WO2017008372A1 - 一种超薄型反射式的电脑输入设备的开关模组 - Google Patents
一种超薄型反射式的电脑输入设备的开关模组 Download PDFInfo
- Publication number
- WO2017008372A1 WO2017008372A1 PCT/CN2015/088047 CN2015088047W WO2017008372A1 WO 2017008372 A1 WO2017008372 A1 WO 2017008372A1 CN 2015088047 W CN2015088047 W CN 2015088047W WO 2017008372 A1 WO2017008372 A1 WO 2017008372A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- reflecting surface
- ultra
- optical path
- switch module
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H13/00—Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch
- H01H13/70—Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard
- H01H13/83—Switches having rectilinearly-movable operating part or parts adapted for pushing or pulling in one direction only, e.g. push-button switch having a plurality of operating members associated with different sets of contacts, e.g. keyboard characterised by legends, e.g. Braille, liquid crystal displays, light emitting or optical elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H2219/00—Legends
- H01H2219/054—Optical elements
- H01H2219/06—Reflector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H2231/00—Applications
- H01H2231/002—Calculator, computer
Definitions
- the invention relates to the technical field of an electronic device input device, and particularly relates to a switch module of an ultra-thin reflective computer input device.
- the mechanical keyboard is the mainstream of the current computer keyboard market.
- the switching principle is: when the button is pressed and relaxed, the metal contacts on the mechanical key shaft make contact and non-contact motion with the metal elastic piece fixed on the housing. The circuit is turned on and off. This mechanical contact structure is prone to fatigue damage. The shrapnel and contacts are prone to wear, resulting in switch control failure or malfunction control. The product life is not long enough. Second, the metal shrapnel and contacts It is easy to be affected by the use environment, causing oxidation and aging, resulting in poor conduction contact, resulting in switch control failure or malfunction control. In addition, the height of the button of the mechanical axis keyboard is relatively high. When the button is relaxed and the spring is springed up, the height from the top of the keycap to the lower PCB board (printed circuit board) is 16mm to 19mm, and the height when the button is pressed down to the bottom is also 12mm ⁇ 15mm.
- Photoelectric keyboard is a new technology.
- the main technical practice is to retain the basic structure of the traditional mechanical keyboard switch module, including the key shaft, spring, and upper and lower housings, but only the original mechanical keyboard switch module.
- the set of metal contacts and shrapnel are replaced by optical switching devices, while a light-emitting device and a light-receiving device (photosensitive element) are added.
- the optical switching device is turned on or off, thereby triggering the on and off of the circuit to which the light receiving device is connected.
- the advantages of the photoelectric keyboard are: precise control, faster switching action, high sensitivity, better hand feeling, no contact wear and oxidative aging, long service life, and can meet high frequency and long-term applications; There are no jitter problems with mechanical contact, zero noise, zero delay of switching action time, more sensitive operation, fast and accurate operation.
- the button height is relatively high and the volume is relatively large, which is suitable for desktop input devices, and is not suitable for integration into a notebook computer and a small portable digital device. On the device.
- a first object of the present invention is to overcome the shortcomings and deficiencies of the prior art and to provide a switch module for an ultra-thin reflective computer input device.
- Another object of the present invention is to provide a keycap character illumination system for use with a switch module of an ultra-thin reflective computer input device.
- the switch module of the ultra-thin reflective computer input device comprises a key cap, a key shaft, a spring, an upper fixed shell, a lower fixed shell and a PCB board
- the ultra-thin reflective photoelectric keyboard switch module further comprises a light-emitting device and a light-receiving device, the light-emitting device and the light-receiving device forming an optical path through at least one reflective surface, the reflective surface being integrated on the key cap, the key shaft, the upper fixed shell or the lower fixed shell
- the light emitting device and the light receiving device are both disposed on the PCB board, and the lower fixed shell is provided with a first through hole and a second through hole, and the first through hole is located at the Above the light emitting device, the second via is located above the light receiving device.
- the optical path includes a second reflective surface located below the key shaft, and a first reflective surface and a third reflective surface located below the upper fixed housing.
- the light emitted from the light emitting device passes through the first through hole on the lower fixed case and is incident on the first reflecting surface below the upper fixed case.
- the second reflecting surface on the key shaft is just right a first reflective surface located under the upper fixed casing, which reflects the collimated light incident from the first reflective surface, and the reflected light is incident on the third reflective surface on the other side below the upper fixed casing
- the third reflective surface converges the incident light through the second through hole of the lower fixed case to the light receiving device located on the PCB board, thereby triggering the circuit to be turned on;
- the first reflective surface located below the upper fixed shell is an off-axis paraboloid, an off-axis secondary surface or a free-form surface of a polynomial curved surface, which may also be a pure plane or a composite surface composed of multiple surfaces;
- the third reflecting surface on the other side below the upper fixed shell is a free-form surface of an off-axis paraboloid, an off-axis secondary surface or a polynomial curved surface, which may also be an inclined pure plane and composed of a plurality of surfaces. a composite curved surface; the first reflective surface is coupled to the third reflective surface optical path by reflection of the second reflective surface.
- first reflective surface, the second reflective surface and the third reflective surface are symmetrically disposed with respect to the center of the key axis, and may also be asymmetrically disposed.
- the optical path channel includes a fifth reflective surface and a sixth reflective surface located under the key shaft, and a fourth reflective surface and a seventh reflective surface located below the upper fixed housing.
- the light emitted from the light emitting device passes through the first through hole on the lower fixed case and is incident on the fourth reflecting surface below the upper fixed case.
- the fifth reflecting surface on the key shaft is just right a fourth reflecting surface located under the upper fixed casing, which reflects the collimated light incident from the fourth reflecting surface, and the reflected light is incident on the sixth side of the other side also located on the key shaft
- the reflective surface is reflected again, and the reflected light is incident on the other seventh reflective surface below the upper fixed casing, and the seventh reflective surface converges the incident light through the second through hole of the lower fixed casing to the PCB board.
- Light receiving device thereby triggering circuit conduction;
- the button release spring returns to the original position, the key moves axially, and the key shaft and the fifth and sixth reflecting surfaces move upward together, the fifth reflecting surface on the key shaft and the fourth bottom located below the upper fixed shell
- the reflecting surface is staggered, and at the same time, the sixth reflecting surface on the key shaft is staggered from the seventh reflecting surface located below the upper fixed shell, the optical path is cut, and the connected circuit is in an open state.
- the fourth reflective surface located below the upper fixed shell is an off-axis paraboloid, an off-axis secondary surface or a free-form surface of a polynomial surface, which may also be a pure plane or a composite surface composed of multiple faces.
- the seventh reflecting surface located on the other side below the upper fixed shell has a reflecting surface which is an off-axis paraboloid, an off-axis secondary surface or a free-form surface of a polynomial curved surface, which may also be an inclined pure plane or multiple faces.
- the fourth reflecting surface passes through the reflection of the fifth reflecting surface and the sixth reflecting surface and the seventh reflecting surface optical path coupling.
- the fourth reflecting surface and the fifth reflecting surface, the sixth reflecting surface and the seventh reflecting surface are symmetrically disposed with respect to the center of the key axis, and may be asymmetrically disposed.
- the optical path includes a ninth reflective surface and a tenth reflective surface under the key shaft, an eighth reflective surface and an eleventh reflective surface under the upper fixed housing, and a first through hole in the lower fixed shell a collimating lens at a position or a focusing lens at a position of the second through hole,
- the light emitted from the light emitting device passes through the collimating lens at the position of the first through hole on the lower fixed case and is incident on the eighth reflecting surface below the upper fixed case.
- the ninth on the key shaft The reflecting surface is just aligned with the eighth reflecting surface located below the upper fixed casing, and reflects the collimated light incident from the eighth reflecting surface, and the reflected light is incident on the other side also located on the key shaft.
- the tenth reflecting surface is reflected again, and the reflected light is incident on the other eleventh reflecting surface below the upper fixed shell, and the eleventh reflecting surface passes the incident light through the second fixed shell
- the focusing lens at the hole position is concentrated to the light receiving device located on the PCB board, thereby triggering the circuit to be turned on;
- the button release spring returns to the original position, the key moves axially, and the key shaft and the ninth and tenth reflection surfaces move upward together, and the ninth reflection surface on the key shaft and the eighth bottom portion located below the upper fixed shell
- the reflecting surface is staggered, and at the same time, the tenth reflecting surface on the key shaft is offset from the eleventh reflecting surface located below the upper fixed shell, the optical path is cut, and the connected circuit is in an open state.
- the eighth reflecting surface located below the upper fixed shell is a plane inclined by 45 degrees, and may also be an off-axis paraboloid, an off-axis secondary surface or a free-form surface of a polynomial curved surface, which may also be a plurality of surfaces.
- the eleventh reflecting surface located on the other side below the upper fixed shell has a reflecting surface which is a plane inclined by 45 degrees, and may also be an off-axis paraboloid, an off-axis secondary surface or a free-form surface of a polynomial curved surface, which may also a composite surface composed of multiple faces;
- the eighth reflecting surface is coupled to the eleventh reflecting surface optical path by reflection of the ninth reflecting surface and the tenth reflecting surface.
- the eighth reflecting surface, the ninth reflecting surface, the tenth reflecting surface and the eleventh reflecting surface are symmetrically arranged with respect to the center of the key axis, and may be asymmetrically disposed.
- the optical path includes a twelfth reflecting surface located under the keycap and a thirteenth reflecting surface located on the upper fixing shell.
- the light emitted from the light emitting device is incident on the twelfth reflecting surface below the key cap after passing through the first through hole position on the lower fixed case, and the twelfth reflecting surface under the key cap is just right when the button is pressed down Aligning the thirteenth reflecting surface of the upper fixed casing, the light incident from the twelfth reflecting surface is collimated or partially collimated, and the emitted light passes through the thirteenth reflecting surface The lower turn and the convergence, the concentrated light is concentrated to the light receiving device of the PCB through the second through hole on the lower fixed case, thereby triggering the circuit to be turned on;
- the twelfth reflecting surface located under the key cap and the thirteenth reflecting surface located on the upper fixing shell are free-form surfaces of an off-axis paraboloid, an off-axis secondary surface or a polynomial curved surface, which may also be inclined pure A flat surface, or a composite surface composed of multiple faces.
- the optical path includes a collimating lens located at a first through hole of the lower fixed case, a fourteenth reflecting surface located under the key cap, and a fifteenth reflecting surface of the free curved surface of the upper fixed case.
- the light emitted from the light-emitting device passes through the collimating lens at the position of the first through-hole on the lower fixed casing, and is collimated and incident on the fourteenth reflecting surface below the keycap.
- the button When the button is pressed, the under the keycap
- the fourteenth reflecting surface is just aligned with the fifteenth reflecting surface of the upper fixed casing, and the light incident from the fourteenth reflecting surface is collimated and emitted, and the emitted light passes through the fifteenth reflection.
- the surface is turned down and converged, and the concentrated light is concentrated to the light receiving device of the PCB through the second through hole on the lower fixed case, thereby triggering the circuit to be turned on;
- the fourteenth reflecting surface located under the key cap is an inclined plane
- the fifteenth reflecting surface of the upper fixed shell is an off-axis paraboloid, an off-axis secondary surface or a free-form surface of a polynomial curved surface. It can also be a tilted pure plane, or a composite surface composed of multiple faces.
- the optical path includes a collimating lens located at a first through hole of the lower fixed case, a sixteenth reflecting surface located under the key cap, a seventeenth mirror located on the upper fixed case, and a lower fixed case a condenser lens at a position of two through holes,
- the light emitted from the light-emitting device passes through the collimating lens at the position of the first through-hole on the lower fixed casing, and is collimated and incident on the sixteenth reflecting surface below the keycap.
- the button When the button is pressed, the under the keycap
- the sixteenth reflecting surface is just aligned with the seventeenth reflecting surface of the upper fixed casing, and the light incident from the sixteenth reflecting surface is collimated and emitted, and the emitted light passes through the seventeenth reflection.
- the face is turned down, and then the Fresnel condenser lens of the second through hole of the lower fixed case is concentrated and concentrated to the light receiving device of the PCB board, thereby triggering the circuit to be turned on;
- the fourteenth reflecting surface located under the key cap and the seventeenth reflecting surface located on the upper fixing shell are inclined planes, and may also be an off-axis paraboloid, an off-axis secondary surface or a polynomial curved surface.
- the optical path includes an eighteenth reflecting surface located under the keycap and a first refractive prism located at a second through hole of the lower fixed case.
- the light emitted from the light-emitting device passes through the first through hole of the lower fixed casing and is collimated and incident on the eighteenth reflecting surface located under the keycap.
- the eighteenth reflection below the keycap The surface is just aligned with the first refractive prism located at the second through hole of the lower fixed casing, and the light emitted from the light emitting device is collimated or partially collimated and turned and then emitted, and the emitted light passes through the first refractive index.
- the prism is totally reflected and concentrated, and is turned downward, and the light after the refraction is projected onto the light receiving device of the PCB board, thereby triggering the circuit to be turned on;
- the eighteenth reflecting surface located under the key cap is a free-form surface of an off-axis paraboloid, an off-axis secondary surface or a polynomial curved surface, which may also be an inclined pure plane or a composite curved surface composed of a plurality of surfaces;
- the first refractive prism located at the second through hole of the lower fixed casing has a vertical plane near the eighteenth reflecting surface, which is an input surface; and an inclined free surface on a side away from the eighteenth reflecting surface
- the total reflection surface which may be an off-axis paraboloid, an off-axis quadratic surface, or a polynomial surface, which may also be an inclined pure plane, or a composite curved surface composed of a plurality of planes; Output face.
- the optical path channel includes a first light blocking plate located under the keycap, a second refractive prism located at a first through hole position of the lower fixed case, and a third refractive prism located at a second through hole position of the lower fixed case
- the second and third refractive prisms each have a reflective curved surface for light refraction
- the second refractive prism and the third refractive prism are aligned with each other.
- the light emitted by the light emitting device passes through the Fresnel surface under the second refractive prism, and is collimated into the a tilted total reflection surface above the second refractive prism, after being deflected by the total reflection surface thereof, is outputted from a vertical plane on the right side of the second refractive prism, and the output light is incident on the third refractive prism on the other side, After the tilted total reflection surface is turned, the Fresnel surface below it is concentrated on the light receiving device of the PCB board, thereby triggering the circuit to be turned on;
- the button When the button is pressed down, the first light blocking plate located under the keycap moves downward, which completely blocks the light between the second refractive prism and the third refractive prism, the optical path is cut, and the connected circuit is Disconnected state.
- the upper surface of the second refractive prism and the third refractive prism is an off-axis paraboloid, an off-axis secondary surface or a polynomial curved surface, which may also be an inclined pure plane or a plurality of surfaces.
- the composite surface is below the Fresnel surface.
- the optical path includes a second light blocking plate under the keycap, a nineteenth reflecting surface on the upper fixed shell, and a twentieth reflecting surface also located on the upper fixed shell.
- the nineteenth reflecting surface and the twentieth reflecting surface are aligned with each other, and when the button is relaxed, the light emitted by the light emitting device passes through the nineteenth reflection on the upper fixing shell for collimating and turning the light path After the surface reflection, the collimated light is further turned down through the twentieth reflective surface, and then condensed onto the light receiving device of the PCB through the second through hole of the lower fixed case, thereby triggering the circuit to be turned on; Second light barrier under the keycap when pressed Moving downward, the light between the nineteenth reflecting surface and the twentieth reflecting surface is completely blocked, the optical path is cut, and the connected circuit is in an off state.
- the nineteenth reflecting surface and the twentieth reflecting surface are free-form surfaces of an off-axis paraboloid, an off-axis secondary surface or a polynomial curved surface, which may also be an inclined pure plane or a plurality of surfaces.
- Composite surface
- the optical path includes a third light blocking plate under the key cap, a fourth refractive prism for turning the optical path at the first through hole of the lower fixed case, and a turning light path on the upper fixed case.
- the fourth refractive prism and the second eleven reflective surface are aligned with each other.
- the button When the button is relaxed, the light emitted by the light emitting device is reflected by the total reflection surface of the fourth refractive prism, and the light is deflected. Then, the second eleven reflecting surface is turned down, and then the second through hole of the lower fixing shell is concentrated on the light receiving device of the PCB board, thereby triggering the circuit to be turned on;
- the third light blocking plate located under the keycap moves downward, which completely blocks the light between the fourth refractive prism and the second eleven reflecting surface, and the optical path is cut and connected.
- the circuit is in the off state.
- the upper surface of the third refractive prism is a total reflection surface in the form of an inclined curved surface, which is an off-axis paraboloid, an off-axis quadric surface, or a polynomial curved surface, which may also be an inclined pure plane or multiple planes. a composite curved surface with a Fresnel surface below it;
- the twenty-first reflecting surface is an off-axis paraboloid, an off-axis secondary surface or a polynomial curved surface, which may also be an inclined pure plane or a composite curved surface composed of a plurality of surfaces.
- the optical path includes a fourth light blocking plate under the keycap, a fifth refractive prism for collimating and turning the optical path at the first through hole on the lower fixed case, and the same on the lower fixed case. a sixth refractive prism for turning the optical path at the second through hole position,
- the fifth refractive prism and the sixth refractive prism are aligned with each other.
- the button When the button is relaxed, the light emitted by the light emitting device is reflected by the total reflection surface of the fifth refractive prism, and then the collimated light is re-exposed. After the total reflection surface of the sixth refractive prism is reflected downward and reflected, it is concentrated on the light receiving device of the PCB board, thereby triggering the circuit to be turned on;
- the fourth light blocking plate located below the keycap moves downward, which will The light between the fifth refractive prism and the sixth refractive prism is completely blocked, the optical path is cut, and the connected circuit is in an off state.
- the upper surface of the fifth and sixth refractive prisms is a total reflection surface in the form of an inclined curved surface, which is an off-axis paraboloid, an off-axis quadric surface, or a polynomial curved surface, which may also be an inclined pure plane, or a composite curved surface composed of a plurality of faces; the lower portions of the fifth and sixth refractive prisms are Fresnel faces.
- the optical path includes a 22nd reflective surface and a 23rd reflective surface located under the keycap, a collimated Fresnel lens located at a first through hole of the lower fixed shell, and a lower fixed shell a concentrated Fresnel lens at the position of the two through holes, and a fifth light blocking plate on the PCB board,
- the twenty-second reflective surface and the twenty-third reflective surface are aligned with each other.
- the light emitted by the light-emitting device is collimated by the collimating Fresnel lens on the lower fixed casing.
- the twenty-third reflective surface also located under the keycap, after being reflected again, The light is incident downward into the concentrating Fresnel lens located in the lower fixed case, and is concentrated on the light receiving device of the PCB board, thereby triggering the circuit to be turned on;
- the fifth light blocking plate on the PCB completely blocks the light between the twenty-second reflecting surface and the twenty-third reflecting surface, the optical path is cut, and the connected circuit is broken. Open state.
- the twenty-second reflective surface and the twenty-third reflective surface are both inclined planes, and may also be an off-axis paraboloid, an off-axis secondary surface or a polynomial curved surface, or a plurality of surfaces.
- Composite surface may also be an off-axis paraboloid, an off-axis secondary surface or a polynomial curved surface, or a plurality of surfaces.
- the optical path includes a first right angle prism and a second right angle prism located under the keycap, a collimated Fresnel lens located at a first through hole of the lower fixed case, and a second through hole position of the lower fixed case a concentrated Fresnel lens and a sixth light barrier on the PCB,
- the first right-angle prism and the second right-angle prism are aligned with each other.
- the light emitted by the light-emitting device passes through the collimated Fresnel lens located on the lower fixed casing, and is incident on the key.
- the first right-angle prism below the cap is reflected by the reflective surface above it, and the light is deflected and incident on the other side, and the same under the keycap
- the two right-angle prisms are reflected again by the reflective surface above, the light is incident downward into the concentrated Fresnel lens located in the lower fixed casing, and is concentrated on the light receiving device of the PCB board, thereby triggering the circuit to be turned on;
- the sixth light blocking plate located on the PCB completely blocks the light between the first right angle prism and the second right angle prism, the optical path is cut, and the connected circuit is in an off state.
- the reflection surfaces above the first right-angle prism and the second right-angle prism are all total reflection surfaces, and both are inclined planes, which may also be an off-axis paraboloid, an off-axis secondary surface or a polynomial surface.
- the optical path includes a twenty-fourth reflective surface and a twenty-fifth reflective surface located under the keycap, and a seventh light blocking film on the PCB board.
- the twenty-fourth reflecting surface and the twenty-fifth reflecting surface are aligned with each other.
- the button When the button is relaxed, the light emitted by the light emitting device is incident on the lower through hole on the lower fixing shell to be located under the keycap
- the twenty-fourth reflecting surface is reflected and the light is projected to the other side, and is also located on the twenty-fifth reflecting surface below the keycap. After being reflected again, the light is deflected downward and passes through the lower fixed shell.
- the second via hole is concentrated on the light receiving device of the PCB board, thereby triggering the circuit to be turned on;
- the seventh light blocking plate on the PCB completely blocks the light between the twenty-fourth reflecting surface and the twenty-fifth reflecting surface, the optical path is cut, and the connected circuit is broken. Open state.
- the twenty-fourth reflecting surface and the twenty-fifth reflecting surface are free-form surfaces of an off-axis paraboloid, an off-axis secondary surface or a polynomial curved surface, which may also be an inclined pure plane or multiple A composite surface composed of faces.
- the light emitting device is vertically disposed on the upper fixed case
- the light receiving device is disposed on the PCB board
- the lower fixed case is provided with a second through hole
- the second A via is located above the light receiving device.
- the optical path includes a collimated Fresnel lens disposed on the upper fixed case, a twenty-sixth reflective surface on the key axis, and a twenty-seven reflective surface located below the upper fixed case.
- the light emitted from the light-emitting device passes through the collimated Fresnel lens on the upper fixed casing Collimating incident on the twenty-sixth reflecting surface of the key shaft, when the button is pressed, the twenty-sixth reflecting surface of the key shaft is just aligned with the twenty-seventh reflecting surface below the upper fixed shell
- the light incident from the twenty-sixth reflecting surface is refracted, and the emitted light is concentrated to the light receiving device of the PCB through the second through hole of the lower fixed case, thereby triggering the circuit to be turned on;
- the twenty-seventh reflecting surface is an off-axis paraboloid, an off-axis secondary surface or a polynomial curved surface, which may also be an inclined pure plane or a composite curved surface composed of a plurality of surfaces.
- the optical path includes a collimated Fresnel lens disposed on the upper fixed case, an eighth light blocking plate located under the key cap, and a seventh refractive prism located at a second through hole position of the lower fixed case.
- the collimated Fresnel lens and the seventh refractive prism disposed on the upper fixed casing are aligned with each other, and when the button is relaxed, the light emitted by the light emitting device is collimated through the collimated Fresnel lens
- the light is incident on the other side of the seventh refractive prism located at the second through hole of the lower fixed casing, and after passing through the inclined total reflection surface, the condensed light below the seventh refractive prism
- the Neel plane converges on the light receiving device of the PCB board, thereby triggering the circuit to be turned on;
- the eighth light blocking plate located under the key cap completely blocks the light between the collimated Fresnel lens and the seventh refractive prism, the optical path is cut, and the connected circuit is in an off state. .
- the upper surface of the seventh refractive prism is an inclined reflecting surface, which is an off-axis paraboloid, an off-axis quadric surface, or a free-form surface in the form of a polynomial curved surface, which may also be an inclined pure plane, or A composite curved surface composed of a plurality of faces, and a lower portion of the seventh refractive prism is a concentrated Fresnel surface.
- the optical path includes a collimated Fresnel lens disposed on the upper fixed case, a ninth light blocking plate located under the key cap, and a twenty-eighth reflecting surface located on the upper fixed case.
- the collimated Fresnel lens and the twenty-eighth reflecting surface disposed on the upper fixed case Aligning with each other, when the button is relaxed, the light emitted by the light emitting device is collimated through the collimated Fresnel lens, and the light is incident on the twenty-eighth reflecting surface of the upper fixed shell on the other side. After the reflection is turned, the second through hole located on the lower fixed case is concentrated on the light receiving device of the PCB board, thereby triggering the circuit to be turned on;
- the ninth light blocking plate located under the key cap completely blocks the light between the collimated Fresnel lens and the twenty-eighth reflecting surface, the optical path is cut, and the connected circuit is broken. Open state.
- the twenty-eighth reflecting surface is a free-form surface of an off-axis paraboloid, an off-axis secondary surface or a polynomial curved surface, and may also be an inclined pure plane or a composite curved surface composed of a plurality of surfaces.
- the optical path includes a collimated Fresnel lens disposed on the upper fixed case, a tenth light blocking plate located under the key cap, and an eighth refractive prism located at a second through hole position of the lower fixed case.
- the collimated Fresnel lens disposed on the upper fixed casing and the eighth refractive prism are aligned with each other, and when the button is relaxed, the light emitted by the light emitting device is collimated through the collimated Fresnel lens
- the light is incident on the other side of the eighth refractive prism located at the second through hole of the lower fixed casing, and is turned over by the inclined total reflection surface, and then concentrated to the PCB through the light transmission plane below The light receiving device, thereby triggering the circuit to conduct;
- the tenth light blocking film located under the key cap completely blocks the light between the collimated Fresnel lens and the eighth refractive prism, the optical path is cut, and the connected circuit is in an off state. .
- the upper surface of the eighth refractive prism is an inclined reflecting surface, which is an off-axis paraboloid, an off-axis quadric surface, or a free-form surface in the form of a polynomial curved surface, which may also be an inclined pure plane, or A composite curved surface composed of a plurality of faces, and a lower surface of the eighth refractive prism is a light transmitting plane.
- the light receiving device is vertically disposed on the upper fixed casing
- the light emitting device is disposed on the PCB
- the lower fixed casing is provided with a first through hole
- the first A via is located above the light emitting device.
- the optical path includes a twenty-ninth reflecting surface disposed under the upper fixed shell, a thirtieth reflecting surface on the key shaft, and a thirty-first anti-reflection on the other side of the key shaft a face and a concentrated Fresnel lens on the upper fixed casing,
- the light emitted from the light emitting device passes through the first through hole on the lower fixed case and is collimated and incident on the twenty-ninth reflecting surface below the upper fixed case.
- the button When the button is pressed, the first on the key shaft
- the thirty-reflecting surface is just aligned with the twenty-ninth reflecting surface below the upper fixed casing, and the light incident from the second nineteen reflecting surface is refracted and then incident on the same key axis.
- the thirty-first reflecting surface on one side is reflected and deflected again, and then incident on the collecting Fresnel lens on the other side of the upper fixed casing, and then concentrated on the light receiving device of the upper fixed casing, thereby triggering the circuit guiding through;
- the button release spring returns to the original position, the thirtieth reflecting surface and the twenty-ninth reflecting surface are completely staggered, and the thirty-first reflecting surface is also completely staggered from the collecting Fresnel lens.
- the optical path is cut off and the connected circuit is in the off state.
- the twenty-ninth reflecting surface is an off-axis paraboloid, an off-axis quadric surface, or a free-form surface in the form of a polynomial curved surface, and may also be an inclined pure plane or a composite curved surface composed of a plurality of surfaces.
- the optical path includes the eleventh light blocking sheet under the keycap, the ninth refractive prism on the lower fixed housing, and the other side of the eleventh light blocking sheet a concentrated Fresnel lens on the fixed casing,
- the ninth refractive prism is aligned with the concentrating Fresnel lens disposed on the upper fixed casing.
- the button When the button is released, the light emitted from the light emitting device passes through the first through hole on the lower fixed casing. Directly incident on the ninth refracting prism, after being collimated and turned, and incident on the other side of the concentrating Fresnel lens in the upper fixed casing, and then condensed into the light receiving device of the upper fixed casing, thereby The trigger circuit is turned on;
- the eleventh light blocking plate located under the key cap completely blocks the light between the collimated Fresnel lens and the ninth refractive prism, the optical path is cut, and the connected circuit is at Disconnected state.
- the ninth refracting prism is an inclined reflecting surface, which is an off-axis paraboloid, an off-axis quadric surface, or a free-form surface in the form of a polynomial curved surface, which may also be an inclined pure plane, or A composite curved surface composed of a plurality of faces, and a lower surface of the ninth refractive prism is a light transmitting plane.
- the light receiving device is vertically disposed on the keycap, and the light is emitted
- the device is disposed on the PCB board, and the lower fixing shell is provided with a first through hole, and the first through hole is located above the light receiving device.
- the optical path includes a collimated Fresnel lens at a position of the first through hole of the lower fixed case, a twelfth light blocking plate fixed on the PCB, and is fixed under the key cap and respectively located at the a thirty-second reflecting surface on both sides of the twelfth light blocking sheet and a collecting Fresnel lens,
- the thirty-second reflective surface is aligned with the concentrating Fresnel lens fixed under the keycap.
- the button When the button is relaxed, the light emitted from the light emitting device passes through the first through hole of the lower fixed case.
- the collimated Fresnel lens is collimated and incident on the thirty-second reflective surface, and after being turned, it is incident on the other side of the concentrated Fresnel lens fixed under the keycap, and then concentrated To the light receiving device also fixed under the key cap, thereby triggering the circuit to be turned on;
- the twelfth light blocking plate fixed on the PCB completely blocks the light between the concentrated Fresnel lens and the thirty-second reflecting surface, and the optical path is cut and connected The circuit is in the off state.
- the concentrating Fresnel lens and the light receiving device are fixed under the key cap by snapping.
- the thirty-second reflective surface is an inclined plane.
- the optical path includes a collimated Fresnel lens at a position of the first through hole of the lower fixed case, a thirteenth light blocking plate fixed on the PCB, and is fixed under the key cap and respectively located at the a third right-angle prism on both sides of the twelfth light-blocking sheet and a concentrated Fresnel lens,
- the third right-angle prism is aligned with the concentrating Fresnel lens fixed under the keycap.
- the button When the button is released, the light emitted from the light-emitting device passes through the position of the first through-hole of the lower fixed case.
- a straight Fresnel lens is collimated and incident on the third right-angle prism, and after being reflected by the reflective surface of the inclined plane, is incident on the other side of the concentrated Fresnel lens fixed under the keycap, And then converge to the light receiving device also fixed under the key cap, thereby triggering the circuit to be turned on;
- the thirteenth light-blocking film fixed on the PCB board completely blocks the light between the concentrated Fresnel lens and the third right-angle prism, and the optical path is cut off.
- the connected circuit is in the off state.
- the concentrating Fresnel lens, the light receiving device and the third right angle prism are all fixed under the keycap by snapping.
- the upper side of the third right-angle prism is an inclined plane reflecting surface.
- the reflective surface is a high reflectivity surface having a reflection coefficient of more than 80%, which is bright silver or bright gold, and may also be a high reflectivity white or light reflective coating.
- the light emitting device is an SMD IR infrared diode or a laser diode
- the light receiving device is an SMD PT tube.
- the light blocking sheet is a black light absorbing material, which is injection molded by the two-color injection molding method or combined by a snapping manner, or is disposed above the PCB board by a snapping manner. .
- a keycap character illumination system is used in combination with a switch module of a computer-input device of a super-thin reflective type, the keycap character illumination system comprising: an illumination source disposed on the PCB board and located on the upper fixed An optical device for distributing light on a casing, wherein the illumination source is a monochromatic LED chip or a multi-color LED chip, and the optical device is a trapezoidal reflector, a square reflector, a polarizing lens, a total reflection lens, a combined lens or A diffusion sheet of internally doped diffusion particles that is mixed and processed.
- the optical device is a trapezoidal reflector or a square reflector, which distributes light emitted by the illumination source to a desired illumination range, and the reflection surface is a high reflectivity surface, and the reflection coefficient thereof More than 80%, it is bright silver or bright gold, it can also be high reflectivity white or light reflective coating.
- the optical device is an eccentric lens
- the upper curved surface is an eccentric, asymmetrical free curved surface.
- the optical device is a total reflection lens comprising an intermediate refractive portion and a total reflection portion of the outer ring.
- the optical device is a combined lens, and the lower surface thereof is a zigzag Fresnel surface, which can collect light of a large angle, collimate, collimate and then incident on the upper surface thereof, and the upper surface thereof is a convex surface that is used to distribute the incident light incident on the lower surface to the desired photo Bright area.
- the illumination source is a multi-color LED chip
- the optical device is a diffusion sheet of internal doped diffusion particles used for light mixing treatment.
- the ultra-thin reflective photoelectric keyboard opening module disclosed by the invention has the characteristics of simpler structure, lower cost, more assembly, lower height of the switch module, and the like, and the height is only 1/1 of the traditional mechanical axis keyboard. 3 ⁇ 1/4, more suitable for computer input keyboard, handheld tablet mobile device, computer mouse, and CNC machine input device.
- the ultra-thin reflective photoelectric keyboard opening module disclosed by the invention adopts a pure photoelectric device to control the opening and the passage of the switch, and does not require mechanical metal contacts, and the switching life can reach 100 million times without the conventional Mechanical shaft metal contact shrapnel fatigue wear and oxidation long copper green quality issues.
- FIG. 1 is an isometric side exploded structural view of a switch module of the ultra-thin reflective computer input device disclosed in the first embodiment
- FIG. 2 is a front exploded structural view of a switch module of the ultra-thin reflective computer input device disclosed in Embodiment 1;
- FIG. 3 is a cross-sectional view of the switch module of the ultra-thin reflective computer input device disclosed in Embodiment 1 in a state in which the switch module is released in the A-A direction;
- FIG. 4(a) is a cross-sectional view taken along line A-A of the switch module of the ultra-thin reflective computer input device disclosed in the first embodiment;
- FIG. 4(b) is a cross-sectional view of the ultra-thin reflective computer input device disclosed in the first embodiment in a state in which the switch module of the ultra-thin reflective computer input device is pressed in the direction of the arrow T in FIG.
- FIG. 5 is a cross-sectional view taken along line D-D of FIG. 1 in a state in which the switch module of the ultra-thin reflective computer input device disclosed in the second embodiment is released;
- Figure 6 (a) is a cross-sectional view taken along the line D-D of Figure 1 in a state in which the switch module of the ultra-thin reflective computer input device disclosed in the second embodiment is pressed;
- Figure 6 (b) is a cross-sectional view of the ultra-thin reflective computer input device disclosed in the second embodiment in a state in which the switch module of the ultra-thin reflective computer input device is pressed in the direction of the arrow T in Figure 1;
- Figure 7 is a cross-sectional view taken along line D-D of Figure 1 in a state in which the switch module of the ultra-thin reflective computer input device disclosed in the third embodiment is relaxed;
- FIG. 8 is a cross-sectional view taken along line D-D of FIG. 1 in a state in which a switch module of the ultra-thin reflective computer input device disclosed in the third embodiment is pressed;
- Figure 9 is a cross-sectional view taken along line B-B of Figure 1 in a state in which the switch module of the ultra-thin reflective computer input device disclosed in the fourth embodiment is released;
- FIG. 10 is a cross-sectional view taken along line B-B of FIG. 1 in a state in which a switch module of the ultra-thin reflective computer input device disclosed in the fourth embodiment is pressed;
- Figure 11 is a cross-sectional view taken along line B-B of Figure 1 in a state in which the switch module of the ultra-thin reflective computer input device disclosed in the fifth embodiment is released;
- Figure 12 is a cross-sectional view taken along line B-B of Figure 1 in a state in which the switch module of the ultra-thin reflective computer input device disclosed in the fifth embodiment is pressed;
- Figure 13 is a cross-sectional view taken along line B-B of Figure 1 in a state in which the switch module of the ultra-thin reflective computer input device disclosed in the sixth embodiment is released;
- Figure 14 is a cross-sectional view taken along the line B-B of Figure 1 in a state in which the switch module of the ultra-thin reflective computer input device disclosed in the sixth embodiment is pressed;
- Figure 15 is a cross-sectional view taken along line B-B of Figure 1 in a state in which the switch module of the ultra-thin reflective computer input device disclosed in the seventh embodiment is released;
- Figure 16 is a cross-sectional view taken along line B-B of Figure 1 in a state in which the switch module of the ultra-thin reflective computer input device disclosed in the seventh embodiment is depressed;
- Figure 17 is a cross-sectional view taken along line B-B of Figure 1 in a state in which the switch module of the ultra-thin reflective computer input device disclosed in the eighth embodiment is released;
- FIG. 18 is a cross-sectional view taken along line B-B of FIG. 1 in a state in which a switch module of the ultra-thin reflective computer input device disclosed in the eighth embodiment is pressed;
- Figure 19 is a cross-sectional view taken along line B-B of Figure 1 in a state in which the switch module of the ultra-thin reflective computer input device disclosed in the ninth embodiment is relaxed;
- Figure 20 is a cross-sectional view taken along line B-B of Figure 1 in a state in which the switch module of the ultra-thin reflective computer input device disclosed in the ninth embodiment is depressed;
- Figure 21 is a cross-sectional view taken along the line B-B of Figure 1 in a state in which the switch module of the ultra-thin reflective computer input device disclosed in Embodiment 10 is released;
- Figure 22 is a cross-sectional view taken along the line B-B of Figure 1 in a state in which the switch module of the ultra-thin reflective computer input device disclosed in the embodiment 10 is depressed;
- Figure 23 is a cross-sectional view taken along line B-B of Figure 1 in a state in which the switch module of the ultra-thin reflective computer input device disclosed in the eleventh embodiment is relaxed;
- Figure 24 is a cross-sectional view taken along line B-B of Figure 1 in a state in which the switch module of the ultra-thin reflective computer input device disclosed in the eleventh embodiment is depressed;
- Figure 25 is a cross-sectional view taken along line B-B of Figure 1 in a state in which the switch module of the ultra-thin reflective computer input device disclosed in Embodiment 12 is released;
- Figure 26 is a cross-sectional view taken along line B-B of Figure 1 in a state in which the switch module of the ultra-thin reflective computer input device disclosed in the embodiment 12 is depressed;
- Figure 27 is a cross-sectional view taken along line B-B of Figure 1 in a state in which the switch module of the ultra-thin reflective computer input device disclosed in the thirteenth embodiment is relaxed;
- Figure 28 is a cross-sectional view taken along line B-B of Figure 1 in a state in which the switch module of the ultra-thin reflective computer input device disclosed in the thirteenth embodiment is depressed;
- FIG. 29 is a cross-sectional view taken along line B-B of FIG. 1 in a state in which a switch module of the ultra-thin reflective computer input device disclosed in Embodiment 14 is released;
- Figure 30 is a cross-sectional view taken along the line B-B of Figure 1 in a state in which the switch module of the ultra-thin reflective computer input device disclosed in the embodiment 14 is depressed;
- Figure 31 is a cross-sectional view taken along the line D-D of Figure 1 in a state in which the switch module of the ultra-thin reflective computer input device disclosed in Embodiment 15 is pressed;
- Figure 32 is a cross-sectional view of the ultra-thin reflective computer input device disclosed in Embodiment 15 in a state in which the switch module of the ultra-thin reflective computer input device is pressed in the direction of the arrow T in Figure 1;
- Figure 33 is a cross-sectional view taken along line B-B of Figure 1 in a state in which the switch module of the ultra-thin reflective computer input device disclosed in Embodiment 16 is released;
- Figure 34 is a cross-sectional view taken along line B-B of Figure 1 in a state in which the switch module of the ultra-thin reflective computer input device disclosed in the sixteenth embodiment is depressed;
- 35 is a cross-sectional view taken along line B-B of FIG. 1 in a state in which a switch module of the ultra-thin reflective computer input device disclosed in Embodiment 17 is released;
- FIG. 36 is a cross-sectional view taken along line B-B of FIG. 1 in a state in which a switch module of the ultra-thin reflective computer input device disclosed in the embodiment 17 is pressed;
- FIG. 37 is a cross-sectional view taken along line B-B of FIG. 1 in a state in which a switch module of the ultra-thin reflective computer input device disclosed in Embodiment 18 is released;
- Figure 38 is a cross-sectional view taken along the line B-B of Figure 1 in a state in which the switch module of the ultra-thin reflective computer input device disclosed in the embodiment 18 is pressed;
- FIG. 39 is a cross-sectional view taken along line D-D of FIG. 1 in a state in which a switch module of the ultra-thin reflective computer input device disclosed in the embodiment 19 is pressed;
- FIG. 40 is a cross-sectional view of the ultra-thin reflective computer input device disclosed in the embodiment 19 in a state in which the switch module button is pressed in the direction of the arrow T in FIG. 1;
- Figure 41 is a cross-sectional view taken along line B-B of Figure 1 in a state in which the switch module of the ultra-thin reflective computer input device disclosed in the embodiment 20 is released;
- Figure 42 is a cross-sectional view taken along the line B-B of Figure 1 in a state in which the switch module of the ultra-thin reflective computer input device disclosed in the embodiment 20 is depressed;
- FIG. 43 is a cross-sectional view taken along line B-B of FIG. 1 in a state in which a switch module of the ultra-thin reflective computer input device disclosed in Embodiment 21 is released;
- Figure 44 is a cross-sectional view taken along line B-B of Figure 1 in a state in which the switch module of the ultra-thin reflective computer input device disclosed in the twenty-first embodiment is depressed;
- Figure 46 is a cross-sectional view taken along the line B-B of Figure 1 in a state in which the switch module of the ultra-thin reflective computer input device disclosed in the embodiment 22 is pressed;
- Figure 47 is a cross-sectional view of the keycap character illumination system for the photoelectric keyboard switch module disclosed in Embodiment 23 taken along the line C-C of Figure 1;
- FIG. 48 is a schematic diagram showing the design of a keycap character illumination system for an optical keyboard switch module disclosed in Embodiment 23;
- FIG. 49 is a cross-sectional view of the keycap character illumination system for the photoelectric keyboard switch module disclosed in Embodiment 24 taken along line C-C of FIG. 1;
- Figure 50 is a cross-sectional view of the keycap character illumination system for the photoelectric keyboard switch module disclosed in Embodiment 25 taken along the line C-C of Figure 1;
- Figure 51 is a cross-sectional view of the keycap character illumination system for the photoelectric keyboard switch module of the embodiment 26 taken along the line C-C of Figure 1;
- Figure 52 is a cross-sectional view of the keycap character illumination system for the photoelectric keyboard switch module of the embodiment 27 taken along the line C-C of Figure 1.
- FIG. 1 An isometric side exploded structural view of a switch module of an ultra-thin reflective computer input device according to the present invention is shown in FIG. 1 , and a front exploded structural view is shown in FIG. 2 .
- SMD Surface Mounted Devices surface mount device
- IR tube Infrared Radiation infrared 17 (surface mount infrared diode, or infrared laser diode)
- SMD PT Phototransistor phototransistor 18 (surface mount photo
- the SMD PT tube 18 is a light receiving device.
- a cross-sectional view along the AA direction passing through the center point of the light emitting surface of the SMD IR tube 17 and the O point of the key axis is shown in FIG. 3; the key shaft 12 has a second reflection on the outer side below.
- the upper fixed casing 14 has two first reflecting surfaces 14-2 and a third reflecting surface 14-3 for the key switch control passages on the lower inner side surface, and one for the right side
- the keycap character illuminates the trapezoidal reflector 14-1 for light distribution
- the lower fixed casing 15 has a first through hole 15-1 near the SMD IR tube 17, and the other side is adjacent to the SMD PT tube 18 There is another second through hole 15-2.
- the switch module of the ultra-thin reflective computer input device has the working principle of the first embodiment as shown in FIG. 3 and FIG. 4 (a) and (b), and FIG. 3 is a button relaxation.
- the state of the time, as shown in Fig. 4 (a), (b) is the state when the button is pressed
- Figure 4 (a) is an optical path diagram along the AA cross section in FIG. 1
- FIG. 4(b) is an optical path diagram of the upper fixed case 14 and the key shaft 12 viewed upward in the direction of the arrow T in FIG. 1, which corresponds to FIG. 4(a).
- the light emitted from the center P point of the SMD IR tube 17 passes through the first through hole 15-1 of the lower fixed case and is incident on the first reflecting surface 14-2 below the upper fixed case 14, the first reflecting surface 14-2, which is a free-form surface, which may be an off-axis paraboloid, an off-axis secondary surface, or a polynomial curved surface that collimates the incident light, collimates, and exits toward the center of the key axis 12.
- the button is pressed down to 1.85 mm, the second reflecting surface 12-1 on the key shaft 12 is just aligned with the first reflecting surface 14-2 located below the upper fixing shell 14, which will collimate the incident collimated light. reflection.
- the reflected light After being reflected by the second reflecting surface 12-1 on the key shaft 12, the reflected light is shown in FIG. 4(b), and is incident on the third reflecting surface 14-3 on the other side below the upper fixed casing 14. After the third reflecting surface 14-3 passes through the second through hole 15-2 on the lower fixing case 15, the incident light is concentrated to the Q point located at the center of the SMD PT tube 18, thereby triggering the circuit to be turned on.
- the button When the button is released and the spring returns to the original position, the key moves axially, and the second reflecting surface 12-1 on the key shaft 12 is moved upward together.
- the second reflecting surface 12-1 located on the key shaft 12 is
- the first reflecting surface 14-2 located below the upper fixed casing 14 is completely staggered, the optical path is cut, there is no trigger current on the SMD PT tube 18, and the connected circuit is in an open state, as shown in FIG.
- the first reflecting surface under the upper fixed shell is an off-axis paraboloid, an off-axis secondary surface or a free-form surface of a polynomial curved surface, which may also be a pure plane or a composite curved surface composed of a plurality of surfaces; a third reflecting surface on the other side of the fixed shell, the reflecting surface of which is an off-axis paraboloid, an off-axis secondary surface or a free-form surface of a polynomial curved surface, which may also be an inclined pure plane, which is a composite curved surface composed of a plurality of faces;
- the first reflective surface is coupled to the third reflective surface optical path by reflection of the second reflective surface.
- the first reflective surface, the second reflective surface and the third reflective surface are symmetrically disposed with respect to the center of the key axis, and may also be asymmetrically disposed.
- the second reflecting surface 12-1 on the key shaft 12 in the first embodiment is a high reflectivity surface having a reflection coefficient exceeding 80%.
- the first reflective surface 14-2 located below the upper fixed case 14 and the third reflective surface 14-3 on the other side described in the first embodiment are also high reflectivity surfaces, and the reflection coefficient thereof exceeds 80. %, the high reflectivity surface, which is bright silver or bright gold, may also be a high reflectivity white or light reflective coating. .
- the reflecting surface on the key shaft can be set to two or more reflecting surfaces.
- the second embodiment is a light path controlled structure in which a reflecting surface located on a key shaft is set as two reflecting surfaces.
- the working principle is shown in Figure 5 and Figure 6.
- Figure 5 is a cross-sectional view of the embodiment of the present invention taken along the line D-D of Figure 1, the working state of which is the state in which the button is relaxed and the spring is springed up.
- 6(a) and (b) are optical path diagrams taken along the DD direction of FIG.
- the button When the button is pressed down by 1.85 mm, the light emitted from the center P point of the SMD IR tube 17 passes through the first through hole 15-1 on the lower fixed case 15 and is incident on the fourth reflecting surface 24 located below the upper fixed case 24.
- the fourth reflecting surface 24-2 which is a free-form surface, which may be an off-axis paraboloid, an off-axis secondary surface or a polynomial curved surface, which collimates the incident light, collimates to the left The horizontal direction is shot.
- the fifth reflecting surface 22-1 on the key shaft 22 is just aligned with the fourth reflecting surface 24-2 located below the upper fixed casing 24, which reflects the incident collimated light.
- the light reflected by the fifth reflecting surface 22-1 is as shown in Fig. 6(b) (the fixed casing 24 and the key shaft 22 in the direction of the arrow T in Fig. 1), and the light is turned clockwise by 90 degrees, and is incident on the light.
- the other sixth reflecting surface 22-2 which is also located on the key shaft 22, is reflected again, and then incident to the right on the seventh reflecting surface 24-3 located on the other side below the upper fixed casing 24, the seventh reflection.
- the face 24-3 then converges the incident light through the second through hole 15-2 on the lower fixed case 15 to the Q point located at the center of the SMD PT tube 18, thereby causing the trigger circuit to be turned on.
- the button is released and the spring returns to the original position, the key moves axially, and the fifth reflecting surface 22-1 and the sixth reflecting surface 22-2 on the key shaft 22 are moved upward together, and the fifth is located on the key shaft 22.
- the reflecting surface 22-1 is completely offset from the fourth reflecting surface 24-2 located below the upper fixing case 24, and the sixth reflecting surface 22-2 located on the key shaft 22 is also the same as the lowering of the upper fixing case 24 for convergence.
- the seven reflecting surfaces 24-3 are staggered.
- the seventh reflecting surface 24-3 on the other side below the upper fixing case 24 according to the second embodiment is symmetrical with respect to the center of the key axis with respect to the fourth reflecting surface 24-2, and has the same shape.
- the key shaft 22 described in the second embodiment is additionally The sixth reflecting surface 22-2 on one side is symmetric with respect to the center of the key shaft 22 with the fifth reflecting surface 22-1, and its shape is completely the same.
- the fourth reflecting surface 24-2 located below the upper fixed casing 24 is a free curved surface, which may be an off-axis paraboloid, an off-axis secondary surface or a polynomial curved surface, which collimates incident light and collimates Shoot in the horizontal direction to the left.
- the seventh reflecting surface 24-3 located below the upper fixed casing 24 has a reflecting surface which is an off-axis paraboloid, an off-axis secondary surface or a free-form surface of a polynomial curved surface, which may also be an inclined pure plane and a plurality of surfaces.
- a composite curved surface that collimates the incident light and converges downward, and the concentrated light is concentrated on the SMD PT 18 below it.
- the fifth reflecting surface 22-1 on the key shaft 22 and the sixth reflecting surface 22-2 on the other side are high-reflectivity surfaces, and the reflection coefficient thereof exceeds 80%.
- the fifth reflecting surface 24-2 located under the upper fixing shell 24 and the sixth reflecting surface 24-3 of the other side described in the second embodiment are also high reflectivity surfaces, and the reflection coefficient thereof exceeds 80.
- the high reflectivity surface, which is bright silver or bright gold, may also be a high reflectivity white or light reflective coating.
- the invention relates to a switch module of an ultra-thin reflective computer input device, which can adopt a structure in which a collimating/focusing lens is combined with a reflecting surface.
- the optical path is composed of a plurality of reflecting surfaces on the key shaft 32, a plurality of reflecting surfaces under the upper fixing shell, and a collimating/focusing lens located at the first through hole or/and the second through hole of the lower fixed case.
- Figure 7 is a cross-sectional view of the embodiment of the present invention taken along the line D-D of Figure 1, in a state in which the button is in a relaxed state.
- Figure 8 is a light path diagram of a cross section taken along the line D-D of Figure 1 of the present embodiment, which is a state in which the button is depressed.
- the key cap and the reflecting surface of the key shaft are disposed, and the same structure as that of the second embodiment is adopted.
- the reflecting surface 34-2 below the upper fixing housing 34 adopts a plane inclined by 45 degrees.
- a collimating Fresnel lens 35-1 is placed at the first through hole 15-1 of the fixed casing 35, and has a large numerical aperture, which can collect more light, and firstly illuminates the SMD IR tube 17. The light is collected and collimated, and the collimated light is reflected by the eighth reflecting surface 34-2 below the upper fixed casing 34.
- the ninth reflecting surface 32-1 on the key shaft 32 is just aligned with the eighth reflecting surface 34-2 located below the upper fixed casing 34, which reflects the incident light reflected by the eighth reflecting surface 34-2 again.
- the light reflected again is reflected again by the tenth reflecting surface on the other side of the key shaft 32 and the eleventh reflecting surface on the other side below the upper fixing case 34, and finally passes through the other one located in the lower fixing case 35.
- the focused Fresnel lens at the position of the second through hole 15-2 converges, and the concentrated light is focused into the SMD PT tube 18, and the optical path is turned on.
- the ninth reflecting surface 32-1 on the key shaft 32 and the tenth reflecting surface 34-2 located below the upper fixed casing 34 are completely staggered, the incident light is not reflected by it, and the optical path is blocked.
- the eighth reflecting surface 34-2 located below the upper fixed casing 34 is a plane inclined by 45 degrees, and may also be an off-axis paraboloid, an off-axis secondary surface or a free-form surface of a polynomial curved surface, which may also be A composite surface composed of multiple faces; it collimates the incident light and collimates it to the left in a horizontal direction.
- the eleventh reflecting surface 34-3 located below the upper fixing shell 34 is a plane inclined by 45 degrees, and may also be an off-axis paraboloid, an off-axis secondary surface or a free-form surface of a polynomial curved surface, which may also be A composite curved surface consisting of multiple faces; it collimates the incident light, converges downward, and concentrates the concentrated light onto the SMD PT 18 below it.
- the eighth reflecting surface is coupled to the eleventh reflecting surface optical path by the reflection of the ninth reflecting surface and the tenth reflecting surface, and the eighth reflecting surface, the ninth reflecting surface and the tenth reflecting surface and the eleventh reflecting surface
- the reflecting surface is symmetrically arranged with respect to the center of the key axis, and may also be asymmetrically arranged.
- the ninth reflecting surface 32-1 on the key shaft 32 of the present embodiment, the eighth reflecting surface 34-2 below the upper fixing shell 34, and the reflecting surface at other positions are all high reflectivity surfaces, and The reflection coefficient exceeds 80%, and the high reflectivity surface is bright silver or bright gold, and may also be a high reflectivity white or light reflective coating.
- the switch module of the ultra-thin reflective computer input device of the invention has the reflective surface of the control button switch integrated with the key cap, and the optical path of the switch can be free from the free surface of the key cap.
- the twelve reflecting surface 41-1 and the free-form surface thirteenth reflecting surface 44-2 on the upper fixed casing are composed.
- FIG. 9 is a cross-sectional view of the embodiment of the present invention taken along line B-B of Figure 1, with the keys in a relaxed state.
- Figure 10 is a view of the optical path of the cross section taken along line B-B of Figure 1 of the present embodiment, with the button pressed in a depressed state.
- the control principle of the button switch is: when the button is pressed, the twelfth reflecting surface 41-1 located under the key cap 41 is exactly aligned with the thirteenth reflecting surface 44-2 located on the upper fixing shell 44, from the SMD The light emitted by the IR tube 17 is reflected by the twelfth reflecting surface 41-1 and is collimated to the right side. The emitted light is further turned and converged through the thirteenth reflecting surface 44-2, and the concentrated light is concentrated to the SMD. On the PT tube 18, the SMD PT tube 18 is triggered to generate current, and the circuit connected thereto is in an on state.
- the twelfth reflecting surface 41-1 located under the key cap 41 and the thirteenth reflecting surface 44-2 located on the upper fixing shell 44 are completely staggered, and the light cannot be thirteenth.
- the reflecting surface 44-2 is concentrated so that the current cannot be triggered in the SMD PT tube 18, and the circuit connected thereto is in an off state.
- the twelfth reflecting surface 41-1 located under the key cap 41 and the thirteenth reflecting surface 44-2 located on the upper fixing shell 44 have a reflecting surface of an off-axis paraboloid, an off-axis secondary surface or A free-form surface of a polynomial surface, which can also be a tilted pure plane, a composite surface composed of multiple faces.
- the twelfth reflecting surface 41-1 located under the key cap 41 and the thirteenth reflecting surface 44-2 located on the upper fixing shell 44 are all high reflectivity surfaces, and the reflection coefficient thereof exceeds 80%.
- the high reflectivity surface is bright silver or bright gold, and may also be a high reflectivity white or light reflective coating. .
- the switch module of the ultra-thin reflective computer input device of the present invention is characterized in that the control light of the push button switch of the specific embodiment is located at the fourteenth reflecting surface 51-1 of the inclined plane below the key cap, and is located under The collimating lens 55-1 of the first through hole of the fixed casing and the fifteenth reflecting surface 54-2 of the upper fixed casing are arranged, and the switching control principle is as shown in FIG. 11 and FIG. Figure 11 is a cross-sectional view of the embodiment of the present invention taken along the line B-B of Figure 1, with the keys in a relaxed state.
- Figure 12 is a view of the optical path of the cross section taken along line B-B of Figure 1 in the embodiment of the present invention, in a state in which the button is depressed.
- the control principle of the button switch is: when the button is pressed, the inclined plane located below the key cap 51 is the fourteenth anti- The face 51-1 is exactly aligned with the free-form surface fifteenth reflecting surface 54-2 on the upper fixed case 54, and the light emitted from the SMD IR tube 17 passes through the Fresnel located at the first through hole of the lower fixed case 55. After the collimating lens 55-1 is collimated, it is incident on the fourteenth reflecting surface 51-1 of the inclined plane located below the keycap 51, and is reflected by the fourteenth reflecting surface 51-1 of the inclined plane, and is collimated to the right side.
- the emitted light is further turned and converged through the fifteenth reflecting surface 54-2 of the free-form surface, and the concentrated light is concentrated on the SMD PT tube 18, thereby triggering the SMD PT tube 18 to generate a current, and the circuit connected thereto is at On state.
- the inclined plane fourteenth reflecting surface 51 - 1 located under the key cap 51 is staggered from the free curved surface fifteenth reflecting surface 54 - 2 located on the upper fixed casing 54 , and the light cannot be It is concentrated by the fifteenth reflecting surface 54-2 of the free-form surface, so that the current cannot be triggered in the SMD PT tube 18, and the circuit connected thereto is in the off state.
- the inclined plane fourteenth reflecting surface 51 - 1 located under the key cap 51 and the free curved surface fifteenth reflecting surface 54 - 2 on the upper fixing shell 54 are high reflectivity surfaces whose reflection coefficient exceeds 80%, the high reflectivity surface, which is bright silver or bright gold, or high reflectivity white or light reflective coating.
- the switch module of the ultra-thin reflective computer input device of the present invention is characterized in that the control light of the push button switch of the specific embodiment is located on the inclined plane of the sixteenth reflecting surface 61-1 below the key cap, and is located under a collimating lens 65-1 at a first through hole position of the fixed case, an inclined plane seventeenth mirror 64-2 at the upper fixed case, and a collecting lens 65-2 at a second through hole position of the lower fixed case,
- the switch control principle is shown in Figure 13 and Figure 14.
- Figure 13 is a cross-sectional view of the embodiment of the present invention taken along line B-B of Figure 1, showing the button in a relaxed state.
- Figure 14 is a view of the optical path of the cross section taken along the line B-B of Figure 1 in the embodiment of the present invention, in a state in which the button is depressed.
- the control principle of the push button switch is: when the button is pressed, the inclined plane 16th reflecting surface 61-1 located under the key cap 61 is exactly opposite to the inclined plane 17th reflecting surface 64-2 located on the upper fixing shell 64.
- the light emitted from the SMD IR tube 17 is collimated by the Fresnel collimating lens 65-1 located at the first through hole of the lower fixed case 65, and then incident on the inclined plane located below the key cap 61.
- the reflecting surface 61-1 is reflected by the sixteenth reflecting surface 61-1 of the inclined plane, and is collimated to the right side.
- the light beam is turned downward, and then the Fresnel concentrating light is located at the other second through hole of the lower fixed casing 65.
- the lens 65-2 is concentrated, and the concentrated light is concentrated on the SMD PT tube 18, thereby triggering the SMD PT tube 18 to generate a current, and the circuit connected thereto is in an on state.
- the inclined plane sixteenth reflecting surface 61-1 located under the keycap 61 and the inclined plane seventeenth reflecting surface 64-2 on the upper fixing shell 64 are oblique 45 degree reflecting surface, high reflectivity
- the surface has a reflection coefficient of more than 80%, and the high reflectivity surface is bright silver or bright gold, and may also be a high reflectivity white or light reflective coating.
- FIG. 15 is a cross-sectional view of the embodiment of the present invention taken along line B-B of Figure 1, showing the button in a relaxed state.
- Figure 16 is a view of the optical path of the cross section taken along the line B-B of Figure 1 in the embodiment of the present invention, in a state in which the button is depressed.
- the control principle of the button switch is: when the button is pressed, the eighteenth reflecting surface 71-1 of the free curved surface located under the key cap 71 is exactly opposite to the first refractive prism 75 of the free curved surface located at the position of the through hole of the lower fixing shell 75.
- the light emitted from the SMD IR tube 17 passes through the first through hole of the lower fixed case 75, and is incident on the eighteenth reflecting surface 71-1 of the free curved surface located below the key cap 71, tenth
- the eight reflecting surface 71-1 collimates and turns the incident light to be horizontally emitted to the right, and the emitted light is totally reflected by the first refractive prism 75-2 located at the through-hole position of the lower fixed casing 75.
- the concentrated light is concentrated on the SMD PT tube 18, thereby triggering the SMD PT tube 18 to generate current, and the circuit connected thereto is in a conducting state.
- the eighteenth reflecting surface 71-1 of the free curved surface below the key cap 71 may be an off-axis paraboloid, an off-axis quadric surface, or a polynomial curved surface, which is a high reflectivity surface, and the reflection coefficient thereof exceeds 80%. It is bright silver or bright gold, and can also be a high reflectivity white or light reflective coating.
- the free-curved first refractive prism 75-2 located at the second through-hole position of the lower fixed casing 75 has a vertical plane near the eighteenth reflecting surface 71-1, which is an input surface;
- the eighteen reflecting surface 71-1 has an inclined free-form total reflection surface on one side, which may be an off-axis paraboloid, an off-axis quadratic surface, or a polynomial curved surface; and a horizontal plane below it is an output surface.
- the switch module of the ultra-thin reflective computer input device of the present invention is characterized in that the control light of the push button switch of the specific embodiment is located at the first light blocking plate 81-1 under the key cap, and is located in the lower fixed shell.
- the prism 85-2 is composed, and its switching control principle is as shown in Figs. 17 and 18. The state in which the button switch is turned on and off is reversed, which is when the button is relaxed and the light path is in the on state, and when the button is pressed, the light path is in the off state.
- Figure 17 is a view of the optical path of the cross section taken along line B-B of Figure 1 of the present embodiment, showing the state in which the button is in a relaxed state.
- Figure 18 is a cross-sectional view of the embodiment of the present invention taken along line B-B of Figure 1, in a state in which the button is depressed.
- the control principle of the push button switch is: a second refractive prism 85-1 on the lower fixed casing 85 for collimating and turning the free curved surface of the optical path and a free curved surface also located on the lower fixed casing 85 for turning and converging the optical path
- the third refractive prism 85-2 is aligned with each other.
- the light blocking piece 81-1 located under the key cap 81 does not block the optical path between the free curved surface refractive prism 85-1 and the free curved surface refractive prism 85-2.
- the light emitted from the SMD IR tube 17 passes through the second fold of the freeform surface
- the collimated surface is incident on the tilted total reflection surface above the second refractive prism 85-1 of the free-form surface, and after being deflected by the total reflection surface, it is emitted from the vertical plane on the right side thereof.
- the light blocking piece 81-1 does not block the light
- the light output from the vertical plane on the right side of the second curved prism 85-1 of the free curved surface is incident on the other side and is also located on the lower fixed case 85 for turning and converging the optical path.
- the third refractive prism 85-2 of the free-form surface is turned over by the tilted total reflection surface, and then concentrated on the SMD PT tube 18 through the Fresnel surface below it, thereby triggering the SMD PT tube 18 to generate current.
- the circuit connected to it is in an on state.
- the first light blocking piece 81-1 located under the key cap 81 moves downward, which is between the second curved prism 85-1 of the free curved surface and the third refractive prism 85-2 of the free curved surface.
- the light is completely blocked.
- the current cannot be triggered in the SMD PT tube 18, and the circuit connected thereto is in the off state. Therefore, the state in which the control optical path of the push button switch according to the present embodiment is turned on and off is completely opposite to the state in the specific embodiments 1 to 7.
- the first light blocking plate 81-1 below the key cap 81 is a black light absorbing material which is injection molded with the key cap by two-color injection molding.
- the first refractive prism 85-1 on the lower fixed casing 85 for collimating and turning the free curved surface of the optical path and the second refractive prism 85 on the lower fixed casing 85 for turning and converging the free curved surface of the optical path are provided.
- the switch module of the ultra-thin reflective computer input device of the present invention is characterized in that the control light of the push button switch of the specific embodiment is located at the second light blocking piece 91-1 under the key cap, and is located on the upper fixed case.
- a nineteenth reflecting surface 94-1 for collimating and turning the optical path, and a twentieth reflecting surface 94-2 for the turning and converging optical path on the upper fixed casing 94 are formed.
- the switching control principle is shown in Figure 19 and Figure 20. The state in which the button switch is turned on and off is reversed, which is when the button is relaxed and the light path is in the on state, and when the button is pressed, the light path is in the off state.
- Figure 19 is a light path diagram of a cross section taken along line B-B of Figure 1 of the present embodiment, showing the button in a relaxed state.
- Figure 20 is a cross-sectional view of the embodiment of the present invention taken along the line B-B of Figure 1, in a state in which the button is depressed.
- the control principle of the button switch is: located
- the nineteenth reflecting surface 94-1 on the upper fixing case 94 for collimating and turning the optical path is aligned with the twentieth reflecting surface 94-2 also on the upper fixing case 94 for turning and converging the optical path.
- the second light blocking piece 91-1 located under the keycap 91 does not block the optical paths of the nineteenth reflecting surface 94-1 and the twentieth reflecting surface 94-2, and the light emitted from the SMD IR tube 17 passes through
- the nineteenth reflecting surface 94-1 of the upper fixing case 94 for collimating and turning the optical path is reflected, the light is collimated to the right, since the second light blocking piece 91-1 does not block the light, from the nineteenth
- the light reflected by the mirror 94-1 is incident on the twentieth mirror 94-2 on the other side, which is also located on the upper fixed casing 94 for turning and converging the optical path. After being reflected, it finally converges to the lower SMD.
- the SMD PT tube 18 On the PT tube 18, the SMD PT tube 18 is triggered to generate current, and the circuit connected thereto is in an on state.
- the button When the button is pressed down, the second light blocking piece 91-1 located under the key cap 91 moves downward, which completely blocks the light between the nineteenth mirror 94-1 and the twentieth mirror 94-2. .
- the current cannot be triggered in the SMD PT tube 18, and the circuit connected thereto is in the off state. Therefore, the state in which the control optical path of the push button switch according to the present embodiment is turned on and off is completely opposite to the state in the specific embodiments 1 to 7.
- the light blocking sheet 91-1 under the key cap 91 is a black light absorbing material which is injection molded with the key cap by two-color injection molding.
- the reflecting surface is an off-axis paraboloid, an off-axis secondary surface or a free-form surface of a polynomial surface, which may also be a tilted pure plane, a composite curved surface composed of a plurality of surfaces, which is a high-reflectivity surface with a reflection coefficient exceeding 80 %, which is bright silver or bright gold, can also be high reflectivity white or light reflective coating.
- the switch module of the ultra-thin reflective computer input device of the present invention is characterized in that the control light of the push button switch of the specific embodiment is located in the third light blocking piece 101-1 under the key cap, and is located in the lower fixed case.
- the state in which the button switch is turned on and off is reversed, that is, when the button is relaxed, the optical path is in an on state, and when the button is pressed, the optical path is in an off state.
- Figure 21 is a view of the optical path of the cross section taken along line B-B of Figure 1 of the present embodiment, showing the state in which the button is in a relaxed state.
- Figure 22 is a cross-sectional view of the embodiment of the present invention taken along the line B-B of Figure 1, in a state in which the button is depressed.
- the control principle of the key switch is: a free-form surface fourth refractive prism 105-1 on the lower fixed casing 105 for collimating and turning the optical path and a second free-form surface on the upper fixed casing 104 for turning and converging the optical path
- the eleven reflecting surfaces 104-2 are aligned with each other.
- the third light blocking sheet 101-1 located under the keycap 101 does not have the fourth refractive prism 105-1 and the free surface of the free curved surface.
- the light emitted from the SMD IR tube 17 passes through the total reflection surface reflection above the fourth refractive prism 105-1 located on the lower fixed casing 105 for collimating and turning the free curved surface of the optical path. After that, the light is collimated to the right from the vertical plane on the right side thereof. Since the third light blocking piece 101-1 does not block the light, the light reflected from the fourth curved prism 105-1 of the free curved surface is incident on the other light.
- the side of the twenty-first reflecting surface 104-2 on the upper fixed casing 104 for turning and converging the free curved surface of the optical path, after being reflected, is concentrated on the lower SMD PT tube 18, thereby triggering the SMD PT tube 18 to be generated.
- Current, the circuit connected to it is in conduction .
- the button is pressed down, the third light blocking piece 101-1 located under the keycap 101 moves downward, and the third curved prism 105-1 of the free curved surface and the twenty first reflecting surface 104-2 of the free curved surface are used. The light between them is completely blocked.
- the current cannot be triggered in the SMD PT tube 18, and the circuit connected thereto is in the off state. Therefore, the state in which the control optical path of the push button switch according to the present embodiment is turned on and off is completely opposite to the state in the specific embodiments 1 to 7.
- the third light blocking sheet 101-1 under the keycap 101 is a black light absorbing material which is injection molded with the key cap by two-color injection molding.
- the third refractive prism 105-1 located on the lower fixed casing 105 for collimating and turning the free curved surface of the optical path, and the total reflecting surface thereof is an inclined surface above, which is an off-axis paraboloid, an off-axis secondary surface or It is a free-form surface of a polynomial surface, which can also be a tilted pure plane, which is a composite surface composed of multiple faces.
- the twenty-first reflecting surface 104-2 on the upper fixed casing 104 for turning and converging the free curved surface of the optical path which is an off-axis paraboloid, an off-axis quadric surface, or a polynomial curved surface, which is high Reflectivity surface with a reflection coefficient of more than 80%, which is bright silver or It is bright gold and can also be a high reflectivity white or light reflective coating.
- the switch module of the ultra-thin reflective computer input device of the present invention is characterized in that the control light of the push button switch of the specific embodiment is located at the fourth light blocking piece 111-1 under the key cap, and is located in the lower fixed case.
- the six-fold prism 115-2 is composed, and its switching control principle is shown in FIG. 23 and FIG. The state in which the button switch is turned on and off is reversed, that is, when the button is relaxed, the optical path is in an on state, and when the button is pressed, the optical path is in an off state.
- Figure 23 is a view of the optical path of the cross section taken along line B-B of Figure 1 of the present embodiment, in a state in which the button is in a relaxed state.
- Figure 24 is a cross-sectional view of the embodiment of the present invention taken along the line B-B of Figure 1, in a state in which the button is depressed.
- the control principle of the push button switch is: a fifth refractive prism 115-1 on the lower fixed casing 115 for collimating and turning the free curved surface of the optical path and a free curved surface also located on the lower fixed casing 115 for turning and converging the optical path.
- the sixth refractive prism 115-2 is aligned with each other.
- the fourth light blocking plate 111-1 located under the keycap 111 has no sixth refractive index of the fifth refractive prism 115-1 and the free curved surface.
- the light emitted from the SMD IR tube 17 is reflected by the total reflection surface above the fifth refractive prism 115-1 located on the lower fixed casing 115 for collimating and turning the free curved surface of the optical path.
- the light is collimated to the right from the vertical plane on the right side thereof. Since the fourth light blocking piece 111-1 does not block the light, the light reflected from the fifth curved prism 115-1 of the free curved surface is incident on the other light.
- the side of the sixth refractive prism 115-2 which is also located on the lower fixed casing 115 for turning and converging the free-form surface of the optical path, is reflected by its total reflection surface, and finally converges on the lower SMD PT tube 18, thereby triggering the SMD.
- the PT tube 18 generates a current, Circuits connected in a conducting state.
- the fourth light blocking piece 111-1 located under the keycap 111 moves downward, which between the fifth surface of the free-form curved prism 115-1 and the free-form curved sixth prism 91-2 The light is completely blocked.
- the current cannot be triggered in the SMD PT tube 18, and the circuit connected thereto is in the off state. Therefore, the control light of the push button switch according to the embodiment
- the state in which the road is turned on and off is completely opposite to the state in the specific embodiments 1 to 7.
- the fourth light blocking sheet 111-1 under the key cap 111 is a black light absorbing material which is injection molded with the key cap by two-color injection molding.
- the switch module of the ultra-thin reflective computer input device of the present invention is characterized in that the control light of the push button switch of the specific embodiment is located on the twenty-second reflective surface 121-1 of the inclined plane below the key cap and The twenty-third reflective surface 121-2 of the inclined plane, the Fresnel lens 125-1 for collimating at the first through hole position of the lower fixed case 125, and the second through hole position of the lower fixed case 125 are also used. It is composed of a condensed Fresnel lens 125-2 and a fifth light blocking plate 126-1 located on a PCB board (printed circuit board).
- the switching control principle is shown in Figure 25 and Figure 26. The state in which the button switch is turned on and off is reversed, that is, when the button is relaxed, the optical path is in an on state, and when the button is pressed, the optical path is in an off state.
- Figure 25 is a view of the optical path of the cross section taken along line B-B of Figure 1 of the present embodiment, showing the state in which the button is in a relaxed state.
- Figure 26 is a cross-sectional view of the embodiment of the present invention taken along the line B-B of Figure 1, in a state in which the button is depressed.
- the control principle of the button switch is: when the button is relaxed and the spring returns to the original position, the fifth light blocking piece 126-1 located on the lower PCB board (printed circuit board) 126 does not block the inclined plane below the keycap.
- the light emitted from the SMD IR tube 17 passes through the Fresnel lens for collimating on the lower fixed casing 125.
- the 125-1 is collimated, it is incident on the twenty-second reflecting surface 121-1 of the inclined plane below the keycap.
- the light is turned to the right and then incident on the other side, and the inclined plane is also located below the keycap.
- the twenty-third reflective surface 121-2 is reflected again, the light is incident downward into the concentrated Fresnel lens 125-2 located in the lower fixed case 125, and finally concentrated on the SMD PT tube 18 below it. Thereby triggering the generation of current in the SMD PT tube 18, which is connected thereto
- the circuit is in a conducting state.
- the key cap moves downward together with the twenty-second reflecting surface 121-1 of the inclined plane and the twenty-third reflecting surface 121-2 of the inclined plane, and is located on the PCB board 126.
- the five light blocking piece 126-1 completely blocks the light between the twenty-second reflecting surface 121-1 and the twenty-third reflecting surface 121-2, and the SMD PT tube 18 does not receive light, and cannot trigger current, and The connected circuit is in the off state. Therefore, the state in which the control optical path of the push button switch according to the present embodiment is turned on and off is completely opposite to the state in the specific embodiments 1 to 7.
- the fifth light blocking sheet 126-1 located on the PCB board 126 is a black light absorbing material, which is fixed on the PCB board by a snapping method.
- the twenty-second reflecting surface 121-1 of the inclined plane below the keycap and the twenty-third reflecting surface 121-2 of the inclined plane are all high-reflectivity surfaces, and the reflection coefficient thereof exceeds 80%. It is either bright silver or bright gold, and can also be a high reflectivity white or light reflective coating.
- the switch module of the ultra-thin reflective computer input device of the present invention is characterized in that the control light of the push button switch of the specific embodiment is located at the first right-angle prism 131-1 and the second right-angle prism 131 below the key cap.
- the sixth light blocking sheet 136-1 is composed of.
- the switching control principle is shown in Figure 27 and Figure 28. The state in which the button switch is turned on and off is reversed, that is, when the button is relaxed, the optical path is in an on state, and when the button is pressed, the optical path is in an off state.
- Figure 27 is a light path diagram of a cross section taken along line B-B of Figure 1 of the present embodiment, showing the button in a relaxed state.
- Figure 28 is a cross-sectional view taken along line B-B of Figure 1 of the present embodiment, showing the state in which the button is depressed.
- the control principle of the button switch is: when the button is relaxed and the spring returns to the original position, the sixth light blocking piece 136-1 located on the lower PCB board (printed circuit board) 136 has no first right angle under the keycap
- the light emitted from the SMD IR tube 17 is collimated by the Fresnel lens 135-1 located on the lower fixed case 135 for collimation, and then incident Key cap
- the lower first right-angle prism 131-1 is reflected by the reflection surface above it, and the light is turned to the right, and is incident on the other side, the second right-angle prism 131-2 located under the keycap, and the reflection surface above it
- the light is directed downward into the concentrating Fresnel lens 135-2 of the lower fixed casing 135, and finally the light converges on the lower SMD PT tube 18, thereby triggering the generation of current in the SMD PT tube 18, which is connected thereto.
- the circuit is in a conducting
- the key cap moves together with the first right angle prism 131-1 and the second right angle prism 131-2, and the sixth light blocking sheet 136-1 located on the PCB board 136 sets the first right angle prism 131.
- the light between the -1 and the second right-angle prism 131-2 is completely blocked, the light is not received in the SMD PT tube 18, the current cannot be triggered, and the circuit connected thereto is in an off state. Therefore, the state in which the control optical path of the push button switch according to the present embodiment is turned on and off is completely opposite to the state in the specific embodiments 1 to 7.
- the sixth light blocking sheet 136-1 located on the PCB board 136 is a black light absorbing material, which is fixed on the PCB board by a snapping method.
- the first right-angle prism 131-1 and the second right-angle prism 131-2 located under the keycap are all inclined planes above.
- the switch module of the ultra-thin reflective computer input device of the present invention is characterized in that the control light of the push button switch of the specific embodiment is disposed on the twenty-fourth reflecting surface 141-1 of the free-form surface under the key cap and The twenty-fifth reflecting surface 141-2 of the free-form surface and the seventh light-blocking sheet 146-1 on the PCB board (printed circuit board) are composed.
- the switching control principle is shown in Figure 29 and Figure 30. The state in which the button switch is turned on and off is reversed, that is, when the button is relaxed, the optical path is in an on state, and when the button is pressed, the optical path is in an off state.
- Figure 29 is a view of the optical path of the cross section taken along line B-B of Figure 1 of the present embodiment, showing the state in which the button is in a relaxed state.
- Figure 30 is a cross-sectional view of the embodiment of the present invention taken along the line B-B of Figure 1, in a state in which the button is depressed.
- the control principle of the button switch is: when the button is relaxed and the spring returns to the original position, the seventh light-blocking sheet 146-1 located on the lower PCB board (printed circuit board) 146 has no free-form surface under the keycap.
- the light emitted from the SMD IR tube 17 is incident on the twenty-fourth reflecting surface 141 of the free-form surface below the key cap.
- the light is collimated and shot to the right, and is incident on the twenty-fifth reflecting surface 141-2 of the free-form surface which is also located under the keycap on the other side, and after being reflected again, the light is directed downward.
- the turning and convergence, and finally focusing on the SMD PT tube 18 below, triggers the SMD PT tube 18 to generate current, and the circuit connected thereto is in a conducting state.
- the key cap moves downward together with the twenty-fourth reflecting surface 141-1 of the free-form surface and the twenty-fifth reflecting surface 141-2 of the free-form surface, and the seventh light blocking light on the PCB board 146
- the sheet 146-1 completely blocks the light between the twenty-fourth reflecting surface 141-1 of the free-form surface and the twenty-fifth reflecting surface 141-2 of the free-form surface, and no light is received in the SMD PT tube 18, and the current cannot be triggered.
- the circuit connected to it is in the off state. Therefore, the state in which the control optical path of the push button switch according to the present embodiment is turned on and off is completely opposite to the state in the specific embodiments 1 to 7.
- the seventh light blocking sheet 146-1 located on the PCB board 146 is a black light absorbing material, which is fixed on the PCB board by a snapping method.
- the free-form surface of the surface which can also be a tilted pure plane, is a composite surface composed of multiple faces, which are all high-reflectivity surfaces with a reflection coefficient of more than 80%, which is bright silver or bright gold, and can also be high. Reflectance white or light reflective coating.
- the switch module of the ultra-thin reflective computer input device of the present invention the SMD IR tube 17 can be vertically placed in the upper fixed casing 154, and the control principle and implementation of the push button switch of the specific embodiment
- the solution is basically the same, except that in this embodiment the SMD IR tube 17 is placed vertically in the upper fixed housing 154 and collimated by a Fresnel collimating lens 154-2.
- the collimated Fresnel lens 154-2 whose light is disposed at the upper fixed casing position, the twenty-sixth reflecting surface 152-1 located on the key shaft, and the twenty-seventh free-form surface located below the upper fixed casing 154
- the reflecting surface 154-3 is composed of.
- FIG. 31 and FIG. 32 The control principle of the push button switch is shown in FIG. 31 and FIG. 32, which is a state in which the button is pressed down and the optical path is turned on.
- FIG. 31 is an optical path diagram along the AA cross-section in FIG. 1
- FIG. 32 is a cross-sectional view in FIG.
- the light path diagram of the upper fixed case 154 and the key shaft 152 is viewed upward in the direction of the arrow T, This corresponds to the optical path diagram along the A-A section of FIG.
- the SMD IR tube 17 is vertically placed in the upper fixed casing 154, and the light emitted from the center P point of the SMD IR tube 17 is collimated by the collimating Fresnel lens 154-2 located at the upper fixed casing position.
- the direction of the center of the key shaft 152 is incident on the twenty-sixth reflecting surface 152-1 located below the key shaft 152.
- the twenty-sixth reflecting surface 152-1 on the key shaft 152 is exactly aligned with the collimating Fresnel lens 154-2 at the position of the upper fixed casing 154, which will be incident. Collimate the light and reflect it.
- the reflected optical path is as shown in FIG. 31, and is incident on the twenty-seventh reflecting surface 154-3 on the other side below the upper fixed casing 154.
- the twenty-seventh reflecting surface 154-3 converges and turns the incident light, and finally converges to the Q point of the center of the SMD PT tube 18 of the PCB board, thereby triggering the circuit to be turned on.
- the button is released and the spring returns to the original position, the key moves axially, and the reflecting surface 152-1 under the key shaft 152 is moved upward together.
- the twenty-sixth reflecting surface 152-1 located below the key shaft 152 is The collimated Fresnel lens 154-2 at the position of the upper fixed casing 154 is completely staggered, the optical path is cut, there is no trigger current on the SMD PT tube 18, and the connected circuit is in an open state.
- the twenty-seventh reflecting surface 154-3 of the free-form surface located on the other side below the upper fixed casing 154 in the specific embodiment has a reflecting surface which is an off-axis paraboloid, an off-axis secondary surface or a polynomial curved surface.
- the curved surface which can also be a slanted pure plane, is a composite curved surface composed of a plurality of faces, and has a reflection coefficient of more than 80%, which is bright silver or bright gold, and can also be a high reflectivity white or light reflective coating. .
- the switch module of the ultra-thin reflective computer input device of the present invention, the SMD IR tube 17 can be placed vertically in the upper fixed case, and the control light route of the button switch in the embodiment of the sixteenth embodiment
- the seventh refractive prism 165-2 of the curved surface is composed.
- the switching control principle is shown in Figure 33 and Figure 34. The state in which the button switch is turned on and off is reversed, which is when the button is relaxed and the light path is in the on state, and when the button is pressed, the light path is in the off state.
- Figure 33 is a view of the optical path of the cross section taken along line B-B of Figure 1 of the present embodiment, showing the state in which the button is in a relaxed state.
- Figure 34 is a cross-sectional view of the embodiment of the present invention taken along the line B-B of Figure 1, in a state in which the button is depressed.
- the control principle of the push button switch is: a collimated Fresnel lens 164-1 on the upper fixed casing 164 for collimating the optical path and a seventh refractive prism located on the lower fixed casing 165 for turning and converging the free curved surface of the optical path
- the 165-2 is aligned with each other.
- the eighth light-blocking sheet 161-1 located under the keycap 161 is not blocked by the collimated Fresnel lens 164-1 and the free-form surface of the seventh refractive prism 165-2.
- the light emitted from the SMD IR tube 17 placed vertically at the upper fixed casing position is collimated by the collimated Fresnel lens 164-1, and is emitted from the vertical plane on the right side thereof, due to the eighth block.
- the light sheet 161-1 does not block the light, and the light output from the vertical plane on the right side of the collimated Fresnel lens 164-1 is incident on the other side of the free-form surface on the lower fixed casing 165 for turning and converging the optical path.
- the seven-fold prism 165-2 is turned over by the tilted total reflection surface, and then concentrated on the SMD PT tube 18 through the focused Fresnel surface below it, thereby triggering the SMD PT tube 18 to generate a current, which is connected thereto.
- the circuit is in a conducting state.
- the eighth light blocking film 161-1 located under the keycap 161 moves downward, which will collimate the light between the Fresnel lens 164-1 and the free-form curved seventh refractive prism 165-2. Completely blocked.
- the current cannot be triggered in the SMD PT tube 18, and the circuit connected thereto is in the off state. Therefore, the state in which the control optical path of the push button switch according to the present embodiment is turned on and off is completely opposite to the state in the specific embodiments 1 to 7.
- the eighth light blocking sheet 161-1 below the key cap 161 is a black light absorbing material which is injection molded with the key cap by two-color injection molding.
- the seventh refractive prism 165-2 on the lower fixed casing 165 for turning and converging the free curved surface of the optical path has an inclined plane above and a Fresnel surface below.
- the switch module of the ultra-thin reflective computer input device of the present invention the SMD IR tube 17 can be placed vertically in the upper fixed case, and the control light route of the button switch in the embodiment of the seventeenth embodiment a ninth light-blocking sheet 171-1 located under the keycap, a collimated Fresnel lens 174-1 on the upper fixed casing for collimating the optical path, and a free-form surface on the upper fixed casing 174 for turning and converging the optical path Group of twenty-eighth reflecting surface 174-2 to make.
- the switching control principle is shown in Figure 35 and Figure 36. The state in which the button switch is turned on and off is reversed, which is when the button is relaxed and the light path is in the on state, and when the button is pressed, the light path is in the off state.
- Figure 35 is a light path diagram of a cross section taken along line B-B of Figure 1 of the present embodiment, showing the button in a relaxed state.
- Figure 36 is a cross-sectional view of the embodiment of the present invention taken along the line B-B of Figure 1, in a state in which the button is depressed.
- the control principle of the push button switch is: the collimated Fresnel lens 174-1 on the upper fixed casing 174 for collimating the optical path and the twenty-eighth of the free curved surface on the upper fixed casing 174 for turning and converging the optical path
- the reflecting surfaces 174-2 are aligned with each other.
- the ninth light blocking sheet 171-1 located under the keycap 171 is not blocked by the collimated Fresnel lens 174-1 and the twenty-eighth reflecting surface of the free curved surface.
- the light emitted from the SMD IR tube 17 placed vertically at the upper fixed casing position is collimated by the collimated Fresnel lens 174-1, and is emitted from the vertical plane on the right side thereof. Since the ninth light-blocking sheet 171-1 does not block the light, the light emitted from the collimating Fresnel lens 174-1 is incident on the other side of the free-form surface on the upper fixed casing 174 for turning and converging the optical path.
- the ninth light blocking plate 171-1 located below the keycap 171 moves downward, which combines the light between the Fresnel lens 174-1 and the twenty-eighth reflecting surface 174-2 of the free curved surface. Completely blocked. The current cannot be triggered in the SMD PT tube 18, and the circuit connected thereto is in the off state. Therefore, the state in which the control optical path of the push button switch according to the present embodiment is turned on and off is completely opposite to the state in the specific embodiments 1 to 7.
- the ninth light blocking sheet 171-1 located under the keycap 171 is a black light absorbing material which is injection molded with the key cap by two-color injection molding.
- the switch module of the ultra-thin reflective computer input device of the present invention the SMD IR tube 17 can be placed vertically in the upper fixed case, and the control light route of the button switch of the embodiment of the eighteenth embodiment is controlled.
- a tenth light-blocking sheet 181-1 located under the keycap, a collimated Fresnel collimating lens 184-1 on the upper fixed casing for collimating the optical path, and a second through-hole position of the lower fixed casing 185
- the eighth refractive prism 185-2 is formed on the free curved surface of the turning and converging optical path.
- the switching control principle is shown in Figure 37 and Figure 38. The state in which the button switch is turned on and off is reversed, which is when the button is relaxed and the light path is in the on state, and when the button is pressed, the light path is in the off state.
- Figure 37 is a view of the optical path of the cross section taken along line B-B of Figure 1 of the present embodiment, in a state in which the button is in a relaxed state.
- Figure 38 is a cross-sectional view of the embodiment of the present invention taken along the line B-B of Figure 1, in a state in which the button is depressed.
- the control principle of the push button switch is: a collimated Fresnel lens 184-1 on the upper fixed casing 184 for collimating the optical path and an eighth refractive prism on the lower fixed casing 185 for turning and converging the free curved surface of the optical path 185-2 is aligned with each other.
- the tenth light blocking piece 181-1 located under the keycap 181 is not blocked by the collimating Fresnel lens 184-1 and the free-form curved eighth refractive prism 185-2.
- the light emitted from the SMD IR tube 17 placed vertically at the upper fixed casing position is collimated by the collimated Fresnel lens 184-1, and is emitted from the vertical plane on the right side thereof, due to the tenth block.
- the light sheet 181-1 does not block light, and the light emitted from the vertical plane on the right side of the collimated Fresnel lens 184-1 is incident on the other side of the free-form surface on the lower fixed casing 185 for turning and converging the optical path.
- the ten-fold prism 185-2 after the free-form surface total reflection surface which is inclined above it is turned and concentrated, the last light is concentrated on the lower SMD PT tube 18, thereby triggering a current generated in the SMD PT tube 18, and the circuit connected thereto It is in the on state.
- the tenth light blocking piece 181-1 located under the keycap 181 moves downward, which completely blocks the light between the Fresnel lens 184-1 and the free-form curved eighth refractive prism 185-2. .
- the current cannot be triggered in the SMD PT tube 18, and the circuit connected thereto is in the off state. Therefore, the state in which the control optical path of the push button switch according to the present embodiment is turned on and off is completely opposite to the state in the specific embodiments 1 to 7.
- the tenth light blocking sheet 181-1 under the key cap 181 is a black light absorbing material, which is injection molded with the key cap by two-color injection molding.
- the above is located on the lower fixed casing 185
- the eighth refractive prism 165-2 for the free-form surface of the turning and converging optical path has a tilted off-axis paraboloid, an off-axis secondary surface, or a polynomial curved surface, or an inclined pure plane. Or a composite surface composed of multiple faces with a plane below it.
- the switch module of the ultra-thin reflective computer input device of the present invention the SMD PT tube 18 can be vertically placed in the upper fixed casing 194, and the control principle of the key switch of the embodiment of the nineteenth embodiment It is basically the same as the second embodiment except that the SMD PT tube 18 is placed vertically in the upper fixed case 194 in the present embodiment, and a concentrated Fresnel lens 194-3 is placed in front of it for convergence.
- the light is routed to the twenty-ninth reflecting surface 194-2 of the free-form surface of the upper fixed shell position, the thirtieth reflecting surface 192-1 on the key shaft, and the thirty-first reflection on the other side of the key shaft Face 192-2, and a concentrated Fresnel lens 194-3 on the other side of upper fixed casing 194.
- FIG. 39 and FIG. 40 are optical path diagrams of the push button switch under the pressure of 1.85 mm, in an on state
- FIG. 39 is an optical path diagram along the DD cross section of FIG. 1
- FIG. 40 is an upward view along the arrow T direction in FIG.
- the optical path diagram of the upper fixed case 194 and the key shaft 192 corresponds to the optical path diagram of the AA cross section in the above figure.
- the control principle of the button switch is: when the button is pressed down by 1.85 mm, the light emitted from the center P point of the SMD IR tube 17 passes through the first through hole 15-1 of the lower fixed case and is incident under the upper fixed case 194.
- the light is collimated, collimated and then shot horizontally to the left.
- the thirteenth reflecting surface 192-1 on the key shaft 192 is exactly aligned with the twenty-ninth reflecting surface 194-2 located below the upper fixed casing 194, which reflects the incident collimated light.
- the light reflected by the thirtieth reflecting surface 192-1 is as shown in Fig. 40 (the fixed shell 194 and the X-shaped key shaft 192 in the direction of the arrow T in Fig.
- the light is turned clockwise by 90 degrees to the other.
- One side is reflected, and then incident on the other thirty-first reflecting surface 192-2 which is also located on the key shaft 192, and after being reflected again, it is incident to the right and concentrated on the other side of the upper fixed casing 194.
- the Neel lens 194-3 after the concentrated Fresnel lens 194-3 is concentrated, the light is finally concentrated to the vertical Placed on the Q point of the center of the SMD PT tube 18 of the upper fixed housing 194, thereby triggering the circuit to conduct.
- the key moves axially, and the 30th reflecting surface 192-1 and the 31st reflecting surface 192-2 on the key shaft 192 are moved upward together on the key shaft 192.
- the thirtieth reflecting surface 192-1 is completely offset from the twenty-ninth reflecting surface 194-2 located below the upper fixing case 194, and the thirty-first reflecting surface 192-2 located on the key shaft 192 is also fixed on the upper side.
- the concentrating Fresnel lens 194-3 on the other side of the casing 194 is completely staggered, at which time the optical path is cut, there is no trigger current on the SMD PT tube 18, and the connected circuit is in the off state.
- the thirtieth reflecting surface 192-1 and the thirty-first reflecting surface 192-2 on the key shaft 192 of the present embodiment are high reflectivity surfaces having a reflection coefficient exceeding 80%.
- the reflective surface 194-2 located below the upper fixed casing 194 according to the embodiment is also a high reflectivity surface having a reflection coefficient exceeding 80%, and the high reflectivity surface is bright silver or bright. Gold, also available as a high reflectivity white or light reflective coating.
- the switch module of the ultra-thin reflective computer input device of the present invention, the SMD PT tube 18 can be placed vertically in the upper fixed case 204, and the control light of the push button switch of the embodiment of the twenty-second embodiment Routing the eleventh light blocking sheet 201-1 under the keycap, the ninth refractive prism 205-1 on the lower fixed housing 205 for collimating and turning the free curved surface of the optical path, and the eleventh light blocking sheet
- the side is composed of a concentrated Fresnel lens 204-1 on the upper fixed casing 204 for collecting the optical path.
- the switching control principle is shown in Figure 41 and Figure 42. The state in which the button switch is turned on and off is reversed, which is when the button is relaxed and the light path is in the on state, and when the button is pressed, the light path is in the off state.
- Figure 41 is a view of the optical path of the cross section taken along line B-B of Figure 1 of the present embodiment, showing the state in which the button is in a relaxed state.
- Figure 42 is a cross-sectional view of the embodiment of the present invention taken along the line B-B of Figure 1, in a state in which the button is depressed.
- the control principle of the button switch is that the ninth refractive prism 205-1 located on the lower fixed casing 205 for collimating and turning the free curved surface of the light path and the other side of the eleventh light blocking plate are located on the upper fixed casing 204
- the concentrating Fresnel lens 204-1 for concentrating the optical path is aligned with each other, and is located under the keycap 201 when the button is relaxed
- the eleventh light-blocking sheet 201-1 of the square is not blocked in the optical path between the ninth refractive prism 205-1 and the concentrated Fresnel lens 204-1 of the free-form surface, and the SMD located on the PCB board 16 from below.
- the light emitted by the IR tube 17 is collimated and turned by the ninth refractive prism 205-1 of the free-form surface, and is collimated from the vertical plane on the right side thereof. Since the eleventh light blocking sheet 201-1 does not block the light, The light emitted from the vertical plane of the right side of the ninth refractive prism 205-1 of the free-form surface is incident on the other side of the concentrated Fresnel lens 204-1 on the upper fixed casing 204 for collecting the optical path, and is concentrated. Finally, it is concentrated on the SMD PT tube 18, which is also placed vertically on the upper fixed casing 204, thereby triggering the generation of current in the SMD PT tube 18, and the circuit connected thereto is in an on state.
- the eleventh light blocking piece 201-1 located under the keycap 201 moves downward, which connects the free curved surface of the ninth refractive prism 205-1 and the concentrated Fresnel lens 204-1.
- the light is completely blocked.
- the current is not triggered in the vertically placed SMD PT tube 18, and the circuit connected thereto is in the off state. Therefore, the state in which the control optical path of the push button switch according to the present embodiment is turned on and off is completely opposite to the state in the specific embodiments 1 to 7.
- the eleventh light blocking sheet 201-1 under the key cap 201 is a black light absorbing material, which is injection molded with the key cap by two-color injection molding.
- the ninth refractive prism 205-1 located on the lower fixed casing 205 for collimating and turning the free curved surface of the optical path, the inclined full reflection surface above is an inclined off-axis paraboloid, an off-axis secondary surface, or A polynomial surface can also be a tilted pure plane, or a composite surface composed of multiple faces, with a plane below it.
- the switch module of the ultra-thin reflective computer input device of the present invention has an SMD PT tube 18 vertically placed under the keycap 211 for the thirty-second of the inclined plane of the turning optical path.
- the reflecting surface 211-1 and the collecting Fresnel lens 211-2 may also be fixed under the keycap 211, and the twelfth light blocking sheet 216-1 may be fixed on the PCB board 216 at the bottom of the module.
- the control light of the push button switch of the twenty-first embodiment is located under the keycap, the inclined plane thirty-second reflective surface 211-1 for the turning optical path, the concentrated Fresnel lens 211-2, and the lower fixed Collimated Fresnel for collimation at the first through hole of the shell 215
- the lens 215-1 and the twelfth light blocking sheet 216-1 located on the PCB board 216 are composed.
- the key switch control principle is shown in Figure 43 and Figure 44. The state in which the button switch is turned on and off is reversed, which is when the button is relaxed and the light path is in the on state, and when the button is pressed, the light path is in the off state.
- Figure 43 is a view of the optical path of the cross section taken along line B-B of Figure 1 of the present embodiment, showing the state in which the button is in a relaxed state.
- Figure 44 is a cross-sectional view taken along line B-B of Figure 1 of the present embodiment, showing the state in which the button is depressed.
- the control principle of the push button switch is: the inclined plane thirty-second reflective surface 211-1 located under the keycap for turning the optical path is aligned with the concentrated Fresnel lens 211-2 which is also located below the keycap for collecting light
- the twelfth light blocking piece 216-1 located on the bottom PCB board 216 of the button module does not block the thirty-second reflecting surface 211-1 and the Fresnel in the inclined plane.
- the light emitted from the SMD IR tube 17 is collimated by the collimating Fresnel lens 215-1 located at the first through-hole position of the lower fixed case 215, and then incident under the key cap.
- the collimated light is turned to the right, and then incident on the concentrated Fresnel lens 211-2, and finally concentrated to the vertically placed SMD PT after convergence.
- a current is generated in the SMD PT tube 18, and the circuit connected thereto is in an on state.
- the twelfth light-blocking sheet 216-1 located on the bottom PCB board 216 of the button module is between the thirty-second reflecting surface 211-1 of the inclined plane and the collecting Fresnel lens 211-2.
- the light is completely blocked, and the SMD PT tube 18 placed vertically below the keycap cannot trigger current, and the circuit connected thereto is in an open state. Therefore, the state in which the control optical path of the push button switch according to the present embodiment is turned on and off is completely opposite to the state in the specific embodiments 1 to 7.
- the twelfth light blocking piece 216-1 located on the PCB board 216 is a black light absorbing material, which is fixed on the PCB board by a snapping method.
- the thirty-second reflective surface 211-1 located on the inclined plane below the key cap is a high reflectivity surface with a reflection coefficient exceeding 80%, which is bright silver or bright gold, and may also have high reflectivity. White or light reflective coating.
- the concentrating Fresnel lens 211-2 located below the keycap and the vertically placed SMD PT tube 18 can be fixed under the keycap by a snapping method.
- the switch module of the ultra-thin reflective computer input device of the present invention the SMD PT tube 18 can be placed vertically below the keycap 211, and the third right-angle prism 221-1 for turning the optical path
- the concentrating Fresnel lens 221-2 may also be fixed under the keycap 221, and the thirteenth light blocking piece 226-1 may be fixed on the PCB board 226 at the bottom of the module.
- the control light of the push button switch of the solution of the twenty-second embodiment is located at the third right-angle prism 221-1 for the turning optical path under the keycap, the concentrated Fresnel lens 221-2, and the first fixed housing 225.
- the Fresnel lens 225-1 for collimating the optical path at the position of the through hole, and the thirteenth light blocking piece 226-1 located on the PCB board 226 are composed.
- the switching control principle is shown in Figure 45 and Figure 46. The state in which the button switch is turned on and off is reversed, which is when the button is relaxed and the light path is in the on state, and when the button is pressed, the light path is in the off state.
- Figure 45 is a view of the optical path of the cross section taken along line B-B of Figure 1 of the present embodiment, showing the state in which the button is in a relaxed state.
- Figure 46 is a cross-sectional view taken along line B-B of Figure 1 of the present embodiment, showing the state in which the button is depressed.
- the control principle of the button switch is: the third right-angle prism 221-1 located under the keycap for turning the light path is aligned with the concentrated Fresnel lens 221-2 which is also located under the keycap for collecting light, when the button is relaxed When the spring returns to the original position, the thirteenth light blocking piece 226-1 located on the bottom PCB 226 of the button module is not blocked between the third right angle prism 221-1 and the concentrated Fresnel lens 221-2.
- the light emitted from the SMD IR tube 17 is collimated by the collimating Fresnel lens 225-1 located at the first through hole position of the lower fixed case 225, and then incident into the third right-angle prism 221-1 located under the key cap.
- the collimated light After being totally reflected by the inclined plane, the collimated light is turned to the right, then incident into the concentrated Fresnel lens 221-2, and finally concentrated on the vertically placed SMD PT tube 18, thereby triggering the generation of the SMD PT tube 18.
- the current and the circuit connected to it are in conduction.
- the thirteenth light-blocking piece 226-1 located on the bottom PCB 226 of the button module completely blocks the light between the third right-angle prism 221-1 and the concentrated Fresnel lens 221-2.
- the current is not triggered in the vertically placed SMD PT tube 18, and the circuit connected thereto is in the off state. Therefore, the state in which the control optical path of the push button switch according to the present embodiment is turned on and off is completely opposite to the state in the specific embodiments 1 to 7.
- the thirteenth light-blocking sheet 226-1 located on the PCB board 226 is a black light-absorbing material, which is fixed to the lower PCB board by a snapping method.
- the third right angle prism 221-1, the concentrated Fresnel lens 221-2 and the vertically placed SMD PT tube 18 under the keycap can be fixed under the keycap by a snapping method.
- the upper surface of the third right-angle prism 221-1 is a reflecting surface of an inclined plane.
- the embodiment discloses a key cap character illumination system used in combination with a switch module of an ultra-thin reflective computer input device, wherein the illumination source is an SMD LED (surface mount LED) disposed on a PCB board. It is a monochrome chip or an LED of a red, green, blue and white multicolor chip, and has an optical device for distributing light thereon, which distributes the light emitted from the SMD LED 19 to a range of required illumination.
- the optical device for light distribution is located on the upper fixed casing 234, which may be a trapezoidal reflector, a square reflector, a free-form surface polarized lens, or a spreader for internally doped diffusion particles for light mixing treatment.
- the reflective surface is a high-reflectivity surface with a reflection coefficient of more than 80%, which can be white or bright silver.
- the optical device for light distribution in this embodiment employs a trapezoidal reflector.
- the embodiment discloses a key cap character illumination system used in combination with a switch module of an ultra-thin reflective computer input device, wherein the illumination source is an SMD LED (surface mount LED) disposed on a PCB board. It is a monochrome chip or an LED of a red, green, blue and white multicolor chip, and has an optical device for distributing light thereon, which distributes the light emitted from the SMD LED 19 to a range of required illumination.
- SMD LED surface mount LED
- Fig. 49 is a cross-sectional view taken along line C-C in Fig. 1.
- SMD LED Surface Mounted Light Emitting Diode
- the eccentric lens 244-1 has an upper curved surface which is an eccentric and asymmetrical free curved surface, which can solve the case where the illuminated keycap character is not directly above the light source.
- the embodiment discloses a key cap character illumination system used in combination with a switch module of an ultra-thin reflective computer input device, wherein the illumination source is an SMD LED (surface mount LED) disposed on a PCB board. It is a monochrome chip or an LED of a red, green, blue and white multicolor chip, and has an optical device for distributing light thereon, which distributes the light emitted from the SMD LED 19 to a range of required illumination.
- SMD LED surface mount LED
- Fig. 60 is a cross-sectional view taken along line C-C in Fig. 1.
- SMD LED Surface Mounted Light Emitting Diode
- the total reflection lens 254-1 is composed of an intermediate refractive portion and a total reflection portion of the outer ring, which has high optical efficiency, and can collect almost all light emitted from the SMD LED 19, and the optical efficiency can be achieved. More than 80%.
- the embodiment discloses a key cap character illumination system used in combination with a switch module of an ultra-thin reflective computer input device, wherein the illumination source is an SMD LED (surface mount LED) disposed on a PCB board. It is a monochrome chip or an LED of a red, green, blue and white multicolor chip, and has an optical device for distributing light thereon, which distributes the light emitted from the SMD LED 19 to a range of required illumination.
- SMD LED surface mount LED
- Fig. 51 is a cross-sectional view taken along line C-C in Fig. 1.
- SMD LED (Surface Mounted Light Emitting Diode) 19 is an illumination system using a combined lens 264-1, the lower surface of which is a zigzag Fresnel surface, which can collect large The angle of light is collimated, collimated, and then incident on the upper surface.
- the upper surface is convex, which is used to distribute light, which distributes the incident light incident on the lower surface to the desired illumination area.
- the light distribution principle of the combined lens is as shown in Fig. 61, which is a cross-sectional view taken along line C-C in Fig. 1.
- SMD LED (Surface Mounted Light Emitting Diode) 19 is a combination lens 264-1 located above the lower fixed case 265, which distributes the light emitted by the SMD LED 19.
- the embodiment discloses a key cap character illumination system used in combination with a switch module of an ultra-thin reflective computer input device, wherein the illumination source is an SMD LED (surface mount LED) disposed on a PCB board. It is a monochrome chip or an LED of a red, green, blue and white multicolor chip, and has an optical device for distributing light thereon, which distributes the light emitted from the SMD LED 19 to a range of required illumination.
- SMD LED surface mount LED
- the light distribution principle of the keycap character illumination system is shown in Fig. 51, which is a cross-sectional view taken along line C-C in Fig. 1.
- the illumination system of the key cap character in the twenty-seventh embodiment is a color mixing system using a diffusion sheet, and the illumination source is an SMD LED of a red, green, blue and white multicolor chip.
- the keycap character illumination system has a light distribution principle as shown in FIG. 51, which is a cross-sectional view in the C-C direction in FIG.
- the SMD LED 19 is a multi-chip (such as a red, green, blue and white 4-color chip), and can emit surface-mounted LEDs of different colors, and a diffusion sheet 274-1 having a color mixing function is placed thereon.
- the interior is doped with a plurality of micron-sized light-diffusing particles, which are located above the lower fixed casing 275, which mixes the different colors of light emitted by the SMD LED 19 to achieve uniform illumination of the keycap characters.
Landscapes
- Push-Button Switches (AREA)
- Input From Keyboards Or The Like (AREA)
Abstract
一种超薄型反射式的电脑输入设备的开关模组,特别涉及电脑输入键盘的按键开关及电脑鼠标器的按键开关,其包括一个光发射器件(17)和一个光接收器件(18),光发射器件(17)和光接收器件(18)之间通过至少一个反射面形成光路通道,该反射面集成于键轴(12,22,32,42,152,192,232,242,252,262,272)、键帽(11,41,51,61,71,81,91,101,111,121,131,141,161,171181,191,201,211,221,231, 241,251,261,271)、或固定壳体(14,15,24,25,34,35,44,45,54,55,64,65,74,75,84,85, 94,95,104,105,114,115,124,125,134,135,144,145,154,164,165,174,175,184,185,194,204,205,214,215,224,225,234,235,244,245,254,255,264,265,274,275)上,当按键下压或放松时,部分反射面的上下移动使得光路被导通或切断,从而触发光接收器件(18)所连接的电路的通和断,其具有结构简单、成本低、组装方便、开关模组高度低等特点,其高度只有传统机械轴键盘的1/3~1/4。
Description
本发明涉及电子装置输入设备的技术领域,特别涉及一种超薄型反射式的电脑输入设备的开关模组。
机械式键盘是目前电脑键盘市场的主流,其开关原理为:当按键下压和放松时,位于机械键轴上的金属触点与固定于壳体上的金属弹片做接触与非接触动作从而实现电路的导通与断开,这种机械接触式结构容易产生疲劳性损害,弹片与触点容易磨损,从而出现开关控制失效或误动作控制,产品寿命不够长;其二,金属弹片及触点容易受使用环境影响造成氧化及老化,造成导通接触不良,造成开关控制失效或误动作控制。此外,机械轴键盘的按键高度比较高,当按键放松、弹簧弹起时,从键帽顶至下方PCB板(印刷电路板)的高度为16mm~19mm,按键下压到底时的高度也有12mm~15mm。
光电式键盘是目前新兴的技术,目前技术上主要的做法是保留传统机械式键盘开关模组的基本结构,包括键轴、弹簧、上下壳体基本不变,而只是将原先机械式键盘开关模组的金属触点和弹片换成光开关器件,同时增加一个光发射器件和一个光接收器件(光敏元件)。当按键下压或者上升时,光开关器件被导通或者切断,从而触发光接收器件所连接的电路的通和断。光电式键盘的优点为:控制精确、开关切换动作更快、灵敏度高、手感更好、不会受触点磨损及氧化老化的影响,使用寿命长,可满足高频率及长时间的应用;以及不存在机械接触的抖动问题、零杂讯、开关动作时间零延迟,操作更灵敏、快速和精准等。但由于光电式键盘现有技术是从原先传统的机械式键盘开关模组传承而来,其按键高度比较高,体积比较大,比较适用于台式输入设备,不适合集成到笔记本电脑和小型便携式数字设备上。
发明内容
本发明的第一个目的在于克服现有技术的缺点与不足,提供一种超薄型反射式的电脑输入设备的开关模组。
本发明的另一个目的在于,提供一种配合超薄型反射式的电脑输入设备的开关模组使用的键帽字符照明系统。
本发明的第一个目的通过以下技术方案实现:
一种超薄型反射式的电脑输入设备的开关模组,包括键帽、键轴、弹簧、上固定壳、下固定壳、PCB板,所述超薄型反射式光电键盘开关模组还包括一个光发射器件和一个光接收器件,光发射器件和光接收器件之间通过至少一个的反射面形成光路通道,所述反射面,其集成于键帽、键轴、上固定壳或下固定壳上,当按键下压或放松时,部分反射面的上下移动使得光路被导通或切断,从而触发光接收器件所连接的电路的通和断。
进一步的,所述光发射器件和所述光接收器件均设置于所述PCB板上,所述下固定壳上设置有第一通孔和第二通孔,且所述第一通孔位于所述光发射器件上方,所述第二通孔位于所述光接收器件上方。
进一步的,所述光路通道包括位于键轴下方的第二反射面,以及位于上固定壳体下方的第一反射面和第三反射面,
从光发射器件发出的光线,经过下固定壳上的第一通孔后入射到上固定壳下方的第一反射面上,当按键下压时,键轴上的所述第二反射面正好对准位于上固定壳下方的所述第一反射面,其将从所述第一反射面入射过来的准直光线进行反射,反射光线入射到上固定壳下方另一侧的所述第三反射面上,所述第三反射面再将入射光线经过下固定壳的第二通孔会聚到位于PCB板的光接收器件,从而触发电路导通;
当按键放松弹簧回复到原位时,键轴以及所述第一反射面一起向上移动,位于键轴上的第二反射面与位于上固定壳下方的第一反射面
错开,光路被切断,相连的电路处于断开状态。
进一步的,所述位于上固定壳下方的第一反射面是离轴抛物面、离轴2次曲面或者是多项式曲面的自由曲面,其也可以为纯平面,或多个面组成的复合曲面;所述位于上固定壳下方另一侧的第三反射面,其反射面是离轴抛物面、离轴2次曲面或者是多项式曲面的自由曲面,其也可以为倾斜纯平面,为多个面组成的复合曲面;所述的第一反射面通过第二反射面的反射与第三反射面光路耦合。
进一步的,所述的第一反射面及第二反射面及第三反射面相对于键轴中心对称设置,也可以为非对称设置。
进一步的,所述光路通道包括位于键轴下方的第五反射面和第六反射面,以及位于上固定壳体下方的第四反射面和第七反射面,
从光发射器件发出的光线,经过下固定壳上的第一通孔后入射到上固定壳下方的第四反射面上,当按键下压时,键轴上的所述第五反射面正好对准位于上固定壳下方的所述第四反射面,其将从所述第四反射面入射过来的准直光线进行反射,反射光线入射到同样位于键轴上的另一侧的所述第六反射面上,经再次反射,反射光线入射到上固定壳下方另一个所述第七反射面上,所述第七反射面再将入射光线经过下固定壳的第二通孔会聚到位于PCB板的光接收器件,从而触发电路导通;
当按键放松弹簧回复到原位时,键轴向上移动,键轴以及所述第五、第六反射面一起向上移动,位于键轴上的第五反射面与位于上固定壳下方的第四反射面错开,同时,位于键轴上的第六反射面与位于上固定壳下方的第七反射面错开,光路被切断,相连的电路处于断开状态。
进一步的,所述位于上固定壳下方的第四反射面是离轴抛物面、离轴2次曲面或者是多项式曲面的自由曲面,其也可以为纯平面,或多个面组成的复合曲面。所述位于上固定壳下方另一侧的第七反射面,其反射面是离轴抛物面、离轴2次曲面或者是多项式曲面的自由曲面,其也可以为倾斜纯平面,或为多个面组成的复合曲面。所述的第四反射面通过第五反射面及第六反射面的反射与第七反射面光路
耦合。
进一步的,所述的第四反射面及第五反射面及第六反射面及第七反射面相对于键轴中心对称设置,也可以为非对称设置。
进一步的,所述光路通道包括位于键轴下方的第九反射面和第十反射面,位于上固定壳体下方的第八反射面和第十一反射面,以及位于下固定壳第一通孔位置的准直透镜或/和第二通孔位置的聚焦透镜,
从光发射器件发出的光线,经过下固定壳上第一通孔位置的准直透镜后入射到上固定壳下方的第八反射面上,当按键下压时,键轴上的所述第九反射面正好对准位于上固定壳下方的所述第八反射面,其将从所述第八反射面入射过来的准直光线进行反射,反射光线入射到同样位于键轴上的另一侧的所述第十反射面上,经再次反射,反射光线入射到上固定壳下方另一个所述第十一反射面上,所述第十一反射面再将入射光线经过下固定壳上第二通孔位置的聚焦透镜会聚到位于PCB板的光接收器件,从而触发电路导通;
当按键放松弹簧回复到原位时,键轴向上移动,键轴以及所述第九、第十反射面一起向上移动,位于键轴上的第九反射面与位于上固定壳下方的第八反射面错开,同时,位于键轴上的第十反射面与位于上固定壳下方的第十一反射面错开,光路被切断,相连的电路处于断开状态。
进一步的,所述位于上固定壳下方的第八反射面是倾斜45度的平面,也可以是离轴抛物面、离轴2次曲面或者是多项式曲面的自由曲面,其也可以为由多个面组成的复合曲面;
所述位于上固定壳下方另一侧的第十一反射面,其反射面是倾斜45度的平面,也可以是离轴抛物面、离轴2次曲面或者是多项式曲面的自由曲面,其也可以为由多个面组成的复合曲面;
所述的第八反射面通过第九反射面及第十反射面的反射与第十一反射面光路耦合。
进一步的,所述的第八反射面及第九反射面及第十反射面及第十一反射面相对于键轴中心对称设置,也可以为非对称设置。
进一步的,所述光路通道包括位于键帽下方的第十二反射面及位于上固定壳的第十三反射面,
从光发射器件发出的光线,经过下固定壳上第一通孔位置后入射到键帽下方的第十二反射面上,当按键下压时,键帽下方的所述第十二反射面正好对准上固定壳的所述第十三反射面,其将从所述第十二反射面入射过来的光线进行准直或部分准直射出,射出的光线再经过所述第十三反射面往下转折和会聚,会聚后的光线经过下固定壳上第二通孔集中到PCB板的光接收器件,从而触发电路导通;
当按键放松弹簧回复到原位时,位于键帽下方的第十二反射面与位于上固定壳上的第十三反射面完全错开,光路被切断,相连的电路处于断开状态。
进一步的,所述位于键帽下方的第十二反射面以及位于上固定壳的第十三反射面均是离轴抛物面、离轴2次曲面或者多项式曲面的自由曲面,其也可以为倾斜纯平面,或为多个面组成的复合曲面。
进一步的,所述光路通道包括位于下固定壳第一通孔位置的准直透镜、位于键帽下方的第十四反射面和位于上固定壳的自由曲面第十五反射面,
从光发射器件发出的光线,经过下固定壳上第一通孔位置的准直透镜后准直入射到键帽下方的第十四反射面上,当按键下压时,键帽下方的所述第十四反射面正好对准上固定壳的所述第十五反射面,其将从所述第十四反射面入射过来的光线进行准直射出,射出的光线再经过所述第十五反射面往下转折和会聚,会聚后的光线经过下固定壳上第二通孔集中到PCB板的光接收器件,从而触发电路导通;
当按键放松弹簧回复到原位时,位于键帽下方的第十四反射面与位于上固定壳上的第十五反射面完全错开,光路被切断,相连的电路处于断开状态。
进一步的,所述位于键帽下方的第十四反射面为倾斜平面,所述位于上固定壳的第十五反射面是离轴抛物面、离轴2次曲面或者是多项式曲面的自由曲面,其也可以为倾斜纯平面,或为多个面组成的复合曲面。
进一步的,所述光路通道包括位于下固定壳第一通孔位置的准直透镜、位于键帽下方的第十六反射面、位于上固定壳的第十七反射镜、以及位于下固定壳第二通孔位置的聚光透镜组成,
从光发射器件发出的光线,经过下固定壳上第一通孔位置的准直透镜后准直入射到键帽下方的第十六反射面上,当按键下压时,键帽下方的所述第十六反射面正好对准上固定壳的所述第十七反射面,其将从所述第十六反射面入射过来的光线进行准直射出,射出的光线再经过所述第十七反射面往下转折,接着经下固定壳第二通孔位置的菲涅尔聚光透镜会聚后集中到PCB板的光接收器件,从而触发电路导通;
当按键放松弹簧回复到原位时,位于键帽下方的第十六反射面与位于上固定壳上的第十七反射面完全错开,光路被切断,相连的电路处于断开状态。
进一步的,所述位于键帽下方的第十四反射面和所述位于上固定壳上的第十七反射面为倾斜平面,也可以是离轴抛物面、离轴2次曲面或者是多项式曲面的自由曲面,或为多个面组成的复合曲面。
进一步的,所述光路通道包括位于键帽下方的第十八反射面、以及位于下固定壳第二通孔位置的第一折光棱镜,
从光发射器件发出的光线,经过下固定壳上第一通孔后准直入射到位于键帽下方的第十八反射面上,当按键下压时,键帽下方的所述第十八反射面正好对准位于下固定壳第二通孔位置的第一折光棱镜,其将从光发射器件发出的光线进行准直或部分准直并转折后射出,射出的光线再经过所述第一折光棱镜进行全反射会聚,并往下方转折,折光后的光线投射到PCB板的光接收器件,从而触发电路导通;
当按键放松弹簧回复到原位时,位于键帽下方的第十八反射面与位于下固定壳第二通孔位置的第一折光棱镜完全错开,光路被切断,相连的电路处于断开状态。
进一步的,所述位于键帽下方的第十八反射面是离轴抛物面、离轴2次曲面或者多项式曲面的自由曲面,其也可以为倾斜纯平面,或为多个面组成的复合曲面;
所述位于下固定壳第二通孔位置的第一折光棱镜,其靠近第十八反射面一侧有一竖直平面,其为输入面;其远离第十八反射面一侧有一倾斜的自由曲面全反射面,其可以为离轴抛物面、离轴二次曲面、或多项式曲面,其也可以为倾斜纯平面,或为多个面组成的复合曲面;其下方有一水平的透光平面,其为输出面。
进一步的,所述光路通道包括位于键帽下方的第一挡光片、位于下固定壳第一通孔位置上的第二折光棱镜以及位于下固定壳第二通孔位置上的第三折光棱镜,所述第二、第三折光棱镜均带有为用于光线折射的反射曲面;
所述第二折光棱镜与所述第三折光棱镜相互对准,当按键放松时,经光发射器件发出的光线,经过所述第二折光棱镜下方的菲涅面之后,准直入射到所述第二折光棱镜上方倾斜的全反射面上,经其全反射面转折之后从所述第二折光棱镜右边竖直平面输出,输出的光线入射到另一侧的所述第三折光棱镜中,经其上方倾斜的全反射面转折之后,再通过其下方的菲涅尔面会聚到PCB板的光接收器件上,从而触发电路导通;
当按键下压时,位于键帽下方的第一挡光片向下移动,其将所述第二折光棱镜及所述第三折光棱镜之间的光线完全挡住,光路被切断,相连的电路处于断开状态。
进一步的,所述第二折光棱镜与所述第三折光棱镜的上方为是离轴抛物面、离轴2次曲面或者多项式曲面的自由曲面,其也可以为倾斜纯平面,或为多个面组成的复合曲面,其下方均为菲涅尔面。
进一步的,所述光路通道包括位于键帽下方的第二挡光片、位于上固定壳上的第十九反射面、以及同样位于上固定壳上的第二十反射面,
所述第十九反射面与所述第二十反射面相互对准,当按键放松时,经光发射器件发出的光线,经过位于上固定壳上用于准直和转折光路的第十九反射面反射之后,准直射出的光线再经过所述第二十反射面往下转折,接着经下固定壳第二通孔会聚到PCB板的光接收器件上,从而触发电路导通;当按键下压时,位于键帽下方的第二挡光片
向下移动,其将所述第十九反射面和所述第二十反射面之间的光线完全挡住,光路被切断,相连的电路处于断开状态。
进一步的,所述第十九反射面与所述第二十反射面是离轴抛物面、离轴2次曲面或者多项式曲面的自由曲面,其也可以为倾斜纯平面,或为多个面组成的复合曲面。
进一步的,所述光路通道包括位于键帽下方的第三挡光片、位于下固定壳第一通孔位置上用于转折光路的第四折光棱镜、以及位于上固定壳上用于转折光路的第二十一反射面,
所述第四折光棱镜与所述第二十一反射面相互对准,当按键放松时,经光发射器件发出的光线,经过所述第四折光棱镜的全反射面反射之后,折光射出的光线再经过所述第二十一反射面往下转折,接着经下固定壳第二通孔会聚到PCB板的光接收器件上,从而触发电路导通;
当按键下压时,位于键帽下方的第三挡光片向下移动,其将所述第四折光棱镜和所述第二十一反射面之间的光线完全挡住,光路被切断,相连的电路处于断开状态。
进一步的,所述第三折光棱镜的上方为倾斜曲面形式的全反射面,其为离轴的抛物面、离轴二次曲面、或者多项式曲面,其也可以为倾斜纯平面,或为多个面组成的复合曲面,其下方为菲涅尔面;
所述第二十一反射面是离轴抛物面、离轴2次曲面或者多项式曲面的自由曲面,其也可以为倾斜纯平面,或为多个面组成的复合曲面。
进一步的,所述光路通道包括位于键帽下方的第四挡光片、位于下固定壳上第一通孔位置上用于准直和转折光路的第五折光棱镜、以及同样位于下固定壳上第二通孔位置上用于转折光路的第六折光棱镜,
所述第五折光棱镜与所述第六折光棱镜相互对准,当按键放松时,经光发射器件发出的光线,经过所述第五折光棱镜的全反射面反射之后,准直射出的光线再经过所述第六折光棱镜的全反射面往下反射转折,会聚到PCB板的光接收器件上,从而触发电路导通;
当按键下压时,位于键帽下方的第四挡光片向下移动,其将所述
第五折光棱镜和所述第六折光棱镜之间的光线完全挡住,光路被切断,相连的电路处于断开状态。
进一步的,所述第五与第六折光棱镜的上方为倾斜曲面形式的全反射面,其为离轴的抛物面、离轴二次曲面、或者多项式曲面,其也可以为倾斜纯平面,或为多个面组成的复合曲面;所述第五与第六折光棱镜的下方均为菲涅尔面。
进一步的,所述光路通道包括位于键帽下方的第二十二反射面及第二十三反射面、位于下固定壳第一通孔位置上的准直菲涅尔透镜、位于下固定壳第二通孔位置上的聚光菲涅尔透镜、以及位于PCB板上的第五挡光片,
所述第二十二反射面与所述第二十三反射面相互对准,当按键放松时,经光发射器件发出的光线,经过位于下固定壳上准直菲涅尔透镜准直之后,入射到位于键帽下方的所述第二十二反射面上,经反射后光线转折,再入射到另一侧、同样位于键帽下方的所述第二十三反射面,经再次反射后,光线向下方入射到位于下固定壳的聚光菲涅尔透镜中,会聚到PCB板的光接收器件上,从而触发电路导通;
当按键下压时,位于PCB板上的第五挡光片将所述第二十二反射面及所述第二十三反射面之间的光线完全挡住,光路被切断,相连的电路处于断开状态。
进一步的,所述第二十二反射面与第二十三反射面均为倾斜平面,其也可以是离轴抛物面、离轴2次曲面或者多项式曲面的自由曲面,或为多个面组成的复合曲面。
进一步的,所述光路通道包括位于键帽下方的第一直角棱镜及第二直角棱镜、位于下固定壳第一通孔位置上的准直菲涅尔透镜、位于下固定壳第二通孔位置上的聚光菲涅尔透镜、以及位于PCB板上的第六挡光片,
所述第一直角棱镜及所述第二直角棱镜相互对准,当按键放松时,经光发射器件发出的光线,经过位于下固定壳上准直菲涅尔透镜准直之后,入射到位于键帽下方的所述第一直角棱镜,经过其上方的反射面反射后,光线转折入射到另一侧、同样位于键帽下方的所述第
二直角棱镜,经过其上方的反射面再次反射后,光线向下方入射到位于下固定壳的聚光菲涅尔透镜中,会聚到PCB板的光接收器件上,从而触发电路导通;
当按键下压时,位于PCB板上的第六挡光片将所述第一直角棱镜及所述第二直角棱镜之间的光线完全挡住,光路被切断,相连的电路处于断开状态。
进一步的,所述第一直角棱镜及所述第二直角棱镜上方的反射面均为全反射面,且均为倾斜平面,其也可以是离轴抛物面、离轴2次曲面或者多项式曲面的自由曲面,或为多个面组成的复合曲面。
进一步的,所述光路通道包括位于键帽下方的第二十四反射面及第二十五反射面、以及位于PCB板上的第七挡光片,
所述第二十四反射面及所述第二十五反射面相互对准,当按键放松时,经光发射器件发出的光线,经过位于下固定壳上第一通孔入射到位于键帽下方的所述第二十四反射面,经反射后光线投射向另一侧、同样位于键帽下方的第二十五反射面上,经再次反射后,光线射向下方转折,经过位于下固定壳上的第二通孔会聚到PCB板的光接收器件上,从而触发电路导通;
当按键下压时,位于PCB板上的第七挡光片将所述第二十四反射面及所述第二十五反射面之间的光线完全挡住,光路被切断,相连的电路处于断开状态。
进一步的,所述第二十四反射面及所述第二十五反射面均是离轴抛物面、离轴2次曲面或者多项式曲面的自由曲面,其也可以为倾斜纯平面,或为多个面组成的复合曲面。
进一步的,所述光发射器件竖直设置于所述上固定壳上,所述光接收器件设置于所述PCB板上,所述下固定壳上设置有第二通孔,且所述第二通孔位于所述光接收器件上方。
进一步的,所述光路通道包括设置于上固定壳的准直菲涅尔透镜、位于键轴的第二十六反射面、以及位于上固定壳下方的第二十七反射面,
从光发射器件发出的光线,经过上固定壳上的准直菲涅尔透镜后
准直入射到键轴的所述第二十六反射面上,当按键下压时,键轴的所述第二十六反射面正好对准上固定壳下方的所述第二十七反射面,其将从所述第二十六反射面入射过来的光线进行转折射出,射出的光线经下固定壳第二通孔位置的后集中到PCB板的光接收器件,从而触发电路导通;
当按键放松弹簧回复到原位时,所述第二十六反射面与所述第二十七反射面完全错开,光路被切断,相连的电路处于断开状态。
进一步的,所述第二十七反射面是离轴抛物面、离轴2次曲面或者多项式曲面的自由曲面,其也可以为倾斜纯平面,或为多个面组成的复合曲面。
进一步的,所述光路通道包括设置于上固定壳的准直菲涅尔透镜、位于键帽下方的第八挡光片、以及位于下固定壳第二通孔位置上的第七折光棱镜,
设置于上固定壳的所述准直菲涅尔透镜及所述第七折光棱镜相互对准,当按键放松时,经光发射器件发出的光线,经过所述准直菲涅尔透镜准直射出,光线入射到另一侧的位于下固定壳第二通孔位置上的所述第七折光棱镜中,经其上方倾斜的全反射面转折后,经过所述第七折光棱镜下方的聚光菲涅尔平面会聚到PCB板的光接收器件上,从而触发电路导通;
当按键下压时,位于键帽下方的第八挡光片将所述准直菲涅尔透镜及所述第七折光棱镜之间的光线完全挡住,光路被切断,相连的电路处于断开状态。
进一步的,所述第七折光棱镜的上方为倾斜的反射面,该反射面为离轴的抛物面、离轴二次曲面、或者多项式曲面形式的自由曲面,其也可以为倾斜纯平面,或为多个面组成的复合曲面,所述第七折光棱镜的下方为聚光菲涅尔面。
进一步的,所述光路通道包括设置于上固定壳的准直菲涅尔透镜、位于键帽下方的第九挡光片、以及位于上固定壳的第二十八反射面,
设置于上固定壳的所述准直菲涅尔透镜及所述第二十八反射面
相互对准,当按键放松时,经光发射器件发出的光线,经过所述准直菲涅尔透镜准直射出,光线入射到另一侧的位于上固定壳的第二十八反射面,经其反射转折后,经过位于下固定壳上的第二通孔会聚到PCB板的光接收器件上,从而触发电路导通;
当按键下压时,位于键帽下方的第九挡光片将所述准直菲涅尔透镜及所述第二十八反射面之间的光线完全挡住,光路被切断,相连的电路处于断开状态。
进一步的,所述第二十八反射面是离轴抛物面、离轴2次曲面或者多项式曲面的自由曲面,其也可以为倾斜纯平面,或为多个面组成的复合曲面。
进一步的,所述光路通道包括设置于上固定壳的准直菲涅尔透镜、位于键帽下方的第十挡光片、以及位于下固定壳第二通孔位置上的第八折光棱镜,
设置于上固定壳的所述准直菲涅尔透镜及所述第八折光棱镜相互对准,当按键放松时,经光发射器件发出的光线,经过所述准直菲涅尔透镜准直射出,光线入射到另一侧的位于下固定壳第二通孔位置上的所述第八折光棱镜中,经其上方倾斜的全反射面转折后,再经其下方的透光平面会聚到PCB板的光接收器件上,从而触发电路导通;
当按键下压时,位于键帽下方的第十挡光片将所述准直菲涅尔透镜及所述第八折光棱镜之间的光线完全挡住,光路被切断,相连的电路处于断开状态。
进一步的,所述第八折光棱镜的上方为倾斜的反射面,该反射面为离轴的抛物面、离轴二次曲面、或者多项式曲面形式的自由曲面,其也可以为倾斜纯平面,或为多个面组成的复合曲面,所述第八折光棱镜的下方为透光平面。
进一步的,所述光接收器件竖直设置于所述上固定壳上,所述光发射器件设置于所述PCB板上,所述下固定壳上设置有第一通孔,且所述第一通孔位于所述光发射器件上方。
进一步的,所述光路通道包括设置于上固定壳下方的第二十九反射面、位于键轴上的第三十反射面、位于键轴上另一侧的第三十一反
射面以及位于上固定壳的聚光菲涅尔透镜,
从光发射器件发出的光线,经过下固定壳上的第一通孔后准直入射到上固定壳下方的所述第二十九反射面,当按键下压时,键轴上的所述第三十反射面正好对准上固定壳下方的所述第二十九反射面,其将从所述第二十九反射面入射过来的光线进行转折射出,然后入射到同样位于键轴上的另一侧的所述第三十一反射面,经再次反射转折后,再入射到位于上固定壳另一侧的聚光菲涅尔透镜后集中到上固定壳的光接收器件,从而触发电路导通;
当按键放松弹簧回复到原位时,所述第三十反射面与所述第二十九反射面完全错开,同时所述第三十一反射面也与所述聚光菲涅尔透镜完全错开,光路被切断,相连的电路处于断开状态。
进一步的,所述第二十九反射面为离轴的抛物面、离轴二次曲面、或者多项式曲面形式的自由曲面,其也可以为倾斜纯平面,或为多个面组成的复合曲面。
进一步的,所述光路通道包括位于键帽下方的所述第十一挡光片、位于下固定壳上的所述第九折光棱镜、以及所述第十一挡光片另一侧的位于上固定壳上的聚光菲涅尔透镜,
所述第九折光棱镜与设置于上固定壳的所述聚光菲涅尔透镜相互对准,当按键放松时,从光发射器件发出的光线,经过下固定壳上的第一通孔后准直入射到所述第九折光棱镜,经其准直和转折之后,入射到另一侧的位于上固定壳所述聚光菲涅尔透镜中,再汇聚到上固定壳的光接收器件,从而触发电路导通;
当按键下压时,位于键帽下方的所述第十一挡光片将所述准直菲涅尔透镜及所述第九折光棱镜之间的光线完全挡住,光路被切断,相连的电路处于断开状态。
进一步的,所述第九折光棱镜的上方为倾斜的反射面,该反射面为离轴的抛物面、离轴二次曲面、或者多项式曲面形式的自由曲面,其也可以为倾斜纯平面,或为多个面组成的复合曲面,所述第九折光棱镜的下方为透光平面。
进一步的,所述光接收器件竖直设置于所述键帽上,所述光发射
器件设置于所述PCB板上,所述下固定壳上设置有第一通孔,且所述第一通孔位于所述光接收器件上方。
进一步的,所述光路通道包括位于下固定壳第一通孔位置上的准直菲涅尔透镜、固定于所述PCB板上的第十二挡光片、固定于键帽下方并且分别位于所述第十二挡光片两侧的第三十二反射面以及聚光菲涅尔透镜,
所述第三十二反射面与固定于键帽下方的所述聚光菲涅尔透镜相互对准,当按键放松时,从光发射器件发出的光线,经过下固定壳第一通孔位置上的准直菲涅尔透镜后准直入射到所述第三十二反射面,经其转折之后,入射到另一侧的固定于键帽下方的所述聚光菲涅尔透镜中,再汇聚到同样固定于键帽下方的光接收器件,从而触发电路导通;
当按键下压时,固定于所述PCB板上的第十二挡光片将所述聚光菲涅尔透镜及所述第三十二反射面之间的光线完全挡住,光路被切断,相连的电路处于断开状态。
进一步的,所述聚光菲涅尔透镜和所述光接收器件通过卡扣的方式固定在键帽下方。
进一步的,所述第三十二反射面为倾斜平面。
进一步的,所述光路通道包括位于下固定壳第一通孔位置上的准直菲涅尔透镜、固定于所述PCB板上的第十三挡光片、固定于键帽下方并且分别位于所述第十二挡光片两侧的第三直角棱镜以及聚光菲涅尔透镜,
所述第三直角棱镜与固定于键帽下方的所述聚光菲涅尔透镜相互对准,当按键放松时,从光发射器件发出的光线,经过下固定壳第一通孔位置上的准直菲涅尔透镜后准直入射到所述第三直角棱镜,经其倾斜平面的反射面发射转折之后,入射到另一侧的固定于键帽下方的所述聚光菲涅尔透镜中,再汇聚到同样固定于键帽下方的光接收器件,从而触发电路导通;
当按键下压时,固定于所述PCB板上的第十三挡光片将所述聚光菲涅尔透镜及所述第三直角棱镜之间的光线完全挡住,光路被切断,
相连的电路处于断开状态。
进一步的,所述聚光菲涅尔透镜、所述光接收器件以及所述第三直角棱镜均通过卡扣的方式固定在键帽下方。
进一步的,所述第三直角棱镜的上方为倾斜平面的反射面。
进一步的,所述反射面为高反射率表面,其反射系数超过80%,其为亮银色或者为亮金色,也可以为高反射率白色或光反射镀层。
进一步的,所述光发射器件为SMD IR红外线二极管或激光二极管,所述光接收器件为SMD PT管。
进一步的,所述挡光片为黑色吸光的材料,其与所述键帽采用双色注塑的方法注塑成型或通过卡扣的方式组合在一起,或通过卡扣的方式设置在所述PCB板上方。
本发明的另一个目的通过以下技术方案实现:
一种键帽字符照明系统,配合权超薄型反射式的电脑输入设备的开关模组使用,所述键帽字符照明系统包括:设置在所述PCB板上的照明光源和位于所述上固定壳上用于配光的光学器件,其中所述照明光源为单色LED芯片或者多色LED芯片,所述光学器件为梯形反射器、方形反射器、偏光透镜、全反射透镜、组合透镜或者用来做混光处理的内部掺杂扩散粒子的扩撒片。
优选的,所述光学器件为梯形反射器或方形反射器,其将所述照明光源发出来的光线进行配光,分配到所需要的照明范围,其反射面为高反射率表面,其反射系数超过80%,其为亮银色或者为亮金色,也可以为高反射率白色或光反射镀层。
优选的,所述光学器件为偏心透镜,其上曲面为偏心、非对称的自由曲面。
优选的,所述光学器件为全反射透镜,其包括中间的折射部分以及外圈的全反射部分。
优选的,所述光学器件为组合透镜,其下表面为锯齿形菲涅尔面,其可以收集大角度的光线,并进行准直,准直后再入射到其上表面上,其上表面为凸面,用来将下表面准直入射过来的光线分配到所需的照
明区域。
优选的,所述照明光源为多色LED芯片,所述光学器件为用来做混光处理的内部掺杂扩散粒子的扩撒片。
本发明相对于现有技术具有如下的优点及效果:
1)本发明公开的超薄型反射式的光电键盘开光模组,其具有结构更简单、成本更低、组装更方面、开关模组高度低等特点,其高度只有传统机械轴键盘的1/3~1/4,比较适合用于电脑输入键盘、掌上式平板移动设备、电脑鼠标器、以及数控机床输入设备。
2)本发明公开的超薄型反射式的光电键盘开光模组,采用纯光电器件控制开关的断开及通路,无需机械式金属触点,其开关寿命可以达到1亿次,不会发生传统机械轴金属接触弹片疲劳性磨损及氧化长铜绿等品质问题。
图1是本实施例1中公开的超薄型反射式的电脑输入设备的开关模组的等轴侧分解结构图;
图2是本实施例1中公开的超薄型反射式的电脑输入设备的开关模组的正视分解结构图;
图3是本实施例1中公开的超薄型反射式的电脑输入设备的开关模组按键放松的状态下其沿A-A方向的剖面图;
图4(a)是本实施例1中公开的超薄型反射式的电脑输入设备的开关模组按键按下的状态下其沿A-A方向的剖面图;
图4(b)是本实施例1中公开的超薄型反射式的电脑输入设备的开关模组按键按下的状态下其沿图1中箭头T方向上视的剖面图;
图5是本实施例2中公开的超薄型反射式的电脑输入设备的开关模组按键放松的状态下其沿图1中D-D方向的剖面图;
图6(a)是本实施例2中公开的超薄型反射式的电脑输入设备的开关模组按键按下的状态下其沿图1中D-D方向的剖面图;
图6(b)是本实施例2中公开的超薄型反射式的电脑输入设备的开关模组按键按下的状态下其沿图1中箭头T方向上视的剖面图;
图7是本实施例3公开的超薄型反射式的电脑输入设备的开关模组按键放松的状态下其沿图1中D-D方向的剖面图;
图8是本实施例3公开的超薄型反射式的电脑输入设备的开关模组按键下压的状态下其沿图1中D-D方向的剖面图;
图9是本实施例4公开的超薄型反射式的电脑输入设备的开关模组按键放松的状态下其沿图1中B-B方向的剖面图;
图10是本实施例4公开的超薄型反射式的电脑输入设备的开关模组按键下压的状态下其沿图1中B-B方向的剖面图;
图11是本实施例5公开的超薄型反射式的电脑输入设备的开关模组按键放松的状态下其沿图1中B-B方向的剖面图;
图12是本实施例5公开的超薄型反射式的电脑输入设备的开关模组按键下压的状态下其沿图1中B-B方向的剖面图;
图13是本实施例6公开的超薄型反射式的电脑输入设备的开关模组按键放松的状态下其沿图1中B-B方向的剖面图;
图14是本实施例6公开的超薄型反射式的电脑输入设备的开关模组按键下压的状态下其沿图1中B-B方向的剖面图;
图15是本实施例7公开的超薄型反射式的电脑输入设备的开关模组按键放松的状态下其沿图1中B-B方向的剖面图;
图16是本实施例7公开的超薄型反射式的电脑输入设备的开关模组按键下压的状态下其沿图1中B-B方向的剖面图;
图17是本实施例8公开的超薄型反射式的电脑输入设备的开关模组按键放松的状态下其沿图1中B-B方向的剖面图;
图18是本实施例8公开的超薄型反射式的电脑输入设备的开关模组按键下压的状态下其沿图1中B-B方向的剖面图;
图19是本实施例9公开的超薄型反射式的电脑输入设备的开关模组按键放松的状态下其沿图1中B-B方向的剖面图;
图20是本实施例9公开的超薄型反射式的电脑输入设备的开关模组按键下压的状态下其沿图1中B-B方向的剖面图;
图21是本实施例10公开的超薄型反射式的电脑输入设备的开关模组按键放松的状态下其沿图1中B-B方向的剖面图;
图22是本实施例10公开的超薄型反射式的电脑输入设备的开关模组按键下压的状态下其沿图1中B-B方向的剖面图;
图23是本实施例11公开的超薄型反射式的电脑输入设备的开关模组按键放松的状态下其沿图1中B-B方向的剖面图;
图24是本实施例11公开的超薄型反射式的电脑输入设备的开关模组按键下压的状态下其沿图1中B-B方向的剖面图;
图25是本实施例12公开的超薄型反射式的电脑输入设备的开关模组按键放松的状态下其沿图1中B-B方向的剖面图;
图26是本实施例12公开的超薄型反射式的电脑输入设备的开关模组按键下压的状态下其沿图1中B-B方向的剖面图;
图27是本实施例13公开的超薄型反射式的电脑输入设备的开关模组按键放松的状态下其沿图1中B-B方向的剖面图;
图28是本实施例13公开的超薄型反射式的电脑输入设备的开关模组按键下压的状态下其沿图1中B-B方向的剖面图;
图29是本实施例14公开的超薄型反射式的电脑输入设备的开关模组按键放松的状态下其沿图1中B-B方向的剖面图;
图30是本实施例14公开的超薄型反射式的电脑输入设备的开关模组按键下压的状态下其沿图1中B-B方向的剖面图;
图31是本实施例15中公开的超薄型反射式的电脑输入设备的开关模组按键按下的状态下其沿图1中D-D方向的剖面图;
图32是本实施例15中公开的超薄型反射式的电脑输入设备的开关模组按键按下的状态下其沿图1中箭头T方向上视的剖面图;
图33是本实施例16公开的超薄型反射式的电脑输入设备的开关模组按键放松的状态下其沿图1中B-B方向的剖面图;
图34是本实施例16公开的超薄型反射式的电脑输入设备的开关模组按键下压的状态下其沿图1中B-B方向的剖面图;
图35是本实施例17公开的超薄型反射式的电脑输入设备的开关模组按键放松的状态下其沿图1中B-B方向的剖面图;
图36是本实施例17公开的超薄型反射式的电脑输入设备的开关模组按键下压的状态下其沿图1中B-B方向的剖面图;
图37是本实施例18公开的超薄型反射式的电脑输入设备的开关模组按键放松的状态下其沿图1中B-B方向的剖面图;
图38是本实施例18公开的超薄型反射式的电脑输入设备的开关模组按键下压的状态下其沿图1中B-B方向的剖面图;
图39是本实施例19中公开的超薄型反射式的电脑输入设备的开关模组按键按下的状态下其沿图1中D-D方向的剖面图;
图40是本实施例19中公开的超薄型反射式的电脑输入设备的开关模组按键按下的状态下其沿图1中箭头T方向上视的剖面图;
图41是本实施例20公开的超薄型反射式的电脑输入设备的开关模组按键放松的状态下其沿图1中B-B方向的剖面图;
图42是本实施例20公开的超薄型反射式的电脑输入设备的开关模组按键下压的状态下其沿图1中B-B方向的剖面图;
图43是本实施例21公开的超薄型反射式的电脑输入设备的开关模组按键放松的状态下其沿图1中B-B方向的剖面图;
图44是本实施例21公开的超薄型反射式的电脑输入设备的开关模组按键下压的状态下其沿图1中B-B方向的剖面图;
图45是本实施例22公开的超薄型反射式的电脑输入设备的开关模组按键放松的状态下其沿图1中B-B方向的剖面图;
图46是本实施例22公开的超薄型反射式的电脑输入设备的开关模组按键下压的状态下其沿图1中B-B方向的剖面图;
图47是本实施例23公开的用于光电键盘开关模组的键帽字符照明系统其沿图1中C-C方向的剖面图;
图48是本实施例23公开的用于光电键盘开关模组的键帽字符照明系统的设计原理图;
图49是本实施例24公开的用于光电键盘开关模组的键帽字符照明系统其沿图1中C-C方向的剖面图;
图50是本实施例25公开的用于光电键盘开关模组的键帽字符照明系统其沿图1中C-C方向的剖面图;
图51是本实施例26公开的用于光电键盘开关模组的键帽字符照明系统其沿图1中C-C方向的剖面图;
图52是本实施例27公开的用于光电键盘开关模组的键帽字符照明系统其沿图1中C-C方向的剖面图。
为使本发明的目的、技术方案及优点更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例一
本发明所涉及的一种超薄型反射式的电脑输入设备的开关模组,其具体实施例一的等轴侧分解结构图如图1所示,正视分解结构图如图2所示,其由键帽11、键轴12、弹簧13、上固定壳14、下固定壳15、最下边的PCB板(印刷电路板)16、SMD(Surface Mounted Devices表面贴装器件)IR管(Infrared Radiation红外线)17(表面贴装红外二极管、或红外激光二极管)、SMD PT(Phototransistor光敏三极管)18(表面贴装的光敏三极管)、以及用于键帽字符照明的SMD LED 19(表面贴装的发光二极管)组成。所述的SMD IR管17,其为光发射器件。所述的SMD PT管18,其为光接收器件。本具体实施一中,沿经过SMD IR管17发光面中心点及键轴中心O点的A-A方向的剖面图如图3所示;所述的键轴12,其下方的外侧有一个第二反射面12-1;所述的上固定壳14,其下方内侧面有两个用于按键开关控制通道的第一反射面14-2和第三反射面14-3,其右侧有一个用于键帽字符照明配光用的梯形反射器14-1;所述的下固定壳15,其靠近SMD IR管17上方有一个第一通孔15-1,其另一侧靠近SMD PT管18上方有另一个第二通孔15-2。
本发明所涉及的一种超薄型反射式的电脑输入设备的开关模组,其具体实施例一的工作原理如图3和图4(a)、(b)所示,图3为按键放松时的状态,图4(a)、(b)所示的是按键下压时的状态,图4
(a)为沿着图1中A-A剖面的光路图,图4(b)为图1中沿着箭头T方向向上观看上固定壳14及键轴12的光路图,其与图4(a)的沿着A-A剖面的光路图相对应。从SMD IR管17的中心P点发出的光线,经过下固定壳的第一通孔15-1后入射到上固定壳14下方的第一反射面14-2上,所述的第一反射面14-2,其为自由曲面,其可以为离轴抛物面、离轴2次曲面或者是多项式曲面,其将入射的光线准直,准直后往键轴12中心的方向射出。当按键下压至1.85mm时,位于键轴12上的第二反射面12-1正好对准位于上固定壳14下方的第一反射面14-2,其将入射过来的准直光线,进行反射。经键轴12上的第二反射面12-1反射后,反射后的光线见图4(b)所示,其入射到上固定壳14下方另一侧的第三反射面14-3上,第三反射面14-3再经下固定壳15上的第二通孔15-2后将入射光线会聚到位于SMD PT管18中心的Q点上,从而触发电路导通。当按键放松、弹簧回复到原位时,键轴向上移动,带动键轴12上的第二反射面12-1一起向上移动,此时位于键轴12上的第二反射面12-1与位于上固定壳14下方的第一反射面14-2完全错开,光路被切断,SMD PT管18上没有触发电流,相连的电路处于断开状态,如图3所示。
所述位于上固定壳下方的第一反射面是离轴抛物面、离轴2次曲面或者是多项式曲面的自由曲面,其也可以为纯平面,或多个面组成的复合曲面;所述位于上固定壳下方另一侧的第三反射面,其反射面是离轴抛物面、离轴2次曲面或者是多项式曲面的自由曲面,其也可以为倾斜纯平面,为多个面组成的复合曲面;所述的第一反射面通过第二反射面的反射与第三反射面光路耦合。
所述的第一反射面及第二反射面及第三反射面相对于键轴中心对称设置,也可以为非对称设置。
本具体实施例一中所述键轴12上的第二反射面12-1,其为高反射率表面,其反射系数超过80%。本具体实施例一中所述的位于上固定壳14下方的第一反射面14-2、及另一侧的第三反射面14-3,其也为高反射率表面,其反射系数超过80%,所述的高反射率表面,其为亮银色或者为亮金色,也可以为高反射率白色或光反射镀层。。
实施例二
本发明所涉及的一种超薄型反射式的电脑输入设备的开关模组,其位于键轴上的反射面可以设置为2个或2个以上的多个反射面。具体实施例二为将位于键轴上的反射面设置为2个反射面的一种光路控制的结构。其工作原理如图5和图6所示。图5为本具体实施方案沿图1中D-D方向的剖面图,其工作状态为按键放松、弹簧弹起的状态。图6(a)及(b)分别为本具体实施方案沿图1中D-D方向剖面及沿箭头T方向上视的光路图,其为按键处于下压的状态,其按键开关的控制原理为:当按键下压1.85mm时,从SMD IR管17的中心P点发出的光线,经过下固定壳15上的第一通孔15-1后入射到位于上固定壳24下方的第四反射面24-2上,所述的第四反射面24-2,其为自由曲面,其可以为离轴抛物面、离轴2次曲面或者是多项式曲面,其将入射的光线准直,准直后往左边水平的方向射出。位于键轴22上的第五反射面22-1正好对准位于上固定壳24下方的第四反射面24-2,其将入射过来的准直光线,进行反射。被第五反射面22-1反射的光线,如图6(b)(沿着图1中箭头T方向上视上固定壳24及键轴22)所示,光线顺时针转折90度,入射到同样位于键轴22上的另一个第六反射面22-2上,经再次反射后,再向右入射到位于上固定壳24下方另一侧的第七反射面24-3上,第七反射面24-3再将入射光线经过下固定壳15上的第二通孔15-2会聚到位于SMD PT管18中心的Q点上,从而触发电路导通。当按键放松、弹簧回复到原位时,键轴向上移动,带动键轴22上的第五反射面22-1及第六反射面22-2一起向上移动,位于键轴22上的第五反射面22-1与位于上固定壳24下方的第四反射面24-2完全错开,同时位于键轴22上的第六反射面22-2也与上固定壳24下方的用来会聚的第七反射面24-3错开,此时光路被切断,SMD PT管18上没有触发电流,相连的电路处于断开状态,如图5所示。本具体实施例二所述的上固定壳24下方另一侧的第七反射面24-3,其与第四反射面24-2相对于键轴中心对称,其形状完全一样。同理,本具体实施例二所述的键轴22上另
一侧的第六反射面22-2,其与第五反射面22-1相对于键轴22中心对称,其形状完全一样。
所述位于上固定壳24下方的第四反射面24-2,其为自由曲面,其可以为离轴抛物面、离轴2次曲面或者是多项式曲面,其将入射的光线准直,准直后往左边水平的方向射出。所述位于上固定壳24下方的第七反射面24-3,其反射面是离轴抛物面、离轴2次曲面或者是多项式曲面的自由曲面,其也可以为倾斜纯平面,为多个面组成的复合曲面,其将入射的光线准直,往下方进行会聚,会聚后的光线集中到其下方的SMD PT 18上。
本具体实施例二中所述键轴22上的第五反射面22-1及另一侧的第六反射面22-2,均为高反射率表面,其反射系数超过80%。本具体实施例二中所述的位于上固定壳24下方的第五反射面24-2、及另一侧的第六反射面24-3,其也为高反射率表面,其反射系数超过80%,所述的高反射率表面,其为亮银色或者为亮金色,也可以为高反射率白色或光反射镀层。
实施例三
本发明所涉及的一种超薄型反射式的电脑输入设备的开关模组,其可以采用准直/聚焦透镜与反射面相结合的结构。其光路通道由位于键轴32上的多个反射面、位于上固定壳下方的多个反射面、以及位于下固定壳第一通孔或/和第二通孔位置的准直/聚焦透镜组成,如图7和图8所述的具体实施方案3所示。图7为本具体实施方案沿图1中D-D方向的剖面图,其为按键处于放松的状态。图8为本具体实施方案沿图1中D-D方向剖面的光路图,其为按键处于下压的状态。本具体实施方案中,键帽、及键轴上反射面设置,采用了与具体实施例二相同的结构,上固定壳体34下方的反射面34-2则采用了倾斜45度的平面,下固定壳体35的第一通孔15-1位置放置了一个准直菲涅尔透镜35-1,其具有较大的数值孔径,可以收集较多的光线,其先将SMD IR管17的光线收集起来并进行准直,准直后的光线再经过上固定壳体34下方的第八反射面34-2进行反射。当按键下压时,
位于键轴32上第九反射面32-1正好对准位于上固定壳体34下方的第八反射面34-2,其将经第八反射面34-2反射后入射过来的光线进行再次反射,再次反射的光线经位于键轴32另一侧的第十反射面和位于上固定壳体34下方另一侧的第十一反射面再次反射,最后再经过位于下固定壳体35的另一个第二通孔15-2位置的聚焦菲涅尔透镜会聚,会聚后的光线聚焦到SMD PT管18中,光路导通。当按键上升时,位于键轴32上第九反射面32-1与位于上固定壳体34下方的第十反射面34-2完全错开,入射光线不能被其反射,光路被隔断。
所述位于上固定壳34下方的第八反射面34-2,其为倾斜45度的平面,也可以是离轴抛物面、离轴2次曲面或者是多项式曲面的自由曲面,其也可以为由多个面组成的复合曲面;其将入射的光线准直,准直后往左边水平的方向射出。所述位于上固定壳34下方的第十一反射面34-3,其为倾斜45度的平面,也可以是离轴抛物面、离轴2次曲面或者是多项式曲面的自由曲面,其也可以为由多个面组成的复合曲面;其将入射的光线准直,往下方进行会聚,会聚后的光线集中到其下方的SMD PT 18上。所述的第八反射面通过第九反射面及第十反射面的反射与第十一反射面光路耦合,并且所述的第八反射面及第九反射面及第十反射面及第十一反射面相对于键轴中心对称设置,也可以为非对称设置。
本具体实施方案所述键轴32上的第九反射面32-1,位于上固定壳34下方的第八反射面34-2、及其它位置的反射面,其都为高反射率表面,其反射系数超过80%,所述的高反射率表面,其为亮银色或者为亮金色,也可以为高反射率白色或光反射镀层。
实施例四
本发明所涉及的一种超薄型反射式的电脑输入设备的开关模组,其控制按键开关的反射面可以与键帽集成在一起,其光路通道可以由位于键帽下方的自由曲面的第十二反射面41-1及位于上固定壳上的自由曲面第十三反射面44-2组成。
具体实施方案4将控制按键开关的第十二反射面41-1设置在键
帽的下方,键轴42上没有设置反射面,其开关控制原理如图9和图10所示。图9为本具体实施方案沿图1中B-B方向的剖面图,其按键处于放松的状态。图10为本具体实施方案沿图1中B-B方向剖面的光路图,其按键处于下压的状态。其按键开关的控制原理为:当按键下压时,位于键帽41下方的第十二反射面41-1正好与位于上固定壳44上的第十三反射面44-2相对准,从SMD IR管17发出的光线,经过第十二反射面41-1反射后向右边准直射出,射出的光线再经过第十三反射面44-2往下转折和会聚,会聚后的光线集中到SMD PT管18上,从而触发SMD PT管18产生电流,与之相连的电路处于导通状态。当按键放松、弹簧回复到原位时,位于键帽41下方的第十二反射面41-1与位于上固定壳44上的第十三反射面44-2完全错开,光线不能被第十三反射面44-2进行会聚,从而SMD PT管18中不能触发电流,与之相连的电路处于断开状态。
所述的位于键帽41下方的第十二反射面41-1,以及位于上固定壳44上的第十三反射面44-2,其反射面是离轴抛物面、离轴2次曲面或者是多项式曲面的自由曲面,其也可以为倾斜纯平面,为多个面组成的复合曲面。所述的位于键帽41下方的第十二反射面41-1,以及位于上固定壳44上的第十三反射面44-2,其均为高反射率表面,其反射系数超过80%,所述的高反射率表面,其为亮银色或者为亮金色,也可以为高反射率白色或光反射镀层。。
实施例五
本发明所涉及的一种超薄型反射式的电脑输入设备的开关模组,其具体实施方案的按键开关的控制光路由位于键帽下方的倾斜平面第十四反射面51-1、位于下固定壳第一通孔位置的准直透镜55-1、及位于上固定壳的自由曲面第十五反射面54-2组成,其开关控制原理如图11和图12所示。图11为本具体实施方案沿图1中B-B方向的剖面图,其按键处于放松的状态。图12为本具体实施方案沿图1中B-B方向剖面的光路图,其为按键处于下压的状态。其按键开关的控制原理为:当按键下压时,位于键帽51下方的倾斜平面第十四反
射面51-1正好与位于上固定壳54上的自由曲面第十五反射面54-2相对准,从SMD IR管17发出的光线,经过位于下固定壳55第一通孔位置的菲涅尔准直透镜55-1准直后,再入射到位于键帽51下方的倾斜平面第十四反射面51-1上,经倾斜平面第十四反射面51-1反射后向右边准直射出,射出的光线再经过自由曲面第十五反射面54-2进行往下转折和会聚,会聚后的光线集中到SMD PT管18上,从而触发SMD PT管18产生电流,与之相连的电路处于导通状态。当按键放松、弹簧回复到原位时,位于键帽51下方的倾斜平面第十四反射面51-1与位于上固定壳54上的自由曲面第十五反射面54-2相错开,光线不能被自由曲面第十五反射面54-2进行会聚,从而SMD PT管18中不能触发电流,与之相连的电路处于断开状态。
所述的位于键帽51下方的倾斜平面第十四反射面51-1,以及位于上固定壳54上的自由曲面第十五反射面54-2,其为高反射率表面,其反射系数超过80%,所述的高反射率表面,其为亮银色或者为亮金色,也可以为高反射率白色或光反射镀层。
实施例六
本发明所涉及的一种超薄型反射式的电脑输入设备的开关模组,其具体实施方案的按键开关的控制光路由位于键帽下方的倾斜平面第十六反射面61-1、位于下固定壳第一通孔位置的准直透镜65-1、位于上固定壳的倾斜平面第十七反射镜64-2、以及位于下固定壳第二通孔位置聚光透镜65-2组成,其开关控制原理如图13和图14所示。图13为本具体实施方案沿图1中B-B方向的剖面图,其为按键处于放松的状态。图14为本具体实施方案沿图1中B-B方向剖面的光路图,其为按键处于下压的状态。其按键开关的控制原理为:当按键下压时,位于键帽61下方的倾斜平面第十六反射面61-1正好与位于上固定壳64上的倾斜平面第十七反射面64-2相对准,从SMD IR管17发出的光线,经过位于下固定壳65第一通孔位置的菲涅尔准直透镜65-1准直后,再入射到位于键帽61下方的倾斜平面第十六反射面61-1上,经倾斜平面第十六反射面61-1反射后向右侧准直射出,射
出的光线再经过位于上固定壳64上的倾斜平面第十七反射面64-2反射之后,光束往下转折,然后被位于下固定壳65另一个第二通孔位置的菲涅尔聚光透镜65-2进行会聚,会聚后的光线集中到SMD PT管18上,从而触发SMD PT管18产生电流,与之相连的电路处于导通状态。当按键放松、弹簧回复到原位时,位于键帽61下方的倾斜平面第十六反射面61-1与位于上固定壳64上的倾斜平面第十七反射面64-2完全错开,光线不能被倾斜平面反射面64-2进行转折,从而SMD PT管18中不能触发电流,与之相连的电路处于断开状态。
所述的位于键帽61下方的倾斜平面第十六反射面61-1,以及位于上固定壳64上的倾斜平面第十七反射面64-2,其为斜45度反射面,高反射率表面,其反射系数超过80%,所述的高反射率表面,其为亮银色或者为亮金色,也可以为高反射率白色或光反射镀层。
实施例七
本发明所涉及的一种超薄型反射式的电脑输入设备的开关模组,其具体实施方案的按键开关的控制光路由位于键帽下方的自由曲面的第十八反射面71-1、以及位于下固定壳第二通孔位置的自由曲面的第一折光棱镜75-2组成,其开关控制原理如图15和图16所示。图15为本具体实施方案沿图1中B-B方向的剖面图,其为按键处于放松的状态。图16为本具体实施方案沿图1中B-B方向剖面的光路图,其为按键处于下压的状态。其按键开关的控制原理为:当按键下压时,位于键帽71下方的自由曲面的第十八反射面71-1正好与位于下固定壳75通孔位置的自由曲面的第一折光棱镜75-2相对准,从SMD IR管17发出的光线,经过位于下固定壳75的第一通孔之后,入射到位于键帽71下方的自由曲面的第十八反射面71-1上,第十八反射面71-1将入射光线进行准直并转折,往右方水平射出,射出的光线再经过位于下固定壳75通孔位置的自由曲面的第一折光棱镜75-2进行全反射会聚,并往下方转折,会聚后的光线集中到SMD PT管18上,从而触发SMD PT管18产生电流,与之相连的电路处于导通状态。当按键放松、弹簧回复到原位时,位于键帽71下方的自由曲
面的第十八反射面71-1与位于下固定壳75通孔位置的自由曲面的第一折光棱镜75-2完全错开,光线不能被自由曲面的第一折光棱镜75-2进行会聚,从而SMD PT管18中不能触发电流,与之相连的电路处于断开状态。
所述的键帽71下方的自由曲面的第十八反射面71-1,其可以为离轴抛物面、离轴二次曲面、或者多项式曲面,其为高反射率表面,其反射系数超过80%,其为亮银色或者为亮金色,也可以为高反射率白色或光反射镀层。所述的位于下固定壳75第二通孔位置的自由曲面的第一折光棱镜75-2,其靠近第十八反射面71-1一侧有一竖直平面,其为输入面;其远离第十八反射面71-1一侧有一倾斜的自由曲面全反射面,其可以为离轴抛物面、离轴二次曲面、或者多项式曲面;其下方有一水平的平面,其为输出面。
实施例八
本发明所涉及的一种超薄型反射式的电脑输入设备的开关模组,其具体实施方案的按键开关的控制光路由位于键帽下方的第一挡光片81-1、位于下固定壳85第一通孔位置上用于准直和转折光路的自由曲面的第二折光棱镜85-1以及位于下固定壳85第二通孔位置上用于转折和会聚光路的自由曲面的第三折光棱镜85-2组成,其开关控制原理如图17和图18所示。其按键开关导通和断开的状态反过来设置,其为按键放松时光路处于导通状态、按键下压时光路处于断开状态。
图17为本具体实施方案沿图1中B-B方向剖面的光路图,其为按键处于放松的状态。图18为本具体实施方案沿图1中B-B方向的剖面图,其为按键处于下压的状态。其按键开关的控制原理为:位于下固定壳85上用于准直和转折光路的自由曲面的第二折光棱镜85-1与同样位于下固定壳85上用于转折和会聚光路的自由曲面的第三折光棱镜85-2相互对准,当按键放松时,位于键帽81下方的挡光片81-1没有挡在自由曲面折光棱镜85-1和自由曲面折光棱镜85-2之间的光路中,从SMD IR管17发出的光线,经过自由曲面的第二折
光棱镜85-1下方的菲涅面之后,准直入射到自由曲面的第二折光棱镜85-1上方倾斜的全反射面上,经其全反射面转折之后,从其右边的竖直平面射出,由于挡光片81-1对光线没有阻挡,从自由曲面的第二折光棱镜85-1右边竖直平面输出的光线入射到另一侧的同样位于下固定壳85上用于转折和会聚光路的自由曲面的第三折光棱镜85-2中,经其上方倾斜的全反射面转折之后,再通过其下方的菲涅尔面会聚到SMD PT管18上,从而触发SMD PT管18产生电流,与之相连的电路处于导通状态。当按键下压时,位于键帽81下方的第一挡光片81-1向下移动,其将自由曲面的第二折光棱镜85-1及自由曲面的第三折光棱镜85-2之间的光线完全挡住。SMD PT管18中不能触发电流,与之相连的电路处于断开状态。因此本实施方案所述的按键开关的控制光路,其导通及断开的状态与具体实施方案1~7中的状态完全相反。
所述的键帽81下方的第一挡光片81-1,其为黑色吸光的材料,其与键帽采用双色注塑的方法注塑成型。所述的位于下固定壳85上用于准直和转折光路的自由曲面的第一折光棱镜85-1与同样位于下固定壳85上用于转折和会聚光路的自由曲面的第二折光棱镜85-2,其上方均为倾斜的平面,其下方均匀菲涅尔面。
实施例九
本发明所涉及的一种超薄型反射式的电脑输入设备的开关模组,其具体实施方案的按键开关的控制光路由位于键帽下方的第二挡光片91-1、位于上固定壳94上用于准直和转折光路的第十九反射面94-1、以及同样位于上固定壳94上用于转折和会聚光路的第二十反射面94-2组成。其开关控制原理如图19和图20所示。其按键开关导通和断开的状态反过来设置,其为按键放松时光路处于导通状态、按键下压时光路处于断开状态。
图19为本具体实施方案沿图1中B-B方向剖面的光路图,其为按键处于放松的状态。图20为本具体实施方案沿图1中B-B方向的剖面图,其为按键处于下压的状态。其按键开关的控制原理为:位于
上固定壳94上用于准直和转折光路的第十九反射面94-1与同样位于上固定壳94上用于转折和会聚光路的第二十反射面94-2相互对准,当按键放松时,位于键帽91下方的第二挡光片91-1没有挡住第十九反射面94-1和第二十反射面94-2的光路,从SMD IR管17发出的光线,经过位于上固定壳94上用于准直和转折光路的第十九反射面94-1反射之后,光线向右方准直射出,由于第二挡光片91-1对光线没有阻挡,从第十九反射镜94-1反射过来的光线再入射到另一侧的同样位于上固定壳94上用于转折和会聚光路的第二十反射镜94-2上,经反射之后,最后会聚到下方的SMD PT管18上,从而触发SMD PT管18产生电流,与之相连的电路处于导通状态。而当按键下压时,位于键帽91下方的第二挡光片91-1向下移动,其将第十九反射镜94-1及第二十反射镜94-2之间的光线完全挡住。SMD PT管18中不能触发电流,与之相连的电路处于断开状态。因此本实施方案所述的按键开关的控制光路,其导通及断开的状态与具体实施方案1~7中的状态完全相反。
所述的键帽91下方的挡光片91-1,其为黑色吸光的材料,其与键帽采用双色注塑的方法注塑成型。所述的位于上固定壳94上用于准直和转折光路的第十九反射面94-1、以及同样位于上固定壳94上用于转折和会聚光路的第二十反射面94-2,其反射面是离轴抛物面、离轴2次曲面或者是多项式曲面的自由曲面,其也可以为倾斜纯平面,为多个面组成的复合曲面,其为高反射率表面,其反射系数超过80%,其为亮银色或者为亮金色,也可以为高反射率白色或光反射镀层。
实施例十
本发明所涉及的一种超薄型反射式的电脑输入设备的开关模组,其具体实施方案的按键开关的控制光路由位于键帽下方的第三挡光片101-1、位于下固定壳105第一通孔位置上用于准直和转折光路的自由曲面的第四折光棱镜105-1、以及位于上固定壳104上用于转折和会聚光路的自由曲面第二十一反射面104-2组成,其开关控制原理
如图21和图22所示。其按键开关导通和断开的状态反过来设置,即按键放松时光路处于导通状态、按键下压时光路处于断开状态。
图21为本具体实施方案沿图1中B-B方向剖面的光路图,其为按键处于放松的状态。图22为本具体实施方案沿图1中B-B方向的剖面图,其为按键处于下压的状态。其按键开关的控制原理为:位于下固定壳105上用于准直和转折光路的自由曲面第四折光棱镜105-1与位于上固定壳104上用于转折和会聚光路的自由曲面的第二十一反射面104-2相互对准,当按键放松时,位于键帽101下方的第三挡光片101-1没有挡在自由曲面的第四折光棱镜105-1和自由曲面的第二十一反射面104-2的光路中,从SMD IR管17发出的光线,经过位于下固定壳105上用于准直和转折光路的自由曲面的第四折光棱镜105-1上方的全反射面反射之后,光线从其右边的竖直平面向右方准直射出,由于第三挡光片101-1对光线没有阻挡,从自由曲面的第四折光棱镜105-1反射过来的光线入射到另一侧的位于上固定壳104上用于转折和会聚光路的自由曲面的第二十一反射面104-2上,经反射之后,会聚到下方的SMD PT管18上,从而触发SMD PT管18产生电流,与之相连的电路处于导通状态。而当按键下压时,位于键帽101下方的第三挡光片101-1向下移动,其将自由曲面的第三折光棱镜105-1及自由曲面的第二十一反射面104-2之间的光线完全挡住。SMD PT管18中不能触发电流,与之相连的电路处于断开状态。因此本实施方案所述的按键开关的控制光路,其导通及断开的状态与具体实施方案1~7中的状态完全相反。
所述的键帽101下方的第三挡光片101-1,其为黑色吸光的材料,其与键帽采用双色注塑的方法注塑成型。所述的位于下固定壳105上用于准直和转折光路的自由曲面的第三折光棱镜105-1、其全反射面为上方的倾斜曲面,其为离轴抛物面、离轴2次曲面或者是多项式曲面的自由曲面,其也可以为倾斜纯平面,为多个面组成的复合曲面。所述的位于上固定壳104上用于转折和会聚光路的自由曲面的第二十一反射面104-2,其为离轴的抛物面、离轴二次曲面、或者为多项式曲面,其为高反射率表面,其反射系数超过80%,其为亮银色或者
为亮金色,也可以为高反射率白色或光反射镀层。
实施例十一
本发明所涉及的一种超薄型反射式的电脑输入设备的开关模组,其具体实施方案的按键开关的控制光路由位于键帽下方的第四挡光片111-1、位于下固定壳115第一通孔位置上用于准直和转折光路的自由曲面的第五折光棱镜115-1、以及同样位于下固定壳115第二通孔位置上用于转折和会聚光路的自由曲面的第六折光棱镜115-2组成、其开关控制原理如图23和图24所示。其按键开关导通和断开的状态反过来设置,即按键放松时光路处于导通状态、按键下压时光路处于断开状态。
图23为本具体实施方案沿图1中B-B方向剖面的光路图,其为按键处于放松的状态。图24为本具体实施方案沿图1中B-B方向的剖面图,其为按键处于下压的状态。其按键开关的控制原理为:位于下固定壳115上用于准直和转折光路的自由曲面的第五折光棱镜115-1与同样位于下固定壳115上用于转折和会聚光路的自由曲面的第六折光棱镜115-2相互对准,当按键放松时,位于键帽111下方的第四挡光片111-1没有挡在自由曲面的第五折光棱镜115-1和自由曲面的第六折光棱镜115-2的光路之间,从SMD IR管17发出的光线,经过位于下固定壳115上用于准直和转折光路的自由曲面的第五折光棱镜115-1上方的全反射面反射之后,光线从其右边的竖直平面向右方准直射出,由于第四挡光片111-1对光线没有阻挡,从自由曲面的第五折光棱镜115-1反射过来的光线再入射到另一侧的同样位于下固定壳115上用于转折和会聚光路的自由曲面的第六折光棱镜115-2中,经其全反射曲面反射之后,最后会聚到下方的SMD PT管18上,从而触发SMD PT管18产生电流,与之相连的电路处于导通状态。而当按键下压时,位于键帽111下方的第四挡光片111-1向下移动,其将自由曲面的第五折光棱镜115-1及自由曲面的第六折光棱镜115-2之间的光线完全挡住。SMD PT管18中不能触发电流,与之相连的电路处于断开状态。因此本实施方案所述的按键开关的控制光
路,其导通及断开的状态与具体实施方案1~7中的状态完全相反。
所述的键帽111下方的第四挡光片111-1,其为黑色吸光的材料,其与键帽采用双色注塑的方法注塑成型。所述的位于下固定壳115上用于准直和转折光路的自由曲面的第五折光棱镜115-1、以及同样位于下固定壳115上用于转折和会聚光路的自由曲面的第六折光棱镜115-2,其上方的倾斜曲面均是离轴抛物面、离轴2次曲面或者是多项式曲面的自由曲面,其也可以为倾斜纯平面,为多个面组成的复合曲面。
实施例十二
本发明所涉及的一种超薄型反射式的电脑输入设备的开关模组,其具体实施方案的按键开关的控制光路由位于键帽下方的倾斜平面的第二十二反射面121-1及倾斜平面的第二十三反射面121-2、位于下固定壳125第一通孔位置上用于准直的菲涅尔透镜125-1、同样位于下固定壳125第二通孔位置上用于聚光的菲涅尔透镜125-2、以及位于PCB板(印刷电路板)上的第五挡光片126-1组成。其开关控制原理如图25和图26所示。其按键开关导通和断开的状态反过来设置,即按键放松时光路处于导通状态、按键下压时光路处于断开状态。
图25为本具体实施方案沿图1中B-B方向剖面的光路图,其为按键处于放松的状态。图26为本具体实施方案沿图1中B-B方向的剖面图,其为按键处于下压的状态。其按键开关的控制原理为:当按键放松、弹簧回复到原位时,位于下方PCB板(印刷电路板)126上的第五挡光片126-1,没有挡在键帽下方的倾斜平面的第二十二反射面121-1及倾斜平面的第二十三反射面121-2之间,从SMD IR管17发出的光线,经过位于下固定壳125上用于准直的菲涅尔透镜125-1准直之后,入射到键帽下方的倾斜平面的第二十二反射面121-1上,经反射后光线向右转折,再入射到另一侧、同样位于键帽下方的倾斜平面的第二十三反射面121-2,经再次反射后,光线向下方入射到位于下固定壳125的聚光菲涅尔透镜125-2中,最后会聚到其下方的SMD PT管18上,从而触发SMD PT管18中产生电流,与之相连的
电路处于导通状态。
而当按键下压时,键帽连同倾斜平面的的第二十二反射面121-1及倾斜平面的第二十三反射面121-2一起向下移动,这时位于PCB板126上的第五挡光片126-1将第二十二反射面121-1及的第二十三反射面121-2之间的光线完全挡住,SMD PT管18中没有接收到光线,不能触发电流,与之相连的电路处于断开状态。因此本实施方案所述的按键开关的控制光路,其导通及断开的状态与具体实施方案1~7中的状态完全相反。
所述的位于PCB板126上的第五挡光片126-1,其为黑色吸光的材料,其通过卡扣的方法固定在PCB板上。所述的位于键帽下方的倾斜平面的第二十二反射面121-1及倾斜平面的第二十三反射面121-2,其均为高反射率表面,其反射系数超过80%,其为亮银色或者为亮金色,也可以为高反射率白色或光反射镀层。
实施例十三
本发明所涉及的一种超薄型反射式的电脑输入设备的开关模组,其具体实施方案的按键开关的控制光路由位于键帽下方的第一直角棱镜131-1及第二直角棱镜131-2、位于下固定壳135上用于准直的菲涅尔透镜135-1、同样位于下固定壳135上用于聚光的菲涅尔透镜135-2、以及位于PCB板(印刷电路板)上的第六挡光片136-1组成。其开关控制原理如图27和图28所示。其按键开关导通和断开的状态反过来设置,即按键放松时光路处于导通状态、按键下压时光路处于断开状态。
图27为本具体实施方案沿图1中B-B方向剖面的光路图,其为按键处于放松的状态。图28为本具体实施方案沿图1中B-B方向的剖面图,其为按键处于下压的状态。其按键开关的控制原理为:当按键放松、弹簧回复到原位时,位于下方PCB板(印刷电路板)136上的第六挡光片136-1,没有挡在键帽下方的第一直角棱镜131-1及第二直角棱镜131-2之间,从SMD IR管17发出的光线,经过位于下固定壳135上用于准直的菲涅尔透镜135-1准直之后,再入射到键帽
下方的第一直角棱镜131-1,经过其上方的反射面反射后光线向右转折,入射到另一侧、同样位于键帽下方的第二直角棱镜131-2中,经过其上方的反射面再次反射后,光线射向下方位于下固定壳135的聚光菲涅尔透镜135-2中,最后光线会聚到下方的SMD PT管18上,从而触发SMD PT管18中产生电流,与之相连的电路处于导通状态。
而当按键下压时,键帽连同第一直角棱镜131-1及第二直角棱镜131-2一起向下移动,位于PCB板136上的第六挡光片136-1将第一直角棱镜131-1及第二直角棱镜131-2之间的光线完全挡住,SMD PT管18中没有接收到光线,不能触发电流,与之相连的电路处于断开状态。因此本实施方案所述的按键开关的控制光路,其导通及断开的状态与具体实施方案1~7中的状态完全相反。
所述的位于PCB板136上的第六挡光片136-1,其为黑色吸光的材料,其通过卡扣的方法固定在PCB板上。所述的位于键帽下方的第一直角棱镜131-1及第二直角棱镜131-2,其上方均为倾斜平面的反射面。
实施例十四
本发明所涉及的一种超薄型反射式的电脑输入设备的开关模组,其具体实施方案的按键开关的控制光路由位于键帽下方的自由曲面的第二十四反射面141-1及自由曲面的第二十五反射面141-2、以及位于PCB板(印刷电路板)上的第七挡光片146-1组成。其开关控制原理如图29和图30所示。其按键开关导通和断开的状态反过来设置,即按键放松时光路处于导通状态、按键下压时光路处于断开状态。
图29为本具体实施方案沿图1中B-B方向剖面的光路图,其为按键处于放松的状态。图30为本具体实施方案沿图1中B-B方向的剖面图,其为按键处于下压的状态。其按键开关的控制原理为:当按键放松、弹簧回复到原位时,位于下方PCB板(印刷电路板)146上的第七挡光片146-1,没有挡在键帽下方的自由曲面的第二十四反射面141-1及自由曲面的第二十五反射面141-2之间,从SMD IR管17发出的光线,入射到键帽下方的自由曲面的第二十四反射面141-1
上,经反射后光线被准直并射向右方,入射到另一侧、同样位于键帽下方的自由曲面的第二十五反射面141-2上,经再次反射后,光线射向下方转折并会聚,最后聚焦到下方的SMD PT管18上,从而触发SMD PT管18产生电流,与之相连的电路处于导通状态。而当按键下压时,键帽连同自由曲面的第二十四反射面141-1及自由曲面的第二十五反射面141-2一起向下移动,位于PCB板146上的第七挡光片146-1将自由曲面的第二十四反射面141-1及自由曲面的第二十五反射面141-2之间的光线完全挡住,SMD PT管18中没有接收到光线,不能触发电流,与之相连的电路处于断开状态。因此本实施方案所述的按键开关的控制光路,其导通及断开的状态与具体实施方案1~7中的状态完全相反。
所述的位于PCB板146上的第七挡光片146-1,其为黑色吸光的材料,其通过卡扣的方法固定在PCB板上。所述的位于键帽下方的自由曲面的第二十四反射面141-1及自由曲面的第二十五反射面141-2,其反射面是离轴抛物面、离轴2次曲面或者是多项式曲面的自由曲面,其也可以为倾斜纯平面,为多个面组成的复合曲面,其均为高反射率表面,其反射系数超过80%,其为亮银色或者为亮金色,也可以为高反射率白色或光反射镀层。
实施例十五
本发明所涉及的一种超薄型反射式的电脑输入设备的开关模组,其SMD IR管17可以竖直放置于上固定壳154中,具体实施方案的按键开关的控制原理与具体实施一的方案基本一致,只是本具体实施方案中将SMD IR管17竖直放置于上固定壳154中,并由一个菲涅尔准直透镜154-2进行准直。其光路由设置于上固定壳位置的准直菲涅尔透镜154-2、位于键轴上的第二十六反射面152-1、以及位于上固定壳154下方的自由曲面的第二十七反射面154-3组成。
其按键开关的控制原理如图31和图32所示,其为按键下压、光路导通时的状态,其中图31为沿着图1中A-A剖面的光路图,图32为图1中沿着箭头T方向向上观看上固定壳154及键轴152的光路图,
其与图31的沿着A-A剖面的光路图相对应。其SMD IR管17为竖直放置于上固定壳154中,从SMD IR管17的中心P点发出的光线,经过位于上固定壳位置的准直菲涅尔透镜154-2准直之后,往键轴152中心的方向入射到位于键轴152下方的第二十六反射面152-1上。当按键下压至1.85mm时,位于键轴152上的第二十六反射面152-1正好完全对准位于上固定壳154位置的准直菲涅尔透镜154-2,其将入射过来的准直光线,进行反射。经键轴152下方的第二十六反射面152-1反射后,反射后的光路见图31中所示,其入射到上固定壳154下方另一侧的第二十七反射面154-3上,第二十七反射面154-3再将入射光线进行会聚和转折,最后会聚到位于PCB板的SMD PT管18中心的Q点上,从而触发电路导通。当按键放松、弹簧回复到原位时,键轴向上移动,带动键轴152下方的反射面152-1一起向上移动,此时位于键轴152下方的第二十六反射面152-1与位于上固定壳154位置的准直菲涅尔透镜154-2完全错开,光路被切断,SMD PT管18上没有触发电流,相连的电路处于断开状态。
本具体实施方案中所述的位于上固定壳154下方另一侧的自由曲面的第二十七反射面154-3,其反射面是离轴抛物面、离轴2次曲面或者是多项式曲面的自由曲面,其也可以为倾斜纯平面,为多个面组成的复合曲面,其反射系数超过80%,其为亮银色或者为亮金色,也可以为高反射率白色或光反射镀层。。
实施例十六
本发明所涉及的一种超薄型反射式的电脑输入设备的开关模组,其SMD IR管17可以竖直放置于上固定壳中,具体实施例十六中方案的按键开关的控制光路由位于键帽下方的第八挡光片161-1、位于上固定壳上用来准直光路的准直菲涅尔透镜164-1、以及位于下固定壳165上用于转折和会聚光路的自由曲面的第七折光棱镜165-2组成。其开关控制原理如图33和图34所示。其按键开关导通和断开的状态反过来设置,其为按键放松时光路处于导通状态、按键下压时光路处于断开状态。
图33为本具体实施方案沿图1中B-B方向剖面的光路图,其为按键处于放松的状态。图34为本具体实施方案沿图1中B-B方向的剖面图,其为按键处于下压的状态。其按键开关的控制原理为:位于上固定壳164上用于准直光路的准直菲涅尔透镜164-1与位于下固定壳165上用于转折和会聚光路的自由曲面的第七折光棱镜165-2相互对准,当按键放松时,位于键帽161下方的第八挡光片161-1没有挡在准直菲涅尔透镜164-1和自由曲面的第七折光棱镜165-2之间的光路中,从竖直放置于上固定壳位置的SMD IR管17发出的光线,经过准直菲涅尔透镜164-1准直之后,从其右边的竖直平面射出,由于第八挡光片161-1对光线没有阻挡,从准直菲涅尔透镜164-1右边竖直平面输出的光线入射到另一侧的位于下固定壳165上用于转折和会聚光路的自由曲面的第七折光棱镜165-2中,经其上方倾斜的全反射面转折之后,再通过其下方的聚焦菲涅尔面会聚到SMD PT管18上,从而触发SMD PT管18产生电流,与之相连的电路处于导通状态。当按键下压时,位于键帽161下方的第八挡光片161-1向下移动,其将准直菲涅尔透镜164-1及自由曲面的第七折光棱镜165-2之间的光线完全挡住。SMD PT管18中不能触发电流,与之相连的电路处于断开状态。因此本实施方案所述的按键开关的控制光路,其导通及断开的状态与具体实施方案1~7中的状态完全相反。
所述的键帽161下方的第八挡光片161-1,其为黑色吸光的材料,其与键帽采用双色注塑的方法注塑成型。所述的位于下固定壳165上用于转折和会聚光路的自由曲面的第七折光棱镜165-2,其上方均为倾斜的平面,其下方为菲涅尔面。
实施例十七
本发明所涉及的一种超薄型反射式的电脑输入设备的开关模组,其SMD IR管17可以竖直放置于上固定壳中,具体实施例十七中方案的按键开关的控制光路由位于键帽下方的第九挡光片171-1、位于上固定壳上用来准直光路的准直菲涅尔透镜174-1、以及位于上固定壳174用于转折和会聚光路的自由曲面的第二十八反射面174-2组
成。其开关控制原理如图35和图36所示。其按键开关导通和断开的状态反过来设置,其为按键放松时光路处于导通状态、按键下压时光路处于断开状态。
图35为本具体实施方案沿图1中B-B方向剖面的光路图,其为按键处于放松的状态。图36为本具体实施方案沿图1中B-B方向的剖面图,其为按键处于下压的状态。其按键开关的控制原理为:位于上固定壳174上用于准直光路的准直菲涅尔透镜174-1与位于上固定壳174上用于转折和会聚光路的自由曲面的第二十八反射面174-2相互对准,当按键放松时,位于键帽171下方的第九挡光片171-1没有挡在准直菲涅尔透镜174-1和自由曲面的第二十八反射面174-2之间的光路中,从竖直放置于上固定壳位置的SMD IR管17发出的光线,经过准直菲涅尔透镜174-1准直之后,从其右边的竖直平面射出,由于第九挡光片171-1对光线没有阻挡,从准直菲涅尔透镜174-1射出的光线入射到另一侧的位于上固定壳174上用于转折和会聚光路的自由曲面的第二十八反射面174-2中,经其反射面会聚和转折之后,最后光线会聚到SMD PT管18上,从而触发SMD PT管18中产生电流,与之相连的电路处于导通状态。当按键下压时,位于键帽171下方的第九挡光片171-1向下移动,其将菲涅尔透镜174-1及自由曲面的第二十八反射面174-2之间的光线完全挡住。SMD PT管18中不能触发电流,与之相连的电路处于断开状态。因此本实施方案所述的按键开关的控制光路,其导通及断开的状态与具体实施方案1~7中的状态完全相反。
所述的位于键帽171下方的第九挡光片171-1,其为黑色吸光的材料,其与键帽采用双色注塑的方法注塑成型。所述的位于上固定壳174上用于转折和会聚光路的自由曲面的第二十八反射面174-2,其反射面是离轴抛物面、离轴2次曲面或者是多项式曲面的自由曲面,其也可以为倾斜纯平面,为多个面组成的复合曲面,其为高反射率表面,其反射系数超过80%,其为亮银色或者为亮金色,也可以为高反射率白色或光反射镀层。
实施例十八
本发明所涉及的一种超薄型反射式的电脑输入设备的开关模组,其SMD IR管17可以竖直放置于上固定壳中,具体实施例十八中方案的按键开关的控制光路由位于键帽下方的第十挡光片181-1、位于上固定壳上用来准直光路的准直菲涅尔准直透镜184-1、以及位于下固定壳185第二通孔位置上用于转折和会聚光路的自由曲面的第八折光棱镜185-2组成。其开关控制原理如图37和图38所示。其按键开关导通和断开的状态反过来设置,其为按键放松时光路处于导通状态、按键下压时光路处于断开状态。
图37为本具体实施方案沿图1中B-B方向剖面的光路图,其为按键处于放松的状态。图38为本具体实施方案沿图1中B-B方向的剖面图,其为按键处于下压的状态。其按键开关的控制原理为:位于上固定壳184上用于准直光路的准直菲涅尔透镜184-1与位于下固定壳185上用于转折和会聚光路的自由曲面的第八折光棱镜185-2相互对准,当按键放松时,位于键帽181下方的第十挡光片181-1没有挡在准直菲涅尔透镜184-1和自由曲面的第八折光棱镜185-2之间的光路中,从竖直放置于上固定壳位置的SMD IR管17发出的光线,经过准直菲涅尔透镜184-1准直之后,从其右边的竖直平面射出,由于第十挡光片181-1对光线没有阻挡,从准直菲涅尔透镜184-1右边竖直平面射出的光线入射到另一侧的位于下固定壳185上用于转折和会聚光路的自由曲面的第十折光棱镜185-2中,经其上方倾斜的自由曲面全反射面转折和会聚之后,最后光线会聚到下方的SMD PT管18上,从而触发SMD PT管18中产生电流,与之相连的电路处于导通状态。当按键下压时,位于键帽181下方的第十挡光片181-1向下移动,其将菲涅尔透镜184-1及自由曲面的第八折光棱镜185-2之间的光线完全挡住。SMD PT管18中不能触发电流,与之相连的电路处于断开状态。因此本实施方案所述的按键开关的控制光路,其导通及断开的状态与具体实施方案1~7中的状态完全相反。
所述的键帽181下方的第十挡光片181-1,其为黑色吸光的材料,其与键帽采用双色注塑的方法注塑成型。所述的位于下固定壳185上
用于转折和会聚光路的自由曲面的第八折光棱镜165-2,其上方倾斜的全反射曲面为倾斜的离轴抛物面、离轴2次曲面、或者为多项式曲面,也可以为倾斜纯平面,或为多个面组成的复合曲面,其下方为平面。
实施例十九
本发明所涉及的一种超薄型反射式的电脑输入设备的开关模组,其SMD PT管18可以竖直放置于上固定壳194中,具体实施例十九中方案的按键开关的控制原理与具体实施例二基本一致,只是本具体实施方案中将SMD PT管18竖直放置于上固定壳194中,并在其前方放置一个聚光菲涅尔透镜194-3进行会聚。其光路由放置于上固定壳位置的自由曲面的第二十九反射面194-2、位于键轴上的第三十反射面192-1、位于键轴上另一侧的第三十一反射面192-2、以及位于上固定壳194另一侧的聚光菲涅尔透镜194-3组成。
图39和图40为其按键开关下压1.85mm,处于导通状态时的光路图,其图39为沿图1中D-D剖面的光路图,图40为图1中沿着箭头T方向向上观看上固定壳194及键轴192的光路图,其与上图沿着A-A剖面的光路图相对应。其按键开关的控制原理为:当按键下压1.85mm时,从SMD IR管17的中心P点发出的光线,经过下固定壳的第一通孔15-1后入射到位于上固定壳194下方的第二十九反射面194-2上,所述的第二十九反射面194-2,其为自由曲面,其可以为离轴抛物面、离轴2次曲面或者是多项式曲面,其将入射的光线准直,准直后往左边水平的方向射出。位于键轴192上的第三十反射面192-1正好完全对准位于上固定壳194下方的第二十九反射面194-2,其将入射过来的准直光线,进行反射。被第三十反射面192-1反射的光线,如图40(沿着图1中箭头T方向上视上固定壳194及X型形键轴192)所示,光线顺时针转折90度向另一侧反射,然后入射到同样位于键轴192上的另一个第三十一反射面192-2上,经再次反射转折后,再向右入射到位于上固定壳194另一侧的聚光菲涅尔透镜194-3中,经聚光菲涅尔透镜194-3会聚之后,光线最后集中到竖直
放置于上固定壳194的SMD PT管18中心的Q点上,从而触发电路导通。
当按键放松、弹簧回复到原位时,键轴向上移动,带动键轴192上的第三十反射面192-1及第三十一反射面192-2一起向上移动,位于键轴192上的第三十反射面192-1与位于上固定壳194下方的第二十九反射面194-2完全错开,同时位于键轴192上的第三十一反射面192-2也与位于上固定壳194另一侧的聚光菲涅尔透镜194-3完全错开,此时光路被切断,SMD PT管18上没有触发电流,相连的电路处于断开状态。
本具体实施方案所述键轴192上的第三十反射面192-1及第三十一反射面192-2,其为高反射率表面,其反射系数超过80%。本具体实施方案所述的位于上固定壳194下方的反射面194-2,其也为高反射率表面,其反射系数超过80%,所述的高反射率表面,其为亮银色或者为亮金色,也可以为高反射率白色或光反射镀层。
实施例二十
本发明所涉及的一种超薄型反射式的电脑输入设备的开关模组,其SMD PT管18可以竖直放置于上固定壳204中,具体实施例二十中方案的按键开关的控制光路由位于键帽下方的第十一挡光片201-1、位于下固定壳205上用来准直和转折光路的自由曲面的第九折光棱镜205-1、以及第十一挡光片另一侧的位于上固定壳204上用于会聚光路的聚光菲涅尔透镜204-1组成。其开关控制原理如图41和图42所示。其按键开关导通和断开的状态反过来设置,其为按键放松时光路处于导通状态、按键下压时光路处于断开状态。
图41为本具体实施方案沿图1中B-B方向剖面的光路图,其为按键处于放松的状态。图42为本具体实施方案沿图1中B-B方向的剖面图,其为按键处于下压的状态。其按键开关的控制原理为:位于下固定壳205上用于准直和转折光路的自由曲面的第九折光棱镜205-1与所述第十一挡光片另一侧位于上固定壳204上用于会聚光路的聚光菲涅尔透镜204-1相互对准,当按键放松时,位于键帽201下
方的第十一挡光片201-1没有挡在自由曲面全的第九折光棱镜205-1和聚光菲涅尔透镜204-1之间的光路中,从下方位于PCB板16上的SMD IR管17发出的光线,经过自由曲面的第九折光棱镜205-1准直和转折之后,从其右边的竖直平面准直射出,由于第十一挡光片201-1对光线没有阻挡,从自由曲面的第九折光棱镜205-1右边竖直平面准直射出的光线入射到另一侧的位于上固定壳204上用于会聚光路的聚光菲涅尔透镜204-1中,经会聚后最后集中到同样位于上固定壳204上竖直放置的SMD PT管18上,从而触发SMD PT管18中产生电流,与之相连的电路处于导通状态。
当按键下压时,位于键帽201下方的第十一挡光片201-1向下移动,其将自由曲面的第九折光棱镜205-1与聚光菲涅尔透镜204-1之间的光线完全挡住。竖直放置的SMD PT管18中不能触发电流,与之相连的电路处于断开状态。因此本实施方案所述的按键开关的控制光路,其导通及断开的状态与具体实施方案1~7中的状态完全相反。
所述的键帽201下方的第十一挡光片201-1,其为黑色吸光的材料,其与键帽采用双色注塑的方法注塑成型。所述的位于下固定壳205上用于准直和转折光路的自由曲面的第九折光棱镜205-1,其上方倾斜的全反射曲面为倾斜的离轴抛物面、离轴2次曲面、或者为多项式曲面,也可以为倾斜纯平面,或为多个面组成的复合曲面,其下方为平面。
实施例二十一
本发明所涉及的一种超薄型反射式的电脑输入设备的开关模组,其SMD PT管18可以竖直放置于键帽211的下方,其用于转折光路的倾斜平面的第三十二反射面211-1、聚光菲涅尔透镜211-2也可以固定于键帽211下方,另外第十二挡光片216-1可以固定于模组底部的PCB板216上。
具体实施例二十一的方案的按键开关的控制光路由位于键帽下方的用于转折光路的倾斜平面第三十二反射面211-1、聚光菲涅尔透镜211-2、位于下固定壳215第一通孔位置上用来准直的准直菲涅尔
透镜215-1、以及位于PCB板216上的第十二挡光片216-1组成。其按键开关控制原理如图43和图44所示。其按键开关导通和断开的状态反过来设置,其为按键放松时光路处于导通状态、按键下压时光路处于断开状态。
图43为本具体实施方案沿图1中B-B方向剖面的光路图,其为按键处于放松的状态。图44为本具体实施方案沿图1中B-B方向的剖面图,其为按键处于下压的状态。其按键开关的控制原理为:位于键帽下方用于转折光路的倾斜平面第三十二反射面211-1与同样位于键帽下方用来会聚光线的聚光菲涅尔透镜211-2相对准,当按键放松、弹簧回复到原位时,位于按键模组底部PCB板216上的第十二挡光片216-1没有挡在倾斜平面的第三十二反射面211-1与菲涅尔聚光透镜211-2之间,从SMD IR管17发出的光线经过位于下固定壳215第一通孔位置上的准直菲涅尔透镜215-1准直之后,入射到位于键帽下方的倾斜平面的第三十二反射面211-1上,经反射后准直光线向右转折,再入射到聚光菲涅尔透镜211-2中,经会聚后最后集中到竖直放置的SMD PT管18上,从而触发SMD PT管18中产生电流,与之相连的电路处于导通状态。
当按键下压时,位于按键模组底部PCB板216上的第十二挡光片216-1将倾斜平面的第三十二反射面211-1与聚光菲涅尔透镜211-2之间的光线完全阻挡,竖直放置于键帽下方的SMD PT管18中不能触发电流,与之相连的电路处于断开状态。因此本实施方案所述的按键开关的控制光路,其导通及断开的状态与具体实施方案1~7中的状态完全相反。
所述的位于PCB板216上的第十二挡光片216-1,其为黑色吸光的材料,其通过卡扣的方法固定在PCB板上。所述的位于键帽下方的倾斜平面的第三十二反射面211-1,其为高反射率表面,其反射系数超过80%,其为亮银色或者为亮金色,也可以为高反射率白色或光反射镀层。
所述的位于键帽下方的聚光菲涅尔透镜211-2及竖直放置的SMD PT管18,其可以通过卡扣的方法固定在键帽下方。
实施例二十二
本发明所涉及的一种超薄型反射式的电脑输入设备的开关模组,其SMD PT管18可以竖直放置于键帽211的下方,其用于转折光路的第三直角棱镜221-1、聚光菲涅尔透镜221-2也可以固定于键帽221下方,另外第十三挡光片226-1可以固定于模组底部的PCB板226上。
具体实施例二十二中方案的按键开关的控制光路由位于键帽下方的用于转折光路的第三直角棱镜221-1、聚光菲涅尔透镜221-2、位于下固定壳225第一通孔位置上用来准直光路的菲涅尔透镜225-1、以及位于PCB板226上的第十三挡光片226-1组成。其开关控制原理如图45和图46所示。其按键开关导通和断开的状态反过来设置,其为按键放松时光路处于导通状态、按键下压时光路处于断开状态。
图45为本具体实施方案沿图1中B-B方向剖面的光路图,其为按键处于放松的状态。图46为本具体实施方案沿图1中B-B方向的剖面图,其为按键处于下压的状态。其按键开关的控制原理为:位于键帽下方用于转折光路的第三直角棱镜221-1与同样位于键帽下方用来会聚光线的聚光菲涅尔透镜221-2相对准,当按键放松、弹簧回复到原位时,位于按键模组底部PCB板226上的第十三挡光片226-1没有挡在第三直角棱镜221-1与聚光菲涅尔透镜221-2之间,从SMD IR管17发出的光线经过位于下固定壳225第一通孔位置上的准直菲涅尔透镜225-1准直之后,入射到位于键帽下方的第三直角棱镜221-1中,经其倾斜平面全反射后,准直光线向右转折,再入射到聚光菲涅尔透镜221-2中,最后会聚到竖直放置的SMD PT管18上,从而触发SMD PT管18中产生电流,与之相连的电路处于导通状态。
当按键下压时,位于按键模组底部PCB板226上的第十三挡光片226-1将第三直角棱镜221-1与聚光菲涅尔透镜221-2之间的光线完全阻挡,竖直放置的SMD PT管18中不能触发电流,与之相连的电路处于断开状态。因此本实施方案所述的按键开关的控制光路,其导通及断开的状态与具体实施方案1~7中的状态完全相反。
所述的位于PCB板226上的第十三挡光片226-1,其为黑色吸光的材料,其通过卡扣的方法固定在下方的PCB板上。所述的位于键帽下方的第三直角棱镜221-1、聚光菲涅尔透镜221-2及竖直放置的SMD PT管18,其可以通过卡扣的方法固定在键帽下方。
所述第三直角棱镜221-1的上方均为倾斜平面的反射面。
实施例二十三
本实施例公开了一种配合超薄型反射式的电脑输入设备的开关模组使用的键帽字符照明系统,其照明光源为设置在PCB板上的SMD LED(表面贴装的发光二极管),其为单色芯片或者为红绿蓝白多色芯片的LED,其上方有用于配光的光学器件,其将SMD LED19发出来的光线,进行配光,分配到所需要照明的范围。所述用于配光的光学器件位于上固定壳234上,其可以为梯形反射器、方形反射器、自由曲面偏光透镜、或者用来做混光处理的内部掺杂扩散粒子的扩撒片。无论是梯形反射器还是方形反射器,其反射面为高反射率表面,其反射系数超过80%,其可以为白色或者亮银色。本实施例中用于配光的光学器件采用梯形反射器。
实施例二十四
本实施例公开了一种配合超薄型反射式的电脑输入设备的开关模组使用的键帽字符照明系统,其照明光源为设置在PCB板上的SMD LED(表面贴装的发光二极管),其为单色芯片或者为红绿蓝白多色芯片的LED,其上方有用于配光的光学器件,其将SMD LED19发出来的光线,进行配光,分配到所需要照明的范围。
所述键帽字符照明系统的配光原理如图49所示,其为在图1中沿C-C方向的剖面图。图中SMD LED(表面贴装的发光二极管)19的上方为一偏心透镜244-1,其位于下固定壳245的上方,其将SMD LED19发出来的光线,进行非对称配光,光线偏向一边,分配到所需要照明的范围。所述的偏心透镜244-1,其上曲面为偏心、非对称的自由曲面,其可以解决被照明的键帽字符不在光源正上方的情况。
实施例二十五
本实施例公开了一种配合超薄型反射式的电脑输入设备的开关模组使用的键帽字符照明系统,其照明光源为设置在PCB板上的SMD LED(表面贴装的发光二极管),其为单色芯片或者为红绿蓝白多色芯片的LED,其上方有用于配光的光学器件,其将SMD LED19发出来的光线,进行配光,分配到所需要照明的范围。
所述键帽字符照明系统的配光原理如图60所示,其为在图1中沿C-C方向的剖面图。图中SMD LED(表面贴装的发光二极管)19的上方为一全反射透镜254-1,其位于下固定壳255的上方,其将SMD LED19发出来的光线,进行配光。所述的全反射透镜254-1,其由中间的折射部分、外圈的全反射部分组成,其有较高的光学效率,其可以收集从SMD LED19发出的几乎所有的光,光学效率可以达到80%以上。
实施例二十六
本实施例公开了一种配合超薄型反射式的电脑输入设备的开关模组使用的键帽字符照明系统,其照明光源为设置在PCB板上的SMD LED(表面贴装的发光二极管),其为单色芯片或者为红绿蓝白多色芯片的LED,其上方有用于配光的光学器件,其将SMD LED19发出来的光线,进行配光,分配到所需要照明的范围。
所述键帽字符照明系统的配光原理如图51所示,其为在图1中沿C-C方向的剖面图。图中SMD LED(表面贴装的发光二极管)19的上方为采用组合透镜264-1的照明系统,所述的组合透镜264-1,其下表面为锯齿形菲涅尔面,其可以收集大角度的光线,并进行准直,准直后再入射到上表面上,其上表面为凸面,其用来配光,其将下表面准直入射过来的光线分配到所需的照明区域。该组合透镜的配光原理如图61所示,其为在图1中沿C-C方向的剖面图。图中SMD LED(表面贴装的发光二极管)19的上方为一组合透镜264-1,其位于下固定壳265的上方,其将SMD LED19发出来的光线,进行配光。
实施例二十七
本实施例公开了一种配合超薄型反射式的电脑输入设备的开关模组使用的键帽字符照明系统,其照明光源为设置在PCB板上的SMD LED(表面贴装的发光二极管),其为单色芯片或者为红绿蓝白多色芯片的LED,其上方有用于配光的光学器件,其将SMD LED19发出来的光线,进行配光,分配到所需要照明的范围。
所述键帽字符照明系统的配光原理如图51所示,其为在图1中沿C-C方向的剖面图。本实施例二十七中键帽字符的照明系统为采用扩散片的混色系统,其照明光源为红绿蓝白多色芯片的SMD LED。所述键帽字符照明系统,其配光原理如图51所示,其为在图1中,沿C-C方向的剖面图。所述的SMD LED 19,其为一多芯片(譬如为红绿蓝白4色芯片)、可以发出不同颜色的表面贴装LED,其上方放置有一片具有混色功能的扩散片274-1,其内部掺杂许多微米级的光扩散颗粒,其位于下固定壳275的上方上,其将SMD LED19发出来的不同颜色的光,进行混色,达到均匀照明键帽字符的效果。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。
Claims (63)
- 一种超薄型反射式的电脑输入设备的开关模组,包括键帽、键轴、弹簧、上固定壳、下固定壳、PCB板,其特征在于,所述超薄型反射式光电键盘开关模组还包括一个光发射器件和一个光接收器件,光发射器件和光接收器件之间通过至少一个的反射面形成光路通道,所述反射面,其集成于键帽、键轴、上固定壳或下固定壳上,当按键下压或放松时,部分反射面的上下移动使得光路被导通或切断,从而触发光接收器件所连接的电路的通和断。
- 根据权利要求1所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述光发射器件和所述光接收器件均设置于所述PCB板上,所述下固定壳上设置有第一通孔和第二通孔,且所述第一通孔位于所述光发射器件上方,所述第二通孔位于所述光接收器件上方。
- 根据权利要求2所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述光路通道包括位于键轴下方的第二反射面,以及位于上固定壳体下方的第一反射面和第三反射面,从光发射器件发出的光线,经过下固定壳上的第一通孔后入射到上固定壳下方的第一反射面上,当按键下压时,键轴上的所述第二反射面正好对准位于上固定壳下方的所述第一反射面,其将从所述第一反射面入射过来的准直光线进行反射,反射光线入射到上固定壳下方另一侧的所述第三反射面上,所述第三反射面再将入射光线经过下固定壳的第二通孔会聚到位于PCB板的光接收器件,从而触发电路导通;当按键放松弹簧回复到原位时,键轴以及所述第一反射面一起向上移动,位于键轴上的第二反射面与位于上固定壳下方的第一反射面错开,光路被切断,相连的电路处于断开状态。
- 根据权利要求3所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述位于上固定壳下方的第一反射面是离轴抛物面、离轴2次曲面或者是多项式曲面的自由曲面,其也可以为纯平面,或多个面组成 的复合曲面;所述位于上固定壳下方另一侧的第三反射面,其反射面是离轴抛物面、离轴2次曲面或者是多项式曲面的自由曲面,其也可以为倾斜纯平面,为多个面组成的复合曲面;所述的第一反射面通过第二反射面的反射与第三反射面光路耦合。
- 根据权利要求4所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述的第一反射面及第二反射面及第三反射面相对于键轴中心对称设置,也可以为非对称设置。
- 根据权利要求2所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述光路通道包括位于键轴下方的第五反射面和第六反射面,以及位于上固定壳体下方的第四反射面和第七反射面,从光发射器件发出的光线,经过下固定壳上的第一通孔后入射到上固定壳下方的第四反射面上,当按键下压时,键轴上的所述第五反射面正好对准位于上固定壳下方的所述第四反射面,其将从所述第四反射面入射过来的准直光线进行反射,反射光线入射到同样位于键轴上的另一侧的所述第六反射面上,经再次反射,反射光线入射到上固定壳下方另一个所述第七反射面上,所述第七反射面再将入射光线经过下固定壳的第二通孔会聚到位于PCB板的光接收器件,从而触发电路导通;当按键放松弹簧回复到原位时,键轴向上移动,键轴以及所述第五、第六反射面一起向上移动,位于键轴上的第五反射面与位于上固定壳下方的第四反射面错开,同时,位于键轴上的第六反射面与位于上固定壳下方的第七反射面错开,光路被切断,相连的电路处于断开状态。
- 根据权利要求6所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述位于上固定壳下方的第四反射面是离轴抛物面、离轴2次曲面或者是多项式曲面的自由曲面,其也可以为纯平面,或多个面组成的复合曲面。所述位于上固定壳下方另一侧的第七反射面,其反射面是离轴抛物面、离轴2次曲面或者是多项式曲面的自由曲面,其也可 以为倾斜纯平面,或为多个面组成的复合曲面。所述的第四反射面通过第五反射面及第六反射面的反射与第七反射面光路耦合。
- 根据权利要求7所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述的第四反射面及第五反射面及第六反射面及第七反射面相对于键轴中心对称设置,也可以为非对称设置。
- 根据权利要求2所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述光路通道包括位于键轴下方的第九反射面和第十反射面,位于上固定壳体下方的第八反射面和第十一反射面,以及位于下固定壳第一通孔位置的准直透镜或/和第二通孔位置的聚焦透镜,从光发射器件发出的光线,经过下固定壳上第一通孔位置的准直透镜后入射到上固定壳下方的第八反射面上,当按键下压时,键轴上的所述第九反射面正好对准位于上固定壳下方的所述第八反射面,其将从所述第八反射面入射过来的准直光线进行反射,反射光线入射到同样位于键轴上的另一侧的所述第十反射面上,经再次反射,反射光线入射到上固定壳下方另一个所述第十一反射面上,所述第十一反射面再将入射光线经过下固定壳上第二通孔位置的聚焦透镜会聚到位于PCB板的光接收器件,从而触发电路导通;当按键放松弹簧回复到原位时,键轴向上移动,键轴以及所述第九、第十反射面一起向上移动,位于键轴上的第九反射面与位于上固定壳下方的第八反射面错开,同时,位于键轴上的第十反射面与位于上固定壳下方的第十一反射面错开,光路被切断,相连的电路处于断开状态。
- 根据权利要求9所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述位于上固定壳下方的第八反射面是倾斜45度的平面,也可以是离轴抛物面、离轴2次曲面或者是多项式曲面的自由曲面,其也可以为由多个面组成的复合曲面;所述位于上固定壳下方另一侧的第十一反射面,其反射面是倾斜45度的平面,也可以是离轴抛物面、离轴2次曲面或者是多项式曲 面的自由曲面,其也可以为由多个面组成的复合曲面;所述的第八反射面通过第九反射面及第十反射面的反射与第十一反射面光路耦合。
- 根据权利要求10所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述的第八反射面及第九反射面及第十反射面及第十一反射面相对于键轴中心对称设置,也可以为非对称设置。
- 根据权利要求2所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述光路通道包括位于键帽下方的第十二反射面及位于上固定壳的第十三反射面,从光发射器件发出的光线,经过下固定壳上第一通孔位置后入射到键帽下方的第十二反射面上,当按键下压时,键帽下方的所述第十二反射面正好对准上固定壳的所述第十三反射面,其将从所述第十二反射面入射过来的光线进行准直或部分准直射出,射出的光线再经过所述第十三反射面往下转折和会聚,会聚后的光线经过下固定壳上第二通孔集中到PCB板的光接收器件,从而触发电路导通;当按键放松弹簧回复到原位时,位于键帽下方的第十二反射面与位于上固定壳上的第十三反射面完全错开,光路被切断,相连的电路处于断开状态。
- 根据权利要求12所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述位于键帽下方的第十二反射面以及位于上固定壳的第十三反射面均是离轴抛物面、离轴2次曲面或者多项式曲面的自由曲面,其也可以为倾斜纯平面,或为多个面组成的复合曲面。
- 根据权利要求2所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述光路通道包括位于下固定壳第一通孔位置的准直透镜、位于键帽下方的第十四反射面和位于上固定壳的自由曲面第十五反射面,从光发射器件发出的光线,经过下固定壳上第一通孔位置的准直透镜后准直入射到键帽下方的第十四反射面上,当按键下压时,键帽 下方的所述第十四反射面正好对准上固定壳的所述第十五反射面,其将从所述第十四反射面入射过来的光线进行准直射出,射出的光线再经过所述第十五反射面往下转折和会聚,会聚后的光线经过下固定壳上第二通孔集中到PCB板的光接收器件,从而触发电路导通;当按键放松弹簧回复到原位时,位于键帽下方的第十四反射面与位于上固定壳上的第十五反射面完全错开,光路被切断,相连的电路处于断开状态。
- 根据权利要求14所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述位于键帽下方的第十四反射面为倾斜平面,所述位于上固定壳的第十五反射面是离轴抛物面、离轴2次曲面或者是多项式曲面的自由曲面,其也可以为倾斜纯平面,或为多个面组成的复合曲面。
- 根据权利要求2所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述光路通道包括位于下固定壳第一通孔位置的准直透镜、位于键帽下方的第十六反射面、位于上固定壳的第十七反射镜、以及位于下固定壳第二通孔位置的聚光透镜组成,从光发射器件发出的光线,经过下固定壳上第一通孔位置的准直透镜后准直入射到键帽下方的第十六反射面上,当按键下压时,键帽下方的所述第十六反射面正好对准上固定壳的所述第十七反射面,其将从所述第十六反射面入射过来的光线进行准直射出,射出的光线再经过所述第十七反射面往下转折,接着经下固定壳第二通孔位置的菲涅尔聚光透镜会聚后集中到PCB板的光接收器件,从而触发电路导通;当按键放松弹簧回复到原位时,位于键帽下方的第十六反射面与位于上固定壳上的第十七反射面完全错开,光路被切断,相连的电路处于断开状态。
- 根据权利要求16所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述位于键帽下方的第十四反射面和所述位于上固定壳上的第十七反射面为倾斜平面,也可以是离轴抛物面、离轴2次曲面或者是多项式曲面的自由曲面,或为多个面组成的复合 曲面。
- 根据权利要求2所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述光路通道包括位于键帽下方的第十八反射面、以及位于下固定壳第二通孔位置的第一折光棱镜,从光发射器件发出的光线,经过下固定壳上第一通孔后准直入射到位于键帽下方的第十八反射面上,当按键下压时,键帽下方的所述第十八反射面正好对准位于下固定壳第二通孔位置的第一折光棱镜,其将从光发射器件发出的光线进行准直或部分准直并转折后射出,射出的光线再经过所述第一折光棱镜进行全反射会聚,并往下方转折,折光后的光线投射到PCB板的光接收器件,从而触发电路导通;当按键放松弹簧回复到原位时,位于键帽下方的第十八反射面与位于下固定壳第二通孔位置的第一折光棱镜完全错开,光路被切断,相连的电路处于断开状态。
- 根据权利要求18所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述位于键帽下方的第十八反射面是离轴抛物面、离轴2次曲面或者多项式曲面的自由曲面,其也可以为倾斜纯平面,或为多个面组成的复合曲面;所述位于下固定壳第二通孔位置的第一折光棱镜,其靠近第十八反射面一侧有一竖直平面,其为输入面;其远离第十八反射面一侧有一倾斜的自由曲面全反射面,其可以为离轴抛物面、离轴二次曲面、或多项式曲面,其也可以为倾斜纯平面,或为多个面组成的复合曲面;其下方有一水平的透光平面,其为输出面。
- 根据权利要求2所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述光路通道包括位于键帽下方的第一挡光片、位于下固定壳第一通孔位置上的第二折光棱镜以及位于下固定壳第二通孔位置上的第三折光棱镜,所述第二、第三折光棱镜均带有为用于光线折射的反射曲面;所述第二折光棱镜与所述第三折光棱镜相互对准,当按键放松时,经光发射器件发出的光线,经过所述第二折光棱镜下方的菲涅面之后,准直入射到所述第二折光棱镜上方倾斜的全反射面上,经其全 反射面转折之后从所述第二折光棱镜右边竖直平面输出,输出的光线入射到另一侧的所述第三折光棱镜中,经其上方倾斜的全反射面转折之后,再通过其下方的菲涅尔面会聚到PCB板的光接收器件上,从而触发电路导通;当按键下压时,位于键帽下方的第一挡光片向下移动,其将所述第二折光棱镜及所述第三折光棱镜之间的光线完全挡住,光路被切断,相连的电路处于断开状态。
- 根据权利要求20所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述第二折光棱镜与所述第三折光棱镜的上方为是离轴抛物面、离轴2次曲面或者多项式曲面的自由曲面,其也可以为倾斜纯平面,或为多个面组成的复合曲面,其下方均为菲涅尔面。
- 根据权利要求2所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述光路通道包括位于键帽下方的第二挡光片、位于上固定壳上的第十九反射面、以及同样位于上固定壳上的第二十反射面,所述第十九反射面与所述第二十反射面相互对准,当按键放松时,经光发射器件发出的光线,经过位于上固定壳上用于准直和转折光路的第十九反射面反射之后,准直射出的光线再经过所述第二十反射面往下转折,接着经下固定壳第二通孔会聚到PCB板的光接收器件上,从而触发电路导通;当按键下压时,位于键帽下方的第二挡光片向下移动,其将所述第十九反射面和所述第二十反射面之间的光线完全挡住,光路被切断,相连的电路处于断开状态。
- 根据权利要求22所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述第十九反射面与所述第二十反射面是离轴抛物面、离轴2次曲面或者多项式曲面的自由曲面,其也可以为倾斜纯平面,或为多个面组成的复合曲面。
- 根据权利要求2所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述光路通道包括位于键帽下方的第三挡光 片、位于下固定壳第一通孔位置上用于转折光路的第四折光棱镜、以及位于上固定壳上用于转折光路的第二十一反射面,所述第四折光棱镜与所述第二十一反射面相互对准,当按键放松时,经光发射器件发出的光线,经过所述第四折光棱镜的全反射面反射之后,折光射出的光线再经过所述第二十一反射面往下转折,接着经下固定壳第二通孔会聚到PCB板的光接收器件上,从而触发电路导通;当按键下压时,位于键帽下方的第三挡光片向下移动,其将所述第四折光棱镜和所述第二十一反射面之间的光线完全挡住,光路被切断,相连的电路处于断开状态。
- 根据权利要求24所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述第三折光棱镜的上方为倾斜曲面形式的全反射面,其为离轴的抛物面、离轴二次曲面、或者多项式曲面,其也可以为倾斜纯平面,或为多个面组成的复合曲面,其下方为菲涅尔面;所述第二十一反射面是离轴抛物面、离轴2次曲面或者多项式曲面的自由曲面,其也可以为倾斜纯平面,或为多个面组成的复合曲面。
- 根据权利要求2所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述光路通道包括位于键帽下方的第四挡光片、位于下固定壳上第一通孔位置上用于准直和转折光路的第五折光棱镜、以及同样位于下固定壳上第二通孔位置上用于转折光路的第六折光棱镜,所述第五折光棱镜与所述第六折光棱镜相互对准,当按键放松时,经光发射器件发出的光线,经过所述第五折光棱镜的全反射面反射之后,准直射出的光线再经过所述第六折光棱镜的全反射面往下反射转折,会聚到PCB板的光接收器件上,从而触发电路导通;当按键下压时,位于键帽下方的第四挡光片向下移动,其将所述第五折光棱镜和所述第六折光棱镜之间的光线完全挡住,光路被切断,相连的电路处于断开状态。
- 根据权利要求26所述的一种超薄型反射式的电脑输入设备 的开关模组,其特征在于,所述第五与第六折光棱镜的上方为倾斜曲面形式的全反射面,其为离轴的抛物面、离轴二次曲面、或者多项式曲面,其也可以为倾斜纯平面,或为多个面组成的复合曲面;所述第五与第六折光棱镜的下方均为菲涅尔面。
- 根据权利要求2所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述光路通道包括位于键帽下方的第二十二反射面及第二十三反射面、位于下固定壳第一通孔位置上的准直菲涅尔透镜、位于下固定壳第二通孔位置上的聚光菲涅尔透镜、以及位于PCB板上的第五挡光片,所述第二十二反射面与所述第二十三反射面相互对准,当按键放松时,经光发射器件发出的光线,经过位于下固定壳上准直菲涅尔透镜准直之后,入射到位于键帽下方的所述第二十二反射面上,经反射后光线转折,再入射到另一侧、同样位于键帽下方的所述第二十三反射面,经再次反射后,光线向下方入射到位于下固定壳的聚光菲涅尔透镜中,会聚到PCB板的光接收器件上,从而触发电路导通;当按键下压时,位于PCB板上的第五挡光片将所述第二十二反射面及所述第二十三反射面之间的光线完全挡住,光路被切断,相连的电路处于断开状态。
- 根据权利要求28所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述第二十二反射面与第二十三反射面均为倾斜平面,其也可以是离轴抛物面、离轴2次曲面或者多项式曲面的自由曲面,或为多个面组成的复合曲面。
- 根据权利要求2所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述光路通道包括位于键帽下方的第一直角棱镜及第二直角棱镜、位于下固定壳第一通孔位置上的准直菲涅尔透镜、位于下固定壳第二通孔位置上的聚光菲涅尔透镜、以及位于PCB板上的第六挡光片,所述第一直角棱镜及所述第二直角棱镜相互对准,当按键放松时,经光发射器件发出的光线,经过位于下固定壳上准直菲涅尔透镜 准直之后,入射到位于键帽下方的所述第一直角棱镜,经过其上方的反射面反射后,光线转折入射到另一侧、同样位于键帽下方的所述第二直角棱镜,经过其上方的反射面再次反射后,光线向下方入射到位于下固定壳的聚光菲涅尔透镜中,会聚到PCB板的光接收器件上,从而触发电路导通;当按键下压时,位于PCB板上的第六挡光片将所述第一直角棱镜及所述第二直角棱镜之间的光线完全挡住,光路被切断,相连的电路处于断开状态。
- 根据权利要求30所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述第一直角棱镜及所述第二直角棱镜上方的反射面均为全反射面,且均为倾斜平面,其也可以是离轴抛物面、离轴2次曲面或者多项式曲面的自由曲面,或为多个面组成的复合曲面。
- 根据权利要求2所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述光路通道包括位于键帽下方的第二十四反射面及第二十五反射面、以及位于PCB板上的第七挡光片,所述第二十四反射面及所述第二十五反射面相互对准,当按键放松时,经光发射器件发出的光线,经过位于下固定壳上第一通孔入射到位于键帽下方的所述第二十四反射面,经反射后光线投射向另一侧、同样位于键帽下方的第二十五反射面上,经再次反射后,光线射向下方转折,经过位于下固定壳上的第二通孔会聚到PCB板的光接收器件上,从而触发电路导通;当按键下压时,位于PCB板上的第七挡光片将所述第二十四反射面及所述第二十五反射面之间的光线完全挡住,光路被切断,相连的电路处于断开状态。
- 根据权利要求32所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述第二十四反射面及所述第二十五反射面均是离轴抛物面、离轴2次曲面或者多项式曲面的自由曲面,其也可以为倾斜纯平面,或为多个面组成的复合曲面。
- 根据权利要求1所述的一种超薄型反射式的电脑输入设备的 开关模组,其特征在于,所述光发射器件竖直设置于所述上固定壳上,所述光接收器件设置于所述PCB板上,所述下固定壳上设置有第二通孔,且所述第二通孔位于所述光接收器件上方。
- 根据权利要求34所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述光路通道包括设置于上固定壳的准直菲涅尔透镜、位于键轴的第二十六反射面、以及位于上固定壳下方的第二十七反射面,从光发射器件发出的光线,经过上固定壳上的准直菲涅尔透镜后准直入射到键轴的所述第二十六反射面上,当按键下压时,键轴的所述第二十六反射面正好对准上固定壳下方的所述第二十七反射面,其将从所述第二十六反射面入射过来的光线进行转折射出,射出的光线经下固定壳第二通孔位置的后集中到PCB板的光接收器件,从而触发电路导通;当按键放松弹簧回复到原位时,所述第二十六反射面与所述第二十七反射面完全错开,光路被切断,相连的电路处于断开状态。
- 根据权利要求35所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述第二十七反射面是离轴抛物面、离轴2次曲面或者多项式曲面的自由曲面,其也可以为倾斜纯平面,或为多个面组成的复合曲面。
- 根据权利要求34所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述光路通道包括设置于上固定壳的准直菲涅尔透镜、位于键帽下方的第八挡光片、以及位于下固定壳第二通孔位置上的第七折光棱镜,设置于上固定壳的所述准直菲涅尔透镜及所述第七折光棱镜相互对准,当按键放松时,经光发射器件发出的光线,经过所述准直菲涅尔透镜准直射出,光线入射到另一侧的位于下固定壳第二通孔位置上的所述第七折光棱镜中,经其上方倾斜的全反射面转折后,经过所述第七折光棱镜下方的聚光菲涅尔平面会聚到PCB板的光接收器件上,从而触发电路导通;当按键下压时,位于键帽下方的第八挡光片将所述准直菲涅尔透 镜及所述第七折光棱镜之间的光线完全挡住,光路被切断,相连的电路处于断开状态。
- 根据权利要求37所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述第七折光棱镜的上方为倾斜的反射面,该反射面为离轴的抛物面、离轴二次曲面、或者多项式曲面形式的自由曲面,其也可以为倾斜纯平面,或为多个面组成的复合曲面,所述第七折光棱镜的下方为聚光菲涅尔面。
- 根据权利要求34所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述光路通道包括设置于上固定壳的准直菲涅尔透镜、位于键帽下方的第九挡光片、以及位于上固定壳的第二十八反射面,设置于上固定壳的所述准直菲涅尔透镜及所述第二十八反射面相互对准,当按键放松时,经光发射器件发出的光线,经过所述准直菲涅尔透镜准直射出,光线入射到另一侧的位于上固定壳的第二十八反射面,经其反射转折后,经过位于下固定壳上的第二通孔会聚到PCB板的光接收器件上,从而触发电路导通;当按键下压时,位于键帽下方的第九挡光片将所述准直菲涅尔透镜及所述第二十八反射面之间的光线完全挡住,光路被切断,相连的电路处于断开状态。
- 根据权利要求39所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述第二十八反射面是离轴抛物面、离轴2次曲面或者多项式曲面的自由曲面,其也可以为倾斜纯平面,或为多个面组成的复合曲面。
- 根据权利要求34所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述光路通道包括设置于上固定壳的准直菲涅尔透镜、位于键帽下方的第十挡光片、以及位于下固定壳第二通孔位置上的第八折光棱镜,设置于上固定壳的所述准直菲涅尔透镜及所述第八折光棱镜相互对准,当按键放松时,经光发射器件发出的光线,经过所述准直菲涅尔透镜准直射出,光线入射到另一侧的位于下固定壳第二通孔位置 上的所述第八折光棱镜中,经其上方倾斜的全反射面转折后,再经其下方的透光平面会聚到PCB板的光接收器件上,从而触发电路导通;当按键下压时,位于键帽下方的第十挡光片将所述准直菲涅尔透镜及所述第八折光棱镜之间的光线完全挡住,光路被切断,相连的电路处于断开状态。
- 根据权利要求41所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述第八折光棱镜的上方为倾斜的反射面,该反射面为离轴的抛物面、离轴二次曲面、或者多项式曲面形式的自由曲面,其也可以为倾斜纯平面,或为多个面组成的复合曲面,所述第八折光棱镜的下方为透光平面。
- 根据权利要求1所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述光接收器件竖直设置于所述上固定壳上,所述光发射器件设置于所述PCB板上,所述下固定壳上设置有第一通孔,且所述第一通孔位于所述光发射器件上方。
- 根据权利要求43所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述光路通道包括设置于上固定壳下方的第二十九反射面、位于键轴上的第三十反射面、位于键轴上另一侧的第三十一反射面以及位于上固定壳的聚光菲涅尔透镜,从光发射器件发出的光线,经过下固定壳上的第一通孔后准直入射到上固定壳下方的所述第二十九反射面,当按键下压时,键轴上的所述第三十反射面正好对准上固定壳下方的所述第二十九反射面,其将从所述第二十九反射面入射过来的光线进行转折射出,然后入射到同样位于键轴上的另一侧的所述第三十一反射面,经再次反射转折后,再入射到位于上固定壳另一侧的聚光菲涅尔透镜后集中到上固定壳的光接收器件,从而触发电路导通;当按键放松弹簧回复到原位时,所述第三十反射面与所述第二十九反射面完全错开,同时所述第三十一反射面也与所述聚光菲涅尔透镜完全错开,光路被切断,相连的电路处于断开状态。
- 根据权利要求44所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述第二十九反射面为离轴的抛物面、离 轴二次曲面、或者多项式曲面形式的自由曲面,其也可以为倾斜纯平面,或为多个面组成的复合曲面。
- 根据权利要求43所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述光路通道包括位于键帽下方的所述第十一挡光片、位于下固定壳上的所述第九折光棱镜、以及所述第十一挡光片另一侧的位于上固定壳上的聚光菲涅尔透镜,所述第九折光棱镜与设置于上固定壳的所述聚光菲涅尔透镜相互对准,当按键放松时,从光发射器件发出的光线,经过下固定壳上的第一通孔后准直入射到所述第九折光棱镜,经其准直和转折之后,入射到另一侧的位于上固定壳所述聚光菲涅尔透镜中,再汇聚到上固定壳的光接收器件,从而触发电路导通;当按键下压时,位于键帽下方的所述第十一挡光片将所述准直菲涅尔透镜及所述第九折光棱镜之间的光线完全挡住,光路被切断,相连的电路处于断开状态。
- 根据权利要求46所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述第九折光棱镜的上方为倾斜的反射面,该反射面为离轴的抛物面、离轴二次曲面、或者多项式曲面形式的自由曲面,其也可以为倾斜纯平面,或为多个面组成的复合曲面,所述第九折光棱镜的下方为透光平面。
- 根据权利要求1所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述光接收器件竖直设置于所述键帽上,所述光发射器件设置于所述PCB板上,所述下固定壳上设置有第一通孔,且所述第一通孔位于所述光接收器件上方。
- 根据权利要求48所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述光路通道包括位于下固定壳第一通孔位置上的准直菲涅尔透镜、固定于所述PCB板上的第十二挡光片、固定于键帽下方并且分别位于所述第十二挡光片两侧的第三十二反射面以及聚光菲涅尔透镜,所述第三十二反射面与固定于键帽下方的所述聚光菲涅尔透镜相互对准,当按键放松时,从光发射器件发出的光线,经过下固定壳 第一通孔位置上的准直菲涅尔透镜后准直入射到所述第三十二反射面,经其转折之后,入射到另一侧的固定于键帽下方的所述聚光菲涅尔透镜中,再汇聚到同样固定于键帽下方的光接收器件,从而触发电路导通;当按键下压时,固定于所述PCB板上的第十二挡光片将所述聚光菲涅尔透镜及所述第三十二反射面之间的光线完全挡住,光路被切断,相连的电路处于断开状态。
- 根据权利要求49所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述聚光菲涅尔透镜和所述光接收器件通过卡扣的方式固定在键帽下方。
- 根据权利要求49所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述第三十二反射面为倾斜平面。
- 根据权利要求48所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述光路通道包括位于下固定壳第一通孔位置上的准直菲涅尔透镜、固定于所述PCB板上的第十三挡光片、固定于键帽下方并且分别位于所述第十二挡光片两侧的第三直角棱镜以及聚光菲涅尔透镜,所述第三直角棱镜与固定于键帽下方的所述聚光菲涅尔透镜相互对准,当按键放松时,从光发射器件发出的光线,经过下固定壳第一通孔位置上的准直菲涅尔透镜后准直入射到所述第三直角棱镜,经其倾斜平面的反射面发射转折之后,入射到另一侧的固定于键帽下方的所述聚光菲涅尔透镜中,再汇聚到同样固定于键帽下方的光接收器件,从而触发电路导通;当按键下压时,固定于所述PCB板上的第十三挡光片将所述聚光菲涅尔透镜及所述第三直角棱镜之间的光线完全挡住,光路被切断,相连的电路处于断开状态。
- 根据权利要求52所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述聚光菲涅尔透镜、所述光接收器件以及所述第三直角棱镜均通过卡扣的方式固定在键帽下方。
- 根据权利要求52所述的一种超薄型反射式的电脑输入设备 的开关模组,其特征在于,所述第三直角棱镜的上方为倾斜平面的反射面。
- 根据权利要求1至54任一所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述反射面为高反射率表面,其反射系数超过80%,其为亮银色或者为亮金色,也可以为高反射率白色或光反射镀层。
- 根据权利要求1至54任一所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述光发射器件为SMD IR红外线二极管或激光二极管,所述光接收器件为SMD PT管。
- 根据权利要求20至54任一所述的一种超薄型反射式的电脑输入设备的开关模组,其特征在于,所述挡光片为黑色吸光的材料,其与所述键帽采用双色注塑的方法注塑成型或通过卡扣的方式组合在一起,或通过卡扣的方式设置在所述PCB板上方。
- 一种键帽字符照明系统,配合权利要求1至54任一所述的一种超薄型反射式的电脑输入设备的开关模组使用,其特征在于,所述键帽字符照明系统包括:设置在所述PCB板上的照明光源和位于所述上固定壳上用于配光的光学器件,其中所述照明光源为单色LED芯片或者多色LED芯片,所述光学器件为梯形反射器、方形反射器、偏光透镜、全反射透镜、组合透镜或者用来做混光处理的内部掺杂扩散粒子的扩撒片。
- 根据权利要求58所述的一种键帽字符照明系统,其特征在于,所述光学器件为梯形反射器或方形反射器,其将所述照明光源发出来的光线进行配光,分配到所需要的照明范围,其反射面为高反射率表面,其反射系数超过80%,其为亮银色或者为亮金色,也可以为高反射率白色或光反射镀层。
- 根据权利要求58所述的一种键帽字符照明系统,其特征在于,所述光学器件为偏心透镜,其上曲面为偏心、非对称的自由曲面。
- 根据权利要求58所述的一种键帽字符照明系统,其特征在于,所述光学器件为全反射透镜,其包括中间的折射部分以及外圈的全反射部分。
- 根据权利要求58所述的一种键帽字符照明系统,其特征在于,所述光学器件为组合透镜,其下表面为锯齿形菲涅尔面,其可以收集大角度的光线,并进行准直,准直后再入射到其上表面上,其上表面为凸面,用来将下表面准直入射过来的光线分配到所需的照明区域。
- 根据权利要求58所述的一种键帽字符照明系统,其特征在于,所述照明光源为多色LED芯片,所述光学器件为用来做混光处理的内部掺杂扩散粒子的扩撒片。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510412638.0A CN105006396A (zh) | 2015-07-13 | 2015-07-13 | 一种超薄型反射式的电脑输入设备的开关模组 |
CN201510412638.0 | 2015-07-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017008372A1 true WO2017008372A1 (zh) | 2017-01-19 |
Family
ID=54379028
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/088047 WO2017008372A1 (zh) | 2015-07-13 | 2015-08-25 | 一种超薄型反射式的电脑输入设备的开关模组 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105006396A (zh) |
WO (1) | WO2017008372A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117492575A (zh) * | 2024-01-03 | 2024-02-02 | 凯晖科技股份有限公司 | 一种超薄且可折叠tp触控键盘 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105245217B (zh) * | 2015-11-17 | 2018-11-30 | 陈爱华 | 运用面光源的键盘按键以及键盘 |
CN105375913A (zh) * | 2015-11-24 | 2016-03-02 | 东莞市高特电子有限公司 | 一种反射式光电机械键盘开关 |
CN109478887B (zh) * | 2016-03-30 | 2022-07-12 | 陈�峰 | 一种有阻断体及阻断动作空间的光开关装置 |
CN105914075B (zh) * | 2016-06-24 | 2018-02-06 | 深圳市煌兆铭科技有限公司 | 光电键盘开关及机械键盘 |
CN108023584B (zh) * | 2016-11-02 | 2020-08-14 | 致伸科技股份有限公司 | 按键结构 |
CN107180719A (zh) * | 2017-07-11 | 2017-09-19 | 东莞市高特电子有限公司 | 一种沉板式超薄光电机械键盘开关及键盘 |
CN107370480B (zh) * | 2017-08-22 | 2023-07-21 | 无锡华普微电子有限公司 | 按键式人体红外感应开关 |
TWI637290B (zh) * | 2017-12-06 | 2018-10-01 | 達方電子股份有限公司 | 按鍵及其鍵盤 |
US11108393B2 (en) | 2018-01-05 | 2021-08-31 | Darfon Electronics Corp. | Optical keyswitch triggered by support mechanism having at least one rotatable frame enable a protrusion to move along with a key cap |
US10637470B2 (en) | 2018-01-05 | 2020-04-28 | Darfon Electronics Corp. | Optical keyswitch |
US11770123B2 (en) | 2018-01-05 | 2023-09-26 | Darfon Electronics Corp. | Optical keyswitch comprising a keycap having a light transmission area and a keycap projection area projected on a circuit board |
WO2020208940A1 (ja) * | 2019-04-10 | 2020-10-15 | パナソニックIpマネジメント株式会社 | プッシュスイッチ、及び照明付きスイッチ装置 |
US11735379B2 (en) | 2021-04-07 | 2023-08-22 | Darfon Electronics Corp. | Keyswitch assembly |
US11721500B2 (en) | 2021-04-07 | 2023-08-08 | Darfon Electronics Corp. | Keyswitch assembly and support mechanism thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2301752Y (zh) * | 1997-06-06 | 1998-12-23 | 石文广 | 光电式键盘 |
CN101212217A (zh) * | 2006-12-26 | 2008-07-02 | 陈�峰 | 光电键盘的光路分布 |
US7855715B1 (en) * | 2005-07-27 | 2010-12-21 | James Harrison Bowen | Switch with depth and lateral articulation detection using optical beam |
CN201765996U (zh) * | 2010-09-08 | 2011-03-16 | 山东科技大学 | 发光电脑键盘 |
US20110247925A1 (en) * | 2010-04-07 | 2011-10-13 | Chin-Hung Lin | Keyswitch module and keyboard |
CN204539108U (zh) * | 2015-02-27 | 2015-08-05 | 东莞市长资实业有限公司 | 一种光电一体式机械轴键盘开关模组 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7333083B1 (en) * | 2001-05-10 | 2008-02-19 | Logitech Europe S.A. | Optical based performance improvement for an optical illumination configuration |
CN101247120A (zh) * | 2008-03-07 | 2008-08-20 | 李玉平 | 一种煤矿信息装置用按键 |
CN203812764U (zh) * | 2014-03-25 | 2014-09-03 | 郝小妮 | 光晶体反射式的机械开关 |
CN204332780U (zh) * | 2014-12-30 | 2015-05-13 | 杨丽 | 一种机械式键盘按键开关 |
CN204441139U (zh) * | 2015-01-29 | 2015-07-01 | 徐孝海 | 空心对管轴键盘 |
CN205282347U (zh) * | 2015-07-13 | 2016-06-01 | 东莞市美光达光学科技有限公司 | 一种超薄型反射式的电脑输入设备的开关模组 |
-
2015
- 2015-07-13 CN CN201510412638.0A patent/CN105006396A/zh active Pending
- 2015-08-25 WO PCT/CN2015/088047 patent/WO2017008372A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2301752Y (zh) * | 1997-06-06 | 1998-12-23 | 石文广 | 光电式键盘 |
US7855715B1 (en) * | 2005-07-27 | 2010-12-21 | James Harrison Bowen | Switch with depth and lateral articulation detection using optical beam |
CN101212217A (zh) * | 2006-12-26 | 2008-07-02 | 陈�峰 | 光电键盘的光路分布 |
US20110247925A1 (en) * | 2010-04-07 | 2011-10-13 | Chin-Hung Lin | Keyswitch module and keyboard |
CN201765996U (zh) * | 2010-09-08 | 2011-03-16 | 山东科技大学 | 发光电脑键盘 |
CN204539108U (zh) * | 2015-02-27 | 2015-08-05 | 东莞市长资实业有限公司 | 一种光电一体式机械轴键盘开关模组 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117492575A (zh) * | 2024-01-03 | 2024-02-02 | 凯晖科技股份有限公司 | 一种超薄且可折叠tp触控键盘 |
CN117492575B (zh) * | 2024-01-03 | 2024-03-08 | 凯晖科技股份有限公司 | 一种超薄且可折叠tp触控键盘 |
Also Published As
Publication number | Publication date |
---|---|
CN105006396A (zh) | 2015-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017008372A1 (zh) | 一种超薄型反射式的电脑输入设备的开关模组 | |
CN204539108U (zh) | 一种光电一体式机械轴键盘开关模组 | |
CN205282347U (zh) | 一种超薄型反射式的电脑输入设备的开关模组 | |
TWI618105B (zh) | 光電一體式機械軸鍵盤開關模組 | |
WO2016134560A1 (zh) | 光电一体式机械轴键盘开关模组 | |
WO2016192170A1 (zh) | 一种控制及调节光电信号用于输入设备的开关模组 | |
US20090213585A1 (en) | Light emitting diode display device | |
TW201414957A (zh) | 照明裝置 | |
CN100443954C (zh) | 光学输入方法、设备及该设备的分光式镜头模组 | |
US20150029722A1 (en) | Lens unit and light source module with same | |
JP2012169507A (ja) | Led発光装置および電子機器 | |
KR101736566B1 (ko) | 광원 모듈 및 이를 이용한 무대 조명 장치 | |
EP2656131B1 (en) | Lens and illumination apparatus having the same | |
US9857034B2 (en) | Ultra slim collimator for light emitting diode | |
TWI547667B (zh) | 發光模組及發光裝置 | |
CN112181170B (zh) | 光鼠标与其导光管以及光学导航装置的光学器件 | |
US20200041718A1 (en) | Light guide plate and input apparatus | |
TWI564626B (zh) | 光源模組 | |
CN220154786U (zh) | 投影光机 | |
CN110858050A (zh) | 照明准直系统及其设计方法 | |
CN216202586U (zh) | 线型光学模块 | |
CN216743897U (zh) | 一种具有双透镜的照明组件 | |
KR102604393B1 (ko) | 배광각 변형이 용이한 투광등 장치. | |
CN217468261U (zh) | 发光键盘及用于发光键盘的背光装置 | |
TW201908773A (zh) | 導光透鏡 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15898099 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29/05/2018) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15898099 Country of ref document: EP Kind code of ref document: A1 |