WO2017008284A1 - Electrode for rechargeable lithium ion battery - Google Patents

Electrode for rechargeable lithium ion battery Download PDF

Info

Publication number
WO2017008284A1
WO2017008284A1 PCT/CN2015/084140 CN2015084140W WO2017008284A1 WO 2017008284 A1 WO2017008284 A1 WO 2017008284A1 CN 2015084140 W CN2015084140 W CN 2015084140W WO 2017008284 A1 WO2017008284 A1 WO 2017008284A1
Authority
WO
WIPO (PCT)
Prior art keywords
paa
electrode
peg
mol
lithium ion
Prior art date
Application number
PCT/CN2015/084140
Other languages
French (fr)
Inventor
Xiaogang HAO
Rongrong JIANG
Jingjun Zhang
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to PCT/CN2015/084140 priority Critical patent/WO2017008284A1/en
Publication of WO2017008284A1 publication Critical patent/WO2017008284A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C08G81/024Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G
    • C08G81/025Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G containing polyether sequences
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode for rechargeable Lithium ion battery, especially an electrode comprising a PEG-PAA (Li) hybrid binder, and to a rechargeable lithium ion battery including the electrode as well as use of the PEG-PAA (Li) hybrid binder in an electrode for rechargeable Lithium ion battery.
  • a positive electrode and a negative electrode are included in a rechargeable lithium ion battery and both electrodes comprise material (s) that can intercalate/deintercalate lithium ions.
  • lithium-transition metal oxides such as LiCoO 2 , LiMnO 2 , LiNi 1-x Co x O 2 (0 ⁇ x ⁇ 1) and the like are conventionally used.
  • negative active materials for rechargeable lithium ion battery it is well known that silicon can be used since Si can provide a significantly higher capacity than graphite, for example, compound Li 21 Si 5 has a maximum theoretical capacity of 4, 200 mAh/g, which is considerably higher than the maximum capacity of graphite (372 mAh/g) .
  • silicon-based negative active material undergoes a huge volume change associated with the insertion and removal of lithium ion into the silicon material during charge and discharge cycle.
  • the volume of Si-based negative active materials may expand from about 300%to 400%during charge and discharge cycle. As a result of such expansion and contraction, mechanical degradation of silicon materials and electrical isolation of sections may be caused and the electrodes may have a short cycle life.
  • Binder plays an important role in overcoming the volume expansion issue and ensuring properties of electrodes in a lithium ion battery including mechanical and electrochemical performances.
  • US2014/0356710 discloses an electrode for rechargeable Lithium ion battery including a binder comprising an acryl-based compound including a repeating unit of – [CH 2 -CH (COOR) ] –wherein R may be an alkali metal in an amount of 90-99.5 mol%and a repeating unit of – [CH 2 -CH (COOH) ] –in an amount of 0.5-10 mol%.
  • the binder may further include at least one selected from polyvinyl alcohol, carboxyl methylcellulose, polyethylene, polyurethane, polyvinyl alcohol and the like.
  • EP2816642 A1 discloses an electrode for rechargeable Lithium ion battery including the organic compound (B) as a binder that is hardly soluble in a nonaqueous electrolytic solution, has a ⁇ –conjugated structure, and has an electric conductivity at 25 °C of 0.1S/cm or less. More preferred examples of the compound (B) include polystyrenesulfonic acid, lithium polystyrenesulfonate, sodium polystyrenesulfonate, styrene-lithium styrenesulfonate copolymer and styrene-sodium styrenesulfonate copolymer.
  • EP2830141 A1 discloses an electrode for rechargeable Lithium ion battery including a binder selected from polyethylene (PE) , polypropylene (PP) , polyethylene terephthalate (PET) , polyethernitrile (PEN) , polyimide (PI) , polyamide (PA) , polytetrafluoroethylene (PTFE) , styrene-butadiene rubber (SBR) , polyacrylonitrile (PAN) , polymethyl acrylate (PMA) , polymethyl methacrylate (PMMA) , polyvinyl chloride (PVC) , polyvinylidene fluoride (PVDF) , polyvinyl alcohol (PVA) , polyacrylic acid (PAA) , lithium polyacrylate (PAALi) , polyalkylene oxide such as a ring-opened polymer of ethylene oxide and a mono-substituted epoxide, and mixtures thereof, as well as alkali metal
  • EP1244157A discloses a binder composition for rechargeable Lithium ion battery, and the binder is a polymer of an ester of acrylic acid or methacrylic acid with ethylene glycol or polyethylene glycol.
  • binders including the above disclosed ones are basically in a chain-like form, which is roughly shown in Figure 1, rather than a network form. Bonding strength of these binders is not high enough to against the breakdown of binder chains associated with the volume expansion of silicon particles during charge and discharge cycle. Meanwhile, currently existed binders have poor wetability to electrolyte.
  • the inventors found that by using a polyethylene glycol-polyacrylic acid (Li) hybrid (hereinafter referred to as PEG-PAA (Li) hybrid) as the binder of an electrode, the electrode has a high electrode capacity, a good capacity retention with high cycle numbers and a high coulombic efficiency.
  • PEG-PAA (Li) hybrid polyethylene glycol-polyacrylic acid (Li) hybrid
  • an object of the present invention is to provide an electrode for rechargeable Lithium ion battery comprising a PEG-PAA (Li) hybrid binder.
  • Another object of the invention is to provide a rechargeable Lithium ion battery including the above electrode.
  • Still another object of the invention is use of the PEG-PAA (Li) hybrid as a binder in an electrode for a rechargeable Lithium ion battery.
  • Figure 1 roughly shows a chain-like structure of the conventionally used binder.
  • Figure 2 roughly shows a network structure of the binder according to the present invention.
  • Figure 3 roughly shows a bonding status in an electrode according to the present invention.
  • normal pressure used herein means about 0.1 MPa.
  • room temperature used herein means about 25 °C.
  • one aspect of the invention is to provide an electrode for rechargeable Lithium ion battery comprising a PEG-PAA (Li) hybrid binder.
  • PEG means polyethylene glycol
  • PEG used in the invention may be prepared from monomer ethylene glycol by using any known polymerization technique.
  • the PEG used in the PEG-PAA (Li) hybrid binder of the invention has a weight average molecular weight in a range of from about 50 to about 400 kDa, preferably from about 100 to about 300 kDa.
  • PAA means polyacrylic acid
  • PAA used in the invention may be prepared from monomer acrylic acid by using any known polymerization technique.
  • PAA (Li) means that part of or all of hydrogen atoms in the carboxyl group of PAA may be replaced by Li and a Li salt of PAA may be formed.
  • the PAA used in the PEG-PAA (Li) hybrid binder of the invention has a weight average molecular weight in a range of from about 200 to about 500 kDa, preferably from about 250 to about 450 kDa.
  • the PAA (Li) has a repeating unit represented by the following Formula 1:
  • R independently is hydrogen or Li
  • the PAA (Li) may include about 70 mol%to 100 mol%, preferably about 80 mol%to about 95 mol%of repeating unit of Formula 1 with R being Li and about 0 mol%to about 30 mol%, preferably about 5 mol%to about 20 mol%of repeating unit of Formula 1 with R being hydrogen.
  • the preparation method of the PAA (Li) used in the present invention is not particularly limited as long as the above requirements are satisfied.
  • the PAA (Li) may be prepared by adding lithium hydroxide to polyacrylic acid aqueous solution under stirring at room temperature.
  • the PAA (Li) may be prepared by co-polymerizing monomer acrylic acid and monomer lithium salt of acrylic acid under suitable condition known in the art.
  • the molar ratio between PEG and PAA (Li) in the PEG-PAA (Li) hybrid binder of the invention is in a range of from 1: 1.5 to 1.5: 1, preferably about 1: 1.
  • the PEG-PAA (Li) hybrid according to the present invention has a structure represented by the following Formula 2:
  • a network structure of the binder according to the present invention is roughly shown in Figure 2.
  • a dimensional structure of the binder together with an electrode active material and a conductive material is roughly shown in Figure 3.
  • the PEG-PAA (Li) hybrid may be formed prior to the preparation of electrode.
  • the PEG-PAA (Li) hybrid binder may be prepared by the following process:
  • the water used may be any kind water such as de-ionized water.
  • the concentration of PEG in the solution A may be 0.02-0.15 g/ml, preferably 0.08-0.12 g/ml.
  • the concentration of PAA (Li) in the solution B may be 0.03-0.12 g/ml, preferably 0.05-0.10 g/ml.
  • Dissolving steps of PEG and PAA (Li) may be conducted under stirring in order to ensure a complete dissolve.
  • the stirring may be conducted by any known means in the art, for example, magnetic stirring, manual stirring and the like. Stirring speed is not particularly limited and may be adjusted practically as long as the PEG and PAA (Li) are completely dissolved.
  • vigorous stirring means that the stirring may be conducted at a speed of 300-1000 rpm, preferably 500-800 rpm.
  • the viscosity of the hybrid should be controlled in a range of from 1.0 x 10 3 to 2.0 x 10 4 mPa ⁇ S, preferably from 5.0 x 10 3 to 1.5 x 10 4 mPa ⁇ S.
  • the viscosity may be measured by, for example, Brookfield viscometer. If the viscosity is too high, a uniform mixture of the electrode can not be formed and the electrode active materials can not be dispersed in the binder homogeneously. If the viscosity is too low, precipitate may be formed during preparation of electrode and a good binding strength for the electrode active material can not be achieved.
  • the final viscosity of the hybrid may be controlled by the concentration of PEG and/or the concentration of PAA (Li) , and may also controlled by adding or removing water from the obtained hybrid.
  • an electrode may prepared by mixing the PEG-PAA (Li) hybrid binder, an electrode active material and a conductive material to form a composition, coating the composition on a current collector such as copper foil or aluminum foil, and drying the coated current collector at an elevated temperature, for example, 50-150°C, preferably 80-150 °C for about 1-5 h, preferably 1-3h.
  • the PEG-PAA (Li) hybrid may be formed during the preparation of electrode.
  • an electrode may be prepared by the following process:
  • stirring may be used if necessary and may be adjusted practically as long as a homogeneous mixture may be formed.
  • the milling may be conducted by, for example, ball-milling or other milling devices known in the art, such as ball-milling at 100-300rpm at room temperature.
  • the drying may be conducted stepwise from low temperature to high temperature, for example, firstly drying under 50-80 °C, preferably 50-70 °C for about 5-30min, preferably 10-20min; then drying under 80-100 °C, preferably 50-70 °C for about 5-30min, preferably 10-20min; and followed by drying under 100-150 °C, preferably 100-130 °C for about 30min-5h, preferably 1-3h.
  • the drying may be conducted in one step, for example under 100-150 °C, preferably 100-130 °C for about 1-5h, preferably 1-3h.
  • an electrode for rechargeable Lithium ion battery includes a current collector, an electrode active material, a binder and a conductive material, each of these components will be discussed as below.
  • examples of the current collector include a copper foil, a nickel foil, a stainless steel foil, a titanium foil, a nickel foam, a copper foam, a polymer substrate coated with the above conductive material, and combinations thereof.
  • examples of the current collector include a stainless steel, aluminum, nickel, titanium, fired carbon, or aluminum or stainless steel that is surfaced-treated with carbon, nickel, titanium, silver, and the like.
  • the shape of the collector is generally a sheet-like one, but also may be those produced by roughing the surface of the sheet-like ones, as well as nets or perforated metals, and the like.
  • negative active material suitable for the present invention it may be Si, SiO x (0 ⁇ x ⁇ 2) , a Si-C composite, Si alloy or a combination thereof.
  • Si alloy includes an alloy of Si with an alkali metal, an alkaline earth metal, Group 13 to 16 elements, a transition element, a rare earth element, or a combination thereof except for Si.
  • Si alloy includes an alloy of Si with Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Tr, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, P, As, Sb, Bi or a combination thereof, preferably with Ti, Fe, Cu, Al or a combination thereof.
  • the negative active material may include nanosilicon or consist of nanosilicon.
  • the negative active material may be contained in the electrode of the present invention excluding the current collector in an amount of 90wt%to 96wt%more preferably 92wt%to 96wt%.
  • positive active material suitable for the present invention may be LiCoO 2 , LiMnO 2 , LiNi 1-x Co x O 2 (0 ⁇ x ⁇ 1) , Li 1.2 Ni 1-x-y Co x Mn y O 2 , LiNi 1-x-y Co x Mn y O 2 , LiFePO 4 , LiNi 0.8 Co 0.15 Al 0.05 O 2 and the like.
  • the positive active material may be contained in the electrode of the present invention excluding the current collector in an amount of 90wt%to 98wt%more preferably 94wt%to 96wt%.
  • the above defined binder may be used alone in the electrodes.
  • the above defined binder may be used together with one or more binders conventionally used in the art, for example, polyvinyl alcohol, carboxyl methylcellulose, hydroxypropylcellulose, diacetylcellulose, polyvinylchloride, carboxylated polyvinylchloride, polyvinylfluoride, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, a styrene-butadiene rubber, an acrylated styrene-budadiene rubber, an epoxy resin, and nylon.
  • binders conventionally used in the art, for example, polyvinyl alcohol, carboxyl methylcellulose, hydroxypropylcellulose, diacetylcellulose, polyvinylchloride, carboxylated polyvinylchloride, polyvinylfluoride, polyvinylpyrrolidone, polyurethane, polytetrafluoro
  • the binder may be contained in the electrode of the present invention excluding the current collector in an amount of 1wt%to 10wt%more preferably 1wt%to 5wt%.
  • the electrode may contain a conductive material to improve electrical conductivity of the electrode.
  • the conductive materials usable in the present invention are not particularly limited, and materials known and conventionally used in the art can be used in the electrode of the present invention as long as they do not cause any chemical change.
  • Examples of the conductive material usable in the present invention include one or more selected from a carbon-based material of natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, a carbon fiber, and the like; a metal-based material such as metal powder or a metal fiber including copper, nickel, aluminum, silver, and the like; a conductive polymer such as a polyphenylene derivative; or a mixture thereof.
  • conductive material may be contained in the electrode of the present invention excluding the current collector in an amount of from 0 wt%to about 15 wt%, preferably from 0.5 wt%to 10 wt%.
  • the electrode is a negative electrode for rechargeable Lithium ion battery.
  • Another aspect of the invention is to provide a rechargeable lithium ion battery including the above electrode.
  • Still another aspect of the invention is use of the PEG-PAA (Li) hybrid according to the present invention as a binder in an electrode for a rechargeable lithium ion battery.
  • the solution A was dropwise added into the solution B under vigorous stirring with a speed of 300 rpm for 60 minutes to form a PEG-PAA (Li) hybrid, which was marked as binder B-1.
  • the above obtained PEG solution was added to the slurry A under stirring, and then the obtained mixture was charged into a ball mill to conduct milling at 200 rpm for 60 minutes so as to form a slurry B, therein a PEG-PAA (Li) hybrid was formed.
  • the slurry B was coated on a copper foil and then dried at 110 °C for 30 minto evaporate water, followed by compression, so as to prepare a negative electrode E-2 having a thickness of 30 ⁇ m and a diameter of 12 mm in disk shape.
  • the comparative negative electrode CE-1 was prepared in a substantially same way as that of negative electrode E-1 except that 10 g of PAA (Li) was used.
  • the comparative negative electrode CE-2 was prepared in a substantially same way as that of negative electrode E-1 except that 10 g of PAA (Li) and PEG (in a molar ratio of 1: 1, no hybrid was formed) was used.
  • a rechargeable lithium ion battery cell was prepared using the above negative electrode, a lithium metal as positive electrode, a polypropylene separator, and an electrolyte solution comprising 1M LiPF 6 , ethylene carbonate (EC) : ethyl methy carbonate (EMC) : dimethyl carbonate (DMC) in a weight ratio of 3: 5: 2, 2wt%vinyl carbonate and 5wt%fluoro ethylene carbonate.
  • EC ethylene carbonate
  • EMC ethyl methy carbonate
  • DMC dimethyl carbonate
  • Rechargeable lithium ion battery cell C-1, C-2, C-3 (comparative) and C-4 (comparative) were fabricated respectively using the negative electrode E-1, E-2, CE-1 and CE-2. Discharge capacity, capacity retention and coulombic efficiency were evaluated by the following methods and the results were shown in Table 1.
  • Rechargeable lithium ion battery cells C-1, C-2, C-3 (comparative cell) and C-4 (comparative cell) were charged and discharged at 0.1C within a voltage range of 1.5V to 0.01V, and discharge capacity of these cells are measured. Results are shown in Table 1.
  • a capacity ratio of capacity at 50 th cycle relative to capacity at 1 st cycle under a condition of 1C was measured with regard to rechargeable lithium ion battery cells C-1, C-2, C-3 (comparative cell) and C-4 (comparative cell) , and results are shown in Table 1.
  • Rechargeable lithium ion battery cells C-1, C-2, C-3 (comparative cell) and C-4 (comparative cell) were charged and discharged at 0.1C, and then, charge capacity and discharge capacity were measured.
  • Coulombic efficiency i.e., the ratio of the discharge capacity relative to the charge capacity, was calculated, and results are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

The present invention provides an electrode for rechargeable Lithium ion battery, especially an electrode comprising a PEG-PAA (Li) hybrid binder, a rechargeable Lithium ion battery comprising the electrode, and use of the PEG-PAA (Li) hybrid binder in an electrode for rechargeable Lithium ion battery.

Description

Electrode for Rechargeable Lithium Ion Battery Technical field
The present invention relates to an electrode for rechargeable Lithium ion battery, especially an electrode comprising a PEG-PAA (Li) hybrid binder, and to a rechargeable lithium ion battery including the electrode as well as use of the PEG-PAA (Li) hybrid binder in an electrode for rechargeable Lithium ion battery.
Background arts
Generally, a positive electrode and a negative electrode are included in a rechargeable lithium ion battery and both electrodes comprise material (s) that can intercalate/deintercalate lithium ions.
As for positive active materials for rechargeable lithium ion battery, lithium-transition metal oxides such as LiCoO2, LiMnO2, LiNi1-xCoxO2 (0<x<1) and the like are conventionally used. As for negative active materials for rechargeable lithium ion battery, it is well known that silicon can be used since Si can provide a significantly higher capacity than graphite, for example, compound Li21Si5 has a maximum theoretical capacity of 4, 200 mAh/g, which is considerably higher than the maximum capacity of graphite (372 mAh/g) . However, silicon-based negative active material undergoes a huge volume change associated with the insertion and removal of lithium ion into the silicon material during charge and discharge cycle. The volume of Si-based negative active materials may expand from about 300%to 400%during charge and discharge cycle. As a result of such expansion and contraction, mechanical degradation of silicon materials and electrical isolation of sections may be caused and the electrodes may have a short cycle life.
Binder plays an important role in overcoming the volume expansion issue and ensuring properties of electrodes in a lithium ion battery including mechanical and electrochemical performances.
US2014/0356710 discloses an electrode for rechargeable Lithium ion battery including a binder comprising an acryl-based compound including a repeating unit of – [CH2-CH (COOR) ] –wherein R may be an alkali metal in an amount of 90-99.5 mol%and a repeating unit of – [CH2-CH (COOH) ] –in an amount of 0.5-10 mol%. The binder may further include at least one selected from polyvinyl alcohol, carboxyl methylcellulose, polyethylene, polyurethane, polyvinyl alcohol and the like.
EP2816642 A1 discloses an electrode for rechargeable Lithium ion battery including the organic compound (B) as a binder that is hardly soluble in a nonaqueous electrolytic solution, has a π–conjugated structure, and has an electric conductivity at 25 ℃ of 0.1S/cm or less. More preferred examples of the compound (B) include polystyrenesulfonic acid, lithium polystyrenesulfonate, sodium polystyrenesulfonate, styrene-lithium styrenesulfonate copolymer and styrene-sodium styrenesulfonate copolymer.
EP2830141 A1 discloses an electrode for rechargeable Lithium ion battery including a binder selected from polyethylene (PE) , polypropylene (PP) , polyethylene terephthalate (PET) , polyethernitrile (PEN) , polyimide (PI) , polyamide (PA) , polytetrafluoroethylene (PTFE) , styrene-butadiene rubber (SBR) , polyacrylonitrile (PAN) , polymethyl acrylate (PMA) , polymethyl methacrylate (PMMA) , polyvinyl chloride (PVC) , polyvinylidene fluoride (PVDF) , polyvinyl alcohol (PVA) , polyacrylic acid (PAA) , lithium polyacrylate (PAALi) , polyalkylene oxide such as a ring-opened polymer of ethylene oxide and a mono-substituted epoxide, and mixtures thereof, as well as alkali metal salts thereof.
EP1244157A discloses a binder composition for rechargeable Lithium ion battery, and the binder is a polymer of an ester of acrylic acid or methacrylic acid with ethylene glycol or polyethylene glycol.
Conventionally used binders, including the above disclosed ones are basically in a chain-like form, which is roughly shown in Figure 1, rather than a network form. Bonding strength of these binders is not high enough to against the breakdown of binder chains associated with the volume expansion of silicon particles during charge and discharge cycle. Meanwhile, currently existed binders have poor wetability to electrolyte.
Summary of the invention
In view of the fore going, after intensive studies on electrodes, especially binders, the inventors found that by using a polyethylene glycol-polyacrylic acid (Li) hybrid (hereinafter referred to as PEG-PAA (Li) hybrid) as the binder of an electrode, the electrode has a high electrode capacity, a good capacity retention with high cycle numbers and a high coulombic efficiency.
Therefore, an object of the present invention is to provide an electrode for rechargeable Lithium ion battery comprising a PEG-PAA (Li) hybrid binder.
Another object of the invention is to provide a rechargeable Lithium ion battery including the above electrode.
Still another object of the invention is use of the PEG-PAA (Li) hybrid as a binder in an electrode for a rechargeable Lithium ion battery.
Brief introduction of the drawings
Figure 1 roughly shows a chain-like structure of the conventionally used binder.
Figure 2 roughly shows a network structure of the binder according to the present invention.
Figure 3 roughly shows a bonding status in an electrode according to the present invention.
Detailed description of the invention
The present invention will be described in details as followings. The materials, methods, and examples herein are illustrative only and, except as specifically stated, are not intended to be limiting. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described herein.
All publications and other references mentioned herein are explicitly incorporated by reference in their entirety.
Unless otherwise defined, all technical and scientific terms used herein have the same meanings as commonly understood by those skilled in the art. In case of conflict, the present specification, including definitions, will control.
Unless stated otherwise, all percentages, parts, ratios, etc., are by weight.
Where a range of numerical values are recited herein, unless otherwise stated, the range is intended to include the endpoints thereof, and all integers and fractions within the range.
Use of “a” or “an” is employed to describe elements and components of the present invention. This is done merely for convenience and to give a general sense of the invention. This description should be read to include one or at least one and the singular also includes the plural unless it is obvious that it is meant otherwise.
Other than in the operating examples, or where otherwise indicated, all numbers expressing quantities of ingredients, reaction conditions, or defining ingredient parameters used herein are to be understood as modified in all instances by the term “about” .
The term “normal pressure” used herein means about 0.1 MPa. The term “room temperature” used herein means about 25 ℃.
As mentioned above, one aspect of the invention is to provide an electrode for rechargeable Lithium ion battery comprising a PEG-PAA (Li) hybrid binder.
In the term “PEG-PAA (Li) hybrid” , PEG means polyethylene glycol, and the PEG used in the invention may be prepared from monomer ethylene glycol by using any known polymerization technique.
In some embodiments of the present invention, the PEG used in the PEG-PAA (Li) hybrid binder of the invention has a weight average molecular weight in a range of from about 50 to about 400 kDa, preferably from about 100 to about 300 kDa.
In the term “PEG-PAA (Li) hybrid” , PAA means polyacrylic acid, and the PAA used in the invention may be prepared from monomer acrylic acid by using any known polymerization technique. PAA (Li) means that part of or all of hydrogen atoms in the carboxyl group of PAA may be replaced by Li and a Li salt of PAA may be formed.
In some embodiments of the present invention, the PAA used in the PEG-PAA (Li) hybrid binder of the invention has a weight average molecular weight in a range of from about 200 to about 500 kDa, preferably from about 250 to about 450 kDa.
Particularly, the PAA (Li) has a repeating unit represented by the following Formula 1:
Figure PCTCN2015084140-appb-000001
wherein R independently is hydrogen or Li.
In some embodiments of the present invention, the PAA (Li) may include about 70 mol%to 100 mol%, preferably about 80 mol%to about 95 mol%of repeating unit of Formula 1 with R being Li and about 0 mol%to about 30 mol%, preferably about 5 mol%to about 20 mol%of repeating unit of Formula 1 with R being hydrogen.
The preparation method of the PAA (Li) used in the present invention is not particularly limited as long as the above requirements are satisfied. In an embodiment, the PAA (Li) may be prepared by adding lithium hydroxide to polyacrylic acid aqueous solution under stirring at room temperature. In another embodiment, the PAA (Li) may be prepared by co-polymerizing monomer acrylic acid and monomer lithium salt of acrylic acid under suitable condition  known in the art.
In a preferred embodiment of the invention, the molar ratio between PEG and PAA (Li) in the PEG-PAA (Li) hybrid binder of the invention is in a range of from 1: 1.5 to 1.5: 1, preferably about 1: 1.
It is believed that by a external action applied to the mixture of PEG and PAA (Li) , such as stirring or milling, hydrogen bonds may be formed between the PEG and PAA (Li) , and thus, the PEG-PAA (Li) hybrid according to the present invention has a structure represented by the following Formula 2:
Figure PCTCN2015084140-appb-000002
A network structure of the binder according to the present invention is roughly shown in Figure 2. A dimensional structure of the binder together with an electrode active material and a conductive material is roughly shown in Figure 3.
In an embodiment of the present invention, the PEG-PAA (Li) hybrid may be formed prior to the preparation of electrode. For example, the PEG-PAA (Li) hybrid binder may be prepared by the following process:
-dissolving PEG in water to prepare a solution A;
-dissolving PAA in water and adding LiOH thereto to obtain a PAA (Li) aqueous solution B;
-dropwise adding the solution A to the solution B slowly under vigorous stirring to form a homogeneous PEG-PAA (Li) hybrid at room temperature.
In the above process, the water used may be any kind water such as de-ionized water. The concentration of PEG in the solution A may be 0.02-0.15 g/ml, preferably 0.08-0.12 g/ml. The concentration of PAA (Li) in the solution B may be 0.03-0.12 g/ml, preferably 0.05-0.10 g/ml.
Dissolving steps of PEG and PAA (Li) may be conducted under stirring in order to ensure a complete dissolve. The stirring may be conducted by any known means in the art, for example, magnetic stirring, manual stirring and the like. Stirring speed is not particularly limited and may be adjusted practically as long as the PEG and PAA (Li) are completely dissolved.
In the step of adding the solution A to the solution B, vigorous stirring means that the stirring may be conducted at a speed of 300-1000 rpm, preferably 500-800 rpm.
The viscosity of the hybrid should be controlled in a range of from 1.0 x 103 to 2.0 x 104 mPa·S, preferably from 5.0 x 103 to 1.5 x 104 mPa·S. The viscosity may be measured by, for example, Brookfield viscometer. If the viscosity is too high, a uniform mixture of the electrode can not be formed and the electrode active materials can not be dispersed in the binder homogeneously. If the viscosity is too low, precipitate may be formed during preparation of electrode and a good binding strength for the electrode active material can not be achieved.
The final viscosity of the hybrid may be controlled by the concentration of PEG and/or the concentration of PAA (Li) , and may also controlled by adding or removing water from the obtained hybrid.
In an embodiment of the present invention, an electrode may prepared by mixing the PEG-PAA (Li) hybrid binder, an electrode active material and a conductive material to form a composition, coating the composition on a current collector such as copper foil or aluminum foil, and drying the coated current collector at an elevated temperature, for example, 50-150℃, preferably 80-150 ℃ for about 1-5 h, preferably 1-3h. In another embodiment of the present invention, the PEG-PAA (Li) hybrid may be formed during the preparation of electrode. For example, an electrode may be prepared by the following process:
-dissolving PAA in water and adding LiOH thereto to obtain a PAA (Li) aqueous solution;
-adding an electrode active material and an conductive material to the above aqueous solution to form a slurry;
-adding PEG solution to the slurry and milling to form a homogenously mixture, therein a PEG-PAA (Li) hybrid binder is formed; and
-coating the mixture onto a current collector and drying the coated current collector at an elevated temperature, so as to produce an electrode.
In the above process, stirring may be used if necessary and may be adjusted practically as long as a homogeneous mixture may be formed. The milling may be conducted by, for example, ball-milling or other milling devices known in the art, such as ball-milling at 100-300rpm at room temperature.
In some embodiments of the present invention, the drying may be conducted stepwise from low temperature to high temperature, for example, firstly drying under 50-80 ℃, preferably 50-70 ℃ for about 5-30min, preferably 10-20min; then drying under 80-100 ℃, preferably 50-70 ℃ for about 5-30min, preferably 10-20min; and followed by drying under 100-150 ℃, preferably 100-130 ℃ for about 30min-5h, preferably 1-3h.
In some embodiments of the present invention, the drying may be conducted in one step, for example under 100-150 ℃, preferably 100-130 ℃ for about 1-5h, preferably 1-3h.
Typically, an electrode for rechargeable Lithium ion battery includes a current collector, an electrode active material, a binder and a conductive material, each of these components will be discussed as below.
Current collector
Current collectors conventionally used in the art can be used in the present invention and there is no particular limitation.
As for a negative electrode, examples of the current collector include a copper foil, a nickel foil, a stainless steel foil, a titanium foil, a nickel foam, a copper foam, a polymer substrate coated with the above conductive material, and combinations thereof.
As for a positive electrode, examples of the current collector include a stainless steel, aluminum, nickel, titanium, fired carbon, or aluminum or stainless steel that is surfaced-treated with carbon, nickel, titanium, silver, and the like.
The shape of the collector is generally a sheet-like one, but also may be those produced by roughing the surface of the sheet-like ones, as well as nets or perforated metals, and the like.
Electrode active material
As for negative active material suitable for the present invention, it may be Si, SiOx (0<x<2) , a Si-C composite, Si alloy or a combination thereof. In some embodiments of the present invention, Si alloy includes an alloy of Si with an alkali metal, an alkaline earth metal, Group 13 to 16 elements, a transition element, a rare earth element, or a combination thereof except for Si. Specifically, Si alloy includes an alloy of Si with Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, Hf, Rf, V, Nb, Ta, Db, Cr, Mo, W, Sg, Tc, Re, Bh, Fe, Pb, Ru, Os, Hs, Rh, Tr, Pd, Pt, Cu, Ag, Au, Zn, Cd, B, Al, Ga, Sn, In, P, As, Sb, Bi or a combination thereof, preferably with Ti, Fe, Cu, Al or a combination thereof.
In another embodiment of the present invention, the negative active material may include nanosilicon or consist of nanosilicon.
Preferably, the negative active material may be contained in the electrode of the present invention excluding the current collector in an amount of 90wt%to 96wt%more preferably 92wt%to 96wt%.
As for positive active material suitable for the present invention, it may be LiCoO2, LiMnO2, LiNi1-xCoxO2 (0<x<1) , Li1.2Ni1-x-yCoxMny O2, LiNi1-x-yCoxMnyO2, LiFePO4, LiNi0.8Co0.15Al0.05O2  and the like.
Preferably, the positive active material may be contained in the electrode of the present invention excluding the current collector in an amount of 90wt%to 98wt%more preferably 94wt%to 96wt%.
Binder
In some embodiments of the present invention, the above defined binder may be used alone in the electrodes.
In some embodiments of the present invention, the above defined binder may be used together with one or more binders conventionally used in the art, for example, polyvinyl alcohol, carboxyl methylcellulose, hydroxypropylcellulose, diacetylcellulose, polyvinylchloride, carboxylated polyvinylchloride, polyvinylfluoride, polyvinylpyrrolidone, polyurethane, polytetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, a styrene-butadiene rubber, an acrylated styrene-budadiene rubber, an epoxy resin, and nylon.
Preferably, the binder may be contained in the electrode of the present invention excluding the current collector in an amount of 1wt%to 10wt%more preferably 1wt%to 5wt%.
Conductive material
In some embodiments of the present invention, the electrode may contain a conductive material to improve electrical conductivity of the electrode. The conductive materials usable in the present invention are not particularly limited, and materials known and conventionally used in the art can be used in the electrode of the present invention as long as they do not cause any chemical change.
Examples of the conductive material usable in the present invention include one or more selected from a carbon-based material of natural graphite, artificial graphite, carbon black, acetylene black, ketjen black, a carbon fiber, and the like; a metal-based material such as metal powder or a metal fiber including copper, nickel, aluminum, silver, and the like; a conductive polymer such as a polyphenylene derivative; or a mixture thereof.
Preferably, conductive material may be contained in the electrode of the present invention excluding the current collector in an amount of from 0 wt%to about 15 wt%, preferably from 0.5 wt%to 10 wt%.
In a preferred embodiment of the present invention, the electrode is a negative electrode for  rechargeable Lithium ion battery.
Another aspect of the invention is to provide a rechargeable lithium ion battery including the above electrode.
Still another aspect of the invention is use of the PEG-PAA (Li) hybrid according to the present invention as a binder in an electrode for a rechargeable lithium ion battery.
Examples
The present invention will be further described and illustrated in details with reference to the following examples, which, however, are not intended to restrict the scope of the present invention.
1. Preparation of binder B-1 according to the present invention
6 g of PEG (Mw=200KDa) was dissolved in 94 ml deionized water under stirring at room temperature to form solution A.
7.2 g of PAA (Mw=450KDa) was dissolved in 70 ml deionized water at room temperature under stirring, then 4.2 g of LiOH was added to the solution under stirring, after that, stirring was continued for about 15 hours at room temperature to give a Li salt of PAA having a degree of salt formation of about 9.6wt%which was marked as solution B.
The solution A was dropwise added into the solution B under vigorous stirring with a speed of 300 rpm for 60 minutes to form a PEG-PAA (Li) hybrid, which was marked as binder B-1.
2. Preparation of negative electrode E-1 according to the present invention
40 g of Si-Al-Fe alloy (trade name: L-20772 CV7, from 3M) , 40 g of graphite, 10g of binder B-1, 2 g of carbon black and 8g of KS6 were mixed in 100 ml of water to form a negative electrode active slurry. The slurry was coated on a copper foil and then dried at 50 ℃ for 10 min to evaporate water, followed by compression, so as to prepare a negative electrode E-1 having a thickness of 30 μm and a diameter of 12 mm in disk shape.
3. Preparation of negative electrode E-2 according to the present invention
7.2 g of PAA (Mw=450kDa) were dissolved in 70 ml of deionized water under stirring at room temperature. Then, 4.2 g of LiOH was added thereto to adjust the pH of the solution to about 7 and form a Li salt of PAA having a degree of salt formation of about 9.6wt%. Thereafter, the obtained solution of PAA (Li) , 40 g of Si-Al-Fe alloy (L-20772 CV7, from 3M) , 40 g of graphite, 2 g of carbon black and 8g of KS6 and 100 ml of water were mixed together to form  a slurry A.
6 g of PEG (Mw=200kDa) was dissolved in 94 ml of deionized water under stirring at room temperature to form a PEG solution.
The above obtained PEG solution was added to the slurry A under stirring, and then the obtained mixture was charged into a ball mill to conduct milling at 200 rpm for 60 minutes so as to form a slurry B, therein a PEG-PAA (Li) hybrid was formed.
The slurry B was coated on a copper foil and then dried at 110 ℃ for 30 minto evaporate water, followed by compression, so as to prepare a negative electrode E-2 having a thickness of 30 μm and a diameter of 12 mm in disk shape.
3. Preparation of comparative negative electrode CE-1
The comparative negative electrode CE-1 was prepared in a substantially same way as that of negative electrode E-1 except that 10 g of PAA (Li) was used.
4. Preparation of comparative negative electrode CE-2
The comparative negative electrode CE-2 was prepared in a substantially same way as that of negative electrode E-1 except that 10 g of PAA (Li) and PEG (in a molar ratio of 1: 1, no hybrid was formed) was used.
5. Preparation of rechargeable lithium ion battery cell according to the present invention
A rechargeable lithium ion battery cell was prepared using the above negative electrode, a lithium metal as positive electrode, a polypropylene separator, and an electrolyte solution comprising 1M LiPF6, ethylene carbonate (EC) : ethyl methy carbonate (EMC) : dimethyl carbonate (DMC) in a weight ratio of 3: 5: 2, 2wt%vinyl carbonate and 5wt%fluoro ethylene carbonate.
Examples 1-4
Rechargeable lithium ion battery cell C-1, C-2, C-3 (comparative) and C-4 (comparative) were fabricated respectively using the negative electrode E-1, E-2, CE-1 and CE-2. Discharge capacity, capacity retention and coulombic efficiency were evaluated by the following methods and the results were shown in Table 1.
Discharge capacity
Rechargeable lithium ion battery cells C-1, C-2, C-3 (comparative cell) and C-4 (comparative  cell) were charged and discharged at 0.1C within a voltage range of 1.5V to 0.01V, and discharge capacity of these cells are measured. Results are shown in Table 1.
Capacity retention
A capacity ratio of capacity at 50th cycle relative to capacity at 1st cycle under a condition of 1C was measured with regard to rechargeable lithium ion battery cells C-1, C-2, C-3 (comparative cell) and C-4 (comparative cell) , and results are shown in Table 1.
Coulombic efficiency
Rechargeable lithium ion battery cells C-1, C-2, C-3 (comparative cell) and C-4 (comparative cell) were charged and discharged at 0.1C, and then, charge capacity and discharge capacity were measured. Coulombic efficiency, i.e., the ratio of the discharge capacity relative to the charge capacity, was calculated, and results are shown in Table 1.
Table 1
Figure PCTCN2015084140-appb-000003
It can be seem from Table 1 that the rechargeable lithium ion battery cells C-1 and C-2 (according to the present invention) show excellent discharge capacity, retention capacity and coulombic efficiency.
The present invention is illustrated in details in the embodiments; however, it is apparent for those skilled in the art to modify and change the embodiments without deviating from the spirit of the invention. All the modifications and changes should fall in the scope of the appended claims of the present application.

Claims (11)

  1. An electrode for rechargeable Lithium ion battery comprising a PEG-PAA (Li) hybrid binder.
  2. The electrode according to claim 1, wherein the PEG has a weight average molecular weight in a range of from 50 to 400 kDa, preferably from 100 to 300 kDa.
  3. The electrode according to claim 1 or 2, wherein the PAA has a weight average molecular weight in a range of from 200 to 500 kDa, preferably from 250 to 450 kDa, and the PAA (Li) has a repeating unit represented by Formula 1:
    Figure PCTCN2015084140-appb-100001
    wherein R independently is hydrogen or Li.
  4. The electrode according to claim 3, wherein the PAA (Li) includes 70 mol%to 100 mol%, preferably 80 mol%to 95 mol%of repeating unit of Formula 1 with R being Li and 0 mol%to 30 mol%, preferably 5 mol%to 20 mol%of repeating unit of Formula 1 with R being hydrogen.
  5. The electrode according to any one of claims 1 to 4, wherein the molar ratio between PEG and PAA (Li) is in a range of from 1: 1.5 to 1.5: 1, preferably about 1: 1.
  6. The electrode according to any one of claims 1 to 5, wherein the PEG-PAA (Li) hybrid is prepared by the following process:
    -dissolving PEG in water to prepare a solution A;
    -dissolving PAA in water and adding LiOH thereto to obtain a PAA (Li) aqueous solution B;
    -dropwise adding the solution A to the solution B slowly under vigorous stirring to form a homogeneous PEG-PAA (Li) hybrid at room temperature.
  7. The electrode according to any one of claims 1 to 6, wherein the electrode comprises or consists of a current collector, a Si-based negative active material, the PEG-PAA (Li) hybrid binder and a conductive material.
  8. The electrode according to claim 7, wherein the Si-based negative active material is  selected from Si, SiOx (0<x<2) , a Si-C composite, Si alloy or a combination thereof.
  9. An electrode, prepared by the following process:
    -dissolving PAA in water and adding LiOH thereto to obtain a PAA (Li) aqueous solution;
    -adding an electrode active material and an conductive material to the above aqueous solution to form a slurry;
    -adding PEG solution to the slurry and milling to form a homogenously mixture, therein a PEG-PAA (Li) hybrid binder is formed; and
    -coating the mixture onto a current collector and drying the coated current collector at an elevated temperature, so as to produce an electrode.
  10. A rechargeable lithium ion battery including the electrode according to any one of claim 1 to 9.
  11. Use of the PEG-PAA (Li) hybrid as defined in any one of claims 1 to 6 as a binder in an electrode for a rechargeable lithium ion battery.
PCT/CN2015/084140 2015-07-15 2015-07-15 Electrode for rechargeable lithium ion battery WO2017008284A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/084140 WO2017008284A1 (en) 2015-07-15 2015-07-15 Electrode for rechargeable lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/084140 WO2017008284A1 (en) 2015-07-15 2015-07-15 Electrode for rechargeable lithium ion battery

Publications (1)

Publication Number Publication Date
WO2017008284A1 true WO2017008284A1 (en) 2017-01-19

Family

ID=57756756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/084140 WO2017008284A1 (en) 2015-07-15 2015-07-15 Electrode for rechargeable lithium ion battery

Country Status (1)

Country Link
WO (1) WO2017008284A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3399575A1 (en) * 2017-05-05 2018-11-07 Contemporary Amperex Technology Co., Limited Modified positive electrode active material, preparation method therefor and electrochemical energy storage device
CN110323445A (en) * 2019-06-25 2019-10-11 西安交通大学苏州研究院 PAA-CA complex phase binder and preparation method thereof
CN111326738A (en) * 2019-12-30 2020-06-23 江苏载驰科技股份有限公司 Binder for silicon-based negative electrode material and preparation method thereof
CN111952593A (en) * 2020-08-19 2020-11-17 醒狮科技投资有限公司 Water-based binder for lithium ion power battery positive plate and preparation method thereof
CN112142988A (en) * 2019-06-29 2020-12-29 多氟多化工股份有限公司 Polyacrylic acid-polyethylene glycol copolymer and preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1244157A1 (en) * 1999-07-15 2002-09-25 Zeon Corporation Binder composition for lithium ion secondary battery electrodes and use thereof
WO2013061079A1 (en) * 2011-10-26 2013-05-02 Nexeon Limited An electrode composition for a secondary battery cell
CN103400990A (en) * 2013-07-31 2013-11-20 东莞新能源科技有限公司 Adhesive for negative pole material of lithium ion battery and preparation method of electrode containing adhesive
CN103427083A (en) * 2013-08-20 2013-12-04 宁波奈克斯特新材料科技有限公司 Adhesive for lithium battery and preparation method thereof
US20150118556A1 (en) * 2013-10-29 2015-04-30 Samsung Sdi Co., Ltd. Binder composition for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1244157A1 (en) * 1999-07-15 2002-09-25 Zeon Corporation Binder composition for lithium ion secondary battery electrodes and use thereof
WO2013061079A1 (en) * 2011-10-26 2013-05-02 Nexeon Limited An electrode composition for a secondary battery cell
CN103400990A (en) * 2013-07-31 2013-11-20 东莞新能源科技有限公司 Adhesive for negative pole material of lithium ion battery and preparation method of electrode containing adhesive
CN103427083A (en) * 2013-08-20 2013-12-04 宁波奈克斯特新材料科技有限公司 Adhesive for lithium battery and preparation method thereof
US20150118556A1 (en) * 2013-10-29 2015-04-30 Samsung Sdi Co., Ltd. Binder composition for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3399575A1 (en) * 2017-05-05 2018-11-07 Contemporary Amperex Technology Co., Limited Modified positive electrode active material, preparation method therefor and electrochemical energy storage device
CN108807863A (en) * 2017-05-05 2018-11-13 宁德时代新能源科技股份有限公司 Modified positive electrode active material, preparation method thereof and electrochemical energy storage device
US11108051B2 (en) 2017-05-05 2021-08-31 Contemporary Amperex Technology Co., Limited Modified positive electrode active material, preparation method therefor and electrochemical energy storage device
CN110323445A (en) * 2019-06-25 2019-10-11 西安交通大学苏州研究院 PAA-CA complex phase binder and preparation method thereof
CN110323445B (en) * 2019-06-25 2022-02-18 西安交通大学苏州研究院 PAA-CA complex phase binder and preparation method thereof
CN112142988A (en) * 2019-06-29 2020-12-29 多氟多化工股份有限公司 Polyacrylic acid-polyethylene glycol copolymer and preparation method and application thereof
CN112142988B (en) * 2019-06-29 2022-12-13 多氟多新材料股份有限公司 Polyacrylic acid-polyethylene glycol copolymer, and preparation method and application thereof
CN111326738A (en) * 2019-12-30 2020-06-23 江苏载驰科技股份有限公司 Binder for silicon-based negative electrode material and preparation method thereof
CN111952593A (en) * 2020-08-19 2020-11-17 醒狮科技投资有限公司 Water-based binder for lithium ion power battery positive plate and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5273931B2 (en) Negative electrode active material and method for producing the same
JP6008875B2 (en) Secondary battery cell binder
JP6094840B2 (en) Lithium ion secondary battery
JP4861120B2 (en) Negative electrode active material, production method thereof, and negative electrode and lithium battery employing the same
JP5673988B2 (en) Composite negative electrode active material, negative electrode and lithium battery employing the same
KR101628430B1 (en) Anode for use in a lithium-ion secondary battery, and lithium-ion secondary battery
JP4687833B2 (en) Binder composition for secondary battery electrode and method for producing the same
JP5534245B2 (en) Positive electrode for secondary battery and secondary battery
EP2375477A2 (en) Positive electrode active material for lithium secondary battery
KR102292440B1 (en) Binder composition for secondary cell electrode, slurry composition for secondary cell electrode, secondary cell electrode, and secondary cell
US20110183209A1 (en) High capacity lithium-ion electrochemical cells
JP2000504148A (en) Lithium ion electrochemical cell
KR20150120795A (en) Negative electrode composition, and negative electrode and lithium battery containing the same
KR20110005807A (en) High voltage cathode compositions
WO2017008284A1 (en) Electrode for rechargeable lithium ion battery
EP3435456B1 (en) Binder composition for nonaqueous secondary battery electrodes, slurry composition for nonaqueous secondary battery electrodes, electrode for nonaqueous secondary batteries, and nonaqueous secondary battery
JP2008171816A (en) Anode for lithium battery, and lithium battery using it
JP6477690B2 (en) Binder composition for lithium ion secondary battery electrode, slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery
KR20160016893A (en) Electrode composition, electrochemical cell and method of making electrochemical cells
KR20160082503A (en) Slurry composition for positive electrode for lithium ion rechargeable battery, positive electrode for lithium ion rechargeable battery, and lithium ion rechargeable battery
JP2015153529A (en) Binder composition for lithium ion secondary battery electrode, slurry composition for lithium ion secondary battery positive electrode, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4152279B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2007227239A (en) Anode for a lithium secondary battery and lithium secondary cell
JP4479159B2 (en) Non-aqueous electrolyte battery
JP2016072151A (en) Composite particle for electrode and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15898012

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15898012

Country of ref document: EP

Kind code of ref document: A1