WO2017007195A1 - Free-turning fluid machine - Google Patents

Free-turning fluid machine Download PDF

Info

Publication number
WO2017007195A1
WO2017007195A1 PCT/KR2016/007157 KR2016007157W WO2017007195A1 WO 2017007195 A1 WO2017007195 A1 WO 2017007195A1 KR 2016007157 W KR2016007157 W KR 2016007157W WO 2017007195 A1 WO2017007195 A1 WO 2017007195A1
Authority
WO
WIPO (PCT)
Prior art keywords
tip
main body
tip chamber
rotor
inner circumferential
Prior art date
Application number
PCT/KR2016/007157
Other languages
French (fr)
Korean (ko)
Inventor
김고비
김유비
Original Assignee
김고비
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김고비 filed Critical 김고비
Priority to US15/535,931 priority Critical patent/US20170350250A1/en
Publication of WO2017007195A1 publication Critical patent/WO2017007195A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C19/00Sealing arrangements in rotary-piston machines or engines
    • F01C19/02Radially-movable sealings for working fluids
    • F01C19/04Radially-movable sealings for working fluids of rigid material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/34Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members
    • F01C1/344Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/34Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members
    • F01C1/344Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F01C1/3446Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along more than one line or surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C11/00Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type
    • F01C11/002Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of similar working principle
    • F01C11/004Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of similar working principle and of complementary function, e.g. internal combustion engine with supercharger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C19/00Sealing arrangements in rotary-piston machines or engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C19/00Sealing arrangements in rotary-piston machines or engines
    • F01C19/005Structure and composition of sealing elements such as sealing strips, sealing rings and the like; Coating of these elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C19/00Sealing arrangements in rotary-piston machines or engines
    • F01C19/02Radially-movable sealings for working fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/08Rotary pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/18Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0003Sealing arrangements in rotary-piston machines or pumps
    • F04C15/0007Radial sealings for working fluid
    • F04C15/0011Radial sealings for working fluid of rigid material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/30Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C2/34Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members
    • F04C2/344Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C2/3446Rotary-piston machines or pumps having the characteristics covered by two or more groups F04C2/02, F04C2/08, F04C2/22, F04C2/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in groups F04C2/08 or F04C2/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along more than one line or surface

Definitions

  • the present invention relates to a fluid machine, and more particularly, to a working fluid introduced by forming an auxiliary tip chamber in the tip chamber to improve the performance of the body and the tip chamber when the rotor is rotated to seal the space formed by the body, the rotor and the tip chamber.
  • a free rotating fluid machine capable of preventing leakage of oil.
  • crank shaft In general, internal combustion engines widely used in automobiles, ships, airplanes, tractors, locomotives, etc. are provided with a piston which linearly moves inside the cylinder of the engine, and lowers the piston by the explosive force of the fuel, and the crank rod connected to the piston It is connected to the crank shaft to convert the linear downward movement of the piston to the rotational movement of the crankshaft to obtain a rotational power.
  • Such a conventional internal combustion engine has a shock and friction imbalanced on the crank shaft during mechanical conversion of the crank shaft and the crank rod, which converts linear motion into a rotary motion, resulting in severe noise and vibration, as well as mechanical durability.
  • the weakening the efficiency is greatly reduced, in particular, the material that is not susceptible to impact, such as ceramics.
  • the rotary engine since the rotary engine rotates on the eccentric shaft, the rotary engine generates vibration and wear.
  • the vankel type engine which is known as a typical rotary engine, rotates eccentrically around the rotary shaft, and thus vibration is inevitably generated. There is a vulnerability.
  • the present invention has been made to solve the conventional problems as described above, when the rotor is rotated in the interior of the main body, even if the tip seal in contact with the inner peripheral surface of the main body to improve the adhesion performance between the tip seal and the main body inner peripheral surface and the main body inner peripheral surface
  • a free-rotating fluid machine capable of sealing the volumetric space between the blade and the tip chamber to prevent leakage of the incoming working fluid.
  • the present invention provides a free-rotating fluid machine capable of maintaining the surface contact state of the blade and the tip chamber even if the blade is subjected to centrifugal force.
  • Free rotating fluid machine for achieving the above object is provided with a hollow cylindrical, the inner peripheral surface is formed into an oval; A rotor provided inside the main body and rotating about the same center of rotation as the main body; A tip chamber provided on one side of the rotor to contact the inner circumferential surface of the main body; And a blade provided between the tip chambers provided adjacent to each other and supported by the tip chambers. It includes, the blade has one end surface facing the inner peripheral surface of the main body and the other end surface facing the one end surface, the center of curvature radius of the one end surface and the other end surface may be located on the same side.
  • the blade may have a tip seal contact portion connecting the one end surface and the other end surface, and the tip seal contact portion may be formed to have the same curved surface as the tip seal.
  • One end portion in the longitudinal direction of the tip thread is formed in a cylindrical shape having a circular cross section and is in contact with the inner circumferential surface of the main body, and the other end portion is formed in the shape of a hexahedron rod having a rectangular cross section, and the tip thread contact portion is formed at the one end portion and the other end portion. The surface contact with the one end from the point where it meets.
  • a portion where the tip seal contact portion and the one end meet may be formed in a curved surface.
  • One end of the tip chamber is provided with an auxiliary tip chamber formed to protrude toward the inner circumferential surface of the main body, the auxiliary tip chamber can be rotated by the rotor while maintaining a surface contact state with the inner circumferential surface of the main body.
  • the auxiliary tip chamber may include a sealing member drawn in or drawn out from the tip chamber; And an elastic support for supporting the sealing member and allowing the sealing member to be drawn in or drawn out from the tip chamber.
  • the sealing member may be formed of a ceramic material.
  • It may further include a pressing member provided between the tip chamber and the rotor to elastically press the tip chamber.
  • the width of the sealing member may be formed at one end of the tip seal to be smaller than the width of the opening into which the sealing member is inserted.
  • the body may be provided with at least one suction port and at least one exhaust port, and the suction port and the exhaust port may be provided radially about a rotation center of the body.
  • the space between the main body inner circumferential surface and the rotor and the tip chamber is sealed by the auxiliary tip chamber, not only the friction between the tip chamber and the main body can be reduced but also leakage of the introduced working fluid can be prevented. .
  • the positions of the blades supporting the tip chambers provided adjacent to each other may be automatically moved.
  • the tip seal is moved toward the inner circumferential surface of the main body by the length (or thickness) of the blade even when the centrifugal force is not applied, and the tip seal is in close contact with the inner circumferential surface of the main body. By pushing the tip seal toward the inner circumferential surface of the main body it can maintain the performance of the tip seal.
  • the tip chamber may be retracted toward the rotation center of the rotor or advanced in the opposite direction of the rotation center.
  • each of both ends of the rotational direction of the blades can increase the area in contact with the curved surface of the tip thread, whereby the centrifugal force acts on the blades.
  • Edo blade and the tip seal can move while maintaining the surface contact state of both ends of the blade and the tip seal.
  • FIG. 1 is a perspective view of a rotary fluid machine according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing the tip chamber shown in FIG. 1.
  • FIG. 2 is a perspective view showing the tip chamber shown in FIG. 1.
  • FIG. 3 is a perspective view of the blade shown in FIG.
  • FIG. 4 is a view for explaining the case that the rotary fluid machine is a turbine according to an embodiment of the present invention.
  • FIG. 5 is a view for explaining the case that the rotary fluid machine is a compressor according to an embodiment of the present invention.
  • FIG. 6 is a view for explaining the case that the rotary fluid machine is a compander according to an embodiment of the present invention.
  • Embodiments of the present invention specifically illustrate ideal embodiments of the present invention. As a result, various modifications of the drawings are expected. Thus, the embodiment is not limited to the specific form of the illustrated region, but includes, for example, modification of the form by manufacture.
  • FIG. 1 is a perspective view of a rotary fluid machine according to an embodiment of the present invention
  • Figure 2 is a perspective view of the tip chamber shown in Figure 1
  • Figure 3 is a perspective view of the blade shown in Figure 1
  • Figure 4 is a view of the present invention
  • 5 is a view illustrating a case in which the rotary fluid machine is a turbine
  • FIG. 5 is a view illustrating a case in which the rotary fluid machine is a compressor
  • FIG. 6 is an embodiment of the present invention. It is a figure for demonstrating the case where the rotary fluid machine which concerns on an example is a compander.
  • the free rotating fluid machine 100 As shown in Figures 1 to 3, the free rotating fluid machine 100 according to an embodiment of the present invention, the cylindrical body, the outer peripheral surface is formed in a circular shape and the inner peripheral surface is formed in an elliptical body 110;
  • Rotor 200 is formed in a substantially rectangular cross-section is provided inside the main body 110 and rotated to the same rotation center as the center of the main body 110;
  • a tip chamber 300 provided at one side of the rotor 200;
  • An auxiliary tip chamber 310 formed at one end of the tip chamber 300 to improve contact performance between the rotor 200 and the tip chamber 300;
  • a blade 400 provided between the tip chambers 300 provided adjacent to each other. It may include.
  • auxiliary tip chamber 310 By forming the auxiliary tip chamber 310 as described above, the friction between the main body 110 and the tip chamber 300 is reduced, and the operation introduced by sealing the space between the main body 110 and the blade 400 and the tip chamber 300 Leakage of the fluid can be prevented.
  • the free rotating fluid machine 100 may include a main body 110, a rotor 200, a tip chamber 300, a blade 400, and an auxiliary tip chamber 310.
  • the rotor 200, the tip chamber 300, and the blade 400 may be accommodated in the body 110.
  • the main body 110 may be provided in a hollow cylindrical shape having a space formed therein.
  • the main body 110 according to an embodiment of the present invention has an outer circumferential surface formed in a circular shape, and an inner circumferential surface is close to an ellipse unlike the outer circumferential surface. It is preferable to form. However, in some cases, not only the inner circumferential surface of the main body 110 but also the outer circumferential surface may be formed in the same elliptical shape.
  • the elliptical shape of the inner circumferential surface of the main body 110 undergoes compression or expansion in order to be converted into mechanical energy from fluid energy of the working fluid introduced from the inlet port 120 and 122, which will be described later. This is to change the volume of the working space 112 for expansion.
  • the main body 110 may be formed with an inlet port through which working fluid flows into the working space 112 and an exhaust port through which working fluid is discharged from the working space.
  • the body 110 may be provided with at least one inlet and at least one exhaust port.
  • the main body 110 of the free-rotating fluid machine 100 includes two inlets 120 and 122 and two exhaust ports 130 and 132. It is preferable to provide.
  • the inlet port 120, 122 and the exhaust port 130, 132 may be provided radially around the center of rotation of the main body 110.
  • the radial inlets 120 and 122 and the exhaust ports 130 and 132 are provided to improve the output or pressure of energy generated by the inflow of the working fluid.
  • the positions of the exhaust ports 130 and 132 of the suction ports 120 and 122 shown in FIG. 1 may correspond to the rotation direction of the rotor 200 or the position of the working space 112 of the main body 110. It may change depending on the size.
  • the rotor 200 may be provided inside the main body 110 formed in an elliptical shape.
  • the rotor 200 may be formed in a hexahedron shape having a substantially rectangular cross section.
  • the cost for processing the rotor 200 can be reduced.
  • the rotational force of the rotor 200 is not significantly affected.
  • the rotor 200 may have a rotation axis 202 which is a rotation center coinciding with the center of the main body 110.
  • the rotating shaft 202 of the rotor 200 may be coupled to a cover (not shown) or the like coupled to one side of the main body 110.
  • the rotor 200 rotates inside the main body 110 and is a member to which the tip chamber 300 and the blade 400, which will be described later, are mounted.
  • the tip chamber 300 may be provided at one side of the rotor 200. Preferably, the tip chamber 300 may be mounted on the corner portion of the rotor 200.
  • one end portion 302 in the longitudinal direction of the tip chamber 300 may be formed in a cylindrical shape having a circular cross section, and the other end 304 may be formed in the shape of a rod of a cube having a rectangular cross section.
  • the other end 304 of the tip chamber 300 formed as described above may be coupled to the groove 204 formed at the corner of the rotor 200.
  • the tip chamber 300 may be provided one at four corners of the rectangular cross section of the rotor 200.
  • the tip chamber 300 When the rotor 200 rotates inside the main body 110, a centrifugal force is applied to the tip chamber 300.
  • the tip chamber 300 moves in the groove 204 formed at the corner of the square cross section of the rotor 200. That is, the cylindrical end portion 302 of the tip chamber 300 is moved toward the inner circumferential surface of the main body 110.
  • the cylindrical end portion 302 of the tip chamber 300 moves toward the inner circumferential surface of the main body 110 by centrifugal force
  • the one end 302 of the tip chamber 300 always contacts the inner circumferential surface of the main body 110. State can be maintained, and as a result, leakage of the working fluid from the working space 112 can be prevented.
  • the pressing member 210 may be further provided between the rotor 200 and the tip chamber 300.
  • the pressing member 210 pushes the tip chamber 300 toward the inner circumferential surface of the main body 110 so that when the rotor 200 rotates, the one end 302 of the tip chamber 300 comes into contact with the inner circumferential surface of the main body 110. Can be.
  • the tip chamber 300 moves while contacting the inner circumferential surface of the main body 110 having an elliptical shape, the tip chamber 300 is moved from the inner circumferential surface of the long radius portion of the ellipse to the inner circumferential surface of the short radius portion. Retracting toward the center of rotation of 200 can be elastically supported.
  • the pressing member 210 has elasticity, preferably formed in the form of a spring (Spring) to press the tip chamber 300 toward the inner circumferential surface of the main body 110, a coil spring, If necessary, such as a compression spring and a leaf spring can be formed into a variety of springs.
  • a spring Spring
  • the pressing member 210 is not always necessary, and as the blade 400 moves toward the inner circumferential surface of the main body 110, the rotor 300 maintains a state in which the tip chamber 300 is always in contact with the inner circumferential surface of the main body 110. If the member 200 can rotate, the pressing member 210 may be omitted.
  • the cylindrical tip end portion 302 of the tip chamber 300 may be provided with an auxiliary tip chamber 310.
  • the auxiliary tip chamber 310 is provided to protrude toward the inner circumferential surface of the main body 110 from one end 302 formed in the cylindrical shape of the tip chamber 300 to improve the contact performance of the rotor 200 and the tip chamber 300. Or increase the contact area.
  • the auxiliary tip chamber 310 pushes the sealing member 314 and the sealing member 314 to the inner circumferential surface of the main body 110 or elastically supports it when the sealing member 314 is retracted. It may include a support 316.
  • the sealing member 314 may be drawn in or drawn out from the opening 312 formed in the cylindrical end portion 302 of the tip chamber 300.
  • the sealing member 314 may be formed in a thin plate shape, and the sealing member 314 according to an embodiment of the present invention is preferably formed of a ceramic material. However, the material of the sealing member 314 as described above may be modified as necessary as long as the material is not likely to increase or damage the inner peripheral surface of the body 110.
  • the elastic support 316 may elastically support the sealing member 314.
  • one end of the elastic support 316 may be coupled to the bottom surface of the sealing member 314 and supported, and the other end may be coupled to the opening 312 of the tip chamber 310. Accordingly, the elastic support 316 may enable the sealing member 314 to be drawn in or withdrawn from the opening 312.
  • the elastic support 316 according to an embodiment of the present invention is preferably formed of a spring having elasticity, and may be formed of various springs, such as a leaf spring and a coil spring, as necessary.
  • the sealing member 314 moves slightly in the direction of rotation in accordance with the curvature of the inner circumferential surface
  • the tip portion of the sealing member 314 may be kept in contact with the inner circumferential surface of the main body 110 at all times.
  • the working space 112 is formed by the inner circumferential surface of the main body 110, the tip chamber 300 and the blade 400, and is a space in which size or volume is variable. To this end, the blade 400 may be provided between the tip chamber 300.
  • the blade 400 is provided between the tip chambers 300 provided at four locations of the rotor 200, and both ends of the blade 400 may be supported by the tip chamber 300. At this time, the blade 400 forms a curved surface of both ends of the blade 400 so as to be in surface contact with the one end 302 of the tip chamber 300 formed in a cylindrical shape to make a surface contact or coupling between the tip chamber 300 and the blade 400. It can be kept stable.
  • the blade 400 may be formed in a shape in which a cross section of the blade 400 is inverted.
  • One end surface 402 in the thickness direction of the blade 400 and the other end surface 404, that is, the length of the upper surface and the lower surface may be formed different from each other.
  • the length of one end surface 402 of the blade 400 according to an embodiment of the present invention is preferably formed longer than the length of the other end surface (404).
  • both ends of the blade 400 are in surface contact with one end portion 302 of the tip chamber 300 formed in a cylindrical shape and sandwiched between two neighboring tip chambers 300, one end surface in the thickness direction of the blade 400.
  • the tip chamber contact portion 403 between the 402 and the other end surface 404 should be formed in a curved surface, wherein the curvature of the curved surface of the tip thread contact portion 403 connecting between the one end surface 402 and the other end surface 404 is cylindrical. It is preferable to form so as to have the same curvature as one end 302 of the tip chamber 300 formed in the shape.
  • the portion where the tip chamber contact portion 403 and the end surface 402 of the blade 400 meet is located at the upper end side of the cylindrical end portion 302 of the tip chamber 300, which is rounded, that is, cornered It may be formed to have a predetermined radius of curvature rather than having a shape.
  • the tip chamber 300 is formed by a portion where the tip chamber contact portion 403 meets one end surface 402 of the blade 400. It is possible to prevent the blade 400 or the tip chamber 300 from being damaged due to the blade 400 being stuck or friction generated at one end 302 of the cylindrical shape.
  • both ends of the blade 400 in the longitudinal direction that is, the tip chamber contact portion 403 is preferably formed to have a large area or a long length contacting the cylindrical end portion 302 of the tip chamber 300.
  • the tip chamber contact portion 403 is in contact with the tip chamber 300 from the point where the cylindrical end portion 302 and the other end 304 of the tip chamber 300 meet.
  • the blade 400 of the free-rotating fluid machine 100 according to an embodiment of the present invention, one end of the blade 400 to increase the contact area of the portion where the tip chamber contact portion 403 and the tip chamber 300 abut each other.
  • the curved surface of the surface 402 and the other end surface 404, each of the radius of curvature is formed so as to be located on the same side with respect to the blade 400.
  • the tip chamber 300 may be in close contact with the inner circumferential surface of the main body 110, and the tip chamber 300 and the blade 400 may be in close contact with each other.
  • the surface contact state at both ends may be destroyed to prevent leakage, or the non-rotation state of the blade 400 may be prevented.
  • the free rotating fluid machine 100 is a turbine, a compressor, a pump, an engine, a compander, a compressor, an expander, and the like. It can be applied in various forms.
  • the inlet port 120, 122 is the tip chamber 300 and the auxiliary tip chamber 310 is the main body ( It is formed in a position in close contact with the inner circumferential surface of the 110, the exhaust port 130, 132 is formed in a position where the volume of the working space 112 formed between the inner circumferential surface of the main body 110 and the rotor 200 is the largest. It is desirable to be.
  • the free-rotating fluid machine 100 When the free-rotating fluid machine 100 is operated as a turbine according to the positions of the inlets 120 and 122 and the exhaust ports 130 and 132 as described above, steam, air, gas through the inlets 120 and 122 are operated. A working fluid such as this can be introduced. Then, the introduced working fluid rotates the rotor 200 while pushing the tip chamber 300 and the blade 400, and the working fluid expands in a wide space to expand the volume of the working space 12 and exhaust port 130. May be discharged through 132.
  • the free-rotating fluid machine 100 is a compressor
  • the inlet port 120, 122 through which the working fluid is sucked is in contact with the inner peripheral surface of the main body 110
  • Exhaust ports 130 and 132 in which the volume of the working space 112 formed between the electrons 200 are formed at the largest position, and the working fluid is discharged the tip chamber 300 and the auxiliary tip chamber 310 are the main body 110. It is preferably formed at a position adjacent to the position in contact with the inner peripheral surface of the.
  • the free rotating fluid 110 When the free rotating fluid 110 according to the position of the inlet port 120, 122 and the exhaust port 130, 132 as the compressor operates as a compressor, the working space 112 formed between the main body 110 and the rotor Is filled with the working fluid, and as the rotor 200 rotates, the working fluid is compressed while the volume of the working space 112 formed between the main body 11 and the rotor 200 becomes small. Compressed working fluid may be discharged to the exhaust ports 130 and 132.
  • the positions of the intake ports 120 and 122 and the exhaust ports 130 and 132 are preferably different from those of the intake and exhaust ports in the case of the turbine.
  • a free rotating fluid machine 100 may operate as a compander.
  • the compander refers to one free-rotating fluid machine 100 that performs both the compressor and the expander operation.
  • the inlets 120 and 122 are located at positions where the tip chamber 300 and the auxiliary tip chamber 310 are in close contact with the inner circumferential surface of the body 110 and the inner circumferential surface of the body 110.
  • the volume of the working space 112 formed between the rotor 200 and the largest position, respectively, the exhaust port 130, 132 is the working space formed between the inner peripheral surface of the main body 110 and the rotor 200.
  • the location of the largest volume 112 and the exhaust ports 130 and 132 through which the working fluid is discharged are respectively formed at positions adjacent to the position where the tip chamber 300 and the auxiliary tip chamber 310 are in contact with the inner circumferential surface of the main body 110. It is desirable to be.
  • the working fluid introduced into the intake port 120 is the main body 110. And the working space 112 formed between the rotor 200 and the rotor 200 is rotated while the volume of the working space 112 formed between the main body 110 and the rotor 200 is reduced The fluid can be compressed. The compressed working fluid is discharged to the exhaust port 132.
  • the working fluid introduced into the suction port 122 rotates the rotor 200 while pushing the tip chamber 300 and the blade 400, and the working fluid expands in a large space to expand the volume of the working space 112. And may be discharged to the exhaust port 130.
  • the sealing performance between the inner circumferential surface of the main body 110 and the tip chamber 300 or the auxiliary tip chamber 310 may be improved.
  • the free rotating fluid machine 100 is formed so that the auxiliary tip chamber 310 protrudes in the tip chamber 300, and the inner peripheral surface of the main body 110 when the rotor 200 is rotated;
  • the working space 112 between the inner circumferential surface of the main body 110 and the rotor 200 and the tip chamber 300 may be sealed.
  • the tip chamber 300 and the main body are sealed by the auxiliary tip chamber 310 because the working space 112 between the inner circumferential surface of the main body 110 and the rotor 200 and the tip chamber 300 is sealed. Not only can the friction between the 110 be reduced, but also leakage of the incoming working fluid can be prevented.
  • both ends of the blade 400 supported between the tip chambers 300 provided adjacent to each other, that is, the tip chamber contacting portion The tip chamber 300 may move while the 403 maintains surface contact with the tip chamber 300.
  • the tip chamber 300 can maintain a state pressed toward the inner peripheral surface of the main body 110
  • the tip chamber 300 may elastically support the tip chamber 300 when the tip chamber 300 retreats toward the rotation shaft 202 of the rotor 200.
  • the invention can be applied to fluid machines, free-rotating fluid machines and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Rotary Pumps (AREA)

Abstract

A free-turning fluid machine, according to the present invention, comprises: a main body having a hollow cylindrical shape, the inner circumferential surface of which is formed in an elliptical shape; a rotor provided inside the main body and rotating about the same center of rotation as that of the main body; tip seals, each being provided at one side of the rotor to make contact with the inner circumferential surface of the main body; and blades, each being provided between the tip seals adjacent to each other and supported by the tip seals, wherein each blade has one surface facing the inner circumferential surface of the main body and an opposite surface opposite to the surface of the blade, and the centers of curvature of the opposite surfaces may be located on the same side. As described above, the spaces between the inner circumferential surface of the main body and the rotor and tip seals are sealed by auxiliary tip seals so that it is possible to prevent leakage of an introduced working fluid, as well as reducing friction between the tip seals and the main body.

Description

자유 회전식 유체 기계Freewheeling fluid machine
본 발명은 유체 기계에 관한 것으로, 더욱 상세하게는 팁실에 보조 팁실을 형성하여 회전자가 회전될 때 본체와 팁실의 성능을 향상시켜 본체와 회전자 및 팁실에 의해 형성된 공간을 밀폐시킴으로써 유입된 작동 유체의 누설을 방지할 수 있는 자유 회전식 유체 기계에 관한 것이다. The present invention relates to a fluid machine, and more particularly, to a working fluid introduced by forming an auxiliary tip chamber in the tip chamber to improve the performance of the body and the tip chamber when the rotor is rotated to seal the space formed by the body, the rotor and the tip chamber. A free rotating fluid machine capable of preventing leakage of oil.
일반적으로 각종 자동차, 선박, 비행기, 트랙터, 기관차 등에 널리 사용되고 있는 내연기관은 엔진의 실린더 내부에 직선 운동을 하는 피스톤이 설치되어, 연료의 폭발력으로 피스톤을 하강시키고, 상기 피스톤과 연결된 크랭크 로드가 상기 크랭크 축과 연결되어 상기 피스톤의 직선 하강운동을 상기 크랭크축의 회전운동을 변환시켜 회전동력을 얻어내는 것이다. In general, internal combustion engines widely used in automobiles, ships, airplanes, tractors, locomotives, etc. are provided with a piston which linearly moves inside the cylinder of the engine, and lowers the piston by the explosive force of the fuel, and the crank rod connected to the piston It is connected to the crank shaft to convert the linear downward movement of the piston to the rotational movement of the crankshaft to obtain a rotational power.
이러한 종래의 일반적인 내연기관은 직선운동을 회전운동으로 바꾸어주는 크랭크축과 크랭크 로드의 기계적 변환시 피스톤으로부터 받는 충격과 마찰이 크랭크축에 불균형하게 이루어져서 소음과 진동이 심하게 발생하는 것은 물론, 기계적인 내구성을 약하게 하고, 효율이 크게 떨어지며, 특히 세라믹 등 충격에 약한 소재를 사용할 수 없었던 문제점이 있었다. Such a conventional internal combustion engine has a shock and friction imbalanced on the crank shaft during mechanical conversion of the crank shaft and the crank rod, which converts linear motion into a rotary motion, resulting in severe noise and vibration, as well as mechanical durability. There is a problem in that the weakening, the efficiency is greatly reduced, in particular, the material that is not susceptible to impact, such as ceramics.
한편, 이러한 기존의 내연기관의 문제점을 해결하고자 회전자 내부에 다수개의 폭발 공간을 마련하여 형성하고, 회전자 외부에 공기 흡입구 및 가스 배출구를 형성하여 상기 폭발 공간에 연료(또는 유체)를 공급하면서 회전자의 회전력에 의해 폭발 공간이 회전하면서 가스 배출구와 만나면 연소가스가 자연 배출되고, 공기 흡입구와 만나면 공기를 자연 흡입시킬 수 있는 간단한 구조의 로터리 엔진이 개발되었다. On the other hand, in order to solve the problems of the existing internal combustion engine by providing a plurality of explosion space inside the rotor, and forming the air inlet and gas outlet outside the rotor to supply fuel (or fluid) to the explosion space When the explosion space is rotated by the rotational force of the rotor, the combustion gas is naturally discharged when it meets the gas outlet, and a rotary engine having a simple structure that naturally sucks air when it is encountered with the air inlet is developed.
그러나, 이와 같은 로터리 엔진은 기존의 내연기관의 단점을 극복하지 못하였으며, 내부의 연소 가스를 완전히 배출하지 못하고, 공기를 완전히 흡입하지 못하여 구동성과 효율이 극히 떨어지며 저속 회전에서는 흡입과 배출이 부족하고, 고속에서는 과흡입, 과배출 현상이 발생하는 등의 심각한 문제점이 있었다. However, such a rotary engine does not overcome the disadvantages of the existing internal combustion engine, it does not completely discharge the internal combustion gas, does not completely suck the air, the driveability and efficiency is extremely low, and the suction and discharge at low speed rotation is insufficient. At high speeds, there was a serious problem such as over suction and over discharge.
또한, 이러한 로터리 엔진은 회전자가 편심축으로 회전하므로 진동과 마모가 발생되고, 로터리 엔진의 대표적인 것으로 알려져 있는 반켈형 엔진은 회전축을 중심으로 회전자가 편심 회전하므로 진동이 필연적으로 발생되며 내구성과 기밀성에 취약한 문제점이 있다. In addition, since the rotary engine rotates on the eccentric shaft, the rotary engine generates vibration and wear. The vankel type engine, which is known as a typical rotary engine, rotates eccentrically around the rotary shaft, and thus vibration is inevitably generated. There is a vulnerability.
상기와 같은 문제점을 해결하기 위하여, 본 출원인은 대한민국 등록특허공보 10-0652557호(등록일: 2006. 11. 24.)의 ‘자유 피스톤 로터리 엔진’을 제안한 바 있다. 그러나, 대한민국 등록특허공보 10-0652557호에 개시된 기술은 블레이드와 팁실 간의 접촉면적이 작아서 회전자가 회전할 때 발생하는 원심력이 블레이드에 작용하면 블레이드와 팁실의 접촉 상태가 유지되지 않고 블레이드가 원심력의 작용방향을 따라 외측으로 벗어나기 때문에 블레이드가 회전을 하지 못하여 사용할 수 없는 문제가 있고, 회전자와 팁실 사이에 미끄럼 운동으로 인한 회전자의 진동 및 마모가 여전히 발생됨으로 인하여 로터리 엔진의 내구성과 기밀성에 취약한 문제점이 있다.In order to solve the above problems, the applicant has proposed a "free piston rotary engine" of Republic of Korea Patent Publication No. 10-0652557 (registration date: November 24, 2006). However, the technique disclosed in Korean Patent Publication No. 10-0652557 has a small contact area between the blade and the tip thread, so that when the centrifugal force generated when the rotor rotates acts on the blade, the blade is not in contact with the tip thread and the blade acts as a centrifugal force. The blade is unable to rotate because it moves outward along the direction and cannot be used, and the vibration and wear of the rotor due to the sliding movement between the rotor and the tip chamber still occur, which makes the rotary engine vulnerable to durability and airtightness. There is this.
뿐만 아니라 블레이드가 회전에 의한 원심력을 받게 되면 블레이드가 팁실에서 이탈하여 블레이드가 고정자와 부딪히기 때문에 회전자가 회전할 수 없는 문제가 생기고, 팁실의 접촉 상태가 변형되어 연소실 내에 누설이 생기고, 블레이드가 움직여서 충돌이 발생하거나 마모가 생기는 문제점이 있다. In addition, when the blade is subjected to centrifugal force due to rotation, the blade is released from the tip chamber and the blade collides with the stator, which causes the rotor not to rotate, the contact state of the tip chamber is deformed, leakage occurs in the combustion chamber, and the blade moves and collides. There is a problem that occurs or wear occurs.
한편, 대한민국 등록특허공보 10-0652557호에 개시된 기술은 가솔린, 디젤, 수소 등의 연료가 사용되는 엔진으로 적용되는 경우에 대하여 서술하고 있으며, 스팀, 에어, 가스 중에서 어느 하나를 이용하여 터빈으로도 사용할 수 있다고 기재하고 있다. On the other hand, the technology disclosed in the Republic of Korea Patent Publication No. 10-0652557 describes a case that is applied to the engine using the fuel such as gasoline, diesel, hydrogen, and also as a turbine using any one of steam, air, gas It is stated that it can be used.
그러나, 대한민국 등록특허공보 10-0652557호에 기재된 엔진의 구조로는 실질적으로 엔진으로만 적용될 수 있을 뿐 터빈 및 압축기 등으로는 적용될 수 없는 한계점이 있다. However, the structure of the engine described in Republic of Korea Patent Publication No. 10-0652557 can be applied only to the engine substantially, there is a limitation that can not be applied to turbines and compressors.
본 발명은 상기한 바와 같은 종래의 문제점을 해결하기 위해 안출된 것으로, 본체의 내부에서 회전자가 회전될 때, 본체 내주면과 접촉하는 팁실이 마모되더라도 팁실과 본체 내주면의 밀착 성능을 향상시켜 본체 내주면과 블레이드와 팁실 사이의 체적 공간을 밀폐시켜 유입된 작동 유체의 누설을 방지할 수 있는 자유 회전식 유체 기계를 제공한다.The present invention has been made to solve the conventional problems as described above, when the rotor is rotated in the interior of the main body, even if the tip seal in contact with the inner peripheral surface of the main body to improve the adhesion performance between the tip seal and the main body inner peripheral surface and the main body inner peripheral surface Provided is a free-rotating fluid machine capable of sealing the volumetric space between the blade and the tip chamber to prevent leakage of the incoming working fluid.
또한, 본 발명은 블레이드가 원심력을 받더라도 블레이드와 팁실의 면접촉 상태를 유지할 수 있는 자유 회전식 유체 기계를 제공한다. In addition, the present invention provides a free-rotating fluid machine capable of maintaining the surface contact state of the blade and the tip chamber even if the blade is subjected to centrifugal force.
상기한 과제를 달성하기 위한 본 발명에 따른 자유 회전식 유체 기계는, 중공의 원통형으로 마련되되, 내주면은 타원형으로 형성되는 본체; 상기 본체 내부에 마련되며 상기 본체와 동일한 회전 중심과 동일한 중심에 대해서 회전하는 회전자; 상기 본체의 내주면과 접촉하도록 상기 회전자의 일측에 구비되는 팁실; 및 서로 인접하게 마련된 팁실 사이에 마련되며 상기 팁실에 의해서 지지되는 블레이드; 를 포함하며, 상기 블레이드는 상기 본체의 내주면과 마주보는 일단면 및 상기 일단면과 대향하는 타단면을 가지며, 상기 일단면과 상기 타단면의 곡률 반경 중심은 동일한 쪽에 위치할 수 있다. Free rotating fluid machine according to the present invention for achieving the above object is provided with a hollow cylindrical, the inner peripheral surface is formed into an oval; A rotor provided inside the main body and rotating about the same center of rotation as the main body; A tip chamber provided on one side of the rotor to contact the inner circumferential surface of the main body; And a blade provided between the tip chambers provided adjacent to each other and supported by the tip chambers. It includes, the blade has one end surface facing the inner peripheral surface of the main body and the other end surface facing the one end surface, the center of curvature radius of the one end surface and the other end surface may be located on the same side.
상기 블레이드는 상기 일단면과 상기 타단면을 연결하는 팁실 접촉부를 가지며, 상기 팁실 접촉부는 상기 팁실과 동일한 곡면을 가지도록 형성될 수 있다. The blade may have a tip seal contact portion connecting the one end surface and the other end surface, and the tip seal contact portion may be formed to have the same curved surface as the tip seal.
상기 팁실의 길이방향 일단부는 단면이 원형인 원통 형태로 형성되어 상기 본체의 내주면에 접촉되고, 타단부는 단면이 사각형인 육면체의 막대 형태로 형성되며, 상기 팁실 접촉부는 상기 일단부와 상기 타단부가 만나는 지점에서부터 상기 일단부과 면접촉 할 수 있다. One end portion in the longitudinal direction of the tip thread is formed in a cylindrical shape having a circular cross section and is in contact with the inner circumferential surface of the main body, and the other end portion is formed in the shape of a hexahedron rod having a rectangular cross section, and the tip thread contact portion is formed at the one end portion and the other end portion. The surface contact with the one end from the point where it meets.
상기 팁실 접촉부와 상기 일단부가 만나는 부분은 곡면으로 형성될 수 있다. A portion where the tip seal contact portion and the one end meet may be formed in a curved surface.
상기 팁실의 일단부에는 상기 본체의 내주면을 향해 돌출 가능하게 형성된 보조 팁실이 구비되며, 상기 보조 팁실은 상기 본체의 내주면과 면접촉 상태를 유지하면서 상기 회전자에 의해서 회전할 수 있다. One end of the tip chamber is provided with an auxiliary tip chamber formed to protrude toward the inner circumferential surface of the main body, the auxiliary tip chamber can be rotated by the rotor while maintaining a surface contact state with the inner circumferential surface of the main body.
상기 보조 팁실은, 상기 팁실로부터 인입 또는 인출되는 실링 부재; 및 상기 실링 부재를 지지하며, 상기 팁실로부터 인입 또는 인출되는 것을 가능하게 하는 탄성 지지체를 포함할 수 있다. The auxiliary tip chamber may include a sealing member drawn in or drawn out from the tip chamber; And an elastic support for supporting the sealing member and allowing the sealing member to be drawn in or drawn out from the tip chamber.
상기 실링 부재는 세라믹 재질로 형성될 수 있다. The sealing member may be formed of a ceramic material.
상기 팁실과 상기 회전자 사이에 마련되어 상기 팁실을 탄성 가압하는 가압 부재를 더 포함할 수 있다. It may further include a pressing member provided between the tip chamber and the rotor to elastically press the tip chamber.
상기 실링 부재의 폭은 상기 팁실의 일단부에 형성되어 상기 실링 부재가 삽입되는 개구부의 폭보다 작게 형성될 수 있다. The width of the sealing member may be formed at one end of the tip seal to be smaller than the width of the opening into which the sealing member is inserted.
상기 본체에는, 적어도 하나 이상의 흡입구와 적어도 하나 이상의 배기구가 마련되되, 상기 흡입구 및 상기 배기구는 상기 본체의 회전 중심을 중심으로 방사형으로 마련될 수 있다. The body may be provided with at least one suction port and at least one exhaust port, and the suction port and the exhaust port may be provided radially about a rotation center of the body.
본 발명의 실시예들에 따르면 보조 팁실에 의하여 본체 내주면과 회전자 및 팁실 사이의 공간이 밀폐됨으로 인하여 팁실과 본체 사이의 마찰을 감소시킬 수 있을 뿐만 아니라 유입된 작동 유체의 누설을 방지할 수 있다. According to the embodiments of the present invention, since the space between the main body inner circumferential surface and the rotor and the tip chamber is sealed by the auxiliary tip chamber, not only the friction between the tip chamber and the main body can be reduced but also leakage of the introduced working fluid can be prevented. .
또한, 본 발명의 실시예들에 따르면 보조 팁실이 팁실로부터 인입되고 인출됨에 따라 서로 인접하게 마련된 팁실 사이를 지지하고 있는 블레이드의 위치가 자동적으로 이동되도록 할 수 있다. In addition, according to embodiments of the present invention, as the auxiliary tip chamber is drawn in and drawn out from the tip chamber, the positions of the blades supporting the tip chambers provided adjacent to each other may be automatically moved.
또한, 본 발명의 실시예들에 따르면 원심력이 작용하지 않아도 블레이드의 길이(또는 두께)만큼 팁실이 본체의 내주면 쪽으로 움직여서 팁실이 본체의 내주면에 밀착될 뿐만 아니라, 팁실이 어느 한계점 이상으로 마모되더라도 강제적으로 팁실을 본체의 내주면 쪽으로 밀어주기 때문에 팁실의 성능을 유지할 수 있다.In addition, according to the embodiments of the present invention, the tip seal is moved toward the inner circumferential surface of the main body by the length (or thickness) of the blade even when the centrifugal force is not applied, and the tip seal is in close contact with the inner circumferential surface of the main body. By pushing the tip seal toward the inner circumferential surface of the main body it can maintain the performance of the tip seal.
또한, 본 발명의 실시예들에 따르면 팁실과 회전자 사이에 가압 부재를 마련함으로써 팁실이 회전자의 회전 중심 쪽으로 후퇴하거나 회전 중심의 반대 방향으로 전진되도록 할 수 있다. Further, according to embodiments of the present invention, by providing a pressing member between the tip chamber and the rotor, the tip chamber may be retracted toward the rotation center of the rotor or advanced in the opposite direction of the rotation center.
또한, 본 발명의 실시예들에 따르면 블레이드가 내면과 외면이 거의 동일한 형태를 가지기 때문에 블레이드의 회전 방향 양단 각각이 팁실의 곡면과 접촉하는 면적을 늘일 수 있고, 이로 인해 블레이드에 원심력이 작용하는 경우에도 블레이드의 양단과 팁실의 면접촉 상태를 유지하면서 블레이드와 팁실이 움직일 수 있다. In addition, according to the embodiments of the present invention, since the blades have almost the same shape as the inner and outer surfaces thereof, each of both ends of the rotational direction of the blades can increase the area in contact with the curved surface of the tip thread, whereby the centrifugal force acts on the blades. Edo blade and the tip seal can move while maintaining the surface contact state of both ends of the blade and the tip seal.
도 1은 본 발명의 일 실시예에 따른 회전식 유체 기계를 나타낸 사시도이다. 1 is a perspective view of a rotary fluid machine according to an embodiment of the present invention.
도 2는 도 1에 도시한 팁실을 나타낸 사시도이다. FIG. 2 is a perspective view showing the tip chamber shown in FIG. 1. FIG.
도 3은 도 1에 도시한 블레이드를 나타낸 사시도이다. 3 is a perspective view of the blade shown in FIG.
도 4는 본 발명의 일 실시예에 따른 회전식 유체 기계가 터빈 인 경우를 설명하기 위한 도면이다. 4 is a view for explaining the case that the rotary fluid machine is a turbine according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 회전식 유체 기계가 압축기 인 경우를 설명하기 위한 도면이다. 5 is a view for explaining the case that the rotary fluid machine is a compressor according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 회전식 유체 기계가 컴팬더 인 경우를 설명하기 위한 도면이다. 6 is a view for explaining the case that the rotary fluid machine is a compander according to an embodiment of the present invention.
이하, 첨부된 도면을 참고로 하여 본 발명의 실시예들에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예들에 한정되지 않는다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
도면들은 개략적이고 축적에 맞게 도시되지 않았다는 것을 일러둔다. 도면에 있는 부분들의 상대적인 치수 및 비율은 도면에서의 명확성 및 편의를 위해 그 크기에 있어 과장되거나 감소되어 도시되었으며 임의의 치수는 단지 예시적인 것이지 한정적인 것은 아니다. 그리고 둘 이상의 도면에 나타나는 동일한 구조물, 요소 또는 부품에는 동일한 참조 부호가 유사한 특징을 나타내기 위해 사용된다. It is noted that the figures are schematic and not drawn to scale. The relative dimensions and ratios of the parts in the figures have been exaggerated or reduced in size for clarity and convenience in the figures and any dimensions are merely exemplary and not limiting. And the same reference numerals are used to refer to similar features in the same structure, element or part shown in more than one figure.
본 발명의 실시예는 본 발명의 이상적인 실시예들을 구체적으로 나타낸다. 그 결과, 도면의 다양한 변형이 예상된다. 따라서 실시예는 도시한 영역의 특정 형태에 국한되지 않으며, 예를 들면 제조에 의한 형태의 변형도 포함한다. Embodiments of the present invention specifically illustrate ideal embodiments of the present invention. As a result, various modifications of the drawings are expected. Thus, the embodiment is not limited to the specific form of the illustrated region, but includes, for example, modification of the form by manufacture.
이하, 첨부된 도면을 참조하여 본 발명의 일 실시예에 따른 자유 회전식유체 기계를 설명한다. Hereinafter, a free rotary fluid machine according to an embodiment of the present invention will be described with reference to the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 회전식 유체 기계를 나타낸 사시도, 도 2는 도 1에 도시한 팁실을 나타낸 사시도, 도 3은 도 1에 도시한 블레이드를 나타낸 사시도, 도 4는 본 발명의 일 실시예에 따른 회전식 유체 기계가 터빈 인 경우를 설명하기 위한 도면, 도 5는 본 발명의 일 실시예에 따른 회전식 유체 기계가 압축기 인 경우를 설명하기 위한 도면, 도 6은 본 발명의 일 실시예에 따른 회전식 유체 기계가 컴팬더 인 경우를 설명하기 위한 도면이다. 1 is a perspective view of a rotary fluid machine according to an embodiment of the present invention, Figure 2 is a perspective view of the tip chamber shown in Figure 1, Figure 3 is a perspective view of the blade shown in Figure 1, Figure 4 is a view of the present invention 5 is a view illustrating a case in which the rotary fluid machine is a turbine, and FIG. 5 is a view illustrating a case in which the rotary fluid machine is a compressor, and FIG. 6 is an embodiment of the present invention. It is a figure for demonstrating the case where the rotary fluid machine which concerns on an example is a compander.
도 1 내지 도 3에 도시한 바와 같이, 본 발명의 일 실시예에 따른 자유 회전식 유체 기계(100)는, 원통형으로 마련되되, 외주면은 원형으로 형성되고 내주면은 타원형으로 형성되는 본체(110); 단면의 모양이 대략 사각형으로 형성되되 상기 본체(110) 내부에 마련되며 상기 본체(110)의 중심과 동일한 회전 중심으로 회전하는 회전자(200); 상기 회전자(200)의 일측에 마련되는 팁실(300); 상기 팁실(300)의 일단에 형성되며, 상기 회전자(200)와 상기 팁실(300) 사이의 접촉 성능을 향상시키는 보조 팁실(310); 및 서로 인접하게 마련된 팁실(300) 사이에 마련되는 블레이드(400); 를 포함할 수 있다.As shown in Figures 1 to 3, the free rotating fluid machine 100 according to an embodiment of the present invention, the cylindrical body, the outer peripheral surface is formed in a circular shape and the inner peripheral surface is formed in an elliptical body 110; Rotor 200 is formed in a substantially rectangular cross-section is provided inside the main body 110 and rotated to the same rotation center as the center of the main body 110; A tip chamber 300 provided at one side of the rotor 200; An auxiliary tip chamber 310 formed at one end of the tip chamber 300 to improve contact performance between the rotor 200 and the tip chamber 300; And a blade 400 provided between the tip chambers 300 provided adjacent to each other. It may include.
상기와 같이 보조 팁실(310)을 형성함으로써, 본체(110)와 팁실(300)의 마찰을 감소시키고, 본체(110)와 블레이드(400)와 팁실(300) 사이의 공간을 밀폐시켜 유입된 작동 유체의 누설을 방지할 수 있다. By forming the auxiliary tip chamber 310 as described above, the friction between the main body 110 and the tip chamber 300 is reduced, and the operation introduced by sealing the space between the main body 110 and the blade 400 and the tip chamber 300 Leakage of the fluid can be prevented.
본 발명의 일 실시예에 따른 자유 회전식 유체 기계(100)는 본체(110), 회전자(200), 팁실(300), 블레이드(400) 및 보조 팁실(310)을 포함할 수 있다. The free rotating fluid machine 100 according to an embodiment of the present invention may include a main body 110, a rotor 200, a tip chamber 300, a blade 400, and an auxiliary tip chamber 310.
회전자(200), 팁실(300) 및 블레이드(400)는 본체(110)의 내부에 수용될 수 있다. 본체(110)는 내부에 공간이 형성된 중공의 원통형으로 마련될 수 있는데, 본 발명의 일 실시예에 따른 본체(110)는 외주면이 원형의 형상으로 형성되고, 내주면은 외주면과 달리 타원형에 가까운 형태로 형성되는 것이 바람직하다. 다만, 경우에 따라서 본체(110)의 내주면 뿐만 아니라 외주면도 동일한 타원형으로 형성될 수도 있다. The rotor 200, the tip chamber 300, and the blade 400 may be accommodated in the body 110. The main body 110 may be provided in a hollow cylindrical shape having a space formed therein. The main body 110 according to an embodiment of the present invention has an outer circumferential surface formed in a circular shape, and an inner circumferential surface is close to an ellipse unlike the outer circumferential surface. It is preferable to form. However, in some cases, not only the inner circumferential surface of the main body 110 but also the outer circumferential surface may be formed in the same elliptical shape.
본체(110)의 내주면을 타원형으로 형성하는 것은 후술할 흡기구(120)(122)로부터 유입된 작동 유체가 가진 유체 에너지에서 기계적 에너지로 변환되기 위하여 압축 또는 팽창을 거치는데, 이때 작동 유체의 압축 또는 팽창을 위한 작용 공간(112)의 체적이 변할 수 있게 하기 위함이다. The elliptical shape of the inner circumferential surface of the main body 110 undergoes compression or expansion in order to be converted into mechanical energy from fluid energy of the working fluid introduced from the inlet port 120 and 122, which will be described later. This is to change the volume of the working space 112 for expansion.
상기한 바와 같이, 본체(110)에는 작동 유체가 상기 작용 공간(112)으로 유입되는 흡입구와 상기 작용 공간에서 작동 유체가 배출되는 배기구가 형성될 수 있다. 구체적으로, 본체(110)에는 적어도 하나 이상의 흡입구와 적어도 하나 이상의 배기구가 마련될 수 있다. As described above, the main body 110 may be formed with an inlet port through which working fluid flows into the working space 112 and an exhaust port through which working fluid is discharged from the working space. Specifically, the body 110 may be provided with at least one inlet and at least one exhaust port.
본 발명의 일 실시예에 따른 자유 회전식 유체 기계(100)의 본체(110)는, 도 1에 도시한 바와 같이, 두 개의 흡입구(120)(122)와 두 개의 배기구(130)(132)가 마련되는 것이 바람직하다. As shown in FIG. 1, the main body 110 of the free-rotating fluid machine 100 according to an embodiment of the present invention includes two inlets 120 and 122 and two exhaust ports 130 and 132. It is preferable to provide.
이때 흡입구(120)(122) 및 배기구(130)(132)는 본체(110)의 회전중심을 중심으로 방사형으로 마련될 수 있다. 흡입구(120)(122) 및 배기구(130)(132)를 방사형으로 마련하는 것은, 작동 유체가 유입되어 발생되는 에너지의 출력 또는 압력을 향상시키기 위함이다. 또한, 경우에 따라서는 도 1에 도시된 흡입구(120)(122)의 배기구(130)(132)의 위치는 회전자(200)의 회전 방향 또는 본체(110)의 작용 공간(112)의 위치나 크기에 따라 변경될 수도 있다. At this time, the inlet port 120, 122 and the exhaust port 130, 132 may be provided radially around the center of rotation of the main body 110. The radial inlets 120 and 122 and the exhaust ports 130 and 132 are provided to improve the output or pressure of energy generated by the inflow of the working fluid. In some cases, the positions of the exhaust ports 130 and 132 of the suction ports 120 and 122 shown in FIG. 1 may correspond to the rotation direction of the rotor 200 or the position of the working space 112 of the main body 110. It may change depending on the size.
회전자(200)는 타원형으로 형성된 본체(110)의 내부에 마련될 수 있다. 회전자(200)는 대략적으로 단면이 사각형인 육면체 형태로 형성될 수 있다. 회전자(200)의 단면을 사각형으로 형성할 경우에는 회전자(200)를 가공하기 위한 비용을 감소시킬 수 있다. 또한, 회전자(200)의 단면이 대략 사각형이 되도록 형성하더라도 회전자(200)의 회전력은 큰 영향을 받지 않게 된다.The rotor 200 may be provided inside the main body 110 formed in an elliptical shape. The rotor 200 may be formed in a hexahedron shape having a substantially rectangular cross section. When the cross section of the rotor 200 is formed into a quadrangle, the cost for processing the rotor 200 can be reduced. In addition, even if the cross section of the rotor 200 is formed to be substantially rectangular, the rotational force of the rotor 200 is not significantly affected.
회전자(200)는 본체(110)의 중심과 일치하는 회전 중심인 회전축(202)을 가질 수 있다. 도면에는 도시하지 않았지만, 회전자(200)의 회전축(202)은 본체(110)의 일측에 결합되는 커버(미도시) 등에 결합될 수 있다. The rotor 200 may have a rotation axis 202 which is a rotation center coinciding with the center of the main body 110. Although not shown in the drawing, the rotating shaft 202 of the rotor 200 may be coupled to a cover (not shown) or the like coupled to one side of the main body 110.
회전자(200)는 본체(110)의 내부에서 회전하며, 후술하는 팁실(300)과 블레이드(400)가 장착되는 부재이다. The rotor 200 rotates inside the main body 110 and is a member to which the tip chamber 300 and the blade 400, which will be described later, are mounted.
팁실(300)은 회전자(200)의 일측에 마련될 수 있다. 바람직하게는, 회전자(200)의 모서리 부분에 팁실(300)이 장착될 수 있다. The tip chamber 300 may be provided at one side of the rotor 200. Preferably, the tip chamber 300 may be mounted on the corner portion of the rotor 200.
구체적으로, 팁실(300)의 길이방향 일단부(302)는 단면이 원형인 원통형태로 형성되고, 타단부(304)는 단면이 사각형인 육면체의 막대 형태로 형성될 수 있다. 이와 같이 형성된 팁실(300)의 타단부(304)가 회전자(200)의 모서리부에 형성된 홈(204)에 결합될 수 있다. 상기한 바와 같이, 회전자(200)는 단면이 사각형인 육면체 형태를 가지므로, 팁실(300)은 회전자(200)의 사각형 단면 모서리 4개소에 하나씩 마련될 수 있다. In detail, one end portion 302 in the longitudinal direction of the tip chamber 300 may be formed in a cylindrical shape having a circular cross section, and the other end 304 may be formed in the shape of a rod of a cube having a rectangular cross section. The other end 304 of the tip chamber 300 formed as described above may be coupled to the groove 204 formed at the corner of the rotor 200. As described above, since the rotor 200 has a hexahedron shape having a rectangular cross section, the tip chamber 300 may be provided one at four corners of the rectangular cross section of the rotor 200.
회전자(200)가 본체(110)의 내부에서 회전하게 되면, 팁실(300)에는 원심력이 가해진다. 팁실(300)이 원심력을 받게 되면 회전자(200)의 사각 단면의 모서리에 형성된 홈(204)에서 움직이게 된다. 즉, 팁실(300)의 원통 형태의 일단부(302)가 본체(110)의 내주면 쪽으로 움직이게 된다. 이와 같이, 원심력에 의해 팁실(300)의 원통 형태 일단부(302)가 본체(110)의 내주면을 향해 움직이게 되면, 팁실(300)의 일단부(302)는 항상 본체(110)의 내주면과 접촉된 상태를 유지할 수 있고, 결과적으로 작용 공간(112)에서 작동 유체가 누설되는 것을 방지할 수 있다. When the rotor 200 rotates inside the main body 110, a centrifugal force is applied to the tip chamber 300. When the tip chamber 300 is subjected to centrifugal force, the tip chamber 300 moves in the groove 204 formed at the corner of the square cross section of the rotor 200. That is, the cylindrical end portion 302 of the tip chamber 300 is moved toward the inner circumferential surface of the main body 110. As such, when the cylindrical end portion 302 of the tip chamber 300 moves toward the inner circumferential surface of the main body 110 by centrifugal force, the one end 302 of the tip chamber 300 always contacts the inner circumferential surface of the main body 110. State can be maintained, and as a result, leakage of the working fluid from the working space 112 can be prevented.
한편, 회전자(200)와 팁실(300) 사이에는 가압 부재(210)가 더 마련될 수 있다. Meanwhile, the pressing member 210 may be further provided between the rotor 200 and the tip chamber 300.
가압 부재(210)는 회전자(200)가 회전할 때, 팁실(300)의 일단부(302)가 본체(110)의 내주면과 접촉되도록 팁실(300)을 본체(110)의 내주면 쪽으로 밀어줄 수 있다. 또한, 타원형의 형태를 가지는 본체(110)의 내주면과 접촉하면서 팁실(300)이 움직일 때, 타원의 장반경 부분의 내주면에서 단반경 부분의 내주면으로 팁실(300)이 이동되면서 팁실(300)이 회전자(200)의 회전 중심 쪽으로 후퇴하는 것을 탄성적으로 지지할 수 있다. The pressing member 210 pushes the tip chamber 300 toward the inner circumferential surface of the main body 110 so that when the rotor 200 rotates, the one end 302 of the tip chamber 300 comes into contact with the inner circumferential surface of the main body 110. Can be. In addition, when the tip chamber 300 moves while contacting the inner circumferential surface of the main body 110 having an elliptical shape, the tip chamber 300 is moved from the inner circumferential surface of the long radius portion of the ellipse to the inner circumferential surface of the short radius portion. Retracting toward the center of rotation of 200 can be elastically supported.
본 발명의 일 실시예에 따른 가압 부재(210)는 탄성을 가지며, 팁실(300)을 본체(110)의 내주면 쪽으로 가압할 수 있는 스프링(Spring)의 형태로 형성되는 것이 바람직하며, 코일 스프링, 압축 스프링 및 판 스프링 등 필요에 따라 다양한 형태의 스프링으로 형성될 수 있다.The pressing member 210 according to the embodiment of the present invention has elasticity, preferably formed in the form of a spring (Spring) to press the tip chamber 300 toward the inner circumferential surface of the main body 110, a coil spring, If necessary, such as a compression spring and a leaf spring can be formed into a variety of springs.
다만, 가압 부재(210)가 항상 필요한 것은 아니며, 블레이드(400)가 본체(110)의 내주면 쪽으로 움직임에 따라 팁실(300)이 본체(110)의 내주면과 항상 접촉된 상태를 유지하면서 회전자(200)가 회전할 수 있다면 가압 부재(210)를 생략할 수도 있다. However, the pressing member 210 is not always necessary, and as the blade 400 moves toward the inner circumferential surface of the main body 110, the rotor 300 maintains a state in which the tip chamber 300 is always in contact with the inner circumferential surface of the main body 110. If the member 200 can rotate, the pressing member 210 may be omitted.
한편, 팁실(300)의 원통 형태의 일단부(302)에는 보조 팁실(310)이 구비될 수 있다. 이러한 보조 팁실(310)은 팁실(300)의 원통 형태로 형성된 일단부(302)에서 본체(110)의 내주면을 향해 돌출되도록 마련됨으로써 회전자(200)와 팁실(300)의 접촉 성능을 향상시키거나 접촉 면적을 늘일 수 있다. On the other hand, the cylindrical tip end portion 302 of the tip chamber 300 may be provided with an auxiliary tip chamber 310. The auxiliary tip chamber 310 is provided to protrude toward the inner circumferential surface of the main body 110 from one end 302 formed in the cylindrical shape of the tip chamber 300 to improve the contact performance of the rotor 200 and the tip chamber 300. Or increase the contact area.
구체적으로, 도 2에 도시한 바와 같이, 보조 팁실(310)은 실링 부재(314) 및 실링 부재(314)를 본체(110)의 내주면으로 밀어주거나 실링 부재(314)의 후퇴시 이를 지지하는 탄성 지지체(316)를 포함할 수 있다. 실링 부재(314)는 팁실(300)의 원통 형태의 일단부(302)에 형성된 개구부(312)로부터 인입되거나 인출될 수 있다. Specifically, as shown in FIG. 2, the auxiliary tip chamber 310 pushes the sealing member 314 and the sealing member 314 to the inner circumferential surface of the main body 110 or elastically supports it when the sealing member 314 is retracted. It may include a support 316. The sealing member 314 may be drawn in or drawn out from the opening 312 formed in the cylindrical end portion 302 of the tip chamber 300.
실링 부재(314)는 얇은 판(plate)형태로 형성될 수 있으며, 본 발명의 일 실시예에 따른 실링 부재(314)는 세라믹(ceramic) 재질로 형성되는 것이 바람직하다. 그러나 상기와 같은 실링 부재(314)의 재질은 본체(110)의 내주면과 마찰을 증가시키거나, 손상을 입힐 가능성이 있는 재질이 아니라면 필요에 따라 변형될 수 있다. The sealing member 314 may be formed in a thin plate shape, and the sealing member 314 according to an embodiment of the present invention is preferably formed of a ceramic material. However, the material of the sealing member 314 as described above may be modified as necessary as long as the material is not likely to increase or damage the inner peripheral surface of the body 110.
탄성 지지체(316)는 실링 부재(314)를 탄성 지지할 수 있다. The elastic support 316 may elastically support the sealing member 314.
구체적으로, 탄성 지지체(316)의 일단부는 실링 부재(314)의 하단면에 결합되어 지지하고, 타단부는 팁실(310)의 개구부(312)와 결합될 수 있다. 이에 따라, 탄성 지지체(316)는 실링 부재(314)가 개구부(312)로부터 인입되거나 인출되는 것을 가능하게 할 수 있다. 본 발명의 일 실시예에 따른 탄성 지지체(316)는 탄성을 가지는 스프링(Spring)으로 형성되는 것이 바람직하며, 필요에 따라 판 스프링, 코일 스프링 등 다양한 스프링으로 형성될 수 있다. Specifically, one end of the elastic support 316 may be coupled to the bottom surface of the sealing member 314 and supported, and the other end may be coupled to the opening 312 of the tip chamber 310. Accordingly, the elastic support 316 may enable the sealing member 314 to be drawn in or withdrawn from the opening 312. The elastic support 316 according to an embodiment of the present invention is preferably formed of a spring having elasticity, and may be formed of various springs, such as a leaf spring and a coil spring, as necessary.
한편, 본체(110)의 내주면이 타원 형태인 것을 고려하여, 실링 부재(314)의 폭을 개구부(312)의 폭 보다 작게 형성함으로써 내주면의 곡률에 따라 실링 부재(314)가 회전 방향으로 다소 움직이면서 실링 부재(314)의 선단부가 본체(110)의 내주면과 항상 접촉된 상태를 유지하게 만들 수 있다. On the other hand, considering that the inner circumferential surface of the main body 110 is an elliptical shape, by forming the width of the sealing member 314 smaller than the width of the opening 312, the sealing member 314 moves slightly in the direction of rotation in accordance with the curvature of the inner circumferential surface The tip portion of the sealing member 314 may be kept in contact with the inner circumferential surface of the main body 110 at all times.
상기의 작용 공간(112)은 본체(110)의 내주면, 팁실(300) 및 블레이드(400)에 의해서 형성되며, 크기 또는 체적이 가변되는 공간이다. 이를 위해, 블레이드(400)는 팁실(300) 사이에 마련될 수 있다. The working space 112 is formed by the inner circumferential surface of the main body 110, the tip chamber 300 and the blade 400, and is a space in which size or volume is variable. To this end, the blade 400 may be provided between the tip chamber 300.
블레이드(400)는 회전자(200)의 4개소에 각각 마련된 팁실(300)들 사이에 마련되며, 팁실(300)에 의해 블레이드(400)의 양단이 지지될 수 있다. 이때 블레이드(400)는 원통 형태로 형성된 팁실(300)의 일단부(302)와 면접촉 하도록 블레이드(400)의 양단을 곡면으로 형성함으로써 팁실(300)과 블레이드(400)의 면접촉 또는 결합을 안정적으로 유지할 수 있다. The blade 400 is provided between the tip chambers 300 provided at four locations of the rotor 200, and both ends of the blade 400 may be supported by the tip chamber 300. At this time, the blade 400 forms a curved surface of both ends of the blade 400 so as to be in surface contact with the one end 302 of the tip chamber 300 formed in a cylindrical shape to make a surface contact or coupling between the tip chamber 300 and the blade 400. It can be kept stable.
도 3에 도시한 바와 같이, 블레이드(400)는 그 단면이 사다리꼴을 뒤집어 놓은 형상으로 형성될 수 있다. 블레이드(400)의 두께방향 일단면(402)과 타단면(404), 즉 윗면과 아랫면 길이는 서로 상이하게 형성될 수 있다. As shown in FIG. 3, the blade 400 may be formed in a shape in which a cross section of the blade 400 is inverted. One end surface 402 in the thickness direction of the blade 400 and the other end surface 404, that is, the length of the upper surface and the lower surface may be formed different from each other.
본 발명의 일 실시예에 따른 블레이드(400)의 일단면(402)의 길이는 타단면(404)의 길이보다 더 길게 형성되는 것이 바람직하다. The length of one end surface 402 of the blade 400 according to an embodiment of the present invention is preferably formed longer than the length of the other end surface (404).
왜냐하면, 블레이드(400)의 양단이 원통 형태로 형성된 팁실(300)의 일단부(302)와 면접촉하며 이웃하는 2개의 팁실(300) 사이에 끼워지기 때문에, 블레이드(400)의 두께방향 일단면(402)과 타단면(404) 사이의 팁실 접촉부(403)는 곡면으로 형성되어야 하며, 이때 일단면(402)과 타단면(404) 사이를 연결하는 팁실 접촉부(403)의 곡면의 곡률은 원통 형태로 형성된 팁실(300)의 일단부(302)와 동일한 곡률을 가지도록 형성하는 것이 바람직하다. Because both ends of the blade 400 are in surface contact with one end portion 302 of the tip chamber 300 formed in a cylindrical shape and sandwiched between two neighboring tip chambers 300, one end surface in the thickness direction of the blade 400. The tip chamber contact portion 403 between the 402 and the other end surface 404 should be formed in a curved surface, wherein the curvature of the curved surface of the tip thread contact portion 403 connecting between the one end surface 402 and the other end surface 404 is cylindrical. It is preferable to form so as to have the same curvature as one end 302 of the tip chamber 300 formed in the shape.
또한, 팁실 접촉부(403)와 블레이드(400)의 일단면(402)이 만나는 부분은 팁실(300)의 원통 형태의 일단부(302)의 상단부 쪽에 위치하는데, 이 부분은 라운드 지도록, 즉 모서리진 형태를 가지는 것이 아니라 소정의 곡률 반경을 가지도록 형성할 수 있다. In addition, the portion where the tip chamber contact portion 403 and the end surface 402 of the blade 400 meet is located at the upper end side of the cylindrical end portion 302 of the tip chamber 300, which is rounded, that is, cornered It may be formed to have a predetermined radius of curvature rather than having a shape.
이에 따라, 블레이드(400)의 팁실 접촉부(403)가 본체(110)의 내주면 내에서 회전할 때, 팁실 접촉부(403)와 블레이드(400)의 일단면(402)이 만나는 부분에 의해서 팁실(300)의 원통 형태의 일단부(302)에 블레이드(400)가 박히거나 마찰이 발생하여 블레이드(400) 또는 팁실(300)이 손상되는 것을 방지할 수 있다. Accordingly, when the tip chamber contact portion 403 of the blade 400 rotates within the inner circumferential surface of the main body 110, the tip chamber 300 is formed by a portion where the tip chamber contact portion 403 meets one end surface 402 of the blade 400. It is possible to prevent the blade 400 or the tip chamber 300 from being damaged due to the blade 400 being stuck or friction generated at one end 302 of the cylindrical shape.
구체적으로, 블레이드(400)의 일단면(402)과 팁실 접촉부(403)가 만나는 부분이 원통 형태로 형성된 팁실(300)의 일단부(302)와 꼭 맞닿는 형태로 형성될 경우, 팁실(300)에 의해서 블레이드(400)가 더욱 안정적으로 지지될 수 있다. Specifically, when the end portion 402 of the blade 400 and the tip chamber contact portion 403 meet the end portion 302 of the tip chamber 300 formed in a cylindrical shape is in close contact with the tip chamber 300, By the blade 400 can be supported more stably.
한편, 상기한 블레이드(400)의 길이 방향 양단 즉, 팁실 접촉부(403)는 가급적 팁실(300)의 원통 형태의 일단부(302)와 접촉하는 면적이 많게 형성하거나, 길이가 길게 형성하는 것이 바람직하다. 도 1을 참조하면, 팁실 접촉부(403)는 팁실(300)의 원통 형태 일단부(302)와 타단부(304)가 만나는 지점에서부터 팁실(300)과 접촉하고 있음을 알 수 있다. On the other hand, both ends of the blade 400 in the longitudinal direction, that is, the tip chamber contact portion 403 is preferably formed to have a large area or a long length contacting the cylindrical end portion 302 of the tip chamber 300. Do. Referring to FIG. 1, it can be seen that the tip chamber contact portion 403 is in contact with the tip chamber 300 from the point where the cylindrical end portion 302 and the other end 304 of the tip chamber 300 meet.
즉, 본 발명의 일 실시예에 따른 자유 회전식 유체 기계(100)의 블레이드(400)는, 팁실 접촉부(403)와 팁실(300)이 서로 맞닿는 부분의 접촉 면적을 늘이기 위해서 블레이드(400)의 일단면(402)과 타단면(404)의 곡면으로 형성하되, 각각의 곡률 반경 중심이 블레이드(400)를 기준으로 동일한 일측에 위치하도록 형성한다. 이와 같은 형태로 형성함으로써, 회전자(200)가 고속으로 회전하는 경우에 블레이드(400)가 본체(110)의 내주면 쪽으로 움직이게 되면, 블레이드(400)와 팁실(300)의 면접촉 상태를 유지하면서 블레이드(400)의 양단을 접촉 지지하는 팁실(300)도 본체(110)의 내주면을 향해서 움직이기 때문에 팁실(300)이 본체(110)의 내주면에 밀착될 수 있고 팁실(300)과 블레이드(400) 양단의 면접촉 상태가 파괴되어 누설이 발생하는 것을 방지하거나 블레이드(400)의 회전 불가 상태를 방지할 수도 있다.That is, the blade 400 of the free-rotating fluid machine 100 according to an embodiment of the present invention, one end of the blade 400 to increase the contact area of the portion where the tip chamber contact portion 403 and the tip chamber 300 abut each other. The curved surface of the surface 402 and the other end surface 404, each of the radius of curvature is formed so as to be located on the same side with respect to the blade 400. By forming in such a shape, if the blade 400 moves toward the inner circumferential surface of the main body 110 when the rotor 200 rotates at a high speed, while maintaining the surface contact state of the blade 400 and the tip chamber 300 Since the tip chamber 300, which contacts both ends of the blade 400, also moves toward the inner circumferential surface of the main body 110, the tip chamber 300 may be in close contact with the inner circumferential surface of the main body 110, and the tip chamber 300 and the blade 400 may be in close contact with each other. The surface contact state at both ends may be destroyed to prevent leakage, or the non-rotation state of the blade 400 may be prevented.
도 4 내지 도 6을 참조하여, 상기의 구조로 형성된 본 발명의 일 실시예에 따른 자유 회전식 유체기계(100)의 작동을 설명한다. 4 to 6, the operation of the free rotating fluid machine 100 according to an embodiment of the present invention formed in the above structure will be described.
여기서, 상기한 본 발명의 일 실시예에 따른 자유 회전식 유체 기계(100)는 터빈(Turbine), 압축기(Compressor), 펌프(Pump), 엔진(Engine) 및 컴팬더(Compander, 압축기와 팽창기) 등의 다양한 형태로 적용될 수 있다. Here, the free rotating fluid machine 100 according to an embodiment of the present invention is a turbine, a compressor, a pump, an engine, a compander, a compressor, an expander, and the like. It can be applied in various forms.
도 4 내지 도 6에 도시한 바와 같이, 만약, 본 발명에 따른 자유 회전식유체 기계(100)의 회전자(200)가 반시계방향으로 회전한다고 가정하면 도면부호 120 및 122가 흡입구가 되고, 도면부호 130 및 132가 배기구가 된다. As shown in Figures 4 to 6, if the rotor 200 of the free rotary fluid machine 100 according to the present invention is assumed to rotate counterclockwise reference numerals 120 and 122 are the intake port, Reference numerals 130 and 132 serve as exhaust ports.
이때, 도 4에 도시한 바와 같이, 본 발명의 일 실시예에 따른 자유 회전식 유체 기계(100)가 터빈이라면, 흡기구(120)(122)는 팁실(300) 및 보조 팁실(310)이 본체(110)의 내주면과 밀접하게 접촉되는 위치에 형성되고, 배기구(130)(132)는 본체(110)의 내주면과 회전자(200) 사이에 형성된 작용 공간(112)의 체적이 가장 큰 위치에 형성되는 것이 바람직하다. At this time, as shown in Figure 4, if the free-rotating fluid machine 100 according to an embodiment of the present invention is a turbine, the inlet port 120, 122 is the tip chamber 300 and the auxiliary tip chamber 310 is the main body ( It is formed in a position in close contact with the inner circumferential surface of the 110, the exhaust port 130, 132 is formed in a position where the volume of the working space 112 formed between the inner circumferential surface of the main body 110 and the rotor 200 is the largest. It is desirable to be.
상기와 같은 흡기구(120)(122) 및 배기구(130)(132)의 위치에 따른 자유 회전식 유체 기계(100)가 터빈으로 작동할 때, 흡입구(120)(122)를 통해 스팀, 에어, 가스 등의 작동 유체가 유입될 수 있다. 그러면, 유입된 작동 유체는 팁실(300)과 블레이드(400)를 밀면서 회전자(200)를 회전시키게 되고, 작동 유체는 넓은 공간에서 팽창하여 작용 공간(12)의 체적을 확장시키며 배기구(130)(132)를 통해 배출될 수 있다. When the free-rotating fluid machine 100 is operated as a turbine according to the positions of the inlets 120 and 122 and the exhaust ports 130 and 132 as described above, steam, air, gas through the inlets 120 and 122 are operated. A working fluid such as this can be introduced. Then, the introduced working fluid rotates the rotor 200 while pushing the tip chamber 300 and the blade 400, and the working fluid expands in a wide space to expand the volume of the working space 12 and exhaust port 130. May be discharged through 132.
한편, 도 5에 도시한 바와 같이, 본 발명의 일 실시예에 따른 자유 회전식 유체 기계(100)가 압축기라면, 작동 유체가 흡입되는 흡기구(120)(122)는 본체(110)의 내주면과 회전자(200) 사이에 형성된 작용 공간(112)의 체적이 가장 큰 위치에 형성되고, 작동 유체가 배출되는 배기구(130)(132)는 팁실(300) 및 보조 팁실(310)이 본체(110)의 내주면과 접촉되는 위치와 인접한 위치에 형성되는 것이 바람직하다. On the other hand, as shown in Figure 5, if the free-rotating fluid machine 100 according to an embodiment of the present invention is a compressor, the inlet port 120, 122 through which the working fluid is sucked is in contact with the inner peripheral surface of the main body 110 Exhaust ports 130 and 132 in which the volume of the working space 112 formed between the electrons 200 are formed at the largest position, and the working fluid is discharged, the tip chamber 300 and the auxiliary tip chamber 310 are the main body 110. It is preferably formed at a position adjacent to the position in contact with the inner peripheral surface of the.
상기와 같은 흡기구(120)(122) 및 배기구(130)(132)의 위치에 따른 자유 회전식 유체(110)가 압축기로 작동 할 때, 본체(110)와 회전자 사이에 형성된 작용 공간(112)에 작동 유체가 가득차고, 회전자(200)가 회전하면서 본체(11)와 회전자(200) 사이에 형성된 작용 공간(112)의 체적이 작아지면서 작동 유체가 압축된다. 압축된 작동 유체는 배기구(130)(132)로 배출될 수 있다. When the free rotating fluid 110 according to the position of the inlet port 120, 122 and the exhaust port 130, 132 as the compressor operates as a compressor, the working space 112 formed between the main body 110 and the rotor Is filled with the working fluid, and as the rotor 200 rotates, the working fluid is compressed while the volume of the working space 112 formed between the main body 11 and the rotor 200 becomes small. Compressed working fluid may be discharged to the exhaust ports 130 and 132.
즉, 자유 회전식 유체 기계(100)가 압축기인 경우에 있어서, 흡기구(120)(122) 및 배기구(130)(132)의 위치는 터빈인 경우의 흡기구 및 배기구의 위치와 상이한 것이 바람직하다. That is, in the case where the free-rotating fluid machine 100 is a compressor, the positions of the intake ports 120 and 122 and the exhaust ports 130 and 132 are preferably different from those of the intake and exhaust ports in the case of the turbine.
도 6에 도시한 바와 같이, 본 발명의 일 실시예에 따른 자유 회전식 유체 기계(100)가 컴팬더로 작동할 수도 있다. 여기서, 컴팬더란 압축기와 팽창기 동작을 모두 하는 하나의 자유 회전식 유체기계(100)를 일컫는다. As shown in FIG. 6, a free rotating fluid machine 100 according to one embodiment of the present invention may operate as a compander. Here, the compander refers to one free-rotating fluid machine 100 that performs both the compressor and the expander operation.
자유 회전식 유체 기계(100)가 컴팬더라면, 흡입구(120)(122)는 팁실(300) 및 보조 팁실(310)이 본체(110)의 내주면과 밀접하게 접촉되는 위치 및 본체(110)의 내주면과 회전자(200) 사이에 형성된 작용 공간(112)의 체적이 가장 큰 위치에 각각 형성되고, 배기구(130)(132)는 본체(110)의 내주면과 회전자(200) 사이에 형성된 작용 공간(112)의 체적이 가장 큰 위치 및 작동 유체가 배출되는 배기구(130)(132)는 팁실(300) 및 보조 팁실(310)이 본체(110)의 내주면과 접촉되는 위치와 인접한 위치에 각각 형성되는 것이 바람직하다. If the free-rotating fluid machine 100 is a compander, the inlets 120 and 122 are located at positions where the tip chamber 300 and the auxiliary tip chamber 310 are in close contact with the inner circumferential surface of the body 110 and the inner circumferential surface of the body 110. And the volume of the working space 112 formed between the rotor 200 and the largest position, respectively, the exhaust port 130, 132 is the working space formed between the inner peripheral surface of the main body 110 and the rotor 200 The location of the largest volume 112 and the exhaust ports 130 and 132 through which the working fluid is discharged are respectively formed at positions adjacent to the position where the tip chamber 300 and the auxiliary tip chamber 310 are in contact with the inner circumferential surface of the main body 110. It is desirable to be.
상기의 흡기구(120)(122) 및 배기구(130)(132)의 위치에 따른 자유 회전식 유체 기계(100)가 컴팬더로 작동할 때, 흡입구(120)로 유입된 작동 유체가 본체(110)와 회전자(200) 사이에 형성된 작용 공간(112)에 가득 차고, 회전자(200)가 회전되면서 본체(110)와 회전자(200) 사이에 형성된 작용 공간(112)의 체적이 작아지면서 작동 유체가 압축될 수 있다. 압축된 작동 유체는 배기구(132)로 배출되게 된다. 또한, 흡입구(122)로 유입된 작동 유체는 팁실(300)과 블레이드(400)를 밀면서 회전자(200)를 회전시키게 되고, 작동 유체는 넓은 공간에서 팽창하여 작용 공간(112)의 체적을 확장시키며 배기구(130)로 배출될 수 있다. When the free-rotating fluid machine 100 operates according to the positions of the intake holes 120 and 122 and the exhaust ports 130 and 132 as the compander, the working fluid introduced into the intake port 120 is the main body 110. And the working space 112 formed between the rotor 200 and the rotor 200 is rotated while the volume of the working space 112 formed between the main body 110 and the rotor 200 is reduced The fluid can be compressed. The compressed working fluid is discharged to the exhaust port 132. In addition, the working fluid introduced into the suction port 122 rotates the rotor 200 while pushing the tip chamber 300 and the blade 400, and the working fluid expands in a large space to expand the volume of the working space 112. And may be discharged to the exhaust port 130.
여기서, 팁실(300) 및 팁실(300)에 형성된 보조 팁실(310)에 의하여 본체(110)와 회전자(200) 사이에 발생할 수 있는 마찰력을 줄여 회전자(200)의 회전력을 향상시킬 수 있고, 본체(110)의 내주면과 팁실(300) 또는 보조 팁실(310) 사이의 실링 성능을 향상시킬 수 있다. Here, by reducing the frictional force that may occur between the main body 110 and the rotor 200 by the tip chamber 300 and the auxiliary tip chamber 310 formed in the tip chamber 300 to improve the rotational force of the rotor 200 The sealing performance between the inner circumferential surface of the main body 110 and the tip chamber 300 or the auxiliary tip chamber 310 may be improved.
상기에서 설명한 바와 같이, 본 발명에 따른 자유 회전식 유체 기계(100)는 팁실(300)에 보조 팁실(310)이 돌출되도록 형성하여, 회전자(200)가 회전될 때 본체(110)의 내주면과 팁실(300)의 접촉 성능 또는 실링 성능을 향상시킴으로써 본체(110)의 내주면과 회전자(200) 및 팁실(300) 사이의 작용 공간(112)을 밀폐시킬 수 있다. As described above, the free rotating fluid machine 100 according to the present invention is formed so that the auxiliary tip chamber 310 protrudes in the tip chamber 300, and the inner peripheral surface of the main body 110 when the rotor 200 is rotated; By improving the contact performance or sealing performance of the tip chamber 300, the working space 112 between the inner circumferential surface of the main body 110 and the rotor 200 and the tip chamber 300 may be sealed.
또한, 본 발명의 실시예들에 따르면 보조 팁실(310)에 의하여 본체(110) 내주면과 회전자(200) 및 팁실(300) 사이의 작용 공간(112)이 밀폐됨으로 인하여 팁실(300)과 본체(110) 사이의 마찰을 감소시킬 수 있을 뿐만 아니라 유입된 작동 유체의 누설을 방지할 수 있다. In addition, according to the embodiments of the present invention, the tip chamber 300 and the main body are sealed by the auxiliary tip chamber 310 because the working space 112 between the inner circumferential surface of the main body 110 and the rotor 200 and the tip chamber 300 is sealed. Not only can the friction between the 110 be reduced, but also leakage of the incoming working fluid can be prevented.
또한, 본 발명의 실시예들에 따르면 보조 팁실(310)이 팁실(300)로부터 인입되고 인출됨에 따라 서로 인접하게 마련된 팁실(300) 사이에서 지지되고 있는 블레이드(400)의 양단 즉, 팁실 접촉부(403)가 팁실(300)과 면접촉하는 상태를 유지하면서 팁실(300)이 움직일 수 있다. In addition, according to the embodiments of the present invention, as the auxiliary tip chamber 310 is drawn in and withdrawn from the tip chamber 300, both ends of the blade 400 supported between the tip chambers 300 provided adjacent to each other, that is, the tip chamber contacting portion ( The tip chamber 300 may move while the 403 maintains surface contact with the tip chamber 300.
또한, 본 발명의 실시예들에 따르면 팁실(300)과 회전자(200) 사이에 가압 부재(210)를 마련함으로써 팁실(300)이 본체(110)의 내주면을 향해 가압된 상태를 유지할 수 있고, 팁실(300)이 회전자(200)의 회전축(202) 쪽으로 후퇴할 때 팁실(300)을 탄성적으로 지지할 수 있다. In addition, according to embodiments of the present invention by providing a pressing member 210 between the tip chamber 300 and the rotor 200, the tip chamber 300 can maintain a state pressed toward the inner peripheral surface of the main body 110 The tip chamber 300 may elastically support the tip chamber 300 when the tip chamber 300 retreats toward the rotation shaft 202 of the rotor 200.
이상 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. Although the embodiments of the present invention have been described above with reference to the accompanying drawings, those skilled in the art to which the present invention pertains can understand that the present invention can be implemented in other specific forms without changing the technical spirit or essential features. will be.
그러므로 이상에서 기술한 실시예는 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해되어야 하고, 본 발명의 범위는 상기 상세한 설명을 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다. Therefore, the above-described embodiments are to be understood as illustrative and not restrictive in all respects, and the scope of the present invention is indicated by the claims that follow the above detailed description, and the meaning and scope of the claims and All changes or modifications derived from the equivalent concept should be interpreted as being included in the scope of the present invention.
본 발명은 유체 기계, 자유 회전식 유체 기계 등에 적용될 수 있다. The invention can be applied to fluid machines, free-rotating fluid machines and the like.

Claims (10)

  1. 중공의 원통형으로 마련되되, 내주면은 타원형으로 형성되는 본체;It is provided in a hollow cylindrical shape, the inner circumferential surface is formed in an oval shape;
    상기 본체 내부에 마련되며 상기 본체와 동일한 회전 중심과 동일한 중심에 대해서 회전하는 회전자; A rotor provided inside the main body and rotating about the same center of rotation as the main body;
    상기 본체의 내주면과 접촉하도록 상기 회전자의 일측에 구비되는 팁실; 및A tip chamber provided on one side of the rotor to contact the inner circumferential surface of the main body; And
    서로 인접하게 마련된 팁실 사이에 마련되며 상기 팁실에 의해서 지지되는 블레이드; Blades provided between the tip chambers provided adjacent to each other and supported by the tip chambers;
    를 포함하며, Including;
    상기 블레이드는 상기 본체의 내주면과 마주보는 일단면 및 상기 일단면과 대향하는 타단면을 가지며, 상기 일단면과 상기 타단면의 곡률 반경 중심은 동일한 쪽에 위치하는 것을 특징으로 하는 자유 회전식 유체 기계. And the blade has one end face facing the inner circumferential face of the body and the other end face opposite to the one end face, and the center of curvature radius of the one end face and the other end face is located on the same side.
  2. 제1항에 있어서, The method of claim 1,
    상기 블레이드는 상기 일단면과 상기 타단면을 연결하는 팁실 접촉부를 가지며, 상기 팁실 접촉부는 상기 팁실과 동일한 곡면을 가지도록 형성된 것을 특징으로 하는 자유 회전식 유체 기계. And the blade has a tip seal contact portion connecting the one end face and the other end face, the tip seal contact portion being formed to have the same curved surface as the tip seal.
  3. 제2항에 있어서, The method of claim 2,
    상기 팁실의 길이방향 일단부는 단면이 원형인 원통 형태로 형성되어 상기 본체의 내주면에 접촉되고, 타단부는 단면이 사각형인 육면체의 막대 형태로 형성되며, One end portion in the longitudinal direction of the tip thread is formed in a cylindrical shape having a circular cross section and is in contact with the inner circumferential surface of the main body, and the other end is formed in the shape of a rod of hexahedron having a rectangular cross section.
    상기 팁실 접촉부는 상기 일단부와 상기 타단부가 만나는 지점에서부터 상기 일단부과 면접촉하는 것을 특징으로 하는 자유 회전식 유체 기계. And the tip chamber contact is in surface contact with the one end from a point where the one end and the other end meet.
  4. 제3항에 있어서, The method of claim 3,
    상기 팁실 접촉부와 상기 일단부가 만나는 부분은 곡면으로 형성된 것을 특징으로 하는 자유 회전식 유체 기계. And the portion where the tip seal contact and the one end meet is formed into a curved surface.
  5. 제3항에 있어서, The method of claim 3,
    상기 팁실의 일단부에는 상기 본체의 내주면을 향해 돌출 가능하게 형성된 보조 팁실이 구비되며, One end of the tip chamber is provided with an auxiliary tip chamber formed to protrude toward the inner peripheral surface of the main body,
    상기 보조 팁실은 상기 본체의 내주면과 면접촉 상태를 유지하면서 상기 회전자에 의해서 회전하는 것을 특징으로 하는 자유 회전식 유체 기계. And the auxiliary tip chamber is rotated by the rotor while maintaining surface contact with the inner circumferential surface of the body.
  6. 제5항에 있어서, The method of claim 5,
    상기 보조 팁실은, The auxiliary tip thread,
    상기 팁실로부터 인입 또는 인출되는 실링 부재; 및A sealing member drawn in or drawn out from the tip chamber; And
    상기 실링 부재를 지지하며, 상기 팁실로부터 인입 또는 인출되는 것을 가능하게 하는 탄성 지지체를 포함하는 것을 특징으로 하는 자유 회전식 유체 기계. And a resilient support for supporting said sealing member and allowing retraction or withdrawal from said tip chamber.
  7. 제6항에 있어서, The method of claim 6,
    상기 실링 부재는 세라믹 재질로 형성되는 것을 특징으로 하는 자유 회전식 유체 기계. And the sealing member is formed of a ceramic material.
  8. 제1항에 있어서, The method of claim 1,
    상기 팁실과 상기 회전자 사이에 마련되어 상기 팁실을 탄성 가압하는 가압 부재를 더 포함하는 것을 특징으로 하는 자유 회전식 유체 기계.And a pressurizing member provided between said tip chamber and said rotor to elastically pressurize said tip chamber.
  9. 제6항에 있어서, The method of claim 6,
    상기 실링 부재의 폭은 상기 팁실의 일단부에 형성되어 상기 실링 부재가 삽입되는 개구부의 폭보다 작게 형성된 것을 특징으로 하는 자유 회전식 유체 기계.And the width of the sealing member is formed at one end of the tip chamber to be smaller than the width of the opening into which the sealing member is inserted.
  10. 제1항에 있어서, The method of claim 1,
    상기 본체에는, In the main body,
    적어도 하나 이상의 흡입구와 적어도 하나 이상의 배기구가 마련되되, 상기 흡입구 및 상기 배기구는 상기 본체의 회전 중심을 중심으로 방사형으로 마련되는 것을 특징으로 하는 자유 회전식 유체 기계. At least one suction port and at least one exhaust port are provided, wherein the suction port and the exhaust port are provided radially about a rotation center of the body.
PCT/KR2016/007157 2015-07-09 2016-07-04 Free-turning fluid machine WO2017007195A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/535,931 US20170350250A1 (en) 2015-07-09 2016-07-04 Free rotary fluid machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0097559 2015-07-09
KR1020150097559A KR101568640B1 (en) 2015-07-09 2015-07-09 Freely rotating type fluid machinery

Publications (1)

Publication Number Publication Date
WO2017007195A1 true WO2017007195A1 (en) 2017-01-12

Family

ID=54605909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/007157 WO2017007195A1 (en) 2015-07-09 2016-07-04 Free-turning fluid machine

Country Status (3)

Country Link
US (1) US20170350250A1 (en)
KR (1) KR101568640B1 (en)
WO (1) WO2017007195A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102041396B1 (en) * 2017-07-03 2019-12-02 신종순 Freely rotating type fluid machinaery
KR102082348B1 (en) * 2018-04-03 2020-03-13 김고비 Freely rotating type fluid machinery
KR102079878B1 (en) * 2018-12-13 2020-02-20 에스지서보(주) Vane type hydraulic rotary actuator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5718402A (en) * 1980-07-04 1982-01-30 Matsushita Electric Works Ltd Vane system motor
KR970021676A (en) * 1995-10-30 1997-05-28 김병시 Multistage Continuous Explosion Fan Rotor Engine
JP2002147201A (en) * 2000-09-04 2002-05-22 Honda Motor Co Ltd Rotating fluid machine
KR100652557B1 (en) * 2005-02-17 2006-12-05 김우균 Free piston rotary engine
KR20090027428A (en) * 2007-09-12 2009-03-17 현경열 Rotary type fluid pump

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2458620A (en) * 1945-05-28 1949-01-11 Gen Motors Corp Sliding vane compressor
US3223044A (en) * 1963-07-18 1965-12-14 American Brake Shoe Co Three-area vane type fluid pressure energy translating devices
AU726791B1 (en) * 2000-05-12 2000-11-23 Peter A. Szorenyi Hinged rotor internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5718402A (en) * 1980-07-04 1982-01-30 Matsushita Electric Works Ltd Vane system motor
KR970021676A (en) * 1995-10-30 1997-05-28 김병시 Multistage Continuous Explosion Fan Rotor Engine
JP2002147201A (en) * 2000-09-04 2002-05-22 Honda Motor Co Ltd Rotating fluid machine
KR100652557B1 (en) * 2005-02-17 2006-12-05 김우균 Free piston rotary engine
KR20090027428A (en) * 2007-09-12 2009-03-17 현경열 Rotary type fluid pump

Also Published As

Publication number Publication date
KR101568640B1 (en) 2015-11-11
US20170350250A1 (en) 2017-12-07

Similar Documents

Publication Publication Date Title
WO2017007195A1 (en) Free-turning fluid machine
US7343894B2 (en) Modular rotary engine
US6244240B1 (en) Rotary positive-displacement scavenging device for rotary vane pumping machine
RU2255226C2 (en) Rotary piston machine
WO2018147562A1 (en) Hermetic compressor
US20210277780A1 (en) Arc Turbine
WO2018226009A1 (en) Pump with vacuum, self-priming, and booster functions
CN103498727A (en) Vane type engine
CN109236461B (en) Flow guiding type rotor internal combustion engine between rotor and stator
RU200122U1 (en) MULTI-VANE MOTOR
CN203515794U (en) Vane engine
US11408287B2 (en) Compressor pump body, compressor, and air conditioner with a vane enlargement portion
WO2018106003A2 (en) Engine oil pump
KR100652557B1 (en) Free piston rotary engine
WO2021235703A1 (en) Rotary compressor
CN216950859U (en) Pump body subassembly and rotary compressor
KR20190004038A (en) Freely rotating type fluid machinaery
US20210396231A1 (en) Rotary-vane mechanism for engines and compressors
CN220378480U (en) Double-cylinder pump body structure and compressor
WO2023106528A1 (en) Reciprocating compressor
WO2023054855A1 (en) Scroll compressor
WO2023210878A1 (en) Reciprocating compressor
KR100393347B1 (en) Apparatus for utilization of vane having two wings in fluid compression and power transformation
RU2042841C1 (en) Device for sealing working spaces of rotor internal combustion engines
KR20050039761A (en) Rotary engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821601

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15535931

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16821601

Country of ref document: EP

Kind code of ref document: A1