド式を採用している。 The power transmission device (power transmission mechanism) 210 includes a continuously variable transmission mechanism, and converts a part of the power output from the engine 201 to hydraulic pressure or electricity and transmits it to the wheel 1. A specific example of the power transmission device 210 will be described later with reference to FIGS. The power transmission device 210 in FIG. 11 employs an HST system that converts engine power into hydraulic pressure and transmits it to the wheel 1. The power transmission device 210 in FIG. And the engine 201 drives the hydraulic pump 171 via the power transmission mechanical unit 173 to send the hydraulic oil to the hydraulic motor 172, and adopts the HMT type in which the hydraulic motor 172 drives the wheels 1; The thing of FIG. 13 employ | adopts the hybrid type which converts engine motive power into electricity and transmits to the wheel 1. FIG.
 油圧ポンプ211は、動力伝達装置210およびエンジン201の少なくとも一方に駆動される。油圧ポンプ211は、作業機150に係る複数の油圧アクチュエータ(例えば、リフトシリンダ152、バケットシリンダ153)に対してコントロールバルブ212を介して圧油を供給し、当該複数の油圧アクチュエータを適宜駆動する。油圧ポンプ211はエンジン201を間接的な動力原とするため、油圧ポンプ211を駆動源とする当該複数の油圧アクチュエータもエンジン201を間接的な動力原となる。 The hydraulic pump 211 is driven by at least one of the power transmission device 210 and the engine 201. The hydraulic pump 211 supplies pressure oil to the plurality of hydraulic actuators (for example, the lift cylinder 152 and the bucket cylinder 153) related to the work machine 150 via the control valve 212, and appropriately drives the plurality of hydraulic actuators. Since the hydraulic pump 211 uses the engine 201 as an indirect power source, the plurality of hydraulic actuators using the hydraulic pump 211 as a drive source also use the engine 201 as an indirect power source.
 コントロールバルブ212は、作業機150に係る複数の油圧アクチュエータの動作を制御するための作業機レバー(操作装置)222から出力されるパイロット圧又は電気信号によって動作する。コントロールバルブ212が動作すると、油圧ポンプ211から油圧アクチュエータ(リフトシリンダ152、バケットシリンダ153)へ供給される圧油の量や方向が調整される。 The control valve 212 is operated by a pilot pressure or an electric signal output from a work implement lever (operation device) 222 for controlling operations of a plurality of hydraulic actuators related to the work implement 150. When the control valve 212 operates, the amount and direction of the pressure oil supplied from the hydraulic pump 211 to the hydraulic actuator (lift cylinder 152, bucket cylinder 153) are adjusted.
 制御装置240は、車両に関する各種情報処理を実行するためのコンピュータ(例えばマイクロコンピュータ)である。制御装置240は、エンジン201の負荷またはアクセルペダル224の操作量等のエンジン出力要求指令に応じてエンジン回転数を制限値以下の範囲で制御するように構成されている。ここにおける「制限値」は、エンジントルク(又はエンジン出力)を縦軸としエンジン回転数を横軸とする平面上に定義されるエンジン性能曲線における横軸の最大値のことを示し、「制限値以下の範囲」とは当該最大値以下の範囲を示す。したがって、ここにおけるエンジン回転数制御とはエンジンの性能が許容する常用可能な範囲内でエンジン回転数を制御する通常の制御のことを示すものとする。以下ではこの制限値のことを「基準制限値」と称することがある。 The control device 240 is a computer (for example, a microcomputer) for executing various types of information processing related to the vehicle. The control device 240 is configured to control the engine speed within a range equal to or less than the limit value in accordance with an engine output request command such as a load on the engine 201 or an operation amount of the accelerator pedal 224. The “limit value” here is the maximum value on the horizontal axis in the engine performance curve defined on the plane with the engine torque (or engine output) as the vertical axis and the engine speed as the horizontal axis. The “range below” indicates a range below the maximum value. Therefore, the engine speed control here refers to normal control for controlling the engine speed within a normally usable range allowed by the performance of the engine. Hereinafter, this limit value may be referred to as a “reference limit value”.
 制御装置240は、特に、ホイールローダ100の実走行速度がホイールローダ100の積荷量(バケット151内の運搬物の重量)に応じて定められる走行速度閾値(詳細は後述)を超えた場合には、実走行速度が走行速度閾値以下の場合の値(基準制限値)よりも制限値を低い値に設定する処理(この処理を本稿では「エンジン回転数制限処理」または「制限処理」と称することがある)を実行するように構成されている。制御装置240で行われる制御処理の詳細については後述する。 In particular, when the actual traveling speed of the wheel loader 100 exceeds a traveling speed threshold value (details will be described later) determined according to the load amount of the wheel loader 100 (the weight of the transported material in the bucket 151). The process of setting the limit value to a value lower than the value (reference limit value) when the actual travel speed is less than or equal to the travel speed threshold (this process is referred to as “engine speed limit process” or “limit process” in this paper) Is configured to run). Details of the control processing performed by the control device 240 will be described later.
 図10に、制御装置240のハードウェア構成を示す。制御装置240は、入力部91と、プロセッサである中央処理装置(CPU)92と、記憶装置であるリードオンリーメモリ(ROM)93及びランダムアクセスメモリ(RAM)94と、出力部95とを有している。入力部91は、外部装置からの情報や信号を入力し、必要に応じてA/D変換を行う。ROM93は、プログラム等が記憶された記録媒体であり、CPU92は、ROM93に記憶されたプログラムに従って入力部91及びメモリ93,94から取り入れた信号に対して所定の演算処理を行う。出力部95は、CPU92での演算結果に応じた出力用の信号を作成し、その信号を外部装置に出力する。なお、図10の制御装置240は、記憶装置としてROM93及びRAM94という半導体メモリを備えているが、ハードディスクドライブ等の磁気記憶装置を備え、これにプログラムを記憶しても良い。 FIG. 10 shows the hardware configuration of the control device 240. The control device 240 includes an input unit 91, a central processing unit (CPU) 92 that is a processor, a read-only memory (ROM) 93 and a random access memory (RAM) 94 that are storage devices, and an output unit 95. ing. The input unit 91 inputs information and signals from an external device, and performs A / D conversion as necessary. The ROM 93 is a recording medium in which a program or the like is stored, and the CPU 92 performs predetermined arithmetic processing on signals taken from the input unit 91 and the memories 93 and 94 in accordance with the program stored in the ROM 93. The output unit 95 creates an output signal according to the calculation result in the CPU 92 and outputs the signal to an external device. 10 includes a semiconductor memory such as a ROM 93 and a RAM 94 as storage devices, but may include a magnetic storage device such as a hard disk drive and store programs therein.
 作業機レバー操作量検知器225は、作業機レバー222の操作量を検知して、制御装置240に出力する。アクセル操作量検知器227は、アクセルペダル224の操作量(踏み込み量)を検知して、制御装置240に出力する。走行速度検知器223は、動力伝達装置210により車輪1が駆動されるホイールローダ100の走行速度を検出し、制御装置240に出力する。リフトシリンダ圧力検知器220はリフトシリンダ152のボトム側圧力を検知し、制御装置240に出力する。バケットシリンダ圧力検知器221はバケットシリンダ153のボトム側圧力を検知し、制御装置240に出力する。油圧ポンプ圧力検知器235は油圧ポンプ211の吐出圧力を検知し、制御装置240に出力する。油圧ポンプ容量検知器236は油圧ポンプ211の容量(又は傾転角)を検知し、制御装置240に出力する。 The work machine lever operation amount detector 225 detects the operation amount of the work machine lever 222 and outputs it to the control device 240. The accelerator operation amount detector 227 detects the operation amount (depression amount) of the accelerator pedal 224 and outputs it to the control device 240. The traveling speed detector 223 detects the traveling speed of the wheel loader 100 where the wheels 1 are driven by the power transmission device 210 and outputs the detected traveling speed to the control device 240. The lift cylinder pressure detector 220 detects the bottom side pressure of the lift cylinder 152 and outputs it to the control device 240. Bucket cylinder pressure detector 221 detects the bottom side pressure of bucket cylinder 153 and outputs it to control device 240. The hydraulic pump pressure detector 235 detects the discharge pressure of the hydraulic pump 211 and outputs it to the control device 240. The hydraulic pump displacement detector 236 detects the displacement (or tilt angle) of the hydraulic pump 211 and outputs it to the control device 240.
 なお、作業機レバー222は、リフトシリンダ152とバケットシリンダ153の両方を1本のレバーで個別又は同時に操作できる1本式に限らず、リフトシリンダ152とバケットシリンダ153をそれぞれ別のレバーで操作できる2本式でもよい。後者の場合、作業機レバー操作量検知器225は2本分のレバー操作量を検知してもよい。 The work implement lever 222 is not limited to one type in which both the lift cylinder 152 and the bucket cylinder 153 can be operated individually or simultaneously with one lever, and the lift cylinder 152 and the bucket cylinder 153 can be operated with separate levers, respectively. Two types may be used. In the latter case, the work machine lever operation amount detector 225 may detect two lever operation amounts.
 また、走行速度検知器223で、車輪1の速度(回転数)、動力伝達装置210の出力回転数(出力軸の回転数)、プロペラシャフト215の回転数などを検知し、その検知結果に基づいてホイールローダ100の走行速度を演算することができる。 Further, the traveling speed detector 223 detects the speed of the wheel 1 (the number of revolutions), the output number of revolutions of the power transmission device 210 (the number of revolutions of the output shaft), the number of revolutions of the propeller shaft 215, and the like. Thus, the traveling speed of the wheel loader 100 can be calculated.
 [エンジン201の基本的な制御]
 エンジン201は燃料噴射量を制御する電子ガバナ230と、エンジン201の回転数を検知するエンジン回転数検知器226を有している。制御装置240は、エンジン回転数指令とエンジン回転数検知器226により検知された実エンジン回転数を比較し、エンジン回転数指令値よりも実エンジン回転数が低い場合は燃料噴射量を大きくするよう電子ガバナ230に指令する。反対にエンジン回転数指令値よりも実エンジン回転数が高い場合は燃料噴射量を小さくするよう指令する。また、エンジン201に搭載されたエンジン負荷推定装置231は、電子ガバナ230による燃料噴射量などからエンジンの負荷を推定する。エンジン負荷推定装置231によるエンジン負荷推定は、電子ガバナ230による燃料噴射量などの必要な情報を制御装置240に入力することにより制御装置240で代替して実行しても良い。
[Basic control of engine 201]
The engine 201 has an electronic governor 230 that controls the fuel injection amount, and an engine speed detector 226 that detects the speed of the engine 201. The control device 240 compares the engine speed command with the actual engine speed detected by the engine speed detector 226, and increases the fuel injection amount when the actual engine speed is lower than the engine speed command value. Command the electronic governor 230. On the contrary, when the actual engine speed is higher than the engine speed command value, a command is given to reduce the fuel injection amount. The engine load estimation device 231 mounted on the engine 201 estimates the engine load from the fuel injection amount by the electronic governor 230 and the like. The engine load estimation by the engine load estimation device 231 may be executed in place of the control device 240 by inputting necessary information such as the fuel injection amount by the electronic governor 230 to the control device 240.
 [制御装置240]
 制御装置240で実行される処理機能のブロック図を図3に示す。本実施の形態の制御装置240は、エンジン負荷推定装置231から入力されるエンジン負荷またはアクセル操作量検知器227から入力されるアクセル操作量に応じてエンジン回転数を基準制限値以下の範囲で制御するエンジン制御装置として機能する場合がある。
[Control device 240]
A block diagram of processing functions executed by the control device 240 is shown in FIG. The control device 240 according to the present embodiment controls the engine speed within a range equal to or less than a reference limit value according to the engine load input from the engine load estimation device 231 or the accelerator operation amount input from the accelerator operation amount detector 227. May function as an engine control device.
 また、図3に示すように制御装置240は、第1エンジン回転数指令値設定部336と、第2エンジン回転数指令値設定部330と、エンジン回転数指令値処理部335と、高負荷予測部331と、作業機負荷演算部345と、エンジン回転数制限部332と、トルク減フラグ出力部334と、油圧ポンプ上限トルク設定部333として機能する。 Further, as shown in FIG. 3, the control device 240 includes a first engine speed command value setting unit 336, a second engine speed command value setting unit 330, an engine speed command value processing unit 335, and a high load prediction. Functions as a unit 331, a work implement load calculation unit 345, an engine speed limit unit 332, a torque reduction flag output unit 334, and a hydraulic pump upper limit torque setting unit 333.
 第1エンジン回転数指令値設定部336は、エンジン負荷推定装置231によって推定されたエンジン負荷320が大きくなるほど、エンジン回転数指令値(第1指令値)を増加する。第2エンジン回転数指令値設定部330は、アクセル操作量検知器227によって検知されたアクセル操作量310が大きくなるほど、エンジン回転数指令値(第2指令値)を増加する。 The first engine speed command value setting unit 336 increases the engine speed command value (first command value) as the engine load 320 estimated by the engine load estimation device 231 increases. The second engine speed command value setting unit 330 increases the engine speed command value (second command value) as the accelerator operation amount 310 detected by the accelerator operation amount detector 227 increases.
 エンジン回転数指令値処理部335は、第1エンジン回転数指令値設定部336が決定したエンジン回転数指令値(第1指令値)と、第2エンジン回転数指令値設定部330が決定したエンジン回転数指令値(第2指令値)をのうち、値が大きい方を選択しエンジン回転数制限部332に出力する。 The engine speed command value processing unit 335 includes an engine speed command value (first command value) determined by the first engine speed command value setting unit 336 and an engine determined by the second engine speed command value setting unit 330. Of the rotational speed command values (second command values), the larger one is selected and output to the engine rotational speed limiter 332.
 高負荷予測部331は、ホイールローダ100(車両)の将来の高負荷状態を予測し、高負荷が予想されない場合にはエンジン回転数制限部332にエンジン回転数制限指令を出力し、反対に高負荷が予想される場合にはエンジン回転数制限指令を出力しない。高負荷状態を予測する指標としては、例えば、バケット151内の積荷の重量(積荷量)、車両の走行速度、エンジン負荷、作業機レバー操作量、作業機150の負荷(作業機負荷)がある。高負荷状態を予測する指標を取得するために、本実施の形態の高負荷予測部331には、リフトシリンダ圧力検知器220によって検知されたリフトシリンダ圧力315と、バケットシリンダ圧力検知器221によって検知されたバケットシリンダ圧力350と、走行速度検知器223によって検知された走行速度314と、エンジン負荷推定装置231によって推定されたエンジン負荷320とが入力されている。 The high load prediction unit 331 predicts a future high load state of the wheel loader 100 (vehicle), and outputs an engine speed limit command to the engine speed limit unit 332 when a high load is not expected. When the load is expected, the engine speed limit command is not output. As an index for predicting a high load state, there are, for example, the weight of the load in the bucket 151 (load amount), the traveling speed of the vehicle, the engine load, the working machine lever operation amount, and the load of the working machine 150 (working machine load). . In order to obtain an index for predicting a high load state, the high load prediction unit 331 of the present embodiment detects the lift cylinder pressure 315 detected by the lift cylinder pressure detector 220 and the bucket cylinder pressure detector 221. The bucket cylinder pressure 350, the traveling speed 314 detected by the traveling speed detector 223, and the engine load 320 estimated by the engine load estimating device 231 are input.
 作業機負荷演算部345は、エンジン回転数検知器226によって検知された実エンジン回転数317と、油圧ポンプ圧力検知器235によって検知された油圧ポンプ圧力340と、油圧ポンプ容量検知器236によって検知された油圧ポンプ容量341とに基づいて作業機負荷を演算し、エンジン回転数制限部332に出力する。 The work machine load calculation unit 345 is detected by the actual engine speed 317 detected by the engine speed detector 226, the hydraulic pump pressure 340 detected by the hydraulic pump pressure detector 235, and the hydraulic pump capacity detector 236. The working machine load is calculated based on the hydraulic pump capacity 341 and output to the engine speed limiter 332.
 エンジン回転数制限部332は、作業機負荷演算部345によって演算された作業機負荷、作業機レバー操作量検知器225によって検知された作業機レバー操作量316、高負荷予測部331により指令されるエンジン回転数制限指令、エンジン回転数検知器226により検知された実エンジン回転数317とに基づいて、エンジン回転数指令値処理部335により出力されたエンジン回転数指令値に制限処理(エンジン回転数指令値が規定する回転数を低減する処理)を施すか否かを決定する。そして、エンジン回転数制限部332は、その決定に応じて適宜制限処理を施したエンジン回転数指令値を電子ガバナ230に出力する。 The engine speed limit unit 332 is commanded by the work machine load calculated by the work machine load calculation unit 345, the work machine lever operation amount 316 detected by the work machine lever operation amount detector 225, and the high load prediction unit 331. Based on the engine speed limit command and the actual engine speed 317 detected by the engine speed detector 226, the engine speed command value output by the engine speed command value processing unit 335 is limited (engine speed). It is determined whether or not to perform processing for reducing the rotational speed specified by the command value. Then, engine speed limiter 332 outputs to engine governor 230 an engine speed command value that is appropriately limited in accordance with the determination.
 トルク減フラグ出力部334は、エンジン回転数検知器226により検知された実エンジン回転数317と、高負荷予測部331により指令されるエンジン回転数制限指令と、エンジン回転数制限部332により指令されるエンジン回転数指令値360とに基づいてトルク減フラグを設定し、油圧ポンプ上限トルク設定部333に出力する。 The torque reduction flag output unit 334 is commanded by the actual engine speed 317 detected by the engine speed detector 226, the engine speed limit command commanded by the high load prediction unit 331, and the engine speed limit unit 332. A torque reduction flag is set based on the engine speed command value 360 and output to the hydraulic pump upper limit torque setting unit 333.
 油圧ポンプ上限トルク設定部333は、エンジン回転数検知器226により検知された実エンジン回転数317と、トルク減フラグ出力部334より出力されるトルク減フラグとに基づいて油圧ポンプ上限トルク指令値を設定し、油圧ポンプ211に出力する。 The hydraulic pump upper limit torque setting unit 333 sets the hydraulic pump upper limit torque command value based on the actual engine speed 317 detected by the engine speed detector 226 and the torque reduction flag output from the torque reduction flag output unit 334. Set and output to the hydraulic pump 211.
 なお、エンジン回転数指令値処理部335にエンジン回転数指令値を出力する部分として、第1エンジン回転数指令値設定部336は必ずしも備わっている必要は無く、第2エンジン回転数指令値設定部330のみで構成されていてもよい。 The first engine speed command value setting unit 336 is not necessarily provided as a part for outputting the engine speed command value to the engine speed command value processing unit 335, and the second engine speed command value setting unit is not necessarily provided. 330 may be comprised only.
 また、高負荷予測部331は、バケット151内の積荷量の算出に際して、リフトシリンダ圧力検知器220によるリフトシリンダ圧力315だけを利用してもよいが、これに限らず、図示のようにバケットシリンダ圧力検知器221によるバケットシリンダ圧力を入力してもよい。 Further, the high load predicting unit 331 may use only the lift cylinder pressure 315 by the lift cylinder pressure detector 220 when calculating the load amount in the bucket 151, but not limited thereto, as shown in FIG. A bucket cylinder pressure by the pressure detector 221 may be input.
 [高負荷予測部331]
 図4は図3に示した制御のうち、高負荷予測部331に係る制御のフローチャートである。エンジン負荷判定ステップ414では、高負荷予測部331は、エンジン負荷推定装置231によって推定されたエンジン負荷320を入力し、このエンジン負荷320が所定のエンジン負荷閾値以下の場合に積荷量検知ステップ410進み、それ以外の場合(エンジン負荷320が閾値を越える場合)にはステップ421に進みエンジン回転数指令値を発令しない。
[High load prediction unit 331]
FIG. 4 is a flowchart of the control related to the high load prediction unit 331 in the control shown in FIG. In the engine load determination step 414, the high load prediction unit 331 inputs the engine load 320 estimated by the engine load estimation device 231, and when the engine load 320 is equal to or less than a predetermined engine load threshold, the load amount detection step 410 proceeds. In other cases (when the engine load 320 exceeds the threshold value), the routine proceeds to step 421 and the engine speed command value is not issued.
 積荷量検知ステップ410では、高負荷予測部331は、リフトシリンダ圧力315を基にバケット151内の積荷量を算出する。次の走行速度閾値設定ステップ411では、高負荷予測部331は、その時のホイールローダ100の積載量に応じて定められる走行速度に関する閾値(走行速度閾値)を設定する。ここで、走行速度閾値は、積荷量検知ステップ410で検知された積荷量が少なくなるほど減少するように設定される。図4内のグラフに示した例では、走行速度閾値は積荷量の減少に伴って直線状に減少するように設定されているが、積荷量の減少に伴って走行速度閾値が単調減少する形態(積荷量の減少とともに走行速度式位置が一定に保持される区間を含む広義の単調減少も含む)であれば利用可能である。 In the load amount detection step 410, the high load prediction unit 331 calculates the load amount in the bucket 151 based on the lift cylinder pressure 315. In the next travel speed threshold setting step 411, the high load prediction unit 331 sets a threshold (travel speed threshold) related to the travel speed determined according to the load amount of the wheel loader 100 at that time. Here, the travel speed threshold is set so as to decrease as the load amount detected in the load amount detection step 410 decreases. In the example shown in the graph of FIG. 4, the travel speed threshold is set so as to decrease linearly as the load amount decreases, but the travel speed threshold monotonously decreases as the load amount decreases. (Including a monotonous decrease in a broad sense including a section in which the traveling speed position is kept constant as the load amount decreases).
 高負荷予測判定ステップ412では、走行速度閾値設定ステップ411で演算された走行速度閾値と、走行速度検知器223により検出された走行速度(実走行速度)314の大小関係を比較する。そして、走行速度314が走行速度閾値よりも高い場合にステップ420に進んでエンジン回転数制限指令を発令し、走行速度314が走行速度閾値よりも低い場合に高負荷が起こる可能性があると予測してステップ421に進んでエンジン回転数制限指令を発令しない。 In the high load prediction determination step 412, the magnitude relationship between the travel speed threshold calculated in the travel speed threshold setting step 411 and the travel speed (actual travel speed) 314 detected by the travel speed detector 223 is compared. When the traveling speed 314 is higher than the traveling speed threshold, the routine proceeds to step 420, where an engine speed limit command is issued, and when the traveling speed 314 is lower than the traveling speed threshold, it is predicted that a high load may occur. Then, the routine proceeds to step 421, where the engine speed limit command is not issued.
 本実施の形態では、ステップ410~412の一連の処理から分かるように、積荷量が大きく走行速度が低いほど、走行単独動作から高負荷となる複合動作に移る可能性が高いと判断して、エンジン回転数制限指令を発令しないように制御装置240を構成している。たとえば、バケット151内に積荷がある場合はそれをリフトアップする高負荷動作が次に来ることが考えられ、さらに積荷量が大きいほどリフトアップに要するエンジン出力は大きく動作負荷も大きくなる。また、走行から掘削へと移る場合には、バケット151と掘削対象の接触により発生する当該掘削対象からの反力によって車両の走行速度が低下する。そのため、エンジン201の出力増加の過渡特性を考慮し、エンジン201の出力増加に要する時間よりも、走行速度が低下して掘削に移るまでの時間が長くなるように走行速度閾値を設定することが好ましい。 In the present embodiment, as can be seen from the series of processing in steps 410 to 412, it is determined that the larger the load amount and the lower the traveling speed, the higher the possibility of shifting from the traveling single operation to the combined operation with a high load. The control device 240 is configured not to issue an engine speed limit command. For example, when there is a load in the bucket 151, it is conceivable that a high-load operation for lifting the load will come next. Further, as the load amount increases, the engine output required for the lift-up increases and the operation load also increases. Further, when moving from traveling to excavation, the traveling speed of the vehicle decreases due to the reaction force from the excavation target generated by the contact between the bucket 151 and the excavation target. Therefore, in consideration of the transient characteristics of the output increase of the engine 201, the travel speed threshold may be set so that the time until the travel speed decreases and the excavation starts is longer than the time required for the engine 201 to increase the output. preferable.
 積荷量検知ステップ410では、リフトシリンダ圧力315に限らず、バケットシリンダ圧力350から積荷量を検知してもよい。また、シリンダ圧力315,350に代えて、バケット151に積み込まれている土の量をカメラやレーダを用いて計測した情報から積荷量を検知してもよい。 In the load amount detection step 410, the load amount may be detected not only from the lift cylinder pressure 315 but also from the bucket cylinder pressure 350. Further, instead of the cylinder pressures 315 and 350, the load amount may be detected from information obtained by measuring the amount of soil loaded in the bucket 151 using a camera or a radar.
 なお、図4のフローチャートにおいて、エンジン負荷判定ステップ414は省略可能であり、フローの開始後すぐにステップ410に進んでも良い。 In the flowchart of FIG. 4, the engine load determination step 414 can be omitted, and the process may proceed to step 410 immediately after the start of the flow.
 [エンジン回転数制限部332]
 図5は図3に示した制御のうち、エンジン回転数制限部332に係る制御のフローチャートである。作業機レバー操作判定ステップ510では、エンジン回転数制限部332は、作業機レバー操作量検知器225によって検知された作業機レバー操作量316と所定の作業機レバー操作量閾値(後述の図8,9における閾値630)とを比較することで、作業機レバー222の操作の有無を判定する。作業機レバー操作量閾値は作業機レバー操作の有無を検出するための値であり、例えば、作業機レバーが中立位置に有る場合のパイロット圧の値よりも僅かに高い値を設定する場合がある。作業機レバー操作量316が作業機レバー操作量閾値以下の場合には、エンジン回転数制限部332は作業機レバー222の操作が無いと判断し、作業機負荷判定ステップ520へ進み、そうでない場合(作業機レバー操作量316が作業機レバー操作量閾値を越えて作業機レバー222が操作されていると判断された場合)にはフローチャートの最初に戻る。
[Engine Speed Limiting Unit 332]
FIG. 5 is a flowchart of the control related to the engine speed limiter 332 in the control shown in FIG. In the work implement lever operation determination step 510, the engine speed limiter 332 includes a work implement lever operation amount 316 detected by the work implement lever operation amount detector 225 and a predetermined work implement lever operation amount threshold (see FIG. 8, which will be described later). 9 is compared with the threshold value 630) in FIG. The work implement lever operation amount threshold is a value for detecting whether or not the work implement lever is operated, and for example, a value slightly higher than the pilot pressure value when the work implement lever is in the neutral position may be set. . If the work implement lever operation amount 316 is equal to or less than the work implement lever operation amount threshold, the engine speed limit unit 332 determines that there is no operation of the work implement lever 222, and proceeds to the work implement load determination step 520. When it is determined that the work implement lever operation amount 316 exceeds the work implement lever operation amount threshold and the work implement lever 222 is operated, the process returns to the beginning of the flowchart.
 作業機負荷判定ステップ520では、エンジン回転数制限部332は、作業機負荷演算部345によって演算された作業機負荷355と所定の作業負荷閾値とを比較する。作業負荷閾値は作業機150の負荷の有無を検出するための値であり、例えば、無負荷状態の作業機負荷の値よりも僅かに高い値を設定する場合がある。作業機負荷355が作業負荷閾値以下の場合には、エンジン回転数制限部332は作業機負荷が無いと判断し、エンジン回転数制限指令判定ステップ511へ進み、そうでない場合はフローチャートの最初に戻る。 In work machine load determination step 520, the engine speed limiter 332 compares the work machine load 355 calculated by the work machine load calculator 345 with a predetermined work load threshold. The work load threshold is a value for detecting the presence or absence of a load on the work implement 150, and may be set to a value slightly higher than the value of the work load in the no-load state, for example. When the work implement load 355 is equal to or less than the work load threshold, the engine speed limiter 332 determines that there is no work implement load, and proceeds to the engine speed limit command determination step 511, and otherwise returns to the beginning of the flowchart. .
 エンジン回転数制限指令判定ステップ511では、エンジン回転数制限部332は、高負荷予測部331からのエンジン回転数制限指令313の有無を判断する。エンジン回転数制限指令313の出力がある場合には第1エンジン回転数制限値設定ステップ512へ進み、それ以外の場合に第2エンジン回転数制限値設定ステップ513へ進む。 In the engine speed limit command determination step 511, the engine speed limit unit 332 determines the presence or absence of the engine speed limit command 313 from the high load prediction unit 331. If there is an output of the engine speed limit command 313, the process proceeds to the first engine speed limit value setting step 512; otherwise, the process proceeds to the second engine speed limit value setting step 513.
 第1エンジン回転数制限値設定ステップ512では、エンジン回転数制限値を第2エンジン回転数制限値よりも低い第1エンジン回転数制限値に設定する。第2エンジン回転数制限値設定ステップ513では、エンジン回転数制限値を第2エンジン回転数制限値に設定する。 In the first engine speed limit value setting step 512, the engine speed limit value is set to a first engine speed limit value lower than the second engine speed limit value. In the second engine speed limit value setting step 513, the engine speed limit value is set to the second engine speed limit value.
 第2エンジン回転数制限値は、既述のエンジン性能曲線におけるエンジン回転数の最大値(基準制限値)よりも低い値に設定されている。そして、好ましくは、第2エンジン回転数制限値は、そのエンジンで最大トルクが出力できるエンジン回転数(換言するとエンジン性能曲線上でトルクが最大となるエンジン回転数)に設定すると良い。第2エンジン回転数制限値は、エンジン性能曲線上で燃料消費率が最高となるエンジン回転数に設定しても良い。 The second engine speed limit value is set to a value lower than the maximum engine speed value (reference limit value) in the engine performance curve described above. Preferably, the second engine speed limit value is set to an engine speed at which the engine can output the maximum torque (in other words, the engine speed at which the torque is maximum on the engine performance curve). The second engine speed limit value may be set to an engine speed at which the fuel consumption rate is highest on the engine performance curve.
 エンジン回転数制限処理ステップ514では、エンジン回転数制限部332は、エンジン回転数指令値処理部335から出力されるエンジン回転数指令値に代えて、ステップ512又はステップ513で設定された第1エンジン回転数制限値又は第2エンジン回転数制限値をエンジン回転数指令値として出力する(このステップ514に係る処理が上記の「エンジン回転数制限処理」または「制限処理」に該当する)。 In the engine speed limit processing step 514, the engine speed limit unit 332 replaces the engine speed command value output from the engine speed command value processing unit 335 with the first engine set in step 512 or step 513. The engine speed limit value or the engine speed limit value is output as the engine speed command value (the process according to step 514 corresponds to the above “engine speed limit process” or “limit process”).
 ステップ512およびステップ513における第1エンジン回転数制限値および第2エンジン回転数制限値のそれぞれの値は、あらかじめ設定した値に保持しても良いが、ボタンやダイアル、モニタ等の入力装置を活用して事後的に所望の値を変えられるように構成してもよい。 The values of the first engine speed limit value and the second engine speed limit value in step 512 and step 513 may be held at preset values, but input devices such as buttons, dials, and monitors are used. Then, the desired value may be changed afterwards.
 なお、エンジン回転数制限処理ステップ514では、実エンジン回転数を取得し、実エンジン回転数とエンジン回転数制限値との間に乖離が有る場合、一定の変化率でエンジン回転数指令値がエンジン回転数制限値に到達するよう処理してもよい。 In the engine speed limit processing step 514, the actual engine speed is acquired, and when there is a difference between the actual engine speed and the engine speed limit value, the engine speed command value is output at a constant rate of change. Processing may be performed so as to reach the rotation speed limit value.
 また、図5のフローチャートにおいて、作業機レバー操作判定ステップ510及び/又は作業機負荷判定ステップ520は省略可能である。作業機レバー操作判定ステップ510を省略した場合には、ステップ513でエンジン回転数制限値を、第2エンジン回転数制限値に代えて上述のエンジン性能曲線におけるエンジン回転数の最大値に設定しても良い。 In the flowchart of FIG. 5, the work implement lever operation determination step 510 and / or the work implement load determination step 520 can be omitted. If work implement lever operation determination step 510 is omitted, the engine speed limit value is set to the maximum value of the engine speed in the engine performance curve described above in place of the second engine speed limit value in step 513. Also good.
 [トルク減フラグ出力部334]
 高負荷状態にならないと予測されエンジン回転数制限指令が出され、第1エンジン回転数制限値又は第2エンジン回転数制限値にエンジン回転数を下げている状態で、作業機レバーが操作されるなどして高負荷状態に移行する場合、エンジンが出力不足に陥る可能性がある。これを回避するため、本実施の形態の制御装置240はトルク減フラグ出力部334において、実エンジン回転数317とエンジン回転数指令値360の比較を基に、エンジン201にかかる油圧ポンプ211の負荷を低減する必要があるか否かを判定する。
[Torque reduction flag output unit 334]
It is predicted that the engine will not be in a high load state, an engine speed limit command is issued, and the work implement lever is operated in a state where the engine speed is lowered to the first engine speed limit value or the second engine speed limit value. For example, when shifting to a high load state, the engine may run out of output. In order to avoid this, the controller 240 of the present embodiment uses the torque reduction flag output unit 334 to load the hydraulic pump 211 on the engine 201 based on the comparison between the actual engine speed 317 and the engine speed command value 360. It is determined whether or not it is necessary to reduce.
 図6は、図3に示した制御のうち、トルク減フラグ出力部334に係る制御のフローチャートである。エンジン回転数制限指令判定ステップ920では、トルク減フラグ出力部334は、高負荷予測部331からのエンジン回転数制限指令313の発令の有無を判定する。ここでエンジン回転数制限指令313が発令されている場合はトルク減フラグ設定ステップ910へ進み、それ以外の場合はトルク減フラグ判定ステップ921へ進む。 FIG. 6 is a flowchart of the control related to the torque reduction flag output unit 334 in the control shown in FIG. In the engine speed limit command determination step 920, the torque reduction flag output unit 334 determines whether or not the engine speed limit command 313 is issued from the high load prediction unit 331. If the engine speed limit command 313 has been issued, the process proceeds to a torque reduction flag setting step 910. Otherwise, the process proceeds to a torque reduction flag determination step 921.
 トルク減フラグ判定ステップ921では、トルク減フラグ出力部334はトルク減フラグの有無を判定する。トルク減フラグは、後に図7を用いて説明される油圧ポンプ上限トルク設定部333での処理で利用されるものであり、本実施の形態ではトルク減フラグの有無で処理内容を変えている。また、トルク減フラグが「有り」とは「フラグが立っている状態」を示し、トルク減フラグが「無し」とは「フラグが立っていない状態」を示す。ステップ921において、トルク減フラグ有りの場合、エンジン回転数判定ステップ922へ進み、それ以外の場合はトルク減フラグ解除ステップ912へ進む。 In the torque reduction flag determination step 921, the torque reduction flag output unit 334 determines whether there is a torque reduction flag. The torque reduction flag is used in the processing in the hydraulic pump upper limit torque setting unit 333, which will be described later with reference to FIG. 7, and in this embodiment, the processing content is changed depending on the presence or absence of the torque reduction flag. In addition, “present” indicates that the torque reduction flag is “present” and “torn” indicates that “the flag is not set”. In step 921, if the torque reduction flag is present, the process proceeds to engine speed determination step 922. Otherwise, the process proceeds to torque reduction flag release step 912.
 エンジン回転数判定ステップ922では、トルク減フラグ出力部334は、実エンジン回転数317とエンジン回転数指令値360の大小を判定する。ここで実エンジン回転数317がエンジン回転数指令値360よりも小さい場合、トルク減フラグ設定ステップ910へ進み、それ以外の場合はトルク減フラグ解除ステップ912へ進む。 In the engine speed determination step 922, the torque reduction flag output unit 334 determines whether the actual engine speed 317 and the engine speed command value 360 are large or small. If the actual engine speed 317 is smaller than the engine speed command value 360, the process proceeds to the torque reduction flag setting step 910. Otherwise, the process proceeds to the torque reduction flag release step 912.
 トルク減フラグ設定ステップ910では、トルク減フラグ出力部334はトルク減フラグを有りに設定する。一方、トルク減フラグ解除ステップ912ではトルク減フラグを無しに設定する。両ステップ910,912ともその後ステップ913に進み、油圧ポンプ上限トルク設定部333に対してトルク減フラグの有無を出力する処理(トルク減フラグ出力処理)を行う。 In the torque reduction flag setting step 910, the torque reduction flag output unit 334 sets the torque reduction flag to be present. On the other hand, in the torque reduction flag release step 912, the torque reduction flag is set to none. Both steps 910 and 912 then proceed to step 913 and perform processing (torque reduction flag output processing) for outputting the presence or absence of a torque reduction flag to the hydraulic pump upper limit torque setting unit 333.
 以上の演算によって、エンジン回転数制限指令がある場合や、エンジン回転数制限指令がなくても実エンジン回転数がエンジン回転数指令値よりも小さい場合に、トルク減フラグ出力部334は、油圧ポンプ211の負荷を低減する必要があると判断し、トルク減フラグを有りに設定する。 As a result of the above calculation, when there is an engine speed limit command, or when there is no engine speed limit command and the actual engine speed is smaller than the engine speed command value, the torque reduction flag output unit 334 outputs the hydraulic pump It is determined that the load of 211 needs to be reduced, and the torque reduction flag is set to “present”.
 [油圧ポンプ上限トルク設定部333]
 図7は、図3に示した制御のうち、油圧ポンプ上限トルク設定部333に係る制御のフローチャートである。トルク減フラグ判定ステップ810では、油圧ポンプ上限トルク設定部333は、トルク減フラグ出力部334から出力されたトルク減フラグの有無を判定する。トルク減フラグ出力部334から出力されたトルク減フラグが有りの場合、第2油圧ポンプ上限トルク設定ステップ812へ進み、そうでない場合(トルク減フラグが無しの場合)は第1油圧ポンプ上限トルク設定ステップ811へ進む。
[Hydraulic pump upper limit torque setting unit 333]
FIG. 7 is a flowchart of the control related to the hydraulic pump upper limit torque setting unit 333 in the control shown in FIG. In the torque reduction flag determination step 810, the hydraulic pump upper limit torque setting unit 333 determines whether there is a torque reduction flag output from the torque reduction flag output unit 334. If the torque reduction flag output from the torque reduction flag output unit 334 is present, the process proceeds to the second hydraulic pump upper limit torque setting step 812. Otherwise (if the torque reduction flag is not present), the first hydraulic pump upper limit torque setting is performed. Proceed to step 811.
 第1油圧ポンプ上限トルク設定ステップ811では、油圧ポンプ上限トルク設定部333は、エンジン回転数検知器226により検知される実エンジン回転数317と図7中のグラフを基に油圧ポンプ上限トルクを設定する。図7のグラフ中に点線(「第2」と付した点線)で示したエンジン回転数は、第2エンジン回転数制限値(図5のステップ513)を示す。図7中のグラフでは、第2エンジン回転数制限値以上のエンジン回転数317では油圧ポンプ上限トルクは一定に保持され、第2エンジン回転数制限値未満のエンジン回転数317ではエンジン回転数の減少とともに油圧ポンプ上限トルクも減少するように設定されている。 In the first hydraulic pump upper limit torque setting step 811, the hydraulic pump upper limit torque setting unit 333 sets the hydraulic pump upper limit torque based on the actual engine speed 317 detected by the engine speed detector 226 and the graph in FIG. 7. To do. The engine speed indicated by a dotted line (dotted line labeled “second”) in the graph of FIG. 7 indicates a second engine speed limit value (step 513 in FIG. 5). In the graph in FIG. 7, the hydraulic pump upper limit torque is kept constant at an engine speed 317 equal to or higher than the second engine speed limit value, and the engine speed decreases at an engine speed 317 less than the second engine speed limit value. At the same time, the hydraulic pump upper limit torque is set to decrease.
 同様に、第2油圧ポンプ上限トルク設定ステップ812では、油圧ポンプ上限トルク設定部333は、実エンジン回転数317と図7中のグラフを基に油圧ポンプ上限トルクを設定する。図7のグラフ中の2本の点線の右側のもの(「第2」と付した点線)は、第2エンジン回転数制限値(図5のステップ513)を示し、左側のもの(「第1」と付した点線)は、第1エンジン回転数制限値(図5のステップ512)を示す。図7のグラフでは、第2エンジン回転数制限値以上のエンジン回転数317では油圧ポンプ上限トルクは一定に保持される。そして、第2エンジン回転数制限値未満のエンジン回転数317では、第2エンジン回転数制限値と第1エンジン回転数制限値の間の値に達する間に油圧ポンプ上限トルクが最小限の値にまで急激に減少するように設定されている。 Similarly, in the second hydraulic pump upper limit torque setting step 812, the hydraulic pump upper limit torque setting unit 333 sets the hydraulic pump upper limit torque based on the actual engine speed 317 and the graph in FIG. The one on the right side of the two dotted lines in the graph of FIG. 7 (dotted line labeled “second”) indicates the second engine speed limit value (step 513 in FIG. 5), and the one on the left side (“first” The dotted line marked with “” indicates the first engine speed limit value (step 512 in FIG. 5). In the graph of FIG. 7, the hydraulic pump upper limit torque is kept constant at an engine speed 317 equal to or higher than the second engine speed limit value. When the engine speed 317 is less than the second engine speed limit value, the hydraulic pump upper limit torque is minimized while reaching a value between the second engine speed limit value and the first engine speed limit value. Is set to decrease rapidly.
 なお、既述のように、第1油圧ポンプ上限トルク設定ステップ811と第2油圧ポンプ上限トルク設定ステップ812で実行される上限トルク設定処理はいずれも、図7中のグラフが示すように、実エンジン回転数317が大きくなるほど油圧ポンプ上限トルクを増加するように構成されている。ただし、第2油圧ポンプ上限トルクの設定値は、同じエンジン回転数に対する第1油圧ポンプ上限トルク設定値以下の値とする。これは、トルク減フラグが有りの場合、実エンジン回転数の加速を優先させるためである。 As described above, the upper limit torque setting process executed in the first hydraulic pump upper limit torque setting step 811 and the second hydraulic pump upper limit torque setting step 812 is the same as the graph in FIG. The upper limit torque of the hydraulic pump is increased as the engine speed 317 increases. However, the set value of the second hydraulic pump upper limit torque is set to a value equal to or smaller than the first hydraulic pump upper limit torque set value for the same engine speed. This is to prioritize acceleration of the actual engine speed when there is a torque reduction flag.
 油圧ポンプ上限トルク処理ステップ813では、油圧ポンプ上限トルク設定部333は、ステップ812又はステップ811で設定した油圧ポンプ上限トルク値を、油圧ポンプ上限トルク指令値として油圧ポンプ211へ出力する。これにより油圧ポンプ211の上限トルク値がステップ812又はステップ811で設定された値に制限される。なお、油圧ポンプ211の上限トルク値の制限制御は、例えば、油圧ポンプ211の吐出圧と容量の積が所定値以下に保持されるように油圧ポンプ211の容量(傾転角)を吐出圧に応じて適宜制御することで可能である。 In the hydraulic pump upper limit torque processing step 813, the hydraulic pump upper limit torque setting unit 333 outputs the hydraulic pump upper limit torque value set in step 812 or step 811 to the hydraulic pump 211 as the hydraulic pump upper limit torque command value. As a result, the upper limit torque value of the hydraulic pump 211 is limited to the value set in step 812 or step 811. The upper limit torque value limit control of the hydraulic pump 211 is performed, for example, by setting the displacement (tilt angle) of the hydraulic pump 211 to the discharge pressure so that the product of the discharge pressure and the displacement of the hydraulic pump 211 is kept below a predetermined value. It is possible by appropriately controlling accordingly.
 上記のようにトルク減フラグ出力部334及び油圧ポンプ上限トルク設定部333により油圧ポンプ211の上限トルク値を制限すると、第1エンジン回転数制限値又は第2エンジン回転数制限値にエンジン回転数を下げている状態で、作業機レバー222が操作されるなどして油圧ポンプ負荷が増加する高負荷状態への移行が要求された場合に、エンジン出力がまずエンジン回転数の増加に優先的に用いられ、その後エンジン回転数が適度に増加したところでエンジン出力の油圧ポンプへの割り当て量を増加することになるので、エンジンストールを発生させることなく高負荷作業へのスムーズな移行が可能となる。 When the torque reduction flag output unit 334 and the hydraulic pump upper limit torque setting unit 333 limit the upper limit torque value of the hydraulic pump 211 as described above, the engine speed is set to the first engine speed limit value or the second engine speed limit value. When a shift to a high load state in which the hydraulic pump load increases due to operation of the work implement lever 222 in the lowered state is required, the engine output is first used to increase the engine speed. After that, when the engine speed is increased moderately, the amount of engine output allocated to the hydraulic pump is increased, so that a smooth transition to high-load work is possible without causing engine stall.
 なお、トルク減フラグ出力部334及び油圧ポンプ上限トルク設定部333は省略することができる。 The torque reduction flag output unit 334 and the hydraulic pump upper limit torque setting unit 333 can be omitted.
 [実動作]
 図8及び図9は上記のように構成された本実施の形態に係るホイールローダの動作の一例を示したものである。各図中のグラフ620は積荷量推移を、グラフ621は走行速度推移(実走行速度推移)を、グラフ622はエンジン回転数制限指令推移を、グラフ623は作業機レバー操作量推移を、グラフ624はエンジン回転数指令値推移を示す。なお、グラフ623には作業機レバー操作量閾値630を示しており、グラフ624にはエンジン回転数指令値処理部335(図3参照)がエンジン負荷又はアクセル操作量を基に決定したエンジン回転数604を示している。
[Actual operation]
8 and 9 show an example of the operation of the wheel loader according to the present embodiment configured as described above. In each figure, a graph 620 represents a load amount transition, a graph 621 represents a travel speed transition (actual travel speed transition), a graph 622 represents an engine speed limit command transition, a graph 623 represents a work implement lever operation amount transition, a graph 624 Indicates the engine speed command value transition. The graph 623 shows a work implement lever operation amount threshold value 630, and the graph 624 shows an engine speed determined by the engine speed command value processing unit 335 (see FIG. 3) based on the engine load or the accelerator operation amount. 604 is shown.
 図8では積荷量が図9の場合よりも相対的に多い場合の例を示している。この場合、積荷量が多いことから、高負荷予測部331により走行速度閾値(図4のステップ411)が高めに設定される。そのため、時刻0時点600からアクセルペダルの踏み込み量を増加して走行速度を増加しても当該走行速度が走行速度閾値よりも小さく時間が比較的長く、高負荷予測部331はエンジン回転数制限指令を発令しない。これにより、エンジン回転数制限部332はエンジン回転数制限値として第2エンジン回転数制限値(第2制限)を設定し、エンジン回転数指令値はアクセルペダルの踏み込みに応じて第2制限までは上昇する。 FIG. 8 shows an example in which the load amount is relatively larger than that in FIG. In this case, since the load amount is large, the high load prediction unit 331 sets the travel speed threshold (step 411 in FIG. 4) to be higher. For this reason, even if the accelerator pedal depression amount is increased from time 0 600 and the travel speed is increased, the travel speed is smaller than the travel speed threshold and the time is relatively long. Is not issued. As a result, the engine speed limiter 332 sets the second engine speed limit value (second limit) as the engine speed limit value, and the engine speed command value does not reach the second limit depending on the depression of the accelerator pedal. To rise.
 走行速度が走行速度閾値を超えた時点601以降は、高負荷予測部331が高負荷は起こらないと予測するため、エンジン回転数制限指令313がエンジン回転数制限部332に発令される。これにより、エンジン回転数制限部332はエンジン回転数制限値として第1エンジン回転数制限値(第1制限)を設定するので、エンジン回転数指令値の制限値が第2制限から第1制限まで低下する。 Since the high load prediction unit 331 predicts that no high load will occur after the time point 601 when the travel speed exceeds the travel speed threshold, the engine speed limit command 313 is issued to the engine speed limit unit 332. Thus, the engine speed limit unit 332 sets the first engine speed limit value (first limit) as the engine speed limit value, so that the limit value of the engine speed command value is from the second limit to the first limit. descend.
 時点602で、アクセルペダルの踏み込み量を減少するなどして走行速度が低下して走行速度閾値を下回ると、高負荷予測部331は高負荷が起こる可能性があると予測し、エンジン回転数制限指令313の発令を解除する。これにより、エンジン回転数指令値の制限値が第1制限から第2制限まで上昇する。 At a time 602, when the traveling speed decreases and falls below the traveling speed threshold by decreasing the accelerator pedal depression amount, the high load predicting unit 331 predicts that a high load may occur, and limits the engine speed. Release the command 313. Thereby, the limit value of the engine speed command value increases from the first limit to the second limit.
 作業機レバー222の操作量が所定の作業機レバー操作量閾値630を上回った時点603で、エンジン回転数制限部332はエンジン回転数制限処理の実行を中断し、その時のアクセル操作量や負荷に応じたエンジン回転数604(図3のエンジン回転数指令値処理部335が決定した値)まで上昇する。 At a time 603 when the operation amount of the work implement lever 222 exceeds a predetermined work implement lever operation amount threshold value 630, the engine speed limit unit 332 interrupts the execution of the engine speed limit processing, and the accelerator operation amount and load at that time are reduced. The engine speed is increased to a corresponding engine speed 604 (a value determined by the engine speed command value processing unit 335 in FIG. 3).
 図9は図8と同様に、本発明を導入したホイールローダの動作の一例を示したものである。図8では積荷量が多い場合の例を示したのに対し、図9では相対的に積荷量が少ない場合の例を示している。この場合も、時刻0時点700からアクセルペダルの踏み込み量を増加しても走行速度は走行速度閾値よりも小さく、高負荷予測部331はエンジン回転数制限指令を発令しない。そのため、エンジン回転数制限部332はエンジン回転数制限値として第2制限を設定し、エンジン回転数指令値は第2制限までは上昇する。 FIG. 9 shows an example of the operation of the wheel loader incorporating the present invention, as in FIG. FIG. 8 shows an example when the load amount is large, whereas FIG. 9 shows an example when the load amount is relatively small. Also in this case, even if the amount of depression of the accelerator pedal is increased from time 700, the traveling speed is smaller than the traveling speed threshold, and the high load predicting unit 331 does not issue an engine speed limit command. Therefore, the engine speed limit unit 332 sets the second limit as the engine speed limit value, and the engine speed command value increases until the second limit.
 しかし、この場合は積荷量が少なく走行速度閾値が低めに設定されているため、図8の場合(時点601)よりも早い時点701で走行速度が走行速度式位置に達する。 However, in this case, since the amount of cargo is small and the traveling speed threshold is set low, the traveling speed reaches the traveling speed type position at a time point 701 earlier than the case of FIG. 8 (time point 601).
 走行速度が走行速度閾値を超えた時点701以後は、アクセルペダルの踏み込み量を減少するなどして走行速度が低下して走行速度閾値を下回る時点702まで、エンジン回転数指令の制限値は第1制限に保持される。これにより積荷量が大きいときよりも第1エンジン回転数で走行する時間が長くなるため燃料消費量を減少できる。 After the time point 701 when the travel speed exceeds the travel speed threshold value, the limit value of the engine speed command is the first value until the time point 702 when the travel speed decreases and falls below the travel speed threshold value by, for example, decreasing the accelerator pedal depression amount. Keep in limits. As a result, it takes longer to travel at the first engine speed than when the load is large, so that the fuel consumption can be reduced.
 作業機レバー操作量が所定の作業機レバー操作量閾値730を上回った時点703で、エンジン回転数制限部332はエンジン回転数制限処理の実行を中断し、その時のアクセル操作量や負荷に応じたエンジン回転数まで上昇する。 At a time 703 when the work machine lever operation amount exceeds a predetermined work machine lever operation amount threshold value 730, the engine speed limit unit 332 interrupts execution of the engine speed limit process, and according to the accelerator operation amount and load at that time Increases to engine speed.
 上記のように構成される本実施の形態では、積荷量と走行速度に基づいて高負荷動作が起こる可能性の高さを判定し、当該可能性が低いと判定された場合にエンジン回転数を低減する時間を積極的に増加する構成とした。このように制御すると、積荷量が小さく走行速度が高いほどエンジン回転数が低減される時間が長くなり、高負荷状態時のエンジンの出力不足が回避されつつも、高速走行中の燃料消費量を効果的に低減できる。 In the present embodiment configured as described above, it is determined whether the high load operation is likely to occur based on the load amount and the traveling speed, and when it is determined that the possibility is low, the engine speed is set. It was set as the structure which positively increases the time to reduce. By controlling in this way, the smaller the load amount and the higher the traveling speed, the longer the time during which the engine speed is reduced, and the shortage of the engine output during high load conditions is avoided, while the fuel consumption during high-speed traveling is reduced. It can be effectively reduced.
 さらに上記の実施の形態では、図5のステップ510において、高負荷動作が起こる可能性の高さの判定に、作業機レバー222の操作の有無も考慮することとした。そして、作業機レバー222が操作されている場合は高負荷動作が起こる可能性が高いと判定して、図5のステップ514におけるエンジン回転数指令の制限処理の実行を中断することとした。このように構成すると、実際に高負荷動作がなされる前にエンジン回転数の増加を開始できるので、実際に高負荷動作がされた場合にエンジン出力不足が発生することを回避できる。 Further, in the above embodiment, whether or not the work implement lever 222 is operated is considered in the determination of the high possibility of the high load operation in Step 510 of FIG. Then, when the work implement lever 222 is operated, it is determined that there is a high possibility that a high load operation will occur, and the execution of the engine speed command limiting process in step 514 of FIG. 5 is interrupted. With this configuration, since the increase in engine speed can be started before actual high load operation is performed, it is possible to avoid a shortage of engine output when the high load operation is actually performed.
 [動力伝達装置210]
 最後に動力伝達装置210の具体例について図11から13を用いて説明する。図11は、動力伝達装置210として、エンジン動力を油圧に変換して車輪1に伝達するHST式を採用したホイールローダの一例のシステム構成図である。この図に示すホイールローダは、エンジン201の出力軸に連結された油圧ポンプ171と、油圧ポンプ171から吐出される圧油によって回転駆動される油圧モータ172を備えている。油圧モータ172は車軸(プロペラシャフト)215を介して各車輪1を回転駆動する。
[Power transmission device 210]
Finally, a specific example of the power transmission device 210 will be described with reference to FIGS. FIG. 11 is a system configuration diagram of an example of a wheel loader that employs an HST system that converts engine power into hydraulic pressure and transmits it to the wheel 1 as the power transmission device 210. The wheel loader shown in this figure includes a hydraulic pump 171 connected to the output shaft of the engine 201 and a hydraulic motor 172 that is rotationally driven by pressure oil discharged from the hydraulic pump 171. The hydraulic motor 172 rotationally drives each wheel 1 via an axle (propeller shaft) 215.
 図12の動力伝達装置210はエンジン201で動力伝達機械部173を介して車輪1を駆動するとともに、エンジン201で動力伝達機械部173を介して油圧ポンプ171を駆動して油圧モータ172に圧油を送り、その油圧モータ172で車輪1を駆動するHMT式を採用したホイールローダの一例のシステム構成図である。この図に示すホイールローダにおいて、動力伝達機械部173は、エンジン201の出力軸と車軸215と油圧ポンプ211,171を機械的に連結する機械機構であり、例えば、遊星歯車を使用するものがある。 The power transmission device 210 of FIG. 12 drives the wheel 1 via the power transmission mechanical unit 173 by the engine 201 and also drives the hydraulic pump 171 via the power transmission mechanical unit 173 by the engine 201 to apply pressure oil to the hydraulic motor 172. 1 is a system configuration diagram of an example of a wheel loader adopting an HMT system in which a hydraulic motor 172 drives a wheel 1. In the wheel loader shown in this figure, the power transmission mechanical unit 173 is a mechanical mechanism that mechanically connects the output shaft of the engine 201, the axle 215, and the hydraulic pumps 211 and 171. For example, there is one using a planetary gear. .
 図13は、動力伝達装置210として、エンジン動力を電気に変換して車輪1に伝達するハイブリッド式を採用したホイールローダの一例のシステム構成図である。この図に示すホイールローダは、エンジン201に機械的に連結されエンジン201によって駆動される電動発電機(モータ/ジェネレータ(M/G))176と、電動発電機176を制御するインバータ装置177と、ディファレンシャルギア(Dif)及びギア(G)を介してプロペラシャフト215に取り付けられ4つの車輪1を駆動する走行電動機179と、走行電動機179を制御するインバータ装置180と、DCDCコンバータ182を介してインバータ177,180(電動発電機6,走行電動機9)と電気的に接続されインバータ177,180との間で直流電力の受け渡しを行う蓄電装置(例えば、二次電池やコンデンサ)181とを備えている。なお、図13に示したハイブリッドシステムはいわゆるシリーズ型(直列型)といわれる構成であるが、パラレル型(並列型)のハイブリッドシステムも利用可能である。 FIG. 13 is a system configuration diagram of an example of a wheel loader that employs a hybrid system that converts engine power into electricity and transmits it to the wheel 1 as the power transmission device 210. The wheel loader shown in this figure includes a motor generator (motor / generator (M / G)) 176 that is mechanically connected to and driven by the engine 201, an inverter device 177 that controls the motor generator 176, and A traveling motor 179 that is attached to the propeller shaft 215 via the differential gear (Dif) and the gear (G) and drives the four wheels 1, an inverter device 180 that controls the traveling motor 179, and an inverter 177 via the DCDC converter 182. , 180 (motor generator 6, travel motor 9) and a power storage device (for example, a secondary battery or a capacitor) 181 that is connected to inverters 177, 180 and is connected to inverter 177, 180. The hybrid system shown in FIG. 13 has a so-called series type (series type) configuration, but a parallel type (parallel type) hybrid system can also be used.
 [補足事項]
 上記の説明では、走行速度が走行速度閾値を超えるか否か(エンジン回転数制限指令の有無)でエンジン回転数制限値を変更したが、走行速度が走行速度閾値を超えた以降は走行速度と走行速度閾値の差分が大きくなるほどエンジン回転数制限値を小さくするような制御を行っても良い。
[Additional notes]
In the above description, the engine speed limit value is changed depending on whether the travel speed exceeds the travel speed threshold (whether there is an engine speed limit command). However, after the travel speed exceeds the travel speed threshold, You may perform control which makes an engine speed limit value small, so that the difference of a driving speed threshold value becomes large.
 上記の例ではバケット151内の積荷量に基づいて走行速度閾値を決定したが、車両重量からの増加重量に基づいて走行速度閾値を決定しても良い。増加重量には変数値である搭乗者等の実際の重量(体重)や仮定の重量を含めても良いし、含めなくても良い。本稿ではこれらを含む概念であって、所定の車両重量値からの増加重量を「積載量」と称する。 In the above example, the travel speed threshold is determined based on the load amount in the bucket 151, but the travel speed threshold may be determined based on the increased weight from the vehicle weight. The increased weight may or may not include the actual weight (body weight) of the passenger or the like, which is a variable value, or the assumed weight. In this paper, it is a concept including these, and the increased weight from a predetermined vehicle weight value is called “loading amount”.
 本発明の適用対象となる作業車両には上記したホイールローダだけでなく、フォークリフトやダンプトラックも含まれ、その場合の作業機にはフォークリフトのフォークを昇降させる昇降装置における油圧シリンダやダンプトラックの荷台(ベッセル)を起伏させる油圧シリンダ(ホイストシリンダ)が該当する。 The work vehicle to which the present invention is applied includes not only the wheel loader described above but also a forklift and a dump truck. In this case, the work machine includes a hydraulic cylinder and a dump truck bed in a lifting device that lifts and lowers the fork of the forklift. This corresponds to a hydraulic cylinder (hoist cylinder) for raising and lowering (vessel).
 本発明は、上記の実施の形態に限定されるものではなく、その要旨を逸脱しない範囲内の様々な変形例が含まれる。例えば、本発明は、上記の実施の形態で説明した全ての構成を備えるものに限定されず、その構成の一部を削除したものも含まれる。また、ある実施の形態に係る構成の一部を、他の実施の形態に係る構成に追加又は置換することが可能である。 The present invention is not limited to the above-described embodiment, and includes various modifications within the scope not departing from the gist thereof. For example, the present invention is not limited to the one having all the configurations described in the above embodiment, and includes a configuration in which a part of the configuration is deleted. In addition, part of the configuration according to one embodiment can be added to or replaced with the configuration according to another embodiment.
 上記の制御装置240に係る各構成や当該各構成の機能及び実行処理等は、それらの一部又は全部をハードウェア(例えば各機能を実行するロジックを集積回路で設計する等)で実現しても良い。また、上記の制御装置240に係る構成は、演算処理装置(例えばCPU)によって読み出し・実行されることで当該制御装置240の構成に係る各機能が実現されるプログラム(ソフトウェア)としてもよい。当該プログラムに係る情報は、例えば、半導体メモリ(フラッシュメモリ、SSD等)、磁気記憶装置(ハードディスクドライブ等)及び記録媒体(磁気ディスク、光ディスク等)等に記憶することができる。 Each configuration related to the above-described control device 240, functions and execution processing of each configuration, etc. are realized by hardware (for example, logic for executing each function is designed by an integrated circuit). Also good. The configuration related to the control device 240 may be a program (software) that realizes each function related to the configuration of the control device 240 by being read and executed by an arithmetic processing device (for example, a CPU). Information related to the program can be stored in, for example, a semiconductor memory (flash memory, SSD, etc.), a magnetic storage device (hard disk drive, etc.), a recording medium (magnetic disk, optical disc, etc.), and the like.
 100・・・ホイールローダ、110・・・車体、150・・・作業機(作業装置)、151・・・バケット、152・・・リフトシリンダ、153・・・バケットシリンダ、154・・・Zリンク、155・・・リフトアーム、201・・・エンジン、210・・・動力伝達装置、211・・・油圧ポンプ、212・・・コントロールバルブ、220・・・リフトシリンダ圧力検知器、221・・・バケットシリンダ圧力検知器、222・・・作業機レバー(操作装置)、223・・・走行速度検知器、225・・・作業機レバー操作量検知器、227・・・アクセル操作量検知器、230・・・電子ガバナ、240・・・制御装置、330・・・第2エンジン回転数指令値設定部、331・・・高負荷予測部、332・・・エンジン回転数制限部、333・・・油圧ポンプ上限トルク設定部、334・・・トルク減フラグ出力部、336・・・第1エンジン回転数指令値設定部 DESCRIPTION OF SYMBOLS 100 ... Wheel loader, 110 ... Vehicle body, 150 ... Working machine (working apparatus), 151 ... Bucket, 152 ... Lift cylinder, 153 ... Bucket cylinder, 154 ... Z link DESCRIPTION OF SYMBOLS 155 ... Lift arm, 201 ... Engine, 210 ... Power transmission device, 211 ... Hydraulic pump, 212 ... Control valve, 220 ... Lift cylinder pressure detector, 221 ... Bucket cylinder pressure detector, 222... Work implement lever (operation device), 223... Travel speed detector, 225... Work implement lever operation amount detector, 227. ... Electronic governor, 240 ... Control device, 330 ... Second engine speed command value setting unit, 331 ... High load prediction unit, 332 ... Engine speed The number limiting part 333 ... hydraulic pump upper limit torque setting unit, 334 ... torque decrease flag output unit, 336 ... first engine rotation speed command value setting portion

Claims (3)

  1.  エンジンと、車輪と、少なくとも1つのアクチュエータにより駆動される作業装置と、前記少なくとも1つのアクチュエータの動作を制御するための操作装置とを備える作業車両において、
     前記エンジンから出力される動力を油圧または電気に変換して前記車輪へ伝達する動力伝達装置と、
     前記エンジンへの出力要求指令に応じて前記エンジンの回転数を制限値以下の範囲で制御するように構成された制御装置であって、前記作業車両の実走行速度が前記作業車両の積載量に応じて定められる閾値を超えた場合には、前記実走行速度が前記閾値以下の場合よりも前記制限値を低い値に設定する制限処理を実行するように構成された制御装置とを備えることを特徴とする作業車両。
    In a work vehicle comprising an engine, wheels, a work device driven by at least one actuator, and an operation device for controlling the operation of the at least one actuator,
    A power transmission device for converting the power output from the engine into hydraulic pressure or electricity and transmitting it to the wheels;
    A control device configured to control the rotational speed of the engine within a range equal to or less than a limit value in response to an output request command to the engine, wherein an actual traveling speed of the work vehicle is set to a load amount of the work vehicle. And a control device configured to execute a restriction process for setting the restriction value to a lower value than when the actual traveling speed is equal to or less than the threshold value when a threshold value determined in response thereto is exceeded. Feature work vehicle.
  2.  請求項1に記載の作業車両において、
     前記少なくとも1つのアクチュエータは、前記エンジンを間接的な動力源とし、
     前記制御装置は、前記作業車両の実走行速度が前記作業車両の積載量に応じて定められる閾値を超えた場合であっても、前記操作装置が操作されている間は前記制限処理の実行を中断することを特徴とする作業車両。
    The work vehicle according to claim 1,
    The at least one actuator uses the engine as an indirect power source;
    The control device performs the restriction process while the operation device is being operated even when the actual traveling speed of the work vehicle exceeds a threshold value determined according to a load amount of the work vehicle. A work vehicle characterized by being suspended.
  3.  請求項2に記載の作業車両において、
     前記閾値は、前記作業車両の積載量が少なくなるほど減少するように設定されることを特徴とする作業車両。
    The work vehicle according to claim 2,
    The work vehicle is characterized in that the threshold value is set so as to decrease as the load amount of the work vehicle decreases.
PCT/JP2016/070709 2015-07-13 2016-07-13 Work vehicle WO2017010522A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-139657 2015-07-13
JP2015139657A JP2017020439A (en) 2015-07-13 2015-07-13 Work vehicle

Publications (1)

Publication Number Publication Date
WO2017010522A1 true WO2017010522A1 (en) 2017-01-19

Family

ID=57758075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070709 WO2017010522A1 (en) 2015-07-13 2016-07-13 Work vehicle

Country Status (2)

Country Link
JP (1) JP2017020439A (en)
WO (1) WO2017010522A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110199104A (en) * 2017-06-27 2019-09-03 株式会社小松制作所 The control method of working truck and working truck

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001116071A (en) * 1999-10-18 2001-04-27 Toyota Autom Loom Works Ltd Cargo handling/travel control device for industrial vehicle
JP2002161776A (en) * 2000-09-18 2002-06-07 Fuji Heavy Ind Ltd Working vehicle
JP2005012900A (en) * 2003-06-18 2005-01-13 Hitachi Constr Mach Co Ltd Hybrid work vehicle
JP2007099413A (en) * 2005-09-30 2007-04-19 Toyota Industries Corp Traveling control device for forklift
JP2008137524A (en) * 2006-12-04 2008-06-19 Hitachi Constr Mach Co Ltd Travel driving device of working vehicle
JP2009041533A (en) * 2007-08-10 2009-02-26 Hitachi Constr Mach Co Ltd Travel system for working machine
WO2010116853A1 (en) * 2009-04-09 2010-10-14 株式会社小松製作所 Construction vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001116071A (en) * 1999-10-18 2001-04-27 Toyota Autom Loom Works Ltd Cargo handling/travel control device for industrial vehicle
JP2002161776A (en) * 2000-09-18 2002-06-07 Fuji Heavy Ind Ltd Working vehicle
JP2005012900A (en) * 2003-06-18 2005-01-13 Hitachi Constr Mach Co Ltd Hybrid work vehicle
JP2007099413A (en) * 2005-09-30 2007-04-19 Toyota Industries Corp Traveling control device for forklift
JP2008137524A (en) * 2006-12-04 2008-06-19 Hitachi Constr Mach Co Ltd Travel driving device of working vehicle
JP2009041533A (en) * 2007-08-10 2009-02-26 Hitachi Constr Mach Co Ltd Travel system for working machine
WO2010116853A1 (en) * 2009-04-09 2010-10-14 株式会社小松製作所 Construction vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110199104A (en) * 2017-06-27 2019-09-03 株式会社小松制作所 The control method of working truck and working truck
CN110199104B (en) * 2017-06-27 2022-01-18 株式会社小松制作所 Work vehicle and work vehicle control method

Also Published As

Publication number Publication date
JP2017020439A (en) 2017-01-26

Similar Documents

Publication Publication Date Title
US9074546B2 (en) Work vehicle and work vehicle control method
JP4315248B2 (en) Control device for traveling work vehicle
JP5171053B2 (en) Clutch control device for hydraulic drive vehicle
JP6163082B2 (en) Wheel loader
US10801183B2 (en) Wheel loader
JP5113946B1 (en) Work vehicle and control method of work vehicle
WO2010109972A1 (en) Construction vehicle
WO2014049890A1 (en) Wheel loader
EP2287405B1 (en) Working vehicle, control device for working vehicle, and control method for working vehicle
US11326324B2 (en) Work vehicle and control method for work vehicle
EP3660229B1 (en) Loading vehicle
US11125327B2 (en) Work vehicle and control method for work vehicle
JP7470170B2 (en) Work vehicle and method for controlling work vehicle
CN113056592B (en) Work vehicle, control device for power machine, and control method
JP5092059B1 (en) Work vehicle and control method of work vehicle
JP5341041B2 (en) Hydraulically driven vehicle and method and apparatus for controlling the same
WO2017010522A1 (en) Work vehicle
WO2010052831A1 (en) Working vehicle
EP3294581B1 (en) A working machine arranged with means to drive and control a hydraulic pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16824502

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16824502

Country of ref document: EP

Kind code of ref document: A1