WO2017010097A1 - Image processing method, image processing program, image processing device, and image processing system - Google Patents

Image processing method, image processing program, image processing device, and image processing system Download PDF

Info

Publication number
WO2017010097A1
WO2017010097A1 PCT/JP2016/003307 JP2016003307W WO2017010097A1 WO 2017010097 A1 WO2017010097 A1 WO 2017010097A1 JP 2016003307 W JP2016003307 W JP 2016003307W WO 2017010097 A1 WO2017010097 A1 WO 2017010097A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
coronary
delayed contrast
coronary artery
contrast
Prior art date
Application number
PCT/JP2016/003307
Other languages
French (fr)
Japanese (ja)
Inventor
金吾 七戸
正勝 帆足
根本 茂
▲隆▼義 山口
Original Assignee
株式会社根本杏林堂
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社根本杏林堂 filed Critical 株式会社根本杏林堂
Publication of WO2017010097A1 publication Critical patent/WO2017010097A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]

Definitions

  • the present invention relates to an image processing method, an image processing program, an image processing apparatus, and an image processing system that perform a difference process using a coronary CT image and a delayed contrast CT image to generate a difference image.
  • Patent Document 1 the problem to be solved by the invention of Patent Document 1 describes that a technique for identifying a responsible blood vessel cannot extract a region where a myocardial infarction is depicted.
  • this Patent Document 1 in order to extract a region where a myocardial infarction is depicted from a CT image, an MR image obtained by imaging the heart with an MRI (Magnetic Resonance Imaging) device and an image obtained by a CT (Computed Tomography) device. CT images obtained are used.
  • MRI Magnetic Resonance Imaging
  • CT Computerputed Tomography
  • fibrosis progresses from the myocardial intima side (lumen side).
  • the contrast agent penetrates the interstitial space via the coronary artery, and the penetration rate of the contrast agent in the myocardial infarction is slower than that of the normal part of the myocardium. And the outflow rate of the contrast agent that has penetrated into the interstitial space is also slower in the myocardial infarction than in the normal myocardium.
  • a difference in pixel value occurs between the normal myocardial part and the myocardial infarction part. Since this difference is large (high contrast) in the MR image, it is easier to extract the myocardial infarction compared to the CT image.
  • MRI apparatus When using an MRI apparatus, imaging is performed using a load of an ATP drug (vasodilator).
  • the MRI apparatus requires an inspection time (40 to 60 minutes) longer than the inspection time (10 to 15 minutes) of the CT apparatus. Therefore, it is desirable to identify the myocardial infarction from the CT image captured by the CT apparatus in order to reduce the burden on the patient as the subject.
  • CT image delayed contrast CT image
  • the difference in pixel values between the myocardial part and the lumen is small (contrast is low), so it is difficult for a doctor to identify the boundary between the two.
  • the difference in pixel values between the myocardial infarction part and the normal myocardial part is small, and it is difficult for the doctor to identify the myocardial infarction part.
  • differential processing on the CT image to emphasize the myocardial infarction portion in the delayed contrast CT image.
  • the difference process is performed by subtracting an image with a low (light) average value of the left ventricle from a high (dark) image with a high average pixel value of the left ventricle to be imaged. Therefore, in general, the difference process of subtracting the dark coronary artery CT image from the light delayed contrast CT image is not performed.
  • the difference between the pixel values of the lumen of the left ventricle and the myocardium can be emphasized and the boundary between the two can be clarified. It is also possible to emphasize the difference in pixel values between the normal part of the left ventricle and the myocardial infarction.
  • the heartbeat deforms the non-rigid heart, particularly the left ventricle. Therefore, in order to accurately identify the myocardial infarction portion of the left ventricle, it is necessary to align the delayed contrast CT image and the coronary artery CT image.
  • the delayed contrast CT image since the boundary between the lumen of the left ventricle and the myocardial part is unclear, there is a problem that alignment with the coronary artery CT image is difficult.
  • an image processing method as an example of the present invention includes a coronary CT image obtained by imaging a left ventricle including a contrasted coronary artery with a CT device, and a predetermined amount based on the imaging of the coronary CT image.
  • An image processing program as another example of the present invention includes a coronary artery CT image obtained by imaging a left ventricle including a contrasted coronary artery with a CT apparatus, and a predetermined delay time from the imaging of the coronary artery CT image.
  • An image processing program for generating a differential image by causing a computer to execute differential processing using a delayed contrast CT image obtained by imaging a left ventricle including a contrasted myocardial infarction with a CT device after the passage And determining, in the computer, a discrimination process for discriminating between the coronary CT image and the delayed contrast CT image, an alignment process for aligning the coronary CT image and the delayed contrast CT image, and the delayed contrast CT The difference process of subtracting the coronary artery CT image from the image is executed.
  • An image processing apparatus as another example of the present invention includes a coronary CT image obtained by imaging a left ventricle including a contrasted coronary artery with a CT apparatus, and a predetermined delay time from the imaging of the coronary CT image.
  • An image processing apparatus that generates a differential image by performing a differential process using a delayed contrast CT image obtained by imaging a left ventricle including a contrasted myocardial infarction portion with a CT apparatus after a lapse of time, An acquisition unit that acquires the coronary CT image and the delayed contrast CT image, a determination unit that determines the coronary CT image and the delayed contrast CT image, and alignment of the coronary CT image and the delayed contrast CT image And a difference processing unit for performing the difference process of subtracting the coronary artery CT image from the delayed contrast CT image.
  • an image processing system is connected to the above-described image processing apparatus, a CT apparatus that captures the coronary CT image and the delayed contrast CT image, and injects a contrast agent. And an injection device.
  • the delayed contrast CT image and the coronary CT image can be discriminated.
  • the delayed contrast CT image and the coronary CT image can be accurately aligned, and the myocardial infarction can be accurately identified.
  • An image processing apparatus 1 shown in FIG. 1 is a workstation or an image detection system, stores a CPU (control unit) that also functions as a processing unit 10 that processes an image, an image processing program, and stores image data. And a storage unit 11.
  • the storage unit 11 includes a RAM that is a system work memory for the processing unit 10 to operate, a ROM that stores an image processing program, a control program, system software, and the like, a hard disk drive, and the like.
  • the CPU controls the entire image processing apparatus 1 based on the program stored in the storage unit 11. That is, the CPU executes various processing operations such as calculation, control, and discrimination according to the stored control program. Note that the CPU can also execute processing operations according to a program stored in an external storage medium such as a CD (Compact Disc) or a server on the Internet.
  • an external storage medium such as a CD (Compact Disc) or a server on the Internet.
  • the image processing apparatus 1 includes a keyboard for inputting predetermined commands or data, or an input unit 12 including various switches, and a display unit for displaying a CT image, an input state of the apparatus, a setting state, a measurement result, various information, and the like. 13. Note that the image processing apparatus 1 may include a touch panel that functions as both the input unit 12 and the display unit 13.
  • the image processing apparatus 1 is a computer that executes various processes according to the image processing program according to the first embodiment. Therefore, in the processing unit 10, each unit such as the acquisition unit 14, the determination unit 15, the extraction unit 16, the calculation unit 17, the alignment unit 18, and the difference processing unit 19 is logically realized as various functions.
  • the image processing program causes the image processing apparatus 1 to function as the acquisition unit 14, the determination unit 15, the extraction unit 16, the calculation unit 17, the alignment unit 18, and the difference processing unit 19.
  • This image processing program can be recorded on a computer-readable internal or external recording medium.
  • the image processing apparatus 1 is wirelessly or wired connected to a PACS (Picture Archiving and Communication Systems) 4 as an external storage device (server).
  • the image processing apparatus 1 can transmit information to the PACS 4 and can receive information from the PACS 4.
  • the image processing apparatus 1 may be connected to another external storage device such as RIS (Radiology Information System) or HIS (Hospital Information System).
  • RIS Radiology Information System
  • HIS Hospital Information System
  • the image processing apparatus 1 is wirelessly or wired connected to the CT apparatus 3, and the CT apparatus 3 is wirelessly or wired connected to the contrast medium injection apparatus 2.
  • the CT apparatus 3 and the injection apparatus 2 are connected to the RIS 5 by wireless or wired connection.
  • the injection device 2 generates an injection protocol and injects a contrast medium and physiological saline into the body of a patient who is a subject according to the injection protocol.
  • the CT apparatus 3 captures the left ventricle including the contrasted coronary artery to obtain a coronary artery CT image.
  • the CT apparatus 3 captures the left ventricle including the contrasted myocardial infarction after a predetermined delay time has elapsed since the coronary artery CT image is captured, and obtains a delayed contrast CT image. Furthermore, the CT apparatus 3 transmits the captured CT image to the image processing apparatus 1 or the PACS 4.
  • FIG. 2 shows an example of a schematic time density curve (TDC) including when the coronary artery is imaged by a contrast medium (coronary artery phase).
  • FIG. 3 shows an example of a schematic time density curve including a time when a predetermined delay time has elapsed from the coronary artery phase (delay phase). 2 and 3, the vertical axis represents the pixel value, and the horizontal axis represents the elapsed time from the start of contrast medium injection.
  • the imaging timing of the coronary CT image is shown by a vertical bar.
  • This imaging timing is the timing when the coronary artery is well imaged, and in FIG. 2 is the time when 28 seconds have elapsed from the start of injection.
  • the coronary artery is well imaged 15-30 seconds after the start of infusion.
  • the imaging timing of the delayed contrast CT image is illustrated by a vertical bar.
  • This imaging timing is a timing at which the difference between the pixel values of the myocardial normal portion and the myocardial infarction portion increases, and in FIG. 3, is a time point when a delay time of 300 seconds (328 seconds from the start of injection) has elapsed since the coronary artery phase. This delay time is preferably 5 to 20 minutes.
  • the acquisition unit 14 of the image processing apparatus 1 acquires a coronary CT image and a delayed contrast CT image from the CT apparatus 3 or the PACS 4.
  • the acquisition unit 14 can also acquire the coronary artery CT image and the delayed contrast CT image stored in the storage unit 11 of the image processing apparatus 1.
  • the determination unit 15 determines the coronary CT image and delayed contrast CT image acquired by the acquisition unit 14, and adds determination information (for example, an ID indicating the type of image) to the CT image as necessary.
  • the discriminating unit 15 can discriminate between a coronary CT image and a delayed contrast CT image on the basis of an average pixel value in a region (for example, a central region) including the left ventricle of the CT image or the entire CT image. Specifically, the determination unit 15 compares both CT images and determines that the one with the lower average pixel value is the delayed contrast CT image. Then, the determination unit 15 adds determination information indicating that it is a delayed contrast CT image to the delayed contrast CT image. Further, the determination unit 15 may perform determination based on the number of pixels (number of voxels) in a predetermined pixel value range in a histogram based on the pixel value and the number of pixels (number of voxels). For example, the determination unit 15 compares both CT images, and determines that the one having a smaller number of pixels (number of voxels) in the range of 200HU to 500HU is a delayed contrast CT image.
  • the extraction unit 16 extracts the outer contour of the left ventricle in the coronary CT image (hereinafter also simply referred to as “outer contour”) and the outer contour of the left ventricle in the delayed contrast CT image.
  • the outer contour corresponds to the epicardial contour
  • the inner contour described later corresponds to the endocardial contour.
  • the extraction unit 16 performs binarization on the CT image with an arbitrary threshold, and extracts only the heart region by extracting only the region having a large pixel value. Then, the extraction unit 16 extracts a boundary between the extracted heart region and another region as an outer contour.
  • the alignment unit 18 performs alignment between the coronary CT image determined by the determination unit 15 and the delayed contrast CT image. Specifically, the alignment unit 18 performs rigid body alignment between the coronary CT image and the delayed contrast CT image. For example, the alignment unit 18 specifies the center of gravity of the left ventricle of each of the coronary CT image and the delayed contrast CT image, and performs translation and rotation of the coronary CT image so that the centers of gravity coincide. The alignment unit 18 may perform parallel movement and rotational movement of the delayed contrast CT image.
  • the alignment unit 18 may perform rigid body alignment so that the positional deviation between the outer contours of the left ventricle of the coronary CT image and the delayed contrast CT image is minimized.
  • the alignment unit 18 sets a control point on the outer contour as a corresponding point among a plurality of control points set in a grid shape in both CT images. Then, the alignment unit 18 performs parallel movement and rotational movement of the coronary CT image so that the positional deviation between corresponding points on both outer contours is minimized (or within a predetermined range). Since there is a large difference in pixel values between the outer contour and the outer region, the outer contour can be accurately extracted from both the light delayed contrast CT image and the dark coronary CT image. Therefore, alignment can be performed accurately by using the outer contour that can be accurately extracted as a reference.
  • the alignment unit 18 can also perform non-rigid deformation alignment of the coronary artery CT image and the delayed contrast CT image when performing alignment.
  • the shape or size of the left ventricle of the coronary CT image may be different from the delayed contrast CT image due to the heartbeat or body movement. Therefore, by performing non-rigid deformation alignment, the size or shape of one image is deformed and matched with the size or shape of the other image to perform alignment more suitable for differential processing. Can do.
  • the alignment unit 18 deforms the coronary artery CT image without deforming the delayed contrast CT image.
  • the difference in pixel values between the normal myocardial portion and the myocardial infarction portion is larger than that in the coronary CT image, and the myocardial infarction region is imaged more accurately. Therefore, by not deforming the delayed contrast CT image, the myocardial infarction region can be accurately depicted even in the difference image obtained by the difference process.
  • Non-rigid deformation alignment is performed, for example, by a method using a scale (similarity) based on similarity of pixel values (for example, mutual information amount or correlation coefficient). Then, the alignment unit 18 deforms the coronary artery CT image so that the degree of similarity becomes the maximum or a predetermined threshold value or more.
  • Non-rigid deformation alignment will be described with reference to FIG. 4 showing a schematic cross section of the left ventricle.
  • the coronary artery CT image and the delayed contrast CT image are aligned so that the centers of gravity of the left ventricles coincide with each other.
  • the left ventricle of the coronary CT image indicated by the solid line is smaller than the left ventricle of the delayed contrast CT image indicated by the broken line.
  • the shape of the inner contour (lumen) of the coronary artery CT image is different from that of the delayed contrast CT image.
  • the alignment unit 18 sets a control point on the outer contour of the coronary CT image as a corresponding point C among a plurality of control points set in a grid shape in both CT images.
  • the alignment unit 18 sets a control point on the outer contour of the delayed contrast CT image as the corresponding point D among the plurality of control points.
  • the alignment unit 18 expands the outer contour of the coronary artery CT image to the position indicated by the dotted line in FIG. 4 so that the positions of the corresponding point C and the corresponding point D substantially coincide.
  • the alignment unit 18 deforms the shape of the outer contour of the coronary CT image so that the similarity between the two CT images is the maximum or equal to or greater than a predetermined threshold value.
  • the alignment unit 18 deforms the shape of the inner contour of the coronary CT image so that the similarity between the two CT images is the maximum or a predetermined threshold value or more.
  • the alignment unit 18 sets the outer contour of the coronary CT image so that the positions of the corresponding point C and the corresponding point D are substantially coincident with each other. to shrink. Thereafter, the alignment unit 18 deforms the shape of the outer contour of the coronary CT image so that the similarity between the two CT images is the maximum or equal to or greater than a predetermined threshold value. Further, the alignment unit 18 deforms the shape of the inner contour of the coronary CT image so that the similarity between the two CT images is the maximum or a predetermined threshold value or more.
  • the alignment unit 18 can change the shape of the inner contour of the coronary CT image as follows using the area or volume of the myocardial part.
  • the calculation unit 17 of the image processing apparatus 1 calculates the area of the left ventricular myocardium (region shown by hatching in FIG. 4) in the coronary CT image.
  • the calculation unit 17 can calculate the area of the myocardial part by calculating the area of the region between the extracted inner contour and outer contour.
  • the calculation unit 17 can calculate the volume of the myocardial part by performing the same process on a large number of CT images included in the volume data acquired by the acquisition unit 14.
  • the calculation unit 17 can also calculate the ratio of the myocardial infarction portion to the myocardial portion and the width (depth) of the myocardial infarction portion from the endocardium (myocardial wall portion).
  • the alignment unit 18 deforms the coronary CT image (inner contour of the coronary CT image) so as to maintain the calculated myocardial area or volume when performing non-rigid deformation alignment. Also in this case, the alignment unit 18 deforms the coronary CT image so that the similarity between the two CT images is the maximum or a predetermined threshold value or more.
  • the coronary CT image and the delayed contrast CT image are imaged at the same cardiac phase using electrocardiographic synchronization. Therefore, it can be assumed that the areas and volumes of both myocardial portions are substantially the same. Therefore, by maintaining the area or volume of the myocardial part, the inner contour of the coronary CT image can be more approximated to the actual size and shape. Note that the area or volume does not need to be completely matched, and it can be considered that the area or volume is maintained even if there is an error within a predetermined range.
  • FIG. 5 shows a schematic cross section of the left ventricle.
  • a delayed contrast CT image is shown on the left side
  • a coronary artery CT image is shown in the center
  • an image (difference image) after differential processing is shown on the right side.
  • FIG. 5 shows a CT image after alignment.
  • the difference processing unit 19 of the image processing apparatus 1 performs a difference process for subtracting the coronary artery CT image from the delayed contrast CT image.
  • the pixel value of the coronary artery CT image can be subtracted from the delayed contrast CT image, and the left ventricle lumen (inner contour) can be clearly depicted. That is, the pixel value of the lumen including the endocardium is subtracted, and the difference between the pixel values of the myocardial part and the lumen is emphasized. Further, the difference in pixel value between the normal myocardial part and the myocardial infarction part is emphasized, and the myocardial infarction part can be clearly depicted.
  • the pixel value of the normal part of the myocardium is 80 HU
  • the pixel value of the lumen is 100 HU
  • the pixel value of the myocardial infarction part is 100 HU.
  • the pixel value of the normal part of the myocardium is 50 HU
  • the pixel value of the lumen is 180 HU
  • the pixel value of the myocardial infarction part is 20 HU.
  • the image processing apparatus 1 transmits the generated difference image to the PACS 4, and the PACS 4 stores the received difference image. Then, the stored difference image is used for interpretation by a doctor.
  • the difference processing there is no difference in the delayed contrast CT image, but in the difference image, the difference between the pixel values of the myocardial infarction portion and the lumen is emphasized to 160 HU.
  • the difference in pixel value between the normal myocardial portion and the myocardial infarction portion which was 20 HU in the delayed contrast CT image, is emphasized, and is 50 HU in the differential image.
  • a lumen having a relatively low pixel value is displayed in black, and a normal myocardial portion of the myocardial portion is displayed in gray.
  • a myocardial infarction portion having a relatively high pixel value is displayed in white.
  • the delayed contrast CT image it is possible to depict the myocardial infarction and distinguish it from the normal myocardium.
  • the lumen and myocardial infarction have close pixel values. Therefore, it is difficult to accurately identify the myocardial infarction that progresses from the endocardium.
  • the pixel values of only the lumen and the coronary artery are high. Therefore, in the coronary artery CT image, the lumen and the myocardial part can be easily identified. Therefore, according to the technique of subtracting the coronary artery CT image from the delayed contrast CT image, the myocardial part can be drawn easily and clearly as described above. Thereby, the doctor can identify the myocardial infarction accurately and easily.
  • the acquisition unit 14 of the image processing apparatus 1 acquires a delayed contrast CT image and a coronary CT image from the CT apparatus 3 or PACS 4 (image server), and temporarily stores them in the storage unit 11 (S101). Then, the determination unit 15 determines the delayed contrast CT image and the coronary artery CT image (S102). At this time, the operator clicks the “(left ventricle) extraction button” displayed on the display unit 13. Then, the extraction unit 16 extracts the shape (range) of the outer contour and inner contour (and the myocardial portion between the outer contour and the inner contour) of the determined coronary artery CT image (S103).
  • the display unit 13 displays the extraction result on the CT image, and the operator operates the input unit 12 as necessary to correct the range of the outer contour and the inner contour.
  • the extraction unit 16 may automatically extract the shapes of the outer contour and the inner contour without depending on an instruction from the operator.
  • the calculation unit 17 calculates the area (volume) of the myocardial part of the coronary CT image from the extracted myocardial part of the left ventricle. (S105). Then, the extraction unit 16 extracts the shape (range) of the outer contour of the delayed contrast CT image determined by the determination unit 15 (S106). Since the display unit 13 displays the extraction result on the CT image, the operator can correct the range of the outer contour and the inner contour.
  • the extraction unit 16 extracts the range of the outer contour of the delayed contrast CT image (S106). Since the display unit 13 displays the extraction result on the CT image, the operator can correct the range of the outer contour and the inner contour. Then, the alignment unit 18 aligns the coronary CT image and the delayed contrast CT image (S107). This alignment includes at least one of rigid body alignment and non-rigid deformation alignment.
  • the alignment unit 18 performs alignment so that, for example, the centers of gravity of the left ventricles specified by the outer contour match.
  • the alignment unit 18 may perform rigid body alignment with reference to the outer contours of the left ventricle of the coronary CT image and the delayed contrast CT image so that the deviation between the outer contours is minimal or within a predetermined range. it can.
  • the right ventricle has a large degree of deformation between the coronary CT image and the delayed contrast CT image. Therefore, more accurate alignment can be performed by performing rigid body alignment based on the outer contour of the left ventricle.
  • the alignment unit 18 performs alignment by deforming the outer contour of the coronary CT image so as to match the outer contour of the delayed contrast CT image, for example. At this time, the alignment unit 18 deforms the coronary CT image so that the degree of similarity is maximized. Since the delayed contrast CT image in which the myocardial infarction portion is imaged more clearly is not deformed, the myocardial infarction portion can be depicted more clearly.
  • the alignment unit 18 can deform the coronary CT image so that the area (volume) of the myocardial part calculated in step S105 is maintained. Since all CT images are captured in the middle diastole due to the electrocardiogram synchronization, it can be assumed that the cross-sectional area (volume) of the myocardial portion in both CT images does not change significantly. Further, the outer contour of the left ventricle can be extracted relatively clearly in both the coronary CT image and the delayed contrast CT image. Therefore, at the time of non-rigid body deformation alignment, more accurate alignment can be performed by deforming the inside of the coronary artery CT image based on the area (volume) calculated from the coronary artery CT image.
  • the difference processing unit 19 After the alignment, the difference processing unit 19 performs a difference process for subtracting the coronary artery CT image from the delayed contrast CT image (S108), and the created difference image is temporarily stored in the storage unit 11. Thereby, the image processing is completed, and the display unit 13 displays the difference image. Further, the image processing apparatus 1 transmits the difference image to the PACS 4 and stores it.
  • the determination unit 15 of the image processing apparatus 1 may determine a delayed contrast CT image and a coronary CT image stored in the CT apparatus 3 or the PACS 4. For example, the determination unit 15 determines a coronary CT image and a delayed contrast CT image based on the average pixel value of the CT image.
  • the discrimination information is added to both CT images and stored in the storage unit 11.
  • the delayed contrast CT image and the coronary CT image can be discriminated based on the discrimination information.
  • the extraction process for the delayed contrast CT image and the extraction process and the calculation process for the coronary CT image can be switched in order.
  • This image processing is executed as follows by the image processing program. That is, after acquiring the coronary CT image and the delayed contrast CT image, the operator activates the image processing program and reads both CT images.
  • the image processing program causes the image processing apparatus 1 to function as the determination unit 15 and executes a determination process for determining a coronary CT image and a delayed contrast CT image (S102).
  • the image processing program causes the image processing apparatus 1 to function as the extraction unit 16 and executes an extraction process for extracting the myocardial portion of the coronary artery CT image (S103). Then, the image processing program displays the extraction result on the display unit 13 of the image processing apparatus 1.
  • the image processing program When calculating the area (YES in S104), the image processing program causes the image processing apparatus 1 to function as the calculation unit 17 and executes calculation processing for calculating the area of the myocardial portion of the coronary CT image (S105). Thereafter, the image processing program causes the image processing apparatus 1 to function as the extraction unit 16 and executes an extraction process for extracting the outer contour of the delayed contrast CT image (S106). Even when the area is not calculated (NO in S104), the image processing program similarly executes an extraction process (S106). Then, the image processing program causes the image processing apparatus 1 to function as the alignment unit 18 and executes an alignment process for aligning the coronary CT image and the delayed contrast CT image (S107).
  • the image processing program causes the image processing apparatus 1 to function as the difference processing unit 19 and executes a difference process for subtracting the coronary artery CT image from the delayed contrast CT image (S108). Then, the image processing program temporarily stores the created difference image in the storage unit 11. As a result, the image processing ends, and the image processing program causes the display unit 13 to display the difference image. Thereafter, the image processing apparatus 1 transmits the difference image to the PACS 4 for storage.
  • the image processing program may cause the image processing apparatus 1 to execute a calculation process using a difference image so as to calculate the ratio of the myocardial infarction portion to the myocardial portion and the width of the myocardial infarction portion from the endocardium. Good.
  • the boundary can be clearly depicted by emphasizing the difference in pixel values between the lumen and the myocardial part by subtraction.
  • the myocardial infarction portion emphasizing the difference in pixel values between the normal myocardial portion and the myocardial infarction portion.
  • the doctor can identify the myocardial infarction more accurately in the CT image having a higher resolution than the MR image.
  • the imaging by the CT apparatus 3 is shorter in imaging time than the MRI apparatus, and the burden on the patient who is the subject can be reduced when imaging the myocardial infarction.
  • the CT apparatus since the CT apparatus has a wider imaging width in one scan than the MRI apparatus, a wider range of images can be obtained by one imaging.
  • the coronary CT image and the delayed contrast CT image may be three-dimensional images (volume data).
  • a three-dimensional difference image can be created by performing the above-described image processing on a plurality of two-dimensional images in the same manner. For example, it is not necessary to extract a myocardial infarction in all of the 320 two-dimensional images. If the threshold values for the myocardial infarction part and the normal part of the myocardium are specified for each of the coronary CT image and the delayed contrast CT image, a three-dimensional image can be created by reflecting the result in all the images. it can.
  • the image processing system 200 is connected to the image processing apparatus 1 described in the first embodiment, a CT apparatus 3 that captures a coronary CT image and a delayed contrast CT image, and a CT apparatus 3 in a wired or wireless manner and uses a contrast agent. And an injection device 2 for injection.
  • the CT apparatus 3 includes an imaging unit 31 that images a subject according to an imaging protocol, a control device 32 that controls the entire CT apparatus 3, and a display 33.
  • the imaging unit 31 includes a bed, an X-ray source that irradiates the subject with X-rays, an X-ray detector that detects X-rays transmitted through the subject, and the like.
  • the imaging unit 31 shoots a fluoroscopic image of the subject by irradiating the subject with X-rays and back-projecting the inside of the subject based on the X-rays transmitted through the subject.
  • you may comprise the control apparatus 32 and the display 33 integrally.
  • the operator reads out the examination order stored in advance by the doctor from the RIS 5 to the CT apparatus 3.
  • This examination order includes at least one piece of information about an imaging region and an imaging method (imaging timing such as a coronary artery phase and a delay phase).
  • the test order includes information about the subject, such as the subject's weight, lean body mass, circulating blood volume, subject number (subject ID), subject name, gender, date of birth, age, height, blood volume, blood flow rate, It may include body surface area, subject disease, side effect history, creatinine value, heart rate, cardiac output, and the like.
  • the inspection order may include an inspection number (inspection ID), an inspection site, an inspection date, a chemical type, a chemical name, and the like as inspection information.
  • the operator inputs the imaging region and imaging timing (coronary artery phase and delay phase) to the CT apparatus 3. Then, the CT apparatus 3 creates a coronary artery phase and a delayed phase imaging protocol. The operator confirms this imaging protocol, and if there is no correction, the imaging protocol is determined. Note that the operator may input only one of the imaging part or the imaging timing.
  • the imaging protocol includes information such as the imaging site, effective tube voltage, model name, manufacturer name, imaging time, tube voltage, imaging range, rotation speed, helical pitch, exposure time, dose, and imaging method. Yes.
  • the control device 32 images the subject by controlling the imaging unit 31 so as to follow the imaging protocol.
  • the control device 32 is connected to a display 33, and the display 33 displays the input state of the device, the setting state, the imaging result, various information, and the like.
  • the CT apparatus 3 transmits the determined imaging protocol to the injection apparatus 2.
  • the CT apparatus 3 can transmit a reference injection protocol to the injection apparatus 2.
  • the CT device 3 and the injection device 2 are connected via a gateway device (not shown), and the CT device 3 transmits a reference injection protocol stored in advance to the injection device 2.
  • the injection device 2 includes an injection head 21 in order to inject the contrast medium filled in the syringe into the body of the subject. Furthermore, the injection device 2 includes a stand 22 that holds the injection head 21 and a console 23 that is connected to the injection head 21 by wire or wirelessly.
  • the injection head 21 has a first holding part 214 on which a syringe filled with a contrast medium is mounted, and a second holding part 215 on which a syringe filled with physiological saline for boosting the contrast medium is mounted. .
  • the injection head 21 has a drive mechanism (not shown) that pushes out the chemical solution in the syringe mounted on the first holding unit 214 according to the injection protocol, and the chemical solution in the syringe mounted on the second holding unit 215 according to the injection protocol. And a drive mechanism (not shown) for extruding.
  • the console 23 functions as a control device that controls the injection head 21, and also functions as a generation device that generates a contrast medium injection protocol. Then, the console 23 generates an injection protocol based on the imaging protocol received from the CT apparatus 3. Note that the console 23 can also generate an injection protocol by modifying the reference injection protocol received from the CT apparatus 3. When the operator confirms the injection protocol displayed on the console 23, the preparation for injection is completed.
  • the injection device 2 may have a control device connected to the injection head 21 and a touch panel display connected to the control device and displaying the injection status of the chemical solution, instead of the console 23.
  • the injection head 21 and the control device can be configured integrally with the stand 22.
  • a ceiling suspension member may be provided instead of the stand 22, and the injection head 21 may be suspended from the ceiling via the ceiling suspension member.
  • the injection device 2 may include a power source or a battery, a hand switch connected to the console 23, a remote operation device for remotely operating the injection head 21, and the like.
  • This remote control device can start or stop injection by operating the injection head 21 remotely.
  • the power source or the battery can be provided in either the injection head 21 or the console 23, and can be provided separately.
  • the injection head 21 injects the contrast agent according to the injection protocol generated by the control device.
  • This infusion protocol includes at least the infusion rate and the infusion time.
  • the injection protocol may include information regarding injection conditions such as injection volume, injection timing, contrast agent concentration, and injection pressure.
  • the injection head 21 has a head display 211 on which injection conditions, injection status, apparatus input status, setting status, various injection results, and the like are displayed, and an operation unit 212 for inputting the operation of the drive mechanism. is doing.
  • the head display 211 can also be used as the operation unit 212 by being configured from a touch panel or the like.
  • the head display 211 can be omitted.
  • a mixing tube or the like is connected to the tip of the syringe mounted on the injection head 21.
  • the operation unit 212 is provided with a forward button of the drive mechanism, a reverse button of the drive mechanism, a final confirmation button, or the like.
  • the preparation for injection such as connection of the mixing tube is completed, the operator presses the final confirmation button.
  • the injection head 21 stands by in a state where the injection can be started.
  • the drug solution pushed out from the syringe is injected into the body of the subject via a mixing tube or the like.
  • This mixing tube also functions as a mixer for the contrast agent and the diluted drug solution.
  • An example of such a mixer is “SPIRAL FLOW (registered trademark)” manufactured by Nemoto Kyorindo Co., Ltd.
  • the injection head 21 can be mounted with various syringes such as a prefilled syringe having a data carrier such as an RFID chip, an IC tag, and a barcode.
  • the injection head 21 includes a reading unit that reads a data carrier attached to the syringe.
  • the data carrier stores chemical information related to the chemical.
  • the chemical solution information includes a product name, product ID, chemical classification, contained component, concentration, viscosity, expiration date, syringe capacity, syringe pressure, cylinder inner diameter, piston stroke, lot number, and the like.
  • the injection apparatus 2 When preparation for injection of the contrast medium is completed and the operator instructs the injection apparatus 2 to start injection, the injection apparatus 2 performs a test bolus injection of the contrast medium.
  • the operator sets a region of interest (ROI) in advance, for example, in the ascending aorta.
  • the CT apparatus 3 images the coronary artery when, for example, 28 seconds have passed since the start of injection (coronary artery phase) using electrocardiographic synchronization.
  • the CT apparatus 3 transmits the captured coronary artery CT image to the acquisition unit 14 of the image processing apparatus 1.
  • the CT apparatus 3 uses the electrocardiogram synchronization to image the left ventricle when, for example, a delay time of 300 seconds elapses from the coronary artery phase.
  • the CT apparatus 3 transmits the captured delayed contrast CT image to the acquisition unit 14. Test bolus injection can be omitted.
  • the CT apparatus 3 may transmit a coronary CT image and a delayed contrast CT image to the PACS 4. Furthermore, the CT apparatus 3 may add discrimination information to the CT image so that the discrimination unit 15 can discriminate between the coronary artery CT image and the delayed contrast CT image.
  • discrimination information includes, for example, an ID indicating the type of image, a number corresponding to the order of imaging, and an imaging time.
  • the determination unit 15 determines a coronary CT image and a delayed contrast CT image.
  • the extraction unit 16 also extracts the outer contour of the left ventricle in the coronary CT image and the outer contour of the left ventricle in the delayed contrast CT image.
  • the alignment unit 18 performs alignment between the coronary CT image and the delayed contrast CT image, and the difference processing unit 19 subtracts the coronary CT image from the delayed contrast CT image.
  • the calculation unit 17 calculates the area or volume of the myocardium in the left ventricle of the coronary CT image.
  • the second embodiment it is possible to accurately discriminate between the delayed contrast CT image and the coronary artery CT image and perform the difference processing. Further, even a delayed contrast CT image having a small difference in pixel values between the lumen and the myocardial portion can be accurately aligned with the coronary artery CT image.
  • the boundary can be clearly identified by emphasizing the difference in pixel values between the lumen and the myocardium by subtraction.
  • the outer contour of the left ventricle in the coronary CT image in FIG. 4 is smaller than the delayed contrast CT image.
  • the alignment unit 18 of the image processing apparatus 1 uses the outside of the coronary CT image so that the corresponding point C on the outer contour of the coronary CT image coincides with the corresponding point D on the outer contour of the delayed contrast CT image. Enlarge the contour.
  • the displacement amount and the displacement direction of the outer contour accompanying this enlargement can be expressed as displacement vectors A and B as indicated by arrows in FIG.
  • the displacement may vary depending on the left ventricular site.
  • the displacement vector A group has a larger displacement amount than the displacement vector B group. Therefore, the alignment unit 18 deforms the inner contour of the left ventricle in the coronary artery CT image according to the amount of displacement of the outer contour.
  • the alignment unit 18 calculates displacement vectors A and B indicating to which position the corresponding point C moves. Then, the alignment unit 18 performs non-rigid deformation alignment according to the calculated displacement vectors A and B so that the similarity described in the first embodiment is the maximum or equal to or greater than a predetermined threshold. That is, the displacement vector A ′ (FIG. 8) of the portion located in the vicinity of the corresponding point C where the displacement amount is large is larger than the displacement vector B ′ of the portion located in the vicinity of the corresponding point where the displacement amount is small. Deform the inner contour.
  • the alignment unit 18 reduces the outer contour of the coronary CT image. Also in this case, the alignment unit 18 deforms the inner contour of the coronary CT image according to the displacement amount of the outer contour.
  • the inner contour can be displaced according to the displacement amount of the outer contour. Therefore, the inner contour can be more accurately deformed and the non-rigid deformation position alignment can be performed.
  • the invention according to the third embodiment can also accurately determine the delayed contrast CT image and the coronary CT image and perform the difference process. Further, even a delayed contrast CT image having a small difference in pixel values between the lumen and the myocardial portion can be accurately aligned with the coronary artery CT image.
  • the boundary can be clearly identified by emphasizing the difference in pixel values between the lumen and the myocardium by subtraction. In addition, it is possible to clearly depict the myocardial infarction portion by emphasizing the difference in pixel values between the normal myocardial portion and the myocardial infarction portion.
  • the pixel value of the normal part of the myocardium starts to rise 2 seconds after the pixel value of the coronary artery or the left ventricle reaches 150 HU. Then, when 7 to 8 seconds have elapsed since the arrival, the difference between the pixel values of the myocardial normal part and the myocardial infarction part reaches a peak. Thereafter, when 16 to 17 seconds have elapsed since the arrival, the difference between the pixel values reaches a level at which it is difficult to determine.
  • the discriminating unit 15 discriminates a CT image captured under the following conditions and uses it for the difference processing. That is, with the ROI set in the ascending aorta, a CT image captured after the ROI pixel value reaches 150 HU, within a predetermined time (for example, 7 to 17 seconds) after the ROI pixel value reaches 150 HU 2 to 9 seconds after the CT image picked up at the time, the CT image picked up after the ROI pixel value started to rise (peak), and the ROI pixel value went up and started to drop It is preferable to use a CT image imaged within the range.
  • the ROI can also be set in the coronary artery or the left ventricular lumen.
  • the image processing apparatus 1 can accurately depict the myocardial infarction portion.
  • the delayed phase it is preferable to use a CT image in which the difference in pixel values between the normal myocardial portion and the myocardial infarction portion is the largest among the plurality of CT images.
  • the determination unit 15 can determine a CT image having a large difference in pixel value from a plurality of CT images based on the imaging time information added to the CT image by the CT apparatus 3. Furthermore, the determination unit 15 may calculate a difference in pixel values between a normal myocardial portion and a myocardial infarction portion of each CT image, and determine a CT image that maximizes the difference in pixel values.
  • the operator can manually correct the position of the image or the shape of the outer contour after the rigid body alignment, the non-rigid deformation alignment, or the extraction of the outer contour. Further, the operator can perform image correction such as noise removal using a known method after rigid body alignment, non-rigid body deformation alignment, outer contour specification or difference processing.
  • the rigid body alignment, the non-rigid deformation alignment, and the extraction of the outer contour are not limited to the above method.
  • corresponding points are arranged along the outer contours of the coronary CT image and the delayed contrast CT image, and the coronary CT image is deformed so as to improve the similarity between the outer contours. May be.
  • the movement amount of the part in the coronary artery CT image other than the corresponding point can be complemented from the movement amount of the corresponding point.
  • the coronary CT image can be deformed without deforming at least the inner region of the outer contour of the left ventricle in the delayed contrast CT image.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

The present invention determines a delayed contrast-enhanced CT image and a coronary CT image and accurately aligns the delayed contrast-enhanced CT image and the coronary CT image with each other, in image processing for performing difference processing using the coronary CT image and the delayed contrast-enhanced CT image, and generating a differential image. In this image processing method for: performing difference processing using a coronary CT image acquired by taking, by a CT device, an image of a left ventricle including a coronary artery with a contrast agent, and a delayed contrast-enhanced CT image acquired by taking, by the CT device, an image of the left ventricle including a myocardial infarction portion with a contrast agent after a predetermined delay time elapses since the coronary CT image has been taken; and generating a differential image, the difference processing for acquiring the coronary CT image and the delayed contrast-enhanced CT image, determining the coronary CT image and the delayed contrast-enhanced CT image, aligning the coronary CT image and the delayed contrast-enhanced CT image with each other, and subtracting the coronary CT image from the delayed contrast-enhanced CT image, is performed.

Description

画像処理方法、画像処理プログラム、画像処理装置及び画像処理システムImage processing method, image processing program, image processing apparatus, and image processing system
 本発明は、冠動脈CT画像と遅延造影CT画像とを用いた差分処理を行って差分画像を生成する画像処理方法、画像処理プログラム、画像処理装置及び画像処理システムに関する。 The present invention relates to an image processing method, an image processing program, an image processing apparatus, and an image processing system that perform a difference process using a coronary CT image and a delayed contrast CT image to generate a difference image.
 従来、CT画像から心筋梗塞部を抽出することが困難であることが知られていた。例えば、特許文献1の発明が解決しようとする課題には、責任血管を特定する技術では、心筋梗塞部が描出される領域を抽出できないと記載されている。この特許文献1では、CT画像から心筋梗塞部が描出される領域を抽出するために、MRI(Magnetic Resonance Imaging)装置によって心臓が撮像されたMR画像と、CT(Computed Tomography)装置によって心臓が撮像されたCT画像とを用いている。 Conventionally, it has been known that it is difficult to extract a myocardial infarction from a CT image. For example, the problem to be solved by the invention of Patent Document 1 describes that a technique for identifying a responsible blood vessel cannot extract a region where a myocardial infarction is depicted. In this Patent Document 1, in order to extract a region where a myocardial infarction is depicted from a CT image, an MR image obtained by imaging the heart with an MRI (Magnetic Resonance Imaging) device and an image obtained by a CT (Computed Tomography) device. CT images obtained are used.
特開2010-104710号公報JP 2010-104710 A
 心筋梗塞部では、心筋内膜側(内腔側)から線維化が進行する。造影剤は冠動脈を経て間質腔に浸透し、心筋梗塞部における造影剤の浸透速度は心筋正常部よりも遅い。そして、間質腔に浸透した造影剤の流出速度も、心筋正常部よりも心筋梗塞部において遅い。そのため、冠動脈に造影剤が到達してから所定の遅延時間が経過した遅延相で撮像した画像(遅延造影画像)においては、心筋正常部と心筋梗塞部とに画素値の差が生じる。MR画像においてはこの差が大きい(コントラストが高い)ため、CT画像と比較して心筋梗塞部の抽出がより容易である。 In myocardial infarction, fibrosis progresses from the myocardial intima side (lumen side). The contrast agent penetrates the interstitial space via the coronary artery, and the penetration rate of the contrast agent in the myocardial infarction is slower than that of the normal part of the myocardium. And the outflow rate of the contrast agent that has penetrated into the interstitial space is also slower in the myocardial infarction than in the normal myocardium. For this reason, in an image (delayed contrast image) captured in the delayed phase after a predetermined delay time has elapsed since the contrast medium arrived at the coronary artery, a difference in pixel value occurs between the normal myocardial part and the myocardial infarction part. Since this difference is large (high contrast) in the MR image, it is easier to extract the myocardial infarction compared to the CT image.
 MRI装置を用いる場合、ATP薬剤(血管拡張剤)による負荷を利用して撮像が行われる。そして、MRI装置は、CT装置の検査時間(10~15分)よりも長い検査時間(40~60分)を必要とする。そのため、被写体である患者の負担を少なくするために、CT装置で撮像したCT画像から心筋梗塞部を識別することが望ましい。しかし、遅延相で撮像したCT画像(遅延造影CT画像)では、心筋部と内腔との画素値の差が小さい(コントラストが低い)ため、医師が両者の境界を識別することが難しかった。さらに、遅延造影CT画像では、心筋梗塞部と心筋正常部との画素値の差も少ないため、医師が心筋梗塞部を識別することが難しかった。 When using an MRI apparatus, imaging is performed using a load of an ATP drug (vasodilator). The MRI apparatus requires an inspection time (40 to 60 minutes) longer than the inspection time (10 to 15 minutes) of the CT apparatus. Therefore, it is desirable to identify the myocardial infarction from the CT image captured by the CT apparatus in order to reduce the burden on the patient as the subject. However, in a CT image (delayed contrast CT image) imaged in the delayed phase, the difference in pixel values between the myocardial part and the lumen is small (contrast is low), so it is difficult for a doctor to identify the boundary between the two. Furthermore, in the delayed contrast CT image, the difference in pixel values between the myocardial infarction part and the normal myocardial part is small, and it is difficult for the doctor to identify the myocardial infarction part.
 そこで、CT画像に差分処理を行って、遅延造影CT画像における心筋梗塞部を強調することが考えられる。具体的には、造影された冠動脈を含む左心室を撮像して得られる冠動脈CT画像を、遅延造影CT画像から差し引く差分処理を行うことが考えられる。通常、差分処理は、撮像対象である左心室の平均画素値が高い(濃い)画像から、左心室の平均画素値が低い(淡い)画像を差し引くことによって行われる。そのため、一般に、淡い遅延造影CT画像から濃い冠動脈CT画像を差し引くという差分処理は行われない。 Therefore, it is conceivable to perform differential processing on the CT image to emphasize the myocardial infarction portion in the delayed contrast CT image. Specifically, it is conceivable to perform a difference process in which a coronary artery CT image obtained by imaging the left ventricle including the contrasted coronary artery is subtracted from the delayed contrast CT image. Normally, the difference process is performed by subtracting an image with a low (light) average value of the left ventricle from a high (dark) image with a high average pixel value of the left ventricle to be imaged. Therefore, in general, the difference process of subtracting the dark coronary artery CT image from the light delayed contrast CT image is not performed.
 上記差分処理を行うことによって、左心室の内腔と心筋部との画素値の差を強調して、両者の境界を明確にすることができる。また、左心室の心筋正常部と心筋梗塞部の画素値の差を強調することもできる。しかし、この差分処理を行うことにより、新たな課題が生じてしまう。すなわち、通常は差分処理時に判別することを要しない遅延造影CT画像と冠動脈CT画像を判別する必要が生じてしまう。また、心臓の鼓動によって、非剛体である心臓、特に左心室が変形してしまう。そのため、左心室の心筋梗塞部を正確に識別するためには、遅延造影CT画像と冠動脈CT画像との位置合わせを行う必要がある。しかし、遅延造影CT画像では左心室の内腔と心筋部との境界が不明瞭であるため、冠動脈CT画像との位置合わせが困難であるという問題がある。 By performing the above difference processing, the difference between the pixel values of the lumen of the left ventricle and the myocardium can be emphasized and the boundary between the two can be clarified. It is also possible to emphasize the difference in pixel values between the normal part of the left ventricle and the myocardial infarction. However, a new problem arises by performing this difference processing. That is, it is necessary to distinguish between a delayed contrast CT image and a coronary CT image that normally do not need to be distinguished during the difference processing. In addition, the heartbeat deforms the non-rigid heart, particularly the left ventricle. Therefore, in order to accurately identify the myocardial infarction portion of the left ventricle, it is necessary to align the delayed contrast CT image and the coronary artery CT image. However, in the delayed contrast CT image, since the boundary between the lumen of the left ventricle and the myocardial part is unclear, there is a problem that alignment with the coronary artery CT image is difficult.
 上記課題を解決するため、本発明の一例としての画像処理方法は、造影された冠動脈を含む左心室をCT装置により撮像して得られた冠動脈CT画像と、前記冠動脈CT画像の撮像から所定の遅延時間が経過した後に、造影された心筋梗塞部を含む左心室をCT装置により撮像して得られた遅延造影CT画像と、を用いた差分処理を行って差分画像を生成する画像処理方法であって、前記冠動脈CT画像と前記遅延造影CT画像とを取得し、前記冠動脈CT画像と前記遅延造影CT画像とを判別し、前記冠動脈CT画像と前記遅延造影CT画像との位置合わせを行い、前記遅延造影CT画像から前記冠動脈CT画像を差し引く前記差分処理を行うことを特徴とする。 In order to solve the above problems, an image processing method as an example of the present invention includes a coronary CT image obtained by imaging a left ventricle including a contrasted coronary artery with a CT device, and a predetermined amount based on the imaging of the coronary CT image. An image processing method for generating a differential image by performing differential processing using a delayed contrast CT image obtained by imaging a left ventricle including a contrasted myocardial infarction with a CT device after the delay time has elapsed. Obtaining the coronary CT image and the delayed contrast CT image, discriminating between the coronary CT image and the delayed contrast CT image, and performing alignment between the coronary CT image and the delayed contrast CT image; The difference process of subtracting the coronary CT image from the delayed contrast CT image is performed.
 また、本発明の他の例としての画像処理プログラムは、造影された冠動脈を含む左心室をCT装置により撮像して得られた冠動脈CT画像と、前記冠動脈CT画像の撮像から所定の遅延時間が経過した後に、造影された心筋梗塞部を含む左心室をCT装置により撮像して得られた遅延造影CT画像と、を用いた差分処理をコンピューターに実行させて差分画像を生成する画像処理プログラムであって、前記コンピューターに、前記冠動脈CT画像と前記遅延造影CT画像とを判別する判別処理と、前記冠動脈CT画像と前記遅延造影CT画像との位置合わせを行う位置合わせ処理と、前記遅延造影CT画像から前記冠動脈CT画像を差し引く前記差分処理を実行させることを特徴とする。 An image processing program as another example of the present invention includes a coronary artery CT image obtained by imaging a left ventricle including a contrasted coronary artery with a CT apparatus, and a predetermined delay time from the imaging of the coronary artery CT image. An image processing program for generating a differential image by causing a computer to execute differential processing using a delayed contrast CT image obtained by imaging a left ventricle including a contrasted myocardial infarction with a CT device after the passage And determining, in the computer, a discrimination process for discriminating between the coronary CT image and the delayed contrast CT image, an alignment process for aligning the coronary CT image and the delayed contrast CT image, and the delayed contrast CT The difference process of subtracting the coronary artery CT image from the image is executed.
 また、本発明の他の例としての画像処理装置は、造影された冠動脈を含む左心室をCT装置により撮像して得られた冠動脈CT画像と、前記冠動脈CT画像の撮像から所定の遅延時間が経過した後に、造影された心筋梗塞部を含む左心室をCT装置により撮像して得られた遅延造影CT画像と、を用いた差分処理を行って差分画像を生成する画像処理装置であって、前記冠動脈CT画像と前記遅延造影CT画像とを取得する取得部と、前記冠動脈CT画像と前記遅延造影CT画像とを判別する判別部と、前記冠動脈CT画像と前記遅延造影CT画像との位置合わせを行う位置合わせ部と、前記遅延造影CT画像から前記冠動脈CT画像を差し引く前記差分処理を行う差分処理部を備えることを特徴とする。 An image processing apparatus as another example of the present invention includes a coronary CT image obtained by imaging a left ventricle including a contrasted coronary artery with a CT apparatus, and a predetermined delay time from the imaging of the coronary CT image. An image processing apparatus that generates a differential image by performing a differential process using a delayed contrast CT image obtained by imaging a left ventricle including a contrasted myocardial infarction portion with a CT apparatus after a lapse of time, An acquisition unit that acquires the coronary CT image and the delayed contrast CT image, a determination unit that determines the coronary CT image and the delayed contrast CT image, and alignment of the coronary CT image and the delayed contrast CT image And a difference processing unit for performing the difference process of subtracting the coronary artery CT image from the delayed contrast CT image.
 また、本発明の他の例として画像処理システムは、上記画像処理装置と、前記冠動脈CT画像と前記遅延造影CT画像とを撮像するCT装置と、前記CT装置と接続され且つ造影剤を注入する注入装置とを備えることを特徴とする。 As another example of the present invention, an image processing system is connected to the above-described image processing apparatus, a CT apparatus that captures the coronary CT image and the delayed contrast CT image, and injects a contrast agent. And an injection device.
 これにより、遅延造影CT画像と冠動脈CT画像とを判別することができる。また、遅延造影CT画像と冠動脈CT画像とを正確に位置合わせすると共に、心筋梗塞部を正確に識別することができる。 Thereby, the delayed contrast CT image and the coronary CT image can be discriminated. In addition, the delayed contrast CT image and the coronary CT image can be accurately aligned, and the myocardial infarction can be accurately identified.
 本発明のさらなる特徴は、添付図面を参照して例示的に示した以下の実施例の説明から明らかになる。 Further features of the present invention will become apparent from the following description of embodiments, given by way of example with reference to the accompanying drawings.
画像処理装置のブロック図である。It is a block diagram of an image processing device. 冠動脈相のタイムデンシティカーブである。It is a time density curve of the coronary artery phase. 遅延相のタイムデンシティカーブである。It is a time density curve of a delay phase. 非剛体変形位置合わせを説明する概略図である。It is the schematic explaining non-rigid body deformation alignment. 差分処理を説明する概略図である。It is the schematic explaining a difference process. 画像処理のフローチャートである。It is a flowchart of an image process. 第2実施形態に係る画像処理システムの概略図である。It is the schematic of the image processing system which concerns on 2nd Embodiment. 第3実施形態に係る非剛体変形位置合わせを説明する概略図である。It is the schematic explaining the non-rigid body deformation position alignment which concerns on 3rd Embodiment.
 以下、本発明を実施するための例示的な実施形態を、図面を参照して詳細に説明する。ただし、以下の実施形態で説明する寸法、材料、形状、構成要素の相対的な位置等は任意であり、本発明が適用される装置の構成又は様々な条件に応じて変更できる。また、特別な記載がない限り、本発明の範囲は、以下に具体的に記載された実施形態に限定されるものではない。 Hereinafter, exemplary embodiments for carrying out the present invention will be described in detail with reference to the drawings. However, dimensions, materials, shapes, relative positions of components, and the like described in the following embodiments are arbitrary and can be changed according to the configuration of the apparatus to which the present invention is applied or various conditions. In addition, unless otherwise specified, the scope of the present invention is not limited to the embodiments specifically described below.
[第1実施形態]
 図1に示す画像処理装置1は、ワークステーション又は検像システムであり、画像を処理する処理部10としても機能するCPU(制御部)と、画像処理プログラムを記憶すると共に、画像データを記憶する記憶部11とを有している。また、記憶部11は、処理部10が動作するためのシステムワークメモリであるRAM、画像処理プログラム、制御プログラム及びシステムソフトウェア等を格納するROM、及びハードディスクドライブ等を有する。
[First Embodiment]
An image processing apparatus 1 shown in FIG. 1 is a workstation or an image detection system, stores a CPU (control unit) that also functions as a processing unit 10 that processes an image, an image processing program, and stores image data. And a storage unit 11. The storage unit 11 includes a RAM that is a system work memory for the processing unit 10 to operate, a ROM that stores an image processing program, a control program, system software, and the like, a hard disk drive, and the like.
 CPUは、記憶部11に記憶されたプログラムに基づいて画像処理装置1の全体を制御する。すなわち、CPUは、記憶された制御プログラムに従って、種々の演算、制御、判別等の処理動作を実行する。なお、CPUは、CD(Compact Disc)、又はインターネット上のサーバー等の外部記憶媒体に記憶されたプログラムに従って処理動作を実行することもできる。 The CPU controls the entire image processing apparatus 1 based on the program stored in the storage unit 11. That is, the CPU executes various processing operations such as calculation, control, and discrimination according to the stored control program. Note that the CPU can also execute processing operations according to a program stored in an external storage medium such as a CD (Compact Disc) or a server on the Internet.
 画像処理装置1は、所定の指令あるいはデータを入力するキーボード、又は各種スイッチ等を含む入力部12と、CT画像、装置の入力状態、設定状態、計測結果、及び各種情報等を表示する表示部13とを備えている。なお、画像処理装置1は、入力部12及び表示部13の両者として機能するタッチパネルを備えていてもよい。 The image processing apparatus 1 includes a keyboard for inputting predetermined commands or data, or an input unit 12 including various switches, and a display unit for displaying a CT image, an input state of the apparatus, a setting state, a measurement result, various information, and the like. 13. Note that the image processing apparatus 1 may include a touch panel that functions as both the input unit 12 and the display unit 13.
 この画像処理装置1は、第1実施形態に係る画像処理プログラムに従って各種処理を実行するコンピューターである。そのため、処理部10では、取得部14、判別部15、抽出部16、算出部17、位置合わせ部18及び差分処理部19等の各部が各種機能として論理的に実現されている。また、画像処理プログラムは、画像処理装置1を取得部14、判別部15、抽出部16、算出部17、位置合わせ部18及び差分処理部19として機能させる。この画像処理プログラムは、コンピューター読み取り可能な内部又は外部の記録媒体に記録することができる。 The image processing apparatus 1 is a computer that executes various processes according to the image processing program according to the first embodiment. Therefore, in the processing unit 10, each unit such as the acquisition unit 14, the determination unit 15, the extraction unit 16, the calculation unit 17, the alignment unit 18, and the difference processing unit 19 is logically realized as various functions. The image processing program causes the image processing apparatus 1 to function as the acquisition unit 14, the determination unit 15, the extraction unit 16, the calculation unit 17, the alignment unit 18, and the difference processing unit 19. This image processing program can be recorded on a computer-readable internal or external recording medium.
 また、画像処理装置1は、外部記憶装置(サーバー)としてのPACS(Picture Archiving and Communication Systems)4と無線又は有線接続している。そして、画像処理装置1は、PACS4へ情報を送信できると共に、PACS4から情報を受信できる。なお、画像処理装置1は、RIS(Radiology Information System)又はHIS(Hospital Information System)等の他の外部記憶装置と接続していてもよい。さらに、画像処理装置1はCT装置3と無線又は有線接続しており、CT装置3は造影剤の注入装置2と無線又は有線接続している。そして、CT装置3及び注入装置2は、RIS5と無線又は有線接続している。 Further, the image processing apparatus 1 is wirelessly or wired connected to a PACS (Picture Archiving and Communication Systems) 4 as an external storage device (server). The image processing apparatus 1 can transmit information to the PACS 4 and can receive information from the PACS 4. The image processing apparatus 1 may be connected to another external storage device such as RIS (Radiology Information System) or HIS (Hospital Information System). Further, the image processing apparatus 1 is wirelessly or wired connected to the CT apparatus 3, and the CT apparatus 3 is wirelessly or wired connected to the contrast medium injection apparatus 2. The CT apparatus 3 and the injection apparatus 2 are connected to the RIS 5 by wireless or wired connection.
 注入装置2は、注入プロトコルを生成すると共に、該注入プロトコルに従って被写体である患者の体内に造影剤及び生理食塩水を注入する。CT装置3は、造影された冠動脈を含む左心室を撮像して冠動脈CT画像を得る。また、CT装置3は、冠動脈CT画像の撮像から所定の遅延時間が経過した後に、造影された心筋梗塞部を含む左心室を撮像して遅延造影CT画像を得る。さらに、CT装置3は、撮像したCT画像を画像処理装置1又はPACS4に送信する。 The injection device 2 generates an injection protocol and injects a contrast medium and physiological saline into the body of a patient who is a subject according to the injection protocol. The CT apparatus 3 captures the left ventricle including the contrasted coronary artery to obtain a coronary artery CT image. The CT apparatus 3 captures the left ventricle including the contrasted myocardial infarction after a predetermined delay time has elapsed since the coronary artery CT image is captured, and obtains a delayed contrast CT image. Furthermore, the CT apparatus 3 transmits the captured CT image to the image processing apparatus 1 or the PACS 4.
 ここでCT画像の撮像タイミングを、図2及び図3を参照して説明する。図2は、造影剤によって冠動脈が造影されるとき(冠動脈相)を含む、概略タイムデンシティカーブ(TDC)の一例を示す。図3は、冠動脈相から所定の遅延時間が経過したとき(遅延相)を含む、概略タイムデンシティカーブの一例を示す。図2及び図3では、縦軸が画素値を示し、横軸が造影剤の注入開始からの経過時間を示している。 Here, the imaging timing of CT images will be described with reference to FIGS. FIG. 2 shows an example of a schematic time density curve (TDC) including when the coronary artery is imaged by a contrast medium (coronary artery phase). FIG. 3 shows an example of a schematic time density curve including a time when a predetermined delay time has elapsed from the coronary artery phase (delay phase). 2 and 3, the vertical axis represents the pixel value, and the horizontal axis represents the elapsed time from the start of contrast medium injection.
 図2では、冠動脈CT画像の撮像タイミングを縦棒で図示している。この撮像タイミングは、冠動脈が良好に造影されているタイミングであり、図2では注入開始から28秒が経過した時点である。冠動脈は、注入開始から15~30秒経過した時点で良好に造影される。図3では、遅延造影CT画像の撮像タイミングを縦棒で図示している。この撮像タイミングは、心筋正常部と心筋梗塞部の画素値の差が大きくなるタイミングであり、図3では冠動脈相から遅延時間300秒(注入開始から328秒)が経過した時点である。この遅延時間は、5~20分が好ましい。 In FIG. 2, the imaging timing of the coronary CT image is shown by a vertical bar. This imaging timing is the timing when the coronary artery is well imaged, and in FIG. 2 is the time when 28 seconds have elapsed from the start of injection. The coronary artery is well imaged 15-30 seconds after the start of infusion. In FIG. 3, the imaging timing of the delayed contrast CT image is illustrated by a vertical bar. This imaging timing is a timing at which the difference between the pixel values of the myocardial normal portion and the myocardial infarction portion increases, and in FIG. 3, is a time point when a delay time of 300 seconds (328 seconds from the start of injection) has elapsed since the coronary artery phase. This delay time is preferably 5 to 20 minutes.
 図1に戻り、画像処理装置1の取得部14は、冠動脈CT画像と遅延造影CT画像とをCT装置3又はPACS4から取得する。また、取得部14は、画像処理装置1の記憶部11に記憶された冠動脈CT画像と遅延造影CT画像とを取得することもできる。判別部15は、取得部14が取得した冠動脈CT画像と遅延造影CT画像とを判別し、必要に応じてCT画像に判別情報(例えば、画像の種類を示すID)を付加する。 1, the acquisition unit 14 of the image processing apparatus 1 acquires a coronary CT image and a delayed contrast CT image from the CT apparatus 3 or the PACS 4. The acquisition unit 14 can also acquire the coronary artery CT image and the delayed contrast CT image stored in the storage unit 11 of the image processing apparatus 1. The determination unit 15 determines the coronary CT image and delayed contrast CT image acquired by the acquisition unit 14, and adds determination information (for example, an ID indicating the type of image) to the CT image as necessary.
 判別部15は、CT画像の左心室を含む領域(例えば、中央領域)又はCT画像全体における平均画素値を基準に、冠動脈CT画像と遅延造影CT画像とを判別することができる。具体的に判別部15は、両CT画像を比較して、平均画素値が低い方が遅延造影CT画像であると判別する。そして、判別部15は、遅延造影CT画像であることを示す判別情報を、遅延造影CT画像に付加する。また、判別部15は、画素値とピクセル数(ボクセル数)とに基づくヒストグラムにおける、所定の画素値範囲のピクセル数(ボクセル数)を基準に判別してもよい。例えば、判別部15は、両CT画像を比較して、200HU~500HUの範囲におけるピクセル数(ボクセル数)が少ない方が遅延造影CT画像であると判別する。 The discriminating unit 15 can discriminate between a coronary CT image and a delayed contrast CT image on the basis of an average pixel value in a region (for example, a central region) including the left ventricle of the CT image or the entire CT image. Specifically, the determination unit 15 compares both CT images and determines that the one with the lower average pixel value is the delayed contrast CT image. Then, the determination unit 15 adds determination information indicating that it is a delayed contrast CT image to the delayed contrast CT image. Further, the determination unit 15 may perform determination based on the number of pixels (number of voxels) in a predetermined pixel value range in a histogram based on the pixel value and the number of pixels (number of voxels). For example, the determination unit 15 compares both CT images, and determines that the one having a smaller number of pixels (number of voxels) in the range of 200HU to 500HU is a delayed contrast CT image.
 抽出部16は、冠動脈CT画像における左心室の外輪郭(以下、単に「外輪郭」ともいう)と、遅延造影CT画像における左心室の外輪郭とを抽出する。外輪郭は心外膜の輪郭に対応し、後述する内輪郭は心内膜の輪郭に対応する。例えば、抽出部16は、CT画像に対して任意の閾値による二値化を行い、画素値が大きい領域のみを抽出することによって心臓領域のみを抽出する。そして、抽出部16は、抽出した心臓領域と他の領域との境界を外輪郭として抽出する。 The extraction unit 16 extracts the outer contour of the left ventricle in the coronary CT image (hereinafter also simply referred to as “outer contour”) and the outer contour of the left ventricle in the delayed contrast CT image. The outer contour corresponds to the epicardial contour, and the inner contour described later corresponds to the endocardial contour. For example, the extraction unit 16 performs binarization on the CT image with an arbitrary threshold, and extracts only the heart region by extracting only the region having a large pixel value. Then, the extraction unit 16 extracts a boundary between the extracted heart region and another region as an outer contour.
 位置合わせ部18は、判別部15が判別した冠動脈CT画像と遅延造影CT画像との位置合わせを行う。具体的に位置合わせ部18は、冠動脈CT画像と遅延造影CT画像との剛体位置合わせを行う。例えば、位置合わせ部18は、冠動脈CT画像と遅延造影CT画像とのそれぞれの左心室の重心を特定し、両重心が一致するように冠動脈CT画像の平行移動と回転移動とを行う。なお、位置合わせ部18は、遅延造影CT画像の平行移動と回転移動とを行ってもよい。 The alignment unit 18 performs alignment between the coronary CT image determined by the determination unit 15 and the delayed contrast CT image. Specifically, the alignment unit 18 performs rigid body alignment between the coronary CT image and the delayed contrast CT image. For example, the alignment unit 18 specifies the center of gravity of the left ventricle of each of the coronary CT image and the delayed contrast CT image, and performs translation and rotation of the coronary CT image so that the centers of gravity coincide. The alignment unit 18 may perform parallel movement and rotational movement of the delayed contrast CT image.
 また、位置合わせ部18は、位置合わせを行う際に、冠動脈CT画像及び遅延造影CT画像の左心室の外輪郭同士の位置ズレが最小となるように、剛体位置合わせを行ってもよい。例えば、位置合わせ部18は、両CT画像においてグリッド状に設定された複数の制御点のうち、外輪郭上の制御点を対応点として設定する。そして、位置合わせ部18は、両外輪郭上の対応点同士の位置ズレが最小(又は所定の範囲内)となるように、冠動脈CT画像の平行移動と回転移動とを行う。外輪郭とその外側の領域との間では画素値の差が大きいため、淡い遅延造影CT画像及び濃い冠動脈CT画像のいずれにおいても外輪郭を正確に抽出することができる。そのため、正確に抽出可能な外輪郭を基準とすることで、正確に位置合わせを行うことができる。 In addition, when aligning, the alignment unit 18 may perform rigid body alignment so that the positional deviation between the outer contours of the left ventricle of the coronary CT image and the delayed contrast CT image is minimized. For example, the alignment unit 18 sets a control point on the outer contour as a corresponding point among a plurality of control points set in a grid shape in both CT images. Then, the alignment unit 18 performs parallel movement and rotational movement of the coronary CT image so that the positional deviation between corresponding points on both outer contours is minimized (or within a predetermined range). Since there is a large difference in pixel values between the outer contour and the outer region, the outer contour can be accurately extracted from both the light delayed contrast CT image and the dark coronary CT image. Therefore, alignment can be performed accurately by using the outer contour that can be accurately extracted as a reference.
 さらに、位置合わせ部18は、位置合わせを行う際に、冠動脈CT画像と遅延造影CT画像との非剛体変形位置合わせを行うこともできる。冠動脈CT画像の左心室の形状又は大きさは、心臓の鼓動又は体動等に起因して遅延造影CT画像と異なることがある。そのため、非剛体変形位置合わせを行うことにより、一方の画像の大きさ又は形状等を変形して、他方の画像の大きさ又は形状と一致させることによって、差分処理により適した位置合わせを行うことができる。 Further, the alignment unit 18 can also perform non-rigid deformation alignment of the coronary artery CT image and the delayed contrast CT image when performing alignment. The shape or size of the left ventricle of the coronary CT image may be different from the delayed contrast CT image due to the heartbeat or body movement. Therefore, by performing non-rigid deformation alignment, the size or shape of one image is deformed and matched with the size or shape of the other image to perform alignment more suitable for differential processing. Can do.
 非剛体変形位置合わせを行う際、位置合わせ部18は、遅延造影CT画像を変形せずに冠動脈CT画像を変形する。遅延造影CT画像においては、心筋正常部と心筋梗塞部との画素値の差が冠動脈CT画像よりも大きく、心筋梗塞部の領域がより正確に撮像されている。そのため、遅延造影CT画像を変形させないことによって、差分処理によって得られた差分画像においても、心筋梗塞部の領域を正確に描出することができる。非剛体変形位置合わせは、例えば、画素値の類似性(例えば、相互情報量又は相関係数)を基準とする尺度(類似度)を用いた方法によって行われる。そして、位置合わせ部18は、類似度が最大又は所定の閾値以上となるように冠動脈CT画像を変形する。 When performing non-rigid deformation alignment, the alignment unit 18 deforms the coronary artery CT image without deforming the delayed contrast CT image. In the delayed contrast CT image, the difference in pixel values between the normal myocardial portion and the myocardial infarction portion is larger than that in the coronary CT image, and the myocardial infarction region is imaged more accurately. Therefore, by not deforming the delayed contrast CT image, the myocardial infarction region can be accurately depicted even in the difference image obtained by the difference process. Non-rigid deformation alignment is performed, for example, by a method using a scale (similarity) based on similarity of pixel values (for example, mutual information amount or correlation coefficient). Then, the alignment unit 18 deforms the coronary artery CT image so that the degree of similarity becomes the maximum or a predetermined threshold value or more.
 非剛体変形位置合わせについて、左心室の概略断面を示す図4を参照して説明する。図4においては、冠動脈CT画像と遅延造影CT画像とは、それぞれの左心室の重心が一致するように位置合わせされた状態である。また、破線で示された遅延造影CT画像の左心室よりも、実線で示された冠動脈CT画像の左心室が小さい。さらに、冠動脈CT画像の内輪郭(内腔)の形状は、遅延造影CT画像と異なっている。 Non-rigid deformation alignment will be described with reference to FIG. 4 showing a schematic cross section of the left ventricle. In FIG. 4, the coronary artery CT image and the delayed contrast CT image are aligned so that the centers of gravity of the left ventricles coincide with each other. Further, the left ventricle of the coronary CT image indicated by the solid line is smaller than the left ventricle of the delayed contrast CT image indicated by the broken line. Further, the shape of the inner contour (lumen) of the coronary artery CT image is different from that of the delayed contrast CT image.
 位置合わせ部18は、両CT画像においてグリッド状に設定された複数の制御点のうち、冠動脈CT画像の外輪郭上の制御点を対応点Cとして設定する。また、位置合わせ部18は、複数の制御点のうち、遅延造影CT画像の外輪郭上の制御点を対応点Dとして設定する。そして、位置合わせ部18は、対応点Cと対応点Dとの位置が略一致するように、冠動脈CT画像の外輪郭を図4の点線で示す位置まで拡大する。その後、位置合わせ部18は、両CT画像の類似度が最大又は所定の閾値以上となるように、冠動脈CT画像の外輪郭の形状を変形させる。さらに、位置合わせ部18は、両CT画像の類似度が最大又は所定の閾値以上となるように、冠動脈CT画像の内輪郭の形状を変形させる。 The alignment unit 18 sets a control point on the outer contour of the coronary CT image as a corresponding point C among a plurality of control points set in a grid shape in both CT images. The alignment unit 18 sets a control point on the outer contour of the delayed contrast CT image as the corresponding point D among the plurality of control points. Then, the alignment unit 18 expands the outer contour of the coronary artery CT image to the position indicated by the dotted line in FIG. 4 so that the positions of the corresponding point C and the corresponding point D substantially coincide. Thereafter, the alignment unit 18 deforms the shape of the outer contour of the coronary CT image so that the similarity between the two CT images is the maximum or equal to or greater than a predetermined threshold value. Further, the alignment unit 18 deforms the shape of the inner contour of the coronary CT image so that the similarity between the two CT images is the maximum or a predetermined threshold value or more.
 一方、遅延造影CT画像の左心室よりも冠動脈CT画像の左心室が大きい場合、位置合わせ部18は、対応点Cと対応点Dとの位置が略一致するように冠動脈CT画像の外輪郭を縮小する。その後、位置合わせ部18は、両CT画像の類似度が最大又は所定の閾値以上となるように、冠動脈CT画像の外輪郭の形状を変形させる。さらに、位置合わせ部18は、両CT画像の類似度が最大又は所定の閾値以上となるように、冠動脈CT画像の内輪郭の形状を変形させる。 On the other hand, when the left ventricle of the coronary CT image is larger than the left ventricle of the delayed contrast CT image, the alignment unit 18 sets the outer contour of the coronary CT image so that the positions of the corresponding point C and the corresponding point D are substantially coincident with each other. to shrink. Thereafter, the alignment unit 18 deforms the shape of the outer contour of the coronary CT image so that the similarity between the two CT images is the maximum or equal to or greater than a predetermined threshold value. Further, the alignment unit 18 deforms the shape of the inner contour of the coronary CT image so that the similarity between the two CT images is the maximum or a predetermined threshold value or more.
 ただし、遅延造影CT画像の内輪郭は、内腔と心筋部との画素値の差が少ないため抽出することが難しい。そのため、遅延造影CT画像の内輪郭に対応点を設定することは難しく、冠動脈CT画像の内輪郭を外輪郭と同様に変形することはできない。そこで、位置合わせ部18は、心筋部の面積又は体積を利用して冠動脈CT画像の内輪郭の形状を以下のように変形させることができる。 However, it is difficult to extract the inner contour of the delayed contrast CT image because the difference in pixel values between the lumen and the myocardium is small. Therefore, it is difficult to set a corresponding point in the inner contour of the delayed contrast CT image, and the inner contour of the coronary artery CT image cannot be deformed in the same manner as the outer contour. Therefore, the alignment unit 18 can change the shape of the inner contour of the coronary CT image as follows using the area or volume of the myocardial part.
 すなわち、まず画像処理装置1の算出部17が、冠動脈CT画像における左心室の心筋部(図4に斜線で示す領域)の面積を算出する。冠動脈CT画像においては、内腔と心筋部との画素値の差が大きいので、内輪郭と外輪郭とを抽出できる。そのため、算出部17は、抽出された内輪郭と外輪郭との間の領域の面積を算出することによって心筋部の面積を算出できる。また、算出部17は、取得部14が取得したボリュームデータに含まれる多数のCT画像に対して同じ処理を施すことによって、心筋部の体積を算出できる。なお、算出部17は、心筋部に対する心筋梗塞部の割合、及び心筋梗塞部の心内膜(心筋壁部)からの広さ(深さ)を算出することもできる。 That is, first, the calculation unit 17 of the image processing apparatus 1 calculates the area of the left ventricular myocardium (region shown by hatching in FIG. 4) in the coronary CT image. In the coronary artery CT image, since the difference in pixel values between the lumen and the myocardium is large, the inner contour and the outer contour can be extracted. Therefore, the calculation unit 17 can calculate the area of the myocardial part by calculating the area of the region between the extracted inner contour and outer contour. Further, the calculation unit 17 can calculate the volume of the myocardial part by performing the same process on a large number of CT images included in the volume data acquired by the acquisition unit 14. The calculation unit 17 can also calculate the ratio of the myocardial infarction portion to the myocardial portion and the width (depth) of the myocardial infarction portion from the endocardium (myocardial wall portion).
 次に、位置合わせ部18は、非剛体変形位置合わせを行う際に、算出した心筋部の面積又は体積を維持するように冠動脈CT画像(冠動脈CT画像の内輪郭)を変形する。この場合も、位置合わせ部18は、両CT画像の類似度が最大又は所定の閾値以上となるように、冠動脈CT画像を変形させる。通常、冠動脈CT画像及び遅延造影CT画像は、心電同期を用いて同一心位相で撮像されている。そのため、両心筋部の面積及び体積は略同一であると仮定することができる。そこで、心筋部の面積又は体積を維持することにより、冠動脈CT画像の内輪郭をより実際の大きさ及び形状に近似させることができる。なお、面積又は体積は完全に一致させる必要はなく、所定の範囲内の誤差があっても面積又は体積が維持されているとみなすことができる。 Next, the alignment unit 18 deforms the coronary CT image (inner contour of the coronary CT image) so as to maintain the calculated myocardial area or volume when performing non-rigid deformation alignment. Also in this case, the alignment unit 18 deforms the coronary CT image so that the similarity between the two CT images is the maximum or a predetermined threshold value or more. Usually, the coronary CT image and the delayed contrast CT image are imaged at the same cardiac phase using electrocardiographic synchronization. Therefore, it can be assumed that the areas and volumes of both myocardial portions are substantially the same. Therefore, by maintaining the area or volume of the myocardial part, the inner contour of the coronary CT image can be more approximated to the actual size and shape. Note that the area or volume does not need to be completely matched, and it can be considered that the area or volume is maintained even if there is an error within a predetermined range.
 左心室の概略断面を示す図5を参照して、遅延造影CT画像と冠動脈CT画像を用いた差分処理について説明する。図5において、左側には遅延造影CT画像が示され、中央には冠動脈CT画像が示され、右側には差分処理後の画像(差分画像)が示されている。なお、説明の便宜上、図5は位置合わせされた後のCT画像を示している。 Difference processing using delayed contrast CT images and coronary artery CT images will be described with reference to FIG. 5 showing a schematic cross section of the left ventricle. In FIG. 5, a delayed contrast CT image is shown on the left side, a coronary artery CT image is shown in the center, and an image (difference image) after differential processing is shown on the right side. For convenience of explanation, FIG. 5 shows a CT image after alignment.
 位置合わせ後に、画像処理装置1の差分処理部19は、遅延造影CT画像から冠動脈CT画像を差し引く差分処理を行う。これにより、遅延造影CT画像から冠動脈CT画像の画素値を減算して、左心室内腔(内輪郭)を明瞭に描出できる。すなわち、心内膜を含む内腔の画素値が減算され、心筋部と内腔の画素値の差が強調される。また、心筋正常部と心筋梗塞部の画素値の差が強調され、心筋梗塞部を明瞭に描出できる。 After the alignment, the difference processing unit 19 of the image processing apparatus 1 performs a difference process for subtracting the coronary artery CT image from the delayed contrast CT image. Thereby, the pixel value of the coronary artery CT image can be subtracted from the delayed contrast CT image, and the left ventricle lumen (inner contour) can be clearly depicted. That is, the pixel value of the lumen including the endocardium is subtracted, and the difference between the pixel values of the myocardial part and the lumen is emphasized. Further, the difference in pixel value between the normal myocardial part and the myocardial infarction part is emphasized, and the myocardial infarction part can be clearly depicted.
 遅延造影CT画像においては、例えば、心筋正常部の画素値が80HUであり、内腔の画素値が100HUであり、心筋梗塞部の画素値が100HUである。冠動脈CT画像においては、心筋正常部の画素値が50HUであり、内腔の画素値が180HUであり、心筋梗塞部の画素値が20HUである。そのため、差分画像においては、心筋正常部の画素値が30HU(=80HU-50HU)であり、内腔の画素値が-80HU(=100HU-180HU)であり、心筋梗塞部の画素値が80HU(=100HU-20HU)である。 In the delayed contrast CT image, for example, the pixel value of the normal part of the myocardium is 80 HU, the pixel value of the lumen is 100 HU, and the pixel value of the myocardial infarction part is 100 HU. In the coronary artery CT image, the pixel value of the normal part of the myocardium is 50 HU, the pixel value of the lumen is 180 HU, and the pixel value of the myocardial infarction part is 20 HU. Therefore, in the difference image, the normal myocardial pixel value is 30 HU (= 80 HU-50 HU), the lumen pixel value is -80 HU (= 100 HU-180 HU), and the myocardial infarction pixel value is 80 HU ( = 100HU-20HU).
 差分処理後、画像処理装置1は生成した差分画像をPACS4に送信し、PACS4は受信した差分画像を記憶する。そして、記憶された差分画像は、医師によって読影に用いられる。差分処理の結果、遅延造影CT画像においては差が無かったが、差分画像においては心筋梗塞部と内腔の画素値の差が強調されて160HUになっている。また、遅延造影CT画像においては20HUであった心筋正常部と心筋梗塞部の画素値の差が強調されて、差分画像においては50HUになっている。この結果、差分画像においては、例えば比較的に画素値が低い内腔が黒く表示され、心筋部の心筋正常部が灰色に表示される。また、比較的に画素値が高い心筋梗塞部は白色に表示される。 After the difference processing, the image processing apparatus 1 transmits the generated difference image to the PACS 4, and the PACS 4 stores the received difference image. Then, the stored difference image is used for interpretation by a doctor. As a result of the difference processing, there is no difference in the delayed contrast CT image, but in the difference image, the difference between the pixel values of the myocardial infarction portion and the lumen is emphasized to 160 HU. In addition, the difference in pixel value between the normal myocardial portion and the myocardial infarction portion, which was 20 HU in the delayed contrast CT image, is emphasized, and is 50 HU in the differential image. As a result, in the difference image, for example, a lumen having a relatively low pixel value is displayed in black, and a normal myocardial portion of the myocardial portion is displayed in gray. A myocardial infarction portion having a relatively high pixel value is displayed in white.
 遅延造影CT画像では、心筋梗塞部を描出して心筋正常部と区別させることが可能である。しかし、通常の遅延造影CT画像では、内腔と心筋梗塞部とが近い画素値を有する。そのため、心内膜から進行する心筋梗塞部を正確に識別することは難しい。一方、冠動脈CT画像では、内腔および冠動脈のみの画素値が高い。そのため、冠動脈CT画像では、内腔と心筋部とを容易に識別することが可能である。そこで、遅延造影CT画像から冠動脈CT画像を減算するという手法によれば、上記のように簡易且つ明瞭に心筋部を描出できる。これにより、医師は、正確且つ容易に心筋梗塞部を識別することができる。 In the delayed contrast CT image, it is possible to depict the myocardial infarction and distinguish it from the normal myocardium. However, in a normal delayed contrast CT image, the lumen and myocardial infarction have close pixel values. Therefore, it is difficult to accurately identify the myocardial infarction that progresses from the endocardium. On the other hand, in the coronary artery CT image, the pixel values of only the lumen and the coronary artery are high. Therefore, in the coronary artery CT image, the lumen and the myocardial part can be easily identified. Therefore, according to the technique of subtracting the coronary artery CT image from the delayed contrast CT image, the myocardial part can be drawn easily and clearly as described above. Thereby, the doctor can identify the myocardial infarction accurately and easily.
 次に、図6に示すフローチャートを参照して、画像処理方法について説明する。まず、画像処理装置1の取得部14が、CT装置3又はPACS4(画像サーバー)から遅延造影CT画像と冠動脈CT画像を取得して、記憶部11に一時的に記憶する(S101)。そして、判別部15は、遅延造影CT画像と冠動脈CT画像とを判別する(S102)。このとき、オペレーターは表示部13に表示された「(左心室)抽出ボタン」をクリックする。すると抽出部16は、判別された冠動脈CT画像の外輪郭と内輪郭(及び外輪郭と内輪郭の間の心筋部)の形状(範囲)を抽出する(S103)。そして、表示部13は抽出結果をCT画像上に表示し、オペレーターは必要に応じて入力部12を操作して外輪郭及び内輪郭の範囲を修正する。なお、抽出部16は、オペレーターの指示によらずに自動で外輪郭と内輪郭の形状を抽出してもよい。 Next, the image processing method will be described with reference to the flowchart shown in FIG. First, the acquisition unit 14 of the image processing apparatus 1 acquires a delayed contrast CT image and a coronary CT image from the CT apparatus 3 or PACS 4 (image server), and temporarily stores them in the storage unit 11 (S101). Then, the determination unit 15 determines the delayed contrast CT image and the coronary artery CT image (S102). At this time, the operator clicks the “(left ventricle) extraction button” displayed on the display unit 13. Then, the extraction unit 16 extracts the shape (range) of the outer contour and inner contour (and the myocardial portion between the outer contour and the inner contour) of the determined coronary artery CT image (S103). Then, the display unit 13 displays the extraction result on the CT image, and the operator operates the input unit 12 as necessary to correct the range of the outer contour and the inner contour. Note that the extraction unit 16 may automatically extract the shapes of the outer contour and the inner contour without depending on an instruction from the operator.
 非剛体変形を行うために面積(体積)を算出する場合(S104でYES)、算出部17は、抽出された左心室の心筋部から、冠動脈CT画像の心筋部の面積(体積)を算出する(S105)。そして、抽出部16は、判別部15が判別した遅延造影CT画像の外輪郭の形状(範囲)を抽出する(S106)。この抽出結果を表示部13がCT画像上に表示するため、オペレーターは外輪郭及び内輪郭の範囲を修正できる。 When calculating the area (volume) to perform non-rigid body deformation (YES in S104), the calculation unit 17 calculates the area (volume) of the myocardial part of the coronary CT image from the extracted myocardial part of the left ventricle. (S105). Then, the extraction unit 16 extracts the shape (range) of the outer contour of the delayed contrast CT image determined by the determination unit 15 (S106). Since the display unit 13 displays the extraction result on the CT image, the operator can correct the range of the outer contour and the inner contour.
 また、面積を算出しない場合も(S104でNO)、抽出部16は遅延造影CT画像の外輪郭の範囲を抽出する(S106)。この抽出結果を表示部13がCT画像上に表示するため、オペレーターは外輪郭及び内輪郭の範囲を修正できる。そして、位置合わせ部18は、冠動脈CT画像と遅延造影CT画像の位置合わせを行う(S107)。この位置合わせには、剛体位置合わせ及び非剛体変形位置合わせの少なくとも一方が含まれる。 Also, when the area is not calculated (NO in S104), the extraction unit 16 extracts the range of the outer contour of the delayed contrast CT image (S106). Since the display unit 13 displays the extraction result on the CT image, the operator can correct the range of the outer contour and the inner contour. Then, the alignment unit 18 aligns the coronary CT image and the delayed contrast CT image (S107). This alignment includes at least one of rigid body alignment and non-rigid deformation alignment.
 剛体位置合わせの場合、位置合わせ部18は、例えば、外輪郭で特定される左心室同士の重心が一致するように位置合わせを行う。また、位置合わせ部18は、冠動脈CT画像と遅延造影CT画像のそれぞれの左心室の外輪郭を基準に、外輪郭同士のずれが最小又は所定範囲内となるように剛体位置合わせを行うこともできる。右心室は、冠動脈CT画像と遅延造影CT画像との間で変形の度合いが大きい。そのため、左心室の外輪郭を基準に剛体位置合わせをすることによって、より正確な位置合わせを行うことができる。 In the case of rigid body alignment, the alignment unit 18 performs alignment so that, for example, the centers of gravity of the left ventricles specified by the outer contour match. In addition, the alignment unit 18 may perform rigid body alignment with reference to the outer contours of the left ventricle of the coronary CT image and the delayed contrast CT image so that the deviation between the outer contours is minimal or within a predetermined range. it can. The right ventricle has a large degree of deformation between the coronary CT image and the delayed contrast CT image. Therefore, more accurate alignment can be performed by performing rigid body alignment based on the outer contour of the left ventricle.
 非剛体変形位置合わせの場合、位置合わせ部18は、例えば、遅延造影CT画像の外輪郭と一致するように、冠動脈CT画像の外輪郭を変形して位置合わせを行う。このとき、位置合わせ部18は、類似度が最大となるように冠動脈CT画像を変形する。心筋梗塞部がより明確に撮像された遅延造影CT画像を変形させないため、心筋梗塞部をより明確に描出することができる。 In the case of non-rigid deformation alignment, the alignment unit 18 performs alignment by deforming the outer contour of the coronary CT image so as to match the outer contour of the delayed contrast CT image, for example. At this time, the alignment unit 18 deforms the coronary CT image so that the degree of similarity is maximized. Since the delayed contrast CT image in which the myocardial infarction portion is imaged more clearly is not deformed, the myocardial infarction portion can be depicted more clearly.
 また、位置合わせ部18は、ステップS105で算出した心筋部の面積(体積)が維持されるように、冠動脈CT画像を変形させることもできる。心電同期によって、いずれのCT画像も拡張中期に撮像しているため、両CT画像における心筋部の断面積(体積)は大きく変わらないと仮定できる。また、左心室の外輪郭は、冠動脈CT画像と遅延造影CT画像とのいずれにおいても比較的明瞭に抽出できる。そのため、非剛体変形位置合わせ時に、冠動脈CT画像から算出した面積(体積)に基づいて冠動脈CT画像内を変形させることにより、より正確な位置合わせを行うことができる。 Also, the alignment unit 18 can deform the coronary CT image so that the area (volume) of the myocardial part calculated in step S105 is maintained. Since all CT images are captured in the middle diastole due to the electrocardiogram synchronization, it can be assumed that the cross-sectional area (volume) of the myocardial portion in both CT images does not change significantly. Further, the outer contour of the left ventricle can be extracted relatively clearly in both the coronary CT image and the delayed contrast CT image. Therefore, at the time of non-rigid body deformation alignment, more accurate alignment can be performed by deforming the inside of the coronary artery CT image based on the area (volume) calculated from the coronary artery CT image.
 位置合わせ後、差分処理部19は、遅延造影CT画像から冠動脈CT画像を差し引く差分処理を行い(S108)、作成された差分画像は記憶部11に一時的に記憶される。これにより画像処理が終了し、表示部13は差分画像を表示する。また、画像処理装置1は、差分画像をPACS4に送信して記憶させる。 After the alignment, the difference processing unit 19 performs a difference process for subtracting the coronary artery CT image from the delayed contrast CT image (S108), and the created difference image is temporarily stored in the storage unit 11. Thereby, the image processing is completed, and the display unit 13 displays the difference image. Further, the image processing apparatus 1 transmits the difference image to the PACS 4 and stores it.
 なお、該フローにおいて、画像処理装置1の判別部15は、CT装置3又はPACS4に記憶されている遅延造影CT画像と冠動脈CT画像とを判別してもよい。例えば、判別部15は、CT画像の平均画素値を基準に冠動脈CT画像と遅延造影CT画像とを判別する。そして、取得部14が遅延造影CT画像及び冠動脈CT画像を取得する際には、判別情報が両CT画像に付加されて記憶部11に記憶される。差分処理時には、該判別情報に基づいて遅延造影CT画像と冠動脈CT画像とを判別することができる。また、遅延造影CT画像に対する抽出処理と、冠動脈CT画像に対する抽出処理及び算出処理とは順番を入れ替えることもできる。 In the flow, the determination unit 15 of the image processing apparatus 1 may determine a delayed contrast CT image and a coronary CT image stored in the CT apparatus 3 or the PACS 4. For example, the determination unit 15 determines a coronary CT image and a delayed contrast CT image based on the average pixel value of the CT image. When the acquisition unit 14 acquires the delayed contrast CT image and the coronary artery CT image, the discrimination information is added to both CT images and stored in the storage unit 11. During the difference processing, the delayed contrast CT image and the coronary CT image can be discriminated based on the discrimination information. In addition, the extraction process for the delayed contrast CT image and the extraction process and the calculation process for the coronary CT image can be switched in order.
 この画像処理は、画像処理プログラムによって以下のように実行される。すなわち、冠動脈CT画像及び遅延造影CT画像の取得後に、オペレーターは、画像処理プログラムを起動して両CT画像を読み込む。画像処理プログラムは、画像処理装置1を判別部15として機能させ、冠動脈CT画像と遅延造影CT画像とを判別する判別処理を実行させる(S102)。次に、画像処理プログラムは、画像処理装置1を抽出部16として機能させ、冠動脈CT画像の心筋部を抽出させる抽出処理を実行させる(S103)。そして、画像処理プログラムは、画像処理装置1の表示部13に抽出結果を表示させる。 This image processing is executed as follows by the image processing program. That is, after acquiring the coronary CT image and the delayed contrast CT image, the operator activates the image processing program and reads both CT images. The image processing program causes the image processing apparatus 1 to function as the determination unit 15 and executes a determination process for determining a coronary CT image and a delayed contrast CT image (S102). Next, the image processing program causes the image processing apparatus 1 to function as the extraction unit 16 and executes an extraction process for extracting the myocardial portion of the coronary artery CT image (S103). Then, the image processing program displays the extraction result on the display unit 13 of the image processing apparatus 1.
 面積を算出する場合(S104でYES)、画像処理プログラムは、画像処理装置1を算出部17として機能させ、冠動脈CT画像の心筋部の面積を算出させる算出処理を実行させる(S105)。その後、画像処理プログラムは、画像処理装置1を抽出部16として機能させ、遅延造影CT画像の外輪郭を抽出する抽出処理を実行させる(S106)。なお、面積を算出しない場合も(S104でNO)、同様に画像処理プログラムは、抽出処理を実行させる(S106)。そして、画像処理プログラムは、画像処理装置1を位置合わせ部18として機能させ、冠動脈CT画像と遅延造影CT画像との位置合わせを行う位置合わせ処理を実行させる(S107)。 When calculating the area (YES in S104), the image processing program causes the image processing apparatus 1 to function as the calculation unit 17 and executes calculation processing for calculating the area of the myocardial portion of the coronary CT image (S105). Thereafter, the image processing program causes the image processing apparatus 1 to function as the extraction unit 16 and executes an extraction process for extracting the outer contour of the delayed contrast CT image (S106). Even when the area is not calculated (NO in S104), the image processing program similarly executes an extraction process (S106). Then, the image processing program causes the image processing apparatus 1 to function as the alignment unit 18 and executes an alignment process for aligning the coronary CT image and the delayed contrast CT image (S107).
 位置合わせ後、画像処理プログラムは、画像処理装置1を差分処理部19として機能させ、遅延造影CT画像から冠動脈CT画像を差し引く差分処理を実行させる(S108)。そして、画像処理プログラムは、作成した差分画像を記憶部11に一時的に記憶させる。これにより画像処理が終了し、画像処理プログラムは、表示部13に差分画像を表示させる。その後、画像処理装置1は、差分画像をPACS4に送信して記憶させる。なお、画像処理プログラムは、心筋部に対する心筋梗塞部の割合及び心筋梗塞部の心内膜からの広さを算出するように、画像処理装置1に差分画像を用いた算出処理を実行させてもよい。 After the alignment, the image processing program causes the image processing apparatus 1 to function as the difference processing unit 19 and executes a difference process for subtracting the coronary artery CT image from the delayed contrast CT image (S108). Then, the image processing program temporarily stores the created difference image in the storage unit 11. As a result, the image processing ends, and the image processing program causes the display unit 13 to display the difference image. Thereafter, the image processing apparatus 1 transmits the difference image to the PACS 4 for storage. The image processing program may cause the image processing apparatus 1 to execute a calculation process using a difference image so as to calculate the ratio of the myocardial infarction portion to the myocardial portion and the width of the myocardial infarction portion from the endocardium. Good.
 このような第1実施形態に係る発明によれば、遅延造影CT画像と冠動脈CT画像とを正確に判別して、差分処理を行うことができる。また、内腔と心筋部との画素値の差が小さい遅延造影CT画像であっても、冠動脈CT画像と正確に位置合わせをすることができる。また、第1実施形態に係る発明によれば、サブトラクションによって内腔と心筋部との画素値の差を強調して、境界を明確に描出することができる。また、心筋正常部と心筋梗塞部の画素値の差を強調して、心筋梗塞部を明確に描出することができる。これにより、MR画像よりも解像度が高いCT画像において、医師がより正確に心筋梗塞部を識別できる。また、CT装置3による撮像はMRI装置よりも撮像時間が短く、心筋梗塞部を撮像する際に被写体である患者の負担を軽減できる。さらに、CT装置はMRI装置よりも1スキャンでの撮像幅が広いため、1回の撮像でより広範囲の画像を得ることができる。 According to the invention according to the first embodiment, it is possible to accurately discriminate between the delayed contrast CT image and the coronary artery CT image and perform the difference processing. Further, even a delayed contrast CT image having a small difference in pixel values between the lumen and the myocardial portion can be accurately aligned with the coronary artery CT image. Further, according to the invention according to the first embodiment, the boundary can be clearly depicted by emphasizing the difference in pixel values between the lumen and the myocardial part by subtraction. In addition, it is possible to clearly depict the myocardial infarction portion by emphasizing the difference in pixel values between the normal myocardial portion and the myocardial infarction portion. Thereby, the doctor can identify the myocardial infarction more accurately in the CT image having a higher resolution than the MR image. Further, the imaging by the CT apparatus 3 is shorter in imaging time than the MRI apparatus, and the burden on the patient who is the subject can be reduced when imaging the myocardial infarction. Furthermore, since the CT apparatus has a wider imaging width in one scan than the MRI apparatus, a wider range of images can be obtained by one imaging.
 なお、第1実施形態では冠動脈CT画像及び遅延造影CT画像が二次元画像である例を説明した。しかし、冠動脈CT画像及び遅延造影CT画像は、三次元画像(ボリュームデータ)であってもよい。また、上述した画像処理を複数の二次元画像に対して同様に行うことによって、三次元の差分画像を作成することもできる。例えば、320枚の二次元画像の全てにおいて心筋梗塞部を抽出する必要はない。冠動脈CT画像及び遅延造影CT画像のそれぞれ1枚の画像に対して、心筋梗塞部と心筋正常部との閾値を指定してやれば、その結果を全画像に反映させて三次元画像を作成することができる。 In the first embodiment, the example in which the coronary artery CT image and the delayed contrast CT image are two-dimensional images has been described. However, the coronary CT image and the delayed contrast CT image may be three-dimensional images (volume data). In addition, a three-dimensional difference image can be created by performing the above-described image processing on a plurality of two-dimensional images in the same manner. For example, it is not necessary to extract a myocardial infarction in all of the 320 two-dimensional images. If the threshold values for the myocardial infarction part and the normal part of the myocardium are specified for each of the coronary CT image and the delayed contrast CT image, a three-dimensional image can be created by reflecting the result in all the images. it can.
[第2実施形態]
 図7を参照して、第2実施形態に係る画像処理システムについて説明する。なお、第2実施形態の説明においては、第1実施形態との相違点について説明し、第1実施形態で説明した構成要素については同じ参照番号を付し、その説明を省略する。特に説明した場合を除き、同じ参照符号を付した構成要素は略同一の動作及び機能を奏し、その作用効果も略同一である。
[Second Embodiment]
An image processing system according to the second embodiment will be described with reference to FIG. In the description of the second embodiment, differences from the first embodiment will be described, the same reference numerals will be given to the components described in the first embodiment, and description thereof will be omitted. Except where specifically described, the constituent elements having the same reference numerals perform substantially the same operations and functions, and the effects thereof are also substantially the same.
 画像処理システム200は、第1実施形態で説明した画像処理装置1と、冠動脈CT画像と遅延造影CT画像とを撮像するCT装置3と、CT装置3と有線又は無線で接続され且つ造影剤を注入する注入装置2とを備えている。CT装置3は、撮像プロトコルに従って被写体の撮像を行う撮像部31と、CT装置3全体を制御する制御装置32と、ディスプレイ33とを有している。撮像部31は、寝台と、被写体にX線を照射するX線源と、被写体を透過したX線を検出するX線検出器等を有している。そして、撮像部31は、被写体にX線を曝射し、被写体を透過したX線に基づいて被写体の体内を逆投影することで、被写体の透視画像を撮像する。なお、制御装置32とディスプレイ33とは、一体的に構成してもよい。 The image processing system 200 is connected to the image processing apparatus 1 described in the first embodiment, a CT apparatus 3 that captures a coronary CT image and a delayed contrast CT image, and a CT apparatus 3 in a wired or wireless manner and uses a contrast agent. And an injection device 2 for injection. The CT apparatus 3 includes an imaging unit 31 that images a subject according to an imaging protocol, a control device 32 that controls the entire CT apparatus 3, and a display 33. The imaging unit 31 includes a bed, an X-ray source that irradiates the subject with X-rays, an X-ray detector that detects X-rays transmitted through the subject, and the like. Then, the imaging unit 31 shoots a fluoroscopic image of the subject by irradiating the subject with X-rays and back-projecting the inside of the subject based on the X-rays transmitted through the subject. In addition, you may comprise the control apparatus 32 and the display 33 integrally.
 オペレーターは、医師が予め記憶させた検査オーダーをRIS5からCT装置3へ読み出す。この検査オーダーは、撮像部位と、撮像方法(冠動脈相及び遅延相等の撮像タイミング)との少なくとも一つの情報を含んでいる。なお、検査オーダーは、被写体に関する情報として、被写体の体重、除脂肪体重、循環血液量、被写体番号(被写体ID)、被写体氏名、性別、生年月日、年齢、身長、血液量、血流速度、体表面積、被写体の疾病、副作用の履歴、クレアチニン値、心拍数、及び心拍出量等を含んでいてもよい。また、検査オーダーは、検査情報として、検査番号(検査ID)、検査部位、検査日時、薬液種類、及び薬液名称等を含んでいてもよい。 The operator reads out the examination order stored in advance by the doctor from the RIS 5 to the CT apparatus 3. This examination order includes at least one piece of information about an imaging region and an imaging method (imaging timing such as a coronary artery phase and a delay phase). The test order includes information about the subject, such as the subject's weight, lean body mass, circulating blood volume, subject number (subject ID), subject name, gender, date of birth, age, height, blood volume, blood flow rate, It may include body surface area, subject disease, side effect history, creatinine value, heart rate, cardiac output, and the like. Moreover, the inspection order may include an inspection number (inspection ID), an inspection site, an inspection date, a chemical type, a chemical name, and the like as inspection information.
 そして、オペレーターは、CT装置3に撮像部位及び撮像タイミング(冠動脈相及び遅延相)を入力する。そして、CT装置3は、冠動脈相及び遅延相の撮像プロトコルを作成する。この撮像プロトコルをオペレーターが確認して、修正が無ければ撮像プロトコルを確定させる。なお、オペレーターは、撮像部位又は撮像タイミングの一方のみを入力することもある。 Then, the operator inputs the imaging region and imaging timing (coronary artery phase and delay phase) to the CT apparatus 3. Then, the CT apparatus 3 creates a coronary artery phase and a delayed phase imaging protocol. The operator confirms this imaging protocol, and if there is no correction, the imaging protocol is determined. Note that the operator may input only one of the imaging part or the imaging timing.
 撮像プロトコルには、例えば、撮像部位、実効管電圧、機種名、メーカー名、撮像時間、管電圧、撮像範囲、回転速度、ヘリカルピッチ、曝射時間、線量及び撮像方法等の情報が含まれている。そして、制御装置32は、撮像プロトコルに従うように撮像部31を制御して被写体を撮像する。また、制御装置32は、ディスプレイ33に接続されており、ディスプレイ33には、装置の入力状態、設定状態、撮像結果、及び各種情報等が表示される。 The imaging protocol includes information such as the imaging site, effective tube voltage, model name, manufacturer name, imaging time, tube voltage, imaging range, rotation speed, helical pitch, exposure time, dose, and imaging method. Yes. Then, the control device 32 images the subject by controlling the imaging unit 31 so as to follow the imaging protocol. The control device 32 is connected to a display 33, and the display 33 displays the input state of the device, the setting state, the imaging result, various information, and the like.
 CT装置3は、確定した撮像プロトコルを注入装置2に送信する。また、CT装置3は、基準注入プロトコルを注入装置2に送信することができる。例えば、CT装置3と注入装置2とは、ゲートウェイ装置(不図示)を介して接続されており、CT装置3は予め記憶していた基準注入プロトコルを注入装置2に送信する。 The CT apparatus 3 transmits the determined imaging protocol to the injection apparatus 2. In addition, the CT apparatus 3 can transmit a reference injection protocol to the injection apparatus 2. For example, the CT device 3 and the injection device 2 are connected via a gateway device (not shown), and the CT device 3 transmits a reference injection protocol stored in advance to the injection device 2.
 注入装置2は、シリンジに充填された造影剤を被写体の体内に注入するために、注入ヘッド21を備えている。さらに、注入装置2は、注入ヘッド21を保持するスタンド22と、注入ヘッド21に有線又は無線で接続されたコンソール23とを有する。注入ヘッド21は、造影剤が充填されたシリンジが搭載される第1保持部214と、造影剤を後押しするための生理食塩水が充填されたシリンジが搭載される第2保持部215とを有する。また、注入ヘッド21は、第1保持部214に搭載されたシリンジ内の薬液を注入プロトコルに従って押し出す駆動機構(不図示)と、第2保持部215に搭載されたシリンジ内の薬液を注入プロトコルに従って押し出す駆動機構(不図示)とを有している。 The injection device 2 includes an injection head 21 in order to inject the contrast medium filled in the syringe into the body of the subject. Furthermore, the injection device 2 includes a stand 22 that holds the injection head 21 and a console 23 that is connected to the injection head 21 by wire or wirelessly. The injection head 21 has a first holding part 214 on which a syringe filled with a contrast medium is mounted, and a second holding part 215 on which a syringe filled with physiological saline for boosting the contrast medium is mounted. . In addition, the injection head 21 has a drive mechanism (not shown) that pushes out the chemical solution in the syringe mounted on the first holding unit 214 according to the injection protocol, and the chemical solution in the syringe mounted on the second holding unit 215 according to the injection protocol. And a drive mechanism (not shown) for extruding.
 コンソール23は、注入ヘッド21を制御する制御装置として機能すると共に、造影剤の注入プロトコルを生成する生成装置としても機能する。そして、コンソール23は、CT装置3から受信した撮像プロトコルに基づいて注入プロトコルを生成する。なお、コンソール23は、CT装置3から受信した基準注入プロトコルを修正することによって、注入プロトコルを生成することもできる。そして、オペレーターがコンソール23に表示された注入プロトコルを確認すると、注入準備が完了する。 The console 23 functions as a control device that controls the injection head 21, and also functions as a generation device that generates a contrast medium injection protocol. Then, the console 23 generates an injection protocol based on the imaging protocol received from the CT apparatus 3. Note that the console 23 can also generate an injection protocol by modifying the reference injection protocol received from the CT apparatus 3. When the operator confirms the injection protocol displayed on the console 23, the preparation for injection is completed.
 注入装置2は、コンソール23に代えて、注入ヘッド21に接続された制御装置と、該制御装置に接続され且つ薬液の注入状況等が表示されるタッチパネルディスプレイとを有していてもよい。また、注入ヘッド21及び制御装置は、スタンド22と一体的に構成することもできる。スタンド22に代えて天吊部材を設け、該天吊部材を介して天井から注入ヘッド21を天吊することもできる。 The injection device 2 may have a control device connected to the injection head 21 and a touch panel display connected to the control device and displaying the injection status of the chemical solution, instead of the console 23. In addition, the injection head 21 and the control device can be configured integrally with the stand 22. A ceiling suspension member may be provided instead of the stand 22, and the injection head 21 may be suspended from the ceiling via the ceiling suspension member.
 また、注入装置2は、電源又はバッテリー、コンソール23に接続されるハンドスイッチ、及び注入ヘッド21を遠隔操作する遠隔操作装置等を有していてもよい。この遠隔操作装置は、注入ヘッド21を遠隔操作して注入を開始又は停止することができる。また、電源又はバッテリーは、注入ヘッド21又はコンソール23のいずれかに設けることができ、これらとは別に設けることもできる。 Further, the injection device 2 may include a power source or a battery, a hand switch connected to the console 23, a remote operation device for remotely operating the injection head 21, and the like. This remote control device can start or stop injection by operating the injection head 21 remotely. Further, the power source or the battery can be provided in either the injection head 21 or the console 23, and can be provided separately.
 注入ヘッド21は、制御装置が生成した注入プロトコルに従って造影剤を注入する。この注入プロトコルには、少なくとも注入速度及び注入時間が含まれている。また、注入プロトコルは、注入量、注入タイミング、造影剤濃度及び注入圧力等の注入条件に関する情報を含んでいてもよい。また、注入ヘッド21は、注入条件、注入状況、装置の入力状態、設定状態、及び各種注入結果等が表示されるヘッドディスプレイ211と、駆動機構の動作を入力するための操作部212とを有している。ヘッドディスプレイ211は、タッチパネル等から構成することによって、操作部212として用いることもできる。なお、ヘッドディスプレイ211は省略することができる。 The injection head 21 injects the contrast agent according to the injection protocol generated by the control device. This infusion protocol includes at least the infusion rate and the infusion time. The injection protocol may include information regarding injection conditions such as injection volume, injection timing, contrast agent concentration, and injection pressure. The injection head 21 has a head display 211 on which injection conditions, injection status, apparatus input status, setting status, various injection results, and the like are displayed, and an operation unit 212 for inputting the operation of the drive mechanism. is doing. The head display 211 can also be used as the operation unit 212 by being configured from a touch panel or the like. The head display 211 can be omitted.
 薬液が注入される際には、注入ヘッド21に搭載されたシリンジの先端部にミキシングチューブ等が接続される。また、操作部212には、駆動機構の前進ボタン、駆動機構の後進ボタン、又は最終確認ボタン等が設けられている。そして、ミキシングチューブの接続等の注入準備が完了すると、オペレーターが最終確認ボタンを押す。これにより、注入ヘッド21は、注入を開始できる状態で待機する。注入開始後、シリンジから押し出された薬液は、ミキシングチューブ等を介して、被写体の体内へ注入される。このミキシングチューブは、造影剤と希釈薬液との混合器としても機能する。このような混合器としては、株式会社根本杏林堂製の「SPIRAL FLOW(登録商標)」がある。 When the chemical solution is injected, a mixing tube or the like is connected to the tip of the syringe mounted on the injection head 21. The operation unit 212 is provided with a forward button of the drive mechanism, a reverse button of the drive mechanism, a final confirmation button, or the like. When the preparation for injection such as connection of the mixing tube is completed, the operator presses the final confirmation button. Thereby, the injection head 21 stands by in a state where the injection can be started. After the start of injection, the drug solution pushed out from the syringe is injected into the body of the subject via a mixing tube or the like. This mixing tube also functions as a mixer for the contrast agent and the diluted drug solution. An example of such a mixer is “SPIRAL FLOW (registered trademark)” manufactured by Nemoto Kyorindo Co., Ltd.
 注入ヘッド21には、例えば、RFIDチップ、ICタグ、バーコード等のデータキャリアを有するプレフィルドシリンジ等の、種々のシリンジを搭載することができる。そして、注入ヘッド21は、シリンジに取り付けられたデータキャリアの読み取りを行う読取部を内蔵している。このデータキャリアには、薬液に関連する薬液情報が記憶されている。薬液情報としては、製品名称、製品ID、化学分類、含有成分、濃度、粘度、消費期限、シリンジ容量、シリンジ耐圧、シリンダ内径、ピストンストローク及びロット番号等がある。 The injection head 21 can be mounted with various syringes such as a prefilled syringe having a data carrier such as an RFID chip, an IC tag, and a barcode. The injection head 21 includes a reading unit that reads a data carrier attached to the syringe. The data carrier stores chemical information related to the chemical. The chemical solution information includes a product name, product ID, chemical classification, contained component, concentration, viscosity, expiration date, syringe capacity, syringe pressure, cylinder inner diameter, piston stroke, lot number, and the like.
 造影剤の注入準備が完了し、オペレーターが注入装置2に注入開始を指示すると、注入装置2は造影剤のテストボーラス注入を行う。オペレーターは、予め関心領域(ROI)を、例えば上行大動脈に設定する。そして、CT装置3は、心電同期を用いて、注入開始から例えば28秒経過した時(冠動脈相)に冠動脈を撮像する。また、CT装置3は、撮像した冠動脈CT画像を画像処理装置1の取得部14に送信する。さらに、CT装置3は、心電同期を用いて、冠動脈相から例えば遅延時間300秒が経過した時に左心室を撮像する。そして、CT装置3は、撮像した遅延造影CT画像を取得部14に送信する。なお、テストボーラス注入は省略することもできる。 When preparation for injection of the contrast medium is completed and the operator instructs the injection apparatus 2 to start injection, the injection apparatus 2 performs a test bolus injection of the contrast medium. The operator sets a region of interest (ROI) in advance, for example, in the ascending aorta. Then, the CT apparatus 3 images the coronary artery when, for example, 28 seconds have passed since the start of injection (coronary artery phase) using electrocardiographic synchronization. In addition, the CT apparatus 3 transmits the captured coronary artery CT image to the acquisition unit 14 of the image processing apparatus 1. Furthermore, the CT apparatus 3 uses the electrocardiogram synchronization to image the left ventricle when, for example, a delay time of 300 seconds elapses from the coronary artery phase. The CT apparatus 3 transmits the captured delayed contrast CT image to the acquisition unit 14. Test bolus injection can be omitted.
 CT装置3は、冠動脈CT画像及び遅延造影CT画像をPACS4に送信してもよい。さらに、CT装置3は、判別部15が冠動脈CT画像と遅延造影CT画像とを判別できるように、CT画像に判別情報を付加してもよい。このような判別情報は、例えば、画像の種類を示すID、撮像の順番に応じた番号、及び撮像時間等である。 The CT apparatus 3 may transmit a coronary CT image and a delayed contrast CT image to the PACS 4. Furthermore, the CT apparatus 3 may add discrimination information to the CT image so that the discrimination unit 15 can discriminate between the coronary artery CT image and the delayed contrast CT image. Such discrimination information includes, for example, an ID indicating the type of image, a number corresponding to the order of imaging, and an imaging time.
 画像処理装置1においては、第1実施形態と同様に、判別部15が冠動脈CT画像と遅延造影CT画像とを判別する。また、抽出部16は、冠動脈CT画像における左心室の外輪郭と、遅延造影CT画像における左心室の外輪郭とを抽出する。そして、位置合わせ部18が冠動脈CT画像と遅延造影CT画像との位置合わせを行い、差分処理部19が遅延造影CT画像から冠動脈CT画像を差し引く。非剛体変形位置合わせを行う場合には、算出部17が、冠動脈CT画像の左心室における心筋部の面積又は体積を算出する。 In the image processing apparatus 1, as in the first embodiment, the determination unit 15 determines a coronary CT image and a delayed contrast CT image. The extraction unit 16 also extracts the outer contour of the left ventricle in the coronary CT image and the outer contour of the left ventricle in the delayed contrast CT image. Then, the alignment unit 18 performs alignment between the coronary CT image and the delayed contrast CT image, and the difference processing unit 19 subtracts the coronary CT image from the delayed contrast CT image. When performing non-rigid deformation alignment, the calculation unit 17 calculates the area or volume of the myocardium in the left ventricle of the coronary CT image.
 このような第2実施形態に係る発明によっても、遅延造影CT画像と冠動脈CT画像とを正確に判別して、差分処理を行うことができる。また、内腔と心筋部との画素値の差が小さい遅延造影CT画像であっても、冠動脈CT画像と正確に位置合わせをすることができる。また、サブトラクションによって内腔と心筋部との画素値の差を強調して、境界を明確に識別することができる。また、心筋正常部と心筋梗塞部の画素値の差を強調して、心筋梗塞部を明確に描出することができる。 Also according to the invention according to the second embodiment, it is possible to accurately discriminate between the delayed contrast CT image and the coronary artery CT image and perform the difference processing. Further, even a delayed contrast CT image having a small difference in pixel values between the lumen and the myocardial portion can be accurately aligned with the coronary artery CT image. In addition, the boundary can be clearly identified by emphasizing the difference in pixel values between the lumen and the myocardium by subtraction. In addition, it is possible to clearly depict the myocardial infarction portion by emphasizing the difference in pixel values between the normal myocardial portion and the myocardial infarction portion.
[第3実施形態]
 図4及び図8を参照して、第3実施形態に係る画像処理について説明する。この第3実施形態においては、非剛体変形位置合わせを行う際に、冠動脈CT画像における左心室の外輪郭の変位量に応じて、冠動脈CT画像における左心室の内輪郭を変形する。
[Third Embodiment]
Image processing according to the third embodiment will be described with reference to FIGS. 4 and 8. In the third embodiment, when performing non-rigid deformation alignment, the inner contour of the left ventricle in the coronary CT image is deformed according to the amount of displacement of the outer contour of the left ventricle in the coronary CT image.
 なお、第3実施形態の説明においては、第1実施形態及び第2実施形態との相違点について説明し、第1実施形態及び第2実施形態で説明した構成要素については同じ参照番号を付し、その説明を省略する。特に説明した場合を除き、同じ参照符号を付した構成要素は略同一の動作及び機能を奏し、その作用効果も略同一である。 In the description of the third embodiment, differences from the first embodiment and the second embodiment will be described, and the same reference numerals will be assigned to the components described in the first embodiment and the second embodiment. The description is omitted. Except where specifically described, the constituent elements having the same reference numerals perform substantially the same operations and functions, and the effects thereof are also substantially the same.
 図4の冠動脈CT画像の左心室の外輪郭は、遅延造影CT画像よりも小さい。この場合、画像処理装置1の位置合わせ部18は、冠動脈CT画像の外輪郭上の対応点Cが、遅延造影CT画像の外輪郭上の対応点Dと一致するように、冠動脈CT画像の外輪郭を拡大する。この拡大に伴う外輪郭の変位量及び変位方向は、図4において矢印で示すような変位ベクトルA,Bとして表すことができる。 The outer contour of the left ventricle in the coronary CT image in FIG. 4 is smaller than the delayed contrast CT image. In this case, the alignment unit 18 of the image processing apparatus 1 uses the outside of the coronary CT image so that the corresponding point C on the outer contour of the coronary CT image coincides with the corresponding point D on the outer contour of the delayed contrast CT image. Enlarge the contour. The displacement amount and the displacement direction of the outer contour accompanying this enlargement can be expressed as displacement vectors A and B as indicated by arrows in FIG.
 変位量は、左心室の部位によって異なることがある。例えば、変位ベクトルA群は、変位ベクトルB群よりも変位量が大きい。そこで、位置合わせ部18は、外輪郭の変位量に応じて、冠動脈CT画像における左心室の内輪郭を変形する。例えば、位置合わせ部18は、対応点Cがどの位置に移動するかを示す変位ベクトルA,Bを算出する。そして、位置合わせ部18は、第1実施形態で説明した類似度が最大又は所定の閾値以上となるように、算出した変位ベクトルA,Bに応じて非剛体変形位置合わせを行う。すなわち、変位量が大きい対応点Cの近傍に位置する部分の変位ベクトルA’(図8)が、変位量が小さい対応点の近傍に位置する部分の変位ベクトルB’よりも大きくなるように、内輪郭を変形させる。 The displacement may vary depending on the left ventricular site. For example, the displacement vector A group has a larger displacement amount than the displacement vector B group. Therefore, the alignment unit 18 deforms the inner contour of the left ventricle in the coronary artery CT image according to the amount of displacement of the outer contour. For example, the alignment unit 18 calculates displacement vectors A and B indicating to which position the corresponding point C moves. Then, the alignment unit 18 performs non-rigid deformation alignment according to the calculated displacement vectors A and B so that the similarity described in the first embodiment is the maximum or equal to or greater than a predetermined threshold. That is, the displacement vector A ′ (FIG. 8) of the portion located in the vicinity of the corresponding point C where the displacement amount is large is larger than the displacement vector B ′ of the portion located in the vicinity of the corresponding point where the displacement amount is small. Deform the inner contour.
 その結果、冠動脈CT画像の内輪郭において、変位量が大きい対応点Cの近傍に位置する部分は、変位量が小さい対応点Cの近傍に位置する部分よりも変位量が大きくなる。一方、冠動脈CT画像の左心室の外輪郭が遅延造影CT画像よりも大きい場合、位置合わせ部18は、冠動脈CT画像の外輪郭を縮小する。この場合も、位置合わせ部18は、外輪郭の変位量に応じて、冠動脈CT画像の内輪郭を変形する。 As a result, in the inner contour of the coronary artery CT image, the portion located near the corresponding point C having a large displacement amount has a larger displacement amount than the portion located near the corresponding point C having a small displacement amount. On the other hand, when the outer contour of the left ventricle of the coronary CT image is larger than the delayed contrast CT image, the alignment unit 18 reduces the outer contour of the coronary CT image. Also in this case, the alignment unit 18 deforms the inner contour of the coronary CT image according to the displacement amount of the outer contour.
 このような第3実施形態に係る発明によれば、外輪郭の変位量に応じて内輪郭を変位させることができる。そのため、より正確に内輪郭を変形させて、非剛体変形位置合わせをすることができる。また、第3実施形態に係る発明によっても、遅延造影CT画像と冠動脈CT画像とを正確に判別して、差分処理を行うことができる。また、内腔と心筋部との画素値の差が小さい遅延造影CT画像であっても、冠動脈CT画像と正確に位置合わせをすることができる。また、サブトラクションによって内腔と心筋部との画素値の差を強調して、境界を明確に識別することができる。また、心筋正常部と心筋梗塞部の画素値の差を強調して、心筋梗塞部を明確に描出することができる。 According to the invention according to the third embodiment, the inner contour can be displaced according to the displacement amount of the outer contour. Therefore, the inner contour can be more accurately deformed and the non-rigid deformation position alignment can be performed. The invention according to the third embodiment can also accurately determine the delayed contrast CT image and the coronary CT image and perform the difference process. Further, even a delayed contrast CT image having a small difference in pixel values between the lumen and the myocardial portion can be accurately aligned with the coronary artery CT image. In addition, the boundary can be clearly identified by emphasizing the difference in pixel values between the lumen and the myocardium by subtraction. In addition, it is possible to clearly depict the myocardial infarction portion by emphasizing the difference in pixel values between the normal myocardial portion and the myocardial infarction portion.
[変形形態]
 心筋正常部と心筋梗塞部との画素値の差が大きいCT画像を用いて差分処理を行うと、差分画像における画素値の差が大きくなる。そのため、パーフュージョン画像を撮像する場合のように、1回の検査で心臓を複数回撮像する場合は、複数のCT画像のうち画素値の差が大きいCT画像を使用することが好ましい。ここで、画素値の差が最大となるのは、心筋正常部の画素値がピークとなる時点である。そのため、変形形態においては、画像処理装置1の取得部14が、心筋正常部の画素値のピークに近い時点に撮像されたCT画像を取得する。
[Deformation]
When difference processing is performed using a CT image having a large difference in pixel values between a normal myocardial portion and a myocardial infarction portion, the difference in pixel values in the difference image increases. Therefore, when imaging the heart a plurality of times in one examination as in the case of capturing a perfusion image, it is preferable to use a CT image having a large difference in pixel values among a plurality of CT images. Here, the difference in the pixel values is maximized when the pixel value of the normal part of the myocardium reaches a peak. Therefore, in a modification, the acquisition unit 14 of the image processing apparatus 1 acquires a CT image captured at a time point near the pixel value peak of the normal myocardium.
 例えば、心筋正常部の画素値は、冠動脈又は左心室内腔の画素値が150HUに到達してから2秒経過後に上昇を開始する。そして、到達から7~8秒経過時に、心筋正常部及び心筋梗塞部の画素値の差がピークに達する。その後、到達から16~17秒経過時に、画素値の差が判別困難なレベルに達する。 For example, the pixel value of the normal part of the myocardium starts to rise 2 seconds after the pixel value of the coronary artery or the left ventricle reaches 150 HU. Then, when 7 to 8 seconds have elapsed since the arrival, the difference between the pixel values of the myocardial normal part and the myocardial infarction part reaches a peak. Thereafter, when 16 to 17 seconds have elapsed since the arrival, the difference between the pixel values reaches a level at which it is difficult to determine.
 そのため、判別部15は、以下の条件で撮像されたCT画像を判別して差分処理に使用することが好ましい。すなわち、上行大動脈にROIを設定した状態で、ROIの画素値が150HUに到達した後に撮像されたCT画像、ROIの画素値が150HUに到達してから所定時間(例えば7秒~17秒)内に撮像されたCT画像、ROIの画素値が上昇して下降を開始した(ピーク)後に撮像されたCT画像、及びROIの画素値が上昇して下降を開始してから2秒~9秒の範囲内に撮像されたCT画像が使用されることが好ましい。なお、ROIは、冠動脈又は左心室内腔に設定することもできる。 Therefore, it is preferable that the discriminating unit 15 discriminates a CT image captured under the following conditions and uses it for the difference processing. That is, with the ROI set in the ascending aorta, a CT image captured after the ROI pixel value reaches 150 HU, within a predetermined time (for example, 7 to 17 seconds) after the ROI pixel value reaches 150 HU 2 to 9 seconds after the CT image picked up at the time, the CT image picked up after the ROI pixel value started to rise (peak), and the ROI pixel value went up and started to drop It is preferable to use a CT image imaged within the range. The ROI can also be set in the coronary artery or the left ventricular lumen.
 これにより、画像処理装置1は、正確に心筋梗塞部を描出することができる。なお、遅延相についても、複数のCT画像のうち心筋正常部と心筋梗塞部との画素値の差が最大となるCT画像を用いることが好ましい。また、判別部15は、CT装置3がCT画像に付加した撮像時間情報に基づいて、複数のCT画像から画素値の差が大きいCT画像を判別することができる。さらに、判別部15は、各CT画像の心筋正常部と心筋梗塞部との画素値の差を算出して、画素値の差が最大となるCT画像を判別してもよい。 Thereby, the image processing apparatus 1 can accurately depict the myocardial infarction portion. As for the delayed phase, it is preferable to use a CT image in which the difference in pixel values between the normal myocardial portion and the myocardial infarction portion is the largest among the plurality of CT images. Further, the determination unit 15 can determine a CT image having a large difference in pixel value from a plurality of CT images based on the imaging time information added to the CT image by the CT apparatus 3. Furthermore, the determination unit 15 may calculate a difference in pixel values between a normal myocardial portion and a myocardial infarction portion of each CT image, and determine a CT image that maximizes the difference in pixel values.
 以上、各実施形態を参照して本発明について説明したが、本発明は上記実施形態に限定されるものではない。本発明に反しない範囲で変更された発明、及び本発明と均等な発明も本発明に含まれる。また、上述の各実施形態及び各変形形態は、本発明に反しない範囲で適宜組み合わせることができる。 As mentioned above, although this invention was demonstrated with reference to each embodiment, this invention is not limited to the said embodiment. Inventions modified within the scope not departing from the present invention and inventions equivalent to the present invention are also included in the present invention. Moreover, each above-mentioned embodiment and each deformation | transformation form can be combined suitably in the range which is not contrary to this invention.
 なお、剛体位置合わせ、非剛体変形位置合わせ又は外輪郭の抽出後に、オペレーターは、画像の位置若しくは外輪郭の形状等を手動で修正することができる。また、オペレーターは、剛体位置合わせ、非剛体位変形置合わせ、外輪郭の特定又は差分処理後に、公知の方法を用いて、ノイズ除去等の画像補正を行うことができる。 Note that the operator can manually correct the position of the image or the shape of the outer contour after the rigid body alignment, the non-rigid deformation alignment, or the extraction of the outer contour. Further, the operator can perform image correction such as noise removal using a known method after rigid body alignment, non-rigid body deformation alignment, outer contour specification or difference processing.
 さらに、剛体位置合わせ、非剛体変形位置合わせ及び外輪郭の抽出は、上記の方法には限定されない。例えば、非剛体変形位置合わせでは、冠動脈CT画像と遅延造影CT画像とのそれぞれの外輪郭に沿って対応点を配置し、外輪郭同士の類似度を向上させるように、冠動脈CT画像を変形させてもよい。この場合、対応点以外の冠動脈CT画像内の部分の移動量は、対応点の移動量から補完することができる。また、非剛体変形位置合わせを行う際には、遅延造影CT画像を変形せずに冠動脈CT画像を変形することが望ましいが、遅延造影CT画像の心筋梗塞部が変形されなければよい。そのため、遅延造影CT画像の少なくとも左心室の外輪郭の内側領域が変形されなければよく、外輪郭の外側領域は変形されてもよい。つまり、非剛体変形位置合わせを行う際には、遅延造影CT画像における少なくとも左心室の外輪郭の内側領域を変形せずに、冠動脈CT画像を変形することもできる。 Furthermore, the rigid body alignment, the non-rigid deformation alignment, and the extraction of the outer contour are not limited to the above method. For example, in non-rigid deformation alignment, corresponding points are arranged along the outer contours of the coronary CT image and the delayed contrast CT image, and the coronary CT image is deformed so as to improve the similarity between the outer contours. May be. In this case, the movement amount of the part in the coronary artery CT image other than the corresponding point can be complemented from the movement amount of the corresponding point. Further, when performing non-rigid deformation alignment, it is desirable to deform the coronary artery CT image without deforming the delayed contrast CT image, but it is sufficient that the myocardial infarction portion of the delayed contrast CT image is not deformed. Therefore, at least the inner region of the outer contour of the left ventricle of the delayed contrast CT image need not be deformed, and the outer region of the outer contour may be deformed. That is, when performing non-rigid deformation alignment, the coronary CT image can be deformed without deforming at least the inner region of the outer contour of the left ventricle in the delayed contrast CT image.
 この出願は2015年7月14日に出願された日本国特許出願第2015-140289号からの優先権を主張し、その全内容を引用してこの出願の一部とする。 This application claims priority from Japanese Patent Application No. 2015-140289 filed on July 14, 2015, the entire contents of which are incorporated herein by reference.
 1:画像処理装置、2:注入装置、3:CT装置、14:取得部、15:判別部、16:抽出部、17:算出部、18:位置合わせ部、19:差分処理部、200:画像処理システム

 
1: image processing device, 2: injection device, 3: CT device, 14: acquisition unit, 15: discrimination unit, 16: extraction unit, 17: calculation unit, 18: alignment unit, 19: difference processing unit, 200: Image processing system

Claims (10)

  1.  造影された冠動脈を含む左心室をCT装置により撮像して得られた冠動脈CT画像と、前記冠動脈CT画像の撮像から所定の遅延時間が経過した後に、造影された心筋梗塞部を含む左心室をCT装置により撮像して得られた遅延造影CT画像と、を用いた差分処理を行って差分画像を生成する画像処理方法であって、
     前記冠動脈CT画像と前記遅延造影CT画像とを取得し、
     前記冠動脈CT画像と前記遅延造影CT画像とを判別し、
     前記冠動脈CT画像と前記遅延造影CT画像との位置合わせを行い、
     前記遅延造影CT画像から前記冠動脈CT画像を差し引く前記差分処理を行う、画像処理方法。
    A coronary artery CT image obtained by imaging a contrasted left ventricle including a coronary artery with a CT device, and a left ventricle including a contrasted myocardial infarction after a predetermined delay time has elapsed since the imaging of the coronary artery CT image An image processing method for generating a difference image by performing difference processing using a delayed contrast CT image obtained by imaging with a CT apparatus,
    Obtaining the coronary artery CT image and the delayed contrast CT image;
    Discriminate between the coronary CT image and the delayed contrast CT image,
    Alignment of the coronary CT image and the delayed contrast CT image,
    An image processing method for performing the difference process of subtracting the coronary artery CT image from the delayed contrast CT image.
  2.  前記判別を行う際に、前記冠動脈CT画像と前記遅延造影CT画像との間で左心室を含む領域の平均画素値を比較し、又は前記冠動脈CT画像と前記遅延造影CT画像との間で画像全体の平均画素値を比較し、前記平均画素値が低い画像が前記遅延造影CT画像であると判別する、請求項1に記載の画像処理方法。 When performing the determination, an average pixel value of a region including the left ventricle is compared between the coronary CT image and the delayed contrast CT image, or an image between the coronary CT image and the delayed contrast CT image. The image processing method according to claim 1, wherein overall average pixel values are compared to determine that an image having a low average pixel value is the delayed contrast CT image.
  3.  前記位置合わせを行う際に、前記冠動脈CT画像と前記遅延造影CT画像との非剛体変形位置合わせを行う、請求項1又は2に記載の画像処理方法。 The image processing method according to claim 1 or 2, wherein, when performing the alignment, non-rigid deformation alignment of the coronary artery CT image and the delayed contrast CT image is performed.
  4.  前記非剛体変形位置合わせを行う際に、前記遅延造影CT画像を変形せずに、前記冠動脈CT画像を変形する、請求項3に記載の画像処理方法。 The image processing method according to claim 3, wherein the coronary CT image is deformed without deforming the delayed contrast CT image when performing the non-rigid deformation alignment.
  5.  前記冠動脈CT画像における左心室の心筋部の面積又は体積を算出し、
     前記非剛体変形位置合わせを行う際に、前記心筋部の面積又は体積を維持するように前記冠動脈CT画像を変形する、請求項4に記載の画像処理方法。
    Calculate the area or volume of the left ventricular myocardium in the coronary CT image,
    The image processing method according to claim 4, wherein when performing the non-rigid deformation positioning, the coronary artery CT image is deformed so as to maintain an area or volume of the myocardial part.
  6.  前記非剛体変形位置合わせを行う際に、前記冠動脈CT画像における左心室の外輪郭の変位量に応じて、前記冠動脈CT画像における左心室の内輪郭を変形する、請求項4又は5に記載の画像処理方法。 6. The inner contour of the left ventricle in the coronary CT image is deformed according to a displacement amount of an outer contour of the left ventricle in the coronary CT image when performing the non-rigid deformation alignment. Image processing method.
  7.  前記冠動脈CT画像における左心室の外輪郭と、前記遅延造影CT画像における左心室の外輪郭とを抽出し、
     前記位置合わせを行う際に、前記冠動脈CT画像及び前記遅延造影CT画像の前記外輪郭同士の位置ズレが最小となるように、剛体位置合わせを行う、請求項1から6のいずれか1項に記載の画像処理方法。
    Extracting an outer contour of the left ventricle in the coronary CT image and an outer contour of the left ventricle in the delayed contrast CT image;
    The rigid body alignment is performed according to any one of claims 1 to 6, wherein, when performing the alignment, rigid body alignment is performed so that a positional shift between the outer contours of the coronary artery CT image and the delayed contrast CT image is minimized. The image processing method as described.
  8.  造影された冠動脈を含む左心室をCT装置により撮像して得られた冠動脈CT画像と、前記冠動脈CT画像の撮像から所定の遅延時間が経過した後に、造影された心筋梗塞部を含む左心室をCT装置により撮像して得られた遅延造影CT画像と、を用いた差分処理をコンピューターに実行させて差分画像を生成する画像処理プログラムであって、前記コンピューターに、
     前記冠動脈CT画像と前記遅延造影CT画像とを判別する判別処理と、
     前記冠動脈CT画像と前記遅延造影CT画像との位置合わせを行う位置合わせ処理と、
     前記遅延造影CT画像から前記冠動脈CT画像を差し引く前記差分処理を実行させる、画像処理プログラム。
    A coronary artery CT image obtained by imaging a contrasted left ventricle including a coronary artery with a CT device, and a left ventricle including a contrasted myocardial infarction after a predetermined delay time has elapsed since the imaging of the coronary artery CT image An image processing program for generating a differential image by causing a computer to execute differential processing using a delayed contrast CT image obtained by imaging with a CT apparatus,
    Discrimination processing for discriminating between the coronary CT image and the delayed contrast CT image;
    An alignment process for aligning the coronary artery CT image and the delayed contrast CT image;
    An image processing program for executing the difference processing for subtracting the coronary artery CT image from the delayed contrast CT image.
  9.  造影された冠動脈を含む左心室をCT装置により撮像して得られた冠動脈CT画像と、前記冠動脈CT画像の撮像から所定の遅延時間が経過した後に、造影された心筋梗塞部を含む左心室をCT装置により撮像して得られた遅延造影CT画像と、を用いた差分処理を行って差分画像を生成する画像処理装置であって、
     前記冠動脈CT画像と前記遅延造影CT画像とを取得する取得部と、
     前記冠動脈CT画像と前記遅延造影CT画像とを判別する判別部と、
     前記冠動脈CT画像と前記遅延造影CT画像との位置合わせを行う位置合わせ部と、
     前記遅延造影CT画像から前記冠動脈CT画像を差し引く前記差分処理を行う差分処理部を備える、画像処理装置。
    A coronary artery CT image obtained by imaging a contrasted left ventricle including a coronary artery with a CT device, and a left ventricle including a contrasted myocardial infarction after a predetermined delay time has elapsed since the imaging of the coronary artery CT image An image processing apparatus that performs difference processing using a delayed contrast CT image obtained by imaging with a CT apparatus and generates a difference image,
    An acquisition unit for acquiring the coronary CT image and the delayed contrast CT image;
    A discriminator for discriminating between the coronary artery CT image and the delayed contrast CT image;
    An alignment unit for aligning the coronary artery CT image and the delayed contrast CT image;
    An image processing apparatus comprising: a difference processing unit that performs the difference process of subtracting the coronary CT image from the delayed contrast CT image.
  10.  請求項9に記載の画像処理装置と、前記冠動脈CT画像と前記遅延造影CT画像とを撮像するCT装置と、前記CT装置と接続され且つ造影剤を注入する注入装置とを備える、画像処理システム。

     
    An image processing system comprising: the image processing apparatus according to claim 9; a CT apparatus that captures the coronary CT image and the delayed contrast CT image; and an injection apparatus that is connected to the CT apparatus and injects a contrast agent. .

PCT/JP2016/003307 2015-07-14 2016-07-13 Image processing method, image processing program, image processing device, and image processing system WO2017010097A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-140289 2015-07-14
JP2015140289A JP6670560B2 (en) 2015-07-14 2015-07-14 Image processing method, image processing program, image processing device, and image processing system

Publications (1)

Publication Number Publication Date
WO2017010097A1 true WO2017010097A1 (en) 2017-01-19

Family

ID=57757283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003307 WO2017010097A1 (en) 2015-07-14 2016-07-13 Image processing method, image processing program, image processing device, and image processing system

Country Status (2)

Country Link
JP (1) JP6670560B2 (en)
WO (1) WO2017010097A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189224A1 (en) * 2022-03-31 2023-10-05 テルモ株式会社 Program, information processing method, and information processing device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018130231A (en) * 2017-02-14 2018-08-23 株式会社根本杏林堂 Injection protocol generator, injection device and imaging device comprising the generator, injection protocol generation method, and injection protocol generation program
JP6877569B2 (en) 2017-10-31 2021-05-26 富士フイルム株式会社 Misalignment detectors, methods and programs
JP6845480B2 (en) * 2018-01-18 2021-03-17 国立大学法人東海国立大学機構 Diagnostic support devices, methods and programs
JP7313818B2 (en) * 2018-12-20 2023-07-25 キヤノンメディカルシステムズ株式会社 MEDICAL IMAGE PROCESSING APPARATUS, MEDICAL IMAGE DIAGNOSTIC APPARATUS, AND MEDICAL IMAGE PROCESSING METHOD
EP4092713A4 (en) 2020-03-02 2024-02-14 National Institute for Materials Science Observation target gas transmission/diffusion path observation device, observation target gas measurement method, spot-defect location detection device, spot-defect location detection method, and observation sample
JP2022052210A (en) * 2020-09-23 2022-04-04 キヤノン株式会社 Information processing device, information processing method, and program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010104710A (en) * 2008-10-31 2010-05-13 Toshiba Corp Medical image processor
JP2012130648A (en) * 2010-12-20 2012-07-12 Toshiba Medical Systems Corp Image processing apparatus and image processing method
JP2013027696A (en) * 2011-06-23 2013-02-07 Toshiba Corp Image processing apparatus and x-ray diagnostic apparatus
JP2013071016A (en) * 2011-09-28 2013-04-22 Siemens Corp Non-rigid 2d/3d registration of coronary artery model with live fluoroscopic image
JP2015073901A (en) * 2013-10-08 2015-04-20 株式会社東芝 Medical image processing apparatus and medical image processing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010104710A (en) * 2008-10-31 2010-05-13 Toshiba Corp Medical image processor
JP2012130648A (en) * 2010-12-20 2012-07-12 Toshiba Medical Systems Corp Image processing apparatus and image processing method
JP2013027696A (en) * 2011-06-23 2013-02-07 Toshiba Corp Image processing apparatus and x-ray diagnostic apparatus
JP2013071016A (en) * 2011-09-28 2013-04-22 Siemens Corp Non-rigid 2d/3d registration of coronary artery model with live fluoroscopic image
JP2015073901A (en) * 2013-10-08 2015-04-20 株式会社東芝 Medical image processing apparatus and medical image processing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189224A1 (en) * 2022-03-31 2023-10-05 テルモ株式会社 Program, information processing method, and information processing device

Also Published As

Publication number Publication date
JP6670560B2 (en) 2020-03-25
JP2017018457A (en) 2017-01-26

Similar Documents

Publication Publication Date Title
WO2017010097A1 (en) Image processing method, image processing program, image processing device, and image processing system
US10395366B2 (en) Method and system for assessing vessel obstruction based on machine learning
US11694339B2 (en) Method and apparatus for determining blood velocity in X-ray angiography images
JP4771409B2 (en) Method and system for aligning a three-dimensional model of an anatomical region and a projected image of the region
JP6112735B2 (en) Method and system for sensing and analyzing cardiac mechanisms
EP2932469B1 (en) Method of determining the blood flow through coronary arteries
US10448901B2 (en) Methods for evaluating regional cardiac function and dyssynchrony from a dynamic imaging modality using endocardial motion
US8825139B2 (en) Method for automatic detection of a contrast agent inflow in a blood vessel of a patient with a CT system and CT system for carrying out this method
US8929633B2 (en) Diagnostic X-ray system and method
JP7296654B2 (en) Injection protocol generation device, injection device and imaging device including the generation device, injection protocol generation method, and injection protocol generation program
WO2007116865A1 (en) Medical liquid injecting device
CN114098780A (en) CT scanning method, device, electronic device and storage medium
JP2023123542A (en) Blood vessel extraction device and blood vessel extraction method
RU2707841C2 (en) Perfusion imaging
US20220133982A1 (en) System and methods for delivering a test bolus for medical imaging
JP6618673B2 (en) Injection protocol setting device, chemical solution injection device, and medical system
JP2020032246A (en) Injection protocol setup device, medical solution injector, and medical system
JP7023482B2 (en) Generation device, injection device, and injection amount determination method
JP2018192346A (en) Blood vessel analysis device, blood vessel analysis method and blood vessel analysis program
JP2015217113A (en) Blood vessel analysis device, medical image diagnostic device, blood vessel analysis method, and blood vessel analysis program
JP7350284B2 (en) Chemical injection device and injection protocol setting program
JP2018175257A (en) Blood vessel image processing system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16824081

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16824081

Country of ref document: EP

Kind code of ref document: A1