WO2017006834A1 - Steel plate for case of non-aqueous-electrolyte secondary cell, and case of non-aqueous-electrolyte secondary cell - Google Patents

Steel plate for case of non-aqueous-electrolyte secondary cell, and case of non-aqueous-electrolyte secondary cell Download PDF

Info

Publication number
WO2017006834A1
WO2017006834A1 PCT/JP2016/069473 JP2016069473W WO2017006834A1 WO 2017006834 A1 WO2017006834 A1 WO 2017006834A1 JP 2016069473 W JP2016069473 W JP 2016069473W WO 2017006834 A1 WO2017006834 A1 WO 2017006834A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating layer
electrolyte secondary
alloy plating
secondary battery
battery case
Prior art date
Application number
PCT/JP2016/069473
Other languages
French (fr)
Japanese (ja)
Inventor
石塚 清和
高橋 武寛
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2016563472A priority Critical patent/JP6086176B1/en
Priority to CN201680027069.0A priority patent/CN107710446B/en
Publication of WO2017006834A1 publication Critical patent/WO2017006834A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • C25D5/14Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium two or more layers being of nickel or chromium, e.g. duplex or triplex layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • H01M50/145Primary casings; Jackets or wrappings for protecting against damage caused by external factors for protecting against corrosion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a steel sheet for a non-aqueous electrolyte secondary battery case and a non-aqueous electrolyte secondary battery case.
  • a low-cost and highly reliable outer case material is required.
  • a Ni-plated steel sheet obtained by applying Ni plating to the steel sheet surface is usually used from the viewpoint of press formability, weldability, corrosion resistance, strength, and the like.
  • a battery can such as a cylindrical can or a square can is manufactured by press-molding a Ni-plated steel sheet, and an electrode group composed of a positive electrode plate, a negative electrode plate and a separator and an electrolyte are accommodated inside the battery can. Thereafter, the battery lid is caulked and fixed to the opening of the battery can, and the outer case composed of the battery can and the battery lid is sealed.
  • a metal In a lithium ion battery, a metal can is usually connected to a negative electrode. In this case, considering the potential of the negative electrode, there is little possibility that metal ions are eluted from the Ni-plated steel sheet during operation of the lithium ion battery. However, during the manufacture of a lithium ion battery, in the aging process from when the electrode group and the electrolyte solution are accommodated in the outer case to when the lithium ion battery is charged, the potential of the case is not doped with lithium ions. The carbon negative electrode potential for charging (3.2 to 3.4 V vs. Li / Li + ) is obtained.
  • this aging process is normally performed for several days in order to fully infiltrate electrolyte solution in a positive electrode, a negative electrode, and a separator, and to stabilize the initial charge / discharge characteristic. Therefore, depending on conditions, Fe ion elution from the Ni plating layer or its damaged part may occur.
  • metal ions may be eluted when the battery case potential rises due to overdischarge of the battery when the battery is used. Also, when a metal outer case using a Ni-plated steel plate is used as a neutral case insulated from the battery element, there is no problem with corrosion resistance under normal use conditions. However, when the potential of the battery case increases due to the action of an oxidizing agent in the electrolyte, metals such as Ni may be eluted.
  • Patent Document 1 discloses a steel sheet for a non-aqueous electrolyte secondary battery case having a Cu layer under the Ni layer.
  • Patent Document 2 discloses a plated steel sheet for an alkaline battery in which a nickel layer and a nickel-tungsten alloy layer are formed from the bottom on a steel sheet on the inner side of the battery container.
  • a battery container of a lithium ion battery which is a typical example of a nonaqueous electrolyte battery, is a negative electrode
  • a battery container of an alkaline battery (alkali manganese battery) is a positive electrode.
  • MnO 2 or NiOOH is often used as the battery active material of the positive electrode of the alkaline battery, and these battery active materials are collected in direct contact with the inner surface of the battery container.
  • a battery active material of a lithium ion battery (in a typical example, the negative electrode is C and the positive electrode is LiCoO 2 ) is applied to a positive and negative foil, and is connected from the foil to the positive and negative electrodes through leads. Further, the lithium ion battery is characterized in that the battery active material is not in contact with the battery container.
  • a nonaqueous electrolyte in which a Li salt such as lithium hexafluorophosphate (LiPF 6 ) is dissolved in a nonaqueous solvent such as ethylene carbonate (EC) or diethyl carbonate (DEC) is used.
  • a KOH aqueous solution or the like is used as an alkaline battery electrolyte.
  • Patent Document 1 is mainly intended to suppress iron exposure during processing and is not intended to prevent elution of Ni and Cu.
  • Patent Document 2 is a technique used for a battery container of an alkaline battery in which the positive electrode mixture and the battery container are in direct contact. That is, even if the technique disclosed in Patent Document 2 is applied to a non-aqueous electrolyte secondary battery whose battery container is not a current collector, sufficient characteristics cannot be obtained.
  • An object of the present invention is to provide a steel sheet for a non-aqueous electrolyte secondary battery case and a non-aqueous electrolyte secondary battery case that are low in corrosion and excellent in economic efficiency.
  • a steel sheet for a non-aqueous electrolyte secondary battery case includes a steel sheet and a Ni—W—Fe alloy formed on the surface of the steel sheet, and includes a non-aqueous electrolyte secondary battery. And a Ni—W—Fe alloy plating layer to be an inner surface of the case.
  • the Ni—W—Fe alloy plating layer is 1 to 2 based on the total mass of the Ni—W—Fe alloy plating layer. You may employ
  • the Ni—W—Fe alloy plating layer has a total mass of the Ni—W—Fe alloy plating layer.
  • a configuration containing 5 to 50% by mass of W may be adopted.
  • the Ni—W—Fe alloy plating layer is made of Cr, Mo and Co.
  • a configuration may be employed in which one or more selected from the group consisting of 5% by mass or less is further added to the total mass of the Ni—W—Fe alloy plating layer.
  • the content of W in the Ni—W—Fe alloy plating layer is a unit mass%.
  • X is X and the Fe content is Y in unit mass%
  • a configuration in which X and Y satisfy the following formula (1) may be adopted.
  • a Ni plating layer is further provided below the Ni—W—Fe alloy plating layer.
  • a configuration may be adopted.
  • a nonaqueous electrolyte secondary battery case according to an aspect of the present invention is manufactured using the steel sheet for a nonaqueous electrolyte secondary battery case according to any one of the above (1) to (7). Is done.
  • a steel sheet for a non-aqueous electrolyte secondary battery case and a non-aqueous electrolyte secondary battery case can be provided.
  • FIG. 3 is a schematic diagram showing a layer structure of a steel sheet for a non-aqueous electrolyte secondary battery case according to the present embodiment when a Ni plating layer is formed under the Ni—W—Fe alloy plating layer.
  • FIG. 1 is a schematic diagram showing a layer structure of a steel sheet 10 for a nonaqueous electrolyte secondary battery case.
  • a non-aqueous electrolyte secondary battery case steel plate 10 is formed on the surface of a steel plate 20 and a steel plate 20, contains a Ni—W—Fe alloy, and contains a non-aqueous electrolyte secondary battery case.
  • a Ni—W—Fe alloy plating layer 50 serving as an inner surface of the substrate.
  • the steel plate (steel material) 20 used as a base material of the steel plate 10 for nonaqueous electrolyte secondary battery cases is not particularly limited as long as it is plain steel, stainless steel is not preferable from the viewpoint of economy.
  • a steel material suitable for workability required from the shape of the metal case can be appropriately selected and used.
  • the steel sheet 10 for a non-aqueous electrolyte secondary battery case is characterized by having a Ni—W—Fe alloy plating layer 50 containing Fe on the surface layer on the surface which is the inner surface of the battery case.
  • the non-aqueous electrolyte secondary battery case steel sheet 10 according to the present embodiment can ensure sufficient corrosion resistance as a case of a non-aqueous electrolyte secondary battery typified by a lithium ion battery.
  • elution of metal ions into the electrolyte can be suppressed.
  • the Ni—W—Fe alloy plating layer 50 contains Fe in the alloy plating layer.
  • the preferable content of Fe in the Ni—W—Fe alloy plating layer is, for example, a Ni—W—Fe alloy plating layer. It is 1 to 20% (hereinafter,% represents mass%) with respect to the total mass of 50. If the Fe content is less than the lower limit and exceeds the upper limit, the elution of metal ions in the non-aqueous electrolyte tends to increase, such being undesirable.
  • the Fe content in the Ni—W—Fe alloy plating layer is more preferably 5 to 15%.
  • the W content of the Ni—W—Fe alloy plating layer 50 is preferably 5 to 50% with respect to the total mass of the Ni—W—Fe alloy plating layer 50, for example. If the W content is less than the lower limit or exceeds the upper limit, metal ion elution in the non-aqueous electrolyte tends to increase, which is not preferable.
  • the W content in the Ni—W—Fe alloy plating layer 50 is more preferably 10 to 40%.
  • the remainder other than Fe and W is composed of Ni and inevitable impurities.
  • the Ni—W—Fe alloy plating layer 50 is allowed to contain at least one of Cr, Mo, and Co instead of the remaining Ni.
  • the content of the above elements (the total content when two or more elements are included) is preferably 5% or less with respect to the total mass of the Ni—W—Fe alloy plating layer 50, for example. Under such conditions, metal ion elution in the non-aqueous electrolyte is effectively suppressed.
  • the content of at least one of Cr, Mo, and Co in the Ni—W—Fe alloy plating layer 50 is more preferably 3% or less.
  • Ni—W—Fe alloy plating layer 50 is excellent in resistance to metal ion elution in a non-aqueous electrolyte is not clear, but a natural oxide film (non-existing film) existing on the surface of the Ni—W—Fe alloy plating layer 50 is not clear. (Shown) is considered to be stable with respect to the non-aqueous electrolyte. Further, it is conceivable that the Ni—W—Fe alloy plating layer 50 reacts with the nonaqueous electrolytic solution when the potential is increased, and forms a film (not shown) having a stable protective action. On the other hand, when Ni, W, and Fe do not coexist in the Ni—W—Fe alloy plating layer 50, it is presumed that a film (not shown) having a stable protective action as described above is hardly formed.
  • the steel sheet 10 for a non-aqueous electrolyte secondary battery case has a Ni—W—Fe alloy plating layer 50 on the surface layer (more specifically, the surface layer on the inside of the battery case when the battery case is formed).
  • the lower plating layer of the Ni—W—Fe alloy plating layer 50 is not necessarily limited, and a known plating layer used for battery cases can be applied.
  • FIG. 2 is a schematic diagram showing a layer structure of a steel sheet for a nonaqueous electrolyte secondary battery case according to the present embodiment when a Ni plating layer is formed under the Ni—W—Fe alloy plating layer.
  • the Ni-W-Fe alloy plating layer 50 has a relatively soft Ni plating layer 30 below the Ni-W-Fe alloy plating layer 50. It is desirable. By forming the Ni plating layer 30, it is possible to suppress damage due to processing of the Ni—W—Fe alloy plating layer 50 and elution of metal ions into the non-aqueous electrolyte accompanying the damage.
  • Ni plating layer 30 is a Ni—Fe diffusion layer (not shown).
  • the Ni—Fe diffusion layer is formed by mutually diffusing Ni in plating and Fe in steel by heat treatment after Ni plating.
  • the thickness of the Ni—W—Fe alloy plating layer 50 is preferably 0.05 to 2.00 ⁇ m, for example. When the thickness of the Ni—W—Fe alloy plating layer 50 is too thin, less than 0.05 ⁇ m, the elution of metal ions in the non-aqueous electrolyte tends to increase, which is not preferable. In addition, if the thickness of the Ni—W—Fe alloy plating layer 50 exceeds 2.00 ⁇ m, the plating damage during processing tends to increase, resulting in the elution of metal ions into the non-aqueous electrolyte. Is not preferable because it tends to increase. The thickness of the Ni—W—Fe alloy plating layer 50 is more preferably 0.10 to 1.50 ⁇ m.
  • the thickness of the Ni—W—Fe alloy plating layer 50, the Fe content, and the W content are foils by FIB (Focused Ion Beam) so that a cross section along the plate thickness direction can be observed.
  • FIB Fluorescence Beam
  • the TEM Transmission Electron Microscope: Transmission Electron Microscope
  • EDS Electronic Dispersive X-ray Spectroscopy
  • FE-SEM Field-Emission Scanning Electron
  • STEM Sccanning Transmission Electron Microscope
  • an alloy with different compositions of Ni, W, and Fe is plated on the steel plate 20 as a single layer to produce a plurality of samples having different compositions.
  • the cross sections of the plated layers of these samples are quantitatively analyzed for Ni, W, and Fe using a TEM capable of elemental analysis by EDS or an FE-SEM with STEM mode.
  • the plating layer of these samples is dissolved with an acid, and ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry) or ICP-MS (Inductively Coupled Plasma-Mass-Plasma-Mass-Plasma-Mass-Plasma-Mass-Plasma Mass-Plasma )
  • ICP-AES Inductively Coupled Plasma-Atomic Emission Spectrometry
  • ICP-MS Inductively Coupled Plasma-Mass-Plasma-Mass-Plasma-Mass-Plasma Mass-Plasma Mass-Plasma
  • a calibration curve showing the relationship between the detected intensity in EDS and the concentration of each element by comparing the quantitative analysis result by EDS attached to TEM or FE-SEM with the quantitative analysis result by ICP-AES or ICP-MS. Ask for.
  • TEM capable of elemental analysis by EDS includes a combination of JEOL FE-TEM: JEM2100F (acceleration voltage 200 kV) and JEOL EDS: JED-2300T (probe diameter of about 2 nm).
  • the Ni plating layer 30 or the Ni—W—Fe alloy plating layer 50 When the Ni plating layer 30 or the Ni—W—Fe alloy plating layer 50 is dissolved with an acid, it may be difficult to selectively dissolve only the plating layer depending on the composition of the plating layer. In particular, when the Ni plating layer 30 is formed on the steel plate 20, it is difficult to dissolve only the Ni plating layer 30. In that case, the analysis result obtained by dissolving only the steel plate 20 is subtracted from the analysis result obtained by dissolving the steel plate 20 (and Ni plating layer 30) and the Ni—W—Fe alloy plating layer 50. The method can be adopted. Specific examples of the melting method in this case include a method in which a plated steel sheet at room temperature or about 80 ° C.
  • the Ni adhesion amount of the Ni plating layer 30 provided under the Ni—W—Fe alloy plating layer 50 is preferably about 1 to 45 g / m 2 .
  • the amount of Ni in the Ni—Fe diffusion layer is preferably in the above range.
  • the amount of Ni in the Ni—Fe diffusion layer (not shown) and the amount of Ni in the Ni plating layer 30 are also shown. Is preferably in the above range.
  • the diffusion state of the Ni plating layer 30 can be confirmed by EDS analysis using the FIB workpiece described above.
  • the Ni adhesion amount of the Ni plating layer 30 is more preferably 9 to 27 g / m 2 .
  • the Ni—W—Fe alloy plating layer 50 can be formed by an electroplating method in which Fe ions coexist in a known Ni—W plating bath (alloy plating step). Note that Fe may be diffused from steel. When Fe ions are allowed to coexist in the Ni—W plating bath, the concentration of Fe ions is preferably 0.05 to 5 g / l.
  • Ni—W plating bath a bath containing tungstate ions, nickel ions, and a complexing agent thereof can be used.
  • the tungstate ion can be added as a highly water-soluble salt such as sodium tungstate, potassium tungstate, or ammonium tungstate.
  • concentration of tungstate ion in the Ni—W plating bath is preferably 0.5 to 50 g / l.
  • the nickel ion can be nickel sulfate, nickel chloride, or nickel carbonate as long as it can be dissolved in the order of preparation.
  • the concentration of Ni ions in the Ni—W plating bath is preferably 1 to 50 g / l.
  • citric acid and its salt are often added, but other complexing agents such as pyrophosphoric acid and its salt, 1-hydroxyethane-1, 1-diphosphonic acid and the like can also be used.
  • Citric acid salts include trisodium citrate, disodium hydrogen citrate, sodium dihydrogen citrate, tripotassium citrate, dipotassium hydrogen citrate, potassium dihydrogen citrate, trilithium citrate, dilithium hydrogen citrate. , Lithium dihydrogen citrate, triammonium citrate, diammonium hydrogen citrate, or ammonium dihydrogen citrate can be used.
  • ammonium ions are also said to have an effect of increasing current efficiency, and an ammonium salt may be used for the Ni—W plating bath or may be added separately as ammonia.
  • Iron ions may be supplied as a divalent Fe salt.
  • iron (II) sulfate or iron (II) chloride is used.
  • Adjustment of the W content and the Fe content in the Ni—W—Fe alloy plating layer 50 can be arbitrarily adjusted by optimizing the bath concentration and the current density.
  • W depends on the current density as well as the tungstate ion concentration in the bath, and the W content tends to increase as the current density decreases.
  • Fe is known to exhibit an anomalous precipitation behavior with respect to Ni, and tends to precipitate contrary to the order of potential, Ni and Fe (in noble order). That is, the Fe / Ni ratio during plating is larger than the Fe / Ni ratio in the bath.
  • the metal ion concentration in the Ni—W plating bath may be adjusted so as to obtain a desired plating composition.
  • the current density at the time of performing the alloy plating step is not particularly limited, and examples thereof include 0.5 to 50 A / dm 2 .
  • the Ni—W—Fe alloy plating layer 50 having a desired component can be formed.
  • the temperature of the Ni—W plating bath at the time of performing the alloy plating step is not particularly limited, and examples thereof include 40 to 80 ° C.
  • the Ni—W—Fe alloy plating layer 50 is preliminarily plated on the steel plate 20 used as the base material.
  • the method of forming is mentioned.
  • the Ni plating method is not limited at all, and widely known methods can be applied.
  • a method of forming the Ni—W—Fe alloy plating layer 50 after the Ni—Fe alloy plating is performed on the steel plate 20 used as the base material can also be adopted. Further, after performing Ni plating and Ni—W alloy plating containing Fe on the steel plate 20 used as a base material in this order, heat treatment is performed, and a part or all of the lower Ni plating layer 30 is obtained. A method using a Ni—Fe diffusion layer (not shown) is also suitable.
  • non-aqueous electrolyte secondary battery case (Second embodiment, non-aqueous electrolyte secondary battery case (not shown)) Next, a nonaqueous electrolyte secondary battery case (not shown) according to the second embodiment will be described.
  • the non-aqueous electrolyte secondary battery case (not shown) is not particularly limited except that the non-aqueous electrolyte secondary battery case steel plate 10 is used so that the inner surface becomes the Ni—W—Fe alloy plating layer 50.
  • the surface used as the outer surface of a nonaqueous electrolyte secondary battery case (not shown) it is good also as the same structure as an inner surface, and you may give well-known plating according to the use.
  • the manufacturing method of a nonaqueous electrolyte secondary battery case is not particularly limited, and a known method for manufacturing a nonaqueous electrolyte secondary battery case can be used.
  • Example shown below is only an example of the steel sheet for nonaqueous electrolyte secondary battery cases according to the present invention, and the steel sheet for nonaqueous electrolyte secondary battery case according to the present invention is limited to the following examples. Is not to be done.
  • Example 1 (Examples 1 to 25 and Comparative Examples 1 and 2) An annealed ultra-low carbon steel plate having a thickness of 0.3 mm is used as a base plate, and Ni plating with an adhesion amount of 1 g / m 2 is performed under the conditions shown in Table 1 below. A Ni—W—Fe alloy plating of the composition was plated to a thickness of 1 ⁇ m. The W content and the Fe content in the Ni—W—Fe alloy plating layer were controlled by adjusting the current density shown in Table 2 and the addition amount of iron (II) sulfate. After the above plating, heat treatment was performed in a non-oxidizing atmosphere at a temperature of 500 ° C. for 30 seconds.
  • Example 26 The same procedures as in Examples 1 to 25 were performed except that the plating bath shown in Table 2 below was further plated by adding 2 g / L of chromium (III) sulfate 12 hydrate.
  • Example 27 The same procedures as in Examples 1 to 25 were performed except that the plating bath shown in Table 2 below was further plated by adding 10 g / L of sodium molybdate dihydrate.
  • Example 28 The same procedures as in Examples 1 to 25 were performed except that 3 g / L of cobalt sulfate heptahydrate was further added to the plating bath shown in Table 2 below.
  • Example 29 The above examples except that the plating bath shown in Table 2 below was further plated with sodium molybdate dihydrate 7 g / L and cobalt sulfate heptahydrate 3 g / L. Performed in the same manner as 1-25.
  • Example 30 For the plating bath shown in Table 2 below, chromium (III) sulfate 12 hydrate 3 g / L, sodium molybdate dihydrate 9 g / L, and cobalt sulfate heptahydrate 1 g / L, The same procedure as in Examples 1 to 25 was performed, except that the plating was performed with addition.
  • the performance evaluation was performed as follows. The end portion and the back surface of the test piece were tape-sealed, and an area of 1 cm 2 was exposed to be an evaluation surface.
  • a tripolar cell was assembled with the test piece as a working electrode and metallic lithium as a counter electrode and a reference electrode.
  • a solution in which 1 M LiPF 6 was dissolved in a solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1 was used as an electrolytic solution.
  • the cell was held at a temperature of 30 ° C. for 48 hours with the working electrode potential regulated to 3.6 V (lithium reference).
  • the total energization amount was measured and the amount of metal eluted in the electrolyte was measured and evaluated according to the following criteria. In the following evaluation criteria, a score of 3 or higher was judged to be good.
  • Total energization 5: 0.01 C / cm 2 or less 4: 0.01 C / cm 2 excess 0.1 C / cm 2 or less 3: 0.1 C / cm 2 excess 0.3 C / cm 2 or less 2: 0.3 C / cm 2 excess 1C / cm 2 or less 1: 1C / cm 2 exceeded
  • the composition of the upper Ni—W—Fe alloy plating layer is as follows: FIB work piece, JEOL FE-TEM: JEM2100F (acceleration voltage 200 kV) and JEOL EDS: JED-2300T (probe diameter about 2 nm) was quantified by the method described above.
  • the balance was Ni and impurities. Examples 1 to 30 contained a Ni—W—Fe alloy, but Comparative Examples 1 to 3 did not contain a Ni—W—Fe alloy.
  • Comparative Example 1 and Comparative Example 2 since the plating bath was manufactured by a method not containing Fe ions, the alloy plating layer did not contain Fe. Therefore, Comparative Example 1 and Comparative Example 2 did not have suitable energization amount and dissolution amount. In Comparative Example 3, since the alloy plating layer was manufactured by Ni—Fe alloy plating, the alloy plating layer did not contain W. Therefore, Comparative Example 3 did not have a suitable energization amount and dissolution amount.
  • Example 2 A non-annealed Al-killed steel sheet having a thickness of 0.3 mm was used as a base plate, and Ni plating with various adhesion amounts was performed under the conditions shown in Table 1 above. Subsequently, Ni— W—Fe alloy plating was plated at various thicknesses. The W content and the Fe content in the Ni—W—Fe alloy plating layer were controlled by adjusting the current density and the iron (II) sulfate addition amount shown in Table 2 above. After the plating, annealing and Ni plating diffusion treatment were performed by performing heat treatment in a non-oxidizing atmosphere at a temperature of 740 ° C. for 30 seconds.
  • Example 41 to 44 A non-annealed ultra-low carbon steel plate having a thickness of 0.3 mm is used as a base plate, and Ni plating with various adhesion amounts is performed under the conditions shown in Table 1 above.
  • a —W—Fe alloy plating was plated to a thickness of 0.5 ⁇ m.
  • the W content and the Fe content in the Ni—W—Fe alloy plating layer were controlled by adjusting the current density and the iron (II) sulfate addition amount shown in Table 2 above.
  • annealing and Ni plating diffusion treatment were performed by performing a heat treatment in a non-oxidizing atmosphere at a temperature of 820 ° C. for 30 seconds.
  • Example 45 to 48 An annealed Al-killed steel plate having a thickness of 0.3 mm was used as a base plate, and Ni plating with various adhesion amounts was performed under the conditions shown in Table 1 above. Subsequently, Ni— with various compositions was applied under the conditions shown in Table 2 above. W—Fe alloy plating was plated to a thickness of 0.5 ⁇ m. The W content and the Fe content in the Ni—W—Fe alloy plating layer were controlled by adjusting the current density and the iron (II) sulfate addition amount shown in Table 2 above. After the plating, heat treatment was performed for 120 seconds at a temperature of 450 ° C. in a non-oxidizing atmosphere.
  • Example 49 to 52 An Al-killed steel sheet having a thickness of 0.3 mm is used as an original sheet, Ni—Fe alloy plating with various adhesion amounts is performed under the conditions shown in Table 3 above, and various compositions are subsequently performed under the conditions shown in Table 2 above.
  • the Ni—W—Fe alloy plating was plated to a thickness of 0.5 ⁇ m.
  • the W content and the Fe content in the Ni—W—Fe alloy plating layer were controlled by adjusting the current density and the iron (II) sulfate addition amount shown in Table 2 above. After the plating, heat treatment was performed for 120 seconds at a temperature of 450 ° C. in a non-oxidizing atmosphere.
  • Example 53 to 55 An annealed Al-killed steel plate having a thickness of 0.3 mm was used as a base plate, and Ni—W—Fe alloy plating of various compositions was plated at a thickness of 1.5 ⁇ m under the conditions shown in Table 2 above.
  • the W content and the Fe content in the Ni—W—Fe alloy plating layer were controlled by adjusting the current density and the iron (II) sulfate addition amount shown in Table 2 above.
  • heat treatment was performed for 120 seconds at a temperature of 450 ° C. in a non-oxidizing atmosphere.
  • Comparative Example 4 An unannealed Al killed steel plate with a thickness of 0.3 mm is used as a base plate, and Ni plating is performed with an adhesion amount of 45 g / m 2 under the conditions shown in Table 1 above. By performing heat treatment for 30 seconds, annealing and Ni plating diffusion treatment were performed. In Comparative Example 4, the Ni—W—Fe alloy plating layer was not formed.
  • Performance evaluation was performed in the same manner as in Test Example 1 above.
  • the obtained test material was pressed into a cylindrical drawn can corresponding to a standard 18650 (diameter 18 mm ⁇ length 65 mm) of a cylindrical lithium ion secondary battery, and then the inner side surface was cut out and evaluated in the same manner.
  • Table 5 below shows the results obtained.
  • the state of the lower Ni layer and the composition of the upper Ni—W—Fe alloy plating layer are FIB processed pieces, JEOL FE-TEM: JEM2100F (acceleration voltage 200 kV) and JEOL EDS: It was confirmed and quantified by JED-2300T (probe diameter: about 2 nm).
  • the balance was Ni and impurities.
  • the content of the Ni—W—Fe alloy was confirmed by the same method as in Test Example 1. Examples 31 to 55 contained a Ni—W—Fe alloy, but Comparative Example 4 did not contain a Ni—W—Fe alloy.
  • Comparative Example 4 did not have a Ni—W—Fe alloy plating layer, it did not have a suitable energization amount and dissolution amount.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

This steel plate for a case of a non-aqueous-electrolyte secondary cell is provided with: a steel plate; and a Ni-W-Fe alloy plated layer formed on the surface of the steel plate, the Ni-W-Fe alloy plated layer containing a Ni-W-Fe alloy, and forming the inner surface of the case of the non-aqueous-electrolyte secondary cell.

Description

非水電解液二次電池ケース用鋼板及び非水電解液二次電池ケースSteel sheet for non-aqueous electrolyte secondary battery case and non-aqueous electrolyte secondary battery case
 本発明は、非水電解液二次電池ケース用鋼板及び非水電解液二次電池ケースに関する。
 本願は、2015年7月7日に、日本に出願された特願2015-135885号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a steel sheet for a non-aqueous electrolyte secondary battery case and a non-aqueous electrolyte secondary battery case.
This application claims priority on July 7, 2015 based on Japanese Patent Application No. 2015-13585 for which it applied to Japan, and uses the content here.
 近年、民生用モバイル機器の小型化及び高機能化に伴い、機器電源として小型で軽量かつ高エネルギー密度で、長期間充放電が可能な二次電池が求められてきた。この結果、従来のニッケル-カドミウム電池やニッケル-水素電池などのアルカリ二次電池(水系二次電池)に代わって、より高いエネルギー密度と出力密度とを有するリチウムイオン電池などの非水電解液二次電池が広く普及している。また、最近では、ハイブリッド自動車や電気自動車などのモーター駆動自動車のモーター用電源として、リチウムイオン電池の開発が進められている。 In recent years, with the miniaturization and high functionality of consumer mobile devices, there has been a demand for secondary batteries that can be charged and discharged for a long period of time as a device power source with a small size, light weight and high energy density. As a result, in place of conventional alkaline secondary batteries (aqueous secondary batteries) such as nickel-cadmium batteries and nickel-hydrogen batteries, non-aqueous electrolyte solutions such as lithium ion batteries having higher energy density and output density are used. Secondary batteries are widely used. Recently, a lithium-ion battery has been developed as a motor power source for motor-driven vehicles such as hybrid vehicles and electric vehicles.
 非水電解液二次電池を安価に製造するためには、低コストで高信頼性の外装ケース用素材が必要である。この外装ケース用素材として、プレス成形性や溶接性、耐食性、強度などの観点から、通常、鋼板表面にNiめっきを施したNiめっき鋼板が使用される。Niめっき鋼板をプレス成形することによって円筒缶や角缶などの電池缶が製造され、正極板、負極板及びセパレータにより構成される電極群と電解質とが、かかる電池缶の内部に収容される。その後、電池缶の開口部に電池蓋がカシメ固定され、電池缶と電池蓋とにより構成される外装ケースを密閉する。 In order to manufacture a non-aqueous electrolyte secondary battery at low cost, a low-cost and highly reliable outer case material is required. As a material for the exterior case, a Ni-plated steel sheet obtained by applying Ni plating to the steel sheet surface is usually used from the viewpoint of press formability, weldability, corrosion resistance, strength, and the like. A battery can such as a cylindrical can or a square can is manufactured by press-molding a Ni-plated steel sheet, and an electrode group composed of a positive electrode plate, a negative electrode plate and a separator and an electrolyte are accommodated inside the battery can. Thereafter, the battery lid is caulked and fixed to the opening of the battery can, and the outer case composed of the battery can and the battery lid is sealed.
 リチウムイオン電池では、通常、金属缶は、負極と接続される。この場合、負極の電位から考えて、リチウムイオン電池の作動時にNiめっき鋼板から金属イオンが溶出する可能性は少ない。しかしながら、リチウムイオン電池の製造時において、外装ケース内に電極群と電解液とを収納してからリチウムイオン電池を充電するまでのエージング工程では、ケースの電位は、リチウムイオンがドープされていない未充電のカーボン負極電位(3.2~3.4V vs Li/Li)となっている。また、このエージング工程は、正極、負極及びセパレータに電解液を十分に浸透させ、初期の充放電特性を安定化するために、通常、数日間程度行われる。そのため、条件によっては、Niめっき層やあるいはその損傷部からのFeイオン溶出が起こる場合がありうる。 In a lithium ion battery, a metal can is usually connected to a negative electrode. In this case, considering the potential of the negative electrode, there is little possibility that metal ions are eluted from the Ni-plated steel sheet during operation of the lithium ion battery. However, during the manufacture of a lithium ion battery, in the aging process from when the electrode group and the electrolyte solution are accommodated in the outer case to when the lithium ion battery is charged, the potential of the case is not doped with lithium ions. The carbon negative electrode potential for charging (3.2 to 3.4 V vs. Li / Li + ) is obtained. Moreover, this aging process is normally performed for several days in order to fully infiltrate electrolyte solution in a positive electrode, a negative electrode, and a separator, and to stabilize the initial charge / discharge characteristic. Therefore, depending on conditions, Fe ion elution from the Ni plating layer or its damaged part may occur.
 また、電池使用時に、電池の過放電等により電池ケースの電位が上昇した場合にも、金属イオンが溶出する場合がある。また、Niめっき鋼板を用いた金属外装ケースを、電池素子とは絶縁した中立ケースとして使用する場合にも、通常の使用状況では耐食性に問題はない。しかしながら、電解質中の酸化剤の作用などによって電池ケースの電位が上昇すると、Ni等の金属が溶出する場合がある。 Also, metal ions may be eluted when the battery case potential rises due to overdischarge of the battery when the battery is used. Also, when a metal outer case using a Ni-plated steel plate is used as a neutral case insulated from the battery element, there is no problem with corrosion resistance under normal use conditions. However, when the potential of the battery case increases due to the action of an oxidizing agent in the electrolyte, metals such as Ni may be eluted.
 このように、めっきされたNiや下地のFeなどの金属が電解質中に溶出すると、電池を充放電した際に負極表面に溶出した金属が析出し成長するため、この析出金属がセパレータを貫通して正負極間に微小短絡を発生させる原因となる。微小短絡が発生すると電池電圧の低下を招くため、必要な電池性能を得ることができず、電池の歩留まり低下につながる。また、金属外装ケース自体の腐食が進行し、電解質の液漏れ原因ともなる。 Thus, when metals such as plated Ni and underlying Fe elute into the electrolyte, the eluted metal precipitates and grows on the negative electrode surface when the battery is charged / discharged. Cause a short circuit between the positive and negative electrodes. When a micro short circuit occurs, the battery voltage is lowered, so that necessary battery performance cannot be obtained, leading to a decrease in battery yield. In addition, the corrosion of the metal outer case itself progresses, causing electrolyte leakage.
 上記の問題に対して、以下の特許文献1では、Ni層の下層にCu層を有する非水電解液二次電池ケース用の鋼板が開示されている。 In response to the above problem, Patent Document 1 below discloses a steel sheet for a non-aqueous electrolyte secondary battery case having a Cu layer under the Ni layer.
 また、以下の特許文献2では、電池容器内面となる側の鋼板上に、下からニッケル層、ニッケル-タングステン合金層が形成されたアルカリ電池用めっき鋼板が開示されている。
 非水電解液電池の代表例であるリチウムイオン電池の電池容器は負極であるのに対して、アルカリ電池(アルカリマンガン電池)の電池容器は正極である。また、アルカリ電池の正極の電池活物質としてはMnOやNiOOHが使われることが多く、これらの電池活物質は電池容器内面に直接接触して集電されている。
 一方、リチウムイオン電池の電池活物質(代表的な例では、負極はC、正極はLiCoO)は正負極の箔に塗布され、箔からリードを介して正負極に接続されている。また、リチウムイオン電池では、電池活物質が電池容器に接触していないという特徴がある。
Patent Document 2 below discloses a plated steel sheet for an alkaline battery in which a nickel layer and a nickel-tungsten alloy layer are formed from the bottom on a steel sheet on the inner side of the battery container.
A battery container of a lithium ion battery, which is a typical example of a nonaqueous electrolyte battery, is a negative electrode, whereas a battery container of an alkaline battery (alkali manganese battery) is a positive electrode. Further, MnO 2 or NiOOH is often used as the battery active material of the positive electrode of the alkaline battery, and these battery active materials are collected in direct contact with the inner surface of the battery container.
On the other hand, a battery active material of a lithium ion battery (in a typical example, the negative electrode is C and the positive electrode is LiCoO 2 ) is applied to a positive and negative foil, and is connected from the foil to the positive and negative electrodes through leads. Further, the lithium ion battery is characterized in that the battery active material is not in contact with the battery container.
 リチウムイオン電池の電解液には、エチレンカーボネート(EC)やジエチルカーボネート(DEC)などの非水溶媒にヘキサフルオロりん酸リチウム(LiPF)などのLi塩が溶解された非水電解液が用いられる。一方、アルカリ電池の電解液には、KOH水溶液などが用いられる。 As an electrolyte for a lithium ion battery, a nonaqueous electrolyte in which a Li salt such as lithium hexafluorophosphate (LiPF 6 ) is dissolved in a nonaqueous solvent such as ethylene carbonate (EC) or diethyl carbonate (DEC) is used. . On the other hand, a KOH aqueous solution or the like is used as an alkaline battery electrolyte.
国際公開第2010/113502号International Publication No. 2010/113502 日本国特開2007-51325号公報Japanese Unexamined Patent Publication No. 2007-51325
 しかしながら、上記特許文献1に開示されている技術は、加工時の鉄露出抑制を主な目的としており、NiやCuの溶出防止を目的としたものではない。 However, the technique disclosed in Patent Document 1 is mainly intended to suppress iron exposure during processing and is not intended to prevent elution of Ni and Cu.
 また、上記特許文献2に開示されている技術は、正極合剤と電池容器とが直接接触するアルカリ電池の電池容器に用いる技術である。つまり、特許文献2に開示されている技術を、電池容器が集電体ではない非水電解液二次電池に適用しても、十分な特性は得られない。 The technique disclosed in Patent Document 2 is a technique used for a battery container of an alkaline battery in which the positive electrode mixture and the battery container are in direct contact. That is, even if the technique disclosed in Patent Document 2 is applied to a non-aqueous electrolyte secondary battery whose battery container is not a current collector, sufficient characteristics cannot be obtained.
 そこで、本発明は、上記の事情に鑑みてなされたものであり、負極接続又は中立の金属外装ケースにおいて、電池ケースの電位が上昇した場合であっても金属溶出に伴う電池性能の劣化やケースの腐食が少なく、かつ、経済性に優れた非水電解液二次電池ケース用鋼板及び非水電解液二次電池ケースを提供することを目的とする。 Accordingly, the present invention has been made in view of the above circumstances, and in a negative electrode connection or a neutral metal outer case, even when the battery case potential is increased, the battery performance is deteriorated or the case is deteriorated due to metal elution. An object of the present invention is to provide a steel sheet for a non-aqueous electrolyte secondary battery case and a non-aqueous electrolyte secondary battery case that are low in corrosion and excellent in economic efficiency.
 本発明は、上記課題を解決して、係る目的を達成するために以下の手段を採用する。
(1)本発明の一態様に係る非水電解液二次電池ケース用鋼板は、鋼板と、前記鋼板の表面に形成され、Ni-W-Fe合金を含有し、非水電解液二次電池ケースの内面となるNi-W-Fe合金めっき層と、を備える。
The present invention employs the following means in order to solve the above problems and achieve the object.
(1) A steel sheet for a non-aqueous electrolyte secondary battery case according to an aspect of the present invention includes a steel sheet and a Ni—W—Fe alloy formed on the surface of the steel sheet, and includes a non-aqueous electrolyte secondary battery. And a Ni—W—Fe alloy plating layer to be an inner surface of the case.
(2)上記(1)に記載の非水電解液二次電池ケース用鋼板において、前記Ni-W-Fe合金めっき層が、前記Ni-W-Fe合金めっき層の全質量に対して1~20質量%のFeを含有する構成を採用してもよい。 (2) In the steel sheet for a non-aqueous electrolyte secondary battery case according to the above (1), the Ni—W—Fe alloy plating layer is 1 to 2 based on the total mass of the Ni—W—Fe alloy plating layer. You may employ | adopt the structure containing 20 mass% Fe.
(3)上記(1)又は(2)に記載の非水電解液二次電池ケース用鋼板において、前記Ni-W-Fe合金めっき層が、前記Ni-W-Fe合金めっき層の全質量に対して5~50質量%のWを含有する構成を採用してもよい。 (3) In the steel sheet for a non-aqueous electrolyte secondary battery case according to (1) or (2) above, the Ni—W—Fe alloy plating layer has a total mass of the Ni—W—Fe alloy plating layer. On the other hand, a configuration containing 5 to 50% by mass of W may be adopted.
(4)上記(1)~(3)のいずれか一態様に記載の非水電解液二次電池ケース用鋼板において、前記Ni-W-Fe合金めっき層が、Cr、Mo及びCoからなる群から選ばれる1種又は2種以上を、前記Ni-W-Fe合金めっき層の全質量に対して合計で5質量%以下更に含有する構成を採用してもよい。 (4) In the steel sheet for a non-aqueous electrolyte secondary battery case according to any one of the above (1) to (3), the Ni—W—Fe alloy plating layer is made of Cr, Mo and Co. A configuration may be employed in which one or more selected from the group consisting of 5% by mass or less is further added to the total mass of the Ni—W—Fe alloy plating layer.
(5)上記(1)~(4)のいずれか一態様に記載の非水電解液二次電池ケース用鋼板において、前記Ni-W-Fe合金めっき層中のWの含有量を単位質量%でXとし、Feの含有量を単位質量%でYとした場合に、前記X及び前記Yが下式(1)を充足する構成を採用してもよい。
   0.1X+0.5≦Y≦0.3X+7 ・・・(1)
(5) In the steel sheet for a non-aqueous electrolyte secondary battery case according to any one of the above (1) to (4), the content of W in the Ni—W—Fe alloy plating layer is a unit mass%. In the case where X is X and the Fe content is Y in unit mass%, a configuration in which X and Y satisfy the following formula (1) may be adopted.
0.1X + 0.5 ≦ Y ≦ 0.3X + 7 (1)
(6)上記(1)~(5)のいずれか一態様に記載の非水電解液二次電池ケース用鋼板において、前記Ni-W-Fe合金めっき層の下層に、Niめっき層を更に備える構成を採用してもよい。 (6) In the steel sheet for a non-aqueous electrolyte secondary battery case according to any one of the above (1) to (5), a Ni plating layer is further provided below the Ni—W—Fe alloy plating layer. A configuration may be adopted.
(7)上記(6)に記載の非水電解液二次電池ケース用鋼板において、前記Niめっき層の少なくとも一部が、Ni-Fe拡散層である構成を採用してもよい。 (7) In the steel sheet for a nonaqueous electrolyte secondary battery case described in (6) above, a configuration in which at least a part of the Ni plating layer is a Ni—Fe diffusion layer may be adopted.
(8)本発明の一態様に係る非水電解液二次電池ケースは、上記(1)~(7)のいずれか一態様に記載の非水電解液二次電池ケース用鋼板を用いて製造される。 (8) A nonaqueous electrolyte secondary battery case according to an aspect of the present invention is manufactured using the steel sheet for a nonaqueous electrolyte secondary battery case according to any one of the above (1) to (7). Is done.
 上記各態様によれば、負極接続又は中立の金属外装ケースにおいて、電池ケースの電位が上昇した場合であっても金属溶出に伴う電池性能の劣化やケースの腐食が少なく、かつ、経済性に優れた非水電解液二次電池ケース用鋼板及び非水電解液二次電池ケースを提供することができる。 According to each aspect described above, in a negative electrode connection or a neutral metal outer case, even when the potential of the battery case is increased, there is little deterioration in battery performance and corrosion of the case due to metal elution, and excellent economic efficiency. In addition, a steel sheet for a non-aqueous electrolyte secondary battery case and a non-aqueous electrolyte secondary battery case can be provided.
本実施形態に係る非水電解液二次電池ケース用鋼板の層構造を示す模式図である。It is a schematic diagram which shows the layer structure of the steel plate for nonaqueous electrolyte secondary battery cases which concerns on this embodiment. Ni-W-Fe合金めっき層の下層にNiめっき層が形成されている場合の、本実施形態に係る非水電解液二次電池ケース用鋼板の層構造を示す模式図である。FIG. 3 is a schematic diagram showing a layer structure of a steel sheet for a non-aqueous electrolyte secondary battery case according to the present embodiment when a Ni plating layer is formed under the Ni—W—Fe alloy plating layer.
 以下に、本発明の好適な実施の形態について詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in detail.
(第1実施形態、非水電解液二次電池ケース用鋼板)
 最初に、第1実施形態に係る非水電解液二次電池ケース用鋼板について説明する。図1は、非水電解液二次電池ケース用鋼板10の層構造を示す模式図である。図1に示すように、非水電解液二次電池ケース用鋼板10は、鋼板20と、鋼板20の表面に形成され、Ni-W-Fe合金を含有し、非水電解液二次電池ケースの内面となるNi-W-Fe合金めっき層50とを備える。
(1st Embodiment, the steel plate for nonaqueous electrolyte secondary battery cases)
Initially, the steel plate for nonaqueous electrolyte secondary battery cases which concerns on 1st Embodiment is demonstrated. FIG. 1 is a schematic diagram showing a layer structure of a steel sheet 10 for a nonaqueous electrolyte secondary battery case. As shown in FIG. 1, a non-aqueous electrolyte secondary battery case steel plate 10 is formed on the surface of a steel plate 20 and a steel plate 20, contains a Ni—W—Fe alloy, and contains a non-aqueous electrolyte secondary battery case. And a Ni—W—Fe alloy plating layer 50 serving as an inner surface of the substrate.
 [鋼板20]
 非水電解液二次電池ケース用鋼板10の母材として用いられる鋼板(鋼材)20は普通鋼であれば特に限定されないが、経済性の観点からステンレス鋼は好ましくない。金属ケースの形状から要求される加工性に適した鋼材を適宜選択し、使用することができる。
[Steel 20]
Although the steel plate (steel material) 20 used as a base material of the steel plate 10 for nonaqueous electrolyte secondary battery cases is not particularly limited as long as it is plain steel, stainless steel is not preferable from the viewpoint of economy. A steel material suitable for workability required from the shape of the metal case can be appropriately selected and used.
 [Ni-W-Fe合金めっき層50]
 非水電解液二次電池ケース用鋼板10は、電池ケースの内面となる側の面の表層に、Feを含有するNi-W-Fe合金めっき層50を有することを特徴とする。本実施形態に係る非水電解液二次電池ケース用鋼板10は、このような構成を有することによって、リチウムイオン電池に代表される非水電解液二次電池のケースとして十分な耐食性が確保でき、かつ、金属イオンの電解液中への溶出を抑制することが可能となる。
[Ni-W-Fe alloy plating layer 50]
The steel sheet 10 for a non-aqueous electrolyte secondary battery case is characterized by having a Ni—W—Fe alloy plating layer 50 containing Fe on the surface layer on the surface which is the inner surface of the battery case. By having such a configuration, the non-aqueous electrolyte secondary battery case steel sheet 10 according to the present embodiment can ensure sufficient corrosion resistance as a case of a non-aqueous electrolyte secondary battery typified by a lithium ion battery. In addition, elution of metal ions into the electrolyte can be suppressed.
 Ni-W-Fe合金めっき層50は、当該合金めっき層中にFeを含有するが、Ni-W-Fe合金めっき層中のFeの好ましい含有率は、例えば、Ni-W-Fe合金めっき層50の全質量に対して、1~20%(以下、%は質量%を表わす)である。
 Feの含有率が下限値未満である場合、及び、上限値超過である場合には、非水電解液中での金属イオン溶出が増加傾向となり、好ましくない。Ni-W-Fe合金めっき層中のFeの含有率は、更に好ましくは、5~15%である。
The Ni—W—Fe alloy plating layer 50 contains Fe in the alloy plating layer. The preferable content of Fe in the Ni—W—Fe alloy plating layer is, for example, a Ni—W—Fe alloy plating layer. It is 1 to 20% (hereinafter,% represents mass%) with respect to the total mass of 50.
If the Fe content is less than the lower limit and exceeds the upper limit, the elution of metal ions in the non-aqueous electrolyte tends to increase, such being undesirable. The Fe content in the Ni—W—Fe alloy plating layer is more preferably 5 to 15%.
 Ni-W-Fe合金めっき層50のWの含有率は、例えば、Ni-W-Fe合金めっき層50の全質量に対して、5~50%であることが好ましい。
 Wの含有率が下限値未満である場合、また、上限値超過である場合には、非水電解液中での金属イオン溶出が増加傾向となり、好ましくない。Ni-W-Fe合金めっき層50中のWの含有率は、更に好ましくは、10~40%である。
The W content of the Ni—W—Fe alloy plating layer 50 is preferably 5 to 50% with respect to the total mass of the Ni—W—Fe alloy plating layer 50, for example.
If the W content is less than the lower limit or exceeds the upper limit, metal ion elution in the non-aqueous electrolyte tends to increase, which is not preferable. The W content in the Ni—W—Fe alloy plating layer 50 is more preferably 10 to 40%.
 Ni-W-Fe合金めっき層50において、上記Fe及びW以外の残部は、Ni及び不可避的な不純物から構成される。
 なお、Ni-W-Fe合金めっき層50中には、残部のNiの一部に替えて、Cr、Mo、又は、Coの少なくとも何れかの含有が許容される。上記元素の含有率(二種以上が含まれる場合は、合計の含有率)は、例えば、Ni-W-Fe合金めっき層50の全質量に対して、5%以下が好ましい。かかる条件のもとで、非水電解液中での金属イオン溶出が効果的に抑制される。Ni-W-Fe合金めっき層50におけるCr、Mo、Coの少なくとも何れかの含有率は、更に好ましくは、3%以下である。
In the Ni—W—Fe alloy plating layer 50, the remainder other than Fe and W is composed of Ni and inevitable impurities.
The Ni—W—Fe alloy plating layer 50 is allowed to contain at least one of Cr, Mo, and Co instead of the remaining Ni. The content of the above elements (the total content when two or more elements are included) is preferably 5% or less with respect to the total mass of the Ni—W—Fe alloy plating layer 50, for example. Under such conditions, metal ion elution in the non-aqueous electrolyte is effectively suppressed. The content of at least one of Cr, Mo, and Co in the Ni—W—Fe alloy plating layer 50 is more preferably 3% or less.
 Ni-W-Fe合金めっき層50が非水電解液中での耐金属イオン溶出性に優れる理由は明確ではないが、Ni-W-Fe合金めっき層50の表層に存在する自然酸化膜(不図示)が非水電解液に対して安定であることが考えられる。また、電位上昇の際、Ni-W-Fe合金めっき層50が非水電解液と反応し、安定的な保護作用を有する皮膜(不図示)を形成することが考えられる。
 一方、Ni-W-Fe合金めっき層50中にNi、W、Feが共存しない場合には、上記のような安定的な保護作用を有する皮膜(不図示)が形成されにくいと推定される。
The reason why the Ni—W—Fe alloy plating layer 50 is excellent in resistance to metal ion elution in a non-aqueous electrolyte is not clear, but a natural oxide film (non-existing film) existing on the surface of the Ni—W—Fe alloy plating layer 50 is not clear. (Shown) is considered to be stable with respect to the non-aqueous electrolyte. Further, it is conceivable that the Ni—W—Fe alloy plating layer 50 reacts with the nonaqueous electrolytic solution when the potential is increased, and forms a film (not shown) having a stable protective action.
On the other hand, when Ni, W, and Fe do not coexist in the Ni—W—Fe alloy plating layer 50, it is presumed that a film (not shown) having a stable protective action as described above is hardly formed.
 本発明者らが更に詳細に検討した結果、Wの含有率とFeの含有率には最適範囲があり、Wの含有率が高いほどFeの含有率の最適濃度範囲も高い側にシフトすることが判明した。検討の結果、Wの含有率をX[質量%]とし、Feの含有率をY[質量%]とした場合に、以下の式(1)で表わされる関係を満たすとき、金属イオン溶出が最も抑制されることが判明した。 As a result of further examination by the inventors, there is an optimum range for the W content and the Fe content, and the higher the W content, the higher the optimum concentration range of the Fe content is shifted to the higher side. There was found. As a result of the examination, when the W content is X [mass%] and the Fe content is Y [mass%], the metal ion elution is the most when the relationship represented by the following formula (1) is satisfied. It was found to be suppressed.
  0.1X+0.5≦Y≦0.3X+7 ・・・(1) 0.1X + 0.5 ≦ Y ≦ 0.3X + 7 (1)
 非水電解液二次電池ケース用鋼板10は、その表層(より詳細には、電池ケースを形成した際に、電池ケースの内側となる面の表層)にNi-W-Fe合金めっき層50を有する点を特徴とするが、Ni-W-Fe合金めっき層50の下層のめっき層については必ずしも限定されず、電池ケース用に用いられている公知のめっき層を適用することが可能である。 The steel sheet 10 for a non-aqueous electrolyte secondary battery case has a Ni—W—Fe alloy plating layer 50 on the surface layer (more specifically, the surface layer on the inside of the battery case when the battery case is formed). However, the lower plating layer of the Ni—W—Fe alloy plating layer 50 is not necessarily limited, and a known plating layer used for battery cases can be applied.
 図2は、Ni-W-Fe合金めっき層の下層にNiめっき層が形成されている場合の、本実施形態に係る非水電解液二次電池ケース用鋼板の層構造を示す模式図である。
 電池ケースの加工を考えた場合、Ni-W-Fe合金めっき層50の下層には、Ni-W-Fe合金めっき層50と比較して、相対的に軟らかいNiめっき層30を有していることが望ましい。Niめっき層30を形成することによって、Ni-W-Fe合金めっき層50の加工による損傷と損傷に伴う非水電解液中への金属イオン溶出を抑制することができる。
FIG. 2 is a schematic diagram showing a layer structure of a steel sheet for a nonaqueous electrolyte secondary battery case according to the present embodiment when a Ni plating layer is formed under the Ni—W—Fe alloy plating layer. .
In consideration of the processing of the battery case, the Ni-W-Fe alloy plating layer 50 has a relatively soft Ni plating layer 30 below the Ni-W-Fe alloy plating layer 50. It is desirable. By forming the Ni plating layer 30, it is possible to suppress damage due to processing of the Ni—W—Fe alloy plating layer 50 and elution of metal ions into the non-aqueous electrolyte accompanying the damage.
 Niめっき層30の一部又は全ては、Ni-Fe拡散層(不図示)となっていることが好ましい。これにより、Ni-W-Fe合金めっき層50の加工による損傷と損傷に伴う非水電解液中への金属イオン溶出を、更に抑制することができる。なお、Ni-Fe拡散層(不図示)とは、Niめっき後の加熱処理によって、めっきのNiと鋼のFeが相互拡散して形成されたものである。 It is preferable that a part or all of the Ni plating layer 30 is a Ni—Fe diffusion layer (not shown). Thereby, damage due to processing of the Ni—W—Fe alloy plating layer 50 and elution of metal ions into the non-aqueous electrolyte accompanying the damage can be further suppressed. The Ni—Fe diffusion layer (not shown) is formed by mutually diffusing Ni in plating and Fe in steel by heat treatment after Ni plating.
 Ni-W-Fe合金めっき層50の厚みは、例えば、0.05~2.00μmであることが好ましい。Ni-W-Fe合金めっき層50の厚みが0.05μm未満と薄すぎる場合には、非水電解液中での金属イオン溶出が増加傾向となり、好ましくない。また、Ni-W-Fe合金めっき層50の厚みが2.00μm超過と厚すぎる場合には、加工時のめっき損傷が大きくなる傾向にあり、結果的に非水電解液中への金属イオン溶出が増加傾向となるため、好ましくない。
 Ni-W-Fe合金めっき層50の厚みは、より好ましくは、0.10~1.50μmである。
The thickness of the Ni—W—Fe alloy plating layer 50 is preferably 0.05 to 2.00 μm, for example. When the thickness of the Ni—W—Fe alloy plating layer 50 is too thin, less than 0.05 μm, the elution of metal ions in the non-aqueous electrolyte tends to increase, which is not preferable. In addition, if the thickness of the Ni—W—Fe alloy plating layer 50 exceeds 2.00 μm, the plating damage during processing tends to increase, resulting in the elution of metal ions into the non-aqueous electrolyte. Is not preferable because it tends to increase.
The thickness of the Ni—W—Fe alloy plating layer 50 is more preferably 0.10 to 1.50 μm.
 ここで、Ni-W-Fe合金めっき層50の厚みや、Feの含有率、Wの含有率は、板厚方向に沿う断面が観察できるようにFIB(Focused Ion Beam:集束イオンビーム)により箔片加工したサンプルを、EDS(Energy Dispersive X-ray Spectroscopy:エネルギー分散型蛍光X線分析装置)による元素分析が可能なTEM(Transmission Electron Microscope:透過型電子顕微鏡)や、EDSによる元素分析が可能なSTEM(Scanning Transmission Electron Microscope:透過型走査電子顕微鏡)モード付きFE-SEM(Field-Emission Scanning Electron Microscopy:冷陰極電界放射型走査電池顕微鏡)を用いて断面分析することで、測定することができる。 Here, the thickness of the Ni—W—Fe alloy plating layer 50, the Fe content, and the W content are foils by FIB (Focused Ion Beam) so that a cross section along the plate thickness direction can be observed. The TEM (Transmission Electron Microscope: Transmission Electron Microscope) and EDS that can be subjected to elemental analysis using EDS (Energy Dispersive X-ray Spectroscopy) FE-SEM (Field-Emission Scanning Electron) with STEM (Scanning Transmission Electron Microscope) mode n Microscopy: By sectional analyzed using cold cathode field emission scanning cell microscope) can be measured.
 その際、Feの含有率及びWの含有率については、検量線を作製する必要がある。まず、Ni、W、Feの組成を変化させた合金を単層で鋼板20上にめっきして、組成が異なる複数のサンプルを作製する。これらサンプルのめっき層の断面について、EDSによる元素分析が可能なTEMやSTEMモード付きFE-SEMを用いて、Ni、W、Feを定量分析する。加えて、これらサンプルのめっき層を酸で溶解し、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry:誘導結合プラズマ発光分光分析)又はICP-MS(Inductively Coupled Plasma-Mass Spectrometry:誘導結合プラズマ質量分析)を用いて、Ni、W,Feを定量分析する。TEM又はFE-SEMに付随するEDSによる定量分析結果と、ICP-AES又はICP-MSによる定量分析結果と、を比較することにより、EDSでの検出強度と各元素濃度との関係である検量線を求める。例えば、EDSによる元素分析が可能なTEMとしては、日本電子製FE-TEM:JEM2100F(加速電圧200kV)と日本電子製EDS:JED-2300T(プローブ径約2nm)との組み合わせなどがある。 At that time, it is necessary to prepare a calibration curve for the Fe content and the W content. First, an alloy with different compositions of Ni, W, and Fe is plated on the steel plate 20 as a single layer to produce a plurality of samples having different compositions. The cross sections of the plated layers of these samples are quantitatively analyzed for Ni, W, and Fe using a TEM capable of elemental analysis by EDS or an FE-SEM with STEM mode. In addition, the plating layer of these samples is dissolved with an acid, and ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry) or ICP-MS (Inductively Coupled Plasma-Mass-Plasma-Mass-Plasma-Mass-Plasma-Mass-Plasma Mass-Plasma ) To quantitatively analyze Ni, W, and Fe. A calibration curve showing the relationship between the detected intensity in EDS and the concentration of each element by comparing the quantitative analysis result by EDS attached to TEM or FE-SEM with the quantitative analysis result by ICP-AES or ICP-MS. Ask for. For example, TEM capable of elemental analysis by EDS includes a combination of JEOL FE-TEM: JEM2100F (acceleration voltage 200 kV) and JEOL EDS: JED-2300T (probe diameter of about 2 nm).
 なお、Niめっき層30又はNi-W-Fe合金めっき層50を酸で溶解する際に、めっき層の組成によってはめっき層のみを選択的に溶解することが難しい場合がある。特に、鋼板20上にNiめっき層30が形成されている場合には、Niめっき層30のみを溶解するのは困難である。
 その場合には、鋼板20(、Niめっき層30)及びNi-W-Fe合金めっき層50を全て溶解して得られた分析結果から、鋼板20のみを溶解して得られた分析結果を差し引く方法が採用できる。この場合の溶解方法として、具体的には、常温又は80℃程度以下のめっき鋼板を、数%~数十%の濃度の硝酸に数秒から数時間浸漬する方法が挙げられる。
 また、Ni-W-Fe合金めっき層50のFe濃度を測定する場合には、地鉄(鋼板20)の影響が大きくなってしまう。そのため、原板としてCu板を用い、Cu板上にNi-W-Fe合金めっき層50を形成し、上述の方法によりFe濃度を測定する方法も採用できる。この場合の具体的な溶解方法は、前述のものと同様である。
When the Ni plating layer 30 or the Ni—W—Fe alloy plating layer 50 is dissolved with an acid, it may be difficult to selectively dissolve only the plating layer depending on the composition of the plating layer. In particular, when the Ni plating layer 30 is formed on the steel plate 20, it is difficult to dissolve only the Ni plating layer 30.
In that case, the analysis result obtained by dissolving only the steel plate 20 is subtracted from the analysis result obtained by dissolving the steel plate 20 (and Ni plating layer 30) and the Ni—W—Fe alloy plating layer 50. The method can be adopted. Specific examples of the melting method in this case include a method in which a plated steel sheet at room temperature or about 80 ° C. or lower is immersed in nitric acid having a concentration of several percent to several tens of percent for several seconds to several hours.
Further, when the Fe concentration of the Ni—W—Fe alloy plating layer 50 is measured, the influence of the ground iron (steel plate 20) is increased. Therefore, it is also possible to employ a method in which a Cu plate is used as the original plate, the Ni—W—Fe alloy plating layer 50 is formed on the Cu plate, and the Fe concentration is measured by the above method. The specific dissolution method in this case is the same as that described above.
 Ni-W-Fe合金めっき層50の下層のNiめっき層30については、そのNi付着量が多いほど、加工による損傷と損傷に伴う非水電解液中への金属イオン溶出を抑制することができるが、多すぎてもコスト的に不利となる。従って、Ni-W-Fe合金めっき層50の下層に設けるNiめっき層30のNi付着量は、1~45g/m程度が好ましい。
 Niめっき層30の全てがNi-Fe拡散層(不図示)となっている場合には、Ni-Fe拡散層(不図示)中のNi量が、上記範囲であることが好ましい。また、Niめっき層30の一部がNi-Fe拡散層(不図示)となっている場合には、Ni-Fe拡散層(不図示)中のNi量と、Niめっき層30中のNi量の合計が、上記範囲であることが好ましい。
 Niめっき層30の拡散状態は、前述したFIB加工片によるEDS分析により確認することができる。なお、Niめっき層30のNi付着量は、より好ましくは、9~27g/mである。
With respect to the Ni plating layer 30 below the Ni—W—Fe alloy plating layer 50, the larger the amount of Ni attached, the more the damage caused by processing and the metal ion elution into the non-aqueous electrolyte accompanying the damage can be suppressed. However, too much is disadvantageous in terms of cost. Therefore, the Ni adhesion amount of the Ni plating layer 30 provided under the Ni—W—Fe alloy plating layer 50 is preferably about 1 to 45 g / m 2 .
When all of the Ni plating layer 30 is a Ni—Fe diffusion layer (not shown), the amount of Ni in the Ni—Fe diffusion layer (not shown) is preferably in the above range. When a part of the Ni plating layer 30 is a Ni—Fe diffusion layer (not shown), the amount of Ni in the Ni—Fe diffusion layer (not shown) and the amount of Ni in the Ni plating layer 30 are also shown. Is preferably in the above range.
The diffusion state of the Ni plating layer 30 can be confirmed by EDS analysis using the FIB workpiece described above. The Ni adhesion amount of the Ni plating layer 30 is more preferably 9 to 27 g / m 2 .
(第1実施形態、非水電解液二次電池ケース用鋼板10の製造方法)
 次に、第1実施形態に係る非水電解液二次電池ケース用鋼板10の製造方法について説明する。
 [合金めっき工程]
 Ni-W-Fe合金めっき層50は、公知のNi-Wめっき浴にFeイオンを共存させた電気めっき法により、形成することが可能である(合金めっき工程)。
 なお、Feについては、鋼から拡散してきたものであってもかまわない。
 Ni-Wめっき浴にFeイオンを共存させる場合には、Feイオンの濃度は0.05~5g/lが好ましい。
(1st Embodiment, the manufacturing method of the steel plate 10 for nonaqueous electrolyte secondary battery cases)
Next, the manufacturing method of the steel sheet 10 for nonaqueous electrolyte secondary battery cases which concerns on 1st Embodiment is demonstrated.
[Alloy plating process]
The Ni—W—Fe alloy plating layer 50 can be formed by an electroplating method in which Fe ions coexist in a known Ni—W plating bath (alloy plating step).
Note that Fe may be diffused from steel.
When Fe ions are allowed to coexist in the Ni—W plating bath, the concentration of Fe ions is preferably 0.05 to 5 g / l.
 Ni-Wめっき浴としては、タングステン酸イオンと、ニッケルイオンと、これらの錯化剤と、が含まれる浴を用いることができる。 As the Ni—W plating bath, a bath containing tungstate ions, nickel ions, and a complexing agent thereof can be used.
 タングステン酸イオンは、タングステン酸ナトリウム、タングステン酸カリウム、又は、タングステン酸アンモニウム等の水溶性が高い塩として添加することができる。
 Ni-Wめっき浴中のタングステン酸イオンの濃度は、0.5~50g/lが好ましい。
The tungstate ion can be added as a highly water-soluble salt such as sodium tungstate, potassium tungstate, or ammonium tungstate.
The concentration of tungstate ion in the Ni—W plating bath is preferably 0.5 to 50 g / l.
 ニッケルイオンは、硫酸ニッケル、塩化ニッケル、又は、調合の順番によって溶解が可能であれば炭酸ニッケルを用いることもできる。
 Ni-Wめっき浴中のNiイオンの濃度は、1~50g/lが好ましい。
The nickel ion can be nickel sulfate, nickel chloride, or nickel carbonate as long as it can be dissolved in the order of preparation.
The concentration of Ni ions in the Ni—W plating bath is preferably 1 to 50 g / l.
 錯化剤としては、くえん酸やその塩を添加することが多いが、ピロリン酸やその塩、1-ヒドロキシエタン-1、1-ジホスホン酸など他の錯化剤も用いることができる。 As the complexing agent, citric acid and its salt are often added, but other complexing agents such as pyrophosphoric acid and its salt, 1-hydroxyethane-1, 1-diphosphonic acid and the like can also be used.
 くえん酸塩としては、くえん酸三ナトリウム、くえん酸水素二ナトリウム、くえん酸二水素ナトリウム、くえん酸三カリウム、くえん酸水素二カリウム、くえん酸二水素カリウム、くえん酸三リチウム、くえん酸水素二リチウム、くえん酸二水素リチウム、くえん酸三アンモニウム、くえん酸水素二アンモニウム、又は、くえん酸二水素アンモニウムなどを用いることができる。 Citric acid salts include trisodium citrate, disodium hydrogen citrate, sodium dihydrogen citrate, tripotassium citrate, dipotassium hydrogen citrate, potassium dihydrogen citrate, trilithium citrate, dilithium hydrogen citrate. , Lithium dihydrogen citrate, triammonium citrate, diammonium hydrogen citrate, or ammonium dihydrogen citrate can be used.
 また、アンモニウムイオンには電流効率を高める作用があるとも言われており、Ni-Wめっき浴に対してアンモニウム塩を使っても良いし、アンモニアとして別に添加しても良い。 In addition, ammonium ions are also said to have an effect of increasing current efficiency, and an ammonium salt may be used for the Ni—W plating bath or may be added separately as ammonia.
 鉄イオンは、II価のFe塩で供給すればよく、例えば硫酸鉄(II)、塩化鉄(II)などが用いられる。 Iron ions may be supplied as a divalent Fe salt. For example, iron (II) sulfate or iron (II) chloride is used.
 Ni-W-Fe合金めっき層50中のWの含有率やFeの含有率の調整は、浴濃度や、電流密度を適正化することで、任意に調整することが可能である。
 例えば、Wは、浴中のタングステン酸イオン濃度とともに、電流密度にも依存し、電流密度が低いほどWの含有率は高まる傾向がある。Feは、Niに対して異常型の析出挙動を示すことが知られており、電位の序列、Ni,Fe(貴な順)とは逆に析出しやすくなる。すなわち、浴中のFe/Ni比よりも、めっき中のFe/Ni比の方が大きくなる。
 このことを考慮して、所望のめっき組成になるように、Ni-Wめっき浴中の金属イオン濃度を調整すればよい。
Adjustment of the W content and the Fe content in the Ni—W—Fe alloy plating layer 50 can be arbitrarily adjusted by optimizing the bath concentration and the current density.
For example, W depends on the current density as well as the tungstate ion concentration in the bath, and the W content tends to increase as the current density decreases. Fe is known to exhibit an anomalous precipitation behavior with respect to Ni, and tends to precipitate contrary to the order of potential, Ni and Fe (in noble order). That is, the Fe / Ni ratio during plating is larger than the Fe / Ni ratio in the bath.
In consideration of this, the metal ion concentration in the Ni—W plating bath may be adjusted so as to obtain a desired plating composition.
 上述したように、合金めっき工程を行う際の電流密度は特に限定されないが、例えば0.5~50A/dmが挙げられる。この範囲の電流密度で合金めっき工程を行うことにより、所望の成分を有するNi-W-Fe合金めっき層50を形成することができる。
 合金めっき工程を行う際のNi-Wめっき浴の温度も特に限定されないが、例えば40~80℃が挙げられる。
As described above, the current density at the time of performing the alloy plating step is not particularly limited, and examples thereof include 0.5 to 50 A / dm 2 . By performing the alloy plating step at a current density in this range, the Ni—W—Fe alloy plating layer 50 having a desired component can be formed.
The temperature of the Ni—W plating bath at the time of performing the alloy plating step is not particularly limited, and examples thereof include 40 to 80 ° C.
 本実施形態において、より有利な形態のNi-W-Fe合金めっき層50を形成する方法として、母材として用いられる鋼板20に対して予めNiめっきした後、Ni-W-Fe合金めっき層50を形成する方法が挙げられる。この場合のNiめっき方法には何ら限定はなく、公知の方法が幅広く適用できる。 In this embodiment, as a method for forming a more advantageous form of the Ni—W—Fe alloy plating layer 50, the Ni—W—Fe alloy plating layer 50 is preliminarily plated on the steel plate 20 used as the base material. The method of forming is mentioned. In this case, the Ni plating method is not limited at all, and widely known methods can be applied.
 また、本実施形態では、母材として用いられる鋼板20に対してNi-Fe合金めっきした後、Ni-W-Fe合金めっき層50を形成する方法も採用できる。また、母材として用いられる鋼板20に対してNiめっき、Feを含有するNi-W合金めっき、をこの順番で実施した後、熱処理を行い、下層のNiめっき層30の一部又は全てを、Ni-Fe拡散層(不図示)とする方法も好適である。 In this embodiment, a method of forming the Ni—W—Fe alloy plating layer 50 after the Ni—Fe alloy plating is performed on the steel plate 20 used as the base material can also be adopted. Further, after performing Ni plating and Ni—W alloy plating containing Fe on the steel plate 20 used as a base material in this order, heat treatment is performed, and a part or all of the lower Ni plating layer 30 is obtained. A method using a Ni—Fe diffusion layer (not shown) is also suitable.
(第2実施形態、非水電解液二次電池ケース(不図示))
 次に、第2実施形態に係る非水電解液二次電池ケース(不図示)について説明する。
 非水電解液二次電池ケース(不図示)は、内面がNi-W-Fe合金めっき層50となるように非水電解液二次電池ケース用鋼板10を用いること以外は特に限定されない。非水電解液二次電池ケース(不図示)の外面となる面については、内面と同じ構成としてもよいし、その用途に合わせて、公知のめっきを施してもよい。
(Second embodiment, non-aqueous electrolyte secondary battery case (not shown))
Next, a nonaqueous electrolyte secondary battery case (not shown) according to the second embodiment will be described.
The non-aqueous electrolyte secondary battery case (not shown) is not particularly limited except that the non-aqueous electrolyte secondary battery case steel plate 10 is used so that the inner surface becomes the Ni—W—Fe alloy plating layer 50. About the surface used as the outer surface of a nonaqueous electrolyte secondary battery case (not shown), it is good also as the same structure as an inner surface, and you may give well-known plating according to the use.
(第2実施形態、非水電解液二次電池ケース(不図示)の製造方法)
 非水電解液二次電池ケース(不図示)の製造方法は特に限定されず、公知の非水電解液二次電池ケースの製造方法を用いることができる。
(Second Embodiment, Method for Manufacturing Nonaqueous Electrolyte Secondary Battery Case (not shown))
The manufacturing method of a nonaqueous electrolyte secondary battery case (not shown) is not particularly limited, and a known method for manufacturing a nonaqueous electrolyte secondary battery case can be used.
 次に、実施例及び比較例を挙げて、本発明を更に具体的に説明する。なお、以下に示す実施例は、本発明に係る非水電解液二次電池ケース用鋼板のあくまでも一例であって、本発明に係る非水電解液二次電池ケース用鋼板が下記の例に限定されるものではない。 Next, the present invention will be described more specifically with reference to examples and comparative examples. In addition, the Example shown below is only an example of the steel sheet for nonaqueous electrolyte secondary battery cases according to the present invention, and the steel sheet for nonaqueous electrolyte secondary battery case according to the present invention is limited to the following examples. Is not to be done.
<試験例1>
(実施例1~25及び比較例1、2)
 板厚0.3mmの焼鈍済みの極低炭素鋼板を原板とし、以下の表1に示す条件で、付着量1g/mのNiめっきを行い、引き続き、以下の表2に示す条件で、種々の組成のNi-W-Fe合金めっきを厚みが1μmとなるようにめっきした。Ni-W-Fe合金めっき層中のWの含有量及びFeの含有率は、表2に示す電流密度、及び、硫酸鉄(II)の添加量を調整することで制御した。上記のめっき後に、無酸化雰囲気にて、500℃の温度下で30秒間熱処理を行った。
<Test Example 1>
(Examples 1 to 25 and Comparative Examples 1 and 2)
An annealed ultra-low carbon steel plate having a thickness of 0.3 mm is used as a base plate, and Ni plating with an adhesion amount of 1 g / m 2 is performed under the conditions shown in Table 1 below. A Ni—W—Fe alloy plating of the composition was plated to a thickness of 1 μm. The W content and the Fe content in the Ni—W—Fe alloy plating layer were controlled by adjusting the current density shown in Table 2 and the addition amount of iron (II) sulfate. After the above plating, heat treatment was performed in a non-oxidizing atmosphere at a temperature of 500 ° C. for 30 seconds.
(実施例26)
 以下の表2に示すめっき浴に対し、更に硫酸クロム(III)12水和物を2g/L添加してめっきを行った以外は、上記実施例1~25と同様に行った。
(Example 26)
The same procedures as in Examples 1 to 25 were performed except that the plating bath shown in Table 2 below was further plated by adding 2 g / L of chromium (III) sulfate 12 hydrate.
(実施例27)
 以下の表2に示すめっき浴に対し、更にモリブデン酸ナトリウム2水和物を10g/L添加してめっきを行った以外は、上記実施例1~25と同様に行った。
(Example 27)
The same procedures as in Examples 1 to 25 were performed except that the plating bath shown in Table 2 below was further plated by adding 10 g / L of sodium molybdate dihydrate.
(実施例28)
 以下の表2に示すめっき浴に対し、更に硫酸コバルト7水和物を3g/L添加してめっきを行った以外は、上記実施例1~25と同様に行った。
(Example 28)
The same procedures as in Examples 1 to 25 were performed except that 3 g / L of cobalt sulfate heptahydrate was further added to the plating bath shown in Table 2 below.
(実施例29)
 以下の表2に示すめっき浴に対し、更に、モリブデン酸ナトリウム2水和物7g/L、及び、硫酸コバルト7水和物3g/L、を添加してめっきを行った以外は、上記実施例1~25と同様に行った。
(Example 29)
The above examples except that the plating bath shown in Table 2 below was further plated with sodium molybdate dihydrate 7 g / L and cobalt sulfate heptahydrate 3 g / L. Performed in the same manner as 1-25.
(実施例30)
 以下の表2に示すめっき浴に対し、更に、硫酸クロム(III)12水和物3g/L、モリブデン酸ナトリウム2水和物9g/L、及び、硫酸コバルト7水和物1g/L、を添加してめっきを行った以外は、上記実施例1~25と同様に行った。
(Example 30)
For the plating bath shown in Table 2 below, chromium (III) sulfate 12 hydrate 3 g / L, sodium molybdate dihydrate 9 g / L, and cobalt sulfate heptahydrate 1 g / L, The same procedure as in Examples 1 to 25 was performed, except that the plating was performed with addition.
(比較例3)
 上記実施例1~25において、Ni-W-Fe合金めっきの代わりに、以下の表3に示す条件で厚みが1μmのNi-Fe合金めっきを行った以外は、上記実施例1~25と同様に行った。
(Comparative Example 3)
In Examples 1 to 25 above, similar to Examples 1 to 25 above, except that Ni—Fe alloy plating with a thickness of 1 μm was performed under the conditions shown in Table 3 below instead of Ni—W—Fe alloy plating. Went to.
 性能評価は、以下のように行った。
 試験片の端部と裏面とをテープシールし、1cmの面積を露出させて評価面とした。アルゴン雰囲気のグローブボックス内にて、上記試験片を作用極とし、金属リチウムを対極及び参照極とする三極式のセルを組み立てた。エチレンカーボネートとジエチルカーボネートを体積比で1:1の割合で混合した溶媒に、1MのLiPFを溶解した溶液を電解液として用いた。
 上記のセルを、30℃の温度下で、作用極電位を3.6V(リチウム基準)に規定して、48時間保持した。
 トータルの通電量の計測と、電解液に溶出した金属量の定量とを行い、下記の基準で評価した。以下の評価基準において、評点3以上を良好であると判断した。
The performance evaluation was performed as follows.
The end portion and the back surface of the test piece were tape-sealed, and an area of 1 cm 2 was exposed to be an evaluation surface. In a glove box in an argon atmosphere, a tripolar cell was assembled with the test piece as a working electrode and metallic lithium as a counter electrode and a reference electrode. A solution in which 1 M LiPF 6 was dissolved in a solvent in which ethylene carbonate and diethyl carbonate were mixed at a volume ratio of 1: 1 was used as an electrolytic solution.
The cell was held at a temperature of 30 ° C. for 48 hours with the working electrode potential regulated to 3.6 V (lithium reference).
The total energization amount was measured and the amount of metal eluted in the electrolyte was measured and evaluated according to the following criteria. In the following evaluation criteria, a score of 3 or higher was judged to be good.
[トータル通電量]
  5:0.01C/cm以下
  4:0.01C/cm超過0.1C/cm以下
  3:0.1C/cm超過0.3C/cm以下
  2:0.3C/cm超過1C/cm以下
  1:1C/cm超過
[Total energization]
5: 0.01 C / cm 2 or less 4: 0.01 C / cm 2 excess 0.1 C / cm 2 or less 3: 0.1 C / cm 2 excess 0.3 C / cm 2 or less 2: 0.3 C / cm 2 excess 1C / cm 2 or less 1: 1C / cm 2 exceeded
[金属溶解量]
  5:検出限界(0.005mg/cm)未満
  4:0.005mg/cm以上0.01mg/cm以下
  3:0.01mg/cm超過0.1mg/cm以下
  2:0.1mg/cm超過0.3mg/cm以下
  1:0.3mg/cm超過
[Amount of dissolved metal]
5: Less than detection limit (0.005 mg / cm 2 ) 4: 0.005 mg / cm 2 or more and 0.01 mg / cm 2 or less 3: 0.01 mg / cm 2 exceeding 0.1 mg / cm 2 or less 2: 0.1 mg / cm 2 exceeds 0.3 mg / cm 2 or less 1: 0.3 mg / cm 2 exceeded
 以下の表4に、得られた結果を示した。
 なお、上層のNi-W-Fe合金めっき層の組成は、FIB加工片を用い、日本電子製FE-TEM:JEM2100F(加速電圧200kV)と日本電子製EDS:JED-2300T(プローブ径約2nm)により、先に述べた方法で定量した。表4に示したNi-W-Fe合金めっき層の組成において、残部はNi及び不純物であった。
 実施例1~30はNi-W-Fe合金を含有していたが、比較例1~3はNi-W-Fe合金を含有していなかった。
Table 4 below shows the results obtained.
The composition of the upper Ni—W—Fe alloy plating layer is as follows: FIB work piece, JEOL FE-TEM: JEM2100F (acceleration voltage 200 kV) and JEOL EDS: JED-2300T (probe diameter about 2 nm) Was quantified by the method described above. In the composition of the Ni—W—Fe alloy plating layer shown in Table 4, the balance was Ni and impurities.
Examples 1 to 30 contained a Ni—W—Fe alloy, but Comparative Examples 1 to 3 did not contain a Ni—W—Fe alloy.
 上記表4から明らかなように、実施例では良好な特性が得られた一方で、比較例では、良好な結果を得ることは出来なかった。
 比較例1および比較例2では、めっき浴にFeイオンを含有しない方法により製造したため、合金めっき層がFeを含有しなかった。そのため、比較例1および比較例2は、好適な通電量及び溶解量を有さなかった。
 比較例3は、合金めっき層をNi-Fe合金めっきにより製造したため、合金めっき層がWを含有しなかった。そのため、比較例3は、好適な通電量及び溶解量を有さなかった。
As is clear from Table 4 above, good characteristics were obtained in the examples, while good results could not be obtained in the comparative examples.
In Comparative Example 1 and Comparative Example 2, since the plating bath was manufactured by a method not containing Fe ions, the alloy plating layer did not contain Fe. Therefore, Comparative Example 1 and Comparative Example 2 did not have suitable energization amount and dissolution amount.
In Comparative Example 3, since the alloy plating layer was manufactured by Ni—Fe alloy plating, the alloy plating layer did not contain W. Therefore, Comparative Example 3 did not have a suitable energization amount and dissolution amount.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
<試験例2>
(実施例31~40)
 板厚0.3mmの未焼鈍のAlキルド鋼板を原板とし、上記表1に示す条件で、種々の付着量のNiめっきを行い、引き続き、上記表2に示す条件で、種々の組成のNi-W-Fe合金めっきを種々の厚みでめっきした。Ni-W-Fe合金めっき層中のWの含有率及びFeの含有率は、上記表2に示す電流密度、及び、硫酸鉄(II)の添加量を調整することで制御した。上記めっき後に、無酸化雰囲気にて、740℃の温度下で30秒間熱処理を行うことにより、焼鈍とNiめっきの拡散処理を行った。
<Test Example 2>
(Examples 31 to 40)
A non-annealed Al-killed steel sheet having a thickness of 0.3 mm was used as a base plate, and Ni plating with various adhesion amounts was performed under the conditions shown in Table 1 above. Subsequently, Ni— W—Fe alloy plating was plated at various thicknesses. The W content and the Fe content in the Ni—W—Fe alloy plating layer were controlled by adjusting the current density and the iron (II) sulfate addition amount shown in Table 2 above. After the plating, annealing and Ni plating diffusion treatment were performed by performing heat treatment in a non-oxidizing atmosphere at a temperature of 740 ° C. for 30 seconds.
(実施例41~44)
 板厚0.3mmの未焼鈍の極低炭素鋼板を原板とし、上記表1に示す条件で、種々の付着量のNiめっきを行い、引き続き、上記表2に示す条件で、種々の組成のNi-W-Fe合金めっきを0.5μmの厚みでめっきした。Ni-W-Fe合金めっき層中のWの含有率及びFeの含有率は、上記表2に示す電流密度、及び、硫酸鉄(II)の添加量を調整することで制御した。上記めっき後に、無酸化雰囲気にて、820℃の温度下で30秒間熱処理を行うことにより、焼鈍とNiめっきの拡散処理を行った。
(Examples 41 to 44)
A non-annealed ultra-low carbon steel plate having a thickness of 0.3 mm is used as a base plate, and Ni plating with various adhesion amounts is performed under the conditions shown in Table 1 above. A —W—Fe alloy plating was plated to a thickness of 0.5 μm. The W content and the Fe content in the Ni—W—Fe alloy plating layer were controlled by adjusting the current density and the iron (II) sulfate addition amount shown in Table 2 above. After the above plating, annealing and Ni plating diffusion treatment were performed by performing a heat treatment in a non-oxidizing atmosphere at a temperature of 820 ° C. for 30 seconds.
(実施例45~48)
 板厚0.3mmの焼鈍済みのAlキルド鋼板を原板とし、上記表1に示す条件で、種々の付着量のNiめっきを行い、引き続き、上記表2に示す条件で、種々の組成のNi-W-Fe合金めっきを0.5μmの厚みでめっきした。Ni-W-Fe合金めっき層中のWの含有率及びFeの含有率は、上記表2に示す電流密度、及び、硫酸鉄(II)の添加量を調整することで制御した。上記めっき後に、無酸化雰囲気にて、450℃の温度下で120秒間熱処理を行った。
(Examples 45 to 48)
An annealed Al-killed steel plate having a thickness of 0.3 mm was used as a base plate, and Ni plating with various adhesion amounts was performed under the conditions shown in Table 1 above. Subsequently, Ni— with various compositions was applied under the conditions shown in Table 2 above. W—Fe alloy plating was plated to a thickness of 0.5 μm. The W content and the Fe content in the Ni—W—Fe alloy plating layer were controlled by adjusting the current density and the iron (II) sulfate addition amount shown in Table 2 above. After the plating, heat treatment was performed for 120 seconds at a temperature of 450 ° C. in a non-oxidizing atmosphere.
(実施例49~52)
 板厚0.3mmの焼鈍済みのAlキルド鋼板を原板とし、上記表3に示す条件で、種々の付着量のNi-Fe合金めっきを行い、引き続き、上記表2に示す条件で、種々の組成のNi-W-Fe合金めっきを0.5μmの厚みでめっきした。Ni-W-Fe合金めっき層中のWの含有率及びFeの含有率は、上記表2に示す電流密度、及び、硫酸鉄(II)の添加量を調整することで制御した。上記めっき後に、無酸化雰囲気にて、450℃の温度下で120秒間熱処理を行った。
(Examples 49 to 52)
An Al-killed steel sheet having a thickness of 0.3 mm is used as an original sheet, Ni—Fe alloy plating with various adhesion amounts is performed under the conditions shown in Table 3 above, and various compositions are subsequently performed under the conditions shown in Table 2 above. The Ni—W—Fe alloy plating was plated to a thickness of 0.5 μm. The W content and the Fe content in the Ni—W—Fe alloy plating layer were controlled by adjusting the current density and the iron (II) sulfate addition amount shown in Table 2 above. After the plating, heat treatment was performed for 120 seconds at a temperature of 450 ° C. in a non-oxidizing atmosphere.
(実施例53~55)
 板厚0.3mmの焼鈍済みのAlキルド鋼板を原板とし、上記表2に示す条件で、種々の組成のNi-W-Fe合金めっきを1.5μmの厚みでめっきした。Ni-W-Fe合金めっき層中のWの含有率及びFeの含有率は、上記表2に示す電流密度、及び、硫酸鉄(II)の添加量を調整することで制御した。上記めっき後に、無酸化雰囲気にて、450℃の温度下で120秒間熱処理を行った。
(Examples 53 to 55)
An annealed Al-killed steel plate having a thickness of 0.3 mm was used as a base plate, and Ni—W—Fe alloy plating of various compositions was plated at a thickness of 1.5 μm under the conditions shown in Table 2 above. The W content and the Fe content in the Ni—W—Fe alloy plating layer were controlled by adjusting the current density and the iron (II) sulfate addition amount shown in Table 2 above. After the plating, heat treatment was performed for 120 seconds at a temperature of 450 ° C. in a non-oxidizing atmosphere.
(比較例4)
 板厚0.3mmの未焼鈍のAlキルド鋼板を原板とし、上記表1に示す条件で、45g/mの付着量のNiめっきを行い、その後、無酸化雰囲気にて、740℃の温度下で30秒間熱処理を行うことにより、焼鈍とNiめっきの拡散処理を行った。比較例4では、Ni-W-Fe合金めっき層を形成しなかった。
(Comparative Example 4)
An unannealed Al killed steel plate with a thickness of 0.3 mm is used as a base plate, and Ni plating is performed with an adhesion amount of 45 g / m 2 under the conditions shown in Table 1 above. By performing heat treatment for 30 seconds, annealing and Ni plating diffusion treatment were performed. In Comparative Example 4, the Ni—W—Fe alloy plating layer was not formed.
 性能評価は、上記試験例1と同様に行った。また、得られた試験材を円筒型リチウムイオン二次電池の規格18650(直径18mm×長さ65mm)相当の円筒絞り缶にプレスした後、その内側面を切り出し、同様に評価を行った。 Performance evaluation was performed in the same manner as in Test Example 1 above. The obtained test material was pressed into a cylindrical drawn can corresponding to a standard 18650 (diameter 18 mm × length 65 mm) of a cylindrical lithium ion secondary battery, and then the inner side surface was cut out and evaluated in the same manner.
 以下の表5に、得られた結果を示した。
 なお、下層のNi層の状態、及び、上層のNi-W-Fe合金めっき層の組成は、FIB加工片を用い、日本電子製FE-TEM:JEM2100F(加速電圧200kV)と日本電子製EDS:JED-2300T(プローブ径約2nm)により確認、定量した。表5に示したNi-W-Fe合金めっき層の組成において、残部はNi及び不純物であった。
 また、試験例1と同様の方法でNi-W-Fe合金の含有状態を確認した。実施例31~55はNi-W-Fe合金を含有していたが、比較例4はNi-W-Fe合金を含有していなかった。
Table 5 below shows the results obtained.
The state of the lower Ni layer and the composition of the upper Ni—W—Fe alloy plating layer are FIB processed pieces, JEOL FE-TEM: JEM2100F (acceleration voltage 200 kV) and JEOL EDS: It was confirmed and quantified by JED-2300T (probe diameter: about 2 nm). In the composition of the Ni—W—Fe alloy plating layer shown in Table 5, the balance was Ni and impurities.
Further, the content of the Ni—W—Fe alloy was confirmed by the same method as in Test Example 1. Examples 31 to 55 contained a Ni—W—Fe alloy, but Comparative Example 4 did not contain a Ni—W—Fe alloy.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 上記表5から明らかなように、実施例では良好な特性が得られた一方で、比較例4では、良好な結果を得ることは出来なかった。
 比較例4はNi-W-Fe合金めっき層を有さないため、好適な通電量及び溶解量を有さなかった。
As is clear from Table 5 above, good characteristics were obtained in the examples, while good results could not be obtained in Comparative Example 4.
Since Comparative Example 4 did not have a Ni—W—Fe alloy plating layer, it did not have a suitable energization amount and dissolution amount.
 以上、本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 The preferred embodiments of the present invention have been described in detail above, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.
 上記各実施形態によれば、負極接続又は中立の金属外装ケースにおいて、電池ケースの電位が上昇した場合であっても金属溶出に伴う電池性能の劣化やケースの腐食が少なく、かつ、経済性に優れた非水電解液二次電池ケース用鋼板及び非水電解液二次電池ケースを提供することができる。 According to each of the above embodiments, in a negative electrode connection or a neutral metal outer case, even when the potential of the battery case is increased, there is little deterioration in battery performance and case corrosion due to metal elution, and economical efficiency. An excellent steel sheet for a non-aqueous electrolyte secondary battery case and a non-aqueous electrolyte secondary battery case can be provided.
 10 非水電解液二次電池ケース用鋼板
 20 鋼板
 30 Niめっき層
 50 Ni-W-Fe合金めっき層
10 Steel plate for non-aqueous electrolyte secondary battery case 20 Steel plate 30 Ni plating layer 50 Ni—W—Fe alloy plating layer

Claims (8)

  1.  鋼板と;
     前記鋼板の表面に形成され、Ni-W-Fe合金を含有し、非水電解液二次電池ケースの内面となるNi-W-Fe合金めっき層と;
    を備える
    ことを特徴とする、非水電解液二次電池ケース用鋼板。
    With steel plate;
    A Ni—W—Fe alloy plating layer formed on the surface of the steel sheet, containing a Ni—W—Fe alloy and serving as the inner surface of the nonaqueous electrolyte secondary battery case;
    A steel sheet for a non-aqueous electrolyte secondary battery case, comprising:
  2.  前記Ni-W-Fe合金めっき層が、前記Ni-W-Fe合金めっき層の全質量に対して1~20質量%のFeを含有する
    ことを特徴とする、請求項1に記載の非水電解液二次電池ケース用鋼板。
    The non-aqueous solution according to claim 1, wherein the Ni-W-Fe alloy plating layer contains 1 to 20% by mass of Fe with respect to the total mass of the Ni-W-Fe alloy plating layer. Steel plate for electrolyte secondary battery case.
  3.  前記Ni-W-Fe合金めっき層が、前記Ni-W-Fe合金めっき層の全質量に対して5~50質量%のWを含有する
    ことを特徴とする、請求項1又は2に記載の非水電解液二次電池ケース用鋼板。
    3. The Ni—W—Fe alloy plating layer according to claim 1, wherein the Ni—W—Fe alloy plating layer contains 5 to 50% by mass of W with respect to the total mass of the Ni—W—Fe alloy plating layer. Steel sheet for non-aqueous electrolyte secondary battery case.
  4.  前記Ni-W-Fe合金めっき層が、Cr、Mo及びCoからなる群から選ばれる1種又は2種以上を、前記Ni-W-Fe合金めっき層の全質量に対して合計で5質量%以下更に含有する
    ことを特徴とする、請求項1~3の何れか1項に記載の非水電解液二次電池ケース用鋼板。
    The Ni—W—Fe alloy plating layer contains one or more selected from the group consisting of Cr, Mo and Co in a total amount of 5% by mass with respect to the total mass of the Ni—W—Fe alloy plating layer. The steel sheet for a non-aqueous electrolyte secondary battery case according to any one of claims 1 to 3, further comprising:
  5.  前記Ni-W-Fe合金めっき層中のWの含有量を単位質量%でXとし、Feの含有量を単位質量%でYとした場合に、前記X及び前記Yが下式(1)を充足する
    ことを特徴とする、請求項1~4の何れか1項に記載の非水電解液二次電池ケース用鋼板。
       0.1X+0.5≦Y≦0.3X+7 ・・・(1)
    When the content of W in the Ni—W—Fe alloy plating layer is X in unit mass% and the content of Fe is Y in unit mass%, the X and Y are expressed by the following formula (1). The steel sheet for a nonaqueous electrolyte secondary battery case according to any one of claims 1 to 4, wherein the steel sheet is satisfied.
    0.1X + 0.5 ≦ Y ≦ 0.3X + 7 (1)
  6.  前記Ni-W-Fe合金めっき層の下層に、Niめっき層を更に備える
    ことを特徴とする、請求項1~5の何れか1項に記載の非水電解液二次電池ケース用鋼板。
    The steel sheet for a non-aqueous electrolyte secondary battery case according to any one of claims 1 to 5, further comprising a Ni plating layer under the Ni-W-Fe alloy plating layer.
  7.  前記Niめっき層の少なくとも一部が、Ni-Fe拡散層である
    ことを特徴とする、請求項6に記載の非水電解液二次電池ケース用鋼板。
    The steel sheet for a nonaqueous electrolyte secondary battery case according to claim 6, wherein at least a part of the Ni plating layer is a Ni-Fe diffusion layer.
  8.  請求項1~7の何れか1項に記載の非水電解液二次電池ケース用鋼板を用いて製造された、非水電解液二次電池ケース。 A nonaqueous electrolyte secondary battery case manufactured using the steel sheet for a nonaqueous electrolyte secondary battery case according to any one of claims 1 to 7.
PCT/JP2016/069473 2015-07-07 2016-06-30 Steel plate for case of non-aqueous-electrolyte secondary cell, and case of non-aqueous-electrolyte secondary cell WO2017006834A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016563472A JP6086176B1 (en) 2015-07-07 2016-06-30 Steel sheet for non-aqueous electrolyte secondary battery case and non-aqueous electrolyte secondary battery case
CN201680027069.0A CN107710446B (en) 2015-07-07 2016-06-30 Steel sheet for nonaqueous electrolyte secondary battery case and nonaqueous electrolyte secondary battery case

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015135885 2015-07-07
JP2015-135885 2015-07-07

Publications (1)

Publication Number Publication Date
WO2017006834A1 true WO2017006834A1 (en) 2017-01-12

Family

ID=57685203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069473 WO2017006834A1 (en) 2015-07-07 2016-06-30 Steel plate for case of non-aqueous-electrolyte secondary cell, and case of non-aqueous-electrolyte secondary cell

Country Status (3)

Country Link
JP (1) JP6086176B1 (en)
CN (1) CN107710446B (en)
WO (1) WO2017006834A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022215634A1 (en) 2021-04-08 2022-10-13 日本製鉄株式会社 Surface-treated steel sheet
WO2023085410A1 (en) * 2021-11-12 2023-05-19 日本製鉄株式会社 Welded member

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113517504B (en) * 2020-12-07 2022-08-02 江西睿捷新材料科技有限公司 Metal composite film and electrochemical device thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035282A (en) * 2005-07-22 2007-02-08 Toyo Kohan Co Ltd Plated steel plate for battery container, battery container using the same, and battery using the container
JP2007051325A (en) * 2005-08-17 2007-03-01 Toyo Kohan Co Ltd Plated steel plate for battery case, battery case using the steel plate for battery case and battery using the battery case
WO2010113502A1 (en) * 2009-03-31 2010-10-07 新日本製鐵株式会社 Material for metallic outer case for secondary battery utilizing non-aqueous electrolyte, metallic outer case, secondary battery, and process for production of material for metallic outer case

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306439A (en) * 1996-05-21 1997-11-28 Katayama Tokushu Kogyo Kk Battery can forming material, battery can forming method and battery can
CN102458701A (en) * 2009-06-09 2012-05-16 东洋钢钣株式会社 Nickel-plated steel sheet and process for producing battery can using the nickel-plated steel sheet
CN103014819A (en) * 2011-09-27 2013-04-03 肖云捷 Wearable compound layer material for machine parts and manufacturing method and equipment thereof
JP2013165030A (en) * 2012-02-13 2013-08-22 Nippon Steel & Sumitomo Metal Steel material for nonaqueous electrolyte secondary battery case

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035282A (en) * 2005-07-22 2007-02-08 Toyo Kohan Co Ltd Plated steel plate for battery container, battery container using the same, and battery using the container
JP2007051325A (en) * 2005-08-17 2007-03-01 Toyo Kohan Co Ltd Plated steel plate for battery case, battery case using the steel plate for battery case and battery using the battery case
WO2010113502A1 (en) * 2009-03-31 2010-10-07 新日本製鐵株式会社 Material for metallic outer case for secondary battery utilizing non-aqueous electrolyte, metallic outer case, secondary battery, and process for production of material for metallic outer case

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022215634A1 (en) 2021-04-08 2022-10-13 日本製鉄株式会社 Surface-treated steel sheet
KR20230150374A (en) 2021-04-08 2023-10-30 닛폰세이테츠 가부시키가이샤 surface treated steel plate
JP7425389B2 (en) 2021-04-08 2024-01-31 日本製鉄株式会社 surface treated steel plate
WO2023085410A1 (en) * 2021-11-12 2023-05-19 日本製鉄株式会社 Welded member
JP7381985B2 (en) 2021-11-12 2023-11-16 日本製鉄株式会社 welding parts

Also Published As

Publication number Publication date
JP6086176B1 (en) 2017-03-01
CN107710446B (en) 2021-02-12
JPWO2017006834A1 (en) 2017-07-06
CN107710446A (en) 2018-02-16

Similar Documents

Publication Publication Date Title
JP6023513B2 (en) Surface-treated steel sheet for battery container, battery container and battery
CN111279021B (en) Surface-treated steel sheet and method for producing same
US20120009464A1 (en) Material for metal case of secondary battery using non-aqueous electrolyte, metal case, secondary battery, and producing method of material for metal case
US9997786B2 (en) Steel foil and method for manufacturing the same
JP6086176B1 (en) Steel sheet for non-aqueous electrolyte secondary battery case and non-aqueous electrolyte secondary battery case
US9887396B2 (en) Surface-treated steel sheet for battery containers, battery container, and battery
JP4819148B2 (en) Material for metal outer case and metal outer case of lithium ion battery with little voltage drop due to metal elution and lithium ion battery
JP2008034370A (en) Electrochemical element
KR20230098873A (en) Chromium-containing steel sheet for current collector of non-aqueous electrolyte secondary battery
JP7148608B2 (en) Stainless foil current collector for secondary battery positive electrode and secondary battery
JP2021163639A (en) Nickel plating steel foil for nickel-hydrogen secondary battery current collector, nickel-hydrogen secondary battery current collector, and nickel-hydrogen secondary battery
JP2021163648A (en) Nickel plating steel foil for nickel-hydrogen secondary battery current collector, nickel-hydrogen secondary battery current collector, and nickel-hydrogen secondary battery
JP5440362B2 (en) Method for producing negative electrode case for lithium ion battery
CN109216591A (en) Battery Ni material, cathode and battery shell material
WO2023033118A1 (en) Surface-treated metal sheet for battery
JP3548004B2 (en) Hydrogen storage alloy electrode for alkaline storage battery and method for producing the same
JP2013165018A (en) Steel material for nonaqueous electrolyte secondary battery case
KR20230113602A (en) surface treatment steel sheet
JP2013165030A (en) Steel material for nonaqueous electrolyte secondary battery case

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016563472

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16821303

Country of ref document: EP

Kind code of ref document: A1