WO2017006879A1 - Sample collection tool - Google Patents

Sample collection tool Download PDF

Info

Publication number
WO2017006879A1
WO2017006879A1 PCT/JP2016/069697 JP2016069697W WO2017006879A1 WO 2017006879 A1 WO2017006879 A1 WO 2017006879A1 JP 2016069697 W JP2016069697 W JP 2016069697W WO 2017006879 A1 WO2017006879 A1 WO 2017006879A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
sample collection
specimen
loop
fibers
Prior art date
Application number
PCT/JP2016/069697
Other languages
French (fr)
Japanese (ja)
Inventor
和弘 村木
北林 淳一
新井 文規
Original Assignee
株式会社クラレ
クラレトレーディング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ, クラレトレーディング株式会社 filed Critical 株式会社クラレ
Publication of WO2017006879A1 publication Critical patent/WO2017006879A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/04Devices for withdrawing samples in the solid state, e.g. by cutting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers

Definitions

  • the present invention relates to a specimen collecting tool that can be suitably used as a tool for collecting mucus from the nasal cavity and throat.
  • swabs have been developed for collecting specimens from the nasal cavity, throat or culture medium in which bacteria are cultured. Taking an influenza virus collection swab as an example, a cotton swab as shown in FIG. 6 has been developed as a cotton swab collected from the nasal cavity.
  • the 6 includes a shaft 9 and a cotton ball 10 made of paper, plastic, or the like.
  • the cotton ball 10 is formed by winding a cotton fiber around one end of the shaft 9.
  • Patent Document 3 a specimen collection swab in which a thin short filament made of nylon is planted in a brush shape on a plastic shaft has been developed [Japanese Patent Publication No. 2007-523663 (Patent Document 4)].
  • Sample collection tools include: (1) Capable of collecting the required amount of sample (2) Efficiently returning the collected sample to the solution used for the reaction (test solution) (recovery rate) (3) The sample collection amount is stable. (4) The shape is stable from the time of manufacture to the time of inspection use. (5) Functions such as the absence of foreign substances and chemical substances are required. (6) It is also required that patients do not give discomfort such as pain, itchiness and discomfort.
  • a sample collection swab is known in which fibers are planted in a brush shape on a plastic shaft.
  • This sample collection swab is characterized by a large amount of collected sample and a high recovery rate.
  • this sample collection swab (1) The implanted fibers are easily removed, the implanted fibers are removed in the process of returning the collected specimen to the test solution, and clogging occurs in the solution filtration process. (2) The implanted fibers are usually implanted at right angles to the plastic shaft, but the fibers fall asleep due to their own weight during storage. As a result, the sample collection amount fluctuates and the sample collection amount varies. There are also disadvantages such as these, and further development is required.
  • An object of the present invention is to provide a sample collection tool that can be suitably used as a tool for collecting mucus from the nasal cavity or throat and has the following characteristics.
  • the present invention provides the following specimen collection tool.
  • the specimen collection unit is a specimen collection tool including a nonwoven fabric composed of loop-like fibers.
  • FIG. 1 is a plan view showing an example of a specimen collecting tool according to the present invention.
  • the sample collection tool according to the present invention includes a shaft 2 and a sample collection unit 1 arranged at one end thereof.
  • the shaft 2 is, for example, a rod-shaped body having a circular cross section.
  • the shaft 2 may have a handle 3 that is thicker than other parts on the side (rear end side) opposite to the side having the sample collection unit 1.
  • Specimen collection unit 1 attached to one end of shaft 2 includes a non-woven fabric and is typically made of non-woven fabric.
  • the nonwoven fabric is composed of looped fibers.
  • the specimen collection unit 1 can be bonded and fixed to the shaft 2 using a thermoplastic resin or an adhesive.
  • a cotton swab (specimen collection tool) itself using a nonwoven fabric is known in the art.
  • the conventional sample collection tool has a problem that the range in which the sample collection amount can be controlled is limited.
  • the sample When the sample has a low viscosity, the sample can be collected by storing the sample in the gap of the sample collection unit using capillary action. In order to increase the collection rate for testing, it is necessary to increase the void density of the sample collection part. It is required to be made of thin fibers and be flexible.
  • the specimen collection tool with increased void density and thinner fibers is easily deformed.
  • the fibers that have been compressed and napped are splashed, and the amount of void in the sample collection unit changes. This leads to variations in sample collection amount.
  • the sample collection unit 1 includes a nonwoven fabric composed of loop-like fibers, the above-described problems can be solved.
  • the sample collection tool according to the present invention is 1) the porosity of the sample collection unit 1 is high, 2) the sample collection unit 1 is flexible and gentle to the skin, and 3) the sample collection unit 1 is deformed. 4) When returning the collected specimen to the test solution, it is difficult for the fibers to fall out or fall out of the fiber scraps (in addition, foreign matter such as resin scraps that may be generated when a sponge-like material is used as the specimen collecting part) Or the like.
  • the sample collection tool according to the present invention includes a nonwoven fabric in which the sample collection unit 1 is composed of loop-shaped fibers, (1) The range of the amount of voids that can be secured between the fibers is wide, and it is possible to stably collect the amount of specimen required for the test. (2) At the time of storage, there is little change in the structure of the sample collection unit 1, and the variation in the sample collection amount is small. (3) The step of returning the collected sample to the test solution (the step of putting the sample collection unit 1 in a container containing the test solution, squeezing it from the outside of the container, and returning the sample in the sample collection unit 1 to the test solution. )), There is no fiber mixing in the test solution.
  • the loop-shaped curved portion touches the skin, and it is difficult to give a sense of discomfort and discomfort.
  • the loop-like fiber has a characteristic that it is appropriately deformed by the pressing pressure at the time of sample collection, and is gentle to the skin due to the combined effect of both functions combined with the contact on the side of the fiber described above. Or the like.
  • the specimen collecting tool according to the present invention that can have the above-described features can be suitably used as a tool for collecting mucus from the nasal cavity or throat, for example. More specifically, the sample collecting tool according to the present invention can be suitably used as a tool for collecting mucus from the nasal cavity or throat in order to examine infections such as influenza virus. According to the sample collecting device of the present invention, it is possible to collect a sufficient amount of mucus sufficient for examination from a nasal cavity or throat.
  • the non-woven fabric forming the sample collection unit 1 is composed of loop-like fibers.
  • FIG. 2 is a photomicrograph (magnification: 20 times) showing an example of a specimen collection part formed of a nonwoven fabric composed of loop-like fibers.
  • FIG. 3 is a photomicrograph (magnification: 100 times) showing an example of a loop fiber.
  • the loop-like fiber refers to a fiber having a curved portion or an annular portion when a single fiber is viewed.
  • the loop fiber is usually a polymer fiber.
  • the average diameter of the loop-shaped fibers is, for example, about 3.0 ⁇ m to 70 ⁇ m (0.1 dtex to 50 dtex), preferably about 5 ⁇ m to 30 ⁇ m, and more preferably about 10 ⁇ m to 20 ⁇ m from the viewpoint of flexibility and the like.
  • the length of the loop-shaped fiber is not particularly limited, but the average fiber length is usually about 10 mm to 100 mm.
  • the loop diameter of the loop-shaped fiber is the average radius of curvature of the circle obtained at the center of the fiber from the viewpoints of moderate deformability, touch, sufficient sample collection amount, variation in sample collection amount, and improvement in sample collection rate.
  • the loop diameter of the loop-shaped fiber is the average radius of curvature of the circle obtained at the center of the fiber from the viewpoints of moderate deformability, touch, sufficient sample collection amount, variation in sample collection amount, and improvement in sample collection rate.
  • about 10 ⁇ m to 150 ⁇ m preferably about 30 ⁇ m to 100 ⁇ m, more preferably about 50 ⁇ m to 80 ⁇ m.
  • the average radius of curvature can be measured by obtaining an enlarged photograph (magnification: 100 times) of the cross section of the nonwoven fabric using a scanning electron microscope (SEM). Specifically, among the fibers in the enlarged photograph, for the fibers forming one or more spirals (coils), the radius of the circle when the circle is drawn along the spirals (loop from the coil axis direction) The radius of the circle when observing the fiber-like fibers) is determined, and this is defined as the radius of curvature. In addition, when the loop-like fiber draws a spiral in an elliptical shape, 1/2 of the sum of the major axis and the minor axis of the ellipse is set as the radius of curvature.
  • SEM scanning electron microscope
  • the ratio of the major axis to the minor axis of the ellipse is in the range of 0.8 to 1.2 in order to exclude cases where the coil crimping is insufficient or when the spiral shape of the fiber is oblique and elliptic. Only the ellipses that fall within the range are measured.
  • the measurement of the radius of curvature is performed on 100 fibers included in the enlarged photograph obtained by obtaining an enlarged photograph by SEM for an arbitrary cross section.
  • the average value of the 100 obtained curvature radii is defined as the average curvature radius.
  • the loop-shaped fiber can be formed, for example, by heating a composite fiber in which a plurality of resins having different thermal shrinkage rates are arranged in layers within a fiber cross section to crimp a coil (expression of a loop).
  • FIG. 4 is a photomicrograph (100 ⁇ ) showing an example of a fiber before a loop is developed by heating.
  • the fiber heating method is not particularly limited as long as the fiber can be given heat capable of expressing a desired loop shape, and examples thereof include a method using hot air and a method using steam.
  • a general heat treatment facility can be used for heating the fibers. In order to develop a loop shape with high uniformity and efficiency, a method using high-temperature steam is preferable.
  • the above-mentioned plurality of resins can be selected from a wide variety of thermoplastic resins, but when the loop expression is performed by heating with high-temperature steam, a resin that does not fuse the fibers under the moist heat condition should be selected. Is preferred.
  • the plurality of resins are preferably selected from the group consisting of polyolefin resins such as polypropylene resins; polyester resins such as polyethylene terephthalate resins; polyamide resins such as polyamide 6 and polyamide 66.
  • the loop shape can be expressed also by hot air treatment.
  • Non-woven fabric can contain fibers other than loop-like fibers.
  • fibers normal (not the above-described composite fibers) polyolefin resin fibers, polyester resin fibers, polyamide resin fibers, cellulose fibers, semi-synthetic fibers, regenerated fibers, and the like can be used.
  • the ratio of the loop-like fibers to the other fibers is usually about 100/0 to 50/50, preferably 100/0 to 80/20, by mass ratio.
  • the use of other fibers is advantageous in controlling the hydrophilicity and hydrophobicity of the nonwoven fabric.
  • the nonwoven fabric preferably has a large porosity from the viewpoints of appropriate deformability, touch, sufficient sample collection amount, variation in sample collection amount, improvement in sample recovery rate, and the like.
  • the porosity of the nonwoven fabric is preferably about 75% to 98%, more preferably about 85% to 97%, and further preferably about 90% to 96%.
  • the porosity of the nonwoven fabric can be adjusted by changing the fiber thickness, the amount of fibers per unit volume, the number of loops and / or the loop diameter, and the like.
  • the recovery rate when the nonwoven fabric is compressed in the thickness direction is preferably 60% or more, more Preferably it is 70% or more, More preferably, it is 80% or more.
  • the measuring method of the recovery rate when the nonwoven fabric is compressed in the thickness direction follows the description in the section of Examples described later.
  • the nonwoven fabric constituting the sample collection unit 1 is preferably hydrophilic in order to increase the sample collection amount and stabilize the amount.
  • the fiber constituting the nonwoven fabric is preferably hydrophilic on the surface, and the fiber itself is preferably hydrophobic. Since the fiber surface is hydrophilic, it becomes easy to become familiar with the specimen, and the specimen can be easily sucked into the fiber structure by capillary action. By making the fiber itself hydrophobic, it is possible to suppress the collected specimen from entering the fiber and causing swelling.
  • the surface of the nonwoven fabric is preferably hydrophilic.
  • the water contact angle on the nonwoven fabric surface is preferably 5 degrees or less.
  • the hydrophilicity of the surface of the nonwoven fabric can be determined by selecting the fiber material to be used, that is, by selecting an appropriate hydrophilic material at the time of fiber production, or by combining two or more kinds of fibers having different hydrophilicity. . Or you may provide hydrophilicity by giving a hydrophilic process with respect to the nonwoven fabric surface.
  • hydrophilic treatment include physical treatment of the surface by plasma treatment, corona discharge, etc., and impregnation with a surfactant. When the surfactant is impregnated, the surfactant preferably has an HLB value of 9.5 or more.
  • the thickness of the nonwoven fabric is usually about 0.3 mm to 2.0 mm, preferably about 0.6 mm to 1.4 mm.
  • the thickness of the nonwoven fabric is measured according to JIS L 1913 “General nonwoven fabric testing method”.
  • the nonwoven fabric used in the present invention can be produced, for example, by the method described in JP2012-12758A. Specifically, a composite fiber or a mixed fiber containing other fibers is first formed into a web. Web formation can be performed by a known method for producing a nonwoven fabric, for example, a direct method such as a spun bond method or a melt blow method; a card method using melt blow fibers or staple fibers; a dry method such as an air array method.
  • the resulting fiber web is heated to cause the composite fibers to be looped, but before that, it is preferable to perform preliminary entanglement of the fibers by spraying or spraying water.
  • the heating method performed to develop a loop in the composite fiber is not particularly limited as long as the fiber can be given heat capable of expressing a desired loop shape.
  • a method using hot air or steam is used.
  • the method to be used can be mentioned.
  • a general heat treatment facility can be used for heating the fibers.
  • a method using high-temperature steam is preferable.
  • the temperature of the water vapor is selected from a range of about 70 to 150 ° C., for example, depending on the fiber material and the like.
  • nonwoven fabric As a nonwoven fabric, the nonwoven fabric marketed from Klara Laflex Co., Ltd. can also be used.
  • the nonwoven fabric forming the sample collection unit 1 is washed with pure water or the like as necessary to remove foreign matters such as deposits and dried. And when the nonwoven fabric is insufficient in hydrophilicity and it is difficult for the specimen to penetrate, it is preferable to perform hydrophilic treatment as described above.
  • this nonwoven fabric may be processed into a shape suitable for attachment to the shaft 2.
  • the non-woven fabric can be tubular, but is preferably formed into a bag shape in which one opening (head) of the annular structure is sealed.
  • the sample collection unit 1 may be formed by processing a non-woven fabric into a thin tape shape and winding it around the shaft 2.
  • Examples of the method of processing a nonwoven fabric into a tubular shape include a method in which two nonwoven fabrics are stacked and melted at a predetermined interval, and a method in which a nonwoven fabric is folded in two and melted at a predetermined width. As shown in FIG. 5, if the nonwoven fabric is folded in half and the dotted line indicated by parallel lines in the figure is melted by an ultrasonic welding machine or the like, the melted portion is welded. can get.
  • the inner diameter of the tubular nonwoven fabric attached to the shaft 2 is, for example, about 50% to 120%, and more typically about 60% to 110% of the outer diameter of the nonwoven fabric attachment portion of the shaft 2.
  • the outer diameter of the tubular nonwoven fabric is the inner diameter + (nonwoven fabric thickness ⁇ 2).
  • the length of the tubular nonwoven fabric is, for example, about 4 mm to 50 mm, and more typically about 7 mm to 30 mm.
  • the material of the shaft 2 may be paper, wood, metal, plastic, etc. that are generally used for cotton swabs.
  • the material of the shaft 2 is preferably plastic from the viewpoints of processability to the shaft 2, sterilization properties, ease of attaching the nonwoven fabric, and the like.
  • the plastic include vinyl chloride, polyethylene, polyester, polystyrene, polyamide, and polycarbonate.
  • the shaft 2 may have the handle 3 on the side (rear end side, base end side) opposite to the side having the sample collection unit 1 for easy holding.
  • the material of the handle 3 may be the same as that of the shaft 2.
  • the shaft 2 and the handle 3 may be made of different materials, but are preferably the same in manufacturing.
  • the shape is usually a round bar, but it may be bent.
  • the shape of the handle 3 is usually a rod having a circular cross section, but may be a bent shape. Further, the handle 3 may be thicker than the shaft portion.
  • the cross-sectional diameter of the shaft 2 is, for example, about 0.4 mm to 2.8 mm, and the length is, for example, about 4 mm to 100 mm.
  • the cross-sectional diameter of the handle 3 is, for example, about 1.5 mm to 4.0 mm, and the length is, for example, about 30 mm to 150 mm.
  • the total length of the shaft including the handle 3 is, for example, about 50 mm to 180 mm.
  • the attachment of the sample collection unit 1 to the shaft 2 so as not to reduce the voids of the nonwoven fabric as much as possible.
  • a method in which a thermoplastic resin or an adhesive is interposed between the specimen collecting unit 1 and the shaft 2 a method in which welding is performed with heat, a method in which the cord is bound with a string, a method in which tightening and fixing is performed using a heat shrinkable tube, and the like.
  • the specimen collecting unit 1 can be fixed to the shaft 2.
  • a heating means in the case of welding with heat a heater, an ultrasonic wave, or a laser can be used.
  • any of polyester, epoxy, acrylic, cyanoacrylate, rubber and the like can be used.
  • the form of the adhesive is not particularly limited, and any of an organic solvent-dissolved product, a water-dissolved product, an emulsion product, and a solvent-free product may be used.
  • an amount that does not fill the gap in the sample collection unit 1 is used, and the viscosity should be such that it does not easily enter the gap.
  • the fixing part may be the entire inner surface of the specimen collecting part 1, but usually it may be a part. In this case, it is preferable to fix the rear end side (base end side).
  • thermoplastic resin may be interposed instead of (or as an adhesive) the adhesive.
  • the thermoplastic resin layer interposed between the sample collection unit 1 and the shaft 2 is for fixing the sample collection unit 1 to the shaft 2 by an anchor action.
  • the melting point of the thermoplastic resin is preferably lower than both of the shaft 2 and the specimen collection unit 1, and more preferably 20 ° C. or lower than both.
  • the thermoplastic resin is preferably one that does not substantially affect the specimen and its analysis.
  • the thermoplastic resin may or may not have chemical adhesiveness to the specimen collection unit 1.
  • the former include polyethylene, L-LDPE, ethylene- ⁇ -olefin copolymer, and examples of the latter include adhesive polyolefin resin and low molecular weight polyester.
  • the thermoplastic resin layer is desirably as thin as possible within a range where the specimen collection part 1 can be fixed, and the thickness is preferably about 0.05 mm to 2 mm, more preferably about 0.1 mm to 1 mm.
  • the thickness of the thermoplastic resin layer may be such that the outside of the thermoplastic resin layer is in contact with the inside of the sample collection unit 1, or the outside of the thermoplastic resin layer is separated from the inside of the sample collection unit 1. Such thickness may be sufficient.
  • the thickness of the thermoplastic resin layer so that the sample collecting unit 1 is not deformed by its force and does not return to the original is not preferable because the sample collected amount varies.
  • the part where the thermoplastic resin layer is provided may be the entire length of the specimen collection unit 1, or may be only the part to be fixed.
  • thermoplastic resin layer no gap should be formed between the shaft 2 and specifically, a method of applying a thermoplastic resin to the shaft 2, a method of winding a thermoplastic resin film, or a tube shape. For example, a method of inserting a shaft can be adopted. When the tube is formed, it is heated and melted to be fixed to the shaft.
  • the sterilization means any of heat-sensitive sterilization using an autoclave, chemical sterilization using ethylene oxide gas, sterilization using radiation, sterilization using an electron beam, and the like can be used.
  • Example 1 A nonwoven fabric “Flexstar SR0002” manufactured by Kuraray Laflex Co., Ltd. was used as the nonwoven fabric constituting the specimen collection unit 1.
  • This nonwoven fabric is composed of a polyethylene terephthalate resin having an intrinsic viscosity of 0.65 and a modified polyethylene terephthalate resin copolymerized with 20 mol% of isophthalic acid and 5 mol% of diethylene glycol.
  • Staple fibers (“Kuraray Co., Ltd.,” PN-780 ", 1.7 dtex x 51 mm length, 12 crimps / 25 mm mechanical crimp, 62 crimps / 25 mm after 130 ° C x 1 minute heat treatment) were heated.
  • the average diameter of the loop-like fibers in this nonwoven fabric was 13.0 ⁇ m, the loop diameter of the loop-like fibers was 65 ⁇ m, the porosity was 95%, the compression recovery rate was 86%, and the thickness was about 1 mm.
  • the non-woven fabric after the hydrophilization treatment is cut into a tape having a width of 36 mm and folded in half along the longitudinal center line, according to the method described in JP 2010-410 (paragraphs [0014] to [0017]). Using an ultrasonic welding machine, it was welded at intervals of 3.3 mm perpendicular to the longitudinal direction of the tape and cut into a bag shape.
  • the shaft 2 is made of polyethylene and has a cross-sectional diameter of 0.9 mm on the side where the specimen collection unit 1 is attached, a cross-sectional diameter of the handle portion (handle 3) of 2.5 mm, and a total length of 150 mm.
  • thermoplastic resin tube thus obtained was inserted into the end of the shaft 2 on the side where the specimen collection part is attached up to about 14 mm from the tip and heated to 70 ° C. to be temporarily fixed to the rear end of the tube.
  • the bag-shaped nonwoven fabric was inserted as the specimen collection unit 1 and heated to 70 ° C., and fixed to the shaft 2 via the thermoplastic resin tube.
  • the sample collection tool thus prepared was examined for shape retention, sample collection amount and contamination with foreign substances, and compared with a commercially available sample collection tool.
  • Commercial products compared are Phlox swab (COPAN, “FLOQSwabs”) and sponge swab (Nipro, “Nipro sponge swab”).

Abstract

Provided is a sample collection tool provided with a stem and a sample collection section that is arranged at one end of the stem, wherein the sample collection section contains a non-woven fabric composed of loop-like fibers. Each of the loop-like fibers preferably has a loop diameter of 10 to 150 μm.

Description

検体採取用具Sample collection tool
 本発明は、鼻腔や咽喉から粘液を採取するための用具として好適に使用することができる検体採取用具に関する。 The present invention relates to a specimen collecting tool that can be suitably used as a tool for collecting mucus from the nasal cavity and throat.
 鼻腔や咽喉あるいは細菌を培養した培地等からの検体採取用スワブには多種のものが開発されてきた。インフルエンザウイルス採取用スワブを例にすると、鼻腔から採取する綿棒として、図6に示されるような綿棒が開発されている。 Various swabs have been developed for collecting specimens from the nasal cavity, throat or culture medium in which bacteria are cultured. Taking an influenza virus collection swab as an example, a cotton swab as shown in FIG. 6 has been developed as a cotton swab collected from the nasal cavity.
 図6に示される綿棒は、紙やプラスチック等からなる軸9と綿球10とを含む。綿球10は、軸9の一端にコットン繊維を巻き付けて形成される。 6 includes a shaft 9 and a cotton ball 10 made of paper, plastic, or the like. The cotton ball 10 is formed by winding a cotton fiber around one end of the shaft 9.
 ところが、検査の高精度化等の理由で、検体採取量が多く、採取した検体を検査液に戻せる量(回収率)が多いものが要望されてきている。 However, for reasons such as increasing the accuracy of the test, there is a demand for a large amount of sample collected and a large amount (collection rate) that allows the collected sample to be returned to the test solution.
 そこで、コットン繊維をポリエステルフィラメントに変えることにより回収率を高めた綿棒が開発されている〔特開2008-275576号公報(特許文献1)〕。また、レーヨンとエステルとで構成された不織布をプラスチック軸の巻いた綿棒〔(一般)医療器具 医療用捲綿糸届出番号4162×10001000001(非特許文献1)〕や、ポリエステルの高空隙構造布をプラスチック軸の巻いた検体採取用具〔特開2011-229523号公報(特許文献2)〕、スポンジ状高空隙シートをプラスチック軸の巻いた検体採取用スワブ〔特開2012-100990号公報(特許文献3)〕等も提案されている。さらに、ナイロンからなる細い短いフィラメントがプラスチック軸にブラシ状に植毛されている検体採取用スワブが開発されている〔特表2007-523663号公報(特許文献4)〕。 Therefore, a cotton swab having a higher recovery rate by changing the cotton fiber to a polyester filament has been developed [Japanese Patent Laid-Open No. 2008-275576 (Patent Document 1)]. Also, a cotton swab with a plastic shaft wound with a non-woven fabric composed of rayon and ester ((general) medical device, medical cotton yarn notification number 4162 × 10001000001 (Non-patent Document 1)), and a polyester high void structure cloth Sample collection tool wound around a shaft [Japanese Patent Laid-Open No. 2011-229523 (Patent Document 2)], Sample collection swab wound around a plastic shaft with a sponge-like high gap sheet [Japanese Patent Laid-Open No. 2012-100990 (Patent Document 3) ] Have also been proposed. Furthermore, a specimen collection swab in which a thin short filament made of nylon is planted in a brush shape on a plastic shaft has been developed [Japanese Patent Publication No. 2007-523663 (Patent Document 4)].
特開2008-275576号公報JP 2008-275576 A 特開2011-229523号公報JP 2011-229523 A 特開2012-100990号公報JP 2012-100990 A 特表2007-523663号公報Special table 2007-523663
 従来の検体採取用具は、検体採取量、回収率を改善してきたが、それぞれの構造特有の欠点もある。検体採取用具には、
 (1)必要とする検体量を採取できること
 (2)採取した検体を反応に用いる液(検査液)に効率よく戻せること(回収率)
 (3)検体採取量が安定していること
 (4)製造から検査使用時まで形状が安定していること
 (5)異物、化学物質の混入が無いこと
等の機能が要求され、さらに、
 (6)患者に痛み、かゆみ、違和感等の不快感を与えないこと
も要求される。
Although conventional sample collection tools have improved the sample collection amount and recovery rate, there are also disadvantages specific to each structure. Sample collection tools include:
(1) Capable of collecting the required amount of sample (2) Efficiently returning the collected sample to the solution used for the reaction (test solution) (recovery rate)
(3) The sample collection amount is stable. (4) The shape is stable from the time of manufacture to the time of inspection use. (5) Functions such as the absence of foreign substances and chemical substances are required.
(6) It is also required that patients do not give discomfort such as pain, itchiness and discomfort.
 上述のように、検体採取用スワブとしては、プラスチック軸にブラシ状に繊維を植毛したものが知られている。この検体採取用スワブの特徴は検体採取量が多く、回収率が高いことである。しかしながら一方で、この検体採取用スワブは、
 (1)植毛された繊維が抜けやすく、採取した検体を検査液に戻す工程で植毛された繊維が抜け、溶解液のろ過工程で目詰まりが起こる、
 (2)植毛された繊維は通常、プラスチック軸に対して直角に植毛されているが、保管時において、その自重により繊維が寝てしまう。その結果、検体採取量が低下する方向へ変動し、検体採取量にもバラツキが生ずる、
等の欠点もあり、さらなる開発が要求されている。
As described above, a sample collection swab is known in which fibers are planted in a brush shape on a plastic shaft. This sample collection swab is characterized by a large amount of collected sample and a high recovery rate. However, on the other hand, this sample collection swab
(1) The implanted fibers are easily removed, the implanted fibers are removed in the process of returning the collected specimen to the test solution, and clogging occurs in the solution filtration process.
(2) The implanted fibers are usually implanted at right angles to the plastic shaft, but the fibers fall asleep due to their own weight during storage. As a result, the sample collection amount fluctuates and the sample collection amount varies.
There are also disadvantages such as these, and further development is required.
 本発明の目的は、鼻腔又は咽喉からの粘液を採取するための用具として好適に使用することができる検体採取用具であって、以下の特性を有する検体採取用具を提供することにある。 An object of the present invention is to provide a sample collection tool that can be suitably used as a tool for collecting mucus from the nasal cavity or throat and has the following characteristics.
 (a)検体採取部の形状が安定している
 (b)繊維等の脱離、繊維くずの発生・脱落の問題がないか、又は小さい
 (c)使用時の不快感の問題がないか、又は小さい
 (d)検査に必要とされる量の検体を安定して採取できる
 (e)検査時の検体の放出性が良好である。
(A) The shape of the specimen collection part is stable. (B) There is no problem of fiber detachment, generation of fiber scraps, or dropout (c) There is no problem of discomfort during use. Or small (d) The amount of specimen required for the examination can be collected stably. (E) The specimen is easily released during the examination.
 本発明は、以下に示す検体採取用具を提供する。
 [1] 軸と、その一端に配置される検体採取部とを含み、
 前記検体採取部は、ループ状繊維で構成される不織布を含む、検体採取用具。
The present invention provides the following specimen collection tool.
[1] A shaft, and a specimen collecting part disposed at one end thereof,
The specimen collection unit is a specimen collection tool including a nonwoven fabric composed of loop-like fibers.
 [2] 前記ループ状繊維は、10μm~150μmのループ径を有する、[1]に記載の検体採取用具。 [2] The specimen collection tool according to [1], wherein the loop fiber has a loop diameter of 10 μm to 150 μm.
 [3] 前記不織布は、85%~97%の空隙率を有する、[1]又は[2]に記載の検体採取用具。 [3] The specimen collecting tool according to [1] or [2], wherein the nonwoven fabric has a porosity of 85% to 97%.
 [4] 前記ループ状繊維は、ポリオレフィン系樹脂、ポリエステル系樹脂及びポリアミド系樹脂からなる群より選択される1種以上の樹脂を含む、[1]~[3]のいずれかに記載の検体採取用具。 [4] The specimen collection according to any one of [1] to [3], wherein the loop fiber includes one or more resins selected from the group consisting of polyolefin resins, polyester resins, and polyamide resins. Tools.
 [5] 前記不織布は、親水化処理が施されている不織布である、[1]~[4]のいずれかに記載の検体採取用具。 [5] The specimen collection tool according to any one of [1] to [4], wherein the nonwoven fabric is a nonwoven fabric that has been subjected to a hydrophilic treatment.
 [6] 前記検体採取部は、熱可塑性樹脂又は接着剤を介して前記軸に固定されている、[1]~[5]のいずれかに記載の検体採取用具。 [6] The sample collection tool according to any one of [1] to [5], wherein the sample collection unit is fixed to the shaft via a thermoplastic resin or an adhesive.
 [7] 鼻腔又は咽喉から粘液を採取するために用いられる、[1]~[6]のいずれかに記載の検体採取用具。 [7] The specimen collection tool according to any one of [1] to [6], which is used for collecting mucus from the nasal cavity or throat.
 本発明によれば、上記特性(a)~(e)を具備する検体採取用具を提供することができる。 According to the present invention, it is possible to provide a specimen collecting tool having the above characteristics (a) to (e).
本発明に係る検体採取用具の一例を示す平面図である。It is a top view which shows an example of the sample collection tool which concerns on this invention. ループ状繊維で構成された不織布で形成された検体採取部の一例を示す顕微鏡写真である。It is a microscope picture which shows an example of the sample collection part formed with the nonwoven fabric comprised with the loop-shaped fiber. ループ状繊維の一例を示す顕微鏡写真である。It is a microscope picture which shows an example of a loop-like fiber. ループ状に捲縮させる前の繊維の一例を示す顕微鏡写真である。It is a microscope picture which shows an example of the fiber before crimping to loop shape. 不織布を袋状に加工する前の状態を示す斜視図である。It is a perspective view which shows the state before processing a nonwoven fabric into a bag shape. 従来の検体採取用具(綿棒)の一例を示す平面図である。It is a top view which shows an example of the conventional sample collection tool (cotton swab).
 <検体採取用具>
 図1は、本発明に係る検体採取用具の一例を示す平面図である。図1に示されるように、本発明に係る検体採取用具は、軸2と、その一端に配置される検体採取部1とを含む。軸2は、例えば、断面が円形の棒状体である。軸2は、検体採取部1を有する側とは反対側(後端側)に、他の部分よりも太い柄3を有していてもよい。
<Sample collection tool>
FIG. 1 is a plan view showing an example of a specimen collecting tool according to the present invention. As shown in FIG. 1, the sample collection tool according to the present invention includes a shaft 2 and a sample collection unit 1 arranged at one end thereof. The shaft 2 is, for example, a rod-shaped body having a circular cross section. The shaft 2 may have a handle 3 that is thicker than other parts on the side (rear end side) opposite to the side having the sample collection unit 1.
 軸2の一端に取り付けられる検体採取部1は不織布を含み、典型的には不織布からなる。不織布は、ループ状繊維で構成される。検体採取部1は、熱可塑性樹脂又は接着剤等を用いて軸2に接着固定することができる。 Specimen collection unit 1 attached to one end of shaft 2 includes a non-woven fabric and is typically made of non-woven fabric. The nonwoven fabric is composed of looped fibers. The specimen collection unit 1 can be bonded and fixed to the shaft 2 using a thermoplastic resin or an adhesive.
 不織布を用いた綿棒(検体採取用具)自体は、従来知られている。しかし、従来の検体採取用具は、検体採取量をコントロールできる範囲が限られている等の問題があった。 A cotton swab (specimen collection tool) itself using a nonwoven fabric is known in the art. However, the conventional sample collection tool has a problem that the range in which the sample collection amount can be controlled is limited.
 検体が低粘度である場合には、当該検体の採取は、毛細管現象を利用して検体採取部の空隙に当該検体を蓄えることによって行うことができるが、限られた大きさの中で、多量の検体採取が可能で、検査のために回収率を高くするためには、検体採取部の空隙密度を高くすることが求められ、また、皮膚に対して優しくするために、検体採取部をできるだけ細い繊維で構成し、柔軟にすることが求められる。 When the sample has a low viscosity, the sample can be collected by storing the sample in the gap of the sample collection unit using capillary action. In order to increase the collection rate for testing, it is necessary to increase the void density of the sample collection part. It is required to be made of thin fibers and be flexible.
 ところが、空隙密度を高め、繊維を細くした検体採取用具は、変形しやすい。その結果、例えば、当該検体採取用具を包装したとき、その中で圧縮されて、立毛していた繊維がねてしまい、検体採取部の空隙量が変化する。このことは、検体採取量のバラツキをもたらす。このような圧縮による空隙量の変化を抑制するためには、ソフトブリスタ等の高価な包装を行う必要がある。 However, the specimen collection tool with increased void density and thinner fibers is easily deformed. As a result, for example, when the sample collection tool is packaged, the fibers that have been compressed and napped are splashed, and the amount of void in the sample collection unit changes. This leads to variations in sample collection amount. In order to suppress such a change in the void amount due to compression, it is necessary to perform expensive packaging such as a soft blister.
 検体採取部1がループ状繊維で構成される不織布を含む本発明に係る検体採取用具によれば、上記のような問題点を解決し得る。 According to the sample collection tool according to the present invention in which the sample collection unit 1 includes a nonwoven fabric composed of loop-like fibers, the above-described problems can be solved.
 すなわち、本発明に係る検体採取用具は、1)検体採取部1の空隙率が高い、2)検体採取部1が柔軟性を有し、皮膚に対して優しい、3)検体採取部1が変形しにくい、4)採取した検体を検査液に戻す際、繊維の抜けや繊維くずの脱落が生じにくい(さらに、検体採取部としてスポンジ状物を用いた場合に生じ得る樹脂くず片等の異物の混入が生じにくい)、などの特徴を示し得る。 That is, the sample collection tool according to the present invention is 1) the porosity of the sample collection unit 1 is high, 2) the sample collection unit 1 is flexible and gentle to the skin, and 3) the sample collection unit 1 is deformed. 4) When returning the collected specimen to the test solution, it is difficult for the fibers to fall out or fall out of the fiber scraps (in addition, foreign matter such as resin scraps that may be generated when a sponge-like material is used as the specimen collecting part) Or the like.
 より具体的には、本発明に係る検体採取用具は、検体採取部1がループ状繊維で構成される不織布を含むため、
 (1)繊維間に形成される確保可能な空隙の量の範囲が広く、検査に必要とされる量の検体を安定して採取できる、
 (2)保管時において、検体採取部1の構造の変化が少なく、検体採取量のバラツキが小さい、
 (3)採取した検体を検査液に戻す工程(検査液の入った容器に検体採取部1を入れ、容器の外から揉み、検体採取部1内の検体を検査液に戻す工程。スクイズ工程ともいう。)において、検査液への繊維の混入がない、
 (4)検体採取時において、検体採取部1を肌に押し付けてもループ形状の湾曲部(繊維側面)が肌に触れることとなり、違和感及び不快感を与えにくい。また、ループ状繊維は、検体採取時の押し圧により適度に変形する特性を有し、前述の繊維側面での接触と併せた両機能の複合効果によっても皮膚に対して優しい、
などの特徴を示し得る。
More specifically, since the sample collection tool according to the present invention includes a nonwoven fabric in which the sample collection unit 1 is composed of loop-shaped fibers,
(1) The range of the amount of voids that can be secured between the fibers is wide, and it is possible to stably collect the amount of specimen required for the test.
(2) At the time of storage, there is little change in the structure of the sample collection unit 1, and the variation in the sample collection amount is small.
(3) The step of returning the collected sample to the test solution (the step of putting the sample collection unit 1 in a container containing the test solution, squeezing it from the outside of the container, and returning the sample in the sample collection unit 1 to the test solution. )), There is no fiber mixing in the test solution.
(4) At the time of sample collection, even if the sample collection unit 1 is pressed against the skin, the loop-shaped curved portion (fiber side surface) touches the skin, and it is difficult to give a sense of discomfort and discomfort. In addition, the loop-like fiber has a characteristic that it is appropriately deformed by the pressing pressure at the time of sample collection, and is gentle to the skin due to the combined effect of both functions combined with the contact on the side of the fiber described above.
Or the like.
 以上のような特徴を有し得る本発明に係る検体採取用具は、例えば、鼻腔又は咽喉からの粘液を採取するための用具として好適に使用することができる。より具体的には、本発明に係る検体採取用具は、インフルエンザウイルス等の感染を調べるために、鼻腔又は咽喉からの粘液を採取するための用具として好適に使用することができる。本発明に係る検体採取用具によれば、鼻腔又は咽喉から、検査に十分な量の粘液をほぼ一定量で採取することが可能である。 The specimen collecting tool according to the present invention that can have the above-described features can be suitably used as a tool for collecting mucus from the nasal cavity or throat, for example. More specifically, the sample collecting tool according to the present invention can be suitably used as a tool for collecting mucus from the nasal cavity or throat in order to examine infections such as influenza virus. According to the sample collecting device of the present invention, it is possible to collect a sufficient amount of mucus sufficient for examination from a nasal cavity or throat.
 <不織布>
 検体採取部1を形成する不織布は、ループ状繊維で構成される。図2は、ループ状繊維で構成された不織布で形成された検体採取部の一例を示す顕微鏡写真(倍率:20倍)である。また、図3は、ループ状繊維の一例を示す顕微鏡写真(倍率:100倍)である。ループ状繊維とは、一本の繊維をみたとき、湾曲部又は環状部を有する繊維をいう。ループ状繊維は通常、高分子繊維である。
<Nonwoven fabric>
The non-woven fabric forming the sample collection unit 1 is composed of loop-like fibers. FIG. 2 is a photomicrograph (magnification: 20 times) showing an example of a specimen collection part formed of a nonwoven fabric composed of loop-like fibers. FIG. 3 is a photomicrograph (magnification: 100 times) showing an example of a loop fiber. The loop-like fiber refers to a fiber having a curved portion or an annular portion when a single fiber is viewed. The loop fiber is usually a polymer fiber.
 ループ状繊維の平均径は、柔軟性等の観点から、例えば3.0μm~70μm(0.1dtex~50dtex)程度、好ましくは5μm~30μm程度であり、より好ましくは10μm~20μm程度である。ループ状繊維の長さは特に制限されないが、平均繊維長で、通常10mm~100mm程度である。 The average diameter of the loop-shaped fibers is, for example, about 3.0 μm to 70 μm (0.1 dtex to 50 dtex), preferably about 5 μm to 30 μm, and more preferably about 10 μm to 20 μm from the viewpoint of flexibility and the like. The length of the loop-shaped fiber is not particularly limited, but the average fiber length is usually about 10 mm to 100 mm.
 ループ状繊維のループ径は、適度な変形性、肌触り、十分な検体採取量、検体採取量のバラツキ低減、検体の回収率向上等の観点から、繊維の中心で求めた円の平均曲率半径で、例えば10μm~150μm程度、好ましくは30μm~100μm程度であり、より好ましくは50μm~80μm程度である。 The loop diameter of the loop-shaped fiber is the average radius of curvature of the circle obtained at the center of the fiber from the viewpoints of moderate deformability, touch, sufficient sample collection amount, variation in sample collection amount, and improvement in sample collection rate. For example, about 10 μm to 150 μm, preferably about 30 μm to 100 μm, more preferably about 50 μm to 80 μm.
 平均曲率半径は、走査型電子顕微鏡(SEM)を用い、不織布断面の拡大写真(倍率:100倍)を取得することにより測定することができる。具体的には、拡大写真中の繊維のうち、1周以上の螺旋(コイル)を形成している繊維について、その螺旋に沿って円を描いたときの当該円の半径(コイル軸方向からループ状繊維を観察したときの円の半径)を求め、これを曲率半径とする。なお、ループ状繊維が楕円状に螺旋を描いている場合は、当該楕円の長径と短径との和の1/2を曲率半径とする。ただし、不充分なコイル捲縮発現状態のものや、繊維の螺旋形状が斜めで楕円となっている場合を排除するために、楕円の長径と短径との比が0.8~1.2の範囲に入る楕円だけを測定対象とする。曲率半径の測定は、任意の断面についてSEMによる拡大写真を取得し、その拡大写真に含まれる100本の繊維について実施する。得られた100個の曲率半径の平均値を平均曲率半径とする。 The average radius of curvature can be measured by obtaining an enlarged photograph (magnification: 100 times) of the cross section of the nonwoven fabric using a scanning electron microscope (SEM). Specifically, among the fibers in the enlarged photograph, for the fibers forming one or more spirals (coils), the radius of the circle when the circle is drawn along the spirals (loop from the coil axis direction) The radius of the circle when observing the fiber-like fibers) is determined, and this is defined as the radius of curvature. In addition, when the loop-like fiber draws a spiral in an elliptical shape, 1/2 of the sum of the major axis and the minor axis of the ellipse is set as the radius of curvature. However, the ratio of the major axis to the minor axis of the ellipse is in the range of 0.8 to 1.2 in order to exclude cases where the coil crimping is insufficient or when the spiral shape of the fiber is oblique and elliptic. Only the ellipses that fall within the range are measured. The measurement of the radius of curvature is performed on 100 fibers included in the enlarged photograph obtained by obtaining an enlarged photograph by SEM for an arbitrary cross section. The average value of the 100 obtained curvature radii is defined as the average curvature radius.
 ループ状繊維は、例えば、熱収縮率の異なる複数の樹脂が繊維断面内で層状に配置されている複合繊維を加熱してコイル捲縮させる(ループの発現)ことにより形成することができる。図4は、加熱によりループを発現させる前の繊維の一例を示す顕微鏡写真(100倍)である。 The loop-shaped fiber can be formed, for example, by heating a composite fiber in which a plurality of resins having different thermal shrinkage rates are arranged in layers within a fiber cross section to crimp a coil (expression of a loop). FIG. 4 is a photomicrograph (100 ×) showing an example of a fiber before a loop is developed by heating.
 繊維の加熱方法としては、繊維に対して所望のループ状を発現できる熱を与えられるものである限り特に制限されず、例えば、熱風を用いる方法や、蒸気を用いる方法を挙げることができる。繊維の加熱には、汎用の熱処理設備を用いることができる。効率的にまた均一性の高いループ形状を発現させるうえでは、高温水蒸気を用いる方法が好ましい。 The fiber heating method is not particularly limited as long as the fiber can be given heat capable of expressing a desired loop shape, and examples thereof include a method using hot air and a method using steam. A general heat treatment facility can be used for heating the fibers. In order to develop a loop shape with high uniformity and efficiency, a method using high-temperature steam is preferable.
 上記の複数の樹脂は、多種多様の熱可塑性樹脂から選択できるが、ループ発現を高温水蒸気で加熱して行う場合には、その湿熱条件下で繊維相互が融着しないような樹脂を選択することが好ましい。この点で、上記の複数の樹脂は、ポリプロピレン樹脂等のポリオレフィン系樹脂;ポリエチレンテレフタレート樹脂等のポリエステル系樹脂;ポリアミド6、ポリアミド66等のポリアミド系樹脂からなる群より選択されることが好ましい。上記の複数の樹脂が上記の群から選択される場合には、熱風処理によってもループ形状を発現させることができる。 The above-mentioned plurality of resins can be selected from a wide variety of thermoplastic resins, but when the loop expression is performed by heating with high-temperature steam, a resin that does not fuse the fibers under the moist heat condition should be selected. Is preferred. In this respect, the plurality of resins are preferably selected from the group consisting of polyolefin resins such as polypropylene resins; polyester resins such as polyethylene terephthalate resins; polyamide resins such as polyamide 6 and polyamide 66. When the plurality of resins are selected from the above group, the loop shape can be expressed also by hot air treatment.
 不織布は、ループ状繊維以外の他の繊維を含むことができる。他の繊維としては、通常の(上述の複合繊維ではない)ポリオレフィン系樹脂繊維、ポリエステル系樹脂繊維、ポリアミド系樹脂繊維、セルロース系繊維、半合成繊維、再生繊維などを用いることができる。ループ状繊維と他の繊維の割合は、質量比で、通常100/0~50/50程度であり、好ましくは100/0~80/20である。他の繊維の使用は、不織布の親水性や疎水性をコントロールするうえで有利である。 Non-woven fabric can contain fibers other than loop-like fibers. As other fibers, normal (not the above-described composite fibers) polyolefin resin fibers, polyester resin fibers, polyamide resin fibers, cellulose fibers, semi-synthetic fibers, regenerated fibers, and the like can be used. The ratio of the loop-like fibers to the other fibers is usually about 100/0 to 50/50, preferably 100/0 to 80/20, by mass ratio. The use of other fibers is advantageous in controlling the hydrophilicity and hydrophobicity of the nonwoven fabric.
 不織布は、適度な変形性、肌触り、十分な検体採取量、検体採取量のバラツキ低減、検体の回収率向上等の観点から、空隙率が大きいことが好ましい。具体的には、不織布の空隙率は、好ましくは75%~98%程度であり、より好ましくは85%~97%程度であり、さらに好ましくは90%~96%程度である。不織布の空隙率は、繊維の太さ、単位体積あたりの繊維量、ループ数及び/又はループ径等を変えることにより調整できる。不織布の空隙率は、不織布の重量(g)、繊維比重(g/cm)、不織布の見かけ体積(cm)から、下記式:
 空隙率(%)=100-[(不織布の重量×100)/(繊維比重×不織布の見かけ体積)]
により算出される。なお、不織布の見かけ体積は、不織布をシートとして見たときの面となる部分の面積に不織布の厚みをかけたものである。
The nonwoven fabric preferably has a large porosity from the viewpoints of appropriate deformability, touch, sufficient sample collection amount, variation in sample collection amount, improvement in sample recovery rate, and the like. Specifically, the porosity of the nonwoven fabric is preferably about 75% to 98%, more preferably about 85% to 97%, and further preferably about 90% to 96%. The porosity of the nonwoven fabric can be adjusted by changing the fiber thickness, the amount of fibers per unit volume, the number of loops and / or the loop diameter, and the like. The porosity of the nonwoven fabric is expressed by the following formula from the weight (g) of the nonwoven fabric, the specific gravity of the fiber (g / cm 3 ), and the apparent volume (cm 3 ) of the nonwoven fabric:
Porosity (%) = 100 − [(weight of nonwoven fabric × 100) / (fiber specific gravity × apparent volume of nonwoven fabric)]
Is calculated by In addition, the apparent volume of the nonwoven fabric is obtained by multiplying the thickness of the nonwoven fabric by the area of the portion that becomes the surface when the nonwoven fabric is viewed as a sheet.
 適度な変形性、肌触り、十分な検体採取量、検体採取量のバラツキ低減、検体の回収率向上等の観点から、不織布を厚み方向に圧縮した場合の回復率は、好ましくは60%以上、より好ましくは70%以上、さらに好ましくは80%以上である。不織布を厚み方向に圧縮した場合の回復率の測定方法は、後述する実施例の項の記載に従う。 From the viewpoints of moderate deformability, touch, sufficient sample collection amount, variation in sample collection amount, improvement in sample recovery rate, etc., the recovery rate when the nonwoven fabric is compressed in the thickness direction is preferably 60% or more, more Preferably it is 70% or more, More preferably, it is 80% or more. The measuring method of the recovery rate when the nonwoven fabric is compressed in the thickness direction follows the description in the section of Examples described later.
 検体採取部1を構成する不織布は、採取する検体が鼻腔や咽喉内の粘液である場合には、検体採取量を大きくし、かつその量を安定させるために、親水性であることが好ましい。一方、採取した検体の放出性を高めるためには、疎水性であることが好ましい。そこで、不織布を構成する繊維は、その表面が親水性であることが好ましく、繊維自体は疎水性であることが好ましい。繊維表面が親水性であることにより、検体と馴染みやすくなり、毛細管現象による繊維構造への検体の吸い込みを容易にすることができる。繊維自体を疎水性とすることにより、採取された検体が繊維の内部に入り込み、膨潤が生じることを抑制することができる。 When the sample to be collected is mucus in the nasal cavity or throat, the nonwoven fabric constituting the sample collection unit 1 is preferably hydrophilic in order to increase the sample collection amount and stabilize the amount. On the other hand, in order to improve the release property of the collected specimen, it is preferably hydrophobic. Therefore, the fiber constituting the nonwoven fabric is preferably hydrophilic on the surface, and the fiber itself is preferably hydrophobic. Since the fiber surface is hydrophilic, it becomes easy to become familiar with the specimen, and the specimen can be easily sucked into the fiber structure by capillary action. By making the fiber itself hydrophobic, it is possible to suppress the collected specimen from entering the fiber and causing swelling.
 上述のように、不織布の表面は親水性を有することが好ましい。不織布表面の対水接触角は、好ましくは5度以下である。不織布表面の親水性は、使用する繊維材質の選択、すなわち、繊維の作製時に適当な親水性を有する材料を選択すること、あるいは親水性の異なる2種以上の繊維を組み合わせることによって行うことができる。あるいは、不織布表面に対して親水性処理を施すことによって親水性を付与してもよい。親水性処理としては、例えば、プラズマ処理、コロナ放電等による表面の物理的処理や、界面活性剤の含浸などを挙げることができる。界面活性剤を含浸させる場合、界面活性剤は、HLB値が9.5以上であることが好ましい。 As described above, the surface of the nonwoven fabric is preferably hydrophilic. The water contact angle on the nonwoven fabric surface is preferably 5 degrees or less. The hydrophilicity of the surface of the nonwoven fabric can be determined by selecting the fiber material to be used, that is, by selecting an appropriate hydrophilic material at the time of fiber production, or by combining two or more kinds of fibers having different hydrophilicity. . Or you may provide hydrophilicity by giving a hydrophilic process with respect to the nonwoven fabric surface. Examples of hydrophilic treatment include physical treatment of the surface by plasma treatment, corona discharge, etc., and impregnation with a surfactant. When the surfactant is impregnated, the surfactant preferably has an HLB value of 9.5 or more.
 不織布の厚みは、通常0.3mm~2.0mm程度であり、好ましくは0.6mm~1.4mm程度である。不織布の厚みは、JIS L 1913「一般不織布試験方法」に準拠して測定される。 The thickness of the nonwoven fabric is usually about 0.3 mm to 2.0 mm, preferably about 0.6 mm to 1.4 mm. The thickness of the nonwoven fabric is measured according to JIS L 1913 “General nonwoven fabric testing method”.
 本発明で使用する不織布は、例えば、特開2012-12758号公報に記載の方法によって製造することができる。具体的には、複合繊維あるいはそれに他の繊維を配合した混合繊維をまずウェブ化する。ウェブ化は、不織布を製造する公知の方法、例えば、スパンボンド法、メルトブロー法等の直接法;メルトブロー繊維やステープル繊維等を用いたカード法;エアレイ法等の乾式法などで行うことができる。 The nonwoven fabric used in the present invention can be produced, for example, by the method described in JP2012-12758A. Specifically, a composite fiber or a mixed fiber containing other fibers is first formed into a web. Web formation can be performed by a known method for producing a nonwoven fabric, for example, a direct method such as a spun bond method or a melt blow method; a card method using melt blow fibers or staple fibers; a dry method such as an air array method.
 得られた繊維ウェブを加熱することにより、複合繊維のループ発現を行うが、その前に水を噴霧あるいは噴射するなどして繊維の予備的な絡合を行っておくことが好ましい。 The resulting fiber web is heated to cause the composite fibers to be looped, but before that, it is preferable to perform preliminary entanglement of the fibers by spraying or spraying water.
 複合繊維にループを発現させるために行う加熱の方法としては、繊維に対して所望のループ状を発現できる熱を与えられるものである限り特に制限されず、例えば、熱風を用いる方法や、蒸気を用いる方法を挙げることができる。繊維の加熱には、汎用の熱処理設備を用いることができる。効率的にまた均一性の高いループ形状を発現させるうえでは、高温水蒸気を用いる方法が好ましい。水蒸気の温度は、繊維の材質等によるが、例えば70~150℃程度の範囲から選択される。 The heating method performed to develop a loop in the composite fiber is not particularly limited as long as the fiber can be given heat capable of expressing a desired loop shape. For example, a method using hot air or steam is used. The method to be used can be mentioned. A general heat treatment facility can be used for heating the fibers. In order to develop a loop shape with high uniformity and efficiency, a method using high-temperature steam is preferable. The temperature of the water vapor is selected from a range of about 70 to 150 ° C., for example, depending on the fiber material and the like.
 なお、不織布として、クラレクラフレックス株式会社から市販されている不織布を用いることもできる。 In addition, as a nonwoven fabric, the nonwoven fabric marketed from Klara Laflex Co., Ltd. can also be used.
 <検体採取用具の製造方法>
 検体採取部1を形成する不織布は、必要により純水等で洗浄して付着物等の異物を除去し、乾燥させる。そして、この不織布の親水性が不足しており、検体が浸み込みにくい場合には、上述のように、親水性処理を施すことが好ましい。
<Method for manufacturing specimen collection tool>
The nonwoven fabric forming the sample collection unit 1 is washed with pure water or the like as necessary to remove foreign matters such as deposits and dried. And when the nonwoven fabric is insufficient in hydrophilicity and it is difficult for the specimen to penetrate, it is preferable to perform hydrophilic treatment as described above.
 次いで、この不織布を、軸2への取り付けに適した形状に加工してもよい。例えば、不織布は、管状であることができるが、好ましくは、環状構造の一方の開口(頭部)を封止した袋状にすることが好ましい。あるいは、不織布を細いテープ状に加工し、これを軸2に巻き付けて検体採取部1を形成してもよい。 Next, this nonwoven fabric may be processed into a shape suitable for attachment to the shaft 2. For example, the non-woven fabric can be tubular, but is preferably formed into a bag shape in which one opening (head) of the annular structure is sealed. Alternatively, the sample collection unit 1 may be formed by processing a non-woven fabric into a thin tape shape and winding it around the shaft 2.
 不織布を管状に加工する方法としては、不織布を二枚重ねにして所定間隔で溶断する方法、不織布を二つ折りにして所定の幅で溶断する方法等が挙げられる。図5に示されるように、不織布を二つ折りにし、図中に平行線で示される点線部を超音波溶着機などにより溶断していけば、溶断部が溶着されるので、袋状の不織布が得られる。 Examples of the method of processing a nonwoven fabric into a tubular shape include a method in which two nonwoven fabrics are stacked and melted at a predetermined interval, and a method in which a nonwoven fabric is folded in two and melted at a predetermined width. As shown in FIG. 5, if the nonwoven fabric is folded in half and the dotted line indicated by parallel lines in the figure is melted by an ultrasonic welding machine or the like, the melted portion is welded. can get.
 軸2に取り付けられる管状の不織布の内径は、軸2における不織布取り付け部分の外径の例えば50%~120%程度であり、より典型的には60%~110%程度である。管状の不織布の外径は、上記内径+(不織布の厚み×2)である。管状の不織布の長さは、例えば4mm~50mm程度であり、より典型的には7mm~30mm程度である。 The inner diameter of the tubular nonwoven fabric attached to the shaft 2 is, for example, about 50% to 120%, and more typically about 60% to 110% of the outer diameter of the nonwoven fabric attachment portion of the shaft 2. The outer diameter of the tubular nonwoven fabric is the inner diameter + (nonwoven fabric thickness × 2). The length of the tubular nonwoven fabric is, for example, about 4 mm to 50 mm, and more typically about 7 mm to 30 mm.
 軸2の材質は、一般に綿棒等に使用されている紙、木、金属、プラスチック等であってよい。ただし、軸2への加工性、減菌性、不織布の取り付け容易性等の観点から、軸2の材質は、プラスチックであることが好ましい。プラスチックとしては、塩化ビニル、ポリエチレン、ポリエステル、ポリスチレン、ポリアミド、ポリカーボネート等を挙げることができる。 The material of the shaft 2 may be paper, wood, metal, plastic, etc. that are generally used for cotton swabs. However, the material of the shaft 2 is preferably plastic from the viewpoints of processability to the shaft 2, sterilization properties, ease of attaching the nonwoven fabric, and the like. Examples of the plastic include vinyl chloride, polyethylene, polyester, polystyrene, polyamide, and polycarbonate.
 上述のように、軸2は、持ちやすくするために、検体採取部1を有する側とは反対側(後端側、基端側)に柄3を有していてもよい。柄3の材質は軸2と同様でよい。軸2と柄3は材質が異なっていてもよいが、製造上同一であることが好ましい。形状は、通常丸棒状であるが曲った形でもよい。柄3の形状は通常、断面が円形の棒状であるが、曲がった形状でもよい。また、柄3は、軸部分よりも太くてもよい。 As described above, the shaft 2 may have the handle 3 on the side (rear end side, base end side) opposite to the side having the sample collection unit 1 for easy holding. The material of the handle 3 may be the same as that of the shaft 2. The shaft 2 and the handle 3 may be made of different materials, but are preferably the same in manufacturing. The shape is usually a round bar, but it may be bent. The shape of the handle 3 is usually a rod having a circular cross section, but may be a bent shape. Further, the handle 3 may be thicker than the shaft portion.
 軸2の断面直径は、例えば0.4mm~2.8mm程度であり、長さは、例えば4mm~100mm程度である。柄3の断面直径は、例えば1.5mm~4.0mm程度であり、長さは、例えば30mm~150mm程度である。柄3を含めた軸の全長は、例えば50mm~180mm程度である。 The cross-sectional diameter of the shaft 2 is, for example, about 0.4 mm to 2.8 mm, and the length is, for example, about 4 mm to 100 mm. The cross-sectional diameter of the handle 3 is, for example, about 1.5 mm to 4.0 mm, and the length is, for example, about 30 mm to 150 mm. The total length of the shaft including the handle 3 is, for example, about 50 mm to 180 mm.
 検体採取部1の軸2への取り付けは、不織布の空隙をできるだけ減らさないよう配慮することが好ましい。具体的には、検体採取部1と軸2との間に熱可塑性樹脂又は接着剤を介在させる方法、熱で溶着させる方法、紐等で縛る方法、熱収縮チューブを用いて締付け固定する方法等によって、検体採取部1を軸2に固定することができる。熱で溶着させる場合の加熱手段としては、ヒーター、超音波、レーザーを利用できる。 It is preferable to consider the attachment of the sample collection unit 1 to the shaft 2 so as not to reduce the voids of the nonwoven fabric as much as possible. Specifically, a method in which a thermoplastic resin or an adhesive is interposed between the specimen collecting unit 1 and the shaft 2, a method in which welding is performed with heat, a method in which the cord is bound with a string, a method in which tightening and fixing is performed using a heat shrinkable tube, and the like. Thus, the specimen collecting unit 1 can be fixed to the shaft 2. As a heating means in the case of welding with heat, a heater, an ultrasonic wave, or a laser can be used.
 接着剤としては、ポリエステル系、エポキシ系、アクリル系、シアノアクリレート系、ゴム系などいずれも使用することができる。接着剤の形態も特に制限されず、有機溶剤溶解品、水溶解品、エマルジョン品、無溶剤品のいずれでもよい。使用時には、検体採取部1の空隙を埋めない程度の量を使用し、粘度も空隙に侵入しにくい程度がよい。 As the adhesive, any of polyester, epoxy, acrylic, cyanoacrylate, rubber and the like can be used. The form of the adhesive is not particularly limited, and any of an organic solvent-dissolved product, a water-dissolved product, an emulsion product, and a solvent-free product may be used. At the time of use, an amount that does not fill the gap in the sample collection unit 1 is used, and the viscosity should be such that it does not easily enter the gap.
 固着部位は、検体採取部1の内面全面でもよいが、通常は一部でよく、その場合、後端側(基端側)を固着させることが好ましい。 The fixing part may be the entire inner surface of the specimen collecting part 1, but usually it may be a part. In this case, it is preferable to fix the rear end side (base end side).
 検体採取部1を軸2に接着固定するために、上記接着剤の代わり(あるいは接着剤として)に、熱可塑性樹脂を介在させてもよい。検体採取部1と軸2との間に介在させる熱可塑性樹脂層は、アンカー作用により検体採取部1を軸2に固着させるものである。熱可塑性樹脂の融点は、軸2及び検体採取部1のいずれよりも低いことが好ましく、いずれよりも20℃以上低いことがより好ましい。また、熱可塑性樹脂は、検体及びその分析に実質的に影響を与えないものであることが好ましい。 In order to adhere and fix the specimen collecting part 1 to the shaft 2, a thermoplastic resin may be interposed instead of (or as an adhesive) the adhesive. The thermoplastic resin layer interposed between the sample collection unit 1 and the shaft 2 is for fixing the sample collection unit 1 to the shaft 2 by an anchor action. The melting point of the thermoplastic resin is preferably lower than both of the shaft 2 and the specimen collection unit 1, and more preferably 20 ° C. or lower than both. The thermoplastic resin is preferably one that does not substantially affect the specimen and its analysis.
 熱可塑性樹脂は、検体採取部1に対して化学的な接着性を有しないものであってよいし、有するものであってもよい。前者の例としてはポリエチレン、L-LDPE、エチレン-α-オレフィン共重合体等があり、後者の例としては接着性ポリオレフィン樹脂、低分子ポリエステル等がある。 The thermoplastic resin may or may not have chemical adhesiveness to the specimen collection unit 1. Examples of the former include polyethylene, L-LDPE, ethylene-α-olefin copolymer, and examples of the latter include adhesive polyolefin resin and low molecular weight polyester.
 熱可塑性樹脂層は、検体採取部1を固着できる範囲でなるべく薄いことが望ましく、その厚みは、好ましくは0.05mm~2mm程度であり、より好ましくは0.1mm~1mm程度である。熱可塑性樹脂層の厚みは、熱可塑性樹脂層の外側が検体採取部1の内側に接触するような厚みであってもよいし、熱可塑性樹脂層の外側が検体採取部1の内側と離隔するような厚みであってもよい。ただし、軸2を検体採取部1に挿入する際にその力で検体採取部1が変形して元に戻らないような熱可塑性樹脂層の厚みは、検体採取量がばらつく原因となるので好ましくない。熱可塑性樹脂層を設ける部位は、検体採取部1の全長であってもよいが、固着しようとする部位のみであってもよい。 The thermoplastic resin layer is desirably as thin as possible within a range where the specimen collection part 1 can be fixed, and the thickness is preferably about 0.05 mm to 2 mm, more preferably about 0.1 mm to 1 mm. The thickness of the thermoplastic resin layer may be such that the outside of the thermoplastic resin layer is in contact with the inside of the sample collection unit 1, or the outside of the thermoplastic resin layer is separated from the inside of the sample collection unit 1. Such thickness may be sufficient. However, when the shaft 2 is inserted into the sample collecting unit 1, the thickness of the thermoplastic resin layer so that the sample collecting unit 1 is not deformed by its force and does not return to the original is not preferable because the sample collected amount varies. . The part where the thermoplastic resin layer is provided may be the entire length of the specimen collection unit 1, or may be only the part to be fixed.
 熱可塑性樹脂層の形成にあたっては、軸2との間に空隙を生じないようにし、具体的には、軸2に熱可塑性樹脂を塗布する方法、熱可塑性樹脂のフィルムを巻き付ける方法、チューブ状にして軸を挿入する方法などを採り得る。チューブ状にした場合には、加熱溶融して軸に固着させるようにする。 In forming the thermoplastic resin layer, no gap should be formed between the shaft 2 and specifically, a method of applying a thermoplastic resin to the shaft 2, a method of winding a thermoplastic resin film, or a tube shape. For example, a method of inserting a shaft can be adopted. When the tube is formed, it is heated and melted to be fixed to the shaft.
 以上のようにして得られる検体採取用具は、滅菌しておくことが好ましい。滅菌手段は、オートクレーブによる感熱滅菌、エチレンオキサイドガスによる化学滅菌、放射線による滅菌、電子線による滅菌等いずれも利用できる。 It is preferable to sterilize the specimen collection tool obtained as described above. As the sterilization means, any of heat-sensitive sterilization using an autoclave, chemical sterilization using ethylene oxide gas, sterilization using radiation, sterilization using an electron beam, and the like can be used.
 以下、実施例を示して本発明をさらに具体的に説明するが、本発明はこれらの例によって限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
 (不織布を厚み方向に圧縮した場合の回復率(圧縮回復率)の測定方法)
 約50mm×50mmの試験片(不織布)を5枚準備し、初荷重として0.02kPaを試験片にかけ、厚さを測定した。次に30kPaの荷重を1分間かけた後、荷重を除き1分間放置し、0.02kPaの初荷重に戻した時の試験片の厚さを測定し、次式:
  PR=〔1-(T0-T0’)/T0〕×100
により圧縮回復率を算出した。式中、PRは圧縮回復率(%)T0は初荷重を加えた時の厚さ(mm)、T0’は初荷重に戻したときの厚さ(mm)である。厚さは、JIS L 1913「一般不織布試験方法」に準拠して測定した。
(Measurement method of recovery rate (compression recovery rate) when the nonwoven fabric is compressed in the thickness direction)
Five test pieces (nonwoven fabric) of about 50 mm × 50 mm were prepared, 0.02 kPa was applied to the test piece as an initial load, and the thickness was measured. Next, after a load of 30 kPa was applied for 1 minute, the load was removed and left for 1 minute, and the thickness of the test piece when the initial load was returned to 0.02 kPa was measured.
P R = [1− (T 0 −T 0 ′) / T 0 ] × 100
Thus, the compression recovery rate was calculated. Wherein the P R is the compression recovery rate (%) T0 when adding the first load thickness (mm), T 0 'is the thickness when returning to initial load (mm). The thickness was measured according to JIS L 1913 “General nonwoven fabric test method”.
 <実施例1>
 検体採取部1を構成する不織布として、クラレクラフレックス株式会社製の不織布「フレクスターSR0002」を用いた。この不織布は、固有粘度0.65のポリエチレンテレフタレート樹脂と、イソフタル酸20モル%及びジエチレングリコール5モル%を共重合した変性ポリエチレンテレフタレート樹脂とで構成され、各樹脂を繊維長方向に合わせたサイドバイサイド型複合ステープル繊維((株)クラレ製、「PN-780」、1.7dtex×51mm長、機械捲縮数12個/25mm、130℃×1分熱処理後における捲縮数62個/25mm)を加熱し、ループ発現させたものである。この不織布におけるループ状繊維の平均径は13.0μm、ループ状繊維のループ径は65μm、空隙率は95%、圧縮回復率は86%、厚みは約1mmであった。
<Example 1>
A nonwoven fabric “Flexstar SR0002” manufactured by Kuraray Laflex Co., Ltd. was used as the nonwoven fabric constituting the specimen collection unit 1. This nonwoven fabric is composed of a polyethylene terephthalate resin having an intrinsic viscosity of 0.65 and a modified polyethylene terephthalate resin copolymerized with 20 mol% of isophthalic acid and 5 mol% of diethylene glycol. Staple fibers ("Kuraray Co., Ltd.," PN-780 ", 1.7 dtex x 51 mm length, 12 crimps / 25 mm mechanical crimp, 62 crimps / 25 mm after 130 ° C x 1 minute heat treatment) were heated. , Loop-expressed. The average diameter of the loop-like fibers in this nonwoven fabric was 13.0 μm, the loop diameter of the loop-like fibers was 65 μm, the porosity was 95%, the compression recovery rate was 86%, and the thickness was about 1 mm.
 この不織布を、ポリオキシエチレン(N=8)ラウリルエーテルの0.04%水溶液に浸漬させた後、取り出し、乾燥させて親水化処理を施した。親水化処理後の不織布について表面の対水接触角を測定したところ、0度であった。 The nonwoven fabric was immersed in a 0.04% aqueous solution of polyoxyethylene (N = 8) lauryl ether, then taken out, dried and subjected to a hydrophilic treatment. It was 0 degree | times when the surface water contact angle was measured about the nonwoven fabric after a hydrophilic treatment.
 親水化処理後の不織布を幅36mmのテープ状に切断して、長手方向の中心線で二つ折りにし、特開2010-410号公報(段落[0014]~[0017])に記載の方法に従って、超音波溶着機を用いてテープの長手方向と直角に3.3mmの間隔で溶着、切断して袋状にした。 The non-woven fabric after the hydrophilization treatment is cut into a tape having a width of 36 mm and folded in half along the longitudinal center line, according to the method described in JP 2010-410 (paragraphs [0014] to [0017]). Using an ultrasonic welding machine, it was welded at intervals of 3.3 mm perpendicular to the longitudinal direction of the tape and cut into a bag shape.
 軸2には、ポリエチレン製であり、検体採取部1を取り付ける側の断面直径が0.9mm、柄部分(柄3)の断面直径が2.5mmであり、全長が150mmのものを用いた。 The shaft 2 is made of polyethylene and has a cross-sectional diameter of 0.9 mm on the side where the specimen collection unit 1 is attached, a cross-sectional diameter of the handle portion (handle 3) of 2.5 mm, and a total length of 150 mm.
 熱可塑性樹脂としてエチレン/α-オレフィン共重合体(日本ポリエチレン株式会社製、「KS240T」、融点60℃」を用い、これを内径1.0mm、外径1.5mmのチューブ状に押出成形して5mm間隔で切断した。得られた熱可塑性樹脂チューブを軸2の検体採取部を取り付ける側の端部に先端から約14mmまで挿入し、70℃に加熱することによりチューブの後端と仮止めした。次いで、検体採取部1として上記の袋状の不織布を挿入し、70℃に加熱することにより、上記熱可塑性樹脂チューブを介して軸2に固定した。 An ethylene / α-olefin copolymer (manufactured by Nippon Polyethylene Co., Ltd., “KS240T”, melting point 60 ° C.) was used as a thermoplastic resin, and this was extruded into a tube shape having an inner diameter of 1.0 mm and an outer diameter of 1.5 mm. The thermoplastic resin tube thus obtained was inserted into the end of the shaft 2 on the side where the specimen collection part is attached up to about 14 mm from the tip and heated to 70 ° C. to be temporarily fixed to the rear end of the tube. Next, the bag-shaped nonwoven fabric was inserted as the specimen collection unit 1 and heated to 70 ° C., and fixed to the shaft 2 via the thermoplastic resin tube.
 こうして作製した検体採取用具について、形状保持性、検体採取量及び異物の混入を調べ、市販品の検体採取用具と比較した。比較した市販品は、フロックスワブ(COPAN社製、「FLOQSwabs」)及びスポンジスワブ(ニプロ社製、「ニプロスポンジスワブ」)である。 The sample collection tool thus prepared was examined for shape retention, sample collection amount and contamination with foreign substances, and compared with a commercially available sample collection tool. Commercial products compared are Phlox swab (COPAN, “FLOQSwabs”) and sponge swab (Nipro, “Nipro sponge swab”).
 (1)形状保持性及び検体採取量
 フラットロールタイプ滅菌バック((株)エンコーコーポレーション製、「ENFR-022-G」、幅50mm、シール幅8mm、長さ17cm)に、各検体採取用具を1本ずつ入れて両端をシールした。この状態で、室温下、一週間保管した後、検体採取部の断面直径の変化と検体採取量の変化を測定した。結果をそれぞれ表1と表2に示す。検体採取量の変化を測定するにあたっては、検体採取部を5秒間水に浸ける吸水試験を行ったときの吸水採取量を重量で測定し、これを検体採取量とした。検体採取量の変化を測定する試験では、上記の吸水試験を5回行い、これらの5回の平均値と変動係数CVを求めた。
(1) Shape retention and specimen collection amount Flat roll type sterilization bag (manufactured by Enco Corporation, “ENFR-022-G”, width 50 mm, seal width 8 mm, length 17 cm) Each book was put and sealed at both ends. In this state, after storing for 1 week at room temperature, the change in the cross-sectional diameter of the sample collection part and the change in the sample collection amount were measured. The results are shown in Table 1 and Table 2, respectively. In measuring the change in the amount of sample collected, the amount of water collected when a water absorption test was performed in which the sample collection part was immersed in water for 5 seconds was measured by weight, and this was used as the sample collection amount. In the test for measuring the change in the amount of sample collected, the above water absorption test was performed five times, and the average value and coefficient of variation CV of these five times were obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (2)異物混入の確認
 口部10mm、底部5mm、肉厚0.6mmのポリエチレン容器に水0.8mLを入れ、検体採取用具の検体採取部を底まで差し込み、容器の外から検体採取部を揉んだ後、水をシャーレに戻し、10倍のルーペで異物の混入状況を調べた。結果を表3に示す。
(2) Confirmation of foreign matter contamination Put 0.8 mL of water into a polyethylene container with a mouth of 10 mm, a bottom of 5 mm, and a thickness of 0.6 mm, insert the sample collection part of the sample collection tool to the bottom, and remove the sample collection part from the outside of the container. After squeezing, the water was returned to the petri dish, and the contamination of the foreign matter was examined with a 10 times magnifier. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 1 検体採取部、2 軸、3 柄、9 軸、10 綿球。 1 Sample collection unit, 2 axes, 3 handles, 9 axes, 10 cotton balls.

Claims (7)

  1.  軸と、その一端に配置される検体採取部とを含み、
     前記検体採取部は、ループ状繊維で構成される不織布を含む、検体採取用具。
    Including a shaft and a specimen collecting portion disposed at one end of the shaft,
    The specimen collection unit is a specimen collection tool including a nonwoven fabric composed of loop-like fibers.
  2.  前記ループ状繊維は、10μm~150μmのループ径を有する、請求項1に記載の検体採取用具。 2. The specimen collecting tool according to claim 1, wherein the loop fiber has a loop diameter of 10 μm to 150 μm.
  3.  前記不織布は、85%~97%の空隙率を有する、請求項1又は2に記載の検体採取用具。 The specimen collecting tool according to claim 1 or 2, wherein the nonwoven fabric has a porosity of 85% to 97%.
  4.  前記ループ状繊維は、ポリオレフィン系樹脂、ポリエステル系樹脂及びポリアミド系樹脂からなる群より選択される1種以上の樹脂を含む、請求項1~3のいずれか1項に記載の検体採取用具。 The specimen collection tool according to any one of claims 1 to 3, wherein the loop fiber includes one or more resins selected from the group consisting of polyolefin resins, polyester resins, and polyamide resins.
  5.  前記不織布は、親水化処理が施されている不織布である、請求項1~4のいずれか1項に記載の検体採取用具。 The specimen collection tool according to any one of claims 1 to 4, wherein the nonwoven fabric is a nonwoven fabric that has been subjected to a hydrophilic treatment.
  6.  前記検体採取部は、熱可塑性樹脂又は接着剤を介して前記軸に固定されている、請求項1~5のいずれか1項に記載の検体採取用具。 The specimen collection tool according to any one of claims 1 to 5, wherein the specimen collection section is fixed to the shaft via a thermoplastic resin or an adhesive.
  7.  鼻腔又は咽喉から粘液を採取するために用いられる、請求項1~6のいずれか1項に記載の検体採取用具。 The specimen collecting tool according to any one of claims 1 to 6, which is used for collecting mucus from a nasal cavity or throat.
PCT/JP2016/069697 2015-07-03 2016-07-01 Sample collection tool WO2017006879A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-134064 2015-07-03
JP2015134064A JP6664157B2 (en) 2015-07-03 2015-07-03 Mucus collection device from nasal cavity or throat

Publications (1)

Publication Number Publication Date
WO2017006879A1 true WO2017006879A1 (en) 2017-01-12

Family

ID=57685341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069697 WO2017006879A1 (en) 2015-07-03 2016-07-01 Sample collection tool

Country Status (2)

Country Link
JP (1) JP6664157B2 (en)
WO (1) WO2017006879A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020021784A1 (en) * 2018-07-25 2020-01-30 株式会社島津製作所 Biological component collecting method and biological component analysis method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6687927B2 (en) * 2018-07-02 2020-04-28 株式会社ファインテック Bacteria collection tool and bacteria collection method using the same
JP7158645B2 (en) * 2018-10-05 2022-10-24 広陵化学工業株式会社 specimen collection swab
KR102586214B1 (en) * 2021-03-23 2023-10-12 아이비에스메디칼 주식회사 A surgical shaft

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000265351A (en) * 1999-03-16 2000-09-26 Daiwabo Co Ltd Elastic non-woven fabric having excellent heat sealing property and its production
JP2007523663A (en) * 2003-04-01 2007-08-23 コパン イノヴェイション リミテッド Swab for collecting biological specimens
JP2010535346A (en) * 2007-07-31 2010-11-18 マイクロニクス, インコーポレイテッド Hygienic swab collection system, microfluidic assay device and method for diagnostic assays
JP2012012758A (en) * 2010-06-04 2012-01-19 Kuraray Kuraflex Co Ltd Stretchable nonwoven fabric with high elongation
JP2012125195A (en) * 2010-12-16 2012-07-05 Kyoei Giken Kk Specimen collection device
JP2013224951A (en) * 2013-06-13 2013-10-31 Denka Seiken Co Ltd Swab for collecting biological specimen, method for manufacturing the swab, and kit using the swab

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2010341422B2 (en) * 2010-04-21 2013-10-10 Puritan Medical Products Company, Llc Collection device and material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000265351A (en) * 1999-03-16 2000-09-26 Daiwabo Co Ltd Elastic non-woven fabric having excellent heat sealing property and its production
JP2007523663A (en) * 2003-04-01 2007-08-23 コパン イノヴェイション リミテッド Swab for collecting biological specimens
JP2010535346A (en) * 2007-07-31 2010-11-18 マイクロニクス, インコーポレイテッド Hygienic swab collection system, microfluidic assay device and method for diagnostic assays
JP2012012758A (en) * 2010-06-04 2012-01-19 Kuraray Kuraflex Co Ltd Stretchable nonwoven fabric with high elongation
JP2012125195A (en) * 2010-12-16 2012-07-05 Kyoei Giken Kk Specimen collection device
JP2013224951A (en) * 2013-06-13 2013-10-31 Denka Seiken Co Ltd Swab for collecting biological specimen, method for manufacturing the swab, and kit using the swab

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020021784A1 (en) * 2018-07-25 2020-01-30 株式会社島津製作所 Biological component collecting method and biological component analysis method

Also Published As

Publication number Publication date
JP2017015610A (en) 2017-01-19
JP6664157B2 (en) 2020-03-13

Similar Documents

Publication Publication Date Title
WO2017006879A1 (en) Sample collection tool
US8827974B2 (en) Absorbent tampon for feminine hygiene
JP3469385B2 (en) Absorbent articles
TWI280869B (en) Foam-based fasteners
JP6128845B2 (en) Sanitary tampons
JP6790061B2 (en) Packaging material for sterilization
JP7158645B2 (en) specimen collection swab
JP2012052256A (en) Nonwoven fabric, method for manufacturing the same and absorbent article using the same
JP6196228B2 (en) Assembly intermediates and articles comprising coiled filament nonwoven webs
US20170275792A1 (en) Non-woven fabric for sanitary materials, and sanitary material product
JP5080074B2 (en) Absorbent articles
JP2017119024A (en) Non-woven fabric for exterior sheet of absorbent article, and absorbent article including said non-woven fabric as exterior sheet
JP6488117B2 (en) Swab for collecting biological specimen and method for producing the same
JP2012125195A (en) Specimen collection device
JP2016079529A (en) Nonwoven fabric
CN111093583B (en) Absorbent body and absorbent article
JP2008231619A (en) Fiber sheet
JP2016186134A (en) Composite fiber, nonwoven fabric, and sheet for absorbent article
MXPA02001668A (en) Thin sanitary napkin manifesting high level of stability.
JP7310377B2 (en) Absorber
JP6611969B2 (en) Composite fiber, nonwoven fabric and absorbent article sheet
JP5710963B2 (en) Gauze with medical thread
JP2018150641A (en) Nonwoven fabric and liquid impregnated nonwoven fabric
JP2013036740A (en) Implement for sampling mucus from nasal cavity or throat
JP7439997B1 (en) Long fiber nonwoven fabric, its manufacturing method, and sanitary materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821348

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16821348

Country of ref document: EP

Kind code of ref document: A1