WO2017008285A1 - 无线回程通信的方法和装置 - Google Patents

无线回程通信的方法和装置 Download PDF

Info

Publication number
WO2017008285A1
WO2017008285A1 PCT/CN2015/084143 CN2015084143W WO2017008285A1 WO 2017008285 A1 WO2017008285 A1 WO 2017008285A1 CN 2015084143 W CN2015084143 W CN 2015084143W WO 2017008285 A1 WO2017008285 A1 WO 2017008285A1
Authority
WO
WIPO (PCT)
Prior art keywords
delay
sensitive
service
level
base stations
Prior art date
Application number
PCT/CN2015/084143
Other languages
English (en)
French (fr)
Inventor
杨科文
张洁涛
庄宏成
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/084143 priority Critical patent/WO2017008285A1/zh
Publication of WO2017008285A1 publication Critical patent/WO2017008285A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/12Access point controller devices

Definitions

  • Embodiments of the present invention relate to communication technologies, and in particular, to a method and apparatus for wireless backhaul communication.
  • the miniaturization and densification of wireless network access points is the development trend of wireless networks.
  • the dense networks have high dynamics, and access points need to access the core network through backhaul.
  • the backhaul is based on a wired connection.
  • Heterogeneous Network HetNet
  • HetNet Heterogeneous Network
  • the wired backhaul and the wireless backhaul coexist in the network, and the wireless backhaul forms a wireless backhaul network in the form of mesh.
  • the mesh form of the wireless backhaul network brings challenges to network management, ensuring that the service has a delay requirement and that the network resources are used fairly and reasonably. Moreover, with the development of technology, the network business will be diversified in the future, and the network service will have higher and higher requirements for delay.
  • the maximum delay of a service is in one-to-one correspondence with the Quality of Service (QoS) Level Indicator (QCI).
  • QCI Quality of Service
  • the QCI of the service determines that the maximum delay of the service is also fixed.
  • the maximum delay of the service is determined according to the QCI of the service, so that the classification of the delay is relatively rough and not accurate. If the delay classification of the service is roughly inaccurate, the network resources are wasted and the service is unfair.
  • some services corresponding to multiple QCIs have a large delay span, which leads to overprovision of services with relatively low latency requirements. When network resources are scarce, those delay requirements are relatively high. The business is not satisfied.
  • the maximum delay corresponding to a certain QCI is 100 ms
  • the delay constraint of the service belonging to the level may be 100 ms, 150 ms, and 200 ms, and the maximum delay of these services is treated as 100 ms during processing. It is not required to provide such a strict delay service for services requiring 150ms and 200ms.
  • Embodiments of the present invention provide a method and apparatus for wireless backhaul communication, according to specific service requirements.
  • the network state is determined, the service delay level is determined, and the wireless backhaul route of each service is determined, and the utilization of the network resource is improved while ensuring the service delay requirement.
  • a first aspect of the present invention provides a method for wireless backhaul communication, including:
  • the controller receives the backhaul link capacity reported by the N base stations in the cluster, and N is a positive integer greater than or equal to 2;
  • the controller receives service measurement information reported by the N base stations respectively;
  • the controller sends the delay level and the wireless backhaul route of all the services to the N base stations.
  • the controller according to the backhaul network topology, a capacity of each backhaul link in the backhaul network topology, and reported by the N base stations
  • the service measurement information and the delay level of all the services on the N base stations, and determining the wireless backhaul routes of all the services on the N base stations including:
  • the controller divides all services on the N base stations into delay-sensitive services and non-delay-sensitive services according to a delay level of all services on the N base stations;
  • the controller is configured according to the updated backhaul network topology, the remaining capacity of each backhaul link in the backhaul network topology, the delay level of the non-delay sensitive service, and the non-delay sensitive service.
  • the service measurement information determines the wireless backhaul route of the non-delay sensitive service.
  • the controller according to the backhaul network topology, and a capacity of each backhaul link in the backhaul network topology Determining the wireless backhaul route of the delay sensitive service, including: a delay level of the delay sensitive service and service measurement information of the delay sensitive service, including:
  • the controller according to the maximum number of route hops of the delay sensitive service corresponding to the sensitive delay level i on the nth base station, the backhaul network topology, and the capacity of each backhaul link in the backhaul network topology, Determining the wireless backhaul routing of the delay sensitive service corresponding to the sensitive delay level i on the nth base station, where the delay sensitive service corresponding to the sensitive delay level i on the nth base station is wireless
  • the number of route hops of the backhaul route is less than or equal to the maximum number of route hops of the delay sensitive service corresponding to the sensitive delay level i on the nth base station.
  • the controller is configured according to a maximum delay of the sensitive delay level i, where the nth base station is located Determining the maximum number of route hops of the delay-sensitive service corresponding to the sensitive delay level i on the nth base station, including the expected traffic volume and the average transmission rate of the delay-sensitive service corresponding to the sensitive delay level i, including:
  • the controller calculates the maximum number of route hops H n,i of the delay sensitive service corresponding to the sensitive delay level i on the nth base station according to the following formula:
  • the expected traffic volume of the delay sensitive service corresponding to the sensitive delay level i on the nth base station The average transmission rate of the delay-sensitive service corresponding to the sensitive delay level i on the nth base station, where t 0 is the delay of each hop transmission, and t 0 is a preset constant.
  • the controller determines the wireless backhaul route of the delay sensitive service, including: a delay level of the delay sensitive service and service measurement information of the delay sensitive service, including:
  • Determining, by the controller, that the maximum delay of the sensitive delay level i on the N base stations, the expected traffic volume of the delay sensitive service corresponding to the sensitive delay level i on the N base stations, and the average transmission rate The maximum number of route hops of the delay-sensitive service corresponding to the sensitive delay level i on the N base stations, wherein the lower the sensitive delay level, the smaller the maximum number of route hops of the delay-sensitive service;
  • a wireless backhaul route of the delay-sensitive service corresponding to the sensitive delay level i on the base station where the number of route hops of the wireless backhaul route corresponding to the delay-sensitive service corresponding to the sensitive delay level i on each base station is less than or equal to The maximum number of route hops of the delay-sensitive service corresponding to the sensitive delay level i.
  • the controller according to a maximum delay of the sensitive delay level i on the N base stations, The expected traffic volume and the average transmission rate of the delay-sensitive service corresponding to the sensitive delay level i on the N base stations, and the maximum number of route hops of the delay-sensitive service corresponding to the sensitive delay level i on the N base stations, including:
  • the controller calculates a maximum number of route hops H i of the delay sensitive service corresponding to the sensitive delay level i on the N base stations according to the following formula:
  • the service measurement information includes: a delay level of the service, a traffic volume, and an average transmission rate. And determining, by the controller, the delay level of all services on the N base stations according to the service measurement information reported by the N base stations, including:
  • the controller according to the traffic volume of the service corresponding to the delay level i reported by the nth base station at the time t, and the expected traffic of the nth base station corresponding to the delay level i at the t-1th time
  • the controller according to the expected traffic volume of the service corresponding to the delay level i of each base station at the time t, and the total expected traffic volume of the service corresponding to the time delay level i of the N base stations at the time t-1. Calculating a total expected traffic volume of the service corresponding to the delay level i of the N base stations at the time t;
  • the controller calculates an average transmission of the service corresponding to each delay level of the N base stations at the time t according to the average transmission rate of the service corresponding to each delay level reported by each base station at the time t rate;
  • the controller determines a delay level of the all services according to a total expected traffic volume, an average transmission rate, and a transmission result of the service corresponding to each delay level of the N base stations at the time t.
  • the controller is configured according to the service corresponding to the delay level i reported by the nth base station at the time t The traffic, and the expected traffic of the service corresponding to the time delay i of the nth base station at the time t-1, and the expected service of the time delay level i of the nth base station at the time t Business volume, including:
  • the controller calculates an expected traffic volume of the service corresponding to the delay level i of the nth base station at time t according to the following formula
  • the traffic volume of the service corresponding to the delay level i reported by the nth base station at the time t the expected traffic volume of the service corresponding to the delay level i of the nth base station at the time t-1, ⁇ [0,1];
  • the controller according to the expectation of the service corresponding to the delay level i of each base station at the time t Traffic, and the total expected traffic of the service corresponding to the time delay level i of the N base stations at time t-1, and calculating the total expected service of the N base station corresponding to the delay level i at the time t Business volume, including:
  • the controller calculates a total expected traffic of the service corresponding to the delay level i of the N base stations at the time t according to the following formula
  • the expected traffic volume of the service corresponding to the delay level i of the nth base station at the time t The total expected traffic of the service corresponding to the delay level i of the N base stations at the time t-1.
  • the controller according to the time delay of the N base stations at the time t The total expected traffic volume, the average transmission rate, and the transmission result of the service corresponding to the level determine the delay level of all the services, including:
  • the controller calculates a total expected traffic volume of all services on the N base stations according to the traffic volume reported by the N base stations;
  • the controller calculates a first ratio of the total expected traffic of the service corresponding to each delay level of the N base stations at time t and the total expected traffic of all services on the N base stations;
  • the first ratio of the total expected traffic of the service corresponding to the delay level m and the total expected traffic of all services on the N base stations in the I delay level is greater than a preset threshold, according to the The total expected traffic volume, the average transmission rate, and the transmission result of the service corresponding to the delay level m adjust the time delay of the service corresponding to the delay level m.
  • a second aspect of the present invention provides a wireless backhaul method based on service delay grading, including:
  • the base station measures the reachability of the backhaul link with the neighboring base station
  • the base station reports the backhaul link capacity of the backhaul link with the neighboring base station to the controller, so that the controller is based on the controller.
  • the backhaul link capacity determines a backhaul network topology formed by N base stations in the cluster, and N is a positive integer greater than or equal to 2;
  • the base station performs service measurement, and reports service measurement information to the controller, so that the controller determines delays of all services on the N base stations according to the service measurement information. grade;
  • the wireless backhaul routing is performed by the controller according to the backhaul network topology, the capacity of each backhaul link in the backhaul network topology, the service measurement information reported by the N base stations, and the N base stations.
  • the delay level of all services is determined.
  • a third aspect of the present invention provides a controller, including:
  • a receiving module configured to receive a backhaul link capacity reported by the N base stations in the cluster, where N is a positive integer greater than or equal to 2;
  • a backhaul network topology update module configured to determine, according to the backhaul link capacity, a backhaul network topology formed by the N base stations;
  • the receiving module is further configured to receive service measurement information reported by the N base stations respectively;
  • a service delay level determining module configured to determine, according to the service measurement information reported by the N base stations, a delay level of all services on the N base stations;
  • a backhaul routing management module configured to: according to the backhaul network topology, the capacity of each backhaul link in the backhaul network topology, the service measurement information reported by the N base stations, and the delay of all services on the N base stations Level, determining wireless backhaul routes of all services on the N base stations;
  • a sending module configured to send the delay level and the wireless backhaul route of the all services to the N base stations.
  • the backhaul routing management module is specifically configured to:
  • All services on the N base stations are classified into a delay-sensitive service and a non-delay-sensitive service according to a delay level of all services on the N base stations;
  • Wireless backhaul routing for delay sensitive services
  • the backhaul routing management module is configured according to the backhaul network topology, each backhaul link in the backhaul network topology Determining the wireless backhaul route of the delay sensitive service by using the capacity, the delay level of the delay sensitive service, and the service measurement information of the delay sensitive service, specifically:
  • Wireless backhaul routing of the delay sensitive service corresponding to the sensitive delay level i on the n base stations wherein the routing of the wireless backhaul routing of the delay sensitive service corresponding to the sensitive delay level i on the nth base station
  • the hop count is less than or equal to the maximum number of route hops of the delay sensitive service corresponding to the sensitive delay level i on the nth base station.
  • the backhaul routing management module according to a maximum delay of the sensitive delay level i, the nth base station The expected traffic volume and the average transmission rate of the delay-sensitive service corresponding to the sensitive delay level i, and the maximum number of route hops of the delay-sensitive service corresponding to the sensitive delay level i on the nth base station, Specifically:
  • the maximum number of route hops H n,i of the delay sensitive service corresponding to the sensitive delay level i on the nth base station is calculated according to the following formula:
  • the expected traffic volume of the delay sensitive service corresponding to the sensitive delay level i on the nth base station The average transmission rate of the delay-sensitive service corresponding to the sensitive delay level i on the nth base station, where t 0 is the delay of each hop transmission, and t 0 is a preset constant.
  • the backhaul routing management module determines whether the wireless backhaul route of the delay sensitive service by using the capacity, the delay level of the delay sensitive service, and the service measurement information of the delay sensitive service, specifically:
  • the wireless backhaul route of the delay-sensitive service corresponding to the sensitive delay level i wherein the number of route hops of the wireless backhaul route of the delay-sensitive service corresponding to the sensitive delay level i on each base station is less than or equal to the sensitive time.
  • the backhaul routing management module is configured according to a maximum delay of the sensitive delay level i on the N base stations, Determining the expected traffic volume and the average transmission rate of the delay-sensitive service corresponding to the sensitive delay level i on the N base stations, and determining the maximum number of route hops of the delay-sensitive service corresponding to the sensitive delay level i on the N base stations, Specifically:
  • the service measurement information includes: a delay level of the service, a traffic volume, and an average transmission rate. And transmitting the result; the service delay level determining module is specifically configured to:
  • the service delay level determining module is configured according to the delay level i reported by the nth base station at the time t Determining, according to the traffic volume of the corresponding service, and the expected traffic volume of the service corresponding to the time delay level i of the nth base station at the time t-1, determining that the nth base station corresponds to the delay level i at the time t
  • the expected business volume of the business specifically:
  • the traffic volume of the service corresponding to the delay level i reported by the nth base station at the time t the expected traffic volume of the service corresponding to the delay level i of the nth base station at the time t-1, ⁇ [0,1];
  • the total expected traffic of the service corresponding to the delay level i of the N base stations at the time t including:
  • the expected traffic volume of the service corresponding to the delay level i of the nth base station at the time t The total expected traffic of the service corresponding to the delay level i of the N base stations at the time t-1.
  • the service delay level determining module is configured according to the N base stations at time t
  • the total expected traffic volume, the average transmission rate, and the transmission result of the service corresponding to each delay level determine the delay level of all the services, which are specifically:
  • the first ratio of the total expected traffic of the service corresponding to the delay level m and the total expected traffic of all services on the N base stations in the I delay level is greater than a preset threshold, according to the The total expected traffic volume, the average transmission rate, and the transmission result of the service corresponding to the delay level m adjust the time delay of the service corresponding to the delay level m.
  • a fourth aspect of the present invention provides a base station, including:
  • a backhaul link measurement module configured to measure reachability of a backhaul link between a base station and a neighboring base station
  • a sending module configured to report, to the controller, a backhaul link capacity of the backhaul link between the neighboring base station to enable the control if the backhaul link between the base station and the neighboring base station is reachable Determining, according to the backhaul link capacity, a backhaul network topology formed by N base stations in the cluster, where N is a positive integer greater than or equal to 2;
  • a service measurement module configured to perform service measurement, and report service measurement information to the controller, so that the controller determines, according to the service measurement information, all the services on the N base stations Delay level of service;
  • a receiving module configured to receive a delay level and a wireless backhaul route of all services on the base station sent by the controller
  • a data forwarding module configured to update a delay level of all services on the base station, and transmit the services according to a wireless backhaul route of each service, where the wireless backhaul route is based on the backhaul network topology of the controller. The capacity of each backhaul link in the backhaul network topology, the service measurement information reported by the N base stations, and the delay level of all services on the N base stations are determined.
  • a fifth aspect of the present invention provides a controller, including: a processor, a memory, a communication interface, and a system bus, wherein the memory and the communication interface are connected to the processor through the system bus and complete communication with each other,
  • the memory is for storing computer execution instructions
  • the communication interface is for communicating with other devices
  • the processor is configured to run the computer to execute instructions
  • the controller is configured to perform the first aspect, the first aspect A method as claimed in any one of the eighth possible implementations.
  • a sixth aspect of the present invention provides a base station, including: a processor, a memory, a communication interface, and a system bus, wherein the memory and the communication interface are connected to the processor through the system bus and complete communication with each other.
  • the memory is for storing computer execution instructions for communicating with other devices, the processor for executing the computer to execute instructions to cause the base station to perform the method as provided by the second aspect of the invention.
  • Embodiments of the present invention provide a method and apparatus for wireless backhaul communication, where a controller acquires a backhaul link capacity, a backhaul network topology, and service measurement information, and determines a delay level of all services on the N base stations according to the service measurement information, and according to the The backhaul network topology, the capacity of each backhaul link in the backhaul network topology, the service measurement information, and the delay level of all services on the N base stations, determine the wireless backhaul routes of all services on the N base stations, and delay all services. Levels and wireless backhaul routes are sent to each base station.
  • Routing improves the utilization of network resources while ensuring service delay requirements.
  • FIG. 1 is a schematic structural diagram of a network system to which an embodiment of the present invention is applied;
  • FIG. 2 is a flowchart of a method for providing wireless backhaul communication according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic diagram of a backhaul network topology
  • FIG. 4 is a schematic diagram of a delay level division of a service
  • FIG. 5 is a flowchart of a method for calculating a wireless backhaul route according to Embodiment 2 of the present invention.
  • FIG. 6 is a flowchart of a method for determining a delay level according to Embodiment 3 of the present invention.
  • FIG. 7 is a flowchart of a method for providing wireless backhaul communication according to Embodiment 4 of the present invention.
  • Embodiment 8 is a schematic structural diagram of a controller according to Embodiment 5 of the present invention.
  • Embodiment 8 of the present invention is a schematic structural diagram of a base station according to Embodiment 8 of the present invention.
  • FIG. 10 is a schematic structural diagram of a controller according to Embodiment 9 of the present invention.
  • FIG. 11 is a schematic structural diagram of a base station according to Embodiment 10 of the present invention.
  • FIG. 1 is a schematic structural diagram of a network system according to an embodiment of the present invention. As shown in FIG. 1 , the network system includes two controllers: a controller 1 and a controller 2, and the controller 1 manages the base station 1 and the base station 2, and the controller 2 The base station 3 and the base station 4 are managed.
  • the controller 1 includes the following modules: a backhaul network topology update module. It is used to collect the backhaul link capacity reported by the base station in the cluster, and establish and update the backhaul network topology according to the backhaul link capacity.
  • the service distribution information update module is configured to collect service measurement information reported by the base station in the cluster.
  • the service delay level determining module is configured to determine the delay level of the service according to the service measurement information reported by the base station, and further coordinate with the adjacent controller to determine the delay level of the service, and issue the delay level of the service.
  • the backhaul routing management module is configured to determine a wireless backhaul route for the service of each delay level, and send the wireless backhaul route to the base station.
  • the controller is a logical entity.
  • the LTE system is used as an example.
  • the controller may be integrated into a Serving GateWay (SGW)/Mobility Management Entity (MME) and connected to the base station through the S1 interface.
  • SGW Serving GateWay
  • MME Mobility Management Entity
  • the controller is integrated in a Software Defined Network (SDN) controller and connected to the base station through the southbound interface; or the controller can be integrated in the base station with line backhaul through the X2 interface and has Base station connection for wireless backhaul.
  • SGW Serving GateWay
  • MME Mobility Management Entity
  • SDN Software Defined Network
  • the base station 1 includes: a service measurement module, configured to measure the traffic volume, the average transmission rate, and the transmission result of the service corresponding to each delay level in the coverage of the statistical base station.
  • a backhaul link measurement module is configured to measure the reachability of the backhaul link between the base station 1 and the neighboring base station, and the capacity of the backhaul link.
  • the data forwarding module is configured to perform service forwarding according to the wireless backhaul route sent by the controller.
  • FIG. 2 is a flowchart of a method for providing wireless backhaul communication according to an embodiment of the present invention. As shown in FIG. 2, the method provided in this embodiment may include the following steps:
  • Step 101 The controller receives the backhaul link capacity reported by the N base stations in the cluster, where N is a positive integer greater than or equal to 2.
  • the base station n obtains the reachability of the backhaul link with the neighboring base station m by measurement. If it is unreachable, it indicates that there is no backhaul link between the base station n and the neighboring base station m, and the base station n does not report the link capacity. When reachable, the base station n reports the capacity of the backhaul link.
  • a criterion for determining the reachability of a backhaul link is that if the capacity of the wireless backhaul link between two base stations is greater than a preset threshold (ie, the signal to interference and noise ratio is greater than a corresponding threshold), the backhaul chain between the two base stations is considered to be The road is reachable.
  • Step 102 Determine a backhaul network topology formed by the N base stations according to the backhaul link capacity.
  • the controller After receiving the backhaul link capacity reported by the N base stations in the cluster, the controller determines the backhaul network topology formed by the N base stations. Specifically, if the controller receives the backhaul link capacity between the two base stations, It means that there is a backhaul link between the two base stations. If the controller does not receive the backhaul link capacity between the two base stations, it means that there is no backhaul link between the two base stations.
  • FIG. 3 is a schematic diagram of a backhaul network topology.
  • base stations 6 and 7 are macro base stations, and other base stations are micro base stations
  • solid lines in FIG. 3 indicate wired backhaul chains.
  • the road and the dotted line indicate the wireless backhaul link.
  • the macro base stations 6, 7 and the micro base station 10 can be directly connected to the core network through the wired backhaul, and the other micro base stations all pass the wireless backhaul link and the macro base stations 6, 7 and the micro with the wired backhaul.
  • the base station 10 is connected, and is connected to the core network through the macro base stations 6, 7 and the micro base station 10.
  • Step 103 The controller receives service measurement information reported by the N base stations.
  • the base station performs service measurement and obtains service measurement information, and reports the obtained service measurement information to the controller.
  • the service measurement information reported by each of the base stations includes: a delay level, a service volume corresponding to each delay level, an average transmission rate, and a transmission result, where the service corresponding to each delay level may be one or more.
  • the average transmission rate of the service corresponding to each delay level is: the average transmission rate of all services corresponding to the delay level in a period of time
  • the transmission result of the service corresponding to each delay level is: the service corresponding to the delay level The packet loss rate, average delay, etc. of each service in a period of time.
  • the base station may periodically report the service measurement information, or the base station may report the service measurement information based on the request of the controller, or the base station may report the service measurement information based on the event. If the base station is configured to periodically report service measurement information, the controller can configure different reporting periods for different delay levels as needed. If the base station reports the service measurement information based on the event, the base station may report the service measurement information to the controller when the traffic of the service is suddenly increased or the service volume of the service exceeds a certain threshold. If the base station triggers the measurement information of the reported service based on the request or the event, the base station may selectively report only the service measurement information of the service corresponding to the partial delay level, without reporting all delays, in order to save the resources occupied by the service measurement information.
  • the business measurement information of the service corresponding to the level For example, the base station only reports the service measurement information of the service corresponding to the delay level with a large change in the traffic volume, and does not need to report the service measurement information of the service corresponding to the delay level with a small or constant traffic change, or the base station according to the The transmission result of the service determines the measurement information of the service that reports the delay level. For example, the base station only reports the service measurement information of the service whose average transmission rate is lower than the rate threshold and the packet loss rate is greater than a certain threshold.
  • Step 104 The controller determines, according to the service measurement information reported by the N base stations, the N base stations. The delay level of all businesses.
  • the appropriate delay level may be determined for the service by simulation according to the historical measurement information of all services, and each delay level corresponds to a different delay range
  • FIG. 4 is a service delay.
  • Schematic diagram of the hierarchical division as shown in FIG. 4, the delay range of the delay level 1 is ( ⁇ 0 , ⁇ 1 ), the delay range of the delay level 2 is ( ⁇ 1 , ⁇ 2 ), and the delay level is 3
  • the delay range is ( ⁇ 2 , ⁇ 3 ), and the lower the delay level, the higher the service delay requirement, and there may be multiple services corresponding to each delay level.
  • the controller adjusts the delay level according to the service measurement information of the service corresponding to each delay level reported by each base station, for example, adding a new delay level, and dividing the original delay level with a large delay range into time Delay multiple delay levels to better utilize network resources and enhance business fairness.
  • Table 1 is a schematic diagram of the delay level, the maximum delay of the delay level, and the service corresponding to the delay level. Table 1 has a total of 11 delay levels (actually added, deleted, or modified as needed), and the delay level The lower the maximum delay, the smaller.
  • Step 105 The controller determines all services on the N base stations according to the backhaul network topology, the capacity of each backhaul link in the backhaul network topology, the service measurement information reported by the N base stations, and the delay level of all services on the N base stations. Wireless backhaul routing.
  • the wireless backhaul routing is determined preferentially for the delay sensitive service with high delay level, and then the wireless backhaul routing is determined for the non-delay sensitive service with low delay level, and is allocated for the service with high delay level.
  • the wireless backhaul route has a small number of route hops. The number of hops of the wireless backhaul route allocated for the service with low delay level is high.
  • the delay sensitive service can be preferentially transmitted to meet the delay requirement of the delay sensitive service.
  • the network topology and the service are dynamically changed.
  • the method in this embodiment can allocate wireless backhaul routes to each service in the cluster according to the backhaul network topology, the backhaul link capacity, and the service measurement information, so that the network resources can be effectively utilized. Increased utilization of network resources.
  • Step 106 The controller sends the delay level of all services and the wireless backhaul route to the N base stations.
  • the controller sends the wireless backhaul route of each service to each base station, so that each base station performs data forwarding according to the wireless backhaul route, and the controller sends the delay level of each service to each base station, so that each base station performs the service according to the delay level. Reporting of measurement information.
  • the controller obtains the backhaul link capacity, the backhaul network topology, and the service measurement information, and determines the delay level of all the services on the N base stations according to the service measurement information, and according to the backhaul network topology and the backhaul in the backhaul network topology.
  • Link capacity, service measurement information, and N The delay level of all services on the base station, determining the wireless backhaul routes of all services on the N base stations, and transmitting the delay level and the wireless backhaul route of all services to the base stations.
  • Routing improves the utilization of network resources while ensuring the delay requirements of each service.
  • the second embodiment of the present invention will be described in detail in step 104 of the first embodiment.
  • the second embodiment provides a method for calculating the wireless backhaul routing
  • FIG. 5 is provided in the second embodiment of the present invention.
  • the flowchart of the method for calculating the wireless backhaul route is as shown in FIG. 5.
  • the method provided in this embodiment may include the following steps:
  • Step 201 The controller divides all services on the N base stations into delay-sensitive services and non-delay-sensitive services according to delay levels of all services on the N base stations.
  • the controller divides each delay level into a sensitive delay level and a non-sensitive delay level according to a maximum delay corresponding to each delay level, and the sensitive delay level is that the maximum delay in all delay levels is less than a preset.
  • the delay level of the delay threshold, the non-sensitive delay level is the delay level of the maximum delay in all delay levels greater than or equal to the delay threshold. Assuming that the delay threshold is 100 ms, the delay level with the maximum delay of the delay level less than 100 ms is the sensitive delay level, and the delay level with the maximum delay of the delay level greater than or equal to 100 ms is the non-sensitive delay level.
  • the service corresponding to the sensitive delay level is a delay-sensitive service, and the service corresponding to the non-sensitive delay level is a non-delay-sensitive service.
  • Step 202 The controller determines the wireless backhaul route of the delay sensitive service according to the backhaul network topology, the capacity of each backhaul link in the backhaul network topology, the delay level of the delay sensitive service, and the service measurement information of the delay sensitive service.
  • the controller may sequentially calculate the wireless backhaul routes of the delay-sensitive services on each base station according to a certain sequence.
  • the delay class of the sensitive service calculates the wireless backhaul route of each delay sensitive service in order from low to high.
  • the service measurement information includes the delay level of the service, the traffic volume, the average transmission rate, and the transmission result.
  • the initial value of the delay level i is 1, and the delay level of 1 indicates the highest level of delay requirements.
  • the initial value of the base station sequence n is 1. After the wireless backhaul route of the delay-sensitive service of the delay level i of the nth base station is determined, the value of n is incremented by 1, and the next base station is calculated. Wireless backhaul routing for delay-sensitive traffic on delay level i. After determining the wireless backhaul route for the delay-sensitive service corresponding to all the base station delay level i, the value of i is incremented by 1, and the wireless backhaul route of the delay-sensitive service corresponding to the next delay level is calculated.
  • the controller first adds the traffic of all the services of the delay level i reported by the nth base station at the time t, and obtains the service of the service corresponding to the delay level i reported by the nth base station at the time t. And averaging or weighting the average transmission rate of all services of the delay level i reported by the nth base station at the time t, to obtain the service corresponding to the delay level i reported by the nth base station at the time t Average transfer rate.
  • the controller according to the traffic volume of the service corresponding to the delay level i reported by the nth base station at the time t, and the expected traffic volume of the service corresponding to the time delay level i of the nth base station at the t-1th time. Determining, by the nth base station, the expected traffic of the service corresponding to the delay level i at the time t, and t is a positive integer greater than or equal to 1.
  • the controller may calculate the expected traffic of the service corresponding to the delay level i of the nth base station at the time t according to the following formula.
  • the traffic volume of the service corresponding to the delay level i reported by the nth base station at the time t The expected traffic volume of the service corresponding to the delay level i at the time t-1 stored for the nth base station, ⁇ ⁇ [0, 1], ⁇ represents the traffic volume of the service corresponding to the delay level i reported at the t time Relative weights with historical traffic.
  • the controller determines the sensitive time on the nth base station according to the maximum delay of the sensitive delay level i, the expected traffic volume of the delay sensitive service corresponding to the sensitive delay level i on the nth base station, and the average transmission rate.
  • the controller may calculate the maximum number of route hops H n,i of the delay sensitive service corresponding to the sensitive delay level i on the nth base station according to the following formula:
  • the maximum delay for sensitive delay level i The expected traffic volume of the delay sensitive service corresponding to the sensitive delay level i on the nth base station, The average transmission rate of the delay-sensitive service corresponding to the sensitive delay level i on the nth base station, t 0 is the delay of each hop transmission, and t 0 is a preset constant.
  • the controller determines the nth base station according to the maximum number of route hops of the delay sensitive service corresponding to the sensitive delay level i on the nth base station, the backhaul network topology, and the capacity of each backhaul link in the backhaul network topology.
  • the wireless backhaul routing of the delay sensitive service corresponding to the sensitive delay level i wherein the hop count of the wireless backhaul route of the delay sensitive service corresponding to the sensitive delay level i on the nth base station is less than or equal to the sensitivity of the nth base station
  • the controller may calculate the wireless backhaul route according to the existing routing algorithm, but ensure that the number of route hops of the wireless backhaul route is less than or equal to the maximum delay-sensitive service corresponding to the sensitive delay level i on the nth base station.
  • the number of hops is routed to ensure the latency of the delay-sensitive service.
  • the wireless backhaul route may adopt a tree-shaped route.
  • the controller may further calculate the wireless backhaul route of the delay sensitive service corresponding to each sensitive delay level i in descending order of the delay level of the delay sensitive service, when calculating each sensitive time.
  • the wireless backhaul route of the delay-sensitive service corresponding to the level i is sequentially calculated, and the wireless backhaul route of the delay-sensitive service corresponding to the sensitive delay level i on each base station is calculated in turn. Specifically, the following steps may be included:
  • the controller determines the expected traffic volume and the average transmission of the delay-sensitive service corresponding to the sensitive delay level i on the N base stations according to the service measurement information of the delay-sensitive service corresponding to the sensitive delay level i on the N base stations.
  • the controller can calculate the expected traffic and the average transmission rate of the delay sensitive service corresponding to the sensitive delay level i on each base station according to the foregoing manner, and then delay the delay-sensitive service corresponding to the delay level i of each base station.
  • the traffic is added to obtain the expected traffic of the delay-sensitive service corresponding to the sensitive delay level i of the N base stations, and the average transmission rate of the delay-sensitive service corresponding to the sensitive delay level i of each base station is averaged.
  • Sensitive delay level i on N base stations The expected traffic volume of the corresponding delay sensitive service.
  • the controller determines the N base stations according to the maximum delay of the sensitive delay level i on the N base stations, the expected traffic volume of the delay sensitive service corresponding to the sensitive delay level i on the N base stations, and the average transmission rate.
  • the maximum number of route hops of the delay-sensitive service corresponding to the sensitive delay level i wherein the lower the sensitive delay level, the smaller the maximum number of route hops of the delay-sensitive service.
  • the controller calculates the maximum number of route hops H i of the delay sensitive service corresponding to the sensitive delay level i according to the following formula:
  • the maximum delay for sensitive delay level i The expected traffic volume of the delay sensitive service corresponding to the sensitive delay level i on the N base stations, The average transmission rate of the delay-sensitive service corresponding to the sensitive delay level i on the N base stations, t 0 is the delay of each hop transmission, and t 0 is a preset constant.
  • the controller determines, according to the maximum route hops of the delay sensitive service corresponding to the sensitive delay level i on the N base stations, the backhaul network topology, and the capacity of each backhaul link in the backhaul network topology, The wireless backhaul route of the delay-sensitive service corresponding to the sensitive delay level i, wherein the number of route hops of the wireless backhaul route of the delay-sensitive service corresponding to the sensitive delay level i on each base station is less than or equal to the sensitive delay level i The maximum number of route hops for the delay-sensitive service.
  • the number of route hops of the wireless backhaul route of the delay-sensitive service corresponding to the sensitive delay level i is less than or equal to the maximum number of route hops of the delay-sensitive service corresponding to the sensitive delay level i.
  • the selection criterion may be to maximize the utility or minimize the cost. For example, you can select a route with the smallest number of hops with the goal of minimizing the delay. In this case, the smaller the delay, the larger the utility, or the one with the lowest energy consumption, and the energy consumption. The lower the cost, the smaller.
  • Step 203 The controller determines, according to the capacity of each backhaul link in the backhaul network topology, and the capacity of the backhaul link occupied by the wireless backhaul route of the delay sensitive service, determining the remaining capacity of each backhaul link in the backhaul network topology, and according to each The capacity of the backhaul link updates the backhaul network topology.
  • the controller can determine a delay sensitive service each time For wireless backhaul routing, the controller subtracts the link capacity occupied by the wireless backhaul route of the delay sensitive service from the backhaul link capacity, and obtains the remaining capacity of each backhaul link, and the wireless backhaul of all delay sensitive services. After the routes are determined, what is obtained is the remaining capacity of each backhaul link in the backhaul network topology. If the capacity of a backhaul link is less than or equal to 0, the backhaul link is deleted from the backhaul network topology, and then the backhaul network topology is updated. The updated backhaul network topology does not include the backhaul with the capacity less than or equal to 0. link.
  • the controller subtracts the link capacity occupied by the wireless backhaul routes of the delay sensitive service from each backhaul link capacity, and obtains the remaining capacity of each backhaul link.
  • the backhaul link with the capacity of the backhaul link less than or equal to 0 is deleted from the backhaul network topology, and the backhaul network topology is updated.
  • Step 204 The controller determines non-delay sensitivity according to the updated backhaul network topology, the remaining capacity of each backhaul link in the backhaul network topology, the delay level of the non-delay sensitive service, and the service measurement information of the non-delay sensitive service. Wireless backhaul routing for services.
  • the controller can use the existing mesh routing method to maximize the network capacity to determine the meshed wireless backhaul routing for the service corresponding to the non-sensitive delay level, or Determining the mesh route for the non-delay-sensitive service, for example, adopting the greedy method or selecting the path with the largest link capacity for the service corresponding to the non-sensitive delay level in a certain order or random until all non-delay sensitive services After the route is determined, or the remaining capacity of the backhaul link is insufficient, the wireless backhaul route is determined to be stopped.
  • the controller divides all services on the N base stations into delay-sensitive services and non-delay-sensitive services according to the delay level of all the services on the N base stations, and then preferentially determines the delay-sensitive services.
  • the wireless backhaul routing finally determines the wireless backhaul routing for the non-delay sensitive service, ensuring that the delay sensitive service has sufficient network resources to use.
  • FIG. 6 is the present invention.
  • a flowchart of a method for determining a delay level provided in Embodiment 3 is as shown in FIG. 6.
  • the method provided in this embodiment may include the following steps:
  • Step 301 The controller according to the traffic volume of the service corresponding to the delay level i reported by the nth base station at the time t, and the expected service of the service corresponding to the saved nth base station at the t-1 time delay level i The amount, determining the service corresponding to the delay level i of the nth base station at the time t Expected business volume.
  • the controller determines the wireless backhaul route for the delay sensitive service corresponding to the delay level i
  • the value of i is incremented by one, and the calculation is performed.
  • the initial value of the base station sequence n is 1.
  • the wireless backhaul routes of all the delay sensitive services of the nth base station are determined, the value of n is incremented by 1, and the wireless backhaul of the delay sensitive service on the next base station is calculated. Routing, t is a positive integer greater than or equal to 1.
  • the controller may calculate the expected traffic of the service corresponding to the delay level i of the nth base station at the time t according to the following formula.
  • Step 302 The controller according to the expected traffic volume of the service corresponding to the delay level i of each base station at the time t, and the total expected traffic volume of the service corresponding to the time delay level i of the saved N base stations at the time t-1. Calculating the total expected traffic of the service corresponding to the delay level i of the N base stations at the time t.
  • the controller may calculate the total expected traffic of the service corresponding to the delay level i of the N base stations at the time t according to the following formula
  • the expected traffic of the service corresponding to the delay level i of the nth base station at the time t The total expected traffic of the service corresponding to the delay level i of the N base stations at the time t-1.
  • Step 303 The controller calculates an average transmission rate of the service corresponding to each delay level of the N base stations at the time t according to the average transmission rate of the service corresponding to each delay level reported by each base station at the time t. .
  • the controller may add an average value of the average transmission rate of the service corresponding to each delay level reported by the N base stations at the time t, and obtain an average value corresponding to each delay level of the N base stations at the time t. Average transfer rate. Alternatively, the controller uses a weighted average algorithm to obtain an average transmission rate of the service corresponding to each delay level of the N base stations at the time t.
  • Step 304 The controller determines a delay level of all services according to a total expected traffic volume, an average transmission rate, and a transmission result of the service corresponding to each delay level of the N base stations at the time t.
  • the controller calculates the total expected traffic of all services on the N base stations according to the traffic reported by the N base stations. Then, the controller calculates a first ratio of the total expected traffic of the service corresponding to each delay level of the N base stations at time t and the total expected traffic of all services on the N base stations. If the first ratio of the total expected traffic of the service corresponding to the delay level m and the total expected traffic of all services on the N base stations in the I delay level is greater than a preset threshold, corresponding to the delay level m The total expected traffic volume of the service, the average transmission rate, and the delay of the service corresponding to the transmission result adjustment delay level m.
  • the controller determines the delay level of the service according to the service measurement information such as the traffic volume, the transmission rate, and the transmission result of the service reported by the N base stations, so that the delay guarantee for each service is more accurate.
  • FIG. 7 is a flowchart of a method for providing wireless backhaul communication according to Embodiment 4 of the present invention.
  • a wireless backhaul method based on service delay grading is described from a base station side.
  • the method provided in this embodiment may include the following. step:
  • Step 401 The base station measures the reachability of the backhaul link with the neighboring base station.
  • Step 402 If the backhaul link between the base station and the neighboring base station is reachable, the base station reports the backhaul link capacity of the backhaul link with the neighboring base station to the controller, so that the controller is based on the backhaul link.
  • the capacity determines the backhaul network topology formed by the N base stations in the cluster, and N is a positive integer greater than or equal to 2.
  • Step 403 The base station performs service measurement, and reports service measurement information to the controller, so that the controller determines a delay level of all services on the N base stations according to the service measurement information.
  • Step 404 The base station receives a delay level and a wireless backhaul route of all services on the base station that are sent by the controller, updates a delay level of all services on the base station, and transmits each service according to the wireless backhaul route of each service.
  • the base station measures the reachability of the backhaul link with the neighboring base station, and reports the backhaul link capacity of the backhaul link with the neighboring base station to the controller, so that the controller is based on the backhaul chain.
  • the capacity determines the backhaul network topology formed by the N base stations in the cluster, and performs service measurement, and reports service measurement information to the controller, so that the controller determines the delay of all services on the N base stations according to the service measurement information.
  • Level by determining the business based on the business measurement information The delay level makes the time delay of each service more accurate.
  • the base station further receives a delay level and a wireless backhaul route of all services on the N base stations sent by the controller, updates a delay level of all services in the cluster, and transmits each service according to the wireless backhaul route of each service, because the wireless backhaul route
  • the controller is determined according to the backhaul network topology, the capacity of each backhaul link in the backhaul network topology, the service measurement information reported by the N base stations, and the delay level of all services on the N base stations, so that the network resources can be effectively obtained.
  • the allocation increases the utilization of network resources.
  • FIG. 8 is a schematic structural diagram of a controller according to Embodiment 5 of the present invention.
  • the controller provided in this embodiment includes: a receiving module 11 , a backhaul network topology updating module 12 , and a service delay level determining module 13 .
  • the receiving module 11 is configured to receive the backhaul link capacity reported by the N base stations in the cluster, where N is a positive integer greater than or equal to 2;
  • the backhaul network topology update module 12 is configured to determine, according to the backhaul link capacity, a backhaul network topology formed by the N base stations;
  • the receiving module 11 is further configured to receive service measurement information reported by the N base stations respectively;
  • the service delay level determining module 13 is configured to determine, according to the service measurement information reported by the N base stations, a delay level of all services on the N base stations;
  • the backhaul routing management module 14 is configured to: according to the backhaul network topology, the capacity of each backhaul link in the backhaul network topology, the service measurement information reported by the N base stations, and the time of all services on the N base stations Deferring the level, determining wireless backhaul routes of all services on the N base stations;
  • the sending module 15 is configured to send the delay level and the wireless backhaul route of all the services to the N base stations.
  • the controller of this embodiment can be used to perform the method in the first embodiment.
  • the specific implementation and technical effects are similar, and details are not described herein again.
  • the sixth embodiment of the present invention provides a controller.
  • the structure of the controller in this embodiment refers to the structure of the controller shown in FIG. 8.
  • All services on the N base stations are classified into a delay-sensitive service and a non-delay-sensitive service according to a delay level of all services on the N base stations;
  • Wireless backhaul routing for delay sensitive services
  • the backhaul routing management module is configured according to the backhaul network topology, the capacity of each backhaul link in the backhaul network topology, the delay level of the delay sensitive service, and the delay sensitive service.
  • the service measurement information is used to determine the wireless backhaul route of the delay sensitive service, specifically:
  • Wireless backhaul routing of the delay sensitive service corresponding to the sensitive delay level i on the n base stations wherein the routing of the wireless backhaul routing of the delay sensitive service corresponding to the sensitive delay level i on the nth base station
  • the hop count is less than or equal to the maximum number of route hops of the delay sensitive service corresponding to the sensitive delay level i on the nth base station.
  • the backhaul routing management module 14 determines, according to the maximum delay of the sensitive delay level i, the expected traffic volume and the average transmission rate of the delay sensitive service corresponding to the sensitive delay level i on the nth base station.
  • the maximum number of route hops of the delay-sensitive service corresponding to the sensitive delay level i on the nth base station specifically:
  • the maximum number of route hops H n,i of the delay sensitive service corresponding to the sensitive delay level i on the nth base station is calculated according to the following formula:
  • the expected traffic volume of the delay sensitive service corresponding to the sensitive delay level i on the nth base station The average transmission rate of the delay-sensitive service corresponding to the sensitive delay level i on the nth base station, where t 0 is the delay of each hop transmission, and t 0 is a preset constant.
  • the backhaul routing management module 14 is configured to: according to the backhaul network topology, a capacity of each backhaul link in the backhaul network topology, a delay level of the delay sensitive service, and the delay sensitivity.
  • the service measurement information of the service determines the wireless backhaul route of the delay sensitive service, specifically:
  • the wireless backhaul route of the delay-sensitive service corresponding to the sensitive delay level i wherein the number of route hops of the wireless backhaul route of the delay-sensitive service corresponding to the sensitive delay level i on each base station is less than or equal to the sensitive time.
  • the backhaul routing management module 14 according to the maximum delay of the sensitive delay level i on the N base stations, the expected traffic volume and the average transmission of the delay sensitive service corresponding to the sensitive delay level i on the N base stations. Rate, determining the maximum number of route hops of the delay-sensitive service corresponding to the sensitive delay level i on the N base stations, specifically:
  • the controller of this embodiment can be used to perform the method in the second embodiment.
  • the specific implementation manners and technical effects are similar, and details are not described herein again.
  • the seventh embodiment of the present invention provides a controller.
  • the structure of the controller in this embodiment refers to the structure of the controller shown in FIG. 8.
  • the service measurement information is provided.
  • the method includes: a delay level of the service, a traffic volume, an average transmission rate, and a transmission result.
  • the service delay level determining module 13 is specifically configured to:
  • the traffic delay level determining module 13 is configured to delay the traffic of the service corresponding to the delay level i reported by the nth base station at the time t, and the time delay of the saved nth base station at the t-1th time.
  • the expected traffic of the service corresponding to level i determining that the nth base station is at the tth
  • the expected traffic volume of the service corresponding to the time delay level i specifically:
  • the traffic volume of the service corresponding to the delay level i reported by the nth base station at the time t the expected traffic volume of the service corresponding to the delay level i of the nth base station at the time t-1, ⁇ [0,1];
  • the total expected traffic of the service corresponding to the delay level i of the N base stations at the time t including:
  • the expected traffic volume of the service corresponding to the delay level i of the nth base station at the time t The total expected traffic of the service corresponding to the delay level i of the N base stations at the time t-1.
  • the service delay level determining module 13 determines the delay level of all the services according to the total expected traffic volume, the average transmission rate, and the transmission result of the service corresponding to each delay level of the N base stations at the time t, Specifically:
  • the first ratio of the total expected traffic of the service corresponding to the delay level m and the total expected traffic of all services on the N base stations in the I delay level is greater than a preset threshold, according to the The total expected traffic volume, the average transmission rate, and the transmission result of the service corresponding to the delay level m adjust the time delay of the service corresponding to the delay level m.
  • FIG. 9 is a schematic structural diagram of a base station according to Embodiment 8 of the present invention.
  • the base station provided in this embodiment includes: a backhaul link measurement module 21, The sending module 22, the service measuring module 23, the receiving module 24 and the data forwarding module 25.
  • the backhaul link measurement module 21 is configured to measure reachability of a backhaul link between the base station and the neighboring base station;
  • the sending module 22 is configured to report, to the controller, a backhaul link capacity of the backhaul link between the neighboring base station if the backhaul link between the base station and the neighboring base station is reachable, so that the The controller determines, according to the backhaul link capacity, a backhaul network topology formed by N base stations in the cluster, where N is a positive integer greater than or equal to 2;
  • the service measurement module 23 is configured to perform service measurement, and report service measurement information to the controller, so that the controller determines a delay level of all services on the N base stations according to the service measurement information.
  • the receiving module 24 is configured to receive a delay level and a wireless backhaul route of all services on the base station that are sent by the controller;
  • a data forwarding module 25 configured to update a delay level of all services on the base station, and transmit the services according to a wireless backhaul route of each service, where the wireless backhaul route is based on the backhaul network topology of the controller, The capacity of each backhaul link in the backhaul network topology, the service measurement information reported by the N base stations, and the delay level of all services on the N base stations are determined.
  • the base station in this embodiment may be used to perform the method in the fourth embodiment, and the specific implementation manners and technical effects are similar, and details are not described herein again.
  • FIG. 10 is a schematic structural diagram of a controller according to Embodiment 9 of the present invention.
  • the controller 300 provided in this embodiment includes: a processor 31 and a memory 32. a communication interface 33 and a system bus 34, the memory 32 and the communication interface 33 are connected to the processor 31 via the system bus 34 and complete communication with each other, and the memory 32 is configured to store a computer to execute instructions.
  • the communication interface 33 is for communicating with other devices, and the processor 31 is configured to execute the computer to execute instructions to perform the method as follows:
  • N is a positive integer greater than or equal to 2;
  • the controller receives service measurement information reported by the N base stations respectively;
  • All services on the N base stations are classified into a delay-sensitive service and a non-delay-sensitive service according to a delay level of all services on the N base stations;
  • Wireless backhaul routing for delay sensitive services
  • Wireless backhaul routing for delay sensitive services including:
  • Wireless backhaul routing of the delay sensitive service corresponding to the sensitive delay level i on the n base stations wherein the routing of the wireless backhaul routing of the delay sensitive service corresponding to the sensitive delay level i on the nth base station
  • the hop count is less than or equal to the maximum number of route hops of the delay sensitive service corresponding to the sensitive delay level i on the nth base station.
  • the maximum number of route hops H n,i of the delay sensitive service corresponding to the sensitive delay level i on the nth base station is calculated according to the following formula:
  • the expected traffic volume of the delay sensitive service corresponding to the sensitive delay level i on the nth base station The average transmission rate of the delay-sensitive service corresponding to the sensitive delay level i on the nth base station, where t 0 is the delay of each hop transmission, and t 0 is a preset constant.
  • Wireless backhaul routing for delay sensitive services including:
  • the determining, according to the maximum delay of the sensitive delay level i on the N base stations, and the expected traffic volume and the average transmission rate of the delay sensitive service corresponding to the sensitive delay level i on the N base stations, are determined.
  • the maximum number of route hops of the delay-sensitive service corresponding to the sensitive delay level i on the N base stations including:
  • the service measurement information includes: a delay level of the service, a traffic volume, an average transmission rate, and a transmission result; where the determining, according to the service measurement information reported by the N base stations, the N base stations
  • the delay level for all services including:
  • the processor 31 calculates, according to the following formula, an expected traffic volume of the service corresponding to the delay level i of the nth base station at the time t
  • the traffic volume of the service corresponding to the delay level i reported by the nth base station at the time t the expected traffic volume of the service corresponding to the delay level i of the nth base station at the time t-1, ⁇ [0,1];
  • the processor 31 calculates, according to the following formula, a total expected traffic of the service corresponding to the delay level i of the N base stations at the time t
  • the expected traffic volume of the service corresponding to the delay level i of the nth base station at the time t The total expected traffic of the service corresponding to the delay level i of the N base stations at the time t-1.
  • the determining, according to the total expected traffic volume, the average transmission rate, and the transmission result of the service corresponding to each delay level of the N base stations at the time t, determining a delay level of the all services including:
  • the first ratio of the total expected traffic of the service corresponding to the delay level m and the total expected traffic of all services on the N base stations in the I delay level is greater than a preset threshold, according to the The total expected traffic volume, the average transmission rate, and the transmission result of the service corresponding to the delay level m adjust the time delay of the service corresponding to the delay level m.
  • the controller of this embodiment can be used to perform the methods in the first embodiment to the third embodiment.
  • the specific implementation manners and technical effects are similar, and details are not described herein again.
  • FIG. 11 is a schematic structural diagram of a base station according to Embodiment 10 of the present invention.
  • the base station 400 provided in this embodiment includes: a processor 41, A memory 42, a communication interface 43 and a system bus 44, the memory 42 and the communication interface 43 are connected to the processor 41 via the system bus 44 and complete communication with each other, the memory 42 being used for storing computer execution
  • the communication interface 43 is configured to communicate with other devices, and the processor 41 is configured to execute the computer to execute instructions to perform the method as follows:
  • the link capacity determines a backhaul network topology formed by N base stations in the cluster, and N is a positive integer greater than or equal to 2;
  • the wireless backhaul routing is performed by the controller according to the backhaul network topology, the capacity of each backhaul link in the backhaul network topology, the service measurement information reported by the N base stations, and all services on the N base stations.
  • the delay level is determined.
  • the device in this embodiment can be used to implement the technical solution of the fourth embodiment, and the implementation principle and technical effects are similar, and details are not described herein again.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供一种无线回程通信的方法和装置,控制器获取回程链路容量、回程网络拓扑和业务测量信息,根据业务测量信息确定N个基站上的所有业务的时延等级,并根据回程网络拓扑、回程网络拓扑中各回程链路的容量、业务测量信息以及N个基站上的所有业务的时延等级,确定N个基站上的所有业务的无线回程路由,将所有业务的时延等级和无线回程路由发给各基站。在保证业务时延要求的同时提高了网络资源的利用率。

Description

无线回程通信的方法和装置 技术领域
本发明实施例涉及通信技术,尤其涉及一种无线回程通信的方法和装置。
背景技术
为提高网络容量,无线网络的接入点小型化和密集化是无线网络的发展趋势,密集网络具有很高的动态性,接入点需要通过回程接入到核心网。传统技术中回程基于有线连接。但未来密集异构网络(Heterogeneous Network,简称HetNet)中,考虑到成本等因素,并非每个接入点都能配备有线回程,不具备有线回程的接入点通过无线回程与具有有线回程的接入点连接。这样,在网络中有线回程与无线回程并存,无线回程以mesh(网格)形式构成一个无线回程网络。无线回程网络的mesh形态,为网络管理带来了挑战,既要保证业务对时延的要求,又要保证网络资源公平合理使用。而且随着技术的发展,未来网络业务多样化,网络业务对时延的要求也会越来越高。
目前在长期演进系统(Long Term Evolution,简称LTE)标准中,将业务的最大时延与业务的服务质量(Quality of Service,简称QoS)等级指示(QoS Class Indicator,简称QCI)一一对应,一旦业务的QCI确定,业务的最大时延也固定。根据业务的QCI确定业务的最大时延使得时延的分类比较粗略,不够准确,若业务的时延分类粗略不准确会导致网络资源的浪费和业务的不公平。例如有些QCI对应的多个业务的时延跨度较大,会导致其中那些时延要求相对较低的业务得到“过度服务”(overprovision),而在网络资源紧缺时,那些时延要求相对较高的业务却得不到满足。如某个QCI对应的最大时延为100ms,而实际中属于该等级的业务的时延约束可能为100ms、150ms、200ms,而处理时将这些业务的最大时延都当100ms处理,对于时延要求为150ms和200ms的业务来说,并不需要提供如此严格的时延服务。
发明内容
本发明实施例提供一种无线回程通信的方法和装置,根据具体的业务需 求和网络状态,确定业务时延等级,并确定各业务的无线回程路由,在保证业务时延要求的同时提高网络资源的利用率。
本发明第一方面提供一种无线回程通信的方法,包括:
控制器接收簇内的N个基站分别上报的回程链路容量,N为大于等于2的正整数;
所述控制器根据所述回程链路容量确定所述N个基站形成的回程网络拓扑;
所述控制器接收所述N个基站分别上报的业务测量信息;
所述控制器根据所述N个基站上报的业务测量信息确定所述N个基站上的所有业务的时延等级;
所述控制器根据所述回程网络拓扑、所述回程网络拓扑中各回程链路的容量、所述N个基站上报的业务测量信息以及所述N个基站上的所有业务的时延等级,确定所述N个基站上的所有业务的无线回程路由;
所述控制器将所述所有业务的时延等级和无线回程路由发给所述N个基站。
结合第一方面,在第一方面的第一种可能的实现方式中,所述控制器根据所述回程网络拓扑、所述回程网络拓扑中各回程链路的容量、所述N个基站上报的业务测量信息以及所述N个基站上的所有业务的时延等级,确定所述N个基站上的所有业务的无线回程路由,包括:
所述控制器根据所述N个基站上的所有业务的时延等级,将所述N个基站上的所有业务分为时延敏感业务和非时延敏感业务;
所述控制器根据所述回程网络拓扑、所述回程网络拓扑中各回程链路的容量、所述时延敏感业务的时延等级和所述时延敏感业务的业务测量信息,确定所述时延敏感业务的无线回程路由;
所述控制器根据所述回程网络拓扑中各回程链路的容量,以及所述时延敏感业务的无线回程路由占用的回程链路的容量,确定所述回程网络拓扑中各回程链路的剩余容量,并根据所述各回程链路的容量更新所述回程网络拓扑;
所述控制器根据更新后的回程网络拓扑、所述回程网络拓扑中各回程链路的剩余容量、所述非时延敏感业务的时延等级和所述非时延敏感业务 的业务测量信息,确定所述非时延敏感业务的无线回程路由。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述控制器根据所述回程网络拓扑、所述回程网络拓扑中各回程链路的容量、所述时延敏感业务的时延等级和所述时延敏感业务的业务测量信息,确定所述时延敏感业务的无线回程路由,包括:
所述控制器根据第n个基站上时延敏感业务的业务测量信息,确定所述第n个基站上敏感时延等级i对应的时延敏感业务的预期业务量和平均传输速率,n=1,……,N,i=1,……,I1,I1为敏感时延等级的个数;
所述控制器根据敏感时延等级i的最大时延、所述第n个基站上所述敏感时延等级i对应的时延敏感业务的预期业务量和平均传输速率,确定所述第n个基站上所述敏感时延等级i对应的时延敏感业务的最大路由跳数,其中,敏感时延等级越低的时延敏感业务的最大路由跳数越小;
所述控制器根据所述第n个基站上所述敏感时延等级i对应的时延敏感业务的最大路由跳数、所述回程网络拓扑和所述回程网络拓扑中各回程链路的容量,确定所述第n个基站上所述敏感时延等级i对应的时延敏感业务的无线回程路由,其中,所述第n个基站上所述敏感时延等级i对应的时延敏感业务的无线回程路由的路由跳数小于或等于所述第n个基站上所述敏感时延等级i对应的时延敏感业务的最大路由跳数。
结合第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,所述控制器根据敏感时延等级i的最大时延、所述第n个基站上所述敏感时延等级i对应的时延敏感业务的预期业务量和平均传输速率,确定所述第n个基站上所述敏感时延等级i对应的时延敏感业务的最大路由跳数,包括:
所述控制器根据以下公式计算第n个基站上所述敏感时延等级i对应的时延敏感业务的最大路由跳数Hn,i
Figure PCTCN2015084143-appb-000001
其中,
Figure PCTCN2015084143-appb-000002
为所述敏感时延等级i的最大时延,
Figure PCTCN2015084143-appb-000003
为所述第n个基站上所述敏感时延等级i对应的时延敏感业务的预期业务量,
Figure PCTCN2015084143-appb-000004
为所述第n个基站上所述敏感时延等级i对应的时延敏感业务的平均传输速率,t0为每跳传输的时延,t0为预设的常数。
结合第一方面的第一种可能的实现方式,在第一方面的第四种可能的实现方式中,所述控制器根据所述回程网络拓扑、所述回程网络拓扑中各回程链路的容量、所述时延敏感业务的时延等级和所述时延敏感业务的业务测量信息,确定所述时延敏感业务的无线回程路由,包括:
所述控制器根据所述N个基站上敏感时延等级i对应的时延敏感业务的业务测量信息,确定所述N个基站上敏感时延等级i对应的时延敏感业务的预期业务量和平均传输速率,i=1,……,I1,I1为敏感时延等级的个数;
所述控制器根据所述N个基站上敏感时延等级i的最大时延、所述N个基站上敏感时延等级i对应的时延敏感业务的预期业务量和平均传输速率,确定所述N个基站上敏感时延等级i对应的时延敏感业务的最大路由跳数,其中,敏感时延等级越低的时延敏感业务的最大路由跳数越小;
所述控制器根据所述N个基站上敏感时延等级i对应的时延敏感业务的最大路由跳数、所述回程网络拓扑和所述回程网络拓扑中各回程链路的容量,确定每个基站上所述敏感时延等级i对应的时延敏感业务的无线回程路由,其中,所述每个基站上敏感时延等级i对应的时延敏感业务的无线回程路由的路由跳数小于或等于所述敏感时延等级i对应的时延敏感业务的最大路由跳数。
结合第一方面的第四种可能的实现方式,在第一方面的第五种可能的实现方式中,所述控制器根据所述N个基站上敏感时延等级i的最大时延、所述N个基站上敏感时延等级i对应的时延敏感业务的预期业务量和平均传输速率,确定所述N个基站上敏感时延等级i对应的时延敏感业务的最大路由跳数,包括:
所述控制器根据以下公式计算所述N个基站上敏感时延等级i对应的时延敏感业务的最大路由跳数Hi
Figure PCTCN2015084143-appb-000005
其中,
Figure PCTCN2015084143-appb-000006
为所述敏感时延等级i的最大时延,
Figure PCTCN2015084143-appb-000007
为所述N个基站上敏感时延等级i对应的时延敏感业务的预期业务量,
Figure PCTCN2015084143-appb-000008
为所述N个基站上敏感时延等级i对应的时延敏感业务的平均传输速率,t0为每跳传输的时延,t0为预设的常数。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第六种可能的实现方式中,所述业务测量信息包括:业务的时延等级、业务量、平均传输速率、传输结果;则所述控制器根据所述N个基站上报的业务测量信息确定所述N个基站上的所有业务的时延等级,包括:
所述控制器根据第n个基站在第t时刻上报的时延等级i对应的业务的业务量,以及保存的所述第n个基站在第t-1时刻时时延等级i对应的业务的预期业务量,确定所述第n个基站在第t时刻时时延等级i对应的业务的预期业务量,i=1,……,I,n=1,……,N,I为时延等级的个数,t为大于等于1的正整数;
所述控制器根据每个基站在第t时刻时时延等级i对应的业务的预期业务量,以及保存的所述N个基站在第t-1时刻时时延等级i对应的业务的总预期业务量,计算所述N个基站在第t时刻时时延等级i对应的业务的总预期业务量;
所述控制器根据每个基站在第t时刻时上报的每个时延等级对应的业务的平均传输速率,计算所述N个基站在第t时刻时每个时延等级对应的业务的平均传输速率;
所述控制器根据所述N个基站在第t时刻时每个时延等级对应的业务的总预期业务量、平均传输速率、传输结果确定所述所有业务的时延等级。
结合第一方面的第六种可能的实现方式,在第一方面的第七种可能的实现方式中,所述控制器根据第n个基站在第t时刻上报的时延等级i对应的业务的业务量,以及保存的所述第n个基站在第t-1时刻时时延等级i对应的业务的预期业务量,确定所述第n个基站在第t时刻时时延等级i对应的业务的预期业务量,包括:
所述控制器根据以下公式计算第n个基站在第t时刻时时延等级i对应的业务的预期业务量
Figure PCTCN2015084143-appb-000009
Figure PCTCN2015084143-appb-000010
其中,
Figure PCTCN2015084143-appb-000011
为所述第n个基站在第t时刻上报的时延等级i对应的业务的业务量,所述第n个基站在第t-1时刻时时延等级i对应的业务的预期业务量,θ∈[0,1];
所述控制器根据每个基站在第t时刻时时延等级i对应的业务的预期 业务量,以及保存的所述N个基站在第t-1时刻时时延等级i对应的业务的总预期业务量,计算所述N个基站在第t时刻时时延等级i对应的业务的总预期业务量,包括:
所述控制器根据以下公式计算所述N个基站在第t时刻时时延等级i对应的业务的总预期业务量
Figure PCTCN2015084143-appb-000012
Figure PCTCN2015084143-appb-000013
其中,
Figure PCTCN2015084143-appb-000014
为所述第n个基站在第t时刻时时延等级i对应的业务的预期业务量,
Figure PCTCN2015084143-appb-000015
为所述N个基站在第t-1时刻时时延等级i对应的业务的总预期业务量。
结合第一方面的第六种或第七种可能的实现方式,在第一方面的第八种可能的实现方式中,所述控制器根据所述N个基站在第t时刻时每个时延等级对应的业务的总预期业务量、平均传输速率、传输结果确定所述所有业务的时延等级,包括:
所述控制器根据所述N个基站上报的业务量,计算所述N个基站上的所有业务的总预期业务量;
所述控制器计算所述N个基站在第t时刻时每个时延等级对应的业务的总预期业务量和所述N个基站上的所有业务的总预期业务量的第一比值;
若所述I个时延等级中时延等级m对应的业务的总预期业务量和所述N个基站上的所有业务的总预期业务量的第一比值大于预设的门限,则根据所述时延等级m对应的业务的总预期业务量、平均传输速率、传输结果调整所述时延等级m对应的业务的时延。
本发明第二方面提供一种基于业务时延分级的无线回程方法,包括:
基站测量与相邻基站之间的回程链路的可达性;
若所述基站与相邻基站之间的回程链路可达,则所述基站向控制器上报与所述相邻基站之间的回程链路的回程链路容量,以使所述控制器根据所述回程链路容量确定簇内的N个基站形成的回程网络拓扑,N为大于等于2的正整数;
所述基站进行业务测量,并向所述控制器上报业务测量信息,以使所述控制器根据所述业务测量信息确定所述N个基站上的所有业务的时延 等级;
所述基站接收所述控制器发送的所述基站上的所有业务的时延等级和无线回程路由,更新所述基站上的所有业务的时延等级,根据各业务的无线回程路由传输所述各业务,所述无线回程路由是所述控制器根据所述回程网络拓扑、所述回程网络拓扑中各回程链路的容量、所述N个基站上报的业务测量信息以及所述N个基站上的所有业务的时延等级确定的。
本发明第三方面提供一种控制器,包括:
接收模块,用于接收簇内的N个基站分别上报的回程链路容量,N为大于等于2的正整数;
回程网络拓扑更新模块,用于根据所述回程链路容量确定所述N个基站形成的回程网络拓扑;
所述接收模块,还用于接收所述N个基站分别上报的业务测量信息;
业务时延等级确定模块,用于根据所述N个基站上报的业务测量信息确定所述N个基站上的所有业务的时延等级;
回程路由管理模块,用于根据所述回程网络拓扑、所述回程网络拓扑中各回程链路的容量、所述N个基站上报的业务测量信息以及所述N个基站上的所有业务的时延等级,确定所述N个基站上的所有业务的无线回程路由;
发送模块,用于将所述所有业务的时延等级和无线回程路由发给所述N个基站。
结合第三方面,在第三方面的第一种可能的实现方式中,所述回程路由管理模块具体用于:
根据所述N个基站上的所有业务的时延等级,将所述N个基站上的所有业务分为时延敏感业务和非时延敏感业务;
根据所述回程网络拓扑、所述回程网络拓扑中各回程链路的容量、所述时延敏感业务的时延等级和所述时延敏感业务的业务测量信息,确定所述时延敏感业务的无线回程路由;
根据所述回程网络拓扑中各回程链路的容量,以及所述时延敏感业务的无线回程路由占用的回程链路的容量,确定所述回程网络拓扑中各回程链路的剩余容量,并根据所述各回程链路的容量更新所述回程网络拓扑;
根据更新后的回程网络拓扑、所述回程网络拓扑中各回程链路的剩余容量、所述非时延敏感业务的时延等级和所述非时延敏感业务的业务测量信息,确定所述非时延敏感业务的无线回程路由。
结合第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,所述回程路由管理模块根据所述回程网络拓扑、所述回程网络拓扑中各回程链路的容量、所述时延敏感业务的时延等级和所述时延敏感业务的业务测量信息,确定所述时延敏感业务的无线回程路由,具体为:
根据第n个基站上时延敏感业务的业务测量信息,确定所述第n个基站上敏感时延等级i对应的时延敏感业务的预期业务量和平均传输速率,n=1,……,N,i=1,……,I1,I1为敏感时延等级的个数;
根据敏感时延等级i的最大时延、所述第n个基站上所述敏感时延等级i对应的时延敏感业务的预期业务量和平均传输速率,确定所述第n个基站上所述敏感时延等级i对应的时延敏感业务的最大路由跳数,其中,敏感时延等级越低的时延敏感业务的最大路由跳数越小;
根据所述第n个基站上所述敏感时延等级i对应的时延敏感业务的最大路由跳数、所述回程网络拓扑和所述回程网络拓扑中各回程链路的容量,确定所述第n个基站上所述敏感时延等级i对应的时延敏感业务的无线回程路由,其中,所述第n个基站上所述敏感时延等级i对应的时延敏感业务的无线回程路由的路由跳数小于或等于所述第n个基站上所述敏感时延等级i对应的时延敏感业务的最大路由跳数。
结合第三方面的第二种可能的实现方式,在第三方面的第三种可能的实现方式中,所述回程路由管理模块根据敏感时延等级i的最大时延、所述第n个基站上所述敏感时延等级i对应的时延敏感业务的预期业务量和平均传输速率,确定所述第n个基站上所述敏感时延等级i对应的时延敏感业务的最大路由跳数,具体为:
根据以下公式计算第n个基站上所述敏感时延等级i对应的时延敏感业务的最大路由跳数Hn,i
Figure PCTCN2015084143-appb-000016
其中,
Figure PCTCN2015084143-appb-000017
为所述敏感时延等级i的最大时延,
Figure PCTCN2015084143-appb-000018
为所述第n个基站上所述敏感时延等级i对应的时延敏感业务的预期业务 量,
Figure PCTCN2015084143-appb-000019
为所述第n个基站上所述敏感时延等级i对应的时延敏感业务的平均传输速率,t0为每跳传输的时延,t0为预设的常数。
结合第三方面的第一种可能的实现方式,在第三方面的第四种可能的实现方式中,所述回程路由管理模块根据所述回程网络拓扑、所述回程网络拓扑中各回程链路的容量、所述时延敏感业务的时延等级和所述时延敏感业务的业务测量信息,确定所述时延敏感业务的无线回程路由,具体为:
根据所述N个基站上敏感时延等级i对应的时延敏感业务的业务测量信息,确定所述N个基站上敏感时延等级i对应的时延敏感业务的预期业务量和平均传输速率,i=1,……,I1,I1为敏感时延等级的个数;
根据所述N个基站上敏感时延等级i的最大时延、所述N个基站上敏感时延等级i对应的时延敏感业务的预期业务量和平均传输速率,确定所述N个基站上敏感时延等级i对应的时延敏感业务的最大路由跳数,其中,敏感时延等级越低的时延敏感业务的最大路由跳数越小;
根据所述N个基站上敏感时延等级i对应的时延敏感业务的最大路由跳数、所述回程网络拓扑和所述回程网络拓扑中各回程链路的容量,确定每个基站上所述敏感时延等级i对应的时延敏感业务的无线回程路由,其中,所述每个基站上敏感时延等级i对应的时延敏感业务的无线回程路由的路由跳数小于或等于所述敏感时延等级i对应的时延敏感业务的最大路由跳数。
结合第三方面的第四种可能的实现方式,在第三方面的第五种可能的实现方式中,所述回程路由管理模块根据所述N个基站上敏感时延等级i的最大时延、所述N个基站上敏感时延等级i对应的时延敏感业务的预期业务量和平均传输速率,确定所述N个基站上敏感时延等级i对应的时延敏感业务的最大路由跳数,具体为:
根据以下公式计算所述N个基站上敏感时延等级i对应的时延敏感业务的最大路由跳数Hi
Figure PCTCN2015084143-appb-000020
其中,
Figure PCTCN2015084143-appb-000021
为所述敏感时延等级i的最大时延,
Figure PCTCN2015084143-appb-000022
为所述N个基站上敏感时延等级i对应的时延敏感业务的预期业务量,
Figure PCTCN2015084143-appb-000023
为所 述N个基站上敏感时延等级i对应的时延敏感业务的平均传输速率,t0为每跳传输的时延,t0为预设的常数。
结合第三方面或第三方面的第一种可能的实现方式,在第三方面的第六种可能的实现方式中,所述业务测量信息包括:业务的时延等级、业务量、平均传输速率、传输结果;则所述业务时延等级确定模块具体用于:
根据第n个基站在第t时刻上报的时延等级i对应的业务的业务量,以及保存的所述第n个基站在第t-1时刻时时延等级i对应的业务的预期业务量,确定所述第n个基站在第t时刻时时延等级i对应的业务的预期业务量,i=1,……,I,n=1,……,N,I为时延等级的个数,t为大于等于1的正整数;
根据每个基站在第t时刻时时延等级i对应的业务的预期业务量,以及保存的所述N个基站在第t-1时刻时时延等级i对应的业务的总预期业务量,计算所述N个基站在第t时刻时时延等级i对应的业务的总预期业务量;
根据每个基站在第t时刻时上报的每个时延等级对应的业务的平均传输速率,计算所述N个基站在第t时刻时每个时延等级对应的业务的平均传输速率;
根据所述N个基站在第t时刻时每个时延等级对应的业务的总预期业务量、平均传输速率、传输结果确定所述所有业务的时延等级。
结合第三方面的第六种可能的实现方式,在第三方面的第七种可能的实现方式中,所述业务时延等级确定模块根据第n个基站在第t时刻上报的时延等级i对应的业务的业务量,以及保存的所述第n个基站在第t-1时刻时时延等级i对应的业务的预期业务量,确定所述第n个基站在第t时刻时时延等级i对应的业务的预期业务量,具体为:
根据以下公式计算第n个基站在第t时刻时时延等级i对应的业务的预期业务量
Figure PCTCN2015084143-appb-000024
Figure PCTCN2015084143-appb-000025
其中,
Figure PCTCN2015084143-appb-000026
为所述第n个基站在第t时刻上报的时延等级i对应的业务的业务量,所述第n个基站在第t-1时刻时时延等级i对应的业务的预期业务量,θ∈[0,1];
根据每个基站在第t时刻时时延等级i对应的业务的预期业务量,以及保存的所述N个基站在第t-1时刻时时延等级i对应的业务的总预期业务量,计算所述N个基站在第t时刻时时延等级i对应的业务的总预期业务量,包括:
根据以下公式计算所述N个基站在第t时刻时时延等级i对应的业务的总预期业务量
Figure PCTCN2015084143-appb-000027
Figure PCTCN2015084143-appb-000028
其中,
Figure PCTCN2015084143-appb-000029
为所述第n个基站在第t时刻时时延等级i对应的业务的预期业务量,
Figure PCTCN2015084143-appb-000030
为所述N个基站在第t-1时刻时时延等级i对应的业务的总预期业务量。
结合第三方面的第六种或第七种可能的实现方式,在第三方面的第八种可能的实现方式中,所述业务时延等级确定模块根据所述N个基站在第t时刻时每个时延等级对应的业务的总预期业务量、平均传输速率、传输结果确定所述所有业务的时延等级,具体为:
根据所述N个基站上报的业务量,计算所述N个基站上的所有业务的总预期业务量;
计算所述N个基站在第t时刻时每个时延等级对应的业务的总预期业务量和所述N个基站上的所有业务的总预期业务量的第一比值;
若所述I个时延等级中时延等级m对应的业务的总预期业务量和所述N个基站上的所有业务的总预期业务量的第一比值大于预设的门限,则根据所述时延等级m对应的业务的总预期业务量、平均传输速率、传输结果调整所述时延等级m对应的业务的时延。
本发明第四方面提供一种基站,包括:
回程链路测量模块,用于测量基站与相邻基站之间的回程链路的可达性;
发送模块,用于若所述基站与相邻基站之间的回程链路可达,则向控制器上报与所述相邻基站之间的回程链路的回程链路容量,以使所述控制器根据所述回程链路容量确定簇内的N个基站形成的回程网络拓扑,N为大于等于2的正整数;
业务测量模块,用于进行业务测量,并向所述控制器上报业务测量信息,以使所述控制器根据所述业务测量信息确定所述N个基站上的所有业 务的时延等级;
接收模块,用于接收所述控制器发送的所述基站上的所有业务的时延等级和无线回程路由;
数据转发模块,用于更新所述基站上的所有业务的时延等级,根据各业务的无线回程路由传输所述各业务,所述无线回程路由是所述控制器根据所述回程网络拓扑、所述回程网络拓扑中各回程链路的容量、所述N个基站上报的业务测量信息以及所述N个基站上的所有业务的时延等级确定的。
本发明第五方面提供一种控制器,包括:处理器、存储器、通信接口和系统总线,所述存储器和所述通信接口通过所述系统总线与所述处理器连接并完成相互间的通信,所述存储器用于存储计算机执行指令,所述通信接口用于和其他设备进行通信,所述处理器用于运行所述计算机执行指令,使所述控制器执行如第一方面、第一方面的第一种至第八种可能的实现方式中的任一项所述方法。
本发明第六方面提供一种基站,包括:处理器、存储器、通信接口和系统总线,所述存储器和所述通信接口通过所述系统总线与所述处理器连接并完成相互间的通信,所述存储器用于存储计算机执行指令,所述通信接口用于和其他设备进行通信,所述处理器用于运行所述计算机执行指令,使所述基站执行如本发明第二方面提供的方法。
本发明实施例提供一种无线回程通信的方法和装置,控制器获取回程链路容量、回程网络拓扑和业务测量信息,根据业务测量信息确定N个基站上的所有业务的时延等级,并根据回程网络拓扑、回程网络拓扑中各回程链路的容量、业务测量信息以及N个基站上的所有业务的时延等级,确定N个基站上的所有业务的无线回程路由,将所有业务的时延等级和无线回程路由发给各基站。通过根据业务测量信息确定各业务的时延等级,使得对各业务的时延保证更加准确,进而根据各业务的时延、回程网络拓扑、回程链路容量和业务测量信息确定各业务的无线回程路由,在保证业务时延要求的同时提高了网络资源的利用率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例适用的网络系统的结构示意图;
图2为本发明实施例一提供无线回程通信的方法的流程图;
图3为回程网络拓扑的一种示意图;
图4为业务的时延等级划分的示意图;
图5为本发明实施例二提供的无线回程路由的计算方法的流程图;
图6为本发明实施例三提供的时延等级的确定方法的流程图;
图7为本发明实施例四提供无线回程通信的方法的流程图;
图8为本发明实施例五提供的控制器的结构示意图;
图9为本发明实施例八提供的基站的结构示意图;
图10为本发明实施例九提供的控制器的结构示意图;
图11为本发明实施例十提供的基站的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明实施例的方法适用的网络系统包括一个或多个控制器以及多个基站,控制器为新引入的一个功能实体,假设多个基站已经按照一定的准则分好簇,每个簇由一个控制器负责管理。图1为本发明实施例适用的网络系统的结构示意图,如图1所示,网络系统包括两个控制器:控制器1和控制器2,控制器1管理基站1和基站2,控制器2管理基站3和基站4。
以控制器1为例,控制器1包括以下模块:回程网络拓扑更新模块, 用于收集簇内的基站上报的回程链路容量,根据回程链路容量建立并更新回程网络拓扑。业务分布信息更新模块,用于收集簇内的基站上报的业务测量信息。业务时延等级确定模块,用于根据基站上报的业务测量信息确定业务的时延等级,并且还可以与相邻的控制器共同协调决定业务的时延等级,并将业务的时延等级下发给基站。回程路由管理模块,用于为各时延等级的业务确定无线回程路由,并将无线回程路由下发给基站。
本发明实施例中控制器是逻辑实体,以LTE系统为例,控制器可以集成在服务网关(Serving GateWay,简称SGW)/移动管理实体(Mobility Management Entity,简称MME),通过S1接口与基站连接;或者,控制器集成在软件定义网络(Software Defined Network,简称SDN)控制器中,通过南向接口与基站连接;或者,控制器还可以集成在具有线回程的基站内,通过X2接口与具有无线回程的基站连接。
以基站1为例,基站1包括:业务测量模块,用于测量统计基站覆盖范围内的各时延等级对应的业务的业务量、平均传输速率、传输结果。回程链路测量模块,用于测量基站1与相邻基站之间的回程链路的可达性,以及回程链路的容量。数据转发模块,用于根据控制器下发的无线回程路由进行业务转发。
本发明实施例一提供一种无线回程通信的方法,图2为本发明实施例一提供无线回程通信的方法的流程图,如图2所示,本实施例提供的方法可以包括以下步骤:
步骤101、控制器接收簇内的N个基站分别上报的回程链路容量,N为大于等于2的正整数。
基站n通过测量获取与相邻基站m的回程链路的可达性,如果不可达则说明基站n与相邻基站m之间不存在回程链路,则基站n不上报该链路容量,如果可达则基站n上报该回程链路的容量。一种判定回程链路可达性的准则是,如果两个基站之间无线回程链路容量大于预设门限(即信干噪比大于相应门限),则认为所述两个基站之间回程链路可达。
步骤102、根据回程链路容量确定N个基站形成的回程网络拓扑。
控制器接收到簇内的N个基站上报的回程链路容量后,确定N个基站形成的回程网络拓扑。具体的,若控制器接收到两个基站之间的回程链路容量, 则说明两个基站之间存在回程链路,若控制器没有接收到两个基站之间的回程链路容量,则说明两个基站之间不存在回程链路。
图3为回程网络拓扑的一种示意图,如图3所示,图3中共有10个基站,其中,基站6、7为宏基站,其他基站为微基站,图3中实线表示有线回程链路,虚线表示无线回程链路,可知宏基站6、7和微基站10可通过有线回程与核心网直接连接,其他微基站都通过无线回程链路与具有有线回程的宏基站6、7以及微基站10连接,通过宏基站6、7以及微基站10与核心网连接。
步骤103、控制器接收N个基站分别上报的业务测量信息。
基站进行业务测量并获取业务测量信息,将获取的业务测量信息上报给控制器。每个基站上报的业务测量信息包括:各时延等级、各时延等级对应的业务的业务量、平均传输速率、传输结果,其中,每个时延等级对应的业务可能为一个或多个。每个时延等级对应的业务的平均传输速率为:一段时间内该时延等级对应的所有业务的平均传输速率,每个时延等级对应的业务的传输结果为:该时延等级对应的业务中的各业务在一段时间内的丢包率、平均时延等。
基站可以周期性上报业务测量信息,或者,基站基于控制器的请求上报业务测量信息,或者,基站基于事件触发上报业务测量信息。若配置基站进行周期性上报业务测量信息,则控制器可以根据需要给不同时延等级配置不同上报周期。若基站基于事件触发上报业务测量信息,那么基站可以在某个业务的业务量突增,或者该业务的业务量超过一定的门限时,向控制器上报业务测量信息。若基站基于请求或基于事件触发上报业务的测量信息,为了节约上报业务测量信息所占用的资源,基站可选择性只上报部分时延等级对应的业务的业务测量信息,而不需要上报所有时延等级对应的业务的业务测量信息。例如,基站只上报业务量变化较大的时延等级对应的业务的业务测量信息,对于业务量变化较较小或不变的时延等级对应的业务的业务测量信息无需上报,或者,基站根据业务的传输结果确定上报哪些时延等级的业务的测量信息,例如,基站只上报平均传输速率低于速率阈值,且丢包率大于一定阈值的业务的业务测量信息。
步骤104、控制器根据N个基站上报的业务测量信息确定N个基站上 的所有业务的时延等级。
本实施例中,在控制器初始化过程中,可以根据所有业务的历史测量信息通过仿真为业务确定合适的时延等级,每个时延等级对应不同的时延范围,图4为业务的时延等级划分的示意图,如图4所示,时延等级1的时延范围为(δ01),时延等级2的时延范围为(δ12),时延等级3的时延范围为(δ23),时延等级越低的业务时延要求越高,每个时延等级对应的业务可以有多个。后续,控制器根据各基站上报的各时延等级对应的业务的业务测量信息调整时延等级,例如,增加新的时延等级,将原有的时延范围较大的时延等级划分为时延范围较小的多个时延等级,以更好地利用网络资源,增强业务的公平性。
表1为时延等级、时延等级的最大时延以及时延等级对应的业务的示意图,表1共划分了11个时延等级(实际中可以根据需要添加、删除或修改),时延等级越低最大时延越小。
表1
Figure PCTCN2015084143-appb-000031
Figure PCTCN2015084143-appb-000032
步骤105、控制器根据回程网络拓扑、回程网络拓扑中各回程链路的容量、N个基站上报的业务测量信息以及N个基站上的所有业务的时延等级,确定N个基站上的所有业务的无线回程路由。
本实施例中,优先为时延等级高的时延敏感业务确定无线回程路由,然后,再为时延等级低的非时延敏感业务确定无线回程路由,并且为时延等级高的业务分配的无线回程路由经过的路由跳数少,为时延等级低的业务分配的无线回程路由经过的路由跳数多,可以保证时延敏感业务能够优先传输,满足时延敏感业务对时延的要求。由于网络拓扑和业务都处于动态变化中,本实施例的方法能够根据回程网络拓扑、回程链路容量和业务测量信息为簇内的各业务分配无线回程路由,使得网络资源能够得到有效的利用,提高了网络资源的利用率。
步骤106、控制器将所有业务的时延等级和无线回程路由发给N个基站。
控制器将各业务的无线回程路由发送给各基站,以使各基站根据无线回程路由进行数据转发,控制器将各业务的时延等级发送给各基站,以使得各基站根据时延等级进行业务测量信息的上报。
本实施例中,控制器获取回程链路容量、回程网络拓扑和业务测量信息,根据业务测量信息确定N个基站上的所有业务的时延等级,并根据回程网络拓扑、回程网络拓扑中各回程链路的容量、业务测量信息以及N个 基站上的所有业务的时延等级,确定N个基站上的所有业务的无线回程路由,将所有业务的时延等级和无线回程路由发给各基站。通过根据业务测量信息确定各业务的时延等级,使得对各业务的时延保证更加准确,进而根据各业务的时延、回程网络拓扑、回程链路容量和业务测量信息确定各业务的无线回程路由,在保证各业务时延要求的同时提高了网络资源的利用率。
在实施例一的基础上,本发明实施例二中将对实施例一中步骤104展开详细的说明,实施例二具体提供一种无线回程路由的计算方法,图5为本发明实施例二提供的无线回程路由的计算方法的流程图,如图5所示,本实施例提供的方法可以包括以下步骤:
步骤201、控制器根据N个基站上的所有业务的时延等级,将N个基站上的所有业务分为时延敏感业务和非时延敏感业务。
具体的,控制器根据各时延等级对应的最大时延,将各时延等级分为敏感时延等级和非敏感时延等级,敏感时延等级为所有时延等级中最大时延小于预设的时延门限的时延等级,非敏感时延等级为所有时延等级中最大时延大于或等于时延门限的时延等级。假设时延门限为100ms,那么时延等级的最大时延小于100ms的时延等级都为敏感时延等级,时延等级的最大时延大于或等于100ms的时延等级都为非敏感时延等级。敏感时延等级对应的业务为时延敏感业务,非敏感时延等级对应的业务为非时延敏感业务。
步骤202、控制器根据回程网络拓扑、回程网络拓扑中各回程链路的容量、时延敏感业务的时延等级和时延敏感业务的业务测量信息,确定时延敏感业务的无线回程路由。
本实施例中,控制器可以按照一定的顺序,依次计算每个基站上的时延敏感业务的无线回程路由,在计算每个基站上的时延敏感业务的无线回程路由时,按照各时延敏感业务的时延等级从低到高依次计算各时延敏感业务的无线回程路由。
第一步、控制器根据第n个基站上时延敏感业务的业务测量信息,确定第n个基站上敏感时延等级i对应的时延敏感业务的预期业务量和平均传输速率,n=1,……,N,i=1,……,I1,I1为敏感时延等级的个数。业务测 量信息中包括业务的时延等级、业务量、平均传输速率、传输结果等。
时延等级i的初始值为1,时延等级为1表示时延要求最高的等级。本实施例中,基站顺序n的初始值为1,在第n个基站的时延等级i的时延敏感业务的无线回程路由被确定后,则将n的取值加1,计算下一个基站上的时延等级i的时延敏感业务的无线回程路由。在为所有基站时延等级i对应的时延敏感业务确定好无线回程路由后,将i的取值加1,计算下一个时延等级对应的时延敏感业务的无线回程路由。
具体的,控制器先将第n个基站在第t时刻上报的时延等级i的所有业务的业务量相加,得到第n个基站在第t时刻上报的时延等级i对应的业务的业务量,以及将第n个基站在第t时刻上报的时延等级i的所有业务的平均传输速率进行平均或者加权平均,得到第n个基站在第t时刻上报的时延等级i对应的业务的平均传输速率。然后,控制器根据第n个基站在第t时刻上报的时延等级i对应的业务的业务量,以及保存的第n个基站在第t-1时刻时时延等级i对应的业务的预期业务量,确定第n个基站在第t时刻时时延等级i对应的业务的预期业务量,t为大于等于1的正整数。
控制器可以根据以下公式计算第n个基站在第t时刻时时延等级i对应的业务的预期业务量
Figure PCTCN2015084143-appb-000033
Figure PCTCN2015084143-appb-000034
其中,
Figure PCTCN2015084143-appb-000035
为第n个基站在第t时刻上报的时延等级i对应的业务的业务量,
Figure PCTCN2015084143-appb-000036
为第n个基站保存的在第t-1时刻时时延等级i对应的业务的预期业务量,θ∈[0,1],θ表示第t时刻上报的时延等级i对应的业务的业务量与历史业务量之间的相对权重。
第二步、控制器根据敏感时延等级i的最大时延、第n个基站上敏感时延等级i对应的时延敏感业务的预期业务量和平均传输速率,确定第n个基站上敏感时延等级i对应的时延敏感业务的最大路由跳数,其中,敏感时延等级越低的时延敏感业务的最大路由跳数越小。
控制器可以根据以下公式计算第n个基站上敏感时延等级i对应的时延敏感业务的最大路由跳数Hn,i
Figure PCTCN2015084143-appb-000037
其中,
Figure PCTCN2015084143-appb-000038
为敏感时延等级i的最大时延,
Figure PCTCN2015084143-appb-000039
为第n个基站上敏感时延等级i对应的时延敏感业务的预期业务量,
Figure PCTCN2015084143-appb-000040
为第n个基站上敏感时延等级i对应的时延敏感业务的平均传输速率,t0为每跳传输的时延,t0为预设的常数。
第三步、控制器根据第n个基站上敏感时延等级i对应的时延敏感业务的最大路由跳数、回程网络拓扑和回程网络拓扑中各回程链路的容量,确定第n个基站上敏感时延等级i对应的时延敏感业务的无线回程路由,其中,第n个基站上敏感时延等级i对应的时延敏感业务的无线回程路由的跳数小于或等于第n个基站上敏感时延等级i对应的时延敏感业务的最大路由跳数。
本实施例中,控制器可以按照现有的路由算法计算无线回程路由,但是需要保证无线回程路由的路由跳数小于或等于第n个基站上敏感时延等级i对应的时延敏感业务的最大路由跳数,从而才能保证时延敏感业务对时延的要求。为了保证无线回程路由的路由跳数小于或等于感时延业务的最大路由跳数,无线回程路由可以采用树形路由。
本实施例中,控制器还可以按照时延敏感业务的时延等级的顺序从低到高依次计算每个敏感时延等级i对应的时延敏感业务的无线回程路由,在计算每个敏感时延等级i对应的时延敏感业务的无线回程路由,依次计算每个基站上敏感时延等级i对应的时延敏感业务的无线回程路由。具体可以包括以下步骤:
第一步、控制器根据N个基站上敏感时延等级i对应的时延敏感业务的业务测量信息,确定N个基站上敏感时延等级i对应的时延敏感业务的预期业务量和平均传输速率,i=1,……,I1,I1为敏感时延等级的个数。
控制器可以按照上述的方式计算出每个基站上敏感时延等级i对应的时延敏感业务预期业务量和平均传输速率,然后,将每个基站的时延等级i对应的时延敏感业务预期业务量相加得到,N个基站上敏感时延等级i对应的时延敏感业务的预期业务量,将每个基站的敏感时延等级i对应的时延敏感业务的平均传输速率进行平均,得到N个基站上敏感时延等级i 对应的时延敏感业务的预期业务量。
第二步、控制器根据N个基站上敏感时延等级i的最大时延、N个基站上敏感时延等级i对应的时延敏感业务的预期业务量和平均传输速率,确定N个基站上敏感时延等级i对应的时延敏感业务的最大路由跳数,其中,敏感时延等级越低的时延敏感业务的最大路由跳数越小。
具体的,控制器根据以下公式计算敏感时延等级i对应的时延敏感业务的最大路由跳数Hi
Figure PCTCN2015084143-appb-000041
其中,
Figure PCTCN2015084143-appb-000042
为敏感时延等级i的最大时延,
Figure PCTCN2015084143-appb-000043
为N个基站上敏感时延等级i对应的时延敏感业务的预期业务量,
Figure PCTCN2015084143-appb-000044
为N个基站上敏感时延等级i对应的时延敏感业务的平均传输速率,t0为每跳传输的时延,t0为预设的常数。
第三步、控制器根据N个基站上敏感时延等级i对应的时延敏感业务的最大路由跳数、回程网络拓扑和回程网络拓扑中各回程链路的容量,确定每个基站上所述敏感时延等级i对应的时延敏感业务的无线回程路由,其中,每个基站上敏感时延等级i对应的时延敏感业务的无线回程路由的路由跳数小于或等于敏感时延等级i对应的时延敏感业务的最大路由跳数。
其中,对于每个基站来说,满足条件:敏感时延等级i对应的时延敏感业务的无线回程路由的路由跳数小于或等于敏感时延等级i对应的时延敏感业务的最大路由跳数的路由可能有多条,控制器需要进一步从多条满足条件的路由中选择一条路由作为无线回程路由,选择准则可以是最大化效用或最小化代价。例如,可以以最小化时延为目标,选择路由跳数最小的一条路由,此时,时延越小效用越大,或者,以节能为目标,选择能耗最小的一条路由,此时能耗越低代价越小。
步骤203、控制器根据回程网络拓扑中各回程链路的容量,以及时延敏感业务的无线回程路由占用的回程链路的容量,确定回程网络拓扑中各回程链路的剩余容量,并根据各回程链路的容量更新回程网络拓扑。
在确定无线回程路由的过程中,控制器可以每确定一个时延敏感业务 的无线回程路由,控制器都会从各回程链路容量中减去该时延敏感业务的无线回程路由占用的链路容量,得到各回程链路的剩余容量,在所有时延敏感业务的无线回程路由都确定之后,得到的就是回程网络拓扑中各回程链路的剩余容量。若某个回程链路的容量小于或等于0,则将该回程链路从回程网络拓扑中删除,然后,更新回程网络拓扑,更新后的回程网络拓扑中不包括该容量小于或等于0的回程链路。或者,在所有时延敏感业务的无线回程路由都确定之后,控制器从各回程链路容量中减去时延敏感业务的无线回程路由占用的链路容量,得到各回程链路的剩余容量,并将回程链路的容量小于或等于0的回程链路从回程网络拓扑中删除,更新回程网络拓扑。
步骤204、控制器根据更新后的回程网络拓扑、回程网络拓扑中各回程链路的剩余容量、非时延敏感业务的时延等级和非时延敏感业务的业务测量信息,确定非时延敏感业务的无线回程路由。
对于非时延敏感业务,控制器可以采用现有的以最大化网络容量为目标的网状网路由方法为非敏感时延等级对应的业务确定网状的无线回程路由,或者,以“尽力而为”方式为非时延敏感业务确定网状路由,例如,采用贪婪法或按一定顺序或随机为非敏感时延等级对应的业务选择链路容量最大的路径,直至所有非时延敏感业务的路由都确定完毕,或回程链路剩余容量不足,则停止确定无线回程路由。
本实施例中,控制器根据N个基站上的所有业务的时延等级,将N个基站上的所有业务分为时延敏感业务和非时延敏感业务,然后,优先为时延敏感业务确定无线回程路由,最后为非时延敏感业务确定无线回程路由,保证时延敏感业务有足够的网络资源使用。
在实施例一和实施例二的基础上,本发明实施例三中将对实施例一中步骤103展开详细的说明,实施例三具体提供一种时延等级的确定方法,图6为本发明实施例三提供的时延等级的确定方法的流程图,如图6所示,本实施例提供的方法可以包括以下步骤:
步骤301、控制器根据第n个基站在第t时刻上报的时延等级i对应的业务的业务量,以及保存的第n个基站在第t-1时刻时时延等级i对应的业务的预期业务量,确定第n个基站在第t时刻时时延等级i对应的业务 的预期业务量。
时延等级i的初始值为1,i=1,……,I,控制器在为时延等级i对应的时延敏感业务确定好无线回程路由后,将i的取值加1,计算下一个时延等级对应的时延敏感业务的无线回程路由。基站顺序n的初始值为1,在第n个基站的所有时延敏感业务的无线回程路由都被确定后,则将n的取值加1,计算下一个基站上时延敏感业务的无线回程路由,t为大于等于1的正整数。
控制器可以根据以下公式计算第n个基站在第t时刻时时延等级i对应的业务的预期业务量
Figure PCTCN2015084143-appb-000045
Figure PCTCN2015084143-appb-000046
其中,
Figure PCTCN2015084143-appb-000047
为第n个基站在第t时刻上报的时延等级i对应的业务的业务量,第n个基站在第t-1时刻时时延等级i对应的业务的预期业务量,θ∈[0,1]。
步骤302、控制器根据每个基站在第t时刻时时延等级i对应的业务的预期业务量,以及保存的N个基站在第t-1时刻时时延等级i对应的业务的总预期业务量,计算N个基站在第t时刻时时延等级i对应的业务的总预期业务量。
控制器可以根据以下公式计算N个基站在第t时刻时时延等级i对应的业务的总预期业务量
Figure PCTCN2015084143-appb-000048
Figure PCTCN2015084143-appb-000049
其中,
Figure PCTCN2015084143-appb-000050
为第n个基站在第t时刻时时延等级i对应的业务的预期业务量,
Figure PCTCN2015084143-appb-000051
为N个基站在第t-1时刻时时延等级i对应的业务的总预期业务量。
步骤303、控制器根据每个基站在第t时刻时上报的每个时延等级对应的业务的平均传输速率,计算N个基站在第t时刻时每个时延等级对应的业务的平均传输速率。
控制器可以将N个基站在第t时刻时上报的每个时延等级对应的业务的平均传输速率相加后计算平均值,得到N个基站在第t时刻时每个时延等级对应的业务的平均传输速率。或者,控制器采用加权平均算法得到N个基站在第t时刻时每个时延等级对应的业务的平均传输速率。
步骤304、控制器根据N个基站在第t时刻时每个时延等级对应的业务的总预期业务量、平均传输速率、传输结果确定所有业务的时延等级。
首先,控制器根据N个基站上报的业务量,计算N个基站上的所有业务的总预期业务量。然后,控制器计算N个基站在第t时刻时每个时延等级对应的业务的总预期业务量和N个基站上的所有业务的总预期业务量的第一比值。若I个时延等级中时延等级m对应的业务的总预期业务量和N个基站上的所有业务的总预期业务量的第一比值大于预设的门限,则根据时延等级m对应的业务的总预期业务量、平均传输速率、传输结果调整时延等级m对应的业务的时延。
本实施例中,控制器根据N个基站上报的业务的业务量、传输速率、传输结果等业务测量信息确定业务的时延等级,使得对各业务的时延保证更加准确。
图7为本发明实施例四提供无线回程通信的方法的流程图,本实施例从基站侧描述基于业务时延分级的无线回程方法,如图7所示,本实施例提供的方法可以包括以下步骤:
步骤401、基站测量与相邻基站之间的回程链路的可达性。
步骤402、若该基站与相邻基站之间的回程链路可达,则该基站向控制器上报与相邻基站之间的回程链路的回程链路容量,以使控制器根据回程链路容量确定簇内的N个基站形成的回程网络拓扑,N为大于等于2的正整数。
步骤403、基站进行业务测量,并向控制器上报业务测量信息,以使控制器根据业务测量信息确定N个基站上的所有业务的时延等级。
步骤404、基站接收控制器发送的该基站上的所有业务的时延等级和无线回程路由,更新该基站上所有业务的时延等级,根据各业务的无线回程路由传输各业务。
本实施例中,基站测量与相邻基站之间的回程链路的可达性,以及向控制器上报与相邻基站之间的回程链路的回程链路容量,以使控制器根据回程链容量确定簇内的N个基站形成的回程网络拓扑,并进行业务测量,向所述控制器上报业务测量信息,以使控制器根据所述业务测量信息确定N个基站上的所有业务的时延等级,通过根据业务测量信息确定各业务的 时延等级,使得各业务的时延更加准确。该基站还接收控制器发送的述N个基站上的所有业务的时延等级和无线回程路由,更新簇内所有业务的时延等级,根据各业务的无线回程路由传输各业务,由于无线回程路由是所述控制器根据回程网络拓扑、回程网络拓扑中各回程链路的容量、N个基站上报的业务测量信息以及N个基站上的所有业务的时延等级确定的,使得网络资源能够得到有效的分配,提高了网络资源的利用率。
图8为本发明实施例五提供的控制器的结构示意图,如图8所示,本实施例提供的控制器包括:接收模块11、回程网络拓扑更新模块12、业务时延等级确定模块13、回程路由管理模块14和发送模块15。
其中,接收模块11,用于接收簇内的N个基站分别上报的回程链路容量,N为大于等于2的正整数;
回程网络拓扑更新模块12,用于根据所述回程链路容量确定所述N个基站形成的回程网络拓扑;
所述接收模块11,还用于接收所述N个基站分别上报的业务测量信息;
业务时延等级确定模块13,用于根据所述N个基站上报的业务测量信息确定所述N个基站上的所有业务的时延等级;
回程路由管理模块14,用于根据所述回程网络拓扑、所述回程网络拓扑中各回程链路的容量、所述N个基站上报的业务测量信息以及所述N个基站上的所有业务的时延等级,确定所述N个基站上的所有业务的无线回程路由;
发送模块15,用于将所述所有业务的时延等级和无线回程路由发给所述N个基站。
本实施例的控制器可用于执行实施例一的方法,具体实现方式和技术效果类似,这里不再赘述。
本发明实施例六提供一种控制器,本实施例的控制器的结构参照图8所示的控制器的结构,在实施例五的基础上,本实施例中所述回程路由管理模块14具体用于:
根据所述N个基站上的所有业务的时延等级,将所述N个基站上的所有业务分为时延敏感业务和非时延敏感业务;
根据所述回程网络拓扑、所述回程网络拓扑中各回程链路的容量、所述时延敏感业务的时延等级和所述时延敏感业务的业务测量信息,确定所述时延敏感业务的无线回程路由;
根据所述回程网络拓扑中各回程链路的容量,以及所述时延敏感业务的无线回程路由占用的回程链路的容量,确定所述回程网络拓扑中各回程链路的剩余容量,并根据所述各回程链路的容量更新所述回程网络拓扑;
根据更新后的回程网络拓扑、所述回程网络拓扑中各回程链路的剩余容量、所述非时延敏感业务的时延等级和所述非时延敏感业务的业务测量信息,确定所述非时延敏感业务的无线回程路由。
一种实现方式中,所述回程路由管理模块根据所述回程网络拓扑、所述回程网络拓扑中各回程链路的容量、所述时延敏感业务的时延等级和所述时延敏感业务的业务测量信息,确定所述时延敏感业务的无线回程路由,具体为:
根据第n个基站上时延敏感业务的业务测量信息,确定所述第n个基站上敏感时延等级i对应的时延敏感业务的预期业务量和平均传输速率,n=1,……,N,i=1,……,I1,I1为敏感时延等级的个数;
根据敏感时延等级i的最大时延、所述第n个基站上所述敏感时延等级i对应的时延敏感业务的预期业务量和平均传输速率,确定所述第n个基站上所述敏感时延等级i对应的时延敏感业务的最大路由跳数,其中,敏感时延等级越低的时延敏感业务的最大路由跳数越小;
根据所述第n个基站上所述敏感时延等级i对应的时延敏感业务的最大路由跳数、所述回程网络拓扑和所述回程网络拓扑中各回程链路的容量,确定所述第n个基站上所述敏感时延等级i对应的时延敏感业务的无线回程路由,其中,所述第n个基站上所述敏感时延等级i对应的时延敏感业务的无线回程路由的路由跳数小于或等于所述第n个基站上所述敏感时延等级i对应的时延敏感业务的最大路由跳数。
其中,所述回程路由管理模块14根据敏感时延等级i的最大时延、所述第n个基站上所述敏感时延等级i对应的时延敏感业务的预期业务量和平均传输速率,确定所述第n个基站上所述敏感时延等级i对应的时延敏感业务的最大路由跳数,具体为:
根据以下公式计算第n个基站上所述敏感时延等级i对应的时延敏感业务的最大路由跳数Hn,i
Figure PCTCN2015084143-appb-000052
其中,
Figure PCTCN2015084143-appb-000053
为所述敏感时延等级i的最大时延,
Figure PCTCN2015084143-appb-000054
为所述第n个基站上所述敏感时延等级i对应的时延敏感业务的预期业务量,
Figure PCTCN2015084143-appb-000055
为所述第n个基站上所述敏感时延等级i对应的时延敏感业务的平均传输速率,t0为每跳传输的时延,t0为预设的常数。
另一种实现方式中,所述回程路由管理模块14根据所述回程网络拓扑、所述回程网络拓扑中各回程链路的容量、所述时延敏感业务的时延等级和所述时延敏感业务的业务测量信息,确定所述时延敏感业务的无线回程路由,具体为:
根据所述N个基站上敏感时延等级i对应的时延敏感业务的业务测量信息,确定所述N个基站上敏感时延等级i对应的时延敏感业务的预期业务量和平均传输速率,i=1,……,I1,I1为敏感时延等级的个数;
根据所述N个基站上敏感时延等级i的最大时延、所述N个基站上敏感时延等级i对应的时延敏感业务的预期业务量和平均传输速率,确定所述N个基站上敏感时延等级i对应的时延敏感业务的最大路由跳数,其中,敏感时延等级越低的时延敏感业务的最大路由跳数越小;
根据所述N个基站上敏感时延等级i对应的时延敏感业务的最大路由跳数、所述回程网络拓扑和所述回程网络拓扑中各回程链路的容量,确定每个基站上所述敏感时延等级i对应的时延敏感业务的无线回程路由,其中,所述每个基站上敏感时延等级i对应的时延敏感业务的无线回程路由的路由跳数小于或等于所述敏感时延等级i对应的时延敏感业务的最大路由跳数。
其中,所述回程路由管理模块14根据所述N个基站上敏感时延等级i的最大时延、所述N个基站上敏感时延等级i对应的时延敏感业务的预期业务量和平均传输速率,确定所述N个基站上敏感时延等级i对应的时延敏感业务的最大路由跳数,具体为:
根据以下公式计算所述N个基站上敏感时延等级i对应的时延敏感业 务的最大路由跳数Hi
Figure PCTCN2015084143-appb-000056
其中,
Figure PCTCN2015084143-appb-000057
为所述敏感时延等级i的最大时延,
Figure PCTCN2015084143-appb-000058
为所述N个基站上敏感时延等级i对应的时延敏感业务的预期业务量,
Figure PCTCN2015084143-appb-000059
为所述N个基站上敏感时延等级i对应的时延敏感业务的平均传输速率,t0为每跳传输的时延,t0为预设的常数。
本实施例的控制器,可用于执行实施例二的方法,具体实现方式和技术效果类似,这里不再赘述。
本发明实施例七提供一种控制器,本实施例的控制器的结构参照图8所示的控制器的结构,在实施例五和六的基础上,本本实施例中,所述业务测量信息包括:业务的时延等级、业务量、平均传输速率、传输结果;则所述业务时延等级确定模块13具体用于:
根据第n个基站在第t时刻上报的时延等级i对应的业务的业务量,以及保存的所述第n个基站在第t-1时刻时时延等级i对应的业务的预期业务量,确定所述第n个基站在第t时刻时时延等级i对应的业务的预期业务量,i=1,……,I,n=1,……,N,I为时延等级的个数,t为大于等于1的正整数;
根据每个基站在第t时刻时时延等级i对应的业务的预期业务量,以及保存的所述N个基站在第t-1时刻时时延等级i对应的业务的总预期业务量,计算所述N个基站在第t时刻时时延等级i对应的业务的总预期业务量;
根据每个基站在第t时刻时上报的每个时延等级对应的业务的平均传输速率,计算所述N个基站在第t时刻时每个时延等级对应的业务的平均传输速率;
根据所述N个基站在第t时刻时每个时延等级对应的业务的总预期业务量、平均传输速率、传输结果确定所述所有业务的时延等级。
其中,所述业务时延等级确定模块13根据第n个基站在第t时刻上报的时延等级i对应的业务的业务量,以及保存的所述第n个基站在第t-1时刻时时延等级i对应的业务的预期业务量,确定所述第n个基站在第t 时刻时时延等级i对应的业务的预期业务量,具体为:
根据以下公式计算第n个基站在第t时刻时时延等级i对应的业务的预期业务量
Figure PCTCN2015084143-appb-000060
Figure PCTCN2015084143-appb-000061
其中,
Figure PCTCN2015084143-appb-000062
为所述第n个基站在第t时刻上报的时延等级i对应的业务的业务量,所述第n个基站在第t-1时刻时时延等级i对应的业务的预期业务量,θ∈[0,1];
根据每个基站在第t时刻时时延等级i对应的业务的预期业务量,以及保存的所述N个基站在第t-1时刻时时延等级i对应的业务的总预期业务量,计算所述N个基站在第t时刻时时延等级i对应的业务的总预期业务量,包括:
根据以下公式计算所述N个基站在第t时刻时时延等级i对应的业务的总预期业务量
Figure PCTCN2015084143-appb-000063
Figure PCTCN2015084143-appb-000064
其中,
Figure PCTCN2015084143-appb-000065
为所述第n个基站在第t时刻时时延等级i对应的业务的预期业务量,
Figure PCTCN2015084143-appb-000066
为所述N个基站在第t-1时刻时时延等级i对应的业务的总预期业务量。
所述业务时延等级确定模块13根据所述N个基站在第t时刻时每个时延等级对应的业务的总预期业务量、平均传输速率、传输结果确定所述所有业务的时延等级,具体为:
根据所述N个基站上报的业务量,计算所述N个基站上的所有业务的总预期业务量;
计算所述N个基站在第t时刻时每个时延等级对应的业务的总预期业务量和所述N个基站上的所有业务的总预期业务量的第一比值;
若所述I个时延等级中时延等级m对应的业务的总预期业务量和所述N个基站上的所有业务的总预期业务量的第一比值大于预设的门限,则根据所述时延等级m对应的业务的总预期业务量、平均传输速率、传输结果调整所述时延等级m对应的业务的时延。
本发明实施例八提供的一种基站,图9为本发明实施例八提供的基站的结构示意图,如图9所示,本实施例提供的基站包括:回程链路测量模块21、 发送模块22、业务测量模块23、接收模块24和数据转发模块25。
其中,回程链路测量模块21,用于测量基站与相邻基站之间的回程链路的可达性;
发送模块22,用于若所述基站与相邻基站之间的回程链路可达,则向控制器上报与所述相邻基站之间的回程链路的回程链路容量,以使所述控制器根据所述回程链路容量确定簇内的N个基站形成的回程网络拓扑,N为大于等于2的正整数;
业务测量模块23,用于进行业务测量,并向所述控制器上报业务测量信息,以使所述控制器根据所述业务测量信息确定所述N个基站上的所有业务的时延等级;
接收模块24,用于接收所述控制器发送的所述基站上的所有业务的时延等级和无线回程路由;
数据转发模块25,用于更新所述基站上的所有业务的时延等级,根据各业务的无线回程路由传输所述各业务,所述无线回程路由是所述控制器根据所述回程网络拓扑、所述回程网络拓扑中各回程链路的容量、所述N个基站上报的业务测量信息以及所述N个基站上的所有业务的时延等级确定的。
本实施例的基站可用于执行实施例四的方法,具体实现方式和技术效果类似,这里不再赘述。
本发明实施例九提供一种控制器,图10为本发明实施例九提供的控制器的结构示意图,如图10所示,本实施例提供的控制器300包括:处理器31、存储器32、通信接口33和系统总线34,所述存储器32和所述通信接口33通过所述系统总线34与所述处理器31连接并完成相互间的通信,所述存储器32用于存储计算机执行指令,所述通信接口33用于和其他设备进行通信,所述处理器31用于运行所述计算机执行指令,执行如下所述的方法:
接收簇内的N个基站分别上报的回程链路容量,N为大于等于2的正整数;
根据所述回程链路容量确定所述N个基站形成的回程网络拓扑;
所述控制器接收所述N个基站分别上报的业务测量信息;
根据所述N个基站上报的业务测量信息确定所述N个基站上的所有业务的时延等级;
根据所述回程网络拓扑、所述回程网络拓扑中各回程链路的容量、所述N个基站上报的业务测量信息以及所述N个基站上的所有业务的时延等级,确定所述N个基站上的所有业务的无线回程路由;
将所述所有业务的时延等级和无线回程路由发给所述N个基站。
其中,所述根据所述回程网络拓扑、所述回程网络拓扑中各回程链路的容量、所述N个基站上报的业务测量信息以及所述N个基站上的所有业务的时延等级,确定所述N个基站上的所有业务的无线回程路由,包括:
根据所述N个基站上的所有业务的时延等级,将所述N个基站上的所有业务分为时延敏感业务和非时延敏感业务;
根据所述回程网络拓扑、所述回程网络拓扑中各回程链路的容量、所述时延敏感业务的时延等级和所述时延敏感业务的业务测量信息,确定所述时延敏感业务的无线回程路由;
根据所述回程网络拓扑中各回程链路的容量,以及所述时延敏感业务的无线回程路由占用的回程链路的容量,确定所述回程网络拓扑中各回程链路的剩余容量,并根据所述各回程链路的容量更新所述回程网络拓扑;
根据更新后的回程网络拓扑、所述回程网络拓扑中各回程链路的剩余容量、所述非时延敏感业务的时延等级和所述非时延敏感业务的业务测量信息,确定所述非时延敏感业务的无线回程路由。
可选的,所述根据所述回程网络拓扑、所述回程网络拓扑中各回程链路的容量、所述时延敏感业务的时延等级和所述时延敏感业务的业务测量信息,确定所述时延敏感业务的无线回程路由,包括:
根据第n个基站上时延敏感业务的业务测量信息,确定所述第n个基站上敏感时延等级i对应的时延敏感业务的预期业务量和平均传输速率,n=1,……,N,i=1,……,I1,I1为敏感时延等级的个数;
根据敏感时延等级i的最大时延、所述第n个基站上所述敏感时延等级i对应的时延敏感业务的预期业务量和平均传输速率,确定所述第n个基站上所述敏感时延等级i对应的时延敏感业务的最大路由跳数,其中,敏感时延等级越低的时延敏感业务的最大路由跳数越小;
根据所述第n个基站上所述敏感时延等级i对应的时延敏感业务的最大路由跳数、所述回程网络拓扑和所述回程网络拓扑中各回程链路的容量,确定所述第n个基站上所述敏感时延等级i对应的时延敏感业务的无线回程路由,其中,所述第n个基站上所述敏感时延等级i对应的时延敏感业务的无线回程路由的路由跳数小于或等于所述第n个基站上所述敏感时延等级i对应的时延敏感业务的最大路由跳数。
可选的,所述根据敏感时延等级i的最大时延、所述第n个基站上所述敏感时延等级i对应的时延敏感业务的预期业务量和平均传输速率,确定所述第n个基站上所述敏感时延等级i对应的时延敏感业务的最大路由跳数,包括:
根据以下公式计算第n个基站上所述敏感时延等级i对应的时延敏感业务的最大路由跳数Hn,i
Figure PCTCN2015084143-appb-000067
其中,
Figure PCTCN2015084143-appb-000068
为所述敏感时延等级i的最大时延,
Figure PCTCN2015084143-appb-000069
为所述第n个基站上所述敏感时延等级i对应的时延敏感业务的预期业务量,
Figure PCTCN2015084143-appb-000070
为所述第n个基站上所述敏感时延等级i对应的时延敏感业务的平均传输速率,t0为每跳传输的时延,t0为预设的常数。
可选的,所述根据所述回程网络拓扑、所述回程网络拓扑中各回程链路的容量、所述时延敏感业务的时延等级和所述时延敏感业务的业务测量信息,确定所述时延敏感业务的无线回程路由,包括:
根据所述N个基站上敏感时延等级i对应的时延敏感业务的业务测量信息,确定所述N个基站上敏感时延等级i对应的时延敏感业务的预期业务量和平均传输速率,i=1,……,I1,I1为敏感时延等级的个数;
根据所述N个基站上敏感时延等级i的最大时延、所述N个基站上敏感时延等级i对应的时延敏感业务的预期业务量和平均传输速率,确定所述N个基站上敏感时延等级i对应的时延敏感业务的最大路由跳数,其中,敏感时延等级越低的时延敏感业务的最大路由跳数越小;
根据所述N个基站上敏感时延等级i对应的时延敏感业务的最大路由跳数、所述回程网络拓扑和所述回程网络拓扑中各回程链路的容量,确定 每个基站上所述敏感时延等级i对应的时延敏感业务的无线回程路由,其中,所述每个基站上敏感时延等级i对应的时延敏感业务的无线回程路由的路由跳数小于或等于所述敏感时延等级i对应的时延敏感业务的最大路由跳数。
可选的,所述根据所述N个基站上敏感时延等级i的最大时延、所述N个基站上敏感时延等级i对应的时延敏感业务的预期业务量和平均传输速率,确定所述N个基站上敏感时延等级i对应的时延敏感业务的最大路由跳数,包括:
根据以下公式计算所述N个基站上敏感时延等级i对应的时延敏感业务的最大路由跳数Hi
Figure PCTCN2015084143-appb-000071
其中,
Figure PCTCN2015084143-appb-000072
为所述敏感时延等级i的最大时延,
Figure PCTCN2015084143-appb-000073
为所述N个基站上敏感时延等级i对应的时延敏感业务的预期业务量,
Figure PCTCN2015084143-appb-000074
为所述N个基站上敏感时延等级i对应的时延敏感业务的平均传输速率,t0为每跳传输的时延,t0为预设的常数。
本实施例中,所述业务测量信息包括:业务的时延等级、业务量、平均传输速率、传输结果;则所述根据所述N个基站上报的业务测量信息确定所述N个基站上的所有业务的时延等级,包括:
根据第n个基站在第t时刻上报的时延等级i对应的业务的业务量,以及保存的所述第n个基站在第t-1时刻时时延等级i对应的业务的预期业务量,确定所述第n个基站在第t时刻时时延等级i对应的业务的预期业务量,i=1,……,I,n=1,……,N,I为时延等级的个数,t为大于等于1的正整数;
根据每个基站在第t时刻时时延等级i对应的业务的预期业务量,以及保存的所述N个基站在第t-1时刻时时延等级i对应的业务的总预期业务量,计算所述N个基站在第t时刻时时延等级i对应的业务的总预期业务量;
根据每个基站在第t时刻时上报的每个时延等级对应的业务的平均传输速率,计算所述N个基站在第t时刻时每个时延等级对应的业务的平均 传输速率;
根据所述N个基站在第t时刻时每个时延等级对应的业务的总预期业务量、平均传输速率、传输结果确定所述所有业务的时延等级。
可选的,所述处理器31根据以下公式计算第n个基站在第t时刻时时延等级i对应的业务的预期业务量
Figure PCTCN2015084143-appb-000075
Figure PCTCN2015084143-appb-000076
其中,
Figure PCTCN2015084143-appb-000077
为所述第n个基站在第t时刻上报的时延等级i对应的业务的业务量,所述第n个基站在第t-1时刻时时延等级i对应的业务的预期业务量,θ∈[0,1];
可选的,所述处理器31根据以下公式计算所述N个基站在第t时刻时时延等级i对应的业务的总预期业务量
Figure PCTCN2015084143-appb-000078
Figure PCTCN2015084143-appb-000079
其中,
Figure PCTCN2015084143-appb-000080
为所述第n个基站在第t时刻时时延等级i对应的业务的预期业务量,
Figure PCTCN2015084143-appb-000081
为所述N个基站在第t-1时刻时时延等级i对应的业务的总预期业务量。
可选的,所述根据所述N个基站在第t时刻时每个时延等级对应的业务的总预期业务量、平均传输速率、传输结果确定所述所有业务的时延等级,包括:
根据所述N个基站上报的业务量,计算所述N个基站上的所有业务的总预期业务量;
计算所述N个基站在第t时刻时每个时延等级对应的业务的总预期业务量和所述N个基站上的所有业务的总预期业务量的第一比值;
若所述I个时延等级中时延等级m对应的业务的总预期业务量和所述N个基站上的所有业务的总预期业务量的第一比值大于预设的门限,则根据所述时延等级m对应的业务的总预期业务量、平均传输速率、传输结果调整所述时延等级m对应的业务的时延。
本实施例的控制器,可用于执行实施例一至实施例三的方法,具体实现方式和技术效果类似,这里不再赘述。
本发明实施例十提供一种基站,图11为本发明实施例十提供的基站的结构示意图,如图11所示,本实施例提供的基站400包括:处理器41、 存储器42、通信接口43和系统总线44,所述存储器42和所述通信接口43通过所述系统总线44与所述处理器41连接并完成相互间的通信,所述存储器42用于存储计算机执行指令,所述通信接口43用于和其他设备进行通信,所述处理器41用于运行所述计算机执行指令,执行如下所述的方法:
测量与相邻基站之间的回程链路的可达性;
若所述基站与相邻基站之间的回程链路可达,则向控制器上报与所述相邻基站之间的回程链路的回程链路容量,以使所述控制器根据所述回程链路容量确定簇内的N个基站形成的回程网络拓扑,N为大于等于2的正整数;
进行业务测量,并向所述控制器上报业务测量信息,以使所述控制器根据所述业务测量信息确定所述N个基站上的所有业务的时延等级;
接收所述控制器发送的所述基站上的所有业务的时延等级和无线回程路由,更新所述基站上的所有业务的时延等级,根据各业务的无线回程路由传输所述各业务,所述无线回程路由是所述控制器根据所述回程网络拓扑、所述回程网络拓扑中各回程链路的容量、所述N个基站上报的业务测量信息以及所述N个基站上的所有业务的时延等级确定的。
本实施例的装置,可以用于执行实施例四的技术方案,其实现原理和技术效果类似,此处不再赘述。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (22)

  1. 一种无线回程通信的方法,其特征在于,包括:
    控制器接收簇内的N个基站分别上报的回程链路容量,N为大于等于2的正整数;
    所述控制器根据所述回程链路容量确定所述N个基站形成的回程网络拓扑;
    所述控制器接收所述N个基站分别上报的业务测量信息;
    所述控制器根据所述N个基站上报的业务测量信息确定所述N个基站上的所有业务的时延等级;
    所述控制器根据所述回程网络拓扑、所述回程网络拓扑中各回程链路的容量、所述N个基站上报的业务测量信息以及所述N个基站上的所有业务的时延等级,确定所述N个基站上的所有业务的无线回程路由;
    所述控制器将所述所有业务的时延等级和无线回程路由发给所述N个基站。
  2. 根据权利要求1所述的方法,其特征在于,所述控制器根据所述回程网络拓扑、所述回程网络拓扑中各回程链路的容量、所述N个基站上报的业务测量信息以及所述N个基站上的所有业务的时延等级,确定所述N个基站上的所有业务的无线回程路由,包括:
    所述控制器根据所述N个基站上的所有业务的时延等级,将所述N个基站上的所有业务分为时延敏感业务和非时延敏感业务;
    所述控制器根据所述回程网络拓扑、所述回程网络拓扑中各回程链路的容量、所述时延敏感业务的时延等级和所述时延敏感业务的业务测量信息,确定所述时延敏感业务的无线回程路由;
    所述控制器根据所述回程网络拓扑中各回程链路的容量,以及所述时延敏感业务的无线回程路由占用的回程链路的容量,确定所述回程网络拓扑中各回程链路的剩余容量,并根据所述各回程链路的容量更新所述回程网络拓扑;
    所述控制器根据更新后的回程网络拓扑、所述回程网络拓扑中各回程链路的剩余容量、所述非时延敏感业务的时延等级和所述非时延敏感业务的业务测量信息,确定所述非时延敏感业务的无线回程路由。
  3. 根据权利要求2所述的方法,其特征在于,所述控制器根据所述回程网络拓扑、所述回程网络拓扑中各回程链路的容量、所述时延敏感业务的时延等级和所述时延敏感业务的业务测量信息,确定所述时延敏感业务的无线回程路由,包括:
    所述控制器根据第n个基站上时延敏感业务的业务测量信息,确定所述第n个基站上敏感时延等级i对应的时延敏感业务的预期业务量和平均传输速率,n=1,……,N,i=1,……,I1,I1为敏感时延等级的个数;
    所述控制器根据敏感时延等级i的最大时延、所述第n个基站上所述敏感时延等级i对应的时延敏感业务的预期业务量和平均传输速率,确定所述第n个基站上所述敏感时延等级i对应的时延敏感业务的最大路由跳数,其中,敏感时延等级越低的时延敏感业务的最大路由跳数越小;
    所述控制器根据所述第n个基站上所述敏感时延等级i对应的时延敏感业务的最大路由跳数、所述回程网络拓扑和所述回程网络拓扑中各回程链路的容量,确定所述第n个基站上所述敏感时延等级i对应的时延敏感业务的无线回程路由,其中,所述第n个基站上所述敏感时延等级i对应的时延敏感业务的无线回程路由的路由跳数小于或等于所述第n个基站上所述敏感时延等级i对应的时延敏感业务的最大路由跳数。
  4. 根据权利要求3所述的方法,其特征在于,所述控制器根据敏感时延等级i的最大时延、所述第n个基站上所述敏感时延等级i对应的时延敏感业务的预期业务量和平均传输速率,确定所述第n个基站上所述敏感时延等级i对应的时延敏感业务的最大路由跳数,包括:
    所述控制器根据以下公式计算第n个基站上所述敏感时延等级i对应的时延敏感业务的最大路由跳数Hn,i
    Figure PCTCN2015084143-appb-100001
    其中,
    Figure PCTCN2015084143-appb-100002
    为所述敏感时延等级i的最大时延,
    Figure PCTCN2015084143-appb-100003
    为所述第n个基站上所述敏感时延等级i对应的时延敏感业务的预期业务量,
    Figure PCTCN2015084143-appb-100004
    为所述第n个基站上所述敏感时延等级i对应的时延敏感业务的平均传输速率,t0为每跳传输的时延,t0为预设的常数。
  5. 根据权利要求2所述的方法,其特征在于,所述控制器根据所述 回程网络拓扑、所述回程网络拓扑中各回程链路的容量、所述时延敏感业务的时延等级和所述时延敏感业务的业务测量信息,确定所述时延敏感业务的无线回程路由,包括:
    所述控制器根据所述N个基站上敏感时延等级i对应的时延敏感业务的业务测量信息,确定所述N个基站上敏感时延等级i对应的时延敏感业务的预期业务量和平均传输速率,i=1,……,I1,I1为敏感时延等级的个数;
    所述控制器根据所述N个基站上敏感时延等级i的最大时延、所述N个基站上敏感时延等级i对应的时延敏感业务的预期业务量和平均传输速率,确定所述N个基站上敏感时延等级i对应的时延敏感业务的最大路由跳数,其中,敏感时延等级越低的时延敏感业务的最大路由跳数越小;
    所述控制器根据所述N个基站上敏感时延等级i对应的时延敏感业务的最大路由跳数、所述回程网络拓扑和所述回程网络拓扑中各回程链路的容量,确定每个基站上所述敏感时延等级i对应的时延敏感业务的无线回程路由,其中,所述每个基站上敏感时延等级i对应的时延敏感业务的无线回程路由的路由跳数小于或等于所述敏感时延等级i对应的时延敏感业务的最大路由跳数。
  6. 根据权利要求5所述的方法,其特征在于,所述控制器根据所述N个基站上敏感时延等级i的最大时延、所述N个基站上敏感时延等级i对应的时延敏感业务的预期业务量和平均传输速率,确定所述N个基站上敏感时延等级i对应的时延敏感业务的最大路由跳数,包括:
    所述控制器根据以下公式计算所述N个基站上敏感时延等级i对应的时延敏感业务的最大路由跳数Hi
    Figure PCTCN2015084143-appb-100005
    其中,
    Figure PCTCN2015084143-appb-100006
    为所述敏感时延等级i的最大时延,
    Figure PCTCN2015084143-appb-100007
    为所述N个基站上敏感时延等级i对应的时延敏感业务的预期业务量,
    Figure PCTCN2015084143-appb-100008
    为所述N个基站上敏感时延等级i对应的时延敏感业务的平均传输速率,t0为每跳传输的时延,t0为预设的常数。
  7. 根据权利要求1或2所述的方法,其特征在于,所述业务测量信息包括:业务的时延等级、业务量、平均传输速率、传输结果;则所述控 制器根据所述N个基站上报的业务测量信息确定所述N个基站上的所有业务的时延等级,包括:
    所述控制器根据第n个基站在第t时刻上报的时延等级i对应的业务的业务量,以及保存的所述第n个基站在第t-1时刻时时延等级i对应的业务的预期业务量,确定所述第n个基站在第t时刻时时延等级i对应的业务的预期业务量,i=1,……,I,n=1,……,N,I为时延等级的个数,t为大于等于1的正整数;
    所述控制器根据每个基站在第t时刻时时延等级i对应的业务的预期业务量,以及保存的所述N个基站在第t-1时刻时时延等级i对应的业务的总预期业务量,计算所述N个基站在第t时刻时时延等级i对应的业务的总预期业务量;
    所述控制器根据每个基站在第t时刻时上报的每个时延等级对应的业务的平均传输速率,计算所述N个基站在第t时刻时每个时延等级对应的业务的平均传输速率;
    所述控制器根据所述N个基站在第t时刻时每个时延等级对应的业务的总预期业务量、平均传输速率、传输结果确定所述所有业务的时延等级。
  8. 根据权利要求7所述的方法,其特征在于,所述控制器根据第n个基站在第t时刻上报的时延等级i对应的业务的业务量,以及保存的所述第n个基站在第t-1时刻时时延等级i对应的业务的预期业务量,确定所述第n个基站在第t时刻时时延等级i对应的业务的预期业务量,包括:
    所述控制器根据以下公式计算第n个基站在第t时刻时时延等级i对应的业务的预期业务量
    Figure PCTCN2015084143-appb-100009
    Figure PCTCN2015084143-appb-100010
    其中,
    Figure PCTCN2015084143-appb-100011
    为所述第n个基站在第t时刻上报的时延等级i对应的业务的业务量,所述第n个基站在第t-1时刻时时延等级i对应的业务的预期业务量,θ∈[0,1];
    所述控制器根据每个基站在第t时刻时时延等级i对应的业务的预期业务量,以及保存的所述N个基站在第t-1时刻时时延等级i对应的业务的总预期业务量,计算所述N个基站在第t时刻时时延等级i对应的业务的总预期业务量,包括:
    所述控制器根据以下公式计算所述N个基站在第t时刻时时延等级i对应的业务的总预期业务量
    Figure PCTCN2015084143-appb-100012
    Figure PCTCN2015084143-appb-100013
    其中,
    Figure PCTCN2015084143-appb-100014
    为所述第n个基站在第t时刻时时延等级i对应的业务的预期业务量,
    Figure PCTCN2015084143-appb-100015
    为所述N个基站在第t-1时刻时时延等级i对应的业务的总预期业务量。
  9. 根据权利要求7或8所述的方法,其特征在于,所述控制器根据所述N个基站在第t时刻时每个时延等级对应的业务的总预期业务量、平均传输速率、传输结果确定所述所有业务的时延等级,包括:
    所述控制器根据所述N个基站上报的业务量,计算所述N个基站上的所有业务的总预期业务量;
    所述控制器计算所述N个基站在第t时刻时每个时延等级对应的业务的总预期业务量和所述N个基站上的所有业务的总预期业务量的第一比值;
    若所述I个时延等级中时延等级m对应的业务的总预期业务量和所述N个基站上的所有业务的总预期业务量的第一比值大于预设的门限,则根据所述时延等级m对应的业务的总预期业务量、平均传输速率、传输结果调整所述时延等级m对应的业务的时延。
  10. 一种无线回程通信的方法,其特征在于,包括:
    基站测量与相邻基站之间的回程链路的可达性;
    若所述基站与相邻基站之间的回程链路可达,则所述基站向控制器上报与所述相邻基站之间的回程链路的回程链路容量,以使所述控制器根据所述回程链路容量确定簇内的N个基站形成的回程网络拓扑,N为大于等于2的正整数;
    所述基站进行业务测量,并向所述控制器上报业务测量信息,以使所述控制器根据所述业务测量信息确定所述N个基站上的所有业务的时延等级;
    所述基站接收所述控制器发送的所述基站上的所有业务的时延等级和无线回程路由,更新所述基站上的所有业务的时延等级,根据各业务的无线回程路由传输所述各业务,所述无线回程路由是所述控制器根据所述 回程网络拓扑、所述回程网络拓扑中各回程链路的容量、所述N个基站上报的业务测量信息以及所述N个基站上的所有业务的时延等级确定的。
  11. 一种控制器,其特征在于,包括:
    接收模块,用于接收簇内的N个基站分别上报的回程链路容量,N为大于等于2的正整数;
    回程网络拓扑更新模块,用于根据所述回程链路容量确定所述N个基站形成的回程网络拓扑;
    所述接收模块,还用于接收所述N个基站分别上报的业务测量信息;
    业务时延等级确定模块,用于根据所述N个基站上报的业务测量信息确定所述N个基站上的所有业务的时延等级;
    回程路由管理模块,用于根据所述回程网络拓扑、所述回程网络拓扑中各回程链路的容量、所述N个基站上报的业务测量信息以及所述N个基站上的所有业务的时延等级,确定所述N个基站上的所有业务的无线回程路由;
    发送模块,用于将所述所有业务的时延等级和无线回程路由发给所述N个基站。
  12. 根据权利要求11所述的控制器,其特征在于,所述回程路由管理模块具体用于:
    根据所述N个基站上的所有业务的时延等级,将所述N个基站上的所有业务分为时延敏感业务和非时延敏感业务;
    根据所述回程网络拓扑、所述回程网络拓扑中各回程链路的容量、所述时延敏感业务的时延等级和所述时延敏感业务的业务测量信息,确定所述时延敏感业务的无线回程路由;
    根据所述回程网络拓扑中各回程链路的容量,以及所述时延敏感业务的无线回程路由占用的回程链路的容量,确定所述回程网络拓扑中各回程链路的剩余容量,并根据所述各回程链路的容量更新所述回程网络拓扑;
    根据更新后的回程网络拓扑、所述回程网络拓扑中各回程链路的剩余容量、所述非时延敏感业务的时延等级和所述非时延敏感业务的业务测量信息,确定所述非时延敏感业务的无线回程路由。
  13. 根据权利要求12所述的控制器,其特征在于,所述回程路由管 理模块根据所述回程网络拓扑、所述回程网络拓扑中各回程链路的容量、所述时延敏感业务的时延等级和所述时延敏感业务的业务测量信息,确定所述时延敏感业务的无线回程路由,具体为:
    根据第n个基站上时延敏感业务的业务测量信息,确定所述第n个基站上敏感时延等级i对应的时延敏感业务的预期业务量和平均传输速率,n=1,……,N,i=1,……,I1,I1为敏感时延等级的个数;
    根据敏感时延等级i的最大时延、所述第n个基站上所述敏感时延等级i对应的时延敏感业务的预期业务量和平均传输速率,确定所述第n个基站上所述敏感时延等级i对应的时延敏感业务的最大路由跳数,其中,敏感时延等级越低的时延敏感业务的最大路由跳数越小;
    根据所述第n个基站上所述敏感时延等级i对应的时延敏感业务的最大路由跳数、所述回程网络拓扑和所述回程网络拓扑中各回程链路的容量,确定所述第n个基站上所述敏感时延等级i对应的时延敏感业务的无线回程路由,其中,所述第n个基站上所述敏感时延等级i对应的时延敏感业务的无线回程路由的路由跳数小于或等于所述第n个基站上所述敏感时延等级i对应的时延敏感业务的最大路由跳数。
  14. 根据权利要求13所述的控制器,其特征在于,所述回程路由管理模块根据敏感时延等级i的最大时延、所述第n个基站上所述敏感时延等级i对应的时延敏感业务的预期业务量和平均传输速率,确定所述第n个基站上所述敏感时延等级i对应的时延敏感业务的最大路由跳数,具体为:
    根据以下公式计算第n个基站上所述敏感时延等级i对应的时延敏感业务的最大路由跳数Hn,i
    Figure PCTCN2015084143-appb-100016
    其中,
    Figure PCTCN2015084143-appb-100017
    为所述敏感时延等级i的最大时延,
    Figure PCTCN2015084143-appb-100018
    为所述第n个基站上所述敏感时延等级i对应的时延敏感业务的预期业务量,
    Figure PCTCN2015084143-appb-100019
    为所述第n个基站上所述敏感时延等级i对应的时延敏感业务的平均传输速率,t0为每跳传输的时延,t0为预设的常数。
  15. 根据权利要求12所述的控制器,其特征在于,所述回程路由管 理模块根据所述回程网络拓扑、所述回程网络拓扑中各回程链路的容量、所述时延敏感业务的时延等级和所述时延敏感业务的业务测量信息,确定所述时延敏感业务的无线回程路由,具体为:
    根据所述N个基站上敏感时延等级i对应的时延敏感业务的业务测量信息,确定所述N个基站上敏感时延等级i对应的时延敏感业务的预期业务量和平均传输速率,i=1,……,I1,I1为敏感时延等级的个数;
    根据所述N个基站上敏感时延等级i的最大时延、所述N个基站上敏感时延等级i对应的时延敏感业务的预期业务量和平均传输速率,确定所述N个基站上敏感时延等级i对应的时延敏感业务的最大路由跳数,其中,敏感时延等级越低的时延敏感业务的最大路由跳数越小;
    根据所述N个基站上敏感时延等级i对应的时延敏感业务的最大路由跳数、所述回程网络拓扑和所述回程网络拓扑中各回程链路的容量,确定每个基站上所述敏感时延等级i对应的时延敏感业务的无线回程路由,其中,所述每个基站上敏感时延等级i对应的时延敏感业务的无线回程路由的路由跳数小于或等于所述敏感时延等级i对应的时延敏感业务的最大路由跳数。
  16. 根据权利要求15所述的控制器,其特征在于,所述回程路由管理模块根据所述N个基站上敏感时延等级i的最大时延、所述N个基站上敏感时延等级i对应的时延敏感业务的预期业务量和平均传输速率,确定所述N个基站上敏感时延等级i对应的时延敏感业务的最大路由跳数,具体为:
    根据以下公式计算所述N个基站上敏感时延等级i对应的时延敏感业务的最大路由跳数Hi
    Figure PCTCN2015084143-appb-100020
    其中,
    Figure PCTCN2015084143-appb-100021
    为所述敏感时延等级i的最大时延,
    Figure PCTCN2015084143-appb-100022
    为所述N个基站上敏感时延等级i对应的时延敏感业务的预期业务量,
    Figure PCTCN2015084143-appb-100023
    为所述N个基站上敏感时延等级i对应的时延敏感业务的平均传输速率,t0为每跳传输的时延,t0为预设的常数。
  17. 根据权利要求11或12所述的控制器,其特征在于,所述业务测 量信息包括:业务的时延等级、业务量、平均传输速率、传输结果;则所述业务时延等级确定模块具体用于:
    根据第n个基站在第t时刻上报的时延等级i对应的业务的业务量,以及保存的所述第n个基站在第t-1时刻时时延等级i对应的业务的预期业务量,确定所述第n个基站在第t时刻时时延等级i对应的业务的预期业务量,i=1,……,I,n=1,……,N,I为时延等级的个数,t为大于等于1的正整数;
    根据每个基站在第t时刻时时延等级i对应的业务的预期业务量,以及保存的所述N个基站在第t-1时刻时时延等级i对应的业务的总预期业务量,计算所述N个基站在第t时刻时时延等级i对应的业务的总预期业务量;
    根据每个基站在第t时刻时上报的每个时延等级对应的业务的平均传输速率,计算所述N个基站在第t时刻时每个时延等级对应的业务的平均传输速率;
    根据所述N个基站在第t时刻时每个时延等级对应的业务的总预期业务量、平均传输速率、传输结果确定所述所有业务的时延等级。
  18. 根据权利要求17所述的控制器,其特征在于,所述业务时延等级确定模块根据第n个基站在第t时刻上报的时延等级i对应的业务的业务量,以及保存的所述第n个基站在第t-1时刻时时延等级i对应的业务的预期业务量,确定所述第n个基站在第t时刻时时延等级i对应的业务的预期业务量,具体为:
    根据以下公式计算第n个基站在第t时刻时时延等级i对应的业务的预期业务量
    Figure PCTCN2015084143-appb-100024
    Figure PCTCN2015084143-appb-100025
    其中,
    Figure PCTCN2015084143-appb-100026
    为所述第n个基站在第t时刻上报的时延等级i对应的业务的业务量,所述第n个基站在第t-1时刻时时延等级i对应的业务的预期业务量,θ∈[0,1];
    根据每个基站在第t时刻时时延等级i对应的业务的预期业务量,以及保存的所述N个基站在第t-1时刻时时延等级i对应的业务的总预期业务量,计算所述N个基站在第t时刻时时延等级i对应的业务的总预期业 务量,包括:
    根据以下公式计算所述N个基站在第t时刻时时延等级i对应的业务的总预期业务量
    Figure PCTCN2015084143-appb-100027
    Figure PCTCN2015084143-appb-100028
    其中,
    Figure PCTCN2015084143-appb-100029
    为所述第n个基站在第t时刻时时延等级i对应的业务的预期业务量,
    Figure PCTCN2015084143-appb-100030
    为所述N个基站在第t-1时刻时时延等级i对应的业务的总预期业务量。
  19. 根据权利要求17或18所述的控制器,其特征在于,所述业务时延等级确定模块根据所述N个基站在第t时刻时每个时延等级对应的业务的总预期业务量、平均传输速率、传输结果确定所述所有业务的时延等级,具体为:
    根据所述N个基站上报的业务量,计算所述N个基站上的所有业务的总预期业务量;
    计算所述N个基站在第t时刻时每个时延等级对应的业务的总预期业务量和所述N个基站上的所有业务的总预期业务量的第一比值;
    若所述I个时延等级中时延等级m对应的业务的总预期业务量和所述N个基站上的所有业务的总预期业务量的第一比值大于预设的门限,则根据所述时延等级m对应的业务的总预期业务量、平均传输速率、传输结果调整所述时延等级m对应的业务的时延。
  20. 一种基站,其特征在于,包括:
    回程链路测量模块,用于测量基站与相邻基站之间的回程链路的可达性;
    发送模块,用于若所述基站与相邻基站之间的回程链路可达,则向控制器上报与所述相邻基站之间的回程链路的回程链路容量,以使所述控制器根据所述回程链路容量确定簇内的N个基站形成的回程网络拓扑,N为大于等于2的正整数;
    业务测量模块,用于进行业务测量,并向所述控制器上报业务测量信息,以使所述控制器根据所述业务测量信息确定所述N个基站上的所有业务的时延等级;
    接收模块,用于接收所述控制器发送的所述基站上的所有业务的时延等级和无线回程路由;
    数据转发模块,用于更新所述基站上的所有业务的时延等级,根据各业务的无线回程路由传输所述各业务,所述无线回程路由是所述控制器根据所述回程网络拓扑、所述回程网络拓扑中各回程链路的容量、所述N个基站上报的业务测量信息以及所述N个基站上的所有业务的时延等级确定的。
  21. 一种控制器,其特征在于,包括:处理器、存储器、通信接口和系统总线,所述存储器和所述通信接口通过所述系统总线与所述处理器连接并完成相互间的通信,所述存储器用于存储计算机执行指令,所述通信接口用于和其他设备进行通信,所述处理器用于运行所述计算机执行指令,使所述控制器执行如权利要求1-9任一项所述方法。
  22. 一种基站,其特征在于,包括:处理器、存储器、通信接口和系统总线,所述存储器和所述通信接口通过所述系统总线与所述处理器连接并完成相互间的通信,所述存储器用于存储计算机执行指令,所述通信接口用于和其他设备进行通信,所述处理器用于运行所述计算机执行指令,使所述基站执行如权利要求10所述方法。
PCT/CN2015/084143 2015-07-15 2015-07-15 无线回程通信的方法和装置 WO2017008285A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/084143 WO2017008285A1 (zh) 2015-07-15 2015-07-15 无线回程通信的方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/084143 WO2017008285A1 (zh) 2015-07-15 2015-07-15 无线回程通信的方法和装置

Publications (1)

Publication Number Publication Date
WO2017008285A1 true WO2017008285A1 (zh) 2017-01-19

Family

ID=57756720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/084143 WO2017008285A1 (zh) 2015-07-15 2015-07-15 无线回程通信的方法和装置

Country Status (1)

Country Link
WO (1) WO2017008285A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110493877A (zh) * 2018-05-14 2019-11-22 中国移动通信有限公司研究院 上行数据回传方法及中继设备
CN111654438A (zh) * 2017-06-20 2020-09-11 华为技术有限公司 一种网络中建立转发路径的方法、控制器及系统
CN114095124A (zh) * 2021-11-03 2022-02-25 中国联合网络通信集团有限公司 通信方法、装置及计算机可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103299685A (zh) * 2011-01-11 2013-09-11 高通股份有限公司 用于网络资源管理的方法和装置
CN104105211A (zh) * 2013-04-15 2014-10-15 电信科学技术研究院 传输调度方法和设备
US20140355535A1 (en) * 2013-05-31 2014-12-04 Futurewei Technologies, Inc. System and Method for Controlling Multiple Wireless Access Nodes
CN104284437A (zh) * 2013-07-09 2015-01-14 电信科学技术研究院 一种协作多点传输中心调度的数据传输方法和装置及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103299685A (zh) * 2011-01-11 2013-09-11 高通股份有限公司 用于网络资源管理的方法和装置
CN104105211A (zh) * 2013-04-15 2014-10-15 电信科学技术研究院 传输调度方法和设备
US20140355535A1 (en) * 2013-05-31 2014-12-04 Futurewei Technologies, Inc. System and Method for Controlling Multiple Wireless Access Nodes
CN104284437A (zh) * 2013-07-09 2015-01-14 电信科学技术研究院 一种协作多点传输中心调度的数据传输方法和装置及系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111654438A (zh) * 2017-06-20 2020-09-11 华为技术有限公司 一种网络中建立转发路径的方法、控制器及系统
CN111654438B (zh) * 2017-06-20 2023-09-26 华为技术有限公司 一种网络中建立转发路径的方法、控制器及系统
CN110493877A (zh) * 2018-05-14 2019-11-22 中国移动通信有限公司研究院 上行数据回传方法及中继设备
CN114095124A (zh) * 2021-11-03 2022-02-25 中国联合网络通信集团有限公司 通信方法、装置及计算机可读存储介质

Similar Documents

Publication Publication Date Title
AU2017210584B2 (en) A framework for traffic engineering in software defined networking
US11071020B2 (en) Service provisioning using abstracted network resource requirements
US10159022B2 (en) Methods and systems for admission control and resource availability prediction considering user equipment (UE) mobility
RU2454813C2 (ru) Способ, устройство и компьютерная программа для планирования восходящей линии связи в сети с ретрансляционными узлами
US8958812B2 (en) Cell load balancing method and devices thereof
TWI755657B (zh) 集中管理節點、分散式節點以及封包延遲控制方法
CN103781120B (zh) 一种结合分级动态分配资源的移动负载均衡方法
US10791495B2 (en) Device, method and user equipment in a wireless communication system
JP2011509637A (ja) 無線セルラーネットワークの過負荷制御の方法
US20140080483A1 (en) Switching and aggregation of small cell wireless traffic
Khan et al. Joint QoS-control and handover optimization in backhaul aware SDN-based LTE networks
JP5392266B2 (ja) ネットワークシステム、公衆網リソース管理装置、公衆網無線基地局、自営網リソース管理装置、自営網無線基地局
WO2017008285A1 (zh) 无线回程通信的方法和装置
CN103260270B (zh) 一种基站
CN117714306B (zh) 基于调度算法的以太网性能优化方法
EP2932625B1 (en) Methods and systems for admission control and resource availability prediction considering user equipment (ue) mobility
WO2018228227A1 (zh) 网络资源分配方法及网络控制器
EP3000271B1 (en) Signalling scheme
EP2932737B1 (en) Service provisioning using abstracted network resource requirements
Gaynulin et al. Dynamic resource allocation in ad-hoc hybrid high-speed wireless networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15898013

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15898013

Country of ref document: EP

Kind code of ref document: A1