WO2017006976A1 - Organism removal device - Google Patents

Organism removal device Download PDF

Info

Publication number
WO2017006976A1
WO2017006976A1 PCT/JP2016/070066 JP2016070066W WO2017006976A1 WO 2017006976 A1 WO2017006976 A1 WO 2017006976A1 JP 2016070066 W JP2016070066 W JP 2016070066W WO 2017006976 A1 WO2017006976 A1 WO 2017006976A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
organism
excluded
exclusion
voice
Prior art date
Application number
PCT/JP2016/070066
Other languages
French (fr)
Japanese (ja)
Inventor
藤原 奨
直樹 塚原
Original Assignee
三菱電機株式会社
国立大学法人総合研究大学院大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社, 国立大学法人総合研究大学院大学 filed Critical 三菱電機株式会社
Publication of WO2017006976A1 publication Critical patent/WO2017006976A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M29/00Scaring or repelling devices, e.g. bird-scaring apparatus
    • A01M29/06Scaring or repelling devices, e.g. bird-scaring apparatus using visual means, e.g. scarecrows, moving elements, specific shapes, patterns or the like
    • A01M29/10Scaring or repelling devices, e.g. bird-scaring apparatus using visual means, e.g. scarecrows, moving elements, specific shapes, patterns or the like using light sources, e.g. lasers or flashing lights
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M29/00Scaring or repelling devices, e.g. bird-scaring apparatus
    • A01M29/16Scaring or repelling devices, e.g. bird-scaring apparatus using sound waves
    • A01M29/18Scaring or repelling devices, e.g. bird-scaring apparatus using sound waves using ultrasonic signals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M29/00Scaring or repelling devices, e.g. bird-scaring apparatus
    • A01M29/16Scaring or repelling devices, e.g. bird-scaring apparatus using sound waves
    • A01M29/20Scaring or repelling devices, e.g. bird-scaring apparatus using sound waves with generation of periodically explosive reports
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K15/00Acoustics not otherwise provided for
    • G10K15/04Sound-producing devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R17/00Piezoelectric transducers; Electrostrictive transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/12Circuits for transducers, loudspeakers or microphones for distributing signals to two or more loudspeakers

Definitions

  • the present invention relates to a biological exclusion device that can exclude an animal to be excluded (hereinafter referred to as “exclusion target organism”).
  • a plurality of ultrasonic transmitters each having a different frequency band and a drive circuit for driving each ultrasonic transmitter are provided, and one of a plurality of predetermined drive modes is selected. And selecting a drive mode, and controlling the drive circuit based on the drive mode, and each mode includes at least one ultrasonic transmitter from the plurality of ultrasonic transmitters.
  • a harmful animal extermination device using ultrasonic waves characterized in that a random band is provided that randomly selects and randomly controls the drive frequency and drive time of the drive circuit has been proposed (for example, Patent Document 1).
  • an ultrasonic signal is radiated to a storage device such as an IC mounted on a product equipped with a radiator according to a preprogrammed time and period. Therefore, signal processing is performed to prevent the object that presents sound radiation from getting used to the sound.
  • birds can be cited as ones that are frequently requested to be excluded from various industries.
  • crows, starlings, and pigeons have been targeted as “birds”.
  • crows have the highest intelligence among "birds”
  • specialized research results show that crows are also good at communication between birds.
  • ultrasonic waves have a characteristic that directivity is narrow. Therefore, in a device using a conventional ultrasonic speaker, sound reaches only a very small range, and if the ultrasonic wave is not reliably given to the organism to be excluded, the effect of exclusion cannot be obtained. .
  • the present invention has been made in the background of the above-described problems, and it is an object of the present invention to provide a biological exclusion device that can emit ultrasonic waves with a wide directional characteristic and effectively excludes organisms to be excluded. It is said.
  • the biological exclusion device is a biological exclusion device that excludes an organism to be excluded, and a pseudo sound created by using a reproducing means capable of emitting sound and an original sound generated when the organism to be excluded is abnormal. And a control unit that radiates the sound from the reproduction unit as a sound pressure level equal to or equal to or higher than the sound pressure level of the sound emitted by the organism to be excluded.
  • a plurality of radiator bands configured by combining the ultrasonic oscillators are arranged at intervals determined by the diameter of the diaphragm constituting a part of the ultrasonic oscillator.
  • the biological exclusion apparatus includes a plurality of radiator bands configured by combining a plurality of ultrasonic oscillators at intervals determined by the diameter of a diaphragm constituting a part of the ultrasonic oscillator. Since the reproduction means arranged side by side is provided, it is possible to emit ultrasonic waves with a wide directivity, and to effectively eliminate the organisms to be excluded.
  • FIG. 1 is a basic block conceptual diagram showing a basic configuration of a biological exclusion device 1 according to Embodiment 1 of the present invention.
  • the organism exclusion device 1 is configured to give a sound superimposed on ultrasonic waves to an organism to be excluded.
  • “grant” includes “give”, “present”, and “exposure”.
  • FIG. 1 shows an example in which the biological exclusion apparatus 1 includes “light emitting means 70” and “pressure applying means 90” as means other than sound. However, “light emitting means 70” and “pressure applying” are illustrated.
  • the means 90 ” is not an essential component of the biological exclusion apparatus 1.
  • FIG. 1 shows an example in which the organism exclusion device 1 includes the “detection sensor 95”, but the “detection sensor 95” is not an essential component of the organism exclusion device 1.
  • the organism exclusion apparatus 1 includes at least an audio transmission unit 80, a light emitting unit 70, a pressure applying unit 90, and a detection sensor 95 for detecting an organism to be excluded.
  • the sound transmission means 80 has a predetermined frequency width from sound radiation means (for example, a resonance type sound generator (reproduction means 40)) capable of oscillating a single ultrasonic frequency (for example, 40 kHz).
  • sound radiation means for example, a resonance type sound generator (reproduction means 40)
  • an amplitude-modulated or frequency-modulated ultrasonic band signal for example, 40 kHz ⁇ 2 kHz
  • the biological exclusion apparatus 1 superimposes a sound in an ultrasonic band by a modulated wave having a frequency width on a single ultrasonic frequency.
  • the audio transmission unit 80 includes an ultrasonic signal creation unit 10, an exclusion signal unit 12, a processing circuit unit 25, an addition unit 30, a control unit 55, an amplifier 35, and a reproduction unit 40.
  • the signal from the exclusion signal unit 12 can be transmitted to the control unit 55 as it is, and a configuration that can perform software signal processing is also provided.
  • the ultrasonic signal generation unit 10 functions as a transmission circuit unit that generates an ultrasonic band signal of 20 kHz or higher.
  • the signal frequency created by the ultrasonic signal creation unit 10 is used as a carrier signal.
  • the exclusion signal unit 12 creates a removal / exclusion signal 20 in which the original audio signal 12a, the pseudo (audio) signal 12b, the ultrasonic signal 12c, the transient signal 12d, and the human audio signal 12e are selected at random.
  • the exclusion signal unit 12 creates a general audio signal in addition to the original audio signal 12a, the pseudo (audio) signal 12b, the ultrasonic signal 12c, the transient signal 12d, the human audio signal 12e, and these avoidance audio signals, You can make outgoing calls.
  • the original audio signal 12a is an audio signal based on the raw original audio of the organism to be excluded that is input and stored.
  • a sound generated when the organism to be excluded is attacked by natural enemies, for example, when it is feared, that is, when it is feared, or a sound for prompting an avoidance action that occurs when the organism is excluded when it is feared. Is used.
  • the pseudo (sound) signal 12b is a pseudo sound signal created by using the characteristic acoustic characteristics of the original sound (original sound signal 12a) of the characteristic organism to be excluded.
  • This pseudo (speech) signal 12b is created by creating chords and harmonics with reference to, for example, the frequency characteristics, utterance interval, silence interval, etc. of the (original speech signal 12a).
  • the ultrasonic signal 12c is an audio signal in an ultrasonic band subjected to amplitude modulation or frequency modulation with a predetermined frequency width.
  • the transient signal 12d is an audio signal of a transient sound generated by inputting an impulse signal, that is, an impulse sound (impact sound) or an impact sound (explosive sound).
  • an impulse signal that is, an impulse sound (impact sound) or an impact sound (explosive sound).
  • an impulse sound impact sound
  • an impact sound explosive sound
  • a sudden sound in which a very high sound pressure level is included transiently (for a short time) such as a broken glass sound or a thunder sound is used.
  • the human voice signal 12e is a voice signal generated by a voice generated by a person who is afraid of the organism to be excluded.
  • a short-time threatening and threatening voice that is generated when a human banishes an organism to be excluded is used.
  • the short-time threatening and threatening voices are voices such as “collar” and “wow”, for example.
  • the gender of the person who generates a threatening and threatening voice for a short time is not particularly limited, the following example shows a case where a voice generated by a man is used.
  • the processing circuit unit 25 is a unit that freely combines the removal / exclusion signal 20 created and stored in the exclusion signal unit 12 and a general audio signal, and outputs them randomly.
  • the adding unit 30 functions as a part that couples the exclusion signal unit 12 and the ultrasonic signal generating unit 10, and an ultrasonic wave having a predetermined frequency width by amplitude-modulating or frequency-modulating a signal output from each of them.
  • a band signal (for example, 40 kHz ⁇ 2 kHz) is assumed.
  • the control unit 55 includes at least a CPU unit 51 and a provision function control unit 52.
  • the CPU unit 51 has a function of controlling the operations of the reproducing unit 40, the light emitting unit 70, and the pressure applying unit 90 based on the signal created by the adding unit 30.
  • the application function control unit 52 has a function of providing the CPU unit 51 with information for controlling the operation of the light emitting unit 70 and the pressure application unit 90.
  • information regarding the timing (time and time) of light emission with respect to the light emitting unit 70 and the light emission frequency is stored in advance.
  • the application function control unit 52 stores in advance information related to the air ejection timing (time and time) and the pressure intensity with respect to the pressure application unit 90. These pieces of information are preferably rewritable.
  • the amplifier 35 amplifies the sound pressure level of the signal amplitude-modulated by the adding unit 30.
  • the reproduction means 40 reproduces the signal amplified by the amplifier 35 as sound or the like and transmits it to a remote place.
  • the reproducing means 40 is configured using an element capable of emitting sound in an ultrasonic band of 20 kHz or higher, for example.
  • the reproducing means 40 is constituted by a resonance means using a piezoelectric element, or two diaphragms formed of paper or plastic, which are general electro-acoustic conversion elements (speaker elements for reproducing a high frequency band). It can consist of what has the above.
  • the light emitting means 70 is configured to give “light” to the organisms to be excluded as other providing means other than sound.
  • the light emitting means 70 may be detachably attached to the organism exclusion device 1 as a light emitting unit.
  • the light emitting means 70 includes a light emitting source.
  • the luminescence source may be selected according to the organism to be excluded.
  • a lamp, an LED that emits ultraviolet light, a blue LED, an LED that emits white or red light, or the like can be used.
  • the pressure application unit 90 applies a “pressure wave” to the organism to be excluded as an application unit other than sound. That is, the pressure applying unit 90 applies a pressure wave by firing air.
  • the pressure applying means 90 may be detachably attached to the organism exclusion apparatus 1 as a pressure wave generating unit.
  • the pressure applying means 90 applies a gas such as air to a to-be-excluded organism existing in the target area in a lump shape (vortex ring (ring shape)).
  • a general air gun may be applied as the pressure applying unit 90.
  • the detection sensor 95 is for detecting an organism to be excluded that exists in the detection range.
  • the detection sensor 95 for example, an animal detection sensor using infrared rays, ultrasonic waves, visible light, or the like, or an imaging device such as a camera can be used.
  • Information detected by the detection sensor 95 is sent to the control unit 55.
  • the control unit 55 may emit the extermination / exclusion signal 20 when the detection sensor 95 detects the organism to be excluded.
  • the control unit 55 may apply at least one of “light” and “pressure wave”.
  • the emission time and emission timing of the extermination / exclusion signal 20 may be set to be executed periodically or irregularly by a timer that repeats ON / OFF.
  • the control unit 55 may previously determine the application start time, the application end time, or the application time interval, and control the application timing with a timer.
  • the biological exclusion apparatus 1 may be provided with a control method such as a manual emission switch that can emit sound.
  • Voices that generate crows can be broadly classified into voices that occur during anomalies and normal times.
  • the raw raw voice generated at the time of abnormality includes three kinds of warning voice generated at the time of warning, fighting voice and threatened voice generated at the time of fighting with raptors, and voice generated at the time of fear.
  • “abnormal voice” is assumed. Further, times other than “abnormal voice” are referred to as “normal voice”.
  • FIG. 2 is an explanatory diagram for explaining an example of a time waveform and frequency change of “normal speech” of a crow as an organism to be excluded.
  • the vertical axis indicates the sound pressure level (dB), and the horizontal axis indicates the frequency (kHz).
  • the maximum value of the sound pressure level is shown in the vicinity of 0 dB.
  • the frequency change is shown as an average for 3 seconds.
  • the voice time of the crow changes generally within 0.2 seconds to within ⁇ 0.2 seconds within 0.2 seconds, and as an example, the occurrence time is 0.3 on average.
  • a description will be given of a change in seconds to 0.5 seconds ⁇ 0.2 seconds.
  • the frequency characteristics of “normal voice” in which crows are generated have a large band change in the range of 800 Hz to 4 kHz ⁇ 1 kHz, with an average generation time of 0.3 to 0.5 seconds ⁇ 0.2 seconds. I understood.
  • the level of the sound pressure level in the frequency band of the normal voice changes substantially simultaneously, and no weighting of the time change with respect to the frequency band is seen ((1a shown in FIG. 2). ), (1b), (1c)).
  • FIG. 3 is an explanatory diagram for explaining an example of a time waveform and a frequency change of “abnormal voice” of a crow as an organism to be excluded.
  • the vertical axis indicates the sound pressure level (dB), and the horizontal axis indicates the frequency (kHz).
  • the maximum value of the sound pressure level is shown in the vicinity of 0 dB.
  • the frequency change is shown as an average for 3 seconds.
  • the voice time emitted when the crow is abnormal is generally changed within 0.2 seconds to within ⁇ 0.2 seconds within 0.2 seconds, as in the normal case.
  • a description will be given of the case where the average time is changed from 0.3 to 0.5 seconds ⁇ 0.2 seconds.
  • the band (2a) is a low frequency band of 400 Hz to 800 Hz.
  • the band (2b) is a medium frequency band of 800 Hz to 2 kHz.
  • the band (2c) is a high frequency band of 2 kHz to 4 kHz ⁇ 1 kHz. From these, it was found that the sound pressure level fluctuates in the order of the band (2a) to the band (2c) and has a characteristic tendency that changes in order from 0 dB to around ⁇ 30 dB of the maximum sound pressure level in FIG. In other words, it can be seen that in the “abnormal voice”, the time change is weighted.
  • the biological exclusion device 1 uses a clear change between “abnormal voice” and “normal voice” to create a pseudo voice using the feature amount of the voice change at the time of abnormality. .
  • the pseudo sound is created by reproducing the feature amount based on the “sound at the time of abnormality”.
  • An example of the frequency characteristics of the created pseudo voice is shown in FIG.
  • FIG. 4 is an explanatory diagram for explaining an example of a time waveform and a frequency change of “pseudo-voice” created based on “abnormal voice” of a crow as an organism to be excluded.
  • the vertical axis indicates the sound pressure level (dB)
  • the horizontal axis indicates the frequency (kHz).
  • the maximum value of the sound pressure level is shown in the vicinity of 0 dB.
  • the frequency characteristics of the “pseudo-voice” have a large band change in the range of 500 Hz to 4 kHz ⁇ 1 kHz, and the pseudo-voice is also changed within 0.2 seconds to 1.0 seconds.
  • the occurrence time is 0.3 seconds to 0.5 seconds ⁇ 0.2 seconds on average.
  • “pseudo speech” is created by performing characteristic fluctuations particularly in the following frequency bands (see (3a), (3b), and (3c) shown in FIG. 4).
  • the maximum sound pressure level of “pseudo-voice” is within 30 dB at the maximum, and the sound generation time of each frequency band of “pseudo-voice” is equally distributed.
  • the band (3a) is a low frequency band of 400 Hz to 800 Hz, and changes around 500 Hz + 200 Hz ( ⁇ 100 Hz).
  • the band (3b) is a medium frequency band of 800 Hz to 2 kHz, and changes around 1.2 kHz + 500 Hz ( ⁇ 100 Hz).
  • the band (3c) is a high frequency band of 2 kHz to 4 kHz ⁇ 1 kHz, and changes around 4 kHz + 1000 Hz ( ⁇ 500 Hz). In this order, the maximum sound pressure level is changed within a maximum of 30 dB, and the sound generation time is equally distributed to create “pseudo-voice”.
  • “pseudo-voice” is created with the frequency band characteristics equivalent to “abnormal voice” and the time band change equivalent to “abnormal voice”.
  • FIG. 5 is an explanatory diagram for explaining an example of a time waveform and a frequency change of a voice generated by a human.
  • the vertical axis represents the sound pressure level (dB), and the horizontal axis represents the frequency (kHz).
  • the maximum value of the sound pressure level is shown in the vicinity of 0 dB.
  • FIG. 5 shows the sound characteristics when a human male who is one of the creatures most feared by crows yells “Koller”.
  • “human voice” has a relatively wide frequency band of 500 Hz to 8 kHz ⁇ 1 kHz. It is also known that crows feel fear when they are exposed to the “human voice” that lasts more than 2 seconds for the ending part of the playback time. Therefore, FIG. 5 shows an example in which the occurrence time is 0.3 seconds or more on average. Specifically, “human voice” varies particularly in the following frequency bands (see (4a), (4b), and (4c) shown in FIG. 5). Further, the maximum sound pressure level of “human voice” is set to be within 50 dB at maximum.
  • the biological exclusion apparatus 1 can output the extermination / exclusion signal 20 composed of five audio signals by the processing circuit unit 25. Specifically, in the organism exclusion device 1, it is possible to randomly combine and output five audio signals.
  • FIG. 6 shows an example of the time axis characteristic of the reproduced sound for eliminating the crow. Based on FIG. 6, an example of crow removal by the organism exclusion device 1 will be described.
  • the vertical axis represents frequency and the horizontal axis represents time.
  • the graph shown in FIG. 6 is an example, and the generation time of each voice can be longer or shorter than the example shown in FIG.
  • a shown in FIG. 6 indicates frequency characteristics when the original audio signal 12a is emitted.
  • B shown in FIG. 6 indicates the frequency characteristics when the transient signal 12d is emitted.
  • C shown in FIG. 6 indicates a frequency characteristic when the pseudo signal 12b is emitted.
  • D shown in FIG. 6 indicates a frequency characteristic when the transient signal 12d is emitted.
  • E shown in FIG. 6 indicates a frequency characteristic when the human voice signal 12e is emitted.
  • F shown in FIG. 6 indicates frequency characteristics when the original audio signal 12a is emitted.
  • the original audio signal 12a shown in “A” and “F” is a raw audio signal (raw sound) of the organism to be excluded that is input and stored, and contributes to the elimination of crows because it is an “abnormal audio”. To do.
  • the pseudo signal 12b shown in “C” is a voice (processed sound) created with the frequency band characteristic equivalent to “sound during abnormal time” and the time band change equivalent to “sound during abnormal time”. It contributes to the elimination of crows as well as “Hour Voice”.
  • the human voice signal 12e indicated by “E” is a voice generated by a male and is 0.5 seconds including the end of the word, and contributes to the elimination of crow like the “sound at abnormal time”.
  • the sound pressure level of crow voice in nature is, for example, 70 dB to 80 dB even when the distance between the crow and the measuring instrument is 10 m, and has a very high sound pressure level. Yes.
  • the output level (voice level) of the voice pattern of the exclusion signal unit 12 also needs to be radiated at a sound pressure level equal to or higher than the voice that actually generates crows in order to perform reliable avoidance action.
  • the biological exclusion apparatus 1 superimposes a sound in an ultrasonic band by a modulated wave having a predetermined frequency width on a single ultrasonic frequency.
  • the sound pressure level that can be radiated by the reproducing means 40 is at least 124 dB at the time of measurement in proximity.
  • a single ultrasonic signal radiated from the reproducing means 40 that can radiate as a strong sound pressure level and a modulated ultrasonic signal are influenced by fluctuations caused by friction with air when propagating in space, and are nonlinear signals. Propagate in space as a waveform. Therefore, unlike an acoustic signal that linearly propagates in space, a linear sound pressure level attenuation characteristic cannot be obtained, the sound pressure level is hardly attenuated, and is not affected by air pressure.
  • the ultrasonic signal can be propagated linearly on the top.
  • the reason why the modulation band is set to 3 kHz is that the crow's voice band extends to 3 kHz, and the crow's voice needs to be reliably reproduced, so the 3 kHz modulation band is aimed.
  • the extermination / exclusion signal 20 is radiated as a single propagation within 3 seconds, for example.
  • the stop time of the extermination / exclusion signal 20 is 3 to 5 seconds. Continuously emitting the extermination / exclusion signal 20 is not performed as a measure for accustoming to sound.
  • voice processing necessary for exclusion can be changed so that voice can be exchanged regularly or irregularly. It should be noted that the voice may be exchanged using, for example, various memory cards, exchanged using wired communication or wireless communication, or exchanged by direct input.
  • the nonlinear propagation phenomenon is fortunate, and the sound pressure level of the carrier wave and the transmitted ultrasonic wave is 120 dB or more. Then, in the living body, the ultrasound is heard as a sense of pressure as a bone conduction factor (sensation), and a sense that cannot be obtained in nature by crows is directly exposed to the body, and sound in a frequency band of 20 kHz or less. As a result, a phenomenon close to the panic phenomenon is caused.
  • the biological exclusion device 1 makes it possible to impart luminescence to the crow irregularly or discontinuously regardless of day or night, using the visual characteristics of the crow.
  • LEDs that emit ultraviolet rays and blue LEDs are effective as the light source used for the light emitting means 70. If these are used, since a wavelength different from that of sunlight can be emitted, it can be effectively applied to the crow even in the daytime.
  • the light imparted to the crow may be light including a wavelength of 300 nm to 500 nm that is considered highly sensitive to the crow.
  • white or red LEDs may be used as the light source of the light emitting means 70.
  • it becomes possible to cope with a large number of harmful birds and beasts by using an LED whose emission frequency can be varied. By using light, it effectively acts on an organism to be excluded that is inferior to voice communication, such as pigeons and squirrels.
  • FIG. 7 is an explanatory diagram for explaining an example of a timing pattern of light emission provided by the organism exclusion device 1. Based on FIG. 7, an example of a timing pattern for providing light emission will be described.
  • the light emitting means 70 emits light irregularly. That is, the organism exclusion device 1 is based on changing the light emission time and the stop time randomly in consideration of “threat” to the organisms to be excluded such as crows and other harmful birds and beasts.
  • Light emission includes single light emission and continuous light emission
  • light emission time includes predetermined light emission times B1, D1, and F1
  • application time includes predetermined time intervals A1, C1, and E1.
  • the organism exclusion apparatus 1 does not emit any light from the light emitting means 70 during the predetermined time interval A1. Then, when the predetermined time interval A1 has passed, the organism exclusion device 1 causes the light emission means 70 to emit light once in a predetermined light emission time B1. Thereafter, the organism exclusion device 1 does not emit any light from the light emitting means 70 during the predetermined time interval C1. When the predetermined time interval C1 has passed, the organism exclusion device 1 causes the light emitting means 70 to continuously emit light at a predetermined light interval D1 and a predetermined light emission time F1 with a predetermined time interval E1.
  • the predetermined light emission times B1, D1, and F1 and the predetermined time intervals A1, C1, and E1 shown in FIG. 7 are arbitrary and may be appropriately determined. These may be repeated, but it is preferable to avoid simple repetition because it leads to generation of “habituation” and the like.
  • the organism exclusion device 1 is based on the fact that the pressure application time and the stop time are randomly changed in consideration of “threat” to the organisms to be excluded such as crows and other harmful birds and beasts. Therefore, in the organism exclusion apparatus 1, it is possible to apply pressure non-steadily from the pressure applying means 90. By applying pressure randomly, pressure can be applied in an almost infinite state, and compared to applying pressure constantly, it is possible to prevent “habituation” etc. It becomes possible.
  • FIG. 8 is an explanatory diagram for explaining an example of sound and light emission timing given by the organism exclusion device 1. Based on FIG. 8, an example of the audio
  • the light emitting means 70 is continuously emitted to give the light.
  • an ultrasonic signal having a single frequency with a strong sound pressure level and an ultrasonic signal with a modulation of about ⁇ 3 kHz are added, and the added signal is, for example, in the audible range.
  • Audio with linear directivity is conveyed by superimposing audio for the purpose of excluding target organisms such as crows.
  • a pulsed signal sound is generated irregularly in the sound of the continuous signal and is exposed to animals such as crows. For this reason, it is provided as an unpleasant impulse sound for animals that perform advanced communication.
  • amplitude modulation can be done with a simple circuit configuration, so that the circuit can be molded at low cost, and when installed outdoors, etc., it has a powerful countermeasure structure, circuit configuration, and circuit for external noise required for digital circuits. There is no need for complicated circuit settings. Therefore, the biological exclusion device 1 employs a configuration that does not require digital processing, and has a feature that the cost merit for the circuit is great.
  • the reproducing means 40 needs to emit a high sound pressure level. This is because, when a crow is eliminated in a residential area or the like, the crow's voice is given to the residents in the residential area by a general speaker playback method. In that case, it is just “noise” for the person who heard the crow's voice.
  • the biological exclusion device 1 is configured to give sound only to crows by ultrasonic conveyance.
  • a known general parametric speaker provides an “acoustic signal” only to a target location, and the parametric system has a characteristic that directivity is very narrow.
  • the element structure for the parametric speaker is not dedicated, there is a disadvantage that the amplitude of a diaphragm or the like for emitting sound at a high sound pressure level cannot be created. For this reason, conventionally, the sound is provided only at a target location at a sound pressure level that can be heard by humans.
  • the sound necessary for exclusion is transmitted with high sound pressure using ultrasound as a carrier, and as wide as possible (width) It is important to be able to provide sound with directivity. Therefore, in the organism exclusion device 1, a plurality of units (reproducing means 40) capable of carrying sound can be arranged close to each other, so that a sound carrying device having a wide directivity having a linear directivity can be configured. In this way, the target voice can be sent to a distant place over a wide range, so the sound (voice) ) Is not given, and noise problems do not occur. Further, if a plurality of reproducing means 40 are provided, it is possible to ensure a high sound pressure level.
  • the biological exclusion device 1 uses an ultrasonic signal with a strong sound pressure level as a carrier signal, and superimposes a voice (live voice or artificial voice) signal necessary for eliminating birds and beasts on the ultrasonic signal. .
  • the radiation range of sound radiation is narrowed (narrow directivity) by amplitude-modulating or frequency-modulating the superimposed audio signal. In this way, sound can be emitted while maintaining a strong sound pressure level in an arbitrary direction.
  • the living organism exclusion apparatus 1 can carry an audio signal necessary for extermination of an organism to be excluded over a long distance while suppressing deterioration in sound pressure level due to propagation of the ultrasonic signal over distance.
  • the modulation signal When the transport signal reaches the organism to be excluded at the transport destination, the modulation signal is demodulated, and an audio signal such as extermination can be directly applied to the organism to be excluded. Therefore, since an acoustic signal (sound) necessary for exclusion is not given other than the organism to be excluded, general facilities around the building where the organism to be excluded will not be affected by noise or the like. . In addition, since the necessary frequencies such as sound are carried by ultrasonic waves, it is not necessary to use, for example, a high-performance speaker device for reproducing frequencies other than ultrasonic waves, and the device configuration is performed at low cost. Can do.
  • the frequency band of the audio signal of the organism to be excluded can cope with several Hz to several hundred kHz or more.
  • the organism exclusion device 1 can realize the exclusion of the organism to be excluded more effectively by providing light emission to the organism to be excluded in addition to the sound. For example, as shown in FIG. 8, it is preferable to emit light continuously after giving by voice. Therefore, if the light emission means 70 is used in the organism exclusion apparatus 1, it is possible to achieve an exclusion effect by light emission in addition to an exclusion effect by sound.
  • a plurality of exclusion means that can give various influences can be given to the organism to be excluded. For this reason, it is possible to prevent “acquisition” or the like by a single granting means, and it is possible to reliably exclude the organisms to be excluded.
  • the organism exclusion apparatus 1 in order to utilize the audio
  • FIG. 9 is an explanatory diagram for explaining an example of the timing of sound and pressure applied by the organism exclusion device 1. Based on FIG. 9, sound and pressure applied from the organism exclusion device 1 toward the crow will be described.
  • the sound application by the reproduction unit 40 and the pressure application by the pressure application unit 90 are alternately and repeatedly applied. Therefore, according to the biological exclusion apparatus 1, in addition to the exclusion effect by sound, the exclusion effect by pressure is exhibited.
  • a plurality of exclusion means that can have various influences can be imparted to an organism to be excluded by being driven by a combination of sound and pressure. For this reason, it is possible to prevent “acquisition” or the like by a single granting means, and it is possible to reliably exclude the organisms to be excluded.
  • FIG. 10 is an explanatory diagram for explaining an example of the timing of sound, light emission, and pressure provided by the organism exclusion device 1. Based on FIG. 10, sound, light emission, and pressure applied from the organism exclusion device 1 toward the crow will be described.
  • the light emitting means 70 emits light continuously. It is good to give it. Therefore, according to the biological exclusion apparatus 1, in addition to the exclusion effect by sound, the exclusion effect by light emission and pressure is exhibited.
  • a plurality of exclusion means that can have various influences can be given to the organism to be excluded by being driven by a combination of sound, light emission, and pressure. . For this reason, it is possible to prevent “acquisition” or the like by a single granting means, and it is possible to reliably exclude the organisms to be excluded.
  • the reproduction means 40 as a sound generation unit
  • the light emission means 70 as a light generation unit
  • the pressure applying means 90 as a pressure wave generation unit
  • each of them can be driven alone or in combination, so
  • the exclusion target organisms exclusion means that can exert various effects. Therefore, the organism exclusion device 1 can prevent “habituation” and the like by the single exposure means, and the certainty of exclusion of the organism to be excluded becomes high.
  • FIG. 11 is a schematic diagram showing an outline of an example of a single unit structure of the ultrasonic oscillator 41 constituting the regeneration unit 40 of the organism exclusion apparatus 1.
  • FIG. 12 shows an outline of an example of the overall configuration of the regeneration unit 40 of the organism exclusion device 1.
  • FIG. 11 and FIG. 12 show an example of the configuration of the reproducing means 40 constituted by the ultrasonic oscillator 41 made of a piezoelectric element that resonates at a single frequency of 40 kHz, for example, and a plurality of ultrasonic oscillators 41 emit one radiation.
  • a container 50 is formed.
  • the basic components of the ultrasonic oscillator 41 are the horn part 60, the PZT part 61 of the piezoelectric element, the pedestal 62 for fixing the PZT, and the PZT 61.
  • the ultrasonic oscillator 41 uses a resonance frequency of about 15 kHz and emits sound.
  • the structure which enlarged the 41 horn part 60 is employ
  • the applied voltage withstand voltage for causing the piezoelectric action can be increased.
  • the horn unit 60 is fixed to the entire dense (antinode) portion of the vibration mode at the time of resonance (for example, at 15 kHz), which is the primary vibration component of the PZT unit 61, and the sound from the entire horn unit 60 that has propagated the primary vibration. It is supposed to emit. With this structure, the input voltage to the ultrasonic oscillator 41 can be increased, and the displacement amount of the natural vibration of the ultrasonic oscillator 41 can be greatly oscillated.
  • the reproducing means 40 has a configuration in which two or more radiator bands 50 each having a plurality of ultrasonic oscillators 41 as one block (lumb) are combined.
  • 14 ultrasonic oscillators 41 constitute one radiator band 50
  • six radiator bands 50 are arranged at predetermined intervals as radiator bands 50A to 50F.
  • the reproducing means 40 has a structure in which two or more blocks of the radiator band 50 are arranged at intervals of up to twice the diameter of the diaphragm (for example, the PZT portion 61) per ultrasonic oscillator 41. By doing so, the directivity of the ultrasonic wave can be expanded and the sound pressure level necessary for exclusion can be secured.
  • radiator band 50A to radiator band 50F An arrangement example of radiator band 50A to radiator band 50F will be specifically described.
  • a so-called lateral distance between adjacent radiator bands 50 is defined as a radiator distance x.
  • a straight line connecting the centers of the adjacent ultrasonic oscillators 41 becomes the radiator interval x.
  • a so-called vertical interval between adjacent radiator bands 50 is defined as a radiator interval y.
  • a straight line connecting the centers of the adjacent ultrasonic oscillators 41 is the radiator interval y. Note that the horizontal direction and the vertical direction are only used for convenience, and the direction changes depending on the installation state of the reproducing means 40.
  • the regeneration means 40 is configured such that the horizontal width of the entire radiator band is the entire radiator width X, and the vertical width of the entire radiator band is the entire radiator width Y.
  • the directivity of each radiator band 50 maintains the directivity in a width corresponding to the vertical width and horizontal width of each radiator band 50. Therefore, sound radiation is performed linearly from each radiator band 50.
  • the radiator interval x and the radiator interval y are determined in a range up to twice the diameter of the diaphragm (eg, the PZT portion 61) of the ultrasonic oscillator 41. That is, when the diameter of the diaphragm is 10 mm, the radiator interval x and the radiator interval y are within 20 mm. It can be confirmed by experimental verification (acoustic characteristic analysis) using an actual machine that the directivity shown in FIG. 13 can be secured by maintaining this interval.
  • the sound pressure level is about 70 dB at maximum (with an input voltage of 15 V) in the vicinity. Therefore, by increasing the number of ultrasonic oscillators 41 and configuring the radiator band 50 as an aggregate, the sound pressure level that can be radiated from each radiator band 50 is 90 dB or more in the vicinity (with an input voltage of 15 V). Become. That is, according to the biological exclusion device 1, a sound pressure level of 90 dB or more can be radiated from the reproducing means 40.
  • ultrasonic oscillators 41 constituting one radiator band 50 are used, and they are arranged so as to have a substantially rectangular shape in plan view to constitute one radiator band 50. Yes.
  • the number of ultrasonic oscillators 41 is not limited to 14 and may be 14 or more. That is, the number of the ultrasonic oscillators 41 can be adjusted for the purpose of securing a necessary sound pressure level to be applied to the organisms to be excluded that are to be excluded.
  • an ultrasonic speaker that performs modulation processing to propagate sound far away has a narrow directivity sensitivity as a feature. That is, the sound radiated from the ultrasonic speaker travels linearly and reaches only a limited range. Therefore, although the exclusion target organism can be effectively eliminated when it reaches the exclusion target organism, it can be effectively excluded at the place where the sound reaches the exclusion target organism such as birds that stop on the electric wire etc. However, it cannot be effectively excluded where the voice does not reach.
  • the reproduction means 40 in order to widen the linear narrow directivity that is the original characteristic of the ultrasonic speaker, the reproduction means 40 is configured using a plurality of radiator bands 50, and the linear and wide directivity is provided. It is possible to give sex.
  • the biological exclusion device 1 measures each of the radiator bands 50 while measuring that the width of the directivity from each radiator band 50 is wide at the radiation destination. The positional relationship is determined.
  • FIG. 13 is an explanatory diagram for explaining the directivity characteristics when the reproduction is performed by the reproduction means 40 of the organism exclusion device 1.
  • FIG. 14 is an explanatory diagram for explaining directivity characteristics when the reproduction is performed by the reproduction unit 400 as a comparative example. Based on FIG. 13 and FIG. 14, the directivity characteristics when the reproduction unit 40 and the reproduction unit 400 perform reproduction will be described.
  • a plurality of microphones for measuring sound pressure are installed in order to measure the sound pressure level coming from the differential means at a position away from the front (for example, a position away from 10 m). The measured results are plotted.
  • FIG. 14 a reproducing unit 400 in which a plurality of radiator bands 500 are arranged randomly without considering any adjacent interval is illustrated as a comparative example.
  • the biological exclusion apparatus 1 includes the regenerating means 40 with six radiator bands 50 as shown in FIGS. 11 and 12. The sound pressure level is secured.
  • birds such as crows are excluded, for example, when birds are stopped on a steel tower or electric wire, birds usually stay in a large area. Birds that do not reach cannot be excluded.
  • the dotted lines shown in FIG. 13 and FIG. 14 indicate the directivity characteristics of the sound radiated from each of the radiator band 50 and the radiator band 500, and are radiated from each of the radiator band 50 and the radiator band 500. It can be seen that the voice to be played has a narrow directivity. Therefore, as shown in FIG. 14, in one radiator band 500, the exposure range of sound is narrow, and the exclusion effect is not obtained so much.
  • the regeneration means 40 of the biological exclusion apparatus 1 radiates directional characteristics along the entire radiator width X as shown in FIG. It was measured that it could be formed in the front direction of the device band 50.
  • FIG. 13 shows the overall width X of the radiator in the horizontal direction
  • the contents shown in FIG. 13 are the same for the overall width Y of the radiator in the vertical direction.
  • each radiator band 50 affects the output of the amplifier 35 shown in FIG. 1, but according to the biological exclusion device 1, the sound pressure exceeding 100 dB when measured in proximity. It can be emitted at the level.
  • the total sound pressure level can be increased each time the number of radiator bands 50 held increases, and if the organism to be excluded is away, the radiator The target sound pressure level can be adjusted by changing the number of bands 50 and combining them.
  • FIGS. 15 and 16 are schematic configuration diagrams for explaining another specific example of the regeneration means 40 of the organism exclusion device 1.
  • 15 and 16 show a configuration example of the reproducing means 40 constituted by an ultrasonic oscillator 41 made of a piezoelectric element that resonates at a single frequency of 40 kHz, for example, as described in FIG.
  • One radiator band 50 is constituted by the ultrasonic oscillator 41 of FIG.
  • the radiator band 50 is arranged in a substantially rectangular shape in a plan view is illustrated as an example, but the arrangement of the radiator band 50 is not limited to the arrangement illustrated in FIG. 12. That is, if the required sound pressure level and directivity can be ensured, the radiator band 50 may be arranged in a triangular shape as shown in FIG. 15 and may be radiated in a polygonal shape as shown in FIG. A device band 50 may be arranged. Alternatively, the radiator band 50 may be arranged in a diamond shape in a plane, or the radiator band 50 may be arranged in a circle in a plane. In any case, the radiator interval x and the radiator interval y are determined in a range up to twice the diameter of the diaphragm (for example, the PZT portion 61) of the ultrasonic oscillator 41.
  • the radiator interval x and the radiator interval y are determined in a range up to twice the diameter of the diaphragm (for example, the PZT portion 61) of the ultrasonic oscillator
  • each ultrasonic oscillator 41 also radiates sound with a width corresponding to the diameter of the ultrasonic oscillator 41, and a plurality of ultrasonic oscillators 41 are arranged at wide intervals. Even if they are arranged, no sound is emitted from the gap between the ultrasonic oscillators 41. That is, if a plurality of ultrasonic oscillators 41 are arranged at wide intervals, a sound unevenness is created in the front direction of the ultrasonic oscillator 41, and the sound pressure in the front direction of the radiator band 50 is generated. This is because the level becomes low. Therefore, it is possible to secure a stable sound pressure level and directivity by forming the radiator band 50 by closely gathering the ultrasonic oscillators 41.
  • the modulated sound is directly propagated from the reproduction means 40 to the ear of the organism to be excluded, the body of the organism to be excluded, and the nest portion where the organism to be excluded is present, and demodulated at the moment when it hits one of them. Will be. Then, the sound superimposed on the ultrasound (sound radiator with the sound necessary for exclusion) will be given to the organism to be excluded, eliminating the illusion that the audio subject is as close as possible to the organism to be excluded. It can be caused to the target organism. In other words, it is possible to create an illusion that there are natural enemies in the immediate vicinity of the organism to be excluded or that there is an individual that emits a repelling sound nearby, which causes the organism to be excluded to panic. Can do.
  • the biological exclusion device 1 unlike a conventional product using an artificial acoustic signal created without knowing the behavior pattern of the organism to be excluded, the biological transmission device 1 can be used for a long time until the product itself that transmits sound reaches the end of its life. It is possible to eliminate harmful pests (harmful animals).
  • the biological exclusion apparatus 1 was used for the elimination of a crow was demonstrated to the example, it is not limited to it.
  • the necessary sound can be reliably applied to the necessary place by superimposing and reproducing the sound of the organism to be excluded on the ultrasonic wave. Therefore, the organism exclusion device 1 can be applied to starlings and pigeons that have many problems as harmful birds, and can also be applied to bears, wild boars, deer, raccoons (alien species), raccoon (alien species), and the like.
  • the biological exclusion device 1 even if a randomly changing ultrasonic wave is superimposed on a carrier ultrasonic wave instead of a voice, the randomly changing ultrasonic wave propagates with a wide directivity characteristic at a distant place. To do. Therefore, since ultrasonic waves with a strong sound pressure level can be exposed, the same effect can be expected for mammals such as cats and dogs that can hear ultrasonic waves.
  • the exclusion sound superimposed on the ultrasonic wave from the reproduction unit 40 propagates to the exclusion target organism such as the crow away from the reproduction unit 40 and collides with the exclusion target organism, the exclusion sound included in the ultrasonic wave And an ultrasonic signal having a higher sound pressure level are demodulated simultaneously. Therefore, a sound with a high sound pressure level is not always heard throughout the environment where the organism exclusion device 1 is installed. According to the biological exclusion device 1, there is no concern that the sound is exposed to the house in the vicinity of the reproduction means 40. Therefore, it is possible to eliminate the organism to be excluded by quiet sound radiation.
  • FIG. 17 to 20 are explanatory diagrams for explaining an installation example of the biological exclusion device according to the second embodiment.
  • a second embodiment which is a specific installation example of the biological exclusion device 1 according to the first embodiment, will be described with reference to FIGS.
  • the radiation area of the extermination / exclusion signal 20 radiated from the organism exclusion device 1 is illustrated by a broken line.
  • FIG. 17 the example 1 of the installation of the biological exclusion apparatus 1 to the utility pole 150 is shown.
  • the organism Z to be excluded may stop on the steel towers and utility poles themselves, or the power lines themselves that run over them.
  • the organism Z to be excluded reaches the breeding season, nests are formed, and power outage problems due to short-circuits often occur.
  • the biological exclusion device 1 may be installed in the vicinity of the upper end of the utility pole 150 as shown in FIG. By doing so, it becomes possible to efficiently exclude the organism Z to be excluded from the utility pole 150.
  • the installation of the biological exclusion device 1 is not limited to the vicinity of the upper end of the utility pole 150, and the biological exclusion device 1 may be installed at the installation root portion of the utility pole 150 or the middle portion of the utility pole 150.
  • the organism exclusion device 1 is installed, as shown in FIG. 17, the organism exclusion device 1 is installed so that “voice” or the like can be given to a place where the organism Z to be excluded is supposed to stop. It should be noted that light and pressure also work effectively on excluded organisms that are inferior to voice communication, such as pigeons and squirrels.
  • FIG. 18 the example 2 of the installation of the biological exclusion apparatus 1 to the utility pole 150 is shown. As shown in FIG. 18, the organism Z to be excluded may stop on the power line 151 that is wired to the utility pole 150.
  • the biological exclusion device 1 In order to cope with such a problem, as shown in FIG. 18, it is preferable to install the biological exclusion device 1 at both ends of the power line 151 that connects the power poles 150 and at the installation base part of the power pole 150. By doing so, it is possible to eliminate the stop of the organism Z to be excluded from the power line 151.
  • the biological exclusion apparatus 1 can also be installed in both, and can also be installed in either one.
  • the organism exclusion device 1 is installed, as shown in FIG. 18, the organism exclusion device 1 is installed so that “voice” or the like can be given to a place where the organism Z to be excluded is supposed to stop. It should be noted that light and pressure also work effectively on excluded organisms that are inferior to voice communication, such as pigeons and squirrels.
  • FIG. 19 the example of installation of the biological exclusion apparatus 1 in the building 160 is shown.
  • FIG. 19 illustrates an example in which the organism exclusion device 1 is installed in a barn.
  • the organisms Z to be excluded gather at places away from humans, such as inside a building 160 such as a barn, outdoor house, warehouse, station, temple, or shrine.
  • the organisms to be excluded Z gather in the gap near the roof of the building 160.
  • nets for the purpose of excluding the organisms Z to be excluded may be used to protect railway users from droppings that fall from the top, etc. on platforms inside stations, etc. From the point of view, the net does not reach all.
  • FIG. 19 it is preferable to install a plurality of biological exclusion devices 1 on or around a building 160 so that the emission / exclusion signal 20 emission areas overlap. By doing so, it becomes possible to efficiently exclude the organism Z to be excluded from the building 160.
  • FIG. 19 the case where two biological exclusion devices 1 are installed is illustrated as an example, but only one biological exclusion device 1 may be installed, or three or more biological exclusion devices 1 may be installed.
  • the organism exclusion device 1 is installed, as shown in FIG. 19, the organism exclusion device 1 is installed so that “voice” or the like can be given to a place where the organism Z to be excluded is supposed to stop.
  • light and pressure also work effectively on excluded organisms that are inferior to voice communication, such as pigeons and squirrels.
  • FIG. 20 shows an installation example of the biological exclusion device 1 on the aircraft 180 and the runway 181.
  • the aircraft 180 there is a problem of bird strike in which the organism 180 to be excluded such as a bird collides with the aircraft 180.
  • the biological exclusion device 1 may be installed on the aircraft 180 or the runway 181 of the airfield as shown in FIG. By doing so, it is possible to cope with the bird strike problem. That is, if the biological exclusion device 1 is mounted on the aircraft 180, “speech” or the like can be given in advance from the aircraft 180. If the biological exclusion device 1 is installed on the runway 181, “sound” is preliminarily provided from the runway 181. And the exclusion target organisms Z that are swarming in the vicinity of the runway 181 can be effectively excluded before the aircraft 180 enters.
  • the biological exclusion device 1 may be installed only on either the aircraft 180 or the runway 181 or on both sides. By installing them on both sides and appropriately adjusting the timing of application, it is possible to more effectively eliminate the organism Z to be excluded.
  • the timing of giving “speech” or the like from the organism exclusion device 1 may always be given, or may be given when the elimination target organism Z is detected. Good. In this case, it is necessary to separately provide an animal detection sensor using infrared rays, ultrasonic waves, visible light, or an imaging device such as a camera. Furthermore, the grant start time, grant end time, or grant time interval may be determined in advance, and the grant timing may be controlled by time.
  • the installation location is not particularly limited, and any location where the organism to be excluded exists is present. Can also be installed. For example, you may make it install the biological exclusion apparatus 1 in a garbage storage, a park, etc.
  • 1 biological exclusion device 10 ultrasonic signal creation unit, 12 exclusion signal unit, 12a original audio signal, 12b pseudo signal, 12c ultrasonic signal, 12d transient signal, 12e human audio signal, 20 extermination / exclusion signal, 25 processing circuit Part, 30 addition part, 35 amplifier, 40 regeneration means, 41 ultrasonic oscillator, 50 radiator band, 50A radiator band, 50B radiator band, 50D radiator band, 50E radiator band, 50F radiator band, 51 CPU part, 52 giving function control means, 55 control part, 60 horn part, 61 PZT part, 62 pedestal, 63 electrode, 70 light emitting means, 80 voice transmission means, 90 pressure applying means, 95 detection sensor, 150 power pole, 151 power line , 160 buildings, 180 aircraft, 181 runways, 400 regeneration means, 500 radiator bands X radiator entire width, Y radiators entire width, Z exclusion subject organism, x radiator spacing, y radiator spacing.

Abstract

An organism removal device is provided with a reproduction means configured by aligning a plurality of radiator bands at intervals determined by the diameter of a vibrating plate comprising some of a plurality of ultrasonic oscillators, the radiator bands being configured by combining the ultrasonic oscillators.

Description

生物排除装置Biological exclusion device
 本発明は、排除したい動物(以下、「排除対象生物」と称す)を排除することができる生物排除装置に関するものである。 The present invention relates to a biological exclusion device that can exclude an animal to be excluded (hereinafter referred to as “exclusion target organism”).
 従来から、有害動物(たとえば、ゴキブリやネズミ、鳥類(カラスやムクドリ、ハト)などの排除対象生物)の排除を目的とした生物排除装置が開示されている。従来の生物排除装置の1つには、異なる超音波帯域の信号を周期的に変化させて、空中に放射する電気音響変換放射器(スピーカー)を備えた構成を採用したものが開示されている。なお、以下の説明において、「排除」には、「駆除」、「忌避」、「回避」が含まれるものとする。 Conventionally, biological exclusion devices for the purpose of eliminating harmful animals (for example, organisms to be excluded such as cockroaches, rats, birds (crows, starlings, pigeons)) have been disclosed. As one of the conventional biological exclusion devices, a device that includes an electroacoustic transducer (speaker) that radiates the air in the air by periodically changing signals in different ultrasonic bands is disclosed. . In the following description, “exclusion” includes “disinfection”, “aversion”, and “avoidance”.
 そのようなものとして、「それぞれ異なる周波数帯域を有する複数の超音波送波器と、上記各超音波送波器別に駆動するドライブ回路とを備え、予め定められた複数の駆動モードのうちから1つの駆動モードを選択すると共に、上記駆動モードに基づいて上記ドライブ回路を制御する制御部を備え、上記各モードには上記複数の超音波送波器のうちから少なくとも1つの超音波送波器を不規則に選択し、上記ドライブ回路の駆動周波数、および駆動時間を不規則に制御するランダム帯を設けたことを特徴とする超音波を利用した有害動物駆除装置」が提案されている(例えば、特許文献1参照)。 As such, “a plurality of ultrasonic transmitters each having a different frequency band and a drive circuit for driving each ultrasonic transmitter are provided, and one of a plurality of predetermined drive modes is selected. And selecting a drive mode, and controlling the drive circuit based on the drive mode, and each mode includes at least one ultrasonic transmitter from the plurality of ultrasonic transmitters. A harmful animal extermination device using ultrasonic waves characterized in that a random band is provided that randomly selects and randomly controls the drive frequency and drive time of the drive circuit has been proposed (for example, Patent Document 1).
 この特許文献1に記載の有害動物駆除装置では、放射器を備えた製品に搭載しているIC等の記憶装置に、予めプログラミングしていた時間と周期に応じて超音波信号を放射するようにしており、音放射を提示する対象物が音に対して慣れるなどの状態が講じないための信号処理を行っていた。 In the harmful animal extermination device described in Patent Document 1, an ultrasonic signal is radiated to a storage device such as an IC mounted on a product equipped with a radiator according to a preprogrammed time and period. Therefore, signal processing is performed to prevent the object that presents sound radiation from getting used to the sound.
 また、有害動物の一例として、様々な業種から排除要求の多いものとして「鳥類」が挙げられる。「鳥類」としては、近年、カラスやムクドリ、ハトなどが対象になっている。このうち、カラスは「鳥類」の中でも高い知能を持っているということは周知であり、専門の研究結果から、カラスは鳥間でのコミュニケーション能力にも長けていることが判明している。 Also, as an example of harmful animals, “birds” can be cited as ones that are frequently requested to be excluded from various industries. In recent years, crows, starlings, and pigeons have been targeted as “birds”. Of these, it is well known that crows have the highest intelligence among "birds", and specialized research results show that crows are also good at communication between birds.
 従来の生物排除装置には、カラスの音声を用いて、カラスの音声をスピーカーから大きな音圧レベルで放射して直接的にカラスへ付与することで、カラスに対して回避行動をさせるようにしたものもあった(例えば、特許文献2参照)。 In the conventional biological exclusion device, the crow's voice is emitted from the speaker at a large sound pressure level and directly applied to the crow using the crow's voice, thereby causing the crow to make an avoidance action. There was also a thing (for example, refer to patent documents 2).
特開平7-107893号公報Japanese Unexamined Patent Publication No. 7-107893 特許第5135507号公報Japanese Patent No. 5135507
 超音波帯域の周波数まで聞き取ることが可能な動物が多く存在することから、特許文献1に記載の技術では、排除対象生物のうち超音波帯域を聞き取る能力を有している動物に対しては、ある一定期間の効果を発揮することができる。
 しかしながら、超音波帯域を利用していない、比較的高等なコミュニケーションを有するカラス等の排除対象生物には大きな影響を与えていない等の問題点があった。すなわち、カラスは、人間と略同等の可聴周波数帯域を有しており、超音波帯域の周波数に対して聴感能力が低く、結果的に、超音波を聞いていない(聞こえていない)。そのために、カラスに対しては、超音波帯域の周波数を付与しただけでは排除効果を全く得られない場合があった。
Since there are many animals that can be heard up to the frequency of the ultrasonic band, in the technique described in Patent Document 1, for animals that have the ability to hear the ultrasonic band among the organisms to be excluded, The effect of a certain period can be exhibited.
However, there are problems such as not using the ultrasonic band and not having a great influence on the organisms to be excluded such as crows having relatively high communication. In other words, the crow has an audible frequency band that is substantially equivalent to that of a human being, and has a low hearing ability with respect to the frequency of the ultrasonic band, and as a result, does not hear the ultrasonic wave (not heard). For this reason, there is a case where the elimination effect cannot be obtained at all by simply applying the frequency in the ultrasonic band to the crow.
 また、超音波信号の発振周波数を変化させたとしても一定のリズムで変化していることには変わりないので、ある程度の時間付与によって、排除対象生物に、音そのものへの「慣れ」が生じてしまい、早い段階で効果が無くなってしまうという問題点もあった。
 そのため、特許文献1に記載の技術では、排除対象生物を長期間にわたって確実に排除することができなかった。
In addition, even if the oscillation frequency of the ultrasonic signal is changed, it does not change that it changes at a constant rhythm, so that a certain amount of time gives the organisms to be excluded a “habituation” to the sound itself. In other words, there was a problem that the effect disappeared at an early stage.
Therefore, the technique described in Patent Document 1 cannot reliably exclude the organisms to be excluded over a long period of time.
 さらに、超音波は指向性が狭いという特性を有している。そのため、従来方式の超音波スピーカーを用いた装置では、極小の範囲にしか音が届かず、超音波が確実に排除対象生物に付与されない場合は、排除の効果が得られないことになってしまう。 Furthermore, ultrasonic waves have a characteristic that directivity is narrow. Therefore, in a device using a conventional ultrasonic speaker, sound reaches only a very small range, and if the ultrasonic wave is not reliably given to the organism to be excluded, the effect of exclusion cannot be obtained. .
 特許文献2に記載の技術では、排除等に必要な音響信号を、排除対象生物に必ず聞こえさせることが重要になっている。そこで、排除対象生物の音声と同等、又はそれ以上の音圧レベルで音響信号を放射する必要がある。そのため、音放射させるためのスピーカーなどからは終夜問わず、排除対象生物の音声以上の音圧レベルの音声が大音量で放射されることになる。よって、生物排除装置の設置環境周囲には排除対象生物の排除に必要な音声信号が音放射されていることになるので、周辺の住民にも同等に付与されて、設置環境が引き起こす「騒音」という問題を発生させていた。 In the technique described in Patent Document 2, it is important to make sure that an acoustic signal necessary for exclusion is heard by the organism to be excluded. Therefore, it is necessary to radiate an acoustic signal at a sound pressure level equal to or higher than the sound of the organism to be excluded. For this reason, sound having a sound pressure level equal to or higher than the sound of the organism to be excluded is radiated at a large volume from a speaker or the like for emitting sound all night. Therefore, since the sound signal necessary for the exclusion of the organisms to be excluded is emitted around the environment where the organism exclusion device is installed, it is equally given to the surrounding residents, and the "noise" caused by the installation environment Was causing the problem.
 本発明は、上述の課題を背景になされたもので、広い指向特性で超音波を放射することを可能にし、排除対象生物を効果的に排除するようにした生物排除装置を提供することを目的としている。 The present invention has been made in the background of the above-described problems, and it is an object of the present invention to provide a biological exclusion device that can emit ultrasonic waves with a wide directional characteristic and effectively excludes organisms to be excluded. It is said.
 本発明に係る生物排除装置は、排除対象生物を排除する生物排除装置であって、音放射が可能な再生手段と、前記排除対象生物が異常時に発生する原音声を用いて創生した擬似音声を超音波信号に重畳して、前記排除対象生物が発する音声の音圧レベルと同等又は同等以上の音圧レベルとして前記再生手段から放射させる制御部と、を備え、前記再生手段は、複数個の超音波発振子を組み合わせて構成された放射器帯を、前記超音波発振子の一部を構成している振動板の直径で決定する間隔で複数個並べて構成しているものである。 The biological exclusion device according to the present invention is a biological exclusion device that excludes an organism to be excluded, and a pseudo sound created by using a reproducing means capable of emitting sound and an original sound generated when the organism to be excluded is abnormal. And a control unit that radiates the sound from the reproduction unit as a sound pressure level equal to or equal to or higher than the sound pressure level of the sound emitted by the organism to be excluded. A plurality of radiator bands configured by combining the ultrasonic oscillators are arranged at intervals determined by the diameter of the diaphragm constituting a part of the ultrasonic oscillator.
 本発明に係る生物排除装置は、複数個の超音波発振子を組み合わせて構成された放射器帯を、超音波発振子の一部を構成している振動板の直径で決定する間隔で複数個並べて構成した再生手段を備えているので、広い指向特性で超音波を放射することができ、排除対象生物を効果的に排除できる。 The biological exclusion apparatus according to the present invention includes a plurality of radiator bands configured by combining a plurality of ultrasonic oscillators at intervals determined by the diameter of a diaphragm constituting a part of the ultrasonic oscillator. Since the reproduction means arranged side by side is provided, it is possible to emit ultrasonic waves with a wide directivity, and to effectively eliminate the organisms to be excluded.
本発明の実施の形態1に係る生物排除装置の基本的な構成を示す基本ブロック概念図である。It is a basic block conceptual diagram which shows the basic composition of the biological exclusion apparatus which concerns on Embodiment 1 of this invention. 排除対象生物としてのカラスの「平常時音声」の時間波形と周波数変化の一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of the time waveform and frequency change of "normal sound" of the crow as an exclusion object organism. 排除対象生物としてのカラスの「異常時音声」の時間波形と周波数変化の一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of the time waveform and frequency change of "the audio | voice at the time of abnormality" of the crow as an organism for exclusion. 排除対象生物としてのカラスの「異常時音声」を基に創生した「擬似音声」の時間波形と周波数変化の一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of the time waveform and frequency change of the "pseudo sound" created based on the "sound at the time of abnormality" of the crow as a removal object organism. 人間が発生する音声の時間波形と周波数変化の一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of the time waveform and frequency change of the audio | voice which a human generate | occur | produces. カラスを排除するための再生音声の時間軸特性の一例を示したものである。An example of the time-axis characteristic of the reproduction | regeneration audio | voice for eliminating a crow is shown. 本発明の実施の形態1に係る生物排除装置が付与する発光のタイミングパターンの一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of the timing pattern of the light emission which the organism exclusion apparatus which concerns on Embodiment 1 of this invention provides. 本発明の実施の形態1に係る生物排除装置が付与する音声及び発光のタイミングの一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of the timing of the audio | voice and light emission which the organism exclusion apparatus which concerns on Embodiment 1 of this invention provides. 本発明の実施の形態1に係る生物排除装置が付与する音声及び圧力のタイミングの一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of the timing of the audio | voice and pressure which the organism exclusion apparatus which concerns on Embodiment 1 of this invention provides. 本発明の実施の形態1に係る生物排除装置が付与する音声、発光及び圧力のタイミングの一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of the timing of the audio | voice, light emission, and pressure which the biological exclusion apparatus which concerns on Embodiment 1 of this invention provides. 本発明の実施の形態1に係る生物排除装置の再生手段を構成している超音波発振子の単体構造の一例の概要を示す概略図である。It is the schematic which shows the outline | summary of an example of the single-piece | unit structure of the ultrasonic oscillator which comprises the reproduction | regeneration means of the biological exclusion apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る生物排除装置の再生手段の全体的な構成の一例の概要を示している。1 shows an outline of an example of the overall configuration of a regeneration unit of a biological exclusion apparatus according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る生物排除装置の再生手段で再生したときの指向特性を説明するための説明図である。It is explanatory drawing for demonstrating the directional characteristic when it reproduces | regenerates with the reproduction | regeneration means of the biological exclusion apparatus which concerns on Embodiment 1 of this invention. 比較例としての再生手段で再生したときの指向特性を説明するための説明図である。It is explanatory drawing for demonstrating the directional characteristic when reproducing | regenerating with the reproducing | regenerating means as a comparative example. 本発明の実施の形態1に係る生物排除装置の再生手段の具体的な別の一例を説明するための概略構成図である。It is a schematic block diagram for demonstrating another specific example of the reproduction | regeneration means of the biological exclusion apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る生物排除装置の再生手段の具体的な別の一例を説明するための概略構成図である。It is a schematic block diagram for demonstrating another specific example of the reproduction | regeneration means of the biological exclusion apparatus which concerns on Embodiment 1 of this invention. 実施の形態2に係る生物排除装置の設置例を説明するための説明図である。It is explanatory drawing for demonstrating the example of installation of the biological exclusion apparatus which concerns on Embodiment 2. FIG. 実施の形態2に係る生物排除装置の設置例を説明するための説明図である。It is explanatory drawing for demonstrating the example of installation of the biological exclusion apparatus which concerns on Embodiment 2. FIG. 実施の形態2に係る生物排除装置の設置例を説明するための説明図である。It is explanatory drawing for demonstrating the example of installation of the biological exclusion apparatus which concerns on Embodiment 2. FIG. 実施の形態2に係る生物排除装置の設置例を説明するための説明図である。It is explanatory drawing for demonstrating the example of installation of the biological exclusion apparatus which concerns on Embodiment 2. FIG.
 以下、図面に基づいてこの発明の実施の形態について説明する。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、図1を含め、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。さらに、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、これらの記載に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, in the following drawings including FIG. 1, the relationship of the size of each component may be different from the actual one. Further, in the following drawings including FIG. 1, the same reference numerals denote the same or equivalent parts, and this is common throughout the entire specification. Furthermore, the forms of the constituent elements shown in the entire specification are merely examples, and are not limited to these descriptions.
実施の形態1.
 図1は、本発明の実施の形態1に係る生物排除装置1の基本的な構成を示す基本ブロック概念図である。以下、図1を参照しながら、生物排除装置1について説明する。生物排除装置1は、排除対象生物に対して、超音波に重畳した音声を付与させるようにしたものである。
 なお、以下の説明において、「付与」には、「与える」、「提示」、「暴露」が含まれるものとする。
Embodiment 1 FIG.
FIG. 1 is a basic block conceptual diagram showing a basic configuration of a biological exclusion device 1 according to Embodiment 1 of the present invention. Hereinafter, the biological exclusion apparatus 1 will be described with reference to FIG. The organism exclusion device 1 is configured to give a sound superimposed on ultrasonic waves to an organism to be excluded.
In the following description, “grant” includes “give”, “present”, and “exposure”.
 また、図1では、生物排除装置1が、音声以外の手段として「発光手段70」及び「圧力付与手段90」を備えた場合を例に示しているが、「発光手段70」及び「圧力付与手段90」は生物排除装置1の必須の構成ではない。
 さらに、図1では、生物排除装置1が、「検知センサー95」を備えた場合を例に示しているが、「検知センサー95」は生物排除装置1に必須の構成ではない。
FIG. 1 shows an example in which the biological exclusion apparatus 1 includes “light emitting means 70” and “pressure applying means 90” as means other than sound. However, “light emitting means 70” and “pressure applying” are illustrated. The means 90 ”is not an essential component of the biological exclusion apparatus 1.
Further, FIG. 1 shows an example in which the organism exclusion device 1 includes the “detection sensor 95”, but the “detection sensor 95” is not an essential component of the organism exclusion device 1.
 生物排除装置1は、音声伝送手段80と、発光手段70と、圧力付与手段90と、排除対象生物を検知するための検知センサー95と、を少なくとも有している。 The organism exclusion apparatus 1 includes at least an audio transmission unit 80, a light emitting unit 70, a pressure applying unit 90, and a detection sensor 95 for detecting an organism to be excluded.
<音声伝送手段80>
 音声伝送手段80は、単一の超音波周波数(例えば、40kHz)を発振することができる音放射手段(例えば、共振型の音発生装置(再生手段40))から、所定の周波数幅を持たせた振幅変調又は周波数変調した超音波帯域の信号(たとえば、40kHz±2kHzなど)を放射するようになっている。
 このとき、生物排除装置1は、単一の超音波周波数に、周波数幅を持たせた変調波による超音波帯域の音を重畳する。
<Audio transmission means 80>
The sound transmission means 80 has a predetermined frequency width from sound radiation means (for example, a resonance type sound generator (reproduction means 40)) capable of oscillating a single ultrasonic frequency (for example, 40 kHz). In addition, an amplitude-modulated or frequency-modulated ultrasonic band signal (for example, 40 kHz ± 2 kHz) is radiated.
At this time, the biological exclusion apparatus 1 superimposes a sound in an ultrasonic band by a modulated wave having a frequency width on a single ultrasonic frequency.
 音声伝送手段80は、超音波信号創生部10、排除信号部12、処理回路部25、加算部30、制御部55、アンプ35、再生手段40を備えている。
 また、加算部30に超音波信号創生部10を加えずに、排除信号部12からの信号をそのまま制御部55に伝送させることもできるソフト的な信号処理も行える構成をも有する。これにより、超音波信号に重畳させずに、排除に必要な音声だけを出すことも可能となり、特殊な再生手段を用いなくても、従来のスピーカー手段でも、排除に必要な音声を再生/放射することが可能となる。
The audio transmission unit 80 includes an ultrasonic signal creation unit 10, an exclusion signal unit 12, a processing circuit unit 25, an addition unit 30, a control unit 55, an amplifier 35, and a reproduction unit 40.
In addition, without adding the ultrasonic signal creation unit 10 to the addition unit 30, the signal from the exclusion signal unit 12 can be transmitted to the control unit 55 as it is, and a configuration that can perform software signal processing is also provided. As a result, it is possible to output only the sound necessary for exclusion without being superimposed on the ultrasonic signal, and the sound necessary for exclusion can be reproduced / radiated without using special reproduction means or with conventional speaker means. It becomes possible to do.
 超音波信号創生部10は、20kHz以上の超音波帯域の信号を創生する発信回路部として機能している。超音波信号創生部10で創生された信号周波数がキャリア信号として使われる。 The ultrasonic signal generation unit 10 functions as a transmission circuit unit that generates an ultrasonic band signal of 20 kHz or higher. The signal frequency created by the ultrasonic signal creation unit 10 is used as a carrier signal.
 排除信号部12は、原音声信号12a、擬似(音声)信号12b、超音波信号12c、過渡信号12d、人間音声信号12eがランダムに選択された駆除/排除信号20を創出する。
 なお、排除信号部12は、原音声信号12a、擬似(音声)信号12b、超音波信号12c、過渡信号12d、人間音声信号12e、これら忌避音声信号以外に、一般的な音声信号を創出し、発信できるようになっている。
The exclusion signal unit 12 creates a removal / exclusion signal 20 in which the original audio signal 12a, the pseudo (audio) signal 12b, the ultrasonic signal 12c, the transient signal 12d, and the human audio signal 12e are selected at random.
The exclusion signal unit 12 creates a general audio signal in addition to the original audio signal 12a, the pseudo (audio) signal 12b, the ultrasonic signal 12c, the transient signal 12d, the human audio signal 12e, and these avoidance audio signals, You can make outgoing calls.
 原音声信号12aは、入力され保存されている排除対象生物の生の原音声による音声信号である。
 この原音声信号12aとしては、異常時、たとえば排除対象生物が天敵に襲われている時つまり恐怖時に排除対象生物が発生する音声や、恐怖時に排除対象生物が発生する回避行動を促すための音声を利用している。
The original audio signal 12a is an audio signal based on the raw original audio of the organism to be excluded that is input and stored.
As the original audio signal 12a, a sound generated when the organism to be excluded is attacked by natural enemies, for example, when it is feared, that is, when it is feared, or a sound for prompting an avoidance action that occurs when the organism is excluded when it is feared. Is used.
 擬似(音声)信号12bは、特徴ある排除対象生物の原音声(原音声信号12a)の特徴的な音響特性を用いて創生した疑似的な音声信号である。
 この擬似(音声)信号12bは、(原音声信号12a)のたとえば周波数特性、発声間隔、無音間隔などを参考に、和音や倍音で構成して創生している。
The pseudo (sound) signal 12b is a pseudo sound signal created by using the characteristic acoustic characteristics of the original sound (original sound signal 12a) of the characteristic organism to be excluded.
This pseudo (speech) signal 12b is created by creating chords and harmonics with reference to, for example, the frequency characteristics, utterance interval, silence interval, etc. of the (original speech signal 12a).
 超音波信号12cは、所定の周波数幅を持たせた振幅変調又は周波数変調した超音波帯域の音声信号である。 The ultrasonic signal 12c is an audio signal in an ultrasonic band subjected to amplitude modulation or frequency modulation with a predetermined frequency width.
 過渡信号12dは、インパルス信号が入力されることによる過渡的な音、つまりインパルス音(衝撃音)又はインパクト音(爆発音)の音声信号である。
 この過渡信号12dとしては、たとえばガラスの割れた音や雷の音など、非常に高い音圧レベルが過渡的(短時間)に含まれる突発的な音声を利用して構成している。
The transient signal 12d is an audio signal of a transient sound generated by inputting an impulse signal, that is, an impulse sound (impact sound) or an impact sound (explosive sound).
As the transient signal 12d, for example, a sudden sound in which a very high sound pressure level is included transiently (for a short time) such as a broken glass sound or a thunder sound is used.
 人間音声信号12eは、排除対象生物が恐れる人間が発生する音声による音声信号である。
 人間音声信号12eとしては、人間が排除対象生物を追い払うときに発生する、短時間の威嚇的及び脅し的な音声を利用している。短時間の威嚇的及び脅し的な音声とは、たとえば「コラー」や「ウワー」等の音声である。なお、短時間の威嚇的及び脅し的な音声を発生する人間の性別を特に限定するものではないが、以下の例では男性が発生した音声を利用した場合を例に示している。
The human voice signal 12e is a voice signal generated by a voice generated by a person who is afraid of the organism to be excluded.
As the human voice signal 12e, a short-time threatening and threatening voice that is generated when a human banishes an organism to be excluded is used. The short-time threatening and threatening voices are voices such as “collar” and “wow”, for example. In addition, although the gender of the person who generates a threatening and threatening voice for a short time is not particularly limited, the following example shows a case where a voice generated by a man is used.
 処理回路部25は、排除信号部12に作成及び保存されている駆除/排除信号20及び一般的な音声信号を自由に組み合わせてランダム出力するものである。 The processing circuit unit 25 is a unit that freely combines the removal / exclusion signal 20 created and stored in the exclusion signal unit 12 and a general audio signal, and outputs them randomly.
 加算部30は、排除信号部12と超音波信号創生部10とを結合する部分として機能し、それぞれから出力された信号を振幅変調又は周波数変調して所定の周波数幅を持たせた超音波帯域の信号(たとえば、40kHz±2kHzなど)とする。 The adding unit 30 functions as a part that couples the exclusion signal unit 12 and the ultrasonic signal generating unit 10, and an ultrasonic wave having a predetermined frequency width by amplitude-modulating or frequency-modulating a signal output from each of them. A band signal (for example, 40 kHz ± 2 kHz) is assumed.
 制御部55は、CPU部51と、付与機能制御手段52と、を少なくとも有している。
 CPU部51は、加算部30で創生された信号に基づいて、再生手段40、発光手段70及び圧力付与手段90の動作を制御する機能を有している。
 付与機能制御手段52は、発光手段70及び圧力付与手段90の動作を制御するための情報をCPU部51に提供する機能を有している。
 付与機能制御手段52には、発光手段70に対する発光のタイミング(時間、時刻)や、発光周波数に関する情報が予め記憶されている。
 また、付与機能制御手段52には、圧力付与手段90に対する空気の噴出タイミング(時間、時刻)や圧力の強さに関する情報が予め記憶されている。
 なお、これらの情報は、書き換え可能にしておくとよい。
The control unit 55 includes at least a CPU unit 51 and a provision function control unit 52.
The CPU unit 51 has a function of controlling the operations of the reproducing unit 40, the light emitting unit 70, and the pressure applying unit 90 based on the signal created by the adding unit 30.
The application function control unit 52 has a function of providing the CPU unit 51 with information for controlling the operation of the light emitting unit 70 and the pressure application unit 90.
In the provision function control unit 52, information regarding the timing (time and time) of light emission with respect to the light emitting unit 70 and the light emission frequency is stored in advance.
In addition, the application function control unit 52 stores in advance information related to the air ejection timing (time and time) and the pressure intensity with respect to the pressure application unit 90.
These pieces of information are preferably rewritable.
 アンプ35は、加算部30で振幅変調された信号の音圧レベルを増幅するものである。 The amplifier 35 amplifies the sound pressure level of the signal amplitude-modulated by the adding unit 30.
 再生手段40は、アンプ35で増幅された信号を音声等として再生し、離れた場所に伝送するものである。
 再生手段40は、たとえば20kHz以上の超音波帯域の音放射を行える素子を用いて構成している。
 たとえば、再生手段40は、圧電素子による共振手段で構成したり、一般的な電気-音響変換素子(高周波帯域を再生するスピーカー素子)である紙やプラスチックなどで形成された振動板などを2個以上備え持つもので構成したり、することができる。
The reproduction means 40 reproduces the signal amplified by the amplifier 35 as sound or the like and transmits it to a remote place.
The reproducing means 40 is configured using an element capable of emitting sound in an ultrasonic band of 20 kHz or higher, for example.
For example, the reproducing means 40 is constituted by a resonance means using a piezoelectric element, or two diaphragms formed of paper or plastic, which are general electro-acoustic conversion elements (speaker elements for reproducing a high frequency band). It can consist of what has the above.
<発光手段70>
 発光手段70は、音声以外の他の付与手段として「光」を排除対象生物に対して付与するようになっている。
 この発光手段70を、光発光ユニットとして生物排除装置1に着脱自在にしておくとよい。
 発光手段70は、発光源を備えている。
 発光源は、排除対象生物に対応させて選定すればよい。発光源としては、たとえば、ランプ、紫外線を発光するLED、青色LED、白色や赤色を発光するLED等を利用することができる。
<Light emitting means 70>
The light emitting means 70 is configured to give “light” to the organisms to be excluded as other providing means other than sound.
The light emitting means 70 may be detachably attached to the organism exclusion device 1 as a light emitting unit.
The light emitting means 70 includes a light emitting source.
The luminescence source may be selected according to the organism to be excluded. As the light source, for example, a lamp, an LED that emits ultraviolet light, a blue LED, an LED that emits white or red light, or the like can be used.
<圧力付与手段90>
 圧力付与手段90は、音声以外の他の付与手段として「圧力波」を排除対象生物に対して付与するようになっている。つまり、圧力付与手段90は、空気を発砲することで圧力波を付与する。
 この圧力付与手段90を、圧力波発生ユニットとして生物排除装置1に着脱自在にしておくとよい。
 圧力付与手段90は、空気などの気体を、塊状(渦輪(リング状))にして、対象エリアに存在する排除対象生物に対して付与するものである。
 なお、圧力付与手段90としては、「圧力波」を排除対象生物に対して付与できるものであればどのような構成のものでも適用することができる。たとえば、一般的な空気砲を圧力付与手段90として適用するとよい。
<Pressure applying means 90>
The pressure application unit 90 applies a “pressure wave” to the organism to be excluded as an application unit other than sound. That is, the pressure applying unit 90 applies a pressure wave by firing air.
The pressure applying means 90 may be detachably attached to the organism exclusion apparatus 1 as a pressure wave generating unit.
The pressure applying means 90 applies a gas such as air to a to-be-excluded organism existing in the target area in a lump shape (vortex ring (ring shape)).
As the pressure applying unit 90, any configuration can be applied as long as it can apply a “pressure wave” to the organism to be excluded. For example, a general air gun may be applied as the pressure applying unit 90.
<検知センサー95>
 検知センサー95は、検知範囲に存在する排除対象生物を検知するためのものである。
 検知センサー95としては、たとえば赤外線、超音波または可視光などを利用した動物検知センサー、あるいは、カメラなどの撮像装置等を利用することができる。
<Detection sensor 95>
The detection sensor 95 is for detecting an organism to be excluded that exists in the detection range.
As the detection sensor 95, for example, an animal detection sensor using infrared rays, ultrasonic waves, visible light, or the like, or an imaging device such as a camera can be used.
 検知センサー95が検知した情報は制御部55に送られる。
 たとえば、制御部55は、検知センサー95が排除対象生物を検知した際に、駆除/排除信号20を放射させるようにしてもよい。このとき、制御部55は、「光」及び「圧力波」のすくなくとも1つを付与するようにしてもよい。
 また、駆除/排除信号20の放射時間や放射タイミングは、ON/OFFを繰り返すタイマーによって定期的又は不定期的に実行されるように設定してもよい。たとえば、制御部55に、付与開始時刻、付与終了時刻、または付与時間間隔を予め定めておき、タイマーによって付与タイミングを制御するようにしてもよい。
 さらに、検知センサー95又はタイマーによる自動制御の他に、音声放射できるマニュアル放射スイッチ等の制御方法を生物排除装置1に備えるようにしてもよい。
Information detected by the detection sensor 95 is sent to the control unit 55.
For example, the control unit 55 may emit the extermination / exclusion signal 20 when the detection sensor 95 detects the organism to be excluded. At this time, the control unit 55 may apply at least one of “light” and “pressure wave”.
Further, the emission time and emission timing of the extermination / exclusion signal 20 may be set to be executed periodically or irregularly by a timer that repeats ON / OFF. For example, the control unit 55 may previously determine the application start time, the application end time, or the application time interval, and control the application timing with a timer.
Further, in addition to the automatic control by the detection sensor 95 or the timer, the biological exclusion apparatus 1 may be provided with a control method such as a manual emission switch that can emit sound.
[排除対象生物の排除について]
<音声による排除>
 ここで、音声を用いて排除対象生物としてのカラスを排除する場合について説明する。
 音声コミュニケーションを用いている動物や集団行動をする動物の場合には、仲間を誘導するための音声コミュニケーションを利用していることが知られている。
 カラスは、発達した脳と発声器官を有しており、複数の鳴き声を利用し、仲間同士で高等な音声コミュニケーションを行うことが知られている。
[Exclusion of organisms to be excluded]
<Exclusion by voice>
Here, a case where a crow as an organism to be excluded is excluded using sound will be described.
In the case of animals that use voice communication or animals that perform collective behavior, it is known that voice communication is used to guide friends.
A crow has a developed brain and a vocal organ, and is known to perform high-level voice communication between friends using a plurality of calls.
 カラスが発生する音声としては、異常時と平常時に発生する音声に大別できる。異常時に発生する未加工の生音声としては、警戒時に発生する警戒音声、猛禽類との争い時に発生する戦闘音声や威嚇音声、恐怖時に発生する音声の3種類が含まれる。
 なお、以下の説明において、上記内容を表すために、「異常時音声」と称するものとする。また、「異常時音声」以外の時を「平常時音声」と称するものとする。
Voices that generate crows can be broadly classified into voices that occur during anomalies and normal times. The raw raw voice generated at the time of abnormality includes three kinds of warning voice generated at the time of warning, fighting voice and threatened voice generated at the time of fighting with raptors, and voice generated at the time of fear.
In the following description, in order to express the above contents, “abnormal voice” is assumed. Further, times other than “abnormal voice” are referred to as “normal voice”.
 図2は、排除対象生物としてのカラスの「平常時音声」の時間波形と周波数変化の一例を説明するための説明図である。なお、図2において、縦軸は音圧レベル(dB)を、横軸は周波数(kHz)を、それぞれ示している。また、図2では、音圧レベルの最大値を0dB付近で示している。さらに、図2では、周波数変化を3秒間平均として示している。 FIG. 2 is an explanatory diagram for explaining an example of a time waveform and frequency change of “normal speech” of a crow as an organism to be excluded. In FIG. 2, the vertical axis indicates the sound pressure level (dB), and the horizontal axis indicates the frequency (kHz). In FIG. 2, the maximum value of the sound pressure level is shown in the vicinity of 0 dB. Furthermore, in FIG. 2, the frequency change is shown as an average for 3 seconds.
 図2に示すように、カラスの発する音声時間は、大凡、0.2秒から1.0秒以内±0.2秒以内で変化するものであり、一例として、発生時間が平均で0.3秒~0.5秒±0.2秒で変化したものについて説明する。
 カラスが発生する「平常時音声」の周波数特性は、800Hz~4kHz±1kHzにおける帯域の変化が大きく、発生時間が平均で0.3秒~0.5秒±0.2秒となっていることがわかった。
 「平常時音声」の発生時においては、平常時音声の周波数帯域の音圧レベルの強弱は、略同時に変化しており、周波数帯域に対する時間変化の重み付けは見られない(図2に示す(1a)、(1b)、(1c)参照)。
As shown in FIG. 2, the voice time of the crow changes generally within 0.2 seconds to within ± 0.2 seconds within 0.2 seconds, and as an example, the occurrence time is 0.3 on average. A description will be given of a change in seconds to 0.5 seconds ± 0.2 seconds.
The frequency characteristics of “normal voice” in which crows are generated have a large band change in the range of 800 Hz to 4 kHz ± 1 kHz, with an average generation time of 0.3 to 0.5 seconds ± 0.2 seconds. I understood.
At the time of occurrence of “normal voice”, the level of the sound pressure level in the frequency band of the normal voice changes substantially simultaneously, and no weighting of the time change with respect to the frequency band is seen ((1a shown in FIG. 2). ), (1b), (1c)).
 図3は、排除対象生物としてのカラスの「異常時音声」の時間波形と周波数変化の一例を説明するための説明図である。なお、図3において、縦軸は音圧レベル(dB)を、横軸は周波数(kHz)を、それぞれ示している。また、図3では、音圧レベルの最大値を0dB付近で示している。さらに、図3では、周波数変化を3秒間平均として示している。 FIG. 3 is an explanatory diagram for explaining an example of a time waveform and a frequency change of “abnormal voice” of a crow as an organism to be excluded. In FIG. 3, the vertical axis indicates the sound pressure level (dB), and the horizontal axis indicates the frequency (kHz). In FIG. 3, the maximum value of the sound pressure level is shown in the vicinity of 0 dB. Further, in FIG. 3, the frequency change is shown as an average for 3 seconds.
 図3に示すように、カラスが異常時に発する音声時間は、平常時同様に、大凡、0.2秒から1.0秒以内±0.2秒以内で変化するものであり、一例として、発生時間が平均で0.3秒~0.5秒±0.2秒で変化したものについて説明する。 As shown in FIG. 3, the voice time emitted when the crow is abnormal is generally changed within 0.2 seconds to within ± 0.2 seconds within 0.2 seconds, as in the normal case. A description will be given of the case where the average time is changed from 0.3 to 0.5 seconds ± 0.2 seconds.
 カラスが発生する「異常時音声」の周波数特性は、400Hz±100ヘルツ~4kHz±1kHzにおける帯域の変化が大きく、発生時間が平均で0.3秒~0.5秒±0.2秒となっていることがわかった。「異常時音声」の発生時においては、周波数に時間変動が表れ、以下のようなタイミングとなっていることが理解できる(図3に示す(2a)、(2b)、(2c)参照)。 The frequency characteristics of “abnormal voice” in which crows are generated have a large band change from 400 Hz ± 100 Hz to 4 kHz ± 1 kHz, and the generation time is on average 0.3 seconds to 0.5 seconds ± 0.2 seconds. I found out. At the time of occurrence of “abnormal voice”, it can be understood that time fluctuation appears in the frequency and the timing is as follows (see (2a), (2b), and (2c) shown in FIG. 3).
 帯域(2a)は、400Hz~800Hzの低周波数帯域である。
 帯域(2b)は、800Hz~2kHzの中周波数帯域である。
 帯域(2c)は、2kHz~4kHz±1kHzの高周波数帯域である。
 これらから、帯域(2a)~帯域(2c)の順に音圧レベルの変動があり、図3中の最大音圧レベルの0dBから-30dB前後まで順に変化する特性傾向を有することがわかった。つまり、「異常時音声」においては、時間変化に重み付けがされているということがわかる。
The band (2a) is a low frequency band of 400 Hz to 800 Hz.
The band (2b) is a medium frequency band of 800 Hz to 2 kHz.
The band (2c) is a high frequency band of 2 kHz to 4 kHz ± 1 kHz.
From these, it was found that the sound pressure level fluctuates in the order of the band (2a) to the band (2c) and has a characteristic tendency that changes in order from 0 dB to around −30 dB of the maximum sound pressure level in FIG. In other words, it can be seen that in the “abnormal voice”, the time change is weighted.
 そこで、生物排除装置1では、「異常時音声」と「平常時音声」との明らかな変化を利用して、異常時の音声変化の特徴量を用いて疑似音声を創生するようにしている。つまり、疑似音声は、「異常時音声」を基本として、その特徴量を再現して創生したものである。創生した疑似音声の周波数特性の一例を図4に示している。 Therefore, the biological exclusion device 1 uses a clear change between “abnormal voice” and “normal voice” to create a pseudo voice using the feature amount of the voice change at the time of abnormality. . In other words, the pseudo sound is created by reproducing the feature amount based on the “sound at the time of abnormality”. An example of the frequency characteristics of the created pseudo voice is shown in FIG.
 図4は、排除対象生物としてのカラスの「異常時音声」を基に創生した「擬似音声」の時間波形と周波数変化の一例を説明するための説明図である。なお、図4において、縦軸は音圧レベル(dB)を、横軸は周波数(kHz)を、それぞれ示している。また、図4では、音圧レベルの最大値を0dB付近で示している。 FIG. 4 is an explanatory diagram for explaining an example of a time waveform and a frequency change of “pseudo-voice” created based on “abnormal voice” of a crow as an organism to be excluded. In FIG. 4, the vertical axis indicates the sound pressure level (dB), and the horizontal axis indicates the frequency (kHz). In FIG. 4, the maximum value of the sound pressure level is shown in the vicinity of 0 dB.
 図4に示すように、「擬似音声」の周波数特性は、500Hz~4kHz±1kHzにおける帯域の変化を大きく、擬似音声についても、0.2秒から1.0秒以内に変化させており、図面中では、一例として、発生時間を平均で0.3秒~0.5秒±0.2秒としたものについて説明する。なお、具体的には、「擬似音声」は、特に以下の周波数帯域(図4に示す(3a)、(3b)、(3c)参照)で特徴的な変動を行わせ創生する。また、「擬似音声」の最大音圧レベルは最大30dB以内とし、「擬似音声」の各周波数帯域の発音時間は均等配分とする。 As shown in FIG. 4, the frequency characteristics of the “pseudo-voice” have a large band change in the range of 500 Hz to 4 kHz ± 1 kHz, and the pseudo-voice is also changed within 0.2 seconds to 1.0 seconds. In the description, an example in which the occurrence time is 0.3 seconds to 0.5 seconds ± 0.2 seconds on average will be described. Specifically, “pseudo speech” is created by performing characteristic fluctuations particularly in the following frequency bands (see (3a), (3b), and (3c) shown in FIG. 4). In addition, the maximum sound pressure level of “pseudo-voice” is within 30 dB at the maximum, and the sound generation time of each frequency band of “pseudo-voice” is equally distributed.
 帯域(3a)は、400Hz~800Hzの低周波数帯域で、500Hz+200Hz(-100Hz)前後を変化させる。
 帯域(3b)は、800Hz~2kHzの中周波数帯域で、1.2kHz+500Hz(-100Hz)前後を変化させる。
 帯域(3c)は、2kHz~4kHz±1kHzの高周波数帯域で、4kHz+1000Hz(-500Hz)前後を変化させる。
 そして、この順に、最大音圧レベルを最大30dB以内までで変化させ、発音時間を均等配分とすることで、「擬似音声」を創生している。
The band (3a) is a low frequency band of 400 Hz to 800 Hz, and changes around 500 Hz + 200 Hz (−100 Hz).
The band (3b) is a medium frequency band of 800 Hz to 2 kHz, and changes around 1.2 kHz + 500 Hz (−100 Hz).
The band (3c) is a high frequency band of 2 kHz to 4 kHz ± 1 kHz, and changes around 4 kHz + 1000 Hz (−500 Hz).
In this order, the maximum sound pressure level is changed within a maximum of 30 dB, and the sound generation time is equally distributed to create “pseudo-voice”.
 つまり、生物排除装置1では、「擬似音声」を、周波数帯域特性を「異常時音声」と同等とし、時間的な帯域変化も「異常時音声」と同等として創生している。このように「擬似音声」を創生することで、「擬似音声」が「異常時音声」と同様にカラスに作用することが期待できる。 That is, in the biological exclusion device 1, “pseudo-voice” is created with the frequency band characteristics equivalent to “abnormal voice” and the time band change equivalent to “abnormal voice”. By creating the “pseudo-voice” in this way, it can be expected that the “pseudo-voice” acts on the crow like the “sound at the time of abnormality”.
 図5は、人間が発生する音声の時間波形と周波数変化の一例を説明するための説明図である。なお、図5において、縦軸は音圧レベル(dB)を、横軸は周波数(kHz)を、それぞれ示している。また、図5では、音圧レベルの最大値を0dB付近で示している。さらに、図5では、カラスが最も恐れる生物の1つである人間の男性が「コラー」と叫んだ際の音声の特性を示している。 FIG. 5 is an explanatory diagram for explaining an example of a time waveform and a frequency change of a voice generated by a human. In FIG. 5, the vertical axis represents the sound pressure level (dB), and the horizontal axis represents the frequency (kHz). In FIG. 5, the maximum value of the sound pressure level is shown in the vicinity of 0 dB. Furthermore, FIG. 5 shows the sound characteristics when a human male who is one of the creatures most feared by crows yells “Koller”.
 図5に示すように、「人間の音声」は、500Hz~8kHz±1kHzという比較的広い周波数帯域を有している。また、カラスは、再生時間における語尾部分相当を2秒以上続けた「人間の音声」を浴びると、直近に人間がいると思い、恐怖を感じるということがわかっている。そこで、図5では、一例として、発生時間を平均で0.3秒以上としたものについて示している。なお、具体的には、「人間の音声」は、特に以下の周波数帯域(図5に示す(4a)、(4b)、(4c)参照)で変動する。また、「人間の音声」の最大音圧レベルは最大50dB以内とする。 As shown in FIG. 5, “human voice” has a relatively wide frequency band of 500 Hz to 8 kHz ± 1 kHz. It is also known that crows feel fear when they are exposed to the “human voice” that lasts more than 2 seconds for the ending part of the playback time. Therefore, FIG. 5 shows an example in which the occurrence time is 0.3 seconds or more on average. Specifically, “human voice” varies particularly in the following frequency bands (see (4a), (4b), and (4c) shown in FIG. 5). Further, the maximum sound pressure level of “human voice” is set to be within 50 dB at maximum.
 上述したように、生物排除装置1は、処理回路部25により、5つの音声信号で構成される駆除/排除信号20が出力可能となっている。具体的には、生物排除装置1では、5つの音声信号を自由に組み合わせてランダム出力することが可能になっている。 As described above, the biological exclusion apparatus 1 can output the extermination / exclusion signal 20 composed of five audio signals by the processing circuit unit 25. Specifically, in the organism exclusion device 1, it is possible to randomly combine and output five audio signals.
 図6は、カラスを排除するための再生音声の時間軸特性の一例を示したものである。図6に基づいて、生物排除装置1によるカラスの排除例について説明する。なお、図6では、縦軸が周波数を、横軸が時間を、それぞれ示している。また、図6に示すグラフは一例であり、各音声の発生時間は、図6に示す例よりも長くも短くもすることができる。 FIG. 6 shows an example of the time axis characteristic of the reproduced sound for eliminating the crow. Based on FIG. 6, an example of crow removal by the organism exclusion device 1 will be described. In FIG. 6, the vertical axis represents frequency and the horizontal axis represents time. Moreover, the graph shown in FIG. 6 is an example, and the generation time of each voice can be longer or shorter than the example shown in FIG.
 図6に示す「A」は、原音声信号12aを放出した時の周波数特性を示している。
 図6に示す「B」は、過渡信号12dを放出した時の周波数特性を示している。
 図6に示す「C」は、擬似信号12bを放出した時の周波数特性を示している。
 図6に示す「D」は、過渡信号12dを放出した時の周波数特性を示している。
 図6に示す「E」は、人間音声信号12eを放出した時の周波数特性を示している。
 図6に示す「F」は、原音声信号12aを放出した時の周波数特性を示している。
“A” shown in FIG. 6 indicates frequency characteristics when the original audio signal 12a is emitted.
“B” shown in FIG. 6 indicates the frequency characteristics when the transient signal 12d is emitted.
“C” shown in FIG. 6 indicates a frequency characteristic when the pseudo signal 12b is emitted.
“D” shown in FIG. 6 indicates a frequency characteristic when the transient signal 12d is emitted.
“E” shown in FIG. 6 indicates a frequency characteristic when the human voice signal 12e is emitted.
“F” shown in FIG. 6 indicates frequency characteristics when the original audio signal 12a is emitted.
 「A」及び「F」に示す原音声信号12aは、入力され保存されている排除対象生物の生の音声信号(未加工音)であり、「異常時音声」であるためカラスの排除に寄与する。
 「B」及び「D」に示す過渡信号12dは、インパルス的な時間変化を行う「音=音響特性」であり、発生時間を0.05秒以下の非常に短い時間とした音声信号であり、カラスの排除に寄与する。
The original audio signal 12a shown in “A” and “F” is a raw audio signal (raw sound) of the organism to be excluded that is input and stored, and contributes to the elimination of crows because it is an “abnormal audio”. To do.
The transient signal 12d shown in “B” and “D” is “sound = acoustic characteristics” that performs an impulse-like time change, and is an audio signal with an occurrence time of 0.05 seconds or less, Contributes to eliminating crows.
 「C」に示す擬似信号12bは、周波数帯域特性を「異常時音声」と同等とし、時間的な帯域変化も「異常時音声」と同等として創生した音声(加工音)であり、「異常時音声」と同様にカラスの排除に寄与する。
 「E」に示す人間音声信号12eは、男性が発生する音声であり、語尾含めて0.5秒にしており、「異常時音声」と同様にカラスの排除に寄与する。
The pseudo signal 12b shown in “C” is a voice (processed sound) created with the frequency band characteristic equivalent to “sound during abnormal time” and the time band change equivalent to “sound during abnormal time”. It contributes to the elimination of crows as well as “Hour Voice”.
The human voice signal 12e indicated by “E” is a voice generated by a male and is 0.5 seconds including the end of the word, and contributes to the elimination of crow like the “sound at abnormal time”.
 単純に、カラスの音声パターンを再生すると、人間にも聞こえることになってしまう。
 また、自然界におけるカラスの音声(鳴き声)の音圧レベルは、たとえば、カラスと計測器の距離が10mであった場合でも70dB~80dBを有しており、非常に高い音圧レベルを有している。
Simply playing a crow's voice pattern would make it audible to humans.
Also, the sound pressure level of crow voice (scream) in nature is, for example, 70 dB to 80 dB even when the distance between the crow and the measuring instrument is 10 m, and has a very high sound pressure level. Yes.
 排除信号部12の音声パターンの出力レベル(音声レベル)も、確実な回避行動を行わせるためには、実際にカラスが発生する音声と同等以上の音圧レベルで放射を行う必要がある。 The output level (voice level) of the voice pattern of the exclusion signal unit 12 also needs to be radiated at a sound pressure level equal to or higher than the voice that actually generates crows in order to perform reliable avoidance action.
 そこで、生物排除装置1では、単一の超音波周波数に、所定の周波数幅を持たせた変調波による超音波帯域の音を重畳するようにしている。 
 再生手段40で放射できる音圧レベルは、近接での測定時において最低でも124dB以上とする。
Therefore, the biological exclusion apparatus 1 superimposes a sound in an ultrasonic band by a modulated wave having a predetermined frequency width on a single ultrasonic frequency.
The sound pressure level that can be radiated by the reproducing means 40 is at least 124 dB at the time of measurement in proximity.
 強力な音圧レベルとして放射できる再生手段40から放射した単一の超音波信号と、変調した超音波信号とが、空間伝搬したときの空気との摩擦による揺らぎの影響を受けて、非線形の信号波形として空間伝搬する。 
 よって、線形的に空間伝搬する音響信号とは異なって、線形的な音圧レベルの減衰特性を得られず、音圧レベル減衰がほとんど行われずに、且つ、空気圧の影響を受けずに、空間上を超音波信号が直線的に伝搬することができるようになる。
A single ultrasonic signal radiated from the reproducing means 40 that can radiate as a strong sound pressure level and a modulated ultrasonic signal are influenced by fluctuations caused by friction with air when propagating in space, and are nonlinear signals. Propagate in space as a waveform.
Therefore, unlike an acoustic signal that linearly propagates in space, a linear sound pressure level attenuation characteristic cannot be obtained, the sound pressure level is hardly attenuated, and is not affected by air pressure. The ultrasonic signal can be propagated linearly on the top.
 この非線形的に空間上を進んだ超音波信号の波形は、何かに衝突したときに空気中の伝搬を停止させられる。そのために、衝突した個所で、変調を与えた超音波波形の和差分が発生し、(40kHz±3kHz)-40kHz=3kHzの幅を持つ周波数帯域の音が衝突点で発生(復調)する。
 この結果、空間を伝搬する途中では、音は何も聞こえない。
The waveform of the ultrasonic signal that travels nonlinearly in the space can stop the propagation in the air when it collides with something. For this reason, a sum difference of the modulated ultrasonic waveforms is generated at the location of the collision, and sound in a frequency band having a width of (40 kHz ± 3 kHz) −40 kHz = 3 kHz is generated (demodulated) at the collision point.
As a result, no sound can be heard while propagating in space.
 変調帯域を3kHzとする理由は、カラスの音声帯域が3kHzまで及んでいるということであり、カラスの音声を確実に再生する必要があることから3kHzの変調帯域を狙うことにしている。 The reason why the modulation band is set to 3 kHz is that the crow's voice band extends to 3 kHz, and the crow's voice needs to be reliably reproduced, so the 3 kHz modulation band is aimed.
 また、駆除/排除信号20は、たとえば3秒以内での伝搬を一つとして放射するようにしている。
 そして、駆除/排除信号20の停止時間は、3秒~5秒としている。
 連続的に駆除/排除信号20を放射することは、音への慣れ対策として行わない。
 その他、排除に必要な音声処理を変更可能としておき、定期的又は不定期的に音声を交換できるようにしておくとよい。
 なお、音声を、たとえば各種メモリーカードを利用して交換したり、有線通信又は無線通信を利用して交換したり、直接入力して交換したりすることができるようにしておくとよい。
Further, the extermination / exclusion signal 20 is radiated as a single propagation within 3 seconds, for example.
The stop time of the extermination / exclusion signal 20 is 3 to 5 seconds.
Continuously emitting the extermination / exclusion signal 20 is not performed as a measure for accustoming to sound.
In addition, it is preferable that voice processing necessary for exclusion can be changed so that voice can be exchanged regularly or irregularly.
It should be noted that the voice may be exchanged using, for example, various memory cards, exchanged using wired communication or wireless communication, or exchanged by direct input.
 超音波信号12cを放出したとき、非線形の伝搬現象が幸いして、搬送波及び届いた超音波の音圧レベルは120dB以上となる。そして、超音波を生体的には骨伝導的要因として、圧力感として聞く(体感)ことになり、カラスにとっては自然界で得られない感覚が身体に直接暴露されて、20kHz以下の周波数帯域の音声と伴って、パニック現象に近い現象が引き起こされることにもなる。 When the ultrasonic signal 12c is emitted, the nonlinear propagation phenomenon is fortunate, and the sound pressure level of the carrier wave and the transmitted ultrasonic wave is 120 dB or more. Then, in the living body, the ultrasound is heard as a sense of pressure as a bone conduction factor (sensation), and a sense that cannot be obtained in nature by crows is directly exposed to the body, and sound in a frequency band of 20 kHz or less. As a result, a phenomenon close to the panic phenomenon is caused.
<発光による排除>
 排除対象生物の排除を更に効果的に実行する手段について説明する。上述したように、生物排除装置1では、ランダムに選択された駆除/排除信号20により、排除対象生物の排除を効果的に実行可能になっているが、排除対象生物の排除を更に効果的に実行する手段について説明する。ここでは、非定常的(ランダム)な発光を用いて排除対象生物としてのカラスを排除する場合について説明する。
<Exclusion by light emission>
A means for more effectively executing the exclusion target organism will be described. As described above, in the organism exclusion apparatus 1, the elimination / exclusion signal 20 selected at random can effectively eliminate the organism to be excluded. However, the organism elimination device 1 can be more effectively excluded. Means for executing will be described. Here, a case where a crow as an organism to be excluded is excluded using non-stationary (random) light emission will be described.
 カラスは、人間と異なり、紫外線帯域の波長も認識できることが知られている。
 そこで、生物排除装置1では、カラスの視覚的な特徴を利用して、昼夜を問わず、不定期、不連続による発光をカラスに付与することを可能にしている。
Unlike humans, crows are known to be able to recognize wavelengths in the ultraviolet band.
Therefore, the biological exclusion device 1 makes it possible to impart luminescence to the crow irregularly or discontinuously regardless of day or night, using the visual characteristics of the crow.
 なお、カラスは、紫外線が見えるために、発光手段70に用いる発光源としては、紫外線を発光するLEDや、青色LEDが有効である。これらを用いれば、太陽光とは異なる波長が発光できるので、昼間でも有力にカラスに付与することができる。たとえば、カラスに付与する光としては、カラスにとって感度が高いとされる300nm~500nmの波長が含まれる光とするとよい。
 カラス以外の他の鳥獣に対しては、白色や赤色のLEDを発光手段70の発光源として用いるとよい。また、発光周波数を可変できるLEDを用いることで、多数の害鳥獣に対応することが可能となる。
 光を利用することで、音声によるコミュニケーションに劣る排除対象生物、たとえばハトやリスなどにも効果的に作用することになる。
Since crows can see ultraviolet rays, LEDs that emit ultraviolet rays and blue LEDs are effective as the light source used for the light emitting means 70. If these are used, since a wavelength different from that of sunlight can be emitted, it can be effectively applied to the crow even in the daytime. For example, the light imparted to the crow may be light including a wavelength of 300 nm to 500 nm that is considered highly sensitive to the crow.
For birds and animals other than crows, white or red LEDs may be used as the light source of the light emitting means 70. Moreover, it becomes possible to cope with a large number of harmful birds and beasts by using an LED whose emission frequency can be varied.
By using light, it effectively acts on an organism to be excluded that is inferior to voice communication, such as pigeons and squirrels.
 図7は、生物排除装置1が付与する発光のタイミングパターンの一例を説明するための説明図である。図7に基づいて、発光付与のタイミングパターンの一例について説明する。 FIG. 7 is an explanatory diagram for explaining an example of a timing pattern of light emission provided by the organism exclusion device 1. Based on FIG. 7, an example of a timing pattern for providing light emission will be described.
 生物排除装置1では、発光手段70から非定常的に発光させるようにしている。つまり、生物排除装置1では、カラスや他の害鳥獣等の排除対象生物への「脅し」を考慮して、発光時間、停止時間をランダム変化させることを基本としている。
 発光としては、単発発光、連続発光があり、発光時間としては、所定の発光時間B1、D1、F1があり、付与時間としては、所定の時間間隔A1、C1、E1がある。
In the biological exclusion device 1, the light emitting means 70 emits light irregularly. That is, the organism exclusion device 1 is based on changing the light emission time and the stop time randomly in consideration of “threat” to the organisms to be excluded such as crows and other harmful birds and beasts.
Light emission includes single light emission and continuous light emission, light emission time includes predetermined light emission times B1, D1, and F1, and application time includes predetermined time intervals A1, C1, and E1.
 まず、生物排除装置1は、所定の時間間隔A1の間、発光手段70から何も発光させない。
 そして、所定の時間間隔A1が過ぎると、生物排除装置1は、発光手段70を用いて所定の発光時間B1で単発発光させる。
 その後、生物排除装置1は、所定の時間間隔C1の間、発光手段70から何も発光させない。
 所定の時間間隔C1が過ぎると、生物排除装置1は、発光手段70を用いて所定の発光時間D1、所定の発光時間F1を所定の時間間隔E1を空けて連続発光させる。
First, the organism exclusion apparatus 1 does not emit any light from the light emitting means 70 during the predetermined time interval A1.
Then, when the predetermined time interval A1 has passed, the organism exclusion device 1 causes the light emission means 70 to emit light once in a predetermined light emission time B1.
Thereafter, the organism exclusion device 1 does not emit any light from the light emitting means 70 during the predetermined time interval C1.
When the predetermined time interval C1 has passed, the organism exclusion device 1 causes the light emitting means 70 to continuously emit light at a predetermined light interval D1 and a predetermined light emission time F1 with a predetermined time interval E1.
 このように、ランダム発光することによって、無限に近い状態で発光することができ、定常的に発光することに比べて、「慣れ」等を防ぐことができ、確実に排除対象生物の排除が可能となる。
 なお、図7に示した所定の発光時間B1、D1、F1、及び、所定の時間間隔A1、C1、E1は、任意なものであり、適宜決定すればよい。また、これらを繰り返してもよいが、単純な繰り返しは「慣れ」等を発生させることに繋がるため避けた方が好ましい。
In this way, by emitting light randomly, light can be emitted in an almost infinite state, and compared to steady light emission, it is possible to prevent “habituation” and the like, and it is possible to eliminate the target organisms with certainty. It becomes.
Note that the predetermined light emission times B1, D1, and F1 and the predetermined time intervals A1, C1, and E1 shown in FIG. 7 are arbitrary and may be appropriately determined. These may be repeated, but it is preferable to avoid simple repetition because it leads to generation of “habituation” and the like.
 図7では、生物排除装置1が付与する「発光」について説明したが、「圧力」についても「発光」と同様に付与することができる。つまり、生物排除装置1では、カラスや他の害鳥獣等の排除対象生物への「脅し」を考慮して、圧力付与時間、停止時間をランダム変化させることを基本としている。よって、生物排除装置1では、圧力付与手段90から非定常的に圧力を付与させることが可能になっている。圧力をランダム付与することによって、無限に近い状態で圧力付与をすることができ、定常的に圧力付与することに比べて、「慣れ」等を防ぐことができ、確実に排除対象生物の排除が可能となる。 In FIG. 7, “light emission” provided by the organism exclusion device 1 has been described, but “pressure” can also be provided in the same manner as “light emission”. In other words, the organism exclusion device 1 is based on the fact that the pressure application time and the stop time are randomly changed in consideration of “threat” to the organisms to be excluded such as crows and other harmful birds and beasts. Therefore, in the organism exclusion apparatus 1, it is possible to apply pressure non-steadily from the pressure applying means 90. By applying pressure randomly, pressure can be applied in an almost infinite state, and compared to applying pressure constantly, it is possible to prevent “habituation” etc. It becomes possible.
<音声及び発光のタイミングパターン>
 図8は、生物排除装置1が付与する音声及び発光のタイミングの一例を説明するための説明図である。図8に基づいて、生物排除装置1から付与する音声及び発光のタイミングの一例を説明する。
<Sound and light emission timing pattern>
FIG. 8 is an explanatory diagram for explaining an example of sound and light emission timing given by the organism exclusion device 1. Based on FIG. 8, an example of the audio | voice given from the biological exclusion apparatus 1 and the timing of light emission is demonstrated.
 図8に示すように、生物排除装置1では、再生手段40によって音声付与を行った後、発光手段70を連続発光させて発光付与するようにするとよい。 As shown in FIG. 8, in the organism exclusion device 1, it is preferable that after the sound is given by the reproducing means 40, the light emitting means 70 is continuously emitted to give the light.
 再生手段40による音声付与においては、強力な音圧レベルによる単一周波数の超音波信号と、±3kHzほどの変調を加えた超音波信号と、を加算し、かつ、加算信号に可聴域のたとえばカラスなどの排除対象生物の排除を目的とした音声を重畳することで、直線的な指向性を持つ音声を搬送する。 In providing sound by the reproduction means 40, an ultrasonic signal having a single frequency with a strong sound pressure level and an ultrasonic signal with a modulation of about ± 3 kHz are added, and the added signal is, for example, in the audible range. Audio with linear directivity is conveyed by superimposing audio for the purpose of excluding target organisms such as crows.
 連続信号による音声の中に不定期にパルス性の信号音が発生して、カラス等の動物に浴びせられることになる。そのため、高等なコミュニケーションを行っている動物にとっては、不快なインパルス音として提供されることになる。 
 また、振幅変調は簡単な回路構成でできるので、安価に回路が成形できると共に、屋外等に設置した場合には、デジタル回路の場合に必要な外来ノイズの強力な対策構造や回路構成、回路に見られる複雑な回路設定等も必要ない。そこで、生物排除装置1では、デジタル処理を必要としない構成を採用し、回路に対するコストメリットも大きいという特徴を持っている。
A pulsed signal sound is generated irregularly in the sound of the continuous signal and is exposed to animals such as crows. For this reason, it is provided as an unpleasant impulse sound for animals that perform advanced communication.
In addition, amplitude modulation can be done with a simple circuit configuration, so that the circuit can be molded at low cost, and when installed outdoors, etc., it has a powerful countermeasure structure, circuit configuration, and circuit for external noise required for digital circuits. There is no need for complicated circuit settings. Therefore, the biological exclusion device 1 employs a configuration that does not require digital processing, and has a feature that the cost merit for the circuit is great.
 上述したように、再生手段40は、高い音圧レベルを放射させる必要がある。これは、住宅街等でカラスの排除を行う場合、一般的なスピーカーによる再生方法では、住宅街の住民に対してもカラスの音声が付与されることになる。その場合は、カラスの音声を聞いた人間にとっては単なる「騒音」である。 As described above, the reproducing means 40 needs to emit a high sound pressure level. This is because, when a crow is eliminated in a residential area or the like, the crow's voice is given to the residents in the residential area by a general speaker playback method. In that case, it is just “noise” for the person who heard the crow's voice.
 よって、人間には不快感を与えさせないために、生物排除装置1では、超音波搬送によって、カラスだけに対して音声を付与させるようにしている。
 しかしながら、公知である一般的なパラメトリックスピーカーは、目的とする場所に対してのみ「音響信号」を提供するものであり、パラメトリック方式としては、非常に指向性が狭いという特性がある。また、パラメトリックスピーカーのための素子の構造が専用でないために、高い音圧レベルで音放射を行うための振動板等の振幅を作れないなどの短所を有している。そのため、従来は目的とする場所にだけ音の提供を人間が聞こえる程度の音圧レベルで提供する程度のものであった。
Therefore, in order not to give an unpleasant feeling to human beings, the biological exclusion device 1 is configured to give sound only to crows by ultrasonic conveyance.
However, a known general parametric speaker provides an “acoustic signal” only to a target location, and the parametric system has a characteristic that directivity is very narrow. Further, since the element structure for the parametric speaker is not dedicated, there is a disadvantage that the amplitude of a diaphragm or the like for emitting sound at a high sound pressure level cannot be created. For this reason, conventionally, the sound is provided only at a target location at a sound pressure level that can be heard by humans.
 ただし、排除対象生物の一例であるカラスを対象にした場合、カラスの「ねぐら」や「えさ場」等に集まる個体数は、非常に多く、上記の場所での排除を目的とする場合には、広い範囲(幅のある範囲)に、且つ大きな音圧レベルでの音声の放射が必要になっている。
 この場合に、指向性がある程度広げられる中低域用の一般的なスピーカーでの音放射が有利であるが、カラスの発音の音圧レベルと同等以上の音圧レベルを広い範囲で放射すると、当然、人間にも付与されるので、先述の通り、「騒音」として人間に不快を与えてしまうことになる。
However, when targeting a crow that is an example of an organism to be excluded, the number of individuals gathering in the crow's “roost” or “food ground” is very large. Therefore, it is necessary to radiate sound in a wide range (wide range) and at a large sound pressure level.
In this case, it is advantageous to radiate sound with a general speaker for middle and low ranges where the directivity is expanded to some extent, but if a sound pressure level that is equal to or higher than the sound pressure level of crow pronunciation is radiated in a wide range, Naturally, since it is also given to humans, as described above, it will give humans unpleasantness as “noise”.
 以上のことから、目的とする場所に対して、つまりは離れたところに集団で居るカラスに対して、排除に必要な音声を、超音波をキャリアとして大音圧で送ると共に、なるべく広い(幅のある)指向性で音声を提供できるようにすることが重要になる。
 そこで、生物排除装置1では、音声搬送を行えるユニット(再生手段40)を複数近接配置することで、直線的な指向性を有する広い指向性を持つ音声搬送装置を構成することを可能としている。 
 このようにすれば、離れたところに対して、広い範囲で目的の音声を送ることができるようになっているので、カラス以外の周辺の住宅街等の住民(人間)に対して音(音声)が付与されることがなく、騒音問題は発生しない。
 また、複数の再生手段40を備えることにすれば、高い音圧レベルの確保をより確実にすることができる。
From the above, to the target location, that is, to the crows that are in a distant place, the sound necessary for exclusion is transmitted with high sound pressure using ultrasound as a carrier, and as wide as possible (width) It is important to be able to provide sound with directivity.
Therefore, in the organism exclusion device 1, a plurality of units (reproducing means 40) capable of carrying sound can be arranged close to each other, so that a sound carrying device having a wide directivity having a linear directivity can be configured.
In this way, the target voice can be sent to a distant place over a wide range, so the sound (voice) ) Is not given, and noise problems do not occur.
Further, if a plurality of reproducing means 40 are provided, it is possible to ensure a high sound pressure level.
 すなわち、生物排除装置1は、強力な音圧レベルによる超音波信号を、搬送信号として、この超音波信号に対して鳥獣を排除させるために必要な音声(生音声や人工音声)信号を重畳する。そして、重畳した音声信号を振幅変調や周波数変調することで、音放射の放射範囲を狭く(狭指向性化)する。こうすることで、任意の方向に対して強力な音圧レベルを維持しながら音放射することが出来るようになる。その結果、生物排除装置1では、超音波信号の距離伝播に伴う音圧レベル劣化を抑えながら、排除対象生物の駆除等に必要な音声信号を長距離に搬送可能になる。 In other words, the biological exclusion device 1 uses an ultrasonic signal with a strong sound pressure level as a carrier signal, and superimposes a voice (live voice or artificial voice) signal necessary for eliminating birds and beasts on the ultrasonic signal. . And the radiation range of sound radiation is narrowed (narrow directivity) by amplitude-modulating or frequency-modulating the superimposed audio signal. In this way, sound can be emitted while maintaining a strong sound pressure level in an arbitrary direction. As a result, the living organism exclusion apparatus 1 can carry an audio signal necessary for extermination of an organism to be excluded over a long distance while suppressing deterioration in sound pressure level due to propagation of the ultrasonic signal over distance.
 搬送先の排除対象生物に搬送信号が届いたときに、変調信号が復調されて、排除対象生物に対して駆除等の音声信号を直接的に付与することができる。
 よって、排除対象生物以外に、排除に必要な音響信号(音声)を付与することがないために、排除対象生物が飛来する建物周囲の一般施設などには、騒音等の影響を与える事がない。
 また、超音波によって必要な音声等の周波数を搬送しているために、超音波以外の周波数を再生させるための、たとえば高性能なスピーカー装置を用いる必要はなく、安価に装置の構成を行うことができる。
When the transport signal reaches the organism to be excluded at the transport destination, the modulation signal is demodulated, and an audio signal such as extermination can be directly applied to the organism to be excluded.
Therefore, since an acoustic signal (sound) necessary for exclusion is not given other than the organism to be excluded, general facilities around the building where the organism to be excluded will not be affected by noise or the like. .
In addition, since the necessary frequencies such as sound are carried by ultrasonic waves, it is not necessary to use, for example, a high-performance speaker device for reproducing frequencies other than ultrasonic waves, and the device configuration is performed at low cost. Can do.
 さらに、排除対象生物に直接音放射を提供するのではなく、超音波に重畳させた音声を「復調」させることで、排除対象生物に対して付与することになる。そのため、排除対象生物の音声信号等の周波数帯域は、数Hz~数百kHz以上まで対応することが出来るという効果も有する。  Furthermore, instead of providing sound radiation directly to the organism to be excluded, it is given to the organism to be excluded by “demodulating” the sound superimposed on the ultrasonic waves. For this reason, the frequency band of the audio signal of the organism to be excluded can cope with several Hz to several hundred kHz or more.
 加えて、生物排除装置1では、音声以外にも発光を排除対象生物に付与すれば、更に効果的に排除対象生物の排除が実現できる。たとえば、図8に示すように、音声による付与を行った後に、連続発光させるようにするとよい。
 そのため、生物排除装置1に発光手段70を用いれば、音声による排除効果に加え、発光による排除効果を奏することが可能になる。
In addition, the organism exclusion device 1 can realize the exclusion of the organism to be excluded more effectively by providing light emission to the organism to be excluded in addition to the sound. For example, as shown in FIG. 8, it is preferable to emit light continuously after giving by voice.
Therefore, if the light emission means 70 is used in the organism exclusion apparatus 1, it is possible to achieve an exclusion effect by light emission in addition to an exclusion effect by sound.
 具体的には、音声及び発光の組み合わせで駆動させることによって、様々な影響を与えることができる複数の排除手段を排除対象生物に対して付与することができる。そのため、単発の付与手段による「慣れ」等を防ぐ事ができ、確実に排除対象生物の排除が可能となる。
 また、生物排除装置1によれば、超音波搬送による音声伝搬を利用するために、排除対象生物に対してのみに直接付与することができる。そのため、排除対象生物以外に、排除に必要な音響信号(音声)を付与することがなく、排除対象生物が飛来する建物周囲の一般施設などには、騒音等の影響を与えることがない。
Specifically, by driving with a combination of sound and light emission, a plurality of exclusion means that can give various influences can be given to the organism to be excluded. For this reason, it is possible to prevent “acquisition” or the like by a single granting means, and it is possible to reliably exclude the organisms to be excluded.
Moreover, according to the organism exclusion apparatus 1, in order to utilize the audio | voice propagation by ultrasonic conveyance, it can provide directly only with respect to an elimination object organism. Therefore, an acoustic signal (sound) necessary for exclusion is not given other than the organisms to be excluded, and noise or the like is not exerted on general facilities around the building where the organisms to be excluded fly.
<音声及び圧力付与のタイミングパターン>
 図9は、生物排除装置1が付与する音声及び圧力のタイミングの一例を説明するための説明図である。図9に基づいて、生物排除装置1からカラスに向けて付与する音声及び圧力について説明する。
<Voice and pressure application timing pattern>
FIG. 9 is an explanatory diagram for explaining an example of the timing of sound and pressure applied by the organism exclusion device 1. Based on FIG. 9, sound and pressure applied from the organism exclusion device 1 toward the crow will be described.
 図9に示すように、生物排除装置1では、再生手段40によっての音声付与と、圧力付与手段90によっての圧力付与と、を交互に繰り返して付与するようにするとよい。
 そのため、生物排除装置1によれば、音声による排除効果に加え、圧力による排除効果を奏することになる。
As shown in FIG. 9, in the organism exclusion device 1, it is preferable that the sound application by the reproduction unit 40 and the pressure application by the pressure application unit 90 are alternately and repeatedly applied.
Therefore, according to the biological exclusion apparatus 1, in addition to the exclusion effect by sound, the exclusion effect by pressure is exhibited.
 具体的には、生物排除装置1によれば、音声及び圧力の組み合わせで駆動させることによって、様々な影響を与えることができる複数の排除手段を排除対象生物に対して付与することができる。そのため、単発の付与手段による「慣れ」等を防ぐ事ができ、確実に排除対象生物の排除が可能となる。 Specifically, according to the organism exclusion apparatus 1, a plurality of exclusion means that can have various influences can be imparted to an organism to be excluded by being driven by a combination of sound and pressure. For this reason, it is possible to prevent “acquisition” or the like by a single granting means, and it is possible to reliably exclude the organisms to be excluded.
<音声、発光及び圧力付与のタイミングパターン>
 図10は、生物排除装置1が付与する音声、発光及び圧力のタイミングの一例を説明するための説明図である。図10に基づいて、生物排除装置1からカラスに向けて付与する音声、発光及び圧力について説明する。
<Timing pattern of voice, light emission and pressure>
FIG. 10 is an explanatory diagram for explaining an example of the timing of sound, light emission, and pressure provided by the organism exclusion device 1. Based on FIG. 10, sound, light emission, and pressure applied from the organism exclusion device 1 toward the crow will be described.
 図10に示すように、生物排除装置1では、再生手段40によっての音声付与と、圧力付与手段90によっての圧力付与と、を交互に繰り返して付与した後、発光手段70を連続発光させて発光付与するようにするとよい。
 そのため、生物排除装置1よれば、音声による排除効果に加え、発光及び圧力による排除効果を奏することになる。
As shown in FIG. 10, in the biological exclusion device 1, after applying sound by the reproducing means 40 and applying pressure by the pressure applying means 90 alternately and repeatedly, the light emitting means 70 emits light continuously. It is good to give it.
Therefore, according to the biological exclusion apparatus 1, in addition to the exclusion effect by sound, the exclusion effect by light emission and pressure is exhibited.
 具体的には、生物排除装置1によれば、音声、発光及び圧力の組み合わせで駆動させることによって、様々な影響を与えることができる複数の排除手段を排除対象生物に対して付与することができる。そのため、単発の付与手段による「慣れ」等を防ぐ事ができ、確実に排除対象生物の排除が可能となる。 Specifically, according to the organism exclusion device 1, a plurality of exclusion means that can have various influences can be given to the organism to be excluded by being driven by a combination of sound, light emission, and pressure. . For this reason, it is possible to prevent “acquisition” or the like by a single granting means, and it is possible to reliably exclude the organisms to be excluded.
 以上のように、再生手段40を音声発生ユニットとして、発光手段70を光発生ユニットとして、圧力付与手段90を圧力波発生ユニットとして、それぞれ単独又は複数の組み合わせで駆動させることで、排除対象生物に対して、様々な影響を与えることができる排除手段を排除対象生物に付与することが可能になる。そのため、生物排除装置1では、単発暴露手段による「慣れ」等を防ぐことができ、排除対象生物の排除の確実性が高くなる。 As described above, by driving the reproduction means 40 as a sound generation unit, the light emission means 70 as a light generation unit, and the pressure applying means 90 as a pressure wave generation unit, each of them can be driven alone or in combination, so On the other hand, it becomes possible to give the exclusion target organisms exclusion means that can exert various effects. Therefore, the organism exclusion device 1 can prevent “habituation” and the like by the single exposure means, and the certainty of exclusion of the organism to be excluded becomes high.
<再生手段40の具体的な構成例>
 図11は、生物排除装置1の再生手段40を構成している超音波発振子41の単体構造の一例の概要を示す概略図である。図12は、生物排除装置1の再生手段40の全体的な構成の一例の概要を示している。
 図11及び図12では、たとえば40kHzの単一周波数で共振する圧電素子による超音波発振子41で構成した再生手段40の構成例を示しており、複数個の超音波発振子41で一つの放射器帯50を構成している。
<Specific Configuration Example of Reproducing Unit 40>
FIG. 11 is a schematic diagram showing an outline of an example of a single unit structure of the ultrasonic oscillator 41 constituting the regeneration unit 40 of the organism exclusion apparatus 1. FIG. 12 shows an outline of an example of the overall configuration of the regeneration unit 40 of the organism exclusion device 1.
FIG. 11 and FIG. 12 show an example of the configuration of the reproducing means 40 constituted by the ultrasonic oscillator 41 made of a piezoelectric element that resonates at a single frequency of 40 kHz, for example, and a plurality of ultrasonic oscillators 41 emit one radiation. A container 50 is formed.
 図11に示すように、超音波発振子41の単体構造において、超音波発振子41の基本的な構成要素は、ホーン部60、圧電素子のPZT部61、PZTを固着する台座62、PZT61に電圧供給するための電極63である。生物排除装置1では、高い音圧レベルで音放射し、且つ広い指向性を持たせるために、超音波発振子41の共振周波数としては15kHz前後を用い、且つ、音を放射する超音波発振子41のホーン部60を大型化した構造を採用している。 As shown in FIG. 11, in the unit structure of the ultrasonic oscillator 41, the basic components of the ultrasonic oscillator 41 are the horn part 60, the PZT part 61 of the piezoelectric element, the pedestal 62 for fixing the PZT, and the PZT 61. This is an electrode 63 for supplying a voltage. In the biological exclusion apparatus 1, in order to emit sound at a high sound pressure level and to have a wide directivity, the ultrasonic oscillator 41 uses a resonance frequency of about 15 kHz and emits sound. The structure which enlarged the 41 horn part 60 is employ | adopted.
 また、PZT部61の厚みを増すことで圧電作用を起こさせるための印加電圧耐圧を高くできるようにしている。さらに、PZT部61の一次振動成分である共振時(例えば、15kHzにおいて)の振動モードの密(腹)部分全体にホーン部60を固着して、一次の振動伝搬したホーン部60の全体から音放射させるようになっている。この構造により、超音波発振子41への入力電圧を高くすることができ、超音波発振子41の固有振動の変位量を大きく振動させることが可能となる。 Further, by increasing the thickness of the PZT portion 61, the applied voltage withstand voltage for causing the piezoelectric action can be increased. Further, the horn unit 60 is fixed to the entire dense (antinode) portion of the vibration mode at the time of resonance (for example, at 15 kHz), which is the primary vibration component of the PZT unit 61, and the sound from the entire horn unit 60 that has propagated the primary vibration. It is supposed to emit. With this structure, the input voltage to the ultrasonic oscillator 41 can be increased, and the displacement amount of the natural vibration of the ultrasonic oscillator 41 can be greatly oscillated.
 図12に示すように、再生手段40は、複数個の超音波発振子41を1つのブロック(塊)とした放射器帯50を2個以上組み合わせた構成となっている。なお、図12では、14個の超音波発振子41で1つ放射器帯50を構成し、6個の放射器帯50を放射器帯50A~放射器帯50Fとして所定の間隔で配置した状態を示している。
 すなわち、再生手段40は、超音波発振子41一つ当たりの振動板(たとえばPZT部61)の直径の2倍までとした間隔で、放射器帯50を2ブロック以上配置する構造としている。
 こうすることにより、超音波の指向性を広げることができ、且つ、排除に必要な音圧レベルを確保できる。
As shown in FIG. 12, the reproducing means 40 has a configuration in which two or more radiator bands 50 each having a plurality of ultrasonic oscillators 41 as one block (lumb) are combined. In FIG. 12, 14 ultrasonic oscillators 41 constitute one radiator band 50, and six radiator bands 50 are arranged at predetermined intervals as radiator bands 50A to 50F. Is shown.
That is, the reproducing means 40 has a structure in which two or more blocks of the radiator band 50 are arranged at intervals of up to twice the diameter of the diaphragm (for example, the PZT portion 61) per ultrasonic oscillator 41.
By doing so, the directivity of the ultrasonic wave can be expanded and the sound pressure level necessary for exclusion can be secured.
 放射器帯50A~放射器帯50Fの配置例について具体的に説明する。
 隣り合う放射器帯50のいわゆる横方向の間隔を、放射器間隔xと定義する。横方向に並んだ放射器帯50Aと放射器帯50Bとでみると、近接している超音波発振子41の中心同士を結んだ直線が放射器間隔xとなる。
 隣り合う放射器帯50のいわゆる縦方向の間隔を、放射器間隔yと定義する。縦方向に並んだ放射器帯50Aと放射器帯50Dとでみると、近接している超音波発振子41の中心同士を結んだ直線が放射器間隔yとなる。
 なお、横方向及び縦方向とは、便宜的に使用しているだけであり、再生手段40の設置状況により、方向は変化する。
An arrangement example of radiator band 50A to radiator band 50F will be specifically described.
A so-called lateral distance between adjacent radiator bands 50 is defined as a radiator distance x. Looking at the radiator band 50A and the radiator band 50B arranged in the horizontal direction, a straight line connecting the centers of the adjacent ultrasonic oscillators 41 becomes the radiator interval x.
A so-called vertical interval between adjacent radiator bands 50 is defined as a radiator interval y. Looking at the radiator band 50A and the radiator band 50D arranged in the vertical direction, a straight line connecting the centers of the adjacent ultrasonic oscillators 41 is the radiator interval y.
Note that the horizontal direction and the vertical direction are only used for convenience, and the direction changes depending on the installation state of the reproducing means 40.
 その結果、再生手段40は、放射器帯全体の横方向の幅が放射器全体幅Xとなり、放射器帯全体の縦方向の幅が放射器全体幅Yとなるように構成される。
 このとき、一つ当たりの放射器帯50の指向性は、放射器帯50の一つ当たりの縦幅及び横幅に相当する幅での指向性を保つことになる。
 よって、一つ当たりの放射器帯50からは、直線的に音放射が行われることになる。
As a result, the regeneration means 40 is configured such that the horizontal width of the entire radiator band is the entire radiator width X, and the vertical width of the entire radiator band is the entire radiator width Y.
At this time, the directivity of each radiator band 50 maintains the directivity in a width corresponding to the vertical width and horizontal width of each radiator band 50.
Therefore, sound radiation is performed linearly from each radiator band 50.
 上述したように、放射器間隔x及び放射器間隔yは、超音波発振子41の振動板(たとえばPZT部61)の直径の2倍までの範囲で決定する。
 つまり、振動板の直径が10mmとしたら、放射器間隔x及び放射器間隔yは20mm以内とする。
 この間隔を保つことで、以下の図13に示す指向特性の確保ができるということが、実機による実験的検証(音響特性分析)で確認できている。
As described above, the radiator interval x and the radiator interval y are determined in a range up to twice the diameter of the diaphragm (eg, the PZT portion 61) of the ultrasonic oscillator 41.
That is, when the diameter of the diaphragm is 10 mm, the radiator interval x and the radiator interval y are within 20 mm.
It can be confirmed by experimental verification (acoustic characteristic analysis) using an actual machine that the directivity shown in FIG. 13 can be secured by maintaining this interval.
 超音波発振子41が一つだけでは、近接で最大70dB程度(入力電圧15Vとして)の音圧レベルとなる。
 そこで、超音波発振子41の数を増やし集合体として放射器帯50を構成することで、一つ当たりの放射器帯50から放射できる音圧レベルが近接で90dB以上(入力電圧15Vとして)となる。
 つまり、生物排除装置1によれば、再生手段40から、90dB以上の音圧レベルを放射できることになる。
If there is only one ultrasonic oscillator 41, the sound pressure level is about 70 dB at maximum (with an input voltage of 15 V) in the vicinity.
Therefore, by increasing the number of ultrasonic oscillators 41 and configuring the radiator band 50 as an aggregate, the sound pressure level that can be radiated from each radiator band 50 is 90 dB or more in the vicinity (with an input voltage of 15 V). Become.
That is, according to the biological exclusion device 1, a sound pressure level of 90 dB or more can be radiated from the reproducing means 40.
 図12では、一つ当たりの放射器帯50を構成する超音波発振子41を14個用い、それらを平面的に略四角状になるように並べて一つの放射器帯50を構成するようにしている。
 なお、超音波発振子41の個数を14個に限定するものではなく、14個以上でもそれ以下でもよい。つまり、超音波発振子41の個数は、排除対象となる排除対象生物に付与すべき必要な音圧レベルの確保を目的として、調整することが可能になっている。
In FIG. 12, 14 ultrasonic oscillators 41 constituting one radiator band 50 are used, and they are arranged so as to have a substantially rectangular shape in plan view to constitute one radiator band 50. Yes.
The number of ultrasonic oscillators 41 is not limited to 14 and may be 14 or more. That is, the number of the ultrasonic oscillators 41 can be adjusted for the purpose of securing a necessary sound pressure level to be applied to the organisms to be excluded that are to be excluded.
 ところで、遠方に音声を伝播させることために変調処理を行う超音波スピーカーは、特徴として狭い指向性感度を持つ。
 つまり、超音波スピーカーから放射される音声は、直線的に進行することになり、限られた範囲にしか到達しない。よって、排除対象生物に到達する場合は排除対象生物の排除が効果的に実行できるものの、電線等に止まる鳥類のような排除対象生物に対しては、音声が到達した場所では効果的に排除できるが、音声が到達しない場所では効果的な排除ができない。
By the way, an ultrasonic speaker that performs modulation processing to propagate sound far away has a narrow directivity sensitivity as a feature.
That is, the sound radiated from the ultrasonic speaker travels linearly and reaches only a limited range. Therefore, although the exclusion target organism can be effectively eliminated when it reaches the exclusion target organism, it can be effectively excluded at the place where the sound reaches the exclusion target organism such as birds that stop on the electric wire etc. However, it cannot be effectively excluded where the voice does not reach.
 そのため、生物排除装置1では、超音波スピーカーの本来の特徴である直線的な狭い指向性を広げるために、複数の放射器帯50を用いて再生手段40を構成し、直線的でかつ広い指向性を与えることを可能にしている。
 広い指向性を得るために、生物排除装置1では、それぞれの放射器帯50からの指向性の幅が放射先で広い指向性になっていることを測定しながら、放射器帯50のそれぞれの位置関係を決定させている。
Therefore, in the biological exclusion apparatus 1, in order to widen the linear narrow directivity that is the original characteristic of the ultrasonic speaker, the reproduction means 40 is configured using a plurality of radiator bands 50, and the linear and wide directivity is provided. It is possible to give sex.
In order to obtain a wide directivity, the biological exclusion device 1 measures each of the radiator bands 50 while measuring that the width of the directivity from each radiator band 50 is wide at the radiation destination. The positional relationship is determined.
 図13は、生物排除装置1の再生手段40で再生したときの指向特性を説明するための説明図である。図14は、比較例としての再生手段400で再生したときの指向特性を説明するための説明図である。図13及び図14に基づいて、再生手段40及び再生手段400で再生したときの指向特性について説明する。なお、図13及び図14は、正面方向の離れた位置(たとえば10m離れた位置)に差性手段から出てくる音圧レベルを測定するために複数の音圧測定用のマイクロホンを設置して測定した結果をプロットしたものである。また、図14では、複数個の放射器帯500を隣り合う間隔を何ら考慮せずにランダムに並べただけの再生手段400を比較例として図示している。 FIG. 13 is an explanatory diagram for explaining the directivity characteristics when the reproduction is performed by the reproduction means 40 of the organism exclusion device 1. FIG. 14 is an explanatory diagram for explaining directivity characteristics when the reproduction is performed by the reproduction unit 400 as a comparative example. Based on FIG. 13 and FIG. 14, the directivity characteristics when the reproduction unit 40 and the reproduction unit 400 perform reproduction will be described. In FIGS. 13 and 14, a plurality of microphones for measuring sound pressure are installed in order to measure the sound pressure level coming from the differential means at a position away from the front (for example, a position away from 10 m). The measured results are plotted. Further, in FIG. 14, a reproducing unit 400 in which a plurality of radiator bands 500 are arranged randomly without considering any adjacent interval is illustrated as a comparative example.
 ここでは、排除対象生物の一例であるカラスを対象にした場合を例に説明する。
 たとえば、カラスが電柱上で叫んでいた場合に、10m離れた位置でその鳴き声の音圧レベルを測定すると、瞬間的に最大80dBとなることがある。
 よって、排除対象生物であるカラスと生物排除装置1との距離が10mあるとすると、カラスの鳴き声と同等以上の音圧レベルをカラスに付与しなければならない。
 そのため、たとえば80dB以上の音圧レベルの音声を放射させることを目的として、生物排除装置1では、図11及び図12に示したように6個の放射器帯50で再生手段40構成し、目的の音圧レベルを確保している。
Here, a case where a crow which is an example of an organism to be excluded is targeted will be described as an example.
For example, when a crow is screaming on a utility pole, measuring the sound pressure level of the cry at a position 10 m away may instantaneously reach 80 dB maximum.
Therefore, if the distance between the crow that is the organism to be eliminated and the organism exclusion device 1 is 10 m, the crow must be given a sound pressure level equal to or higher than that of the crow's cry.
Therefore, for example, for the purpose of radiating sound having a sound pressure level of 80 dB or more, the biological exclusion apparatus 1 includes the regenerating means 40 with six radiator bands 50 as shown in FIGS. 11 and 12. The sound pressure level is secured.
 カラス等の鳥類を排除する場合、例えば、鳥類が鉄塔や電線等に止まっているときには、鳥類が広い面積で滞在していることがほとんどであり、広い面積で音声を放射しなければ、音声の到達しないところの鳥類は排除できないことになる。 For example, when birds such as crows are excluded, for example, when birds are stopped on a steel tower or electric wire, birds usually stay in a large area. Birds that do not reach cannot be excluded.
 図13及び図14に示す点線は、放射器帯50、放射器帯500のそれぞれから放射される音声の指向特性を示すものであり、1つ1つの放射器帯50、放射器帯500から放射される音声は指向性が狭いということがわかる。
 そのため、図14に示すように、1つの放射器帯500では、音声の暴露範囲が狭く、排除効果があまり得られない。
 それに対し、生物排除装置1の再生手段40では、複数の放射器帯50を横方向に放射器間隔xで並べたことで図13に示すように放射器全体幅Xに沿った指向特性を放射器帯50の正面方向に形成できるということが測定できた。
The dotted lines shown in FIG. 13 and FIG. 14 indicate the directivity characteristics of the sound radiated from each of the radiator band 50 and the radiator band 500, and are radiated from each of the radiator band 50 and the radiator band 500. It can be seen that the voice to be played has a narrow directivity.
Therefore, as shown in FIG. 14, in one radiator band 500, the exposure range of sound is narrow, and the exclusion effect is not obtained so much.
On the other hand, the regeneration means 40 of the biological exclusion apparatus 1 radiates directional characteristics along the entire radiator width X as shown in FIG. It was measured that it could be formed in the front direction of the device band 50.
 そのため、生物排除装置1によれば、「ねぐら」など、集団で集まる鳥類の排除対象生物に対して、広い範囲に音声暴露ができ、高い排除効果が得られやすくなる。
 なお、図13では、横方向の放射器全体幅Xについて図示しているが、図13に示した内容は縦方向の放射器全体幅Yについても同様である。
Therefore, according to the organism exclusion device 1, voice exposure can be performed over a wide range with respect to birds to be excluded such as “roost” gathered in a group, and a high exclusion effect is easily obtained.
Although FIG. 13 shows the overall width X of the radiator in the horizontal direction, the contents shown in FIG. 13 are the same for the overall width Y of the radiator in the vertical direction.
 なお、一つ当たりの放射器帯50から放射できる音圧レベルは、図1に示すアンプ35の出力に影響するが、生物排除装置1によれば近接で測定した場合で100dBを超えた音圧レベルで放射できるようになっている。
 放射器帯50を複数個で用いた場合は、放射器帯50の保有数が増える毎に、トータルの音圧レベルを増加することができ、排除対象生物が離れたところにいる場合は放射器帯50の個数を変化させて組み合わせることで、目的とする音圧レベルを調整できるようになっている。
Note that the sound pressure level that can be radiated from each radiator band 50 affects the output of the amplifier 35 shown in FIG. 1, but according to the biological exclusion device 1, the sound pressure exceeding 100 dB when measured in proximity. It can be emitted at the level.
When a plurality of radiator bands 50 are used, the total sound pressure level can be increased each time the number of radiator bands 50 held increases, and if the organism to be excluded is away, the radiator The target sound pressure level can be adjusted by changing the number of bands 50 and combining them.
 図15及び図16は、生物排除装置1の再生手段40の具体的な別の一例を説明するための概略構成図である。図15及び図16では、図12で説明したものと同様に、たとえば40kHzの単一周波数で共振する圧電素子による超音波発振子41で構成した再生手段40の構成例を示しており、複数個の超音波発振子41で一つの放射器帯50を構成している。 FIGS. 15 and 16 are schematic configuration diagrams for explaining another specific example of the regeneration means 40 of the organism exclusion device 1. 15 and 16 show a configuration example of the reproducing means 40 constituted by an ultrasonic oscillator 41 made of a piezoelectric element that resonates at a single frequency of 40 kHz, for example, as described in FIG. One radiator band 50 is constituted by the ultrasonic oscillator 41 of FIG.
 図12では、放射器帯50を平面的に略四角形状に配置した場合を例に図示したが、放射器帯50の配置を図12に示す配置に限定するものではない。つまり、必要な音圧レベルと指向性が確保できれば、図15に示すような平面的に三角形状に放射器帯50を配置してもよく、図16に示すような平面的に多角形状に放射器帯50を配置してもよい。あるいは、平面的にひし形状に放射器帯50を配置したり、平面的に円形状に放射器帯50を配置したりしてもよい。
 いずれの場合であっても、放射器間隔x及び放射器間隔yは、超音波発振子41の振動板(たとえばPZT部61)の直径の2倍までの範囲で決定する。
In FIG. 12, the case where the radiator band 50 is arranged in a substantially rectangular shape in a plan view is illustrated as an example, but the arrangement of the radiator band 50 is not limited to the arrangement illustrated in FIG. 12. That is, if the required sound pressure level and directivity can be ensured, the radiator band 50 may be arranged in a triangular shape as shown in FIG. 15 and may be radiated in a polygonal shape as shown in FIG. A device band 50 may be arranged. Alternatively, the radiator band 50 may be arranged in a diamond shape in a plane, or the radiator band 50 may be arranged in a circle in a plane.
In any case, the radiator interval x and the radiator interval y are determined in a range up to twice the diameter of the diaphragm (for example, the PZT portion 61) of the ultrasonic oscillator 41.
 ただし、一つ一つの超音波発振子41を、なるべく密集させて配置することが望ましい。それは、一つ当たりの超音波発振子41の指向性も、超音波発振子41の直径分の幅で音放射することになるからであり、複数個の超音波発振子41を広い間隔で複数個並べても、超音波発振子41の間にある隙間からは音が出ない。つまり、複数個の超音波発振子41を広い間隔で複数個並べると、超音波発振子41の正面方向には、音の凸凹状態ができてしまい、放射器帯50の正面方向での音圧レベルが低いものになってしまうからである。よって、超音波発振子41を密集させて放射器帯50を構成することが、安定した音圧レベルと指向性の確保となる。 However, it is desirable to arrange the ultrasonic oscillators 41 as closely as possible. This is because the directivity of each ultrasonic oscillator 41 also radiates sound with a width corresponding to the diameter of the ultrasonic oscillator 41, and a plurality of ultrasonic oscillators 41 are arranged at wide intervals. Even if they are arranged, no sound is emitted from the gap between the ultrasonic oscillators 41. That is, if a plurality of ultrasonic oscillators 41 are arranged at wide intervals, a sound unevenness is created in the front direction of the ultrasonic oscillator 41, and the sound pressure in the front direction of the radiator band 50 is generated. This is because the level becomes low. Therefore, it is possible to secure a stable sound pressure level and directivity by forming the radiator band 50 by closely gathering the ultrasonic oscillators 41.
 以上のように、生物排除装置1によれば、大きな音圧レベルで、且つ、広い指向特性による音放射を、再生手段40から離れたところにいる一個体又は複数体の排除対象生物にめがけて、一度に(いっぺんに)、直接的に、付与することできるようになった。 As described above, according to the organism exclusion device 1, sound radiation with a large sound pressure level and wide directivity characteristics is aimed at one or a plurality of organisms to be excluded at a distance from the reproduction means 40. It can now be granted directly at once.
 その結果、再生手段40からは、変調された音声が、排除対象生物の耳元、排除対象生物の身体、排除対象生物がいる巣の部分に直接伝播し、それらのいずれかにぶつかった瞬間に復調されることになる。そうすると、超音波に重畳していた音声(排除に必要な音声を持つ音放射体)が排除対象生物に付与されることになり、音声主体が排除対象生物のあたかも直近にいるような錯覚を排除対象生物に起こさせることができる。
 すなわち、排除対象生物自身の直近の場所に、天敵がいるような、又は近くで忌避音を発している個体がいるような錯覚を起こさせることができ、排除対象生物にパニック状態を引き起こさせる事ができる。
As a result, the modulated sound is directly propagated from the reproduction means 40 to the ear of the organism to be excluded, the body of the organism to be excluded, and the nest portion where the organism to be excluded is present, and demodulated at the moment when it hits one of them. Will be. Then, the sound superimposed on the ultrasound (sound radiator with the sound necessary for exclusion) will be given to the organism to be excluded, eliminating the illusion that the audio subject is as close as possible to the organism to be excluded. It can be caused to the target organism.
In other words, it is possible to create an illusion that there are natural enemies in the immediate vicinity of the organism to be excluded or that there is an individual that emits a repelling sound nearby, which causes the organism to be excluded to panic. Can do.
 また、排除対象生物の仲間や、種の異なる排除対象生物であっても、普段聞くことがない、非常に近い場所で、突然に忌避音声でない一般的な鳴き声等の音声が聞こえても、突然の音声暴露になるために、パニック状態に陥らせることが可能となる。 In addition, even if you are a member of an exclusion target organism or an exclusion target organism of a different species, even if you hear a general scream that is not suddenly avoided in a very close place that you do not normally hear, It becomes possible to fall into a panic condition because it becomes the voice exposure.
 なお、排除対象生物として鳥類であるカラスを例に説明したが、カラス以外の排除対象生物である熊や、イノシシ、鹿、アライグマ(外来種)、ハクビシン(外来種)、ムクドリ、土鳩などに対しても、それらの排除対象生物が嫌がる音声や音響特性を放射することで、カラス同様に排除効果をもたらすことができることは言うまでもない。 In addition, we explained the crow that is a bird as an example of the organism to be excluded. However, it goes without saying that, by radiating the sound and acoustic characteristics that the organisms to be excluded dislike, an exclusion effect can be brought about in the same manner as a crow.
 なお、超音波発振子41はセラミックなどの圧電素子で構成されているために高いインピーダンスとなっており、アンプ35は4Ω~8Ωが対応範囲になっている場合が一般的であり、複数個の超音波発振子41をそのまま結線することはできない。
 複数個の超音波発振子41が最終のアンプ35に結線されるときには、アンプ35の入力インピーダンスに対応する結線が、出力=音圧レベルを十分に得るために必要になる。
 そこで、複数個の超音波発振子41を直列+並列の組み合せ複合結線とすることで、低インピーダンス化を図ることができるものとする。
Since the ultrasonic oscillator 41 is composed of a piezoelectric element such as ceramic, it has a high impedance, and the amplifier 35 is generally in the range of 4Ω to 8Ω, and there are a plurality of cases. The ultrasonic oscillator 41 cannot be connected as it is.
When a plurality of ultrasonic oscillators 41 are connected to the final amplifier 35, connection corresponding to the input impedance of the amplifier 35 is necessary to obtain a sufficient output = sound pressure level.
Therefore, it is assumed that the impedance can be reduced by combining a plurality of ultrasonic oscillators 41 in series and parallel combined connection.
 以上のように、生物排除装置1では、排除対象生物の「異常時音声」を用いて作成した「擬似音声」を超音波に重畳させて排除対象生物にランダムに付与するので、排除対象生物の本能に直接訴える手段で害獣対策を行うことができる。そのため、生物排除装置1によれば、排除対象生物の行動パターンを知らずに作成した人工的な音響信号を用いた従来品とは異なり、音声を発信する製品そのものの寿命が迎えるまでの長期間に亘って、害獣(有害動物)の排除を行うことが可能になる。 As described above, since the “pseudo-voice” created using the “abnormal sound” of the organism to be excluded is randomly added to the organism to be excluded by superimposing the ultrasonic wave on the organism to be excluded, Pest control measures can be taken by means of direct appeal to the instinct. Therefore, according to the biological exclusion device 1, unlike a conventional product using an artificial acoustic signal created without knowing the behavior pattern of the organism to be excluded, the biological transmission device 1 can be used for a long time until the product itself that transmits sound reaches the end of its life. It is possible to eliminate harmful pests (harmful animals).
 なお、生物排除装置1をカラスの排除に用いた場合を例に説明したが、それに限定するものではない。生物排除装置1によれば、排除対象生物の音声を超音波に重畳させて再生することで、必要な場所に必要な音声を確実に適用することができる。そのため、生物排除装置1を、害鳥として問題が多いムクドリや鳩などにも適用できるし、熊やイノシシ、鹿、アライグマ(外来種)、ハクビシン(外来種)などにも適用できる。更には、生物排除装置1によれば、音声の代わりに、ランダム変化する超音波を、キャリア用の超音波に重畳させても、離れたところにランダムに変化する超音波が広い指向特性で伝搬する。そのため、強力な音圧レベルによる超音波を暴露できるので、超音波が聞こえる猫や犬などの哺乳類に対しても同等の効果が期待できる。 In addition, although the case where the biological exclusion apparatus 1 was used for the elimination of a crow was demonstrated to the example, it is not limited to it. According to the biological exclusion apparatus 1, the necessary sound can be reliably applied to the necessary place by superimposing and reproducing the sound of the organism to be excluded on the ultrasonic wave. Therefore, the organism exclusion device 1 can be applied to starlings and pigeons that have many problems as harmful birds, and can also be applied to bears, wild boars, deer, raccoons (alien species), raccoon (alien species), and the like. Further, according to the biological exclusion device 1, even if a randomly changing ultrasonic wave is superimposed on a carrier ultrasonic wave instead of a voice, the randomly changing ultrasonic wave propagates with a wide directivity characteristic at a distant place. To do. Therefore, since ultrasonic waves with a strong sound pressure level can be exposed, the same effect can be expected for mammals such as cats and dogs that can hear ultrasonic waves.
 また、再生手段40から超音波に重畳した排除用音声が、再生手段40から離れたカラス等の排除対象生物に伝搬して排除対象生物に衝突したときに、超音波に含まれている排除用の音声と、更には高い音圧レベルの超音波信号も同時に復調する。そのため、生物排除装置1を設置している環境の全域に高い音圧レベルの音声が常に聞こえることはない。生物排除装置1によれば、再生手段40の近傍にある家屋内に音声が暴露されるということの心配はない。よって、静かな音放射によって、排除対象生物の排除が可能となる。 Further, when the exclusion sound superimposed on the ultrasonic wave from the reproduction unit 40 propagates to the exclusion target organism such as the crow away from the reproduction unit 40 and collides with the exclusion target organism, the exclusion sound included in the ultrasonic wave And an ultrasonic signal having a higher sound pressure level are demodulated simultaneously. Therefore, a sound with a high sound pressure level is not always heard throughout the environment where the organism exclusion device 1 is installed. According to the biological exclusion device 1, there is no concern that the sound is exposed to the house in the vicinity of the reproduction means 40. Therefore, it is possible to eliminate the organism to be excluded by quiet sound radiation.
実施の形態2.
 図17~図20は、実施の形態2に係る生物排除装置の設置例を説明するための説明図である。図17~図20に基づいて、実施の形態1に係る生物排除装置1の具体的な設置例である実施の形態2について説明する。なお、図17~図20では、生物排除装置1から放射する駆除/排除信号20の放射エリアを破線で図示している。
Embodiment 2. FIG.
17 to 20 are explanatory diagrams for explaining an installation example of the biological exclusion device according to the second embodiment. A second embodiment, which is a specific installation example of the biological exclusion device 1 according to the first embodiment, will be described with reference to FIGS. In FIGS. 17 to 20, the radiation area of the extermination / exclusion signal 20 radiated from the organism exclusion device 1 is illustrated by a broken line.
 図17では、電柱150への生物排除装置1の設置例その1を示している。
 電力搬送等を行う鉄塔や電柱が存在している場所では、鉄塔や電柱そのものや、それらに架線されている電力線そのものに排除対象生物Zが止まる場合がある。鉄塔や電柱に対しては、排除対象生物Zの繁殖期に至ると、巣が作られて、しばしばショート等による停電問題も発生する。
In FIG. 17, the example 1 of the installation of the biological exclusion apparatus 1 to the utility pole 150 is shown.
In places where there are steel towers and utility poles that carry power and the like, the organism Z to be excluded may stop on the steel towers and utility poles themselves, or the power lines themselves that run over them. For steel towers and utility poles, when the organism Z to be excluded reaches the breeding season, nests are formed, and power outage problems due to short-circuits often occur.
 このような問題に対応するために、図17に示すように、電柱150の上端付近部分に生物排除装置1を設置するとよい。こうすることで、排除対象生物Zを効率的に電柱150から排除することが可能となる。なお、生物排除装置1の設置を電柱150の上端付近部分に限定するものではなく、電柱150の設置根元部分や電柱150の中間部分に生物排除装置1を設置するようにしてもよい。
 生物排除装置1を設置する場合、図17に示すように、排除対象生物Zが止まると想定される場所に向けて「音声」などを付与できるように設置する。
 なお、光や圧力は、音声によるコミュニケーションに劣る排除対象生物、たとえば、ハトやリスなどにも効果的に働く。
In order to cope with such a problem, the biological exclusion device 1 may be installed in the vicinity of the upper end of the utility pole 150 as shown in FIG. By doing so, it becomes possible to efficiently exclude the organism Z to be excluded from the utility pole 150. The installation of the biological exclusion device 1 is not limited to the vicinity of the upper end of the utility pole 150, and the biological exclusion device 1 may be installed at the installation root portion of the utility pole 150 or the middle portion of the utility pole 150.
When the organism exclusion device 1 is installed, as shown in FIG. 17, the organism exclusion device 1 is installed so that “voice” or the like can be given to a place where the organism Z to be excluded is supposed to stop.
It should be noted that light and pressure also work effectively on excluded organisms that are inferior to voice communication, such as pigeons and squirrels.
 図18では、電柱150への生物排除装置1の設置例その2を示している。
 図18に示すように、電柱150に架線されている電力線151に排除対象生物Zが止まる場合がある。
In FIG. 18, the example 2 of the installation of the biological exclusion apparatus 1 to the utility pole 150 is shown.
As shown in FIG. 18, the organism Z to be excluded may stop on the power line 151 that is wired to the utility pole 150.
 このような問題に対応するために、図18に示すように、電柱150同士を架線している電力線151の両端及び電柱150の設置根元部分に生物排除装置1を設置するとよい。こうすることで、排除対象生物Zの電力線151への止まりも排除できる。なお、生物排除装置1を双方に設置することもできるし、いずれか一方に設置することもできる。
 生物排除装置1を設置する場合、図18に示すように、排除対象生物Zが止まると想定される場所に向けて「音声」などを付与できるように設置する。
 なお、光や圧力は、音声によるコミュニケーションに劣る排除対象生物、たとえば、ハトやリスなどにも効果的に働く。
In order to cope with such a problem, as shown in FIG. 18, it is preferable to install the biological exclusion device 1 at both ends of the power line 151 that connects the power poles 150 and at the installation base part of the power pole 150. By doing so, it is possible to eliminate the stop of the organism Z to be excluded from the power line 151. In addition, the biological exclusion apparatus 1 can also be installed in both, and can also be installed in either one.
When the organism exclusion device 1 is installed, as shown in FIG. 18, the organism exclusion device 1 is installed so that “voice” or the like can be given to a place where the organism Z to be excluded is supposed to stop.
It should be noted that light and pressure also work effectively on excluded organisms that are inferior to voice communication, such as pigeons and squirrels.
 図19では、建物160への生物排除装置1の設置例を示している。特に、図19では、牛舎に生物排除装置1を設置した例を図示している。
 牛舎や屋外家屋、倉庫、駅、寺、神社等の建物160の内部などでは、人間から離れたところに排除対象生物Zが集まることが想定される。あるいは、建物160の屋根近傍の隙間に排除対象生物Zが集まることも想定される。
 また、駅構内のホームなどでは、上から落ちる糞などから鉄道利用者を守るために排除対象生物Zの排除を目的としたネットなどを用いることがあるが、上部の配線等のメンテ対応などの観点から、ネットが全てに行き渡ることはない。
In FIG. 19, the example of installation of the biological exclusion apparatus 1 in the building 160 is shown. In particular, FIG. 19 illustrates an example in which the organism exclusion device 1 is installed in a barn.
It is assumed that the organisms Z to be excluded gather at places away from humans, such as inside a building 160 such as a barn, outdoor house, warehouse, station, temple, or shrine. Alternatively, it is assumed that the organisms to be excluded Z gather in the gap near the roof of the building 160.
In addition, nets for the purpose of excluding the organisms Z to be excluded may be used to protect railway users from droppings that fall from the top, etc. on platforms inside stations, etc. From the point of view, the net does not reach all.
 このような問題に対応するために、図19に示すように、建物160の上部や周囲に複数の生物排除装置1を設置して駆除/排除信号20の放射エリアを重複させるようにするとよい。こうすることで、排除対象生物Zを効率的に建物160から排除することが可能となる。図19では、2つの生物排除装置1を設置した場合を例に図示しているが、生物排除装置1を1つだけ設置してもよいし、3個以上設置してもよい。 
 生物排除装置1を設置する場合、図19に示すように、排除対象生物Zが止まると想定される場所に向けて「音声」などを付与できるように設置する。
 なお、光や圧力は、音声によるコミュニケーションに劣る排除対象生物、たとえば、ハトやリスなどにも効果的に働く。
In order to cope with such a problem, as shown in FIG. 19, it is preferable to install a plurality of biological exclusion devices 1 on or around a building 160 so that the emission / exclusion signal 20 emission areas overlap. By doing so, it becomes possible to efficiently exclude the organism Z to be excluded from the building 160. In FIG. 19, the case where two biological exclusion devices 1 are installed is illustrated as an example, but only one biological exclusion device 1 may be installed, or three or more biological exclusion devices 1 may be installed.
When the organism exclusion device 1 is installed, as shown in FIG. 19, the organism exclusion device 1 is installed so that “voice” or the like can be given to a place where the organism Z to be excluded is supposed to stop.
It should be noted that light and pressure also work effectively on excluded organisms that are inferior to voice communication, such as pigeons and squirrels.
 図20は、航空機180や滑走路181への生物排除装置1の設置例を示している。
 航空機180においては、航空機180に鳥などの排除対象生物Zが衝突するバードストライクという問題がある。
FIG. 20 shows an installation example of the biological exclusion device 1 on the aircraft 180 and the runway 181.
In the aircraft 180, there is a problem of bird strike in which the organism 180 to be excluded such as a bird collides with the aircraft 180.
 このような問題に対応するために、図20に示すように、航空機180や、飛行場の滑走路181に、生物排除装置1を設置するとよい。こうすることで、バードストライク問題への対応が可能となる。つまり、航空機180に生物排除装置1を搭載すれば、航空機180から予め「音声」などを付与することができ、滑走路181に生物排除装置1を設置すれば、滑走路181から予め「音声」などを付与することができ、滑走路181の近傍に群れている排除対象生物Zを、航空機180の進入前に効果的に排除することができる。 In order to deal with such a problem, the biological exclusion device 1 may be installed on the aircraft 180 or the runway 181 of the airfield as shown in FIG. By doing so, it is possible to cope with the bird strike problem. That is, if the biological exclusion device 1 is mounted on the aircraft 180, “speech” or the like can be given in advance from the aircraft 180. If the biological exclusion device 1 is installed on the runway 181, “sound” is preliminarily provided from the runway 181. And the exclusion target organisms Z that are swarming in the vicinity of the runway 181 can be effectively excluded before the aircraft 180 enters.
 なお、生物排除装置1を航空機180、滑走路181のいずれかのみに設置してもよいし、双方に設置してもよい。双方に設置し、付与するタイミングを適宜調整することで、より効果的に排除対象生物Zを排除することが可能になる。 The biological exclusion device 1 may be installed only on either the aircraft 180 or the runway 181 or on both sides. By installing them on both sides and appropriately adjusting the timing of application, it is possible to more effectively eliminate the organism Z to be excluded.
 実施の形態2では、生物排除装置1からの「音声」等の付与タイミングについて特に言及していないが、常時付与してもよいし、排除対象生物Zを検知したときに付与するようにしてもよい。この場合は、赤外線、超音波、または可視光などを利用した動物検知センサ、あるいは、カメラなどの撮像装置等を別途設ける必要がある。
 さらに、付与開始時刻、付与終了時刻、または付与時間間隔を予め定めておき、時間によって付与タイミングを制御するようにしてもよい。
In the second embodiment, there is no particular mention of the timing of giving “speech” or the like from the organism exclusion device 1, but it may always be given, or may be given when the elimination target organism Z is detected. Good. In this case, it is necessary to separately provide an animal detection sensor using infrared rays, ultrasonic waves, visible light, or an imaging device such as a camera.
Furthermore, the grant start time, grant end time, or grant time interval may be determined in advance, and the grant timing may be controlled by time.
 また、生物排除装置1の具体的な設置例を図17~図20を用いて説明したが、設置場所を特に限定するものではなく、排除対象生物が存在する場所であれば、どのような場所にも設置することができる。たとえば、ゴミ置き場、公園等に生物排除装置1を設置するようにしてもよい。 Further, the specific installation example of the organism exclusion device 1 has been described with reference to FIGS. 17 to 20, but the installation location is not particularly limited, and any location where the organism to be excluded exists is present. Can also be installed. For example, you may make it install the biological exclusion apparatus 1 in a garbage storage, a park, etc.
 1 生物排除装置、10 超音波信号創生部、12 排除信号部、12a 原音声信号、12b 擬似信号、12c 超音波信号、12d 過渡信号、12e 人間音声信号、20 駆除/排除信号、25 処理回路部、30 加算部、35 アンプ、40 再生手段、41 超音波発振子、50 放射器帯、50A 放射器帯、50B 放射器帯、50D 放射器帯、50E 放射器帯、50F 放射器帯、51 CPU部、52 付与機能制御手段、55 制御部、60 ホーン部、61 PZT部、62 台座、63 電極、70 発光手段、80 音声伝送手段、90 圧力付与手段、95 検知センサー、150 電柱、151 電力線、160 建物、180 航空機、181 滑走路、400 再生手段、500 放射器帯、X 放射器全体幅、Y 放射器全体幅、Z 排除対象生物、x 放射器間隔、y 放射器間隔。 1 biological exclusion device, 10 ultrasonic signal creation unit, 12 exclusion signal unit, 12a original audio signal, 12b pseudo signal, 12c ultrasonic signal, 12d transient signal, 12e human audio signal, 20 extermination / exclusion signal, 25 processing circuit Part, 30 addition part, 35 amplifier, 40 regeneration means, 41 ultrasonic oscillator, 50 radiator band, 50A radiator band, 50B radiator band, 50D radiator band, 50E radiator band, 50F radiator band, 51 CPU part, 52 giving function control means, 55 control part, 60 horn part, 61 PZT part, 62 pedestal, 63 electrode, 70 light emitting means, 80 voice transmission means, 90 pressure applying means, 95 detection sensor, 150 power pole, 151 power line , 160 buildings, 180 aircraft, 181 runways, 400 regeneration means, 500 radiator bands X radiator entire width, Y radiators entire width, Z exclusion subject organism, x radiator spacing, y radiator spacing.

Claims (10)

  1.  排除対象生物を排除する生物排除装置であって、
     音放射が可能な再生手段と、 
     前記排除対象生物が異常時に発生する原音声を用いて創生した擬似音声を超音波信号に重畳して、前記排除対象生物が発する音声の音圧レベルと同等又は同等以上の音圧レベルとして前記再生手段から放射させる制御部と、を備え、
     前記再生手段は、
     複数個の超音波発振子を組み合わせて構成された放射器帯を、前記超音波発振子の一部を構成している振動板の直径で決定する間隔で複数個並べて構成している
     生物排除装置。
    A biological exclusion device that excludes organisms to be excluded,
    Reproduction means capable of sound emission,
    The pseudo sound created using the original sound generated when the organism to be excluded is abnormal is superimposed on an ultrasonic signal, and the sound pressure level is equal to or higher than the sound pressure level of the sound generated by the organism to be excluded A control unit for radiating from the reproduction means,
    The reproducing means includes
    Biological exclusion device comprising a plurality of radiator bands configured by combining a plurality of ultrasonic oscillators arranged at intervals determined by the diameter of a diaphragm constituting a part of the ultrasonic oscillators .
  2.  前記間隔は、
     前記振動板の直径の2倍までの長さである
     請求項1に記載の生物排除装置。
    The interval is
    The biological exclusion device according to claim 1, wherein the length is up to twice the diameter of the diaphragm.
  3.  前記再生手段は、
     前記放射器帯を、前記超音波発振子を平面的に多角形状あるいは円形状に配置して構成している
     請求項1又は2に記載の生物排除装置。
    The reproducing means includes
    The biological exclusion apparatus according to claim 1 or 2, wherein the radiator band is configured by arranging the ultrasonic oscillators in a polygonal shape or a circular shape in a plane.
  4.  前記制御部は、
     前記原音声による音声信号、
     前記擬似音声による音声信号、
     過渡的な衝撃音又は爆発音の音声信号、
     及び、
     人間が発する音声による音声信号が
     ランダムに選択されて出力される
     請求項1~3のいずれか一項に記載の生物排除装置。
    The controller is
    An audio signal based on the original audio;
    An audio signal by the pseudo audio,
    Audio signals with transient impact or explosion sounds,
    as well as,
    The biological exclusion device according to any one of claims 1 to 3, wherein a voice signal based on a voice uttered by a human is randomly selected and output.
  5.  前記排除対象生物に対して付与する光を発光する発光手段を更に備えた
     請求項1~4のいずれか一項に記載の生物排除装置。
    The organism exclusion apparatus according to any one of claims 1 to 4, further comprising a light emitting means for emitting light imparted to the organism to be excluded.
  6.  前記排除対象生物に対して付与する圧力を付与可能な圧力付与手段を更に備えた
     請求項1~5のいずれか一項に記載の生物排除装置。
    The biological exclusion apparatus according to any one of claims 1 to 5, further comprising a pressure applying unit capable of applying a pressure to be applied to the organism to be excluded.
  7.  電柱又は鉄塔に設置した
     請求項1~6のいずれか一項に記載の生物排除装置。
    The biological exclusion apparatus according to any one of claims 1 to 6, which is installed on a utility pole or a steel tower.
  8.  電柱又は鉄塔を架線している電力線に設置した
     請求項1~6のいずれか一項に記載の生物排除装置。
    The biological exclusion apparatus according to any one of claims 1 to 6, wherein the biological exclusion apparatus is installed on a power line over which a power pole or a steel tower is installed.
  9.  建物に設置した
     請求項1~6のいずれか一項に記載の生物排除装置。
    The biological exclusion device according to any one of claims 1 to 6, which is installed in a building.
  10.  航空機及び滑走路の少なくとも一方に設置した
     請求項1~6のいずれか一項に記載の生物排除装置。
    The biological exclusion apparatus according to any one of claims 1 to 6, wherein the biological exclusion apparatus is installed on at least one of an aircraft and a runway.
PCT/JP2016/070066 2015-07-09 2016-07-07 Organism removal device WO2017006976A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-137847 2015-07-09
JP2015137847A JP6072149B2 (en) 2015-07-09 2015-07-09 Biological exclusion device

Publications (1)

Publication Number Publication Date
WO2017006976A1 true WO2017006976A1 (en) 2017-01-12

Family

ID=57685022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/070066 WO2017006976A1 (en) 2015-07-09 2016-07-07 Organism removal device

Country Status (2)

Country Link
JP (1) JP6072149B2 (en)
WO (1) WO2017006976A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109349268A (en) * 2018-09-18 2019-02-19 大理万众苑科技有限公司 A kind of fertile mandarin orange bird sting device
CN109526934A (en) * 2018-11-15 2019-03-29 肖湘江 Scarer and its bird repellent method based on patrol robot
JP7246799B1 (en) 2021-10-26 2023-03-28 日本アール・ビー開発株式会社 animal repellent system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019062743A (en) * 2017-08-22 2019-04-25 有限会社ZenTec Drone for threatening birds and beasts
JP7342323B2 (en) * 2019-05-23 2023-09-12 学校法人東北学院 Ultrasonic radiation device
CN111802988A (en) * 2020-07-17 2020-10-23 佛山市顺德区美的洗涤电器制造有限公司 Method of repelling insects, insect repelling device, dishwasher and machine-readable storage medium
CN112335647B (en) * 2020-10-14 2022-04-29 深圳供电局有限公司 Ultrasonic bird repelling method and device, bird repeller and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03290141A (en) * 1990-04-07 1991-12-19 Chubu Electric Power Co Inc Intimidation equipment for animals
JP2009072174A (en) * 2007-09-20 2009-04-09 Mitsuharu Fukashiro Acoustic repelling device for harmful animal
WO2010029782A1 (en) * 2008-09-09 2010-03-18 三菱電機株式会社 Ultrasonic wave generating device, and facility having the device mounted thereon
JP5135507B2 (en) * 2007-12-06 2013-02-06 国立大学法人宇都宮大学 Crow repellent device
JP2014030420A (en) * 2012-07-11 2014-02-20 Denso Corp Aves chase-off device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03290141A (en) * 1990-04-07 1991-12-19 Chubu Electric Power Co Inc Intimidation equipment for animals
JP2009072174A (en) * 2007-09-20 2009-04-09 Mitsuharu Fukashiro Acoustic repelling device for harmful animal
JP5135507B2 (en) * 2007-12-06 2013-02-06 国立大学法人宇都宮大学 Crow repellent device
WO2010029782A1 (en) * 2008-09-09 2010-03-18 三菱電機株式会社 Ultrasonic wave generating device, and facility having the device mounted thereon
JP2014030420A (en) * 2012-07-11 2014-02-20 Denso Corp Aves chase-off device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109349268A (en) * 2018-09-18 2019-02-19 大理万众苑科技有限公司 A kind of fertile mandarin orange bird sting device
CN109526934A (en) * 2018-11-15 2019-03-29 肖湘江 Scarer and its bird repellent method based on patrol robot
JP7246799B1 (en) 2021-10-26 2023-03-28 日本アール・ビー開発株式会社 animal repellent system
JP2023064744A (en) * 2021-10-26 2023-05-11 日本アール・ビー開発株式会社 animal repellent system

Also Published As

Publication number Publication date
JP2017018024A (en) 2017-01-26
JP6072149B2 (en) 2017-02-01

Similar Documents

Publication Publication Date Title
JP6072149B2 (en) Biological exclusion device
US8598998B2 (en) Animal collision avoidance system
US6250255B1 (en) Methods and apparatus for alerting and/or repelling birds and other animals
US8665670B2 (en) Acoustic deterrence
Robinson et al. Sound signalling in Orthoptera
US20140016439A1 (en) Bird repellent apparatus
JP4269867B2 (en) lighting equipment
US9693548B2 (en) System and method for disrupting auditory communications among animals in a defined locale
WO2014024052A1 (en) Device for detecting and electrocuting pests
JP2017112840A (en) Animal repellent device
JP5924470B2 (en) Pest control equipment
US6882594B1 (en) Flying insects repelling system
JP6071992B2 (en) Biological exclusion device
JP6071946B2 (en) Biological exclusion device
KR200474826Y1 (en) Intelligent type device that scare away noxious birds and wild animals for crops
JP2019097472A (en) Vibration generation device and vibration generation system
JP5976039B2 (en) Biological exclusion device
WO2021084681A1 (en) System and method for controlling animal movement
AU2013204487B2 (en) Acoustic Deterrence Of Mammals, And Particularly Sea Lions
JPH11299412A (en) Fowl-repulsing equipment
KR20230143255A (en) Birds prevention device
KR20200136566A (en) Bird repelling
Arul FABRICATION OF MOBILE ULTRASONIC BIRD REPELLER
JP2008283874A (en) Prevention device for coming flying of birds
CN115397237A (en) Method and device for the non-linear parametric influencing of biological objects

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16821445

Country of ref document: EP

Kind code of ref document: A1