JP2013165018A - Steel material for nonaqueous electrolyte secondary battery case - Google Patents

Steel material for nonaqueous electrolyte secondary battery case Download PDF

Info

Publication number
JP2013165018A
JP2013165018A JP2012028184A JP2012028184A JP2013165018A JP 2013165018 A JP2013165018 A JP 2013165018A JP 2012028184 A JP2012028184 A JP 2012028184A JP 2012028184 A JP2012028184 A JP 2012028184A JP 2013165018 A JP2013165018 A JP 2013165018A
Authority
JP
Japan
Prior art keywords
oxide film
steel material
plating
secondary battery
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012028184A
Other languages
Japanese (ja)
Inventor
Kiyokazu Ishizuka
清和 石塚
Hiromasa Shoji
浩雅 莊司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2012028184A priority Critical patent/JP2013165018A/en
Publication of JP2013165018A publication Critical patent/JP2013165018A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Sealing Battery Cases Or Jackets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive steel material free from corrosion of a case and degradation of battery performance associated with metal elution even when a potential rise of a case occurs in a metal outer package case of negative electrode connection or neutral.SOLUTION: The steel material for a nonaqueous electrolyte secondary battery case is provided with an oxide film whose surface thickness is 10 to 500nm, where the oxide film contains an element selected from Mo and W. Preferably, an oxide film is formed via a plating layer containing an element selected from Ni and Cr. Preferably, the oxide film is formed by anode electrolysis processing.

Description

本発明は、リチウムイオンを吸蔵、放出することが可能な負極とリチウムイオンを吸蔵、放出することが可能な正極をセパレータを介して対向させた電極群と、有機溶媒に溶質としてリチウム塩を溶解した非水電解質とを備えた非水電解質二次電池のケースに関わり、特に非水電解質中での耐食性に優れ、安価なケース用鋼材に関するものである。   The present invention includes a negative electrode capable of inserting and extracting lithium ions and a positive electrode capable of inserting and extracting lithium ions facing each other through a separator, and a lithium salt dissolved as a solute in an organic solvent. The present invention relates to a case of a non-aqueous electrolyte secondary battery provided with a non-aqueous electrolyte, and particularly relates to a steel material for a case which is excellent in corrosion resistance in a non-aqueous electrolyte and is inexpensive.

近年、民生用モバイル機器の小型化、高機能化に伴い、その電源として小型・軽量かつ高エネルギー密度で、長期間充放電が可能な二次電池が求められてきた。この結果、従来のニッケル−カドミウム電池やニッケル−水素電池に代わって、より高いエネルギー密度、出力密度を有するリチウムイオン電池などの非水電解質二次電池が広く普及するようになった。また、最近ではリチウムイオン電池は車載用二次電池としてもすでに実用段階に入り、ハイブリッド自動車や電気自動車のモーター用電源として、普及が始まっている。   In recent years, with the miniaturization and high functionality of consumer mobile devices, there has been a demand for a secondary battery that can be charged and discharged for a long time with a small size, light weight and high energy density as its power source. As a result, in place of conventional nickel-cadmium batteries and nickel-hydrogen batteries, non-aqueous electrolyte secondary batteries such as lithium ion batteries having higher energy density and output density have come into widespread use. Recently, lithium ion batteries have already been put into practical use as in-vehicle secondary batteries and have begun to spread as power sources for motors of hybrid vehicles and electric vehicles.

非水電解質二次電池を安価に製造するためには、低コストで高信頼性の外装ケース素材が必要である。該用途に必要な、プレス成形性や溶接性、耐食性、強度などを満足し、かつ低コストである素地として鋼材の使用が有望であるが、その適用には以下の課題がある。   In order to manufacture a non-aqueous electrolyte secondary battery at a low cost, a low-cost and highly reliable exterior case material is required. Although steel materials are promising as a base material that satisfies the press formability, weldability, corrosion resistance, strength, and the like necessary for the application and is low in cost, the application has the following problems.

非水電解質二次電池の外装ケースに鋼材を使用する場合、防食を目的にその表面にNi等のめっきを施して、使用される。
このNiめっきされた鋼材を用いた金属外装ケースが負極接続されて使用される場合、通常状況での耐食性に問題は無い。しかし、電池の過放電等により電池ケースの電位が上昇すると、めっきされたNiが溶出する場合がある。またNiめっきされた鋼材を用いた金属外装ケースを電池素子とは絶縁した中立ケースとして使用する場合にも、通常状況での耐食性に問題はない。
しかし、電解質中の酸化剤の作用などによって電池ケースの電位が上昇すると、Niが溶出する場合がある。
When a steel material is used for an outer case of a nonaqueous electrolyte secondary battery, the surface is plated with Ni or the like for the purpose of corrosion protection.
When the metal outer case using this Ni-plated steel material is used with the negative electrode connected, there is no problem with the corrosion resistance in a normal situation. However, when the potential of the battery case rises due to overdischarge of the battery, the plated Ni may be eluted. Also, when a metal outer case using Ni-plated steel is used as a neutral case insulated from the battery element, there is no problem with the corrosion resistance in a normal situation.
However, when the potential of the battery case increases due to the action of an oxidizing agent in the electrolyte, Ni may be eluted.

このようにめっきされたNiなどの金属が電解質中に溶出すると、電池を充放電した際に負極表面に溶出した金属が析出し成長するため、この析出金属がセパレータを貫通して正負極間に微小短絡を発生させる原因となる。微小短絡が発生すると電池電圧の低下を招くため、必要な電池性能を得ることができず、電池の歩留まり低下につながる。また金属外装ケース自体の腐食が進行し電解質の液漏れ原因ともなる。   When the plated metal such as Ni elutes in the electrolyte, when the battery is charged and discharged, the eluted metal is deposited and grows on the surface of the negative electrode. It causes a minute short circuit. When a micro short circuit occurs, the battery voltage is lowered, so that necessary battery performance cannot be obtained, leading to a decrease in battery yield. Further, the corrosion of the metal outer case itself progresses, causing electrolyte leakage.

これに対し、特許文献1ではフッ素樹脂分散Niめっきによって耐食性が向上することが示されているが、フッ素樹脂分散Niめっきはコストが高いうえに耐食性向上効果も少ない。また特許文献2ではNi上にふっ化皮膜を形成することで耐食性が向上することが示されているが、ふっ素ガスを使うための大掛かりな設備が必要になり、やはりコストが高いという問題がある。特許文献3ではNi−Cuの拡散層を有するケース用素材が示されているが、電位が上昇した際、Cuが溶出しやすい問題がある。特許文献4ではNiめっき鋼材からなるケースで耐食性を持たせたリチウムイオン電池が示されているが、電解液に特殊な化合物が含まれる事が前提であり汎用的でない。   On the other hand, Patent Document 1 shows that the fluorine resin-dispersed Ni plating improves the corrosion resistance, but the fluorine resin-dispersed Ni plating is expensive and has little effect on improving the corrosion resistance. Further, Patent Document 2 shows that the corrosion resistance is improved by forming a fluoride film on Ni. However, a large-scale facility for using fluorine gas is required, and there is a problem that the cost is also high. . Patent Document 3 discloses a case material having a Ni—Cu diffusion layer, but there is a problem that Cu is likely to be eluted when the potential is increased. Patent Document 4 discloses a lithium ion battery having corrosion resistance in a case made of a Ni-plated steel material, but is not universal because it is based on the premise that a special compound is contained in the electrolytic solution.

以上のような点から、耐食性が問題となるような金属外装ケースには、コスト上の課題を抱えつつアルミやステンレスを使用せざるを得ないのが現状である。
From the above point of view, the current situation is that aluminum or stainless steel must be used for the metal outer case where the corrosion resistance becomes a problem while having a cost problem.

特開2002−231195号公報JP 2002-231195 A 特開2003−229099号公報JP 2003-229099 A 特開2011−9154号公報JP 2011-9154 A 特開2011−70861号公報JP 2011-70861 A

本発明は、負極接続または中立の金属外装ケースにおいて、電池の過放電や電解質中の酸化剤の作用などによってより電池ケースの電位上昇があった場合も金属溶出に伴う電池性能の劣化や、ケースの腐食がない、安価な鋼材の提供を目的とする。   In the case of negative electrode connection or a neutral metal outer case, the battery performance is deteriorated due to metal elution even when the battery case has a potential increase due to overdischarge of the battery or the action of an oxidizing agent in the electrolyte. The purpose is to provide an inexpensive steel material that is free from corrosion.

本発明の要旨とするところは、
(1)鋼材表面に厚みが10〜500nmである酸化膜を有し、前記酸化膜がMo,Wのいずれか一方または両方を含有することを特徴とする非水電解質二次電池ケース用鋼材
The gist of the present invention is that
(1) A steel material for a nonaqueous electrolyte secondary battery case having an oxide film having a thickness of 10 to 500 nm on the surface of the steel material, wherein the oxide film contains one or both of Mo and W.

(2)前記酸化膜と前記鋼材表面の間に、Ni,Crのいずれか一方または両方を含有するめっき層を有することを特徴とする(1)に記載の非水電解質二次電池ケース用鋼材 (2) The steel material for a nonaqueous electrolyte secondary battery case according to (1), wherein a plating layer containing one or both of Ni and Cr is provided between the oxide film and the steel material surface.

(3)前記めっき層がNiを含有する場合のNi付着量は0.1〜10g/m2、Crを含有する場合のCr付着量は0.01〜0.5g/m2であることを特徴とする(2)に記載の非水電解質二次電池ケース用鋼材 (3) When the plating layer contains Ni, the Ni adhesion amount is 0.1 to 10 g / m 2 , and when it contains Cr, the Cr adhesion amount is 0.01 to 0.5 g / m 2. The steel for non-aqueous electrolyte secondary battery case described in (2)

(4)前記酸化膜がアノード電解処理により形成されたものであることを特徴とする(1)〜(3)のいずれか1つに記載の非水電解質二次電池ケース用鋼材
である。
(4) The steel material for a nonaqueous electrolyte secondary battery case according to any one of (1) to (3), wherein the oxide film is formed by anodic electrolysis.

本発明によって、電池の過放電や電解質中の酸化剤の作用などによってよる電池ケースの電位上昇があった場合もケースからの金属溶出に伴う電池性能の劣化や、ケースの腐食がない鋼材が得られる。   According to the present invention, even when there is an increase in the potential of the battery case due to overdischarge of the battery or the action of an oxidant in the electrolyte, a steel material that does not deteriorate in battery performance due to metal elution from the case or corrosion of the case is obtained. It is done.

本発明の鋼材は、発明の趣旨のひとつである、安価な鋼材の提供について不適となるため高価なステンレス鋼は除外されるものであり、普通鋼であれば特に限定なく、金属ケースの形状から要求される加工性に見合った鋼材を使用すればよい。   The steel material of the present invention is one of the gist of the invention, and is not suitable for the provision of an inexpensive steel material. Therefore, the expensive stainless steel is excluded. It is sufficient to use a steel material that meets the required workability.

本発明の鋼材は、表面に10〜500nmの厚みであり、Mo,Wのいずれか一方または両方を含有する酸化膜を有することを特徴とする。   The steel material of the present invention has a thickness of 10 to 500 nm on the surface and has an oxide film containing either one or both of Mo and W.

前記の酸化膜は非水電解質中で安定であり、電池ケースの電位が上昇した場合もリチウム基準で4V程度までは鋼材からの金属溶出を効果的に抑制可能である。なお、鋼材表面には大気中で自然に形成される自然酸化膜が数nm存在するが、この自然酸化膜は本発明の効果を奏しない。   The oxide film is stable in the non-aqueous electrolyte, and even when the battery case potential rises, it is possible to effectively suppress metal elution from the steel material up to about 4 V on the basis of lithium. In addition, although the natural oxide film naturally formed in air | atmosphere several nanometers exists on the steel material surface, this natural oxide film does not have the effect of this invention.

酸化膜の厚みが10nm未満では金属溶出抑制効果が不足することから、10nm以上とする必要がある。金属溶出抑制という観点からは酸化膜の厚みの上限はない。しかし、酸化膜の厚みが500nmを超えると、加工時の割れ剥がれが問題となることから、実用的な厚みは500nm以下であり、これが実質的な上限値となる。   If the thickness of the oxide film is less than 10 nm, the metal elution suppressing effect is insufficient, so it is necessary to set the thickness to 10 nm or more. From the viewpoint of suppressing metal elution, there is no upper limit on the thickness of the oxide film. However, if the thickness of the oxide film exceeds 500 nm, cracking during processing becomes a problem, so the practical thickness is 500 nm or less, which is a practical upper limit.

酸化膜の厚みは、AES(オージェ電子分光)、GDS(グロー放電分光)などの解析手法によって表層から深さ方向の酸素のプロファイルを測定し、酸素強度がバックグランドレベルまで低下する深さによって測定可能である。   The thickness of the oxide film is measured by measuring the oxygen profile in the depth direction from the surface layer using analytical methods such as AES (Auger Electron Spectroscopy) and GDS (Glow Discharge Spectroscopy), and measuring the depth at which the oxygen intensity decreases to the background level. Is possible.

本発明の酸化膜は、Mo,Wのいずれかを必須とするが、鋼材からのFe、あるいは後述するNi,Crめっきを施している場合には、更にめっき層からのNi,Crを含有してもかまわない。またその他の元素、例えばCo,Mn,P,Si,Alなどの含有もMo,Wのいずれかを必須とする限り排除されない。   The oxide film of the present invention requires either Mo or W, but when it is subjected to Fe from steel, or Ni or Cr plating described later, it further contains Ni and Cr from the plating layer. It doesn't matter. Further, the inclusion of other elements such as Co, Mn, P, Si, and Al is not excluded as long as either Mo or W is essential.

本発明の酸化膜中のMo,Wの濃度は、0.1〜10質量%、より好ましくは1〜5質量%とするのが良い。なお、Mo,Wの両方を含有する場合には、Mo+Wの合計で、前記濃度とするのが良い。Mo,Wの濃度が低すぎると、比較的低電位で金属溶解が発生し、一方高すぎると加工時の酸化膜損傷が大きくなりやすく結果として金属溶解が発生しやすいため好ましくない。   The concentration of Mo and W in the oxide film of the present invention is 0.1 to 10% by mass, more preferably 1 to 5% by mass. When both Mo and W are contained, the concentration is preferably the sum of Mo + W. If the concentrations of Mo and W are too low, metal dissolution occurs at a relatively low potential. On the other hand, if it is too high, damage to the oxide film during processing tends to increase, and as a result, metal dissolution tends to occur.

より高い電位まで、あるいはより長時間の安定性が要求される場合は、鋼材表面に直接前記の酸化膜を形成するのではなく、Ni,Crのいずれか一方(または両方)を含有するめっき層を介して、酸化膜を形成することが望ましい。この場合には、電位がリチウム基準で5V程度までは鋼材からのFeやめっき層のNi,Crの溶出を効果的に抑制可能である。Mo,Wのいずれかを必須として含有する酸化膜は、電位上昇の際にもその膜が破壊されにくい効果を有すると推定される。   When stability to a higher potential or longer time is required, a plating layer containing either (or both) of Ni and Cr is not formed directly on the steel surface. It is desirable to form an oxide film through the film. In this case, the elution of Fe from the steel material, Ni and Cr in the plating layer can be effectively suppressed when the potential is about 5 V on the basis of lithium. It is presumed that an oxide film containing either Mo or W as an essential component has an effect that the film is hardly destroyed even when the potential is increased.

また電位を4V程度で長時間保持しても金属の溶出はない。Ni,Crのいずれか一方または両方を含有するめっき層としては、Niめっき、Crめっき、あるいはこれらを主体とする合金めっきであってもかまわない。またそれらめっきについて、めっき後熱拡散処理しめっき基材に含まれる元素を相互拡散させたものであってもかまわない。   Even if the potential is kept at about 4 V for a long time, the metal does not elute. The plating layer containing one or both of Ni and Cr may be Ni plating, Cr plating, or alloy plating mainly composed of these. Moreover, about these plating, you may carry out the thermal-diffusion process after plating, and the element contained in a plating base material may be made to mutually diffuse.

前記のNi,Crのいずれか一方または両方を含有するめっき層の有無によって、最適酸化膜厚は若干異なる。めっき層が無い場合、その膜厚は、20〜200nmが好ましく、めっき層がある場合、その膜厚は10〜100nmが好ましい。   The optimum oxide film thickness is slightly different depending on the presence or absence of a plating layer containing one or both of Ni and Cr. When there is no plating layer, the film thickness is preferably 20 to 200 nm, and when there is a plating layer, the film thickness is preferably 10 to 100 nm.

前記のNi,Crのいずれか一方または両方を含有するめっき層がNiを含有するめっきの場合、Ni付着量としては0.1〜10g/m2が望ましい。0.1g/m2未満では金属溶出抑制効果が乏しく、10g/m2を超えてもコストが増すばかりでなく、加工損傷も増加しやすい。 When the plating layer containing any one or both of Ni and Cr is Ni-containing plating, the Ni adhesion amount is preferably 0.1 to 10 g / m 2 . If it is less than 0.1 g / m 2 , the metal elution suppression effect is poor, and if it exceeds 10 g / m 2 , not only the cost increases but also the processing damage tends to increase.

めっき層がCrを含有するめっきの場合、Cr付着量としては0.01〜0.5g/m2が望ましい。0.01g/m2未満では金属溶出抑制効果が乏しく、0.5g/m2を超えてもコストが増すばかりでなく、加工損傷も増加しやすい。 When the plating layer contains plating containing Cr, the Cr adhesion amount is preferably 0.01 to 0.5 g / m2. If it is less than 0.01 g / m 2 , the metal elution suppressing effect is poor, and if it exceeds 0.5 g / m 2 , not only the cost increases, but also processing damage tends to increase.

本発明において酸化膜と鋼材表面の間に形成するめっき層は、比較的低付着量である点が特徴的であり、コスト的にも有利である。反面、めっき層の付着量が少ないことにより、めっきピンホールなどの欠陥が生じやすく、下地鋼材が露出している領域も存在しうるが、めっきの表層に形成されている酸化膜がめっき層の表面だけでなく、めっき欠陥部の鋼材露出部の表面をも被覆しており、効果的に金属溶出を抑制できる。   In the present invention, the plating layer formed between the oxide film and the steel material surface is characterized by a relatively low adhesion amount, which is advantageous in terms of cost. On the other hand, due to the small amount of adhesion of the plating layer, defects such as plating pinholes are likely to occur, and there may be areas where the underlying steel material is exposed, but the oxide film formed on the surface layer of the plating is Not only the surface but also the surface of the steel exposed portion of the plating defect portion is covered, and metal elution can be effectively suppressed.

本発明の酸化膜はアノード酸化処理により形成されたものであることが望ましい。このようにして形成された酸化膜は非水電解質中で一層安定である。まためっき層を介して酸化膜を形成する場合、アノード酸化処理を用いると、該めっき層にピンホール欠陥が存在していても、NiあるいはCrのめっき層上よりもめっき欠陥部の露出した鋼材部において酸化反応が優先的に進行し、前記めっき表面部よりもめっき欠陥部の鋼材上に酸化膜が厚く形成されるめ、耐食性の点でより有利である。   The oxide film of the present invention is desirably formed by an anodic oxidation treatment. The oxide film thus formed is more stable in the nonaqueous electrolyte. Also, when an oxide film is formed through a plating layer, if anodization is used, the steel material in which the plating defect portion is exposed more than on the Ni or Cr plating layer even if pinhole defects exist in the plating layer The oxidation reaction proceeds preferentially in the part, and an oxide film is formed thicker on the steel material in the plating defect part than the plating surface part, which is more advantageous in terms of corrosion resistance.

アノード酸化処理を行う際、中性〜アルカリ性の水溶液中で処理を行うことが望ましい。Mo,Wから選ばれる元素を含有する酸化膜を形成するに際しては、前記元素の酸素酸アニオン、例えばモリブデン酸イオン、タングステン酸イオン、あるいは前記のポリ酸イオン、更には、前記ポリ酸に対してSi、P等のヘテロ原子が挿入されたヘテロポリ酸イオン、例えば、りんモリブデン酸イオン、けいモリブデン酸イオン、りんタングテン酸イオン、けいタングテン酸イオンなどを含む水溶液中でアノード電解処理することが望ましい。   When performing the anodic oxidation treatment, it is desirable to carry out the treatment in a neutral to alkaline aqueous solution. In forming an oxide film containing an element selected from Mo and W, an oxyacid anion of the element, for example, molybdate ion, tungstate ion, or the polyacid ion, and further against the polyacid It is desirable to perform anodic electrolytic treatment in an aqueous solution containing a heteropolyacid ion having a heteroatom such as Si or P inserted therein, for example, a phosphomolybdate ion, a silicate molybdate ion, a phosphotungstenate ion, or a phosphotungstenate ion.

処理液には、pH調整剤や導電助剤などを含有させることも好適に用いられる。   It is also preferable to add a pH adjuster or a conductive aid to the treatment liquid.

アノード電解処理の条件としては特に限定されないが、常温〜80℃程度の温度で、10〜100A/dm2程度の電流密度にて定電流電解することが望ましい。 The conditions for the anodic electrolysis are not particularly limited, but it is desirable to perform constant current electrolysis at a temperature of about room temperature to about 80 ° C. and a current density of about 10 to 100 A / dm 2 .

(実施例1〜17および比較例1)
表1に示す成分の冷延鋼板を原板として、表3に示す種々の水溶液中でアノード電解酸化処理を行った。アノード電解酸化処理の条件は、処理温度70℃、電流密度50A/dm2とし、所定の酸化膜厚みになるように処理時間を調整した。
(Examples 1 to 17 and Comparative Example 1)
Using cold-rolled steel sheets having the components shown in Table 1 as original sheets, anodic electrolytic oxidation treatment was performed in various aqueous solutions shown in Table 3. The conditions of the anode electrolytic oxidation treatment were a treatment temperature of 70 ° C. and a current density of 50 A / dm 2, and the treatment time was adjusted so as to obtain a predetermined oxide film thickness.

(比較例2)
表1に示す冷延鋼板をそのまま評価に供した。
(Comparative Example 2)
The cold-rolled steel sheet shown in Table 1 was used for evaluation as it was.

(比較例3)
表1に示す冷延鋼板に、表2に示すめっき浴で5g/m2のNiめっきを行った。
(Comparative Example 3)
The cold-rolled steel sheet shown in Table 1 was plated with 5 g / m 2 of Ni in the plating bath shown in Table 2.

Figure 2013165018
Figure 2013165018

Figure 2013165018
Figure 2013165018

(評価方法)
・各鋼材の酸化膜のキャラクタリゼーションは、AES(オージェ電子分光)、GDS(グロー放電分光)を併用し、酸化膜が薄い時はAES、厚い時はGDSを用いた。また酸化膜に含まれるFe以外の金属成分についても同手法により存在を確認するとともにその濃度を定量して表3中に示した。
(Evaluation method)
-Characterization of the oxide film of each steel material used both AES (Auger electron spectroscopy) and GDS (glow discharge spectroscopy). AES was used when the oxide film was thin, and GDS was used when it was thick. Further, the presence of metal components other than Fe contained in the oxide film was confirmed by the same method, and the concentrations thereof were quantified and shown in Table 3.

・各鋼材をそのまま、または円筒型リチウムイオン二次電池の規格18650(直径18mm×長さ65mm)相当の円筒絞り缶にプレスした後その内側面を切り出し、エッジと裏面をテープシールして供試材とした。アルゴン雰囲気(露点−60℃)のグローブボックス内にて、前記供試材を作用極、金属リチウムを対極および参照極とする三極式のセルを組み立てた。電解液は、1MのLiPF6を体積で1:1のエチレンカーボネートとジエチルカーボネートの混合溶媒に溶解したものを用いた。前記のセルを、25℃にて、作用極電位が自然電位から5V(リチウム基準)まで5mV/secの速度でアノード分極を行い、流れる電流密度を計測した。電流密度が10μA/cm2になる電位(リチウム基準)を溶解電位として定義し、各供試材について溶解電位を求めた。 ・ Test each steel material as it is or after pressing into a cylindrical drawn can corresponding to standard 18650 (diameter 18 mm x length 65 mm) of a cylindrical lithium ion secondary battery, cutting out the inner surface, and tape-sealing the edge and back surface A material was used. In a glove box with an argon atmosphere (dew point −60 ° C.), a three-electrode cell was assembled with the test material as a working electrode, metallic lithium as a counter electrode and a reference electrode. The electrolyte used was 1M LiPF6 dissolved in a 1: 1 mixed solvent of ethylene carbonate and diethyl carbonate by volume. The cell was subjected to anodic polarization at a rate of 5 mV / sec from a natural potential to 5 V (lithium reference) at 25 ° C., and the flowing current density was measured. The potential at which the current density becomes 10 μA / cm 2 (lithium reference) was defined as the dissolution potential, and the dissolution potential was determined for each specimen.

Figure 2013165018
Figure 2013165018

表3に評価結果を示すが、本発明の実施例では、溶解電位を大きく向上させることができた。   Table 3 shows the evaluation results. In the examples of the present invention, the dissolution potential could be greatly improved.

(実施例18〜32)
表1に示す成分の冷延鋼板を原板として、表2に示すめっき条件で表7に示す種々の付着量のNiめっきを行った。その後、表7に示す種々の水溶液中でアノード電解酸化処理を行った。アノード電解処理は、処理温度70℃、電流密度50A/dm2とし、所定の酸化膜厚みになるように処理時間を調整した。
(Examples 18 to 32)
Using the cold-rolled steel sheets having the components shown in Table 1 as original sheets, various plating amounts of Ni plating shown in Table 7 were performed under the plating conditions shown in Table 2. Thereafter, anodic electrolytic oxidation treatment was performed in various aqueous solutions shown in Table 7. In the anodic electrolytic treatment, the treatment temperature was 70 ° C., the current density was 50 A / dm 2, and the treatment time was adjusted so as to obtain a predetermined oxide film thickness.

(実施例33)
表1に示す成分の冷延鋼板を原板として、表2に示すめっき条件で5g/m2のNiめっきを行った。その後、5%水素-窒素の雰囲気中で700℃10secの熱拡散処理を行い、Niめっき層をNi−Fe拡散層に変化させた。その後、表7に示す水溶液中でアノード電解酸化処理を行った。アノード電解処理は、処理温度70℃、電流密度50A/dm2とし、所定の酸化膜厚みになるように処理時間を調整した。
(Example 33)
Using a cold-rolled steel plate having the components shown in Table 1 as an original plate, Ni plating of 5 g / m 2 was performed under the plating conditions shown in Table 2. Thereafter, a thermal diffusion treatment at 700 ° C. for 10 seconds was performed in an atmosphere of 5% hydrogen-nitrogen to change the Ni plating layer into a Ni—Fe diffusion layer. Thereafter, an anodic electrolytic oxidation treatment was performed in an aqueous solution shown in Table 7. In the anodic electrolytic treatment, the treatment temperature was 70 ° C., the current density was 50 A / dm 2, and the treatment time was adjusted so as to obtain a predetermined oxide film thickness.

(実施例34)
表1に示す成分の冷延鋼板を原板として、表4に示すめっき条件で1g/m2のNi-P合金めっきを行った。その後、表7に示す水溶液中でアノード電解酸化処理を行った。アノード電解処理は、処理温度70℃、電流密度50A/dm2とし、所定の酸化膜厚みになるように処理時間を調整した。
(Example 34)
Using a cold-rolled steel plate having the components shown in Table 1 as an original plate, 1 g / m 2 of Ni—P alloy plating was performed under the plating conditions shown in Table 4. Thereafter, an anodic electrolytic oxidation treatment was performed in an aqueous solution shown in Table 7. In the anodic electrolytic treatment, the treatment temperature was 70 ° C., the current density was 50 A / dm 2, and the treatment time was adjusted so as to obtain a predetermined oxide film thickness.

(実施例35〜39)
表1に示す成分の冷延鋼板を原板として、表5に示すめっき条件で表7に示す種々の付着量のCrめっきを行った。その後、表7に示す水溶液中でアノード電解酸化処理を行った。アノード電解処理は、処理温度70℃、電流密度50A/dm2とし、所定の酸化膜厚みになるように処理時間を調整した。
(Examples 35-39)
Using the cold-rolled steel sheet having the components shown in Table 1 as an original sheet, various plating amounts of Cr plating shown in Table 7 were performed under the plating conditions shown in Table 5. Thereafter, an anodic electrolytic oxidation treatment was performed in an aqueous solution shown in Table 7. In the anodic electrolytic treatment, the treatment temperature was 70 ° C., the current density was 50 A / dm 2, and the treatment time was adjusted so as to obtain a predetermined oxide film thickness.

(実施例40)
表1に示す成分の冷延鋼板を原板として、表6に示すめっき条件で0.3g/m2のFe−Cr合金めっきを行った。その後、表7に示す水溶液中でアノード電解酸化処理を行った。アノード電解処理は、処理温度70℃、電流密度50A/dm2とし、所定の酸化膜厚みになるように処理時間を調整した。
(Example 40)
A cold-rolled steel plate having the components shown in Table 1 was used as a base plate, and 0.3 g / m 2 Fe—Cr alloy plating was performed under the plating conditions shown in Table 6. Thereafter, an anodic electrolytic oxidation treatment was performed in an aqueous solution shown in Table 7. In the anodic electrolytic treatment, the treatment temperature was 70 ° C., the current density was 50 A / dm 2, and the treatment time was adjusted so as to obtain a predetermined oxide film thickness.

(実施例41)
表1に示す成分の冷延鋼板を原板として、表5に示すめっき条件で0.05g/m2のCrめっきを行い、更に表2に示すめっき条件で1g/m2のNiめっきを行った。その後、5%水素-窒素の雰囲気中で800℃10secの熱拡散処理を行い、めっき層をNi−Cr−Fe拡散層に変化させた。その後、表7に示す水溶液中でアノード電解酸化処理を行った。アノード電解処理は、処理温度70℃、電流密度50A/dm2とし、所定の酸化膜厚みになるように処理時間を調整した。
(Example 41)
The cold-rolled steel sheet of the components shown in Table 1 as original plate performs Cr plating of 0.05 g / m 2 by plating conditions shown in Table 5, were Ni plating 1 g / m 2 further plating conditions shown in Table 2 . Thereafter, a thermal diffusion treatment at 800 ° C. for 10 seconds was performed in a 5% hydrogen-nitrogen atmosphere to change the plating layer into a Ni—Cr—Fe diffusion layer. Thereafter, an anodic electrolytic oxidation treatment was performed in an aqueous solution shown in Table 7. In the anodic electrolytic treatment, the treatment temperature was 70 ° C., the current density was 50 A / dm 2, and the treatment time was adjusted so as to obtain a predetermined oxide film thickness.

(比較例4,5)
表1に示す成分の冷延鋼板を原板として、表2に示すめっき条件で表7に示す種々の付着量のNiめっきを行った。
(Comparative Examples 4 and 5)
Using the cold-rolled steel sheets having the components shown in Table 1 as original sheets, various plating amounts of Ni plating shown in Table 7 were performed under the plating conditions shown in Table 2.

(比較例6)
表1に示す成分の冷延鋼板を原板として、表5に示すめっき条件で表7に示す種々の付着量のCrめっきを行った。
(Comparative Example 6)
Using the cold-rolled steel sheet having the components shown in Table 1 as an original sheet, various plating amounts of Cr plating shown in Table 7 were performed under the plating conditions shown in Table 5.

Figure 2013165018
Figure 2013165018

Figure 2013165018
Figure 2013165018

Figure 2013165018
Figure 2013165018

(評価方法)
・酸化膜のキャラクタリゼーションおよび溶解電位の測定は先の例と同様に行った。酸化膜に含まれる元素については、Feおよびめっき金属(NiまたはCr)以外の元素を同定および定量して表7中に示した。
(Evaluation method)
The characterization of the oxide film and the measurement of the dissolution potential were performed in the same manner as in the previous example. The elements contained in the oxide film are shown in Table 7 after identifying and quantifying elements other than Fe and plated metal (Ni or Cr).

・定電位電解:円筒型リチウムイオン二次電池の規格18650(直径18mm×長さ65mm)相当の円筒絞り缶にプレスした後その内側面を切り出し、エッジと裏面をテープシールして供試材とした。アルゴン雰囲気(露点−60℃)のグローブボックス内にて、前記供試材を作用極、金属リチウムを対極および参照極とする三極式のセルを組み立てた。電解液は、1MのLiPF6を体積で1:1のエチレンカーボネートとジエチルカーボネートの混合溶媒に溶解したものを用いた。前記のセルを、25℃にて、作用極電位を4V(リチウム基準)に規定して24時間保持した。トータルの通電量の計測と電解液に溶出した金属濃度の定量を行った。電解液中に溶解金属が検出されない物を「○」と評価した。 Constant-potential electrolysis: After pressing into a cylindrical drawn can corresponding to the standard 18650 (diameter 18 mm x length 65 mm) of a cylindrical lithium ion secondary battery, the inner surface is cut out, and the edges and back are tape sealed and did. In a glove box with an argon atmosphere (dew point −60 ° C.), a three-electrode cell was assembled with the test material as a working electrode, metallic lithium as a counter electrode and a reference electrode. The electrolyte used was 1M LiPF6 dissolved in a 1: 1 mixed solvent of ethylene carbonate and diethyl carbonate by volume. The cell was held at 25 ° C. for 24 hours with a working electrode potential of 4 V (based on lithium). The total energization amount was measured and the metal concentration eluted in the electrolyte was quantified. A substance in which no dissolved metal was detected in the electrolyte was evaluated as “◯”.

Figure 2013165018
Figure 2013165018

表7に評価結果を示すが、本発明の実施例では、溶解電位を大きく向上することができるとともに、高電位で長時間保持した場合にも金属溶出は検出されなかった。   Table 7 shows the evaluation results. In the examples of the present invention, the dissolution potential could be greatly improved, and metal elution was not detected even when held at a high potential for a long time.

非水電解質二次電池を安価に製造するためには、低コストで高信頼性の外装ケース素材が必要であり、プレス成形性や溶接性、耐食性、強度などの観点から、鋼材の使用が望まれる。本発明の鋼材は、非水電解質中で高電位に保持されても金属溶出がなく、耐食性に優れることから、非水電解質二次電池用のケース用素材として有用なものである。   In order to manufacture non-aqueous electrolyte secondary batteries at low cost, low-cost and highly reliable exterior case materials are required, and the use of steel is desirable from the viewpoint of press formability, weldability, corrosion resistance, strength, etc. It is. The steel material of the present invention is useful as a case material for a non-aqueous electrolyte secondary battery because it does not elute even when held at a high potential in the non-aqueous electrolyte and is excellent in corrosion resistance.

Claims (4)

鋼材表面に厚みが10〜500nmである酸化膜を有し、前記酸化膜がMo,Wのいずれかまたは両方を含有することを特徴とする非水電解質二次電池ケース用鋼材。   A steel material for a non-aqueous electrolyte secondary battery case, comprising an oxide film having a thickness of 10 to 500 nm on a steel material surface, wherein the oxide film contains either Mo or W or both. 前記酸化膜と前記鋼材表面の間に、Ni,Crのいずれか一方または両方を含有するめっき層を有することを特徴とする請求項1に記載の非水電解質二次電池ケース用鋼材。   2. The steel material for a nonaqueous electrolyte secondary battery case according to claim 1, further comprising a plating layer containing one or both of Ni and Cr between the oxide film and the steel material surface. 前記めっき層がNiを含有する場合のNi付着量は0.1〜10g/m2、Crを含有する場合のCr付着量は0.01〜0.5g/m2であることを特徴とする請求項2に記載の非水電解質二次電池ケース用鋼材。 When the plating layer contains Ni, the Ni adhesion amount is 0.1 to 10 g / m 2 , and when the plating layer contains Cr, the Cr adhesion amount is 0.01 to 0.5 g / m 2. The steel material for nonaqueous electrolyte secondary battery cases according to claim 2. 前記酸化膜がアノード電解処理により形成されたものであることを特徴とする請求項1〜3のいずれか1項に記載の非水電解質二次電池ケース用鋼材。   The steel material for a nonaqueous electrolyte secondary battery case according to any one of claims 1 to 3, wherein the oxide film is formed by anodic electrolytic treatment.
JP2012028184A 2012-02-13 2012-02-13 Steel material for nonaqueous electrolyte secondary battery case Pending JP2013165018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012028184A JP2013165018A (en) 2012-02-13 2012-02-13 Steel material for nonaqueous electrolyte secondary battery case

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012028184A JP2013165018A (en) 2012-02-13 2012-02-13 Steel material for nonaqueous electrolyte secondary battery case

Publications (1)

Publication Number Publication Date
JP2013165018A true JP2013165018A (en) 2013-08-22

Family

ID=49176254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012028184A Pending JP2013165018A (en) 2012-02-13 2012-02-13 Steel material for nonaqueous electrolyte secondary battery case

Country Status (1)

Country Link
JP (1) JP2013165018A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024071142A1 (en) * 2022-09-27 2024-04-04 学校法人東京理科大学 Corrosion-resistant stainless steel and method of manufacturing coorosion-resistant stainless steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024071142A1 (en) * 2022-09-27 2024-04-04 学校法人東京理科大学 Corrosion-resistant stainless steel and method of manufacturing coorosion-resistant stainless steel

Similar Documents

Publication Publication Date Title
Kühnel et al. “Water-in-salt” electrolytes enable the use of cost-effective aluminum current collectors for aqueous high-voltage batteries
Mutlu et al. Al-6013-T6 and Al-7075-T7351 alloy anodes for aluminium-air battery
Yoon et al. Passivation Failure of Al Current Collector in LiPF6‐Based Electrolytes for Lithium‐Ion Batteries
JP5984800B2 (en) Surface-treated steel sheet for battery container, battery container and battery
JP4518791B2 (en) Rechargeable battery cell that can operate at room temperature
JP5334485B2 (en) Current collector and negative electrode material for lithium ion secondary battery
JP6023513B2 (en) Surface-treated steel sheet for battery container, battery container and battery
Hofmann et al. Implications of aqueous processing for high energy density cathode materials: Part I. Ni-rich layered oxides
Wang et al. The effects of polyethylene glycol (PEG) as an electrolyte additive on the corrosion behavior and electrochemical performances of pure aluminum in an alkaline zincate solution
CN111279021A (en) Surface-treated steel sheet and method for producing same
JP2011198752A (en) Negative electrode for aluminum air battery, and aluminum air battery
JP5512585B2 (en) Copper foil, anode current collector and anode material for lithium ion secondary battery using the same, and lithium ion secondary battery
Storelli et al. On the Importance of Li Metal Morphology on the Cycling of Lithium Metal Polymer Cells
Zhang et al. The influence of Ga, Sn, or Bi addition on the electrochemical behavior and discharge performance of Al–Zn–In anodes for Al-air batteries
JP6200719B2 (en) Method for producing surface-treated steel sheet for battery container
JP6033304B2 (en) Surface-treated steel sheet for battery container, battery container and battery
JP4133701B2 (en) Ni-plated steel sheet for non-aqueous electrolyte battery case and battery case using this steel sheet
JP6086176B1 (en) Steel sheet for non-aqueous electrolyte secondary battery case and non-aqueous electrolyte secondary battery case
WO2018062046A1 (en) Aluminum member for electrodes and method for producing aluminum member for electrodes
JP2013165018A (en) Steel material for nonaqueous electrolyte secondary battery case
JP2009009778A (en) Cathode plate of lithium ion battery, its manufacturing method, and lithium ion battery using it
CN104094443B (en) Charge storage element
JP2013165030A (en) Steel material for nonaqueous electrolyte secondary battery case
JP7474096B2 (en) Ni-plated steel foil for nickel-hydrogen secondary battery current collector, nickel-hydrogen secondary battery current collector, and nickel-hydrogen secondary battery
TWI810538B (en) Ni-plated steel foil for nickel-hydrogen secondary battery current collector, nickel-hydrogen secondary battery current collector, and nickel-hydrogen secondary battery