WO2017007177A1 - 단말의 방향 추정을 위한 빔 생성 장치 및 방법 - Google Patents

단말의 방향 추정을 위한 빔 생성 장치 및 방법 Download PDF

Info

Publication number
WO2017007177A1
WO2017007177A1 PCT/KR2016/007076 KR2016007076W WO2017007177A1 WO 2017007177 A1 WO2017007177 A1 WO 2017007177A1 KR 2016007076 W KR2016007076 W KR 2016007076W WO 2017007177 A1 WO2017007177 A1 WO 2017007177A1
Authority
WO
WIPO (PCT)
Prior art keywords
received
terminal
reception
magnitude
gain
Prior art date
Application number
PCT/KR2016/007076
Other languages
English (en)
French (fr)
Inventor
박해성
최창순
Original Assignee
에스케이텔레콤 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이텔레콤 주식회사 filed Critical 에스케이텔레콤 주식회사
Priority to EP16821583.8A priority Critical patent/EP3319242B1/en
Priority to JP2017567695A priority patent/JP6483293B2/ja
Priority to US15/741,659 priority patent/US10236946B2/en
Priority to CN201680039516.4A priority patent/CN107710642B/zh
Publication of WO2017007177A1 publication Critical patent/WO2017007177A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/0009Transmission of position information to remote stations
    • G01S5/0018Transmission from mobile station to base station
    • G01S5/0036Transmission from mobile station to base station of measured values, i.e. measurement on mobile and position calculation on base station
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/10Position of receiver fixed by co-ordinating a plurality of position lines defined by path-difference measurements, e.g. omega or decca systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/27Monitoring; Testing of receivers for locating or positioning the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0882Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using post-detection diversity
    • H04B7/0885Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using post-detection diversity with combination

Definitions

  • the present invention relates to a beam generating apparatus and method, and more particularly to a beam generating apparatus and method in a high frequency band-based wireless communication system using a plurality of antenna beams.
  • high frequency bands such as centimeter waves of 6 GHz or more (electromagnetic waves having a wavelength in centimeters, usually 3 to 30 GHz bands) or millimeter waves (wavelength of millimeters of electromagnetic waves, usually in the range of 30 to 300 GHz) are 5G. It is emerging as the main spectrum.
  • This high frequency band is advantageous in terms of the implementation of the RF system that can increase the operating bandwidth as the center frequency is increased, it is possible to increase the density of the antenna. That is, in the high frequency band, when the physical size of the same antenna is assumed, as the frequency increases, the physical distance between radiators constituting the antenna decreases, thereby allowing a greater number of radiating elements to be integrated.
  • the plurality of radiating elements control the amplitude (Amplitude) and phase (Phase) of the RF signal, Massive MIMO (Multiple Input Multiple) to enable 3D beamforming and multiple transmission to generate various types of antenna beams Output) is the hardware base of the technology.
  • the increased path loss is overcome by forming a high-gain pencil beam using a plurality of antenna radiating elements increased by the use of high frequency.
  • the beam width becomes very narrow and the propagation of the radio waves becomes strong while the diffraction is weakened. Therefore, if the base station and the terminal do not operate the appropriate transmit / receive beams according to the position change of the terminal, communication may not be smooth. .
  • 1 is an exemplary view illustrating an antenna operation method in a conventional low frequency band based wireless communication system.
  • 2 is an exemplary diagram of an antenna beam pattern in a conventional low frequency band based wireless communication system.
  • an antenna having a relatively wide beam width by mainly utilizing attenuation of electromagnetic waves according to a transmission / reception distance between a base station and a terminal, that is, a low frequency band of less than 6 GHz having a low path loss. Even if it is applied, it was possible to create a smooth communication link.
  • FIG. 3 illustrates a conventional method of deriving an optimal antenna beam in a high frequency band based wireless communication.
  • the method shown in Figure 3 is a beam switching (Beam Switching) for selecting a beam that guarantees the best radio link among a plurality of preset antenna beam set (for example, base station antenna receiving beam # 1 to base station antenna receiving beam # N) ) Technique.
  • Beam Switching Beam Switching
  • FIG. 4 is an exemplary view of an antenna beam pattern for each antenna beam index in a high frequency band based wireless communication.
  • FIG. 5 is an enlarged view of a portion of 10 degrees from -10 degrees of FIG. 4.
  • the antenna beam pattern data shown in FIGS. 4 and 5 has discrete values at predetermined angular intervals rather than continuous values.
  • FIG. 6 illustrates in more detail a conventional method of deriving an optimal antenna beam in a high frequency band wireless communication.
  • the conventional method of deriving the optimal antenna beam as shown in Figure 6, by comparing the size of the received signal received from the terminal for each antenna receiving beam, the antenna beam having the largest received signal size is the optimal antenna receiving beam Is selected as.
  • the angle of arrival (AoA) of the signal from the terminal i.e., the angle of the direction from the terminal to the base station relative to the reference direction
  • the direction of the optimal antenna reception beam i.e. If the size does not coincide with the maximum angle (in FIG.
  • the base station antenna receiving beam # 3 is selected as the optimal receiving beam, and the terminal is not positioned at 0 degrees, which is the direction angle of the base station antenna receiving beam # 3),
  • the loss of electromagnetic waves is generated as compared with the case where the angle of arrival of the signal from the terminal and the direction of the optimal antenna reception beam coincide. This loss can be generated by the difference between the magnitude of the electromagnetic wave at the maximum and the directivity of the optimal antenna receiving beam and the magnitude of the electromagnetic wave at the intersection of the optimal antenna receiving beam and the adjacent beam (base station antenna receiving beam # 2).
  • an antenna beam having a wide beam width is used as a method for coping with a problem of a beam switching technique.
  • the method finds a suitable beam through recursive iteration that finds an optimal beam between terminals and subdivides the selected beam area into an antenna beam having a narrow beam width, or based on Maximum Likelihood (ML) for estimation of the position of the terminal in each stage.
  • ML Maximum Likelihood
  • DoA Direction of Arrival
  • the received data of the entire beam used in each stage should be utilized, and the angle of the terminal (that is, the angle of arrival of the signal from the terminal) is calculated through a matrix operation. ), The amount of calculation was relatively high.
  • an embodiment of the present invention in the high frequency band-based wireless communication, the first antenna beam having the largest magnitude of the received signal transmitted from the terminal to the base station among the plurality of antenna beams and the second largest second antenna beam
  • the first antenna beam having the largest magnitude of the received signal transmitted from the terminal to the base station among the plurality of antenna beams and the second largest second antenna beam
  • a first reception beam having a largest reception signal received from a terminal and a reception signal having a second largest reception magnitude are received from the terminal.
  • a direction of the terminal based on a beam derivation unit for deriving a second reception beam and a ratio value of a magnitude of a reception signal received through the first reception beam and a reception signal received through the second reception beam;
  • a control unit for estimating is a control unit for estimating.
  • a first antenna beam is received from a terminal and a received signal having a second largest size is received from the terminal.
  • Deriving a second reception beam and estimating a direction of the terminal by using a ratio value of a magnitude of a reception signal received through the first reception beam and a magnitude of a reception signal received through the second reception beam; And generating a reception beam in which the reception signal having the largest magnitude is received in the direction of the estimated terminal.
  • the first antenna beam having the largest magnitude of the received signal transmitted to the base station and transmitted to the base station among the plurality of antenna beams is derived and the second largest second antenna beam is derived.
  • the terminal is more accurately calculated with a relatively small amount of calculation.
  • the angle of ie, the angle of arrival of the signal from the terminal
  • the optimal antenna beam for the terminal can be generated using this.
  • FIG. 1 is an exemplary view illustrating an antenna operation method in a conventional low frequency band based wireless communication system.
  • FIG. 2 is an exemplary diagram of an antenna beam pattern in a conventional low frequency band based wireless communication system.
  • FIG. 3 is a diagram illustrating a conventional method of deriving an optimal antenna beam in a high frequency band based wireless communication.
  • FIG. 4 is an exemplary view of an antenna beam pattern for each antenna beam index in a high frequency band based wireless communication.
  • FIG. 5 is an enlarged view of a portion of 10 degrees from -10 degrees of FIG. 4.
  • FIG. 6 illustrates in more detail a conventional method of deriving an optimal antenna beam in a high frequency band wireless communication.
  • FIG. 7 is a block diagram of a beam generating apparatus for direction estimation of a terminal according to an embodiment of the present invention.
  • FIG. 8 illustrates an example of a beam pattern for each antenna beam index and a ratio of gains of an object beam and an adjacent beam for each angle according to an embodiment of the present invention.
  • FIG. 9 illustrates a trend line of a ratio of gains of an object beam and an adjacent beam for each angle of FIG. 8.
  • FIG. 10 is a diagram illustrating a method of estimating a direction of a terminal using a ratio value of magnitudes of received signals and a trend line of FIG. 9 according to an embodiment of the present invention.
  • FIG. 11 is a diagram illustrating a gain improved when generating a reception beam in the direction of an estimated terminal according to an embodiment of the present invention.
  • FIG. 12 is a flowchart illustrating a method of estimating a direction of a terminal and generating an optimal reception beam based on the same according to an embodiment of the present invention.
  • the beam generating apparatus 700 includes a beam pattern measuring unit 702, a storage unit 704, a beam generating unit 706, a signal strength measuring unit 708, a control unit 710, a beam deriving unit 712, and the like. can do.
  • the beam generating apparatus 700 may be part of a base station having a plurality of antennas. At least a part of the beam generating apparatus 700 may be implemented by a microprocessor.
  • each component of the beam generating apparatus 700 will be described in detail with reference to FIG. 7.
  • the beam pattern measuring unit 702 measures a beam pattern (for example, as shown in FIG. 5) of each of the plurality of reception beams generated by the beam generating unit 706.
  • the beam pattern means a gain according to an angle (ie, direction). Measurement of the beam pattern may be performed for a finite number of angles.
  • the beam pattern measuring unit 702 derives a ratio of the gain of the target beam and the adjacent beam for each angle and a trend line equation thereof from the measured beam patterns.
  • the object beam for a particular angle is a reception beam having the largest gain at that angle among the plurality of reception beams.
  • the adjacent beam for a particular angle is the receive beam with the second largest gain at that angle of the plurality of receive beams.
  • the beam pattern measurement unit 702 stores the information on the ratio of the gain of the target beam and the adjacent beam for each angle and the trend line equation thereof in the storage unit 704, thereby providing an embodiment of the present invention.
  • the controller 710 may use the information stored in the storage unit 704 during the estimation of the direction of the terminal and the optimal beam generation process based thereon.
  • the beam pattern measuring unit 702 may include or be implemented by a microprocessor.
  • the storage unit 704 may store information on the ratio of the gain ratio of the target beam and the adjacent beam for each angle, the trend line equation, and the like.
  • the beam generator 706 generates a multi-beam of a high frequency band (for example, a centimeter wave or a millimeter wave of 6 GHz or more), and performs beamforming to the terminal side. That is, the beam generator 706 may generate multiple transmission beams for signal transmission to the terminal, and generate multiple reception beams for signal reception from the terminal.
  • the beam generator 706 may generate multiple beams through analog beamforming, digital beamforming, or hybrid beamforming in combination of the two.
  • analog beamforming may refer to generating one beam sequentially in different basebands
  • digital beamforming refers to simultaneously generating a plurality of beams in parallel in different basebands. Can say to produce.
  • the beam generator 706 may include various components such as a baseband unit, a phase shifter, a low noise amplifier, and a mixer unit for analog beamforming, digital beamforming, or hybrid beamforming as described above.
  • the component of the corresponds to a general configuration that is already applied in the field of beamforming, so a detailed description thereof will be omitted.
  • the beam generator 706 may generate a reception beam in the direction of the terminal estimated under the control of the controller 710, which will be described later.
  • the signal strength measuring unit 708 receives a signal transmitted from the terminal. For example, when the UE transmits a random access channel (RACH) preamble or a sounding reference signal (SRS), the signal strength measuring unit 708 may each of the multiple reception beams generated by the beam generator 706. Calculate the amplitude (ie, electric field strength) of the received signal (ie, RACH preamble or SRS) received from the UE. That is, the signal strength measuring unit 708 may calculate the magnitude of the received signal received from the terminal through the reception beam of each antenna of the base station.
  • RACH random access channel
  • SRS sounding reference signal
  • the signal strength measuring unit 708 may sequentially derive the received signal size of each received beam when the received beams generated by the beam generator 706 are generated by the analog beamforming, and may be generated by the digital beamforming. In this case, the reception signal size of each reception beam can be simultaneously derived in parallel.
  • the beam derivation unit 712 When the beam derivation unit 712 receives the information on the received signal size from the terminal for each received beam generated by the beam generator 706 through the signal strength measuring unit 708, the received signal size of each received beam By comparing with the target beam (that is, the first receiving beam) that is the received beam having the largest size detected, and the adjacent beam (ie, the first received beam that is adjacent to the target beam and detected the second largest size) Information on the second reception beam).
  • the beam deriving unit 712 transmits the information about the derived object beam and the adjacent beam to the controller 710.
  • the beam derivation unit 712 may include or be implemented by a microprocessor.
  • the controller 710 calculates a ratio value of the magnitude of the received signal received from the terminal through the target beam and the magnitude of the received signal received from the terminal through the adjacent beam.
  • the controller 710 is a pair of the target beam and the adjacent beam derived by the beam derivation unit 712 among the information on the ratio of the gain of the target beam and the adjacent beam for each angle stored in the storage 704 and the trend line equation.
  • Information is extracted and the direction of the terminal (that is, the direction from the beam generating apparatus 700 to the terminal) is estimated by applying the calculated ratio value to the extracted information.
  • the direction of the terminal may be represented by an angle.
  • the controller 710 may calculate an offset value that is an angle at which the direction of the terminal is displaced with respect to the direction of the target beam (that is, the direction in which electromagnetic waves can be received most strongly through the target beam).
  • the controller 710 controls the beam generator 706 to generate the reception beam in the direction of the estimated terminal (that is, the offset value becomes 0).
  • the controller 710 may transmit information on the estimated direction of the terminal or information on the calculated offset value to the beam generator 706.
  • the beam generation unit 706 is configured to generate a reception beam in which the largest reception signal is received in the direction of the estimated terminal (that is, capable of strongly receiving electromagnetic waves), that is, a reception beam having a direction angle in the direction of the estimated terminal. By generating, the transmit and receive electric field strength between the terminal and the beam generating apparatus 700 (ie, the base station) may be improved.
  • the beam generator 706 may generate an optimal reception beam by shifting the target beam with respect to the reception signal from the terminal so that the offset value becomes zero based on the calculated offset value.
  • the control unit 710 may include or be implemented by a microprocessor.
  • a reception beam (that is, a target beam) having the largest magnitude of a reception signal received from the terminal among multiple reception beams (ie, a target beam) and a second reception beam (ie, adjacent beam) are derived. Then, by calculating the size ratio of the received signal received through the target beam and the adjacent beam, an offset value that is an angle between the direction of the terminal and the direction of the terminal and the direction of the target beam can be obtained with a relatively small amount of calculation. That is, the beam pattern measuring unit 702 measures the beam pattern between the multiple reception beams in advance, calculates a ratio of gains of the object beam and the adjacent beam for each angle, and makes a database or curve fitting the curve.
  • FIG. 8 illustrates an example of a beam pattern for each antenna beam index and a ratio of gains of an object beam and an adjacent beam for each angle according to an embodiment of the present invention.
  • the same beam pattern for each antenna beam index as shown in FIG. 5 is illustrated.
  • the combination of the object beam having the largest gain for each angle and the adjacent beam having the second largest gain can be derived from the beam pattern for each antenna beam index at the bottom of FIG. 8.
  • Angular regions with the same object beam and adjacent beams for example, -6 to -4 degrees, -4 to -2 degrees, -2 to 0 degrees, 0 degrees In the region between 2 degrees, the region between 2 and 4 degrees, and the region between 4 and 6 degrees).
  • the receiving beam # 2 is the largest because the gain of the receiving beam # 2 is the target beam
  • the receiving beam # 1 is the second largest because the gain of the receiving beam # 1 is the second largest. 1 is an adjacent beam.
  • the ratio of the gains of the object beams by angle (ie, direction) and the adjacent beams (that is, the gain of the object beams is the gain of the adjacent beams). Divided) can be calculated. This calculation may be performed by the beam pattern measurement unit 702, the result may be stored in the storage unit 704. In this case, since the beam pattern data is a discretized value, the ratio of the calculated gain is also discretized at a predetermined angular interval.
  • FIG. 9 illustrates a trend line of a ratio of gains of an object beam and an adjacent beam for each angle of FIG. 8.
  • the trend line of FIG. 9 may be derived by curve fitting data about a ratio of gains of an object beam and an adjacent beam for each angle.
  • the trend line is a function representing the relationship between the gain ratio and the angle between the target beam and the adjacent beam, and may be expressed by various formulas such as a linear function, a polynomial function, and an exponential function.
  • such a trend line may be databased through beam pattern measurement after fabricating the antenna and before operating the system.
  • the trend line in the region where the target beam derived from the data of the ratio of the discrete gain shown in FIG. 9 is the reception beam # 3 and the adjacent beam is the reception beam # 2 (ie, between -2 degrees and 0 degrees) is It may be represented by the equation as in Equation 1 below.
  • x is an angle and y is the magnitude ratio of the gain of receive beam # 3 (ie, the target beam) to receive beam # 2 (ie, the adjacent beam).
  • the trend line equation for each angle region may be derived by the beam pattern measuring unit 702 and stored in the storage unit 704.
  • FIG. 10 is a diagram illustrating a method of estimating a direction of a terminal using a ratio value of magnitudes of received signals and a trend line of FIG. 9 according to an embodiment of the present invention.
  • the terminal 800 located at an angle (ie, direction) as shown in FIG. 10 transmits a RACH preamble or a sounding reference signal.
  • the strongest signal may be received in the reception beam # 3
  • the second strongest signal may be received in the reception beam # 2.
  • the direction of the terminal that is, the direction of the terminal using the equation for the trend line 820 or the trend line 820 previously derived for the region 810 where the target beam is the reception beam # 3 and the adjacent beam is the reception beam # 2.
  • An angle of arrival of the signal received from the terminal may be estimated.
  • the value obtained by dividing the size of the received signal from the terminal received through the reception beam # 3 as the target beam by the size of the received signal from the terminal received through the reception beam # 2 as the adjacent beam on the trend line for the region 810. (Hereinafter, the ratio value 830) may be found on the vertical axis, and an angle value ⁇ at the horizontal axis corresponding thereto may be derived. That is, the direction corresponding to the value degree value ⁇ may be estimated as the direction of the terminal.
  • the angle value ( ⁇ ) derived in this way is offset by the terminal that is different from the directivity angle (0 degree) of the target beam (receive beam # 3). This can be
  • the angle of arrival of the signal transmitted from the terminal using the pre-calculated trend line equation as described above can be quickly estimated without complicated calculation compared to the Maximum Likelihood method.
  • FIG. 11 is a diagram illustrating a gain improved when generating a reception beam in the direction of an estimated terminal according to an embodiment of the present invention.
  • the reception beam 902 is generated to face the estimated direction of the terminal 800 according to an embodiment of the present invention
  • the beam for measuring the beam pattern described with reference to FIGS. 7 and 8 is described.
  • the reception signal from the terminal 800 uses the largest antenna beam 900 among the plurality of reception beams generated by the generation unit 706 (that is, the beam switch method)
  • the direction of the terminal 800 It can be seen that the antenna gain is improved by as much as.
  • the present invention it is possible to provide a radio wave environment that is superior to the method of selecting the reception beam 900 in the conventional beam switch method, the estimation of the direction of the terminal based on a simple equation (trend line equation) Because of this, it is possible to estimate the direction of the terminal faster than the Maximum Likelihood method requiring a complicated matrix operation.
  • FIG. 12 is a flowchart illustrating a method of estimating a direction of a terminal and generating an optimal reception beam based on the same according to an embodiment of the present invention.
  • the beam pattern measuring unit 702 of the beam generating apparatus 700 measures the beam pattern of each of the multiple reception beams (S1200).
  • the beam pattern of the base station antenna reception beam generated to receive the signal transmitted from the terminal is illustrated for convenience of description, but is not limited thereto.
  • the beam pattern measuring unit 702 derives a ratio of the gain of the target beam and the adjacent beam for each angle and a trend line equation thereof based on the beam patterns of each of the multiple reception beams, as shown in FIGS. 8 to 9. (S1202).
  • the information such as the pattern size ratio and trend line formula for each target beam and adjacent beam combination derived as described above is stored in the storage unit 704 of the beam generating apparatus 700 by the controller 710 in the direction estimation process of the terminal. Reference may be made.
  • the beam generating apparatus 700 may receive a RACH preamble or a sounding reference signal from the terminal 800. There is (S1204).
  • the signal strength measuring unit 708 calculates the size of the received signal (RACH preamble or sounding reference signal) received from the terminal 800 for each reception beam (S1206).
  • the beam derivation unit 712 compares the size of the received signal for each received beam (S1208), and secondly with the target beam (that is, the first received beam) that is the received beam in which the received signal having the largest size is sensed.
  • the target beam that is, the first received beam
  • the beam derivation unit 712 compares the size of the received signal for each received beam (S1208), and secondly with the target beam (that is, the first received beam) that is the received beam in which the received signal having the largest size is sensed.
  • a pair of adjacent beams that is, a second reception beam
  • a reception beam in which a reception signal having a large size is sensed is derived.
  • the controller 710 may include information about the pair of the target beam and the adjacent beam derived through the comparison of the received signal magnitudes, and data about the ratio of the gain of the target beam and the adjacent beam for each angle as shown in FIGS. 8 to 9.
  • the direction of the terminal 800 is estimated using the trend line equation (S1212).
  • control unit 710 generates the reception beam again in the direction of the terminal estimated as described above (S1214).
  • the transmit beam may be generated in the same way.
  • the first antenna beam having the largest magnitude of the received signal transmitted from the terminal to the base station among the plurality of antenna reception beams is the second largest and the largest.
  • Deriving the second antenna beam to calculate the ratio of the received signal size ratio of the first antenna beam and the second antenna beam, and a function corresponding to the ratio of the ratio of the calculated ratio value and the gain of the antenna target beam and the adjacent beam for each pre-stored angle By generating the optimal antenna beam for the terminal location tracking by using this, it is possible to estimate the position (ie, direction) of the terminal more accurately with a relatively small amount of calculation.
  • the terminal position estimation can overcome the high path loss problem in the high-frequency band-based wireless communication to ensure the received electric field strength, it is possible to create / maintain the optimal radio link between the base station and the terminal.
  • the base station antenna reception beam has been described as an example among various antenna beams, but it is also applicable to the terminal antenna reception beam.
  • the signal source may be not only a terminal but also a base station or something else.
  • a reception beam having the largest received signal ie, a target beam
  • a received signal having the second largest reception signal among the plurality of reception beams when receiving a signal from a signal source, a reception beam having the largest received signal (ie, a target beam) and a received signal having the second largest reception signal among the plurality of reception beams.
  • the direction of the signal source may be estimated using the magnitude ratio of the received signals of the reception beams (ie, adjacent beams). Conversely, the same applies to the case of operating the multi-beam in the antenna transmission beam of the terminal and the base station. Therefore, the scope of the invention should be determined by the claims rather than by the described embodiments.
  • low latency service and stable and improved radio link generation may be more easily implemented in a high frequency band mobile communication system such as 5G.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

빔 생성 장치가 제공된다. 상기 빔 생성 장치는 다수의 수신빔 중에서, 단말로부터 가장 큰 크기를 갖는 수신 신호가 수신되는 제 1 수신빔과 상기 단말로부터 두 번째로 큰 크기를 갖는 수신 신호가 수신되는 제 2 수신빔을 도출하는 빔 도출부와, 상기 제 1 수신빔을 통해 수신된 수신신호의 크기와 상기 제 2 수신빔을 통해 수신된 수신신호의 크기의 비율값에 기초하여 상기 단말의 방향을 추정하는 제어부를 포함한다.

Description

단말의 방향 추정을 위한 빔 생성 장치 및 방법
본 발명은 빔 생성 장치 및 방법에 관한 것으로, 특히 다수의 안테나 빔을 이용하는 고주파 대역 기반 무선통신 시스템에서의 빔 생성 장치 및 방법에 관한 것이다.
현재 이동통신에서 주로 사용하고 있는 6GHz 미만의 저주파 대역의 경우, 이동통신, 방송, 위성통신 등 기존 시스템에 의해 포화되었거나 파편화(Fragmentation)되어 있어 대용량 데이터 전송 등을 위한 초광대역폭 주파수 확보가 어렵다.
이에 따라, 6GHz 이상의 센티미터파(centimeter wave: 파장이 센티미터 단위의 전자기파로 보통 3~30GHz 대역) 또는 밀리미터파(millimeter wave: 파장이 밀리미터 단위의 전자기파로 보통 30~300GHz 대역) 등의 고주파 대역이 5G 주요 스펙트럼으로 부각되고 있다.
이러한 고주파 대역은 중심 주파수가 높아질수록 운용 대역폭을 넓힐 수 있는 RF 시스템의 구현 관점에서 유리하며, 안테나의 고밀도화가 가능하다. 즉, 고주파 대역에서는 동일한 안테나의 물리적 크기를 가정한 경우, 주파수가 높아짐에 따라 안테나를 구성하는 복사소자(Radiator) 간 물리적 간격이 줄어들어 보다 많은 수의 복사소자를 집적시킬 수 있다. 이때, 이러한 다수의 복사소자는 RF 신호의 크기(Amplitude)와 위상(Phase)을 제어하여 다양한 형태의 안테나 빔을 생성하는 3D 빔포밍(Beamforming) 및 다중 전송을 가능하게 하는 Massive MIMO (Multiple Input Multiple Output) 기술의 하드웨어 기반이 된다.
한편, 고주파 대역의 경우 앞서 설명한 바와 같이 현재 셀룰러 대역에 비해 광대역 주파수를 사용할 수 있는 큰 장점이 존재하나, 상대적으로 증가된 경로손실과 고주파 대역의 특징인 고직진성, 저회절성을 극복하는 것이 가장 큰 과제이다. 이를 위해 고주파의 사용으로 인해 증가한 다수개의 안테나 복사소자를 활용하여 이득이 높은 펜슬 빔(Pencil Beam)을 형성함으로써 늘어난 경로손실을 극복하게 된다.
그러나, 고주파 대역에서는 빔폭이 매우 좁아지고 전파의 직진성이 강해지는 반면 회절성은 약화되므로, 단말의 위치 변화에 따라 기지국과 단말이 각각 적절한 송수신 빔을 운용하지 못하면 통신이 원활하지 않게 되는 문제점이 발생한다.
도 1은 종래 저주파 대역 기반 무선통신 시스템에서의 안테나 운용방식의 예시도이다. 도 2는 종래 저주파 대역 기반 무선통신 시스템에서의 안테나 빔패턴의 예시도이다.
도 1 및 도 2를 참조하면, 종래의 저주파 대역 기반 무선통신에서는 기지국과 단말간 송수신 거리에 따른 전자기파의 감쇄, 즉 경로손실이 적은 6GHz 미만의 저주파 대역을 주로 활용하여 상대적으로 넓은 빔폭을 갖는 안테나를 적용하더라도 원활한 통신링크 생성이 가능했다.
그러나, 5세대 이동통신에서 대용량 전송을 위해 고려하고 있는 6GHz 이상의 고주파 대역에서 넓은 빔폭의 안테나를 사용하면 높은 경로손실로 인해 수신전계를 보장할 수 없다.
도 3은 고주파 대역 기반 무선통신에서 최적 안테나빔을 도출하는 종래의 방식을 도시한 것이다. 도 3에 도시된 방식은 미리 설정된 다수 개의 안테나 빔 집합(예를 들어, 기지국 안테나 수신빔#1 내지 기지국 안테나 수신빔#N) 가운데 가장 우수한 무선링크를 보장하는 빔을 선택하는 빔 스위칭(Beam Switching) 기법이다.
그러나, 사전에 정의된 안테나 빔 집합에서 후보 안테나 빔의 수가 적거나, 후보 안테나 빔의 빔폭이 넓은 경우에는 안테나 빔 내 주엽(main lobe)으로 전자기파가 송수신되더라도 전계에 손실이 발생하는 문제점이 있었다.
이하, 도 4 내지 도 6을 참조하여 종래 빔 스위칭 기법에서의 문제점을 좀더 상세히 설명하기로 한다.
도 4는 고주파 대역 기반 무선통신에서의 안테나 빔 인덱스별 안테나 빔패턴의 예시도이다. 도 5는 도 4의 -10도에서 10도 부분을 확대한 도면이다. 도 4 및 도 5에 도시된 안테나 빔패턴 데이터는 연속적인(continuous) 값이 아닌 일정 각도 간격별로 이산화된(discrete) 값을 갖는다.
도 6은 고주파 대역 무선통신에서 최적 안테나빔을 도출하는 종래의 방식을 보다 구체적으로 도시한 도면이다. 최적 안테나빔을 도출하는 종래의 방식에 따르면, 도 6에서 나타낸 바와 같이, 각 안테나 수신빔별로 단말로부터 수신되는 수신신호의 크기를 비교함으로써, 가장 큰 수신신호 크기를 갖는 안테나빔이 최적 안테나 수신빔으로서 선택된다. 이 방식에 따르면, 단말로부터의 신호의 도래각(angle of arrival; AoA)(즉, 기준 방향에 대한 단말로부터 기지국으로의 방향의 각도)이 선택된 최적 안테나 수신빔의 지향각(즉, 수신 신호의 크기가 최대가 되는 각도)과 일치하지 않는 경우(도 6에서는 기지국 안테나 수신빔#3이 최적 수신빔으로 선택되며, 단말이 기지국 안테나 수신빔#3의 지향각인 0도에 위치하지 않는 경우), 단말로부터의 신호의 도래각과 최적 안테나 수신빔의 지향각이 일치하는 경우에 비해 전자기파의 손실이 발생된다. 이러한 손실은 최대, 최적 안테나 수신빔의 지향각에서의 전자기파 크기와 최적 안테나 수신빔과 인접빔(기지국 안테나 수신빔#2)과의 교차점에서의 전자기파 크기의 차이만큼 발생될 수 있다.
이에 따라, 종래에는 빔 스위칭 기법의 문제점에 대응하기 위한 다른 방법으로, 한국공개특허 제2014-0065630호(2014년 05월 30일 공개)에 개시된 것처럼 처음에는 빔폭이 넓은 형태의 안테나 빔으로 기지국과 단말간 최적 빔을 찾고 선택된 빔 영역을 좁은 빔폭을 갖는 안테나 빔으로 세분화하는 재귀적 반복을 통해 적합한 빔을 찾는 방식이나, 각 스테이지(stage)에서 단말의 위치추정을 위해 Maximum Likelihood(ML) 기반의 Direction of Arrival(DoA) 방식 등이 제안된 바 있다.
그러나, 위와 같이 제안된 다른 방법에서는 기본적으로 각 스테이지에서 사용하는 전체 빔에서의 수신데이터를 활용해야 하고, 이에 대한 매트릭스(Matrix) 연산 등을 통해 단말의 각도(즉, 단말로부터의 신호의 도래각)를 추정해야 함에 따라 계산량이 상대적으로 높은 문제점이 있었다.
따라서, 본 발명의 일 실시예는, 고주파 대역 기반 무선통신에서 다수의 안테나 빔 중 단말에서 송신하여 기지국으로 수신된 수신신호의 크기가 가장 큰 제 1 안테나 빔과 두 번째로 큰 제 2 안테나 빔을 도출하여, 제 1 안테나 빔과 제 2 안테나 빔의 수신신호의 크기의 비율값을 계산하고, 계산된 비율값과 미리 저장된 각도별 대상빔과 인접빔의 이득의 비에 대응되는 함수를 이용하여, 상대적으로 적은 계산량으로 보다 정확하게 단말의 각도를 추정하고, 이를 이용하여 단말에 대한 최적의 안테나빔을 생성하는 빔 생성 장치 및 방법이 제공하는 것을 목적으로 한다.
본 발명의 일 실시예에 따른 빔 생성 장치는 다수의 수신빔 중에서, 단말로부터 가장 큰 크기를 갖는 수신 신호가 수신되는 제 1 수신빔과 상기 단말로부터 두 번째로 큰 크기를 갖는 수신 신호가 수신되는 제 2 수신빔을 도출하는 빔 도출부와, 상기 제 1 수신빔을 통해 수신된 수신신호의 크기와 상기 제 2 수신빔을 통해 수신된 수신신호의 크기의 비율값에 기초하여 상기 단말의 방향을 추정하는 제어부를 포함한다.
본 발명의 일 실시예에 따른 빔 생성 방법은 다수의 수신빔 중에서, 단말로부터 가장 큰 크기를 갖는 수신 신호가 수신되는 제 1 안테나 빔과 상기 단말로부터 두 번째로 큰 크기를 갖는 수신신호가 수신되는 제 2 수신빔을 도출하는 단계와, 상기 제 1 수신빔을 통해 수신된 수신신호의 크기와 상기 제 2 수신빔을 통해 수신된 수신신호의 크기의 비율값을 이용하여 상기 단말의 방향을 추정하는 단계와, 상기 추정된 단말의 방향에서 가장 큰 크기를 갖는 수신 신호가 수신되는 수신빔을 생성하는 단계를 포함한다.
본 발명의 일 실시예에 따르면, 고주파 대역 기반 무선통신에서 다수의 안테나 빔 중 단말에서 송신하여 기지국으로 수신된 수신신호의 크기가 가장 큰 제 1 안테나 빔과 두 번째로 큰 제 2 안테나 빔을 도출하여, 제 1 안테나 빔과 제 2 안테나 빔의 수신신호의 크기의 비율값을 계산하고, 계산된 비율값과 미리 저장된 안테나 패턴 크기 비율에 대응되는 함수를 이용하여, 상대적으로 적은 계산량으로 보다 정확하게 단말의 각도(즉, 단말로부터의 신호의 도래각)를 추정하고, 이를 이용하여 단말에 대한 최적의 안테나빔을 생성할 수 있다.
또한, 본 발명의 일 실시예에 따르면, 단말의 각도 추정을 통해 고주파 대역 기반 무선 통신에서 높은 경로손실 문제를 극복하여 높은 수신 전계 강도를 보장할 수 있으며, 기지국과 단말간 최적의 무선 링크를 생성 및 유지시킬 수 있는 이점이 있다.
도 1은 종래 저주파 대역 기반 무선통신 시스템에서의 안테나 운용방식의 예시도이다.
도 2는 종래 저주파 대역 기반 무선통신 시스템에서의 안테나 빔 패턴의 예시도이다.
도 3은 고주파 대역 기반 무선통신에서의 최적 안테나빔을 도출하는 종래의 방식을 도시한 도면이다.
도 4는 고주파 대역 기반 무선통신에서의 안테나 빔 인덱스별 안테나 빔패턴의 예시도이다.
도 5는 도 4의 -10도에서 10도 부분을 확대한 도면이다.
도 6은 고주파 대역 무선통신에서 최적 안테나빔을 도출하는 종래의 방식을 보다 구체적으로 도시한 도면이다.
도 7은 본 발명의 일 실시예에 따른 단말의 방향 추정을 위한 빔 생성 장치의 블록 구성도이다.
도 8은 본 발명의 일 실시예에 따른 안테나 빔 인덱스별 빔패턴 및 각도별 대상빔과 인접빔의 이득의 비의 예시를 도시한다.
도 9는 도 8의 각도별 대상빔과 인접빔의 이득의 비에 관한 추세선을 도시한다.
도 10은 본 발명의 일 실시예에 따른 수신신호들의 크기의 비율값 및 도 9의 추세선을 이용하여 단말의 방향을 추정하는 방법을 설명하는 도면이다.
도 11은 본 발명의 일 실시예에 따라 추정된 단말의 방향으로 수신빔을 생성할 때 개선되는 이득을 도시한 도면이다.
도 12는 본 발명의 일 실시예에 따른 단말의 방향을 추정하고 이를 기초로 최적의 수신빔을 생성하는 방법에 관한 플로우차트이다.
이하, 첨부된 도면을 참조하여 본 발명의 동작 원리를 상세히 설명한다. 하기에서 본 발명을 설명함에 있어서 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
도 7은 본 발명의 일 실시예에 따른 단말의 방향 추정을 위한 빔 생성 장치의 블록 구성도이다. 빔 생성 장치(700)는 빔패턴 측정부(702), 저장부(704), 빔 생성부(706), 신호세기 측정부(708), 제어부(710) 및 빔 도출부(712) 등을 포함할 수 있다. 빔 생성 장치(700)는 복수개의 안테나를 갖는 기지국의 일부일 수 있다. 빔 생성 장치(700)의 적어도 일부는 마이크로프로세서에 의해 구현될 수 있다.
이하, 도 7을 참조하여 본 발명의 일 실시예에 따른 빔 생성 장치(700)의 각 구성요소를 상세히 설명한다.
먼저, 빔패턴 측정부(702)는 빔 생성부(706)가 생성하는 다수의 수신빔 각각의 빔패턴(예를들어, 도 5와 같이)을 측정한다. 빔패턴은 각도(즉, 방향)에 따른 이득을 의미한다. 빔패턴의 측정은 유한한 개수의 각도에 대해 수행될 수 있다. 빔패턴 측정부(702)는 측정된 빔패턴들로부터 각도별 대상빔과 인접빔의 이득의 비 및 이에 대한 추세선 수식을 도출한다. 특정 각도에 대한 대상빔은 다수의 수신빔 중 해당 각도에서 가장 큰 이득을 갖는 수신빔이다. 특정 각도에 대한 인접 빔은 다수의 수신빔 중 해당 각도에서 두 번째로 큰 이득을 갖는 수신빔이다. 이때, 빔패턴 측정부(702)는 이와 같이 도출한 각도별 대상빔과 인접빔의 이득의 비 및 이에 대한 추세선 수식에 대한 정보를 저장부(704)에 저장함으로써, 본 발명의 일 실시예에 따른 단말의 방향 추정 및 이에 기초한 최적빔 생성 과정에서 제어부(710)가 저장부(704)에 저장된 정보를 이용할 수 있도록 할 수 있다. 빔패턴 측정부(702)는 마이크로프로세서를 포함하거나 마이크로프로세서에 의해 구현될 수 있다.
저장부(704)는 상술한 것과 같이 각도별 대상빔과 인접빔의 이득의 비 및 추세선 수식 등에 대한 정보를 저장할 수 있다.
빔 생성부(706)는 고주파 대역(예를 들어, 6GHz 이상의 센티미터파 또는 밀리미터파)의 다중빔을 생성함으로써, 단말측으로 빔포밍을 수행한다. 즉, 빔 생성부(706)는 단말로의 신호 송신을 위해 다중 송신빔을 생성하고, 단말로부터의 신호 수신을 위해 다중 수신빔을 생성할 수 있다. 이러한 빔 생성부(706)는 아날로그 빔포밍(analog beamforming), 디지털 빔포밍(digital beamforming) 또는 이 둘을 결합한 하이브리드 빔포밍(hybrid beamforming)을 통해 다중빔을 생성할 수 있다. 이때, 아날로그 빔포밍이라 함은 각각 서로 상이한 베이스 밴드(baseband)에서 순차적으로 하나의 빔을 생성하는 것을 말할 수 있으며, 디지털 빔포밍이라 함은 각각 서로 상이한 베이스 밴드에서 병렬적으로 다수의 빔을 동시에 생성하는 것을 말할 수 있다.
또한, 빔 생성부(706)는 위와 같은 아날로그 빔포밍, 디지털 빔포밍 또는 하이브리드 빔포밍을 위해 베이스밴드부, 위상 변환부, 저잡음 증폭부 및 믹서부 등의 다양한 구성요소를 포함할 수 있으며, 이러한 각각의 구성요소는 빔포밍 관련 분야에서 이미 적용중인 일반적인 구성에 해당하므로 이들에 관한 자세한 설명은 생략하기로 한다.
또한, 빔 생성부(706)은 제어부(710)의 제어에 따라 추정된 단말의 방향으로 수신빔을 생성할 수 있으며, 이에 대해서는 후술한다.
신호세기 측정부(708)는 단말로부터 전송되는 신호를 수신한다. 예를 들어, 단말이 RACH (Random Access Channel) 프리앰블 또는 사운딩 참조 신호 (Sounding Reference Signal; SRS)를 송신하면, 신호세기 측정부(708)는 빔 생성부(706)가 생성한 다중 수신빔 각각에 대해 단말로부터 수신된 수신신호(즉, RACH 프리앰블 또는 SRS)의 크기(amplitude)(즉, 전계 강도)를 산출한다. 즉, 신호세기 측정부(708)는 기지국의 각 안테나의 수신빔을 통해 단말로부터 수신되는 수신신호의 크기를 산출할 수 있다.
이때, 신호세기 측정부(708)는 빔 생성부(706)에서 생성된 수신빔들이 아날로그 빔포밍으로 생성된 경우에는 각 수신빔 별 수신신호 크기를 순차적으로 도출할 수 있으며, 디지털 빔포밍으로 생성된 경우에는 각 수신빔 별 수신신호 크기를 병렬적으로 동시에 도출할 수 있다.
빔 도출부(712)는, 신호세기 측정부(708)를 통해 빔 생성부(706)가 생성한 수신빔 별 단말로부터의 수신신호 크기에 대한 정보를 수신하는 경우, 각 수신빔의 수신신호 크기를 비교하여 가장 큰 크기를 갖는 수신신호가 감지된 수신빔인 대상빔(즉, 제 1 수신빔)과, 대상빔과 인접하고 두 번째로 큰 크기를 갖는 수신신호가 감지된 인접빔(즉, 제 2 수신빔)에 대한 정보를 도출한다. 빔 도출부(712)는 도출된 대상빔 및 인접빔에 대한 정보를 제어부(710)에 전달한다. 빔 도출부(712)는 마이크로프로세서를 포함하거나 마이크로프로세서에 의해 구현될 수 있다.
제어부(710)는 대상빔을 통해 단말로부터 수신된 수신신호의 크기와 인접빔을 통해 단말로부터 수신된 수신신호의 크기의 비율값을 계산한다. 제어부(710)는 저장부(704)에 저장된 각도별 대상빔과 인접빔의 이득의 비 및 추세선 수식에 관한 정보 중에서 빔 도출부(712)에 의해 도출된 대상빔과 인접빔의 쌍(pair)에 해당되는 정보를 추출하고, 추출된 정보에 계산된 비율값을 적용하여, 단말의 방향(즉, 빔 생성 장치(700)로부터 단말로의 방향)을 추정한다. 단말의 방향은 각도로 표시될 수도 있다. 또한, 제어부(710)는 대상빔의 방향(즉, 대상 빔을 통해 전자기파가 가장 강하게 수신될 수 있는 방향)에 대해 단말의 방향이 틀어진 각도인 오프셋값을 산출할 수 있다.
이어, 제어부(710)는 추정된 단말의 방향으로 수신빔을 생성하도록(즉, 오프셋값이 0이 되도록) 빔 생성부(706)를 제어한다. 이를 위해 제어부(710)는 추정된 단말의 방향에 대한 정보 또는 산출된 오프셋값에 대한 정보를 빔 생성부(706)에 전달할 수 있다. 빔 생성부(706)는, 추정된 단말의 방향에서 가장 큰 수신 신호가 수신되는(즉, 강하게 전자기파를 수신할 수 있는) 수신빔, 즉, 추정된 단말의 방향을 지향각으로 하는 수신빔을 생성함으로써, 단말과 빔 생성 장치(700)(즉, 기지국)간의 송수신 전계 강도가 개선될 수 있다. 빔 생성부(706)은 산출된 오프셋값을 기초로, 오프셋 값이 제로가 되도록 단말로부터의 수신신호에 대한 대상빔을 시프트시킴으로써 최적의 수신빔을 생성할 수도 있다. 제어부(710)는 마이크로프로세서를 포함하거나 마이크로프로세서에 의해 구현될 수 있다.
상술한 바와 같이, 본 발명의 일 실시예에서는 다중 수신빔 중에서 단말로부터 수신되는 수신신호의 크기가 가장 큰 수신빔(즉, 대상빔)과 두 번째로 큰 수신빔(즉, 인접빔)을 도출한 후 대상빔과 인접빔을 통해 수신된 수신신호의 크기 비 계산을 통해, 상대적으로 적은 계산량으로, 단말의 방향 및 단말의 방향과 대상빔의 방향 간의 각도인 오프셋값을 구할 수 있다. 즉, 빔패턴 측정부(702)를 통해 사전에 다중 수신빔간의 빔패턴을 측정하고, 각도별 대상빔과 인접빔의 이득의 비를 계산해놓고, 이를 데이터베이스(database)화하거나 또는 커브 피팅(curve fitting)을 통해 단순화된 추세선 수식을 만들어 저장부(704)에 저장해 두고, 단말로부터 신호가 수신되었을 때, 해당 신호에 대한 대상빔과 인접빔의 수신신호의 크기 비율값을 추세선 수식에 대입함으로써 복잡한 계산 없이도 단말의 방향 및 단말의 방향과 대상빔의 방향간의 틀어진 오프셋 값의 추정이 가능하다. 즉, 종래 고주파 대역 무선통신시스템에서는 최적의 안테나 빔을 추정하는 데에 복잡한 계산 및 이를 위한 많은 시간이 필요하여 저지연(low latency)을 보장할 수 없던 것에 비하여 본 발명의 일 실시예에서는 상대적으로 적은 계산량을 통해 정밀하게 단말의 방향 및 단말의 방향과 대상빔의 방향 간 틀어진 오프셋 값을 추정할 수 있다.
이하, 도 8 내지 도 11을 참조하여 본 발명의 일 실시예에 따른 빔 생성장치(700)의 동작의 예를 좀더 상세히 설명한다.
도 8은 본 발명의 일 실시예에 따른 안테나 빔 인덱스별 빔패턴 및 각도별 대상빔과 인접빔의 이득의 비의 예시를 도시한다.
구체적으로, 도 8의 하단에는 도 5와 동일한 안테나 빔 인덱스별 빔패턴이 도시되어 있다. 도 8의 하단의 안테나 빔 인덱스별 빔패턴으로부터 각도별로 가장 큰 이득을 갖는 대상빔과 두 번째로 큰 이득을 갖는 인접빔의 조합을 도출할 수 있다. 동일한 대상빔 및 인접빔을 갖는 각도 영역들(예를 들어, -6도에서 -4도 사이의 영역, -4도에서 -2도 사이의 영역, -2도에서 0도 사이의 영역, 0도에서 2도 사이의 영역, 2도에서 4도 사이의 영역 및 4도에서 6도 사이의 영역)이 도 8에 표시되어 있다. 예를 들어, -6도에서 -4도 사이의 영역에서는, 수신빔#2의 이득이 가장 크므로 수신빔#2가 대상빔이고, 수신빔#1의 이득이 두 번째로 크므로 수신빔#1이 인접빔이다.
도 8의 하단의 빔패턴을 기초로, 도 8의 상단에 도시된 것과 같이 각도별(즉, 방향별) 대상빔과 인접빔의 이득의 비(즉, 대상빔의 이득을 인접빔의 이득으로 나눈 값)가 계산될 수 있다. 이러한 계산은 빔 패턴 측정부(702)에 의해 수행될 수 있으며, 그 결과는 저장부(704)에 저장될 수 있다. 이때, 빔패턴 데이터는 이산화된 값이므로 계산된 이득의 비 역시 일정 각도 간격으로 이산화된 값을 나타낸다.
도 9는 도 8의 각도별 대상빔과 인접빔의 이득의 비에 관한 추세선을 도시한다.
도 9의 추세선은 각도별 대상빔과 인접빔의 이득의 비에 관한 데이터를 커브 피팅(curve fitting)하여 도출될 수 있다. 이러한 추세선은 대상빔과 인접빔의 이득의 비와 각도의 관계를 나타내는 함수로 선형함수, 다항함수, 지수함수 등 다양한 수식으로 표현될 수 있다. 또한, 이러한 추세선은 안테나 제작 후 시스템을 운용하기 전에 빔패턴 측정을 통해 데이터베이스화될 수 있다.
예를 들어, 도 9에 나타낸 이산화된 이득의 비의 데이터로부터 도출된 대상빔이 수신빔#3, 인접빔이 수신빔#2인 영역(즉, -2도에서 0도 사이)에서의 추세선은 아래의 수학식 1에서와 같은 수식으로 표현될 수 있다.
Figure PCTKR2016007076-appb-M000001
x는 각도이고 y는 수신빔#2(즉, 인접빔)에 대한 수신빔#3(즉, 대상빔)의 이득의 크기 비이다. 각 각도 영역에 대한 추세선 수식은 빔 패턴 측정부(702)에 의해 도출되어 저장부(704)에 저장될 수 있다.
도 10은 본 발명의 일 실시예에 따른 수신신호들의 크기의 비율값 및 도 9의 추세선을 이용하여 단말의 방향을 추정하는 방법을 설명하는 도면이다.
도 9에 도시된 각도 영역별 추세선에 관한 수식이 사전에 도출된 상황에서, 도 10에 나타낸 바와 같은 각도(즉, 방향)에 위치한 단말(800)이 RACH Preamble 또는 Sounding Reference Signal을 송신하는 것을 가정하면, 수신빔#3에서 가장 강한 신호가 수신될 수 있으며, 수신빔#2에서 두 번째로 강한 신호가 수신될 수 있다.
이에 따라, 대상빔이 수신빔#3, 인접빔이 수신빔#2인 영역(810)에 대해 사전에 도출된 추세선(820) 혹은 추세선(820)에 대한 수식을 이용하여 단말의 방향, 즉, 단말로부터 수신된 신호의 도래각(Angle of Arrival)을 추정할 수 있다.
구체적으로, 영역(810)에 대한 추세선상에서 대상빔인 수신빔#3을 통해 수신된 단말로부터의 수신신호 크기를 인접빔인 수신빔#2를 통해 수신된 단말로부터의 수신신호의 크기로 나눈 값(이하, 비율값(830))을 세로축에서 찾고, 이에 대응되는 가로축에서의 각도 값(θ)을 도출할 수 있다. 즉, 값도값(θ)에 해당하는 방향을 단말의 방향으로 추정할 수 있다.
이 경우, 대상빔(수신빔#3)의 지향각이 0도이므로, 이와 같이 도출된 각도 값(θ)이 단말이 대상빔(수신빔#3)의 지향각(0도)과 틀어진 오프셋값이 될 수 있다.
수학식 1에서와 같은 추세선 수식을 이용하는 경우, 예를 들어 비율값(830)이 60이라고 하면 단말의 방향은 loge(60/121.3)/2.6 = -0.27(도)로 추정될 수 있다.
따라서, 위와 같이 미리 계산된 추세선 수식을 이용하여 단말로부터 송신된 신호의 도래각(Angle of Arrival)을 Maximum Likelihood 방식에 비해서 복잡한 계산 없이 신속하게 추정할 수 있는 것이다.
도 11은 본 발명의 일 실시예에 따라 추정된 단말의 방향으로 수신빔을 생성할 때 개선되는 이득을 도시한 도면이다.
도 11을 참조하면, 본 발명의 일 실시예에 따라 추정된 단말(800)의 방향을 향하도록 수신빔(902)을 생성하는 경우, 도 7 및 도 8과 관련하여 설명한 빔패턴 측정을 위해 빔 생성부(706)가 생성하는 다수의 수신빔 중에서 단말(800)로부터의 수신신호가 가장 큰 안테나 빔(900)을 사용하는 경우(즉, 빔 스위치 방식)와 비교할 때, 단말(800)의 방향에 있어서 α 만큼 안테나 이득이 개선되는 것을 알 수 있다.
따라서, 본 발명의 일 실시예에 따르면, 기존의 빔 스위치 방식에서 수신빔(900)을 선택하는 방식보다 우수한 전파환경을 제공할 수 있으며, 간단한 수식(추세선 수식)을 기초로 단말의 방향의 추정이 가능하므로, 복잡한 매트릭스 연산을 요구하는 Maximum Likelihood 방식에 비해서 보다 빠르게 단말의 방향을 추정할 수 있다.
도 12는 본 발명의 일 실시예에 따른 단말의 방향을 추정하고 이를 기초로 최적의 수신빔을 생성하는 방법에 관한 플로우차트이다.
먼저, 빔 생성장치(700)의 빔패턴 측정부(702)가 다중 수신빔 각각의 빔패턴을 측정한다(S1200). 본 발명의 일 실시예에서는 설명의 편의상 단말로부터 송신되는 신호를 수신하기 위해 생성되는 기지국 안테나 수신빔에 대한 빔패턴을 측정하는 것을 예시하였으나, 이에 한정되는 것은 아니다.
이어, 빔패턴 측정부(702)가 다중 수신빔 각각의 빔패턴을 기초로, 도 8 내지 도 9에서 보여지는 바와 같이 각도별 대상빔과 인접빔의 이득의 비 및 이에 대한 추세선 수식을 도출한다(S1202).
이때, 위와 같이 도출된 대상빔과 인접빔 조합별 패턴크기 비율 및 추세선 수식 등의 정보는 빔 생성장치(700)의 저장부(704)에 저장되어 단말의 방향 추정 과정에서 제어부(710)에 의해 참조될 수 있다.
위와 같이, 각도별 대상빔과 인접빔의 이득의 비 및 이에 대한 추세선 수식 에 관한 정보가 도출되어 저장된 후, 빔 생성 장치(700)는 단말(800)로부터 RACH Preamble 또는 Sounding Reference Signal을 수신할 수 있다(S1204).
그러면, 신호세기 측정부(708)는 수신빔별 단말(800)로부터 수신된 수신신호(RACH Preamble 또는 Sounding Reference Signal) 크기를 산출한다(S1206).
이후, 빔 도출부(712)는 각 수신빔별 수신신호의 크기를 비교하고(S1208), 가장 큰 크기를 갖는 수신신호가 감지된 수신빔인 대상빔(즉, 제 1 수신빔)과 두 번째로 큰 크기를 갖는 수신신호가 감지된 수신빔인 인접빔(즉, 제 2 수신빔)의 쌍을 도출한다(S1210).
이어, 제어부(710)는 수신신호 크기의 비교를 통해 도출된 대상빔과 인접빔의 쌍에 대한 정보와 도 8 내지 도 9에서와 같은 각도별 대상빔과 인접빔의 이득의 비에 관한 데이터 또는 이에 관한 추세선 수식을 이용하여 단말(800)의 방향을 추정한다(S1212).
이어, 제어부(710)는 위와 같이 추정된 단말의 방향으로 수신빔을 다시 생성한다(S1214). 같은 방식으로 송신빔이 생성될 수도 있다.
이에 따라, 도 11에서 보여지는 바와 같이, 단말의 방향과 정확하게 일치하는 안테나 수신빔(902)을 생성하기 때문에, 기존 빔 스위칭 방식에 따른 고정된 방향의 다수의 안테나 빔 중 하나의 안테나 빔(900)을 선택하는 것과 비교할 때, 송수신 전계 크기가 개선될 수 있다.
상기한 바와 같이, 본 발명의 일 실시예에 따르면, 고주파 대역 기반 무선통신에서 다수의 안테나 수신빔 중 단말에서 송신하여 기지국으로 수신된 수신신호의 크기가 가장 큰 제 1 안테나 빔과 두 번째로 큰 제 2 안테나 빔을 도출하여 제 1 안테나 빔과 제 2 안테나 빔의 수신신호 크기 비율값을 계산하고, 계산된 비율값과 미리 저장된 각도별 안테나 대상빔과 인접빔의 이득의 비에 대응되는 함수를 이용하여 단말 위치 추적을 위한 최적의 안테나빔을 생성함으로써, 상대적으로 적은 계산량으로 보다 정확하게 단말의 위치(즉, 방향) 추정이 가능하다. 또한, 단말 위치 추정을 통해 고주파 대역 기반 무선 통신에서 높은 경로손실 문제를 극복하여 수신 전계 강도를 보장할 수 있으며, 기지국과 단말간 최적의 무선 링크를 생성/유지시킬 수 있다.
한편 상술한 본 발명의 설명에서는 구체적인 실시예에 관해 설명하였으나, 여러 가지 변형이 본 발명의 범위에서 벗어나지 않고 실시될 수 있다. 즉, 본 발명의 실시예에서는 설명의 편의상 다양한 안테나 빔 중 기지국 안테나 수신빔을 예를 들어 설명하였으나, 단말 안테나 수신빔에도 적용이 가능하다. 즉, 신호원은 단말뿐만이 아니라 기지국이 될 수도 있고 그 밖의 다른 것이 될 수도 있다. 다시 말해, 본 발명의 일 실시예에 따르면, 신호원으로부터 신호를 수신할 때 다수의 수신빔 중에서 수신 신호의 크기가 가장 큰 수신빔(즉, 대상빔)과 수신신호의 크기가 두 번째로 큰 수신빔(즉, 인접빔)의 수신신호들의 크기 비를 이용하여 신호원의 방향을 추정할 수 있다. 또한 역으로 단말과 기지국의 안테나 송신빔에서도 다중빔을 운용하는 경우 모두 동일하게 적용이 가능하다. 따라서 발명의 범위는 설명된 실시 예에 의하여 정할 것이 아니고 특허청구범위에 의해 정하여져야 한다.
본 발명의 일 실시예에 따르면, 5G와 같은 고주파 대역 이동통신 시스템에서 저지연 서비스(low latency service)와 안정적이며 개선된 무선링크 생성이 보다 용이하게 구현될 수 있다.

Claims (10)

  1. 빔 생성 장치에 있어서,
    다수의 수신빔 중에서, 단말로부터 가장 큰 크기를 갖는 수신 신호가 수신되는 제 1 수신빔과 상기 단말로부터 두 번째로 큰 크기를 갖는 수신 신호가 수신되는 제 2 수신빔을 도출하는 빔 도출부와,
    상기 제 1 수신빔을 통해 수신된 수신신호의 크기와 상기 제 2 수신빔을 통해 수신된 수신신호의 크기의 비율값에 기초하여 상기 단말의 방향을 추정하는 제어부
    를 포함하는 빔 생성 장치.
  2. 제 1 항에 있어서,
    상기 다수의 수신빔 중에서 상기 제 1 수신빔이 가장 큰 이득을 갖고 상기 제 2 수신빔이 두 번째로 큰 이득을 갖는 영역에서의 방향별 상기 제 1 수신빔의 이득과 상기 제 2 수신빔의 이득의 비에 관한 정보를 저장하는 저장부를 더 포함하고,
    상기 제어부는
    상기 저장부에 저장된, 상기 영역에서의 방향별 상기 제 1 수신빔의 이득과 상기 제 2 수신빔의 이득의 비에 관한 정보; 및
    상기 제 1 수신빔을 통해 수신된 수신신호의 크기와 제 2 수신빔을 통해 수신된 수신신호 크기의 상기 비율값
    에 기초하여 상기 단말의 방향을 추정하는 빔 생성 장치.
  3. 제 2 항에 있어서,
    상기 정보는 상기 제 1 수신빔의 이득과 상기 제 2 수신빔의 이득의 비와 방향과의 관계에 관한 수학식을 포함하는 빔 생성 장치.
  4. 제 1 항에 있어서,
    상기 제어부는,
    상기 제 1 수신빔을 통해 수신된 수신신호의 크기를 상기 제 2 수신빔을 통해 수신된 수신신호의 크기로 나누어 상기 비율값을 계산하고, 상기 비율값을 기초로 상기 단말의 방향을 추정하는 빔 생성 장치.
  5. 제 1 항에 있어서,
    상기 추정된 단말의 방향을 지향각으로 하는 수신빔을 생성하는 빔 생성부
    를 더 포함하는 빔 생성 장치.
  6. 제 1 항에 있어서,
    상기 다수의 수신빔 각각을 통해 상기 단말로부터 수신되는 RACH (Random Access Channel) 프리앰블 또는 사운딩 참조 신호 (Sounding Reference Signal; SRS)의 크기를 산출하는 신호세기 측정부
    를 더 포함하는 빔 생성 장치.
  7. 다수의 수신빔 중에서, 단말로부터 가장 큰 크기를 갖는 수신 신호가 수신되는 제 1 안테나 빔과 상기 단말로부터 두 번째로 큰 크기를 갖는 수신신호가 수신되는 제 2 수신빔을 도출하는 단계와,
    상기 제 1 수신빔을 통해 수신된 수신신호의 크기와 상기 제 2 수신빔을 통해 수신된 수신신호의 크기의 비율값을 이용하여 상기 단말의 방향을 추정하는 단계와,
    상기 추정된 단말의 방향에서 가장 큰 크기를 갖는 수신 신호가 수신되는 수신빔을 생성하는 단계
    를 포함하는 빔 생성 방법.
  8. 제 7 항에 있어서,
    상기 단말의 방향을 추정하는 단계는,
    상기 다수의 수신빔 중에서 상기 제 1 수신빔이 가장 큰 이득을 갖고 상기 제 2 수신빔이 두 번째로 큰 이득을 갖는 영역에서의 방향별 상기 제 1 수신빔의 이득과 상기 제 2 수신빔의 이득의 비에 관한 정보; 및
    상기 제 1 수신빔을 통해 수신된 수신신호의 크기와 제 2 수신빔을 통해 수신된 수신신호 크기의 상기 비율값
    에 기초하여 상기 단말의 방향을 추정하는 단계인 빔 생성 방법.
  9. 제 7 항에 있어서,
    상기 단말의 방향을 추정하는 단계는
    상기 제 1 수신빔을 통해 수신된 수신신호의 크기를 상기 제 2 수신빔을 통해 수신된 수신신호의 크기로 나누어 상기 비율값을 계산하는 단계
    를 포함하는 빔 생성 방법.
  10. 제 7 항에 있어서,
    상기 다수의 수신빔 각각을 통해 상기 단말로부터 수신되는 RACH 프리앰블 또는 사운딩 참조 신호의 크기를 산출하는 단계
    를 더 포함하는 빔 생성 방법.
PCT/KR2016/007076 2015-07-03 2016-06-30 단말의 방향 추정을 위한 빔 생성 장치 및 방법 WO2017007177A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16821583.8A EP3319242B1 (en) 2015-07-03 2016-06-30 Device and method for beam forming for estimating direction of terminal
JP2017567695A JP6483293B2 (ja) 2015-07-03 2016-06-30 端末の方向推定のためのビーム生成装置及び方法
US15/741,659 US10236946B2 (en) 2015-07-03 2016-06-30 Device and method for beam forming for estimating direction of terminal
CN201680039516.4A CN107710642B (zh) 2015-07-03 2016-06-30 用于估计终端方向的波束成形的装置和方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150095511A KR102168183B1 (ko) 2015-07-03 2015-07-03 단말 위치 추적을 위한 빔 생성 장치 및 다중빔 기반 단말 지향각 추정방법
KR10-2015-0095511 2015-07-03

Publications (1)

Publication Number Publication Date
WO2017007177A1 true WO2017007177A1 (ko) 2017-01-12

Family

ID=57685879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/007076 WO2017007177A1 (ko) 2015-07-03 2016-06-30 단말의 방향 추정을 위한 빔 생성 장치 및 방법

Country Status (6)

Country Link
US (1) US10236946B2 (ko)
EP (1) EP3319242B1 (ko)
JP (1) JP6483293B2 (ko)
KR (1) KR102168183B1 (ko)
CN (1) CN107710642B (ko)
WO (1) WO2017007177A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019101051A1 (zh) * 2017-11-21 2019-05-31 索尼公司 用于无线通信系统的电子设备、方法和存储介质
WO2019156431A1 (ko) * 2018-02-08 2019-08-15 삼성전자 주식회사 빔포밍 통신 시스템의 단말에서 빔 운용 방법 및 장치

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10587499B2 (en) * 2015-12-30 2020-03-10 Facebook, Inc. Wireless node memory utilization for storing beamforming settings
CN107835042B (zh) * 2016-09-14 2020-12-01 华为技术有限公司 同步波束发送接收方法、网络设备、终端及系统
KR20200003168A (ko) * 2017-05-12 2020-01-08 후아웨이 테크놀러지 컴퍼니 리미티드 무선 통신 시스템에서 브로드캐스트 빔 가중 치를 결정하기 위한 방법 및 장치
CN110247689B (zh) * 2018-03-09 2023-02-03 深圳捷豹电波科技有限公司 终端的通信区域分配方法、装置、通信设备及存储介质
CN110753388B (zh) * 2018-07-23 2021-08-20 华为技术有限公司 一种波束管理方法和相关设备
EP3874616A1 (en) * 2018-10-29 2021-09-08 Nokia Technologies Oy Apparatus and method to estimate ue position
KR102268675B1 (ko) * 2019-01-21 2021-06-22 주식회사 케이티 위치 측위 방법 및 이를 위한 장치
US11342977B2 (en) * 2020-08-03 2022-05-24 Samsung Electronics Co., Ltd. Method and apparatus of fusing radio frequency and sensor measurements for beam management
US11445382B2 (en) 2020-08-09 2022-09-13 Shenzhen Jaguar Wave Technology Ltd. Communication zone allocation method of terminal, device therefor, and communication equipment
EP4302500A1 (en) * 2021-03-05 2024-01-10 Telefonaktiebolaget LM Ericsson (publ) Methods and apparatus for providing mobility state information
CN113194546B (zh) * 2021-04-04 2023-12-15 山西昊翔能源集团有限公司 一种电网节点设备的运行大数据传输方法及系统
US20230276368A1 (en) * 2022-02-27 2023-08-31 Maxlinear, Inc. Beamforming estimation
KR20240058422A (ko) 2022-10-26 2024-05-03 한양대학교 에리카산학협력단 무선 통신 상에서 랜덤 접속을 위한 프리앰블 자원 분배 시스템, 프리앰블 자원 분배 시스템, 장치 및 방법
CN117278144B (zh) * 2023-11-22 2024-02-13 西安迅尔电子有限责任公司 一种侦察接收机低信噪比信号的检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050035906A1 (en) * 2002-01-10 2005-02-17 Jorn Krause Method for determining a position with the aid of a radio signal having a rotating transmission characteristic
US20050136963A1 (en) * 2003-12-18 2005-06-23 Motorola, Inc. Method and apparatus for optimal multiple beam transmit weightings for beam to beam handoff in a switched beam system
WO2013185322A1 (en) * 2012-06-14 2013-12-19 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for position determination
WO2014170663A1 (en) * 2013-04-15 2014-10-23 Inmarsat Global Limited Transmitter positioning for satellite communications
US20150133173A1 (en) * 2013-08-22 2015-05-14 Qualcomm, Incorporated Utilizing a reference signal for indoor positioning

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8363744B2 (en) 2001-06-10 2013-01-29 Aloft Media, Llc Method and system for robust, secure, and high-efficiency voice and packet transmission over ad-hoc, mesh, and MIMO communication networks
EP1259008B1 (en) * 2001-05-17 2006-10-04 SAMSUNG ELECTRONICS Co. Ltd. Mobile communication apparatus with antenna array and mobile coomunication method therefor
US7336750B1 (en) * 2002-11-22 2008-02-26 Marvell International Ltd. Optimal one-shot phase and frequency estimation for timing acquisition
US7092673B2 (en) * 2002-12-27 2006-08-15 Nortel Networks Limited Angle of arrival estimation in a wireless telecommunications network
KR100646747B1 (ko) 2004-12-17 2006-11-23 한국전자통신연구원 디지털 방송 수신 성능 개선을 위한 빔 결합 방법 및하이브리드 방식의 빔 선택 방법과, 그를 이용한 디지털방송 수신 장치
WO2008111142A1 (ja) * 2007-03-09 2008-09-18 Fujitsu Limited 無線局
CN101686077B (zh) * 2008-09-26 2012-10-03 电信科学技术研究院 一种多点协同传输的方法及装置
CN101800582A (zh) * 2009-02-09 2010-08-11 中兴通讯股份有限公司 一种多用户波束成形方法及装置
WO2014054998A1 (en) * 2012-10-04 2014-04-10 Telefonaktiebolaget L M Ericsson (Publ) A node and method for uplink detection with an assigned uplink physical layer identity
KR102029102B1 (ko) 2012-11-19 2019-11-11 삼성전자주식회사 빔포밍 시스템에서 빔 방향 선택 방법 및 장치
JP2016057165A (ja) 2014-09-09 2016-04-21 富士通株式会社 無線通信装置及び推定方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050035906A1 (en) * 2002-01-10 2005-02-17 Jorn Krause Method for determining a position with the aid of a radio signal having a rotating transmission characteristic
US20050136963A1 (en) * 2003-12-18 2005-06-23 Motorola, Inc. Method and apparatus for optimal multiple beam transmit weightings for beam to beam handoff in a switched beam system
WO2013185322A1 (en) * 2012-06-14 2013-12-19 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for position determination
WO2014170663A1 (en) * 2013-04-15 2014-10-23 Inmarsat Global Limited Transmitter positioning for satellite communications
US20150133173A1 (en) * 2013-08-22 2015-05-14 Qualcomm, Incorporated Utilizing a reference signal for indoor positioning

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3319242A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019101051A1 (zh) * 2017-11-21 2019-05-31 索尼公司 用于无线通信系统的电子设备、方法和存储介质
CN111373666A (zh) * 2017-11-21 2020-07-03 索尼公司 用于无线通信系统的电子设备、方法和存储介质
US10951273B2 (en) 2017-11-21 2021-03-16 Sony Corporation Electronic device, method and storage medium for wireless communication system
CN111373666B (zh) * 2017-11-21 2023-10-10 索尼公司 用于无线通信系统的电子设备、方法和存储介质
WO2019156431A1 (ko) * 2018-02-08 2019-08-15 삼성전자 주식회사 빔포밍 통신 시스템의 단말에서 빔 운용 방법 및 장치
US11374643B2 (en) 2018-02-08 2022-06-28 Samsung Electronics Co., Ltd. Beam operation method and device at terminal of beamforming communication system

Also Published As

Publication number Publication date
US10236946B2 (en) 2019-03-19
EP3319242A4 (en) 2019-03-27
CN107710642B (zh) 2021-04-09
EP3319242A1 (en) 2018-05-09
JP6483293B2 (ja) 2019-03-13
KR102168183B1 (ko) 2020-10-20
CN107710642A (zh) 2018-02-16
JP2018524919A (ja) 2018-08-30
EP3319242B1 (en) 2020-08-12
US20180205421A1 (en) 2018-07-19
KR20170004744A (ko) 2017-01-11

Similar Documents

Publication Publication Date Title
WO2017007177A1 (ko) 단말의 방향 추정을 위한 빔 생성 장치 및 방법
US10827496B2 (en) Communication devices and methods for RF-based communication and position determination
US10405360B2 (en) Method and equipment for establishing millimetre connection
US6907269B2 (en) Mobile communication base station equipment
EP3293897A1 (en) System and method for characterization of multi-element antenna
WO2015113649A1 (en) Methods and apparatuses for testing wireless communication to vehicles
KR20170025422A (ko) 안테나 빔 반사장치 및 방법
WO2016129728A1 (ko) 밀리미터 웨이브를 지원하는 무선 접속 시스템에서 레이 스캐닝 수행 방법 및 장치
CN112640325B (zh) 使用学习网络实体进行csi辅助波束赋形的设备和方法
Haider et al. Search light: Tracking device mobility using indoor luminaries to adapt 60 GHz beams
EP2887562A1 (en) Method to establish mm-wave links with adaptive antennas
CN109983711B (zh) 无线通信系统中使用波束成形的信号传输方法和装置
KR102281781B1 (ko) 안테나 신호 도래각 추정장치 및 방법
GB2307142A (en) Steering an antenna in accordance with mobile location
EP3840243B1 (en) Iterative beam training method for accessing a mm-wave network
Kelner et al. Evaluation of angle spread and power balance for design of radio links with directional antennas in multipath environment
Lazarev et al. Beamforming and spatial multiplexing performance evaluation in 5G ultra-dense networks
KR102128400B1 (ko) 무선전송 장치의 전파 빔 방향 조정 방법
KR20050030077A (ko) 스마트 안테나 시스템에서 빔 할당 장치 및 방법
Paaso et al. Experimental results of novel DoA estimation algorithms for compact reconfigurable antennas
Fukushima et al. Directivity Measurement of Circular Phased Array 4× 4 MIMO Antenna
Li et al. Implementation and detection of the device location via synthesized antenna array
Lübke et al. Antenna Setup for Future Joint Radar-Communications–Characteristics and Mounting Positions
WO2023168569A1 (en) Methods and wireless devices for estimating antenna calibration error in a wireless communication network
WO2022252176A1 (en) Identification of reconfigurable intelligent surface

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821583

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017567695

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15741659

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016821583

Country of ref document: EP