JP7474096B2 - Ni-plated steel foil for nickel-hydrogen secondary battery current collector, nickel-hydrogen secondary battery current collector, and nickel-hydrogen secondary battery - Google Patents

Ni-plated steel foil for nickel-hydrogen secondary battery current collector, nickel-hydrogen secondary battery current collector, and nickel-hydrogen secondary battery Download PDF

Info

Publication number
JP7474096B2
JP7474096B2 JP2020064395A JP2020064395A JP7474096B2 JP 7474096 B2 JP7474096 B2 JP 7474096B2 JP 2020064395 A JP2020064395 A JP 2020064395A JP 2020064395 A JP2020064395 A JP 2020064395A JP 7474096 B2 JP7474096 B2 JP 7474096B2
Authority
JP
Japan
Prior art keywords
nickel
steel foil
plated steel
current collector
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020064395A
Other languages
Japanese (ja)
Other versions
JP2021163639A (en
Inventor
裕人 海野
将大 福田
直樹 藤本
辰夫 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel Chemical and Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2020064395A priority Critical patent/JP7474096B2/en
Application filed by Nippon Steel Chemical and Materials Co Ltd filed Critical Nippon Steel Chemical and Materials Co Ltd
Priority to EP21779519.4A priority patent/EP4131513A4/en
Priority to PCT/JP2021/012383 priority patent/WO2021200506A1/en
Priority to US17/915,435 priority patent/US20230146305A1/en
Priority to CN202180026786.2A priority patent/CN115362580A/en
Priority to KR1020227029216A priority patent/KR20220132580A/en
Priority to TW110111173A priority patent/TWI810538B/en
Publication of JP2021163639A publication Critical patent/JP2021163639A/en
Application granted granted Critical
Publication of JP7474096B2 publication Critical patent/JP7474096B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Description

本発明は、ニッケル水素二次電池集電体用Niめっき鋼箔、ニッケル水素二次電池集電体、及びニッケル水素二次電池に関するものである。 The present invention relates to Ni-plated steel foil for nickel-hydrogen secondary battery current collectors, nickel-hydrogen secondary battery current collectors, and nickel-hydrogen secondary batteries.

近年、パソコンや携帯電話など電子機器の急激な普及に伴い、ニッケル水素二次電池やリチウムイオン二次電池、さらにはリチウムポリマー二次電池など大量の充放電可能な電池が使用されている。特に、ニッケル水素二次電池は高エネルギー密度を有するため、移動体通信、携帯用情報端末用電源として利用されている。また、ニッケル水素二次電池は、エネルギー密度や出力特性は中庸であるが、信頼性や安全性、コスト面で有利であり、近年は、車載用にも実用化されており、その市場が急速に伸びている。それに伴い、小型化、軽量化を、さらに追及するため、機器の中で大きな容積を占める電池に対し、さらなる小型化、軽量化のための性能改善が求められている。 In recent years, with the rapid spread of electronic devices such as personal computers and mobile phones, a large number of rechargeable and dischargeable batteries, such as nickel-metal hydride batteries, lithium-ion secondary batteries, and even lithium polymer secondary batteries, are being used. Nickel-metal hydride secondary batteries in particular have a high energy density and are therefore used as power sources for mobile communications and portable information terminals. Nickel-metal hydride secondary batteries have moderate energy density and output characteristics, but are advantageous in terms of reliability, safety, and cost, and have recently been put to practical use in vehicles, with the market growing rapidly. Accordingly, in order to further pursue miniaturization and weight reduction, there is a demand for performance improvements to further reduce the size and weight of batteries, which occupy a large volume in devices.

このような二次電池の基本構造は、箔状の金属集電体に可逆的に電気化学反応を起こす物質、いわゆる活物質を塗布した電極、正極及び負極を分離するセパレータ、電解液並びに電池ケースからなっている。ニッケル水素二次電池では、ニッケルフォームを集電体もしくは芯体として用いるのが一般的であるが、ニッケルフォームは複雑な製造工程を経て多孔質体を形成するため、高価である。また、集電体もしくは芯体自体は電池容量に直接寄与しない。そのため、最近の高容量化の要求に応えることを目的に、集電体に安価でかつ薄い金属箔を用いることが検討され始めている。 The basic structure of such a secondary battery consists of an electrode coated with a material that undergoes a reversible electrochemical reaction (so-called active material) on a foil-shaped metal current collector, a separator that separates the positive and negative electrodes, an electrolyte, and a battery case. Nickel-hydrogen secondary batteries generally use nickel foam as the current collector or core, but nickel foam is expensive because it is formed into a porous body through a complex manufacturing process. In addition, the current collector or core itself does not directly contribute to the battery capacity. Therefore, in order to meet the recent demand for higher capacity, the use of inexpensive and thin metal foil as the current collector has begun to be considered.

上記にあげる箔状の金属集電体として、鉄系の箔が従来提案されている。鉄は、銅に比較すると電気抵抗が大きいが、近年の電池構造の工夫とともに、電池の用途、要求特性の多様化から、電気抵抗が必ずしも問題とはならなくなってきている。 Iron-based foils have been proposed as the foil-shaped metal current collectors mentioned above. Iron has a higher electrical resistance than copper, but recent improvements in battery structure and the diversification of battery applications and required characteristics mean that electrical resistance is no longer necessarily a problem.

負極集電体に鉄箔を用いるものとしては、特許文献1に、厚さ35ミクロン以下の電解鉄箔を、リチウム二次電池の負極の集電体に用いることが提案されている。また、防錆性の観点から、Niめっきされた電解鉄箔を用いることも提案されている。 As an example of using iron foil as a negative electrode current collector, Patent Document 1 proposes using electrolytic iron foil with a thickness of 35 microns or less as a current collector for the negative electrode of a lithium secondary battery. It also proposes using Ni-plated electrolytic iron foil from the viewpoint of rust prevention.

特許文献2には、鉄箔又はニッケルめっきを施した鉄箔の表面に三二酸化鉄を形成してなる金属箔を、リチウム二次電池等の非水電解質二次電池の負極集電体に用いることが提案されている。しかし、この鉄系金属箔は過放電時のFe溶出が避けられないとともに、負極電位での副反応が起き易く、結果として、電池の効率や寿命を阻害し易い。 Patent Document 2 proposes using a metal foil made by forming ferric oxide on the surface of iron foil or nickel-plated iron foil as a negative electrode current collector for non-aqueous electrolyte secondary batteries such as lithium secondary batteries. However, this iron-based metal foil inevitably causes iron elution during overdischarge, and is prone to side reactions at the negative electrode potential, which can result in impaired battery efficiency and lifespan.

特許文献3、4には、リチウムイオン二次電池等の非水系電解液二次電池の負極集電箔に用いることができる鋼箔が提案されている。これらの鋼箔は、薄くて強度があり、軽量で経済的であり、防錆性、過放電時の耐金属イオン溶出性、負極電位での安定性に優れた負極集電体用高強度鋼箔であることが記載されている。 Patent Documents 3 and 4 propose steel foils that can be used as negative electrode current collectors for non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries. These steel foils are described as being thin and strong, lightweight, and economical, and are high-strength steel foils for negative electrode current collectors that are excellent in rust prevention, resistance to metal ion elution during overdischarge, and stability at the negative electrode potential.

以上の特許文献に記載されているように、鋼箔は、薄くて強度があり、軽量で経済的であり、防錆性、過放電時の耐金属イオン溶出性、負極電位での安定性を有しており、リチウムイオン二次電池の負極集電体用として優れていることがわかっている。
しかし、これらの特許文献で提案されている鉄箔、鋼箔はいずれも、リチウムイオン二次電池用であり、ニッケル水素二次電池の集電体用ではない。
As described in the above patent documents, steel foil is thin and strong, lightweight and economical, and has rust resistance, resistance to metal ion elution during overdischarge, and stability at negative electrode potential, and is known to be excellent for use as a negative electrode current collector in lithium ion secondary batteries.
However, the iron foils and steel foils proposed in these patent documents are all intended for use in lithium ion secondary batteries, and are not intended for use as current collectors in nickel-hydrogen secondary batteries.

特許文献3、4に記載されている鋼箔は、薄くて強度があり、防錆性、過放電時の耐金属溶出性、負極電位での安定性に優れているので、これらの鋼箔をニッケル水素二次電池の集電体として用いることが企図される。
しかし、特許文献3,4に記載の鋼箔をニッケル水素二次電池の集電体に用いると、ニッケル水素二次電池の理論容量(Ah/kg)を遥かに下回る容量しか得られないことが分かっている。この理由は、両者の電解液が異なっているためであると考えられる。リチウムイオン二次電池の電解液は、リチウム電池の特性上、非水系電解液が用いられている。一方、ニッケル水素二次電池では、通常、アルカリ性水溶液が用いられている。そのため、リチウムイオン二次電池集電体用の鋼箔では問題にはならなかった、アルカリ性水溶液環境下での集電体からの金属イオンの溶出が、ニッケル水素二次電池での電池容量の低下に関係していると考えられる。
The steel foils described in Patent Documents 3 and 4 are thin and strong, and have excellent rust prevention properties, resistance to metal elution during overdischarge, and stability at negative electrode potential, so it is intended to use these steel foils as current collectors for nickel-metal hydride secondary batteries.
However, it has been found that when the steel foils described in Patent Documents 3 and 4 are used as current collectors for nickel-hydrogen secondary batteries, only a capacity far below the theoretical capacity (Ah/kg) of the nickel-hydrogen secondary battery can be obtained. This is believed to be because the electrolytes used are different. Due to the characteristics of lithium batteries, a non-aqueous electrolyte is used as the electrolyte for lithium-ion secondary batteries. On the other hand, an alkaline aqueous solution is usually used for nickel-hydrogen secondary batteries. Therefore, it is believed that the elution of metal ions from the current collector in an alkaline aqueous solution environment, which was not a problem with steel foils for lithium-ion secondary battery current collectors, is related to the decrease in battery capacity in nickel-hydrogen secondary batteries.

特開平06-310126号公報Japanese Patent Application Laid-Open No. 06-310126 特開平06-310147号公報Japanese Patent Application Laid-Open No. 06-310147 特開2013-222696号公報JP 2013-222696 A 特許第6124801号公報Patent No. 6124801

本発明は、軽量で経済的な鋼箔を用い、薄くて強度があり、防錆性、耐金属イオン溶出性に優れ、高容量なニッケル水素二次電池を実現するニッケル水素二次電池集電体用高強度鋼箔、当該Niめっき鋼箔を備えるニッケル水素二次電池集電体、及び当該Niめっき鋼箔を備えるニッケル水素二次電池の提供を目的とする。 The present invention aims to provide a high-strength steel foil for nickel-hydrogen secondary battery current collectors that uses lightweight, economical steel foil to realize nickel-hydrogen secondary batteries that are thin, strong, and have excellent rust resistance and resistance to metal ion elution, as well as a nickel-hydrogen secondary battery current collector that includes the Ni-plated steel foil, and a nickel-hydrogen secondary battery that includes the Ni-plated steel foil.

本願発明者は、上記ニッケル水素二次電池の容量低下の原因が、集電体として用いる鋼箔の金属成分、特にFe成分が電解液に溶出して、正極上で酸化されることにあることを見出し、このFe成分の溶出が抑制されたNiめっき鋼箔を、ニッケル水素二次電池正負極集電体用とすることで本発明を完成させた。 The inventors of the present application discovered that the cause of the capacity decrease in the above-mentioned nickel-hydrogen secondary battery is that the metal components of the steel foil used as the current collector, especially the Fe component, dissolve into the electrolyte and are oxidized on the positive electrode. They then completed the present invention by using Ni-plated steel foil, in which the dissolution of the Fe component is suppressed, for the positive and negative electrode current collectors of nickel-hydrogen secondary batteries.

上記目的を達成する本発明の要旨は、以下のとおりである。 The gist of the present invention to achieve the above objective is as follows:

(1)質量%で、
C:0.0001~0.0200%、
Si:0.0001~0.0200%、
Mn:0.005~0.300%、
P:0.001~0.020%、
S:0.0001~0.0100%、
Al:0.0005~0.1000%、
N:0.0001~0.0040%、
Ti及びNbの1種又は2種:それぞれ0.800%以下
を含み、そして
残部がFe及び不可避的不純物からなり、Niめっき層を両面に有するNiめっき鋼箔であって、
前記Niめっき鋼箔の表面及び裏面Niめっき層の厚みが、それぞれ、0.15μm以上であり、
前記Niめっき鋼箔の厚みが、5μm~40μmであり、
引張強度が600MPa超1200MPa以下であり、
表面欠陥面積率が前記Niめっき鋼箔の表面及び裏面ともに5.00%以下であることを特徴とするニッケル水素二次電池集電体用Niめっき鋼箔。
(2)前記Niめっき鋼箔の厚みが、10μm~30μmである前記(1)に記載のNiめっき鋼箔。
(3) 前記Niめっき鋼箔の表面及び裏面の前記Niめっき層の厚みが、それぞれ、0.20μm以上1.50μm以下である前記(1)又は(2)に記載のNiめっき鋼箔。
(4)前記(1)~(3)のいずれか1つに記載のニッケル水素二次電池集電体用Niめっき鋼箔からなるニッケル水素二次電池集電体。
(5)正極集電体上に、正極活物質層、セパレータ、負極活物質層及び負極集電体が順次積層されてなるニッケル水素二次電池であって、前記正極集電体及び前記負極集電体の少なくとも一方が、前記(4)に記載のニッケル水素二次電池集電体である、ニッケル水素二次電池。
(1) In mass%,
C: 0.0001 to 0.0200%,
Si: 0.0001 to 0.0200%,
Mn: 0.005 to 0.300%,
P: 0.001 to 0.020%,
S: 0.0001 to 0.0100%,
Al: 0.0005 to 0.1000%,
N: 0.0001 to 0.0040%,
A Ni-plated steel foil containing one or both of Ti and Nb: 0.800% or less each, with the balance being Fe and unavoidable impurities, and having Ni-plated layers on both sides,
The thickness of the front and back Ni plating layers of the Ni-plated steel foil is 0.15 μm or more,
The thickness of the Ni-plated steel foil is 5 μm to 40 μm,
The tensile strength is more than 600 MPa and not more than 1200 MPa,
A Ni-plated steel foil for a current collector of a nickel-hydrogen secondary battery, characterized in that the surface defect area rate of both the front and back surfaces of the Ni-plated steel foil is 5.00% or less.
(2) The Ni-plated steel foil according to (1), wherein the thickness of the Ni-plated steel foil is 10 μm to 30 μm.
(3) The Ni-plated steel foil according to (1) or (2), wherein the thicknesses of the Ni-plated layers on the front and back surfaces of the Ni-plated steel foil are 0.20 μm or more and 1.50 μm or less, respectively.
(4) A nickel-hydrogen secondary battery current collector comprising the Ni-plated steel foil for nickel-hydrogen secondary battery current collector according to any one of (1) to (3) above.
(5) A nickel-hydrogen secondary battery comprising a positive electrode current collector, a positive electrode active material layer, a separator, a negative electrode active material layer, and a negative electrode current collector laminated in that order on a positive electrode current collector, wherein at least one of the positive electrode current collector and the negative electrode current collector is the nickel-hydrogen secondary battery current collector described in (4) above.

本発明によれば、薄くて強度があり、電池容量低下の原因となるFe成分の溶出が少ない、軽量で経済的なニッケル水素二次電池集電体及びニッケル水素二次電池を提供することができる。本発明のニッケル水素二次電池集電体用Niめっき鋼箔は、ニッケル水素二次電池の正極集電体及び負極集電体のいずれにも好適に使用することができる。 The present invention provides a nickel-hydrogen secondary battery current collector and nickel-hydrogen secondary battery that are thin, strong, and have little elution of Fe components that cause a decrease in battery capacity, and that are lightweight and economical. The Ni-plated steel foil for nickel-hydrogen secondary battery current collectors of the present invention can be suitably used for both the positive and negative electrode current collectors of nickel-hydrogen secondary batteries.

本発明のニッケル水素二次電池集電体用Niめっき鋼箔(以下、「本発明のNiめっき鋼箔」ということがある。)は、下記の鋼成分組成からなり(%は質量%)、Niめっき鋼箔の両面(表面及び裏面)のNiめっき層の厚みが、それぞれ、0.15μm以上であり、Niめっき鋼箔の厚みが、5μm~40μmであり、引張強度が600MPa超1200MPa以下であり、表面欠陥面積率が前記Niめっき鋼箔の表面及び裏面ともに5.00%以下であることを特徴とする。 The Ni-plated steel foil for nickel-hydrogen secondary battery current collector of the present invention (hereinafter sometimes referred to as "Ni-plated steel foil of the present invention") has the following steel composition (% is mass %), and is characterized in that the thickness of the Ni plating layer on both sides (front and back) of the Ni-plated steel foil is 0.15 μm or more, the thickness of the Ni-plated steel foil is 5 μm to 40 μm, the tensile strength is more than 600 MPa and 1200 MPa or less, and the surface defect area ratio is 5.00% or less on both the front and back sides of the Ni-plated steel foil.

本発明のNiめっき鋼箔は、特に、表面欠陥面積率がNiめっき鋼箔の表面及び裏面ともに5.00%以下であることを特徴とする。前述したように、リチウムイオン二次電池集電体用の鋼箔をニッケル水素二次電池の集電体に用いると、過放電時以外では特に問題にはならなかった集電体成分の金属イオン溶出に起因する電池容量の低下が問題になる。
本願発明者は、研究の結果この電池容量の低下が、Niめっき鋼箔の表面欠陥により、鋼箔の金属成分、特にFe成分が、アルカリ性水溶液に溶出することに起因することを見出した。
The Ni-plated steel foil of the present invention is particularly characterized in that the surface defect area ratio is 5.00% or less on both the front and back sides of the Ni-plated steel foil. As described above, when a steel foil for a lithium-ion secondary battery current collector is used as a current collector for a nickel-metal hydride secondary battery, a decrease in battery capacity due to the elution of metal ions from the current collector components, which has not been a particular problem except during overdischarge, becomes a problem.
As a result of research, the present inventors have found that this decrease in battery capacity is caused by surface defects in the Ni-plated steel foil causing metal components, particularly Fe components, to dissolve in an alkaline aqueous solution.

Niめっき鋼箔の表面欠陥としては、Niめっきされた鋼板(薄板)を、圧延してNiめっき鋼箔にする際、圧延ロールとの接触や、被圧延材の変形により導入される、Niめっき層のクラックや疵、剥がれなどの不良が挙げられる。このNiめっき層の不良部から、鋼箔の金属成分のFeが、電解質のアルカリ性水溶液に溶出して、ニッケル水素二次電池の電池容量が、急速に低下してしまうことが分かった。 Surface defects in Ni-plated steel foil include defects such as cracks, scratches, and peeling in the Ni-plated layer that are introduced by contact with the rolling rolls or deformation of the rolled material when Ni-plated steel sheet (thin sheet) is rolled to make Ni-plated steel foil. It has been found that Fe, a metal component of the steel foil, dissolves from the defective parts of the Ni-plated layer into the alkaline aqueous solution of the electrolyte, causing a rapid decrease in the battery capacity of nickel-metal hydride secondary batteries.

本願発明者は、Niめっきされた鋼板(薄板)を、圧延してNiめっき鋼箔にする際の箔圧延工程を制御することで、このNiめっき層の不良を、劇的に低減させることができることを見出した。本発明のNiめっき鋼箔の表面欠陥面積率は、表面及び裏面ともに5.00%以下である。表面欠陥面積率が5.00%を超えると、Feイオンの溶出量が大きくなり、理論容量の半分以下の電池容量しか得られない。 The inventors of the present application have discovered that defects in the Ni plating layer can be dramatically reduced by controlling the foil rolling process when rolling a Ni-plated steel sheet (thin sheet) into Ni-plated steel foil. The surface defect area ratio of the Ni-plated steel foil of the present invention is 5.00% or less on both the front and back sides. If the surface defect area ratio exceeds 5.00%, the amount of eluted Fe ions becomes large, and the battery capacity obtained is only half or less of the theoretical capacity.

ニッケルめっき鋼板の表面欠陥は、一般的にフェロキシル試験によって評価される。本発明に規定するNiめっき鋼箔の表面欠陥面積率は、下記試験方法に基づいて得られた試験片の表裏面の表面欠陥の写真から計算される。 Surface defects in nickel-plated steel sheets are generally evaluated by the ferroxyl test. The surface defect area ratio of the Ni-plated steel foil specified in this invention is calculated from photographs of surface defects on the front and back surfaces of a test piece obtained based on the following test method.

具体的な操作としては、まず、純水に、フェロシアン化ナトリウム(ヘキサシアノ鉄(II)酸カリウム三水和物)10g/L、フェリシアン化カリウム(ヘキサシアノ鉄(III)酸カリウム三水和物)10g/L、及び塩化ナトリウム5g/Lを溶解させたフェロキシル試験溶液を用意する。この試験溶液に、表裏面にNiめっき層を有する50mm角のNiめっき鋼箔試験片を3分間浸漬する。この試験片を試験溶液から取り出し、水洗し、65℃で、5分間乾燥する。青色斑点が現れた試験片の表裏面を写真に撮り、コンピュータに取り込み、画像解析ソフトを用いて二値化処理して、表裏面の欠陥面積率を数値化する。一例としてImageJ(画像解析ソフト)の2つの閾値による二値化処理機能を用いて前述する青色斑点を識別する方法を記載する。はじめにコンピュータに取り込んだ写真を8bitでグレースケール化する。なお8bitで保存されたグレースケール画像では、光度が0のときは黒、最大値255のときは白を表す。光度の閾値として0と215とを設定すると青色斑点を精度よく識別できることが判明している。そこで、これらの光度が0~215の範囲が色変わりするよう画像を処理し、青色斑点を識別する。その後、解析機能を用いて青色斑点部の面積率を算出する。なお二値化処理はImageJ以外の画像解析ソフトを使用してもよい。 As a specific procedure, first, prepare a ferroxyl test solution by dissolving 10 g/L of sodium ferrocyanide (potassium hexacyanoferrate (II) trihydrate), 10 g/L of potassium ferricyanide (potassium hexacyanoferrate (III) trihydrate), and 5 g/L of sodium chloride in pure water. Immerse a 50 mm square Ni-plated steel foil test piece having Ni plating layers on the front and back sides in this test solution for 3 minutes. Remove the test piece from the test solution, rinse with water, and dry at 65°C for 5 minutes. Photograph the front and back sides of the test piece on which blue spots have appeared, import it into a computer, and perform binarization processing using image analysis software to quantify the defect area rate of the front and back sides. As an example, a method of identifying the aforementioned blue spots using the binarization processing function using two thresholds of ImageJ (image analysis software) is described. First, convert the photo imported into the computer into grayscale at 8 bits. In grayscale images saved in 8-bit, a luminosity of 0 represents black, and a maximum value of 255 represents white. It has been found that blue spots can be accurately identified by setting the luminosity thresholds to 0 and 215. Therefore, the image is processed so that the luminosity range from 0 to 215 changes color to identify blue spots. After that, the area ratio of the blue spots is calculated using an analysis function. Note that image analysis software other than ImageJ may be used for the binarization process.

本発明のNiめっき鋼箔の成分は、
C:0.0001~0.0200%、
Si:0.0001~0.0200%、
Mn:0.005~0.300%、
P:0.001~0.020%、
S:0.0001~0.0100%、
Al:0.0005~0.1000%、
N:0.0001~0.0040%、
Ti及びNbの1種又は2種:それぞれ0.800%以下
を含み、
残部がFe及び不可避的不純物である。
The components of the Ni-plated steel foil of the present invention are:
C: 0.0001 to 0.0200%,
Si: 0.0001 to 0.0200%,
Mn: 0.005 to 0.300%,
P: 0.001 to 0.020%,
S: 0.0001 to 0.0100%,
Al: 0.0005 to 0.1000%,
N: 0.0001 to 0.0040%,
One or both of Ti and Nb: 0.800% or less of each;
The balance is Fe and unavoidable impurities.

まず、成分組成の限定理由を説明する。以下、%は質量%を意味する。 First, we will explain the reasons for limiting the component composition. In the following, % means mass %.

(C:0.0001~0.0200%)
Cは、鋼の強度を高める元素であり、C含有量の増加とともに加工硬化が起こりやすくなる。C含有量の増加とともに冷間圧延時の変形抵抗が大きくなると、圧延ロールでの高い加圧が必要になるため、Niめっきされた鋼板(薄板)を圧延してNiめっき鋼箔にする際に導入されるNiめっき層の欠陥が増えてしまう。さらに、過剰に含有させると鋼の電気抵抗が悪化する場合があるので、C含有量の上限を0.0200%とする。C含有量の下限は、特に規定されないが、現行の精錬技術における限界が0.0001%程度であるので、これを下限とした。C含有量は、より好ましくは0.0010%~0.0100%である。
(C: 0.0001 to 0.0200%)
C is an element that increases the strength of steel, and work hardening is more likely to occur as the C content increases. If the deformation resistance during cold rolling increases with an increase in the C content, high pressure is required in the rolling rolls, and defects in the Ni-plated layer introduced when rolling a Ni-plated steel sheet (thin sheet) to form a Ni-plated steel foil increase. Furthermore, since excessive C content may deteriorate the electrical resistance of the steel, the upper limit of the C content is set to 0.0200%. The lower limit of the C content is not particularly specified, but since the limit in current refining technology is about 0.0001%, this is set as the lower limit. The C content is more preferably 0.0010% to 0.0100%.

(Si:0.0001~0.0200%)
Siは、鋼の強度を高める元素であるが、過剰に含有させると鋼の電気抵抗が悪化する場合があるので、Si含有量の上限を0.0200%とする。Si含有量を0.0001%未満にすると、精練コストが多大となるので、Si含有量の下限は0.0001%とする。Si含有量は、より好ましくは0.0010%~0.0080%である。
(Si: 0.0001 to 0.0200%)
Although Si is an element that increases the strength of steel, excessive inclusion of Si may deteriorate the electrical resistance of steel, so the upper limit of the Si content is set to 0.0200%. If the Si content is less than 0.0001%, the refining cost becomes very high, so the lower limit of the Si content is set to 0.0001%. The Si content is more preferably 0.0010% to 0.0080%.

(Mn:0.005~0.300%)
Mnは、鋼の強度を高める元素であるが、過剰に含有させると鋼の電気抵抗が悪化する場合があるので、Mn含有量の上限を0.300%とする。Mn含有量を0.005%未満にすると、精練コストが多大となるとともに、鋼が軟質化しすぎて圧延性が低下してしまう場合があるため、Mn含有量の下限は0.005%とする。Mn含有量は、より好ましくは0.050%~0.200%である。
(Mn: 0.005 to 0.300%)
Mn is an element that increases the strength of steel, but if contained in excess, the electrical resistance of the steel may deteriorate, so the upper limit of the Mn content is set to 0.300%. If the Mn content is less than 0.005%, the refining cost becomes high and the steel may become too soft, resulting in reduced rollability, so the lower limit of the Mn content is set to 0.005%. The Mn content is more preferably 0.050% to 0.200%.

(P:0.001~0.020%)
Pは、鋼の強度を高める元素であるが、過剰に含有させると鋼の電気抵抗が悪化する場合があるので、P含有量の上限を0.020%とする。P含有量を0.001%未満にすると、精練コストが多大となる場合があるので、P含有量の下限は0.001%とする。P含有量は、より好ましくは0.001%~0.010%である。
(P: 0.001 to 0.020%)
P is an element that increases the strength of steel, but if contained in excess, the electrical resistance of the steel may deteriorate, so the upper limit of the P content is set to 0.020%. If the P content is less than 0.001%, the refining cost may become very high, so the lower limit of the P content is set to 0.001%. The P content is more preferably 0.001% to 0.010%.

(S:0.0001~0.0100%)
Sは、鋼の熱間加工性及び耐食性を低下させる元素であるから、少ないほど好ましい。さらに、本実施形態に係る鋼箔のような薄い鋼箔の場合、Sが多いと、Sの存在に起因する介在物によって電気抵抗が悪化したり、また、鋼の強度が低下したりする場合があるので、S含有量の上限は0.0100%とする。S含有量を0.0001%未満にすると、精練コストが多大となる場合があるので、S含有量の下限は0.0001%とする。S含有量は、より好ましくは0.0010%~0.0080%である。
(S: 0.0001 to 0.0100%)
Since S is an element that reduces the hot workability and corrosion resistance of steel, the less the content, the better. Furthermore, in the case of a thin steel foil such as the steel foil according to the present embodiment, if there is a large amount of S, the electrical resistance may deteriorate due to inclusions caused by the presence of S, and the strength of the steel may decrease, so the upper limit of the S content is set to 0.0100%. If the S content is less than 0.0001%, the refining cost may become very high, so the lower limit of the S content is set to 0.0001%. The S content is more preferably 0.0010% to 0.0080%.

(Al:0.0005~0.1000%)
Alは、鋼の脱酸元素として0.0005%以上を含有させる。過剰に含有させると、電気抵抗が悪化し、また、製造コストの増大を招く場合があるので、Al含有量の上限は0.1000%とする。Al含有量は、より好ましくは0.0100%~0.0500%である。
(Al: 0.0005 to 0.1000%)
Al is contained in an amount of 0.0005% or more as a deoxidizing element for the steel. Excessive content of Al may deteriorate the electrical resistance and may also lead to an increase in manufacturing costs, so the upper limit of the Al content is set to 0.1000%. The Al content is more preferably 0.0100% to 0.0500%.

(N:0.0001~0.0040%)
Nは、鋼の熱間加工性及び加工性を低下させる元素であるから、少ないほど好ましく、N含有量の上限は0.0040%とする。N含有量を0.0001%未満にすると、コストが多大となる場合があるので、N含有量の下限は0.0001%とする。N含有量は、より好ましくは0.0010%~0.0030%である。
(N: 0.0001 to 0.0040%)
Since N is an element that reduces the hot workability and workability of steel, the less N it contains, the better, and the upper limit of the N content is set to 0.0040%. If the N content is less than 0.0001%, the cost may become very high, so the lower limit of the N content is set to 0.0001%. The N content is more preferably 0.0010% to 0.0030%.

(Ti及びNbの1種又は2種:それぞれ0.800%以下)
本発明のNiめっき鋼箔の鋼箔は、さらにTi及び/又はNbを0.100%以下含有する。Ti及び/又はNbは、鋼中のC及びNを炭化物及び窒化物として固定して、鋼の加工性を向上させることができる。ただし、過剰に添加すると、製造コストの増大、及び電気抵抗の悪化を招く場合がある。好ましい含有量範囲は、Ti:0.010~0.800%、Nb:0.005~0.050%である。さらに好ましい含有量範囲は、Ti:0.010~0.100%、Nb:0.005~0.040%である。
(Ti and Nb: 0.800% or less each)
The Ni-plated steel foil of the present invention further contains Ti and/or Nb in an amount of 0.100% or less. Ti and/or Nb can fix C and N in the steel as carbides and nitrides, improving the workability of the steel. However, excessive addition of these elements may lead to an increase in manufacturing costs and a deterioration in electrical resistance. The preferred content ranges are Ti: 0.010-0.800%, Nb: 0.005-0.050%. More preferred content ranges are Ti: 0.010-0.100%, Nb: 0.005-0.040%.

(不純物)
本明細書で用いる用語「不純物」は、原料由来の不純物元素、Niめっき鋼板の製造中に混入する元素及び意図的に添加された元素であって、本発明の特性を阻害しない範囲の元素のことを意味する。本発明の実施形態に係る鋼箔では、本発明の特性を阻害しない範囲で不純物の混入が許容される。
(impurities)
The term "impurities" used in this specification means impurity elements derived from raw materials, elements mixed during the production of Ni-plated steel sheets, and elements intentionally added within a range that does not impair the characteristics of the present invention. In the steel foil according to the embodiment of the present invention, the inclusion of impurities is permitted within a range that does not impair the characteristics of the present invention.

本発明に係る鋼箔は、さらに、付加的に、Feの一部に代えて、B、Cu、Ni、Sn、Cr等の元素を、本実施形態に係る鋼箔の特性を損なわない範囲で含有してもよい。 The steel foil according to the present invention may further contain elements such as B, Cu, Ni, Sn, and Cr in place of a portion of the Fe, to the extent that the properties of the steel foil according to the present embodiment are not impaired.

上述したNiめっき鋼箔の成分は、一般的な分析方法によって測定すればよい。成分の測定箇所は、中央部とする。ここで、中央部とは、Niメッキ鋼箔の端部から1cmの部分を除いた任意の場所である。例えば、ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry)を用いて測定すればよい。なお、CおよびSは燃焼-赤外線吸収法を用い、Nは不活性ガス融解-熱伝導度法を用いて測定すればよい。表面のNiめっき層を機械研削により除去してから化学組成の分析を行えばよい。 The components of the Ni-plated steel foil described above may be measured by a general analytical method. The components are measured at the center. Here, the center refers to any location excluding a portion 1 cm from the end of the Ni-plated steel foil. For example, the components may be measured using ICP-AES (Inductively Coupled Plasma-Atomic Emission Spectrometry). C and S may be measured using the combustion-infrared absorption method, and N may be measured using the inert gas fusion-thermal conductivity method. The Ni-plated layer on the surface may be removed by mechanical grinding before analyzing the chemical composition.

本発明のNiめっき鋼箔は、鋼箔の第1面及び第2面に、Niめっき層を有する。ここで、第1面は、Niめっき鋼箔の一方の面をいい、第2面は、Niめっき鋼箔のもう一方の面をいう。
鋼箔上の第1面及び第2面に付着したNiめっき層の厚みは、それぞれ、0.15μm以上である。Niめっき層の厚みが厚いほど、鋼箔からの金属溶出性が改善されるが、コストは増加する。各面のNiめっき層の厚みが2.00μmを超えても、顕著な性能向上は認められないので、コスト対効果の観点から、Niめっき層の厚みの実質的な上限は2.00μmである。Niめっき層のより好ましい厚みは、0.20μm以上1.50μm以下である。
The Ni-plated steel foil of the present invention has a Ni-plated layer on a first side and a second side of the steel foil, where the first side refers to one side of the Ni-plated steel foil and the second side refers to the other side of the Ni-plated steel foil.
The thickness of the Ni plating layer attached to the first and second sides of the steel foil is 0.15 μm or more. The thicker the Ni plating layer, the more improved the metal elution from the steel foil, but the cost increases. Even if the thickness of the Ni plating layer on each side exceeds 2.00 μm, no significant performance improvement is observed, so from the viewpoint of cost-effectiveness, the substantial upper limit of the thickness of the Ni plating layer is 2.00 μm. A more preferable thickness of the Ni plating layer is 0.20 μm or more and 1.50 μm or less.

箔圧延前の鋼板の第1面及び第2面にNiめっきを施し(圧延前めっき)、このNiめっき鋼板を焼鈍し、Fe-Ni拡散層(Fe-Ni合金層ともいう)を形成させた後、箔圧延する。Niめっき層を有する鋼板の箔圧延には細心の注意を要する。例えば、箔圧延の際のNiめっきの伸びが鋼板の伸びに比較して小さい場合、Niめっき層にクラックなどの欠陥が発生し、この欠陥が箔強度の低下を引き起こす場合がある。 Ni plating is applied to the first and second sides of the steel sheet before foil rolling (pre-rolling plating), and the Ni-plated steel sheet is annealed to form an Fe-Ni diffusion layer (also called an Fe-Ni alloy layer), and then the sheet is foil rolled. Foil rolling of steel sheet with a Ni plating layer requires careful attention. For example, if the elongation of the Ni plating during foil rolling is small compared to the elongation of the steel sheet, defects such as cracks may occur in the Ni plating layer, and these defects may cause a decrease in the foil strength.

箔強度を低下させないNiめっきとしては、軟質Niめっきが特に好適である。具体的には、鋼板上に付着させた、不純物以外は含有しない純Niめっきを、300℃以上の熱処理を行い、これによって、めっき層のひずみを解放したNiめっきを本発明のNiめっき鋼箔における軟質Niめっきとする。また、Niめっきは、箔圧延中に導入されたNiめっき層の欠陥の補修を目的に、箔圧延後に追加で実施してもよい。 As a Ni plating that does not reduce the foil strength, soft Ni plating is particularly suitable. Specifically, pure Ni plating that does not contain anything other than impurities and is applied to a steel sheet is heat-treated at 300°C or higher, and the Ni plating that releases the strain in the plating layer is the soft Ni plating in the Ni-plated steel foil of the present invention. In addition, Ni plating may be additionally performed after foil rolling in order to repair defects in the Ni plating layer that were introduced during foil rolling.

なお、Niめっき鋼鈑のめっき厚は、JIS H8501-1999に規定する試験方法に基づいて測定される。すなわち、製造上はめっき電流値によって制御されるが、直接的には、箔圧延前の鋼板の第1面及び第2面にNiめっきを施し(圧延前めっき)、このNiめっき鋼板を焼鈍する前に、ICP等の化学分析を用いて、Niめっきの付着量(g/m2)を測定する。Niめっき目付量毎に予め検量線を作成しておき、Niの蛍光X線強度からNiめっき厚を算出する。ただし、Niめっき鋼鈑を焼鈍した後は、内部に拡散したNiの検出強度が低くなるため、同一の目付量であっても、蛍光X線強度は低めに検知される。そのため、Niめっき鋼鈑を焼鈍した後の検量線を新たに作成する必要がある。 The plating thickness of the Ni-plated steel sheet is measured based on the test method specified in JIS H8501-1999. That is, in manufacturing, it is controlled by the plating current value, but directly, Ni plating is applied to the first and second sides of the steel sheet before foil rolling (pre-rolling plating), and before annealing the Ni-plated steel sheet, the Ni plating adhesion weight (g/m 2 ) is measured using chemical analysis such as ICP. A calibration curve is prepared in advance for each Ni plating weight, and the Ni plating thickness is calculated from the fluorescent X-ray intensity of Ni. However, after annealing the Ni-plated steel sheet, the detection intensity of Ni diffused inside is lowered, so that the fluorescent X-ray intensity is detected as lower even for the same weight. Therefore, it is necessary to prepare a new calibration curve after annealing the Ni-plated steel sheet.

さらに、Niめっき鋼箔のめっき厚は、グロー放電発行分光分析法(GDS)によって測定する。具体的には、GDSによって測定されたNi原子の深さ方向のプロファイルにおいて、Ni原子の含有比率が最大値の1/2となる深さをNiめっき厚とする。Niめっき鋼箔のNiめっき層以外の領域は、鋼箔とする。ここで、深さの基準には、シリコン単結晶のスパッタリング時間とスパッタリング速度との積に換算して得られた厚さを用いる。なお、Niめっき鋼箔のNiめっき層のNi含有量の最大値は90質量%以上である。このNiの最大含有量は、GDSで各元素の含有量を測定することで得られる。 Furthermore, the plating thickness of the Ni-plated steel foil is measured by glow discharge spectroscopy (GDS). Specifically, the Ni plating thickness is the depth at which the Ni atom content ratio is 1/2 of the maximum value in the Ni atom depth profile measured by GDS. The area of the Ni-plated steel foil other than the Ni plating layer is steel foil. Here, the depth standard is the thickness obtained by converting the thickness into the product of the sputtering time and the sputtering rate of the silicon single crystal. The maximum Ni content of the Ni plating layer of the Ni-plated steel foil is 90 mass% or more. This maximum Ni content is obtained by measuring the content of each element by GDS.

本発明のNiめっき鋼箔の厚みは、Niめっき層を含めて5μm~40μmである。これは、本発明のような機械的強度が十分に高いNiめっき鋼箔を用いて電池を小型化及び軽量化していくうえでは、薄い集電箔、すなわち薄い鋼箔が望まれるからである。小型化及び軽量化の観点からは、鋼箔はより薄い方が好ましく、下限を特に限定する必要はない。しかしながら、コスト又は厚さの均一性を考えると、5μm以上がよい。Niめっき鋼箔の厚みは、好ましくは、10μm~30μmである。 The thickness of the Ni-plated steel foil of the present invention is 5 μm to 40 μm, including the Ni-plated layer. This is because a thin current collector foil, i.e., a thin steel foil, is desired when making batteries smaller and lighter using Ni-plated steel foil with sufficiently high mechanical strength as in the present invention. From the standpoint of making batteries smaller and lighter, a thinner steel foil is preferable, and there is no need to set a lower limit. However, when considering cost or thickness uniformity, a thickness of 5 μm or more is preferable. The thickness of the Ni-plated steel foil is preferably 10 μm to 30 μm.

本発明のNiめっき鋼箔の引張強度は、600MPa超1200MPa以下である。なお、引張強度は、常温での測定値である。引張強度が600MPa以下では、集電体に活物質層を塗工する際の取り扱いによる皺や折れの発生や、充放電に伴う活物質の膨張収縮により、鋼箔が変形したり活物質が剥がれたりする問題が起きる可能性がある。なお、鋼箔の引張強度は、JIS Z2241に規定する金属材料引張試験方法に準拠する試験方法に基づいて測定される。試験片の形状は13B号、引張方向は圧延方向とする。試験速度は1mm/minとする。 The tensile strength of the Ni-plated steel foil of the present invention is more than 600 MPa and not more than 1200 MPa. The tensile strength is measured at room temperature. If the tensile strength is 600 MPa or less, problems may occur such as wrinkles or folds caused by handling when applying the active material layer to the current collector, or the steel foil may be deformed or the active material may peel off due to expansion and contraction of the active material caused by charging and discharging. The tensile strength of the steel foil is measured based on a test method that conforms to the metallic material tensile test method specified in JIS Z2241. The shape of the test piece is No. 13B, and the tensile direction is the rolling direction. The test speed is 1 mm/min.

鋼箔の皺や折れ、変形及び活物質の剥離を防止する観点からは、特に、引張強度の上限を限定する必要はない。しかしながら、取り扱いの容易性、及び工業的な圧延による加工硬化によって強度を得る際の安定性を考慮すると、1200MPaが鋼箔の引張強度の実質的な上限となる。 From the viewpoint of preventing wrinkling, folding, and deformation of the steel foil and peeling of the active material, there is no particular need to limit the upper limit of the tensile strength. However, taking into consideration ease of handling and the stability when obtaining strength by work hardening through industrial rolling, 1200 MPa is the practical upper limit of the tensile strength of the steel foil.

本発明のNiめっき鋼箔の製造方法は、以下の通りである。まず、通常の薄板製法に従って、前述した所定の成分組成の薄板(鋼板)を製造する。その後、箔圧延前の鋼板の表面及び裏面にNiめっきを施す。このNiめっき鋼板を、焼鈍し、Fe-Ni拡散層(Fe-Ni合金層ともいう)を形成させた後、冷間圧延(箔圧延)によって、5μm~40μm厚のNiめっき鋼箔とする。冷間圧延によって生じる加工硬化を利用して、600Mpa超1200MPa以下の高強度を達成する。 The method for manufacturing the Ni-plated steel foil of the present invention is as follows. First, a thin sheet (steel sheet) with the above-mentioned predetermined composition is manufactured according to a normal thin sheet manufacturing method. Then, Ni plating is applied to the front and back surfaces of the steel sheet before foil rolling. This Ni-plated steel sheet is annealed to form an Fe-Ni diffusion layer (also called an Fe-Ni alloy layer), and then cold-rolled (foil rolling) to produce Ni-plated steel foil with a thickness of 5 μm to 40 μm. By utilizing the work hardening caused by cold rolling, a high strength of more than 600 MPa and not more than 1200 MPa is achieved.

箔圧延の際の累積圧下率は70%以上とする。ここで、累積圧下率とは、最初の圧延スタンドの入口板厚に対する累積圧下量(最初のパス前の入口板厚と最終パス後の出口板厚との差)の百分率である。累積圧下率が70%未満であると、十分な箔強度が発現しない。箔圧延の際の累積圧下率は、好ましくは80%以上である。累積圧下率の上限は、特に限定されない。しかしながら通常の圧延能力では、98%程度が達成できる累積圧下率の限界である。また、各パスでの圧延によるめっき不良を低減させるために、圧延の各パスの圧下率は、5~40%の範囲とすることが好ましい。 The cumulative reduction during foil rolling is 70% or more. Here, the cumulative reduction is the percentage of the cumulative reduction amount (the difference between the entrance thickness before the first pass and the exit thickness after the final pass) relative to the entrance thickness of the first rolling stand. If the cumulative reduction is less than 70%, sufficient foil strength is not achieved. The cumulative reduction during foil rolling is preferably 80% or more. There is no particular upper limit to the cumulative reduction. However, with normal rolling capacity, the limit of the cumulative reduction that can be achieved is about 98%. In addition, in order to reduce plating defects due to rolling in each pass, it is preferable that the reduction in each rolling pass is in the range of 5 to 40%.

また、各パスの単位圧延荷重(kN/mm)を適正域にコントロールする。単位圧延荷重とは、圧延ロールから被加工材にかかる荷重を被加工材の板幅で除したものである。好ましい単位圧延荷重は、0.5~1.2kN/mmである。0.5kN/mm未満であると、圧延に伴う加工発熱が少なく、Niめっき層の柔軟性が低下するため、Niめっき層にクラックが生じ、表面欠陥が多くなる。また、1.2kN/mmを超えても、加工発熱が多くなりすぎるため、Niめっき層が圧延ロールにピックアップされてしまうため(圧延ロールにNiが付着)、表面欠陥面積率は多くなる。 In addition, the unit rolling load (kN/mm) for each pass is controlled to an appropriate range. The unit rolling load is the load applied to the workpiece from the rolling roll divided by the width of the workpiece. A preferred unit rolling load is 0.5 to 1.2 kN/mm. If it is less than 0.5 kN/mm, the processing heat generated during rolling is small and the flexibility of the Ni plating layer is reduced, causing cracks in the Ni plating layer and increasing the number of surface defects. If it exceeds 1.2 kN/mm, the processing heat becomes too high, causing the Ni plating layer to be picked up by the rolling roll (Ni adheres to the rolling roll), resulting in a high surface defect area ratio.

また、本発明の実施形態に係るNiめっき鋼箔を、ニッケル水素二次電池正極集電体又は負極集電体として用いることで、電池容量が低下しにくい、つまり電池寿命の長いニッケル水素電池を得ることができる。具体的には、一般的なニッケル水素二次電池は、正極集電体上に、正極活物質層、セパレータ、負極活物質層及び負極集電体が順次積層されてなるが、本発明の実施形態に係るNiめっき鋼箔からなるニッケル水素二次電池集電体を上述の正極集電体及び上述の負極集電体の少なくとも一方に用いる。本発明の実施形態に係るニッケル水素二次電池集電体は、Niめっき鋼箔をそのまま用いてもよいし、活物質層との接触面積を改善するために、表面加工を施してもよい。
Niめっき鋼箔は正極集電体及び負極集電体のどちらにも好適に使用できるが、耐金属イオン溶出性に優れるという観点から、特に正極集電体として好適に使用できる。
In addition, by using the Ni-plated steel foil according to the embodiment of the present invention as a positive electrode collector or a negative electrode collector for a nickel-hydrogen secondary battery, a nickel-hydrogen battery in which the battery capacity is not easily reduced, that is, a long battery life can be obtained. Specifically, a typical nickel-hydrogen secondary battery is formed by sequentially laminating a positive electrode active material layer, a separator, a negative electrode active material layer, and a negative electrode current collector on a positive electrode current collector, but a nickel-hydrogen secondary battery current collector made of the Ni-plated steel foil according to the embodiment of the present invention is used for at least one of the above-mentioned positive electrode current collector and the above-mentioned negative electrode current collector. For the nickel-hydrogen secondary battery current collector according to the embodiment of the present invention, the Ni-plated steel foil may be used as it is, or may be surface-treated to improve the contact area with the active material layer.
The Ni-plated steel foil can be suitably used for both the positive electrode current collector and the negative electrode current collector, but is particularly suitable for use as the positive electrode current collector from the viewpoint of excellent resistance to metal ion elution.

この本発明の実施形態に係るニッケル水素電池において、本発明の実施形態に係るNiめっき鋼箔以外の各構成部材は、公知のものを使用することができる。
Niめっき鋼箔以外の正極集電体及び負極集電体としては、例えば、ニッケル箔が挙げられる。
正極活物質層に用いられる活物質としては、例えば、水酸化ニッケルが挙げられる。
負極活物質層に用いられる活物質としては、例えば、水素吸蔵合金が挙げられる。
セパレータとしては、例えば、ポリオレフィン不織布、ポリアミド不織布が挙げられる。
これらの構成部材の他に、公知の外装容器、集電リード、電解液、導電助剤、バインダーを構成部材として使用することができる。
In the nickel-metal hydride battery according to the embodiment of the present invention, known components can be used for each component other than the Ni-plated steel foil according to the embodiment of the present invention.
An example of the positive electrode current collector and the negative electrode current collector other than the Ni-plated steel foil is nickel foil.
An example of the active material used in the positive electrode active material layer is nickel hydroxide.
The active material used in the negative electrode active material layer may be, for example, a hydrogen storage alloy.
The separator may be, for example, a polyolefin nonwoven fabric or a polyamide nonwoven fabric.
In addition to these components, known outer containers, current collecting leads, electrolytes, conductive assistants, and binders can be used as components.

次に、本発明の実施例について説明するが、実施例の条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。 Next, an embodiment of the present invention will be described. However, the conditions in the embodiment are merely an example of conditions adopted to confirm the feasibility and effects of the present invention, and the present invention is not limited to this example of conditions. Various conditions may be adopted in the present invention as long as they do not deviate from the gist of the present invention and achieve the object of the present invention.

〔試験用Niめっき鋼箔の準備〕
下記の成分を有するスラブAを溶製した。残部は鉄および不純物であり、単位は質量%である。
[Preparation of Ni-plated steel foil for testing]
A slab A having the following composition was produced by melting. The remainder is iron and impurities, and the units are mass %.

Figure 0007474096000001
Figure 0007474096000001

表1に示す成分組成のスラブAから、通常の薄板製造方法により熱間圧延、冷間圧延を行い、板厚0.15mmの薄板を得た。 Slab A, whose composition is shown in Table 1, was hot-rolled and cold-rolled using conventional sheet metal manufacturing methods to obtain a sheet metal with a thickness of 0.15 mm.

〔Niめっきを施す操作〕
ニッケルめっきでは、硫酸ニッケル:320g/L、塩化ニッケル:70g/L、ほう酸:40g/Lを含むめっき浴を用い、浴温度:65℃、電解電流:20A/dm2の条件にて、通板速度の違いにより3.9~8.5μmのニッケルめっき層を鋼板の両面に形成した。次いで、5%H2(残部N2)雰囲気で保持温度820℃かつ保持時間40secで連続焼鈍処理を行った。
[Ni plating operation]
For nickel plating, a plating bath containing 320 g/L nickel sulfate, 70 g/L nickel chloride, and 40 g/L boric acid was used, and nickel plating layers of 3.9 to 8.5 μm were formed on both sides of the steel sheet by varying the sheet passing speed under conditions of a bath temperature of 65° C. and an electrolysis current of 20 A/dm 2. Next, continuous annealing treatment was performed in an atmosphere of 5% H 2 (balance N 2 ) at a holding temperature of 820° C. for a holding time of 40 sec.

〔箔圧延の操作〕
表2に示すように、各パス単位圧延荷重の最小/最大(kN/mm)に設定して、箔圧延操作を行った。上記操作により、鋼箔番号2~9の鋼箔を得た
[Foil rolling operation]
The foil rolling operation was carried out by setting the minimum/maximum rolling load (kN/mm) for each pass as shown in Table 2. Through the above operation, steel foils with steel foil numbers 2 to 9 were obtained.

〔Niめっき鋼箔の厚みの測定〕
得られたNiめっき鋼箔の厚みを、電気マイクロメーターによって測定した。
[Measurement of thickness of Ni-plated steel foil]
The thickness of the resulting Ni-plated steel foil was measured with an electric micrometer.

〔めっき厚の測定〕
得られた鋼箔のめっき厚みを、前記のグロー放電発行分光分析法によって測定した。結果を表2に示す。
[Measurement of plating thickness]
The plating thickness of the resulting steel foil was measured by the glow discharge luminescence spectroscopy described above, and the results are shown in Table 2.

〔引張強度の測定〕
得られたNiめっき鋼箔の引張強度を、JIS Z2241-2011に規定する金属材料引張試験方法に準拠する試験方法に基づいて測定した。
[Measurement of tensile strength]
The tensile strength of the obtained Ni-plated steel foil was measured based on a test method conforming to the metallic material tensile test method specified in JIS Z2241-2011.

〔表面欠陥面積率の測定〕
鋼箔番号2~9のめっき鋼箔の表面欠陥面積率を、前記のフェリシアン化カリウムを用いた試験方法に基づいて測定した。得られた試験片の表裏面の表面欠陥の写真を撮り、画像解析ソフトImageJを用いて二値化処理して、表裏面の欠陥面積率を数値化した。その後、解析機能を用いて青色斑点部の面積率を算出した。結果を表2に示す。
[Measurement of surface defect area ratio]
The surface defect area ratios of the plated steel foils of steel foil numbers 2 to 9 were measured based on the test method using potassium ferricyanide described above. Photographs of the surface defects on the front and back surfaces of the obtained test pieces were taken and binarized using image analysis software ImageJ to quantify the defect area ratios on the front and back surfaces. The area ratios of blue spots were then calculated using an analysis function. The results are shown in Table 2.

〔アルカリ中での定電位試験〕
耐金属イオン溶出性を評価するために、鋼箔番号2~9の鋼箔に対して、定電位試験を行い、アルカリ中での24時間後の定電位電流値(μA/cm2)を測定した。
被浸漬サイズ:50mm角程度のサンプルの一端に、Ni線をスポット溶接して、接続部を寺岡製作所製、品番No.647、厚み0.05mmのサーキットテープにて保護した後、6N(規定)のKOH試験液を満たした蓋付テフロン製容器にサンプルを浸漬した。試験温度は65℃とし、+0.4Vvs.SHE、対極:Pt、参照極:アルカリ用水銀電極(BAS製RE-61AP)の条件で電位を印加した。使用装置:北斗電工製ポテンショスタットHA-151Bを用い、電圧印加24時間後までの電流変化を測定した。24時間後の定電位電流値が4μA/cm2以下の場合を合格とし、それ以外を不合格とした。結果を表2に示す。
[Constant potential test in alkali]
To evaluate resistance to metal ion elution, a constant potential test was carried out on the steel foils of steel foil numbers 2 to 9, and the constant potential current value (μA/cm 2 ) after 24 hours in an alkali was measured.
Immersion size: A Ni wire was spot welded to one end of a sample of about 50 mm square, and the connection was protected with a circuit tape of 0.05 mm thickness (Teraoka Seisakusho, product number No. 647). The sample was then immersed in a Teflon container with a lid filled with 6N (standard) KOH test solution. The test temperature was 65°C, and a potential was applied under the conditions of +0.4V vs. SHE, counter electrode: Pt, reference electrode: alkaline mercury electrode (RE-61AP manufactured by BAS). Equipment used: A potentiostat HA-151B manufactured by Hokuto Denko was used to measure the current change up to 24 hours after voltage application. If the constant potential current value after 24 hours was 4 μA/cm 2 or less, it was considered to have passed, and if not, it was considered to have failed. The results are shown in Table 2.

アルカリ中での24時間後の定電位電流値の評価の基準として、比較例1として純Ni箔(箔厚み200μm)を用意した。表2に示すように、本発明例の鋼箔番号3、4,6~8では、圧延の各パスの単位圧延荷重を適正域にコントロールすることにより、Niめっき層の表面欠陥面積率が表面及び裏面ともに5.00%以下になっている。発明例の鋼箔番号7では、アルカリ中での24時間後の定電位電流値が純Ni箔(比較例1)と同等のレベルまで改善できた。一方、比較例の鋼箔番号2、5、9では、圧延の各パスの単位圧延荷重が適正範囲を外れているため、Niめっき層の厚みは本発明の範囲内ではあるものの、Niめっき層の表面欠陥面積率が大きくなってしまっており、アルカリ中での24時間後の定電位電流値が大きく悪化している。 As a standard for the evaluation of the constant potential current value after 24 hours in alkali, pure Ni foil (foil thickness 200 μm) was prepared as Comparative Example 1. As shown in Table 2, in the steel foils Nos. 3, 4, and 6 to 8 of the present invention, the surface defect area ratio of the Ni plating layer was 5.00% or less on both the front and back sides by controlling the unit rolling load of each rolling pass to an appropriate range. In the steel foil No. 7 of the present invention, the constant potential current value after 24 hours in alkali was improved to a level equivalent to that of the pure Ni foil (Comparative Example 1). On the other hand, in the steel foils Nos. 2, 5, and 9 of the comparative examples, the unit rolling load of each rolling pass was outside the appropriate range, so that although the thickness of the Ni plating layer was within the range of the present invention, the surface defect area ratio of the Ni plating layer was large, and the constant potential current value after 24 hours in alkali was significantly deteriorated.

Figure 0007474096000002
Figure 0007474096000002

Claims (5)

質量%で、
C:0.0001~0.0200%、
Si:0.0001~0.0200%、
Mn:0.005~0.300%、
P:0.001~0.020%、
S:0.0001~0.0100%、
Al:0.0005~0.1000%、
N:0.0001~0.0040%、
Ti及びNbの1種又は2種:それぞれ0.800%以下
を含み、そして残部がFe及び不純物からなり、Niめっき層を両面に有するNiめっき鋼箔であって、
前記Niめっき鋼箔の第1面及び第2面のNiめっき層の厚みが、それぞれ、0.15μm以上であり、
前記Niめっき鋼箔の厚みが、5μm~40μmであり、
引張強度が600MPa超1200MPa以下であり、
表面欠陥面積率が前記Niめっき鋼箔の前記第1面及び前記第2面ともに5.00%以下であることを特徴とするニッケル水素二次電池集電体用Niめっき鋼箔。
In mass percent,
C: 0.0001 to 0.0200%,
Si: 0.0001 to 0.0200%,
Mn: 0.005 to 0.300%,
P: 0.001 to 0.020%,
S: 0.0001 to 0.0100%,
Al: 0.0005 to 0.1000%,
N: 0.0001 to 0.0040%,
A Ni-plated steel foil containing one or both of Ti and Nb: 0.800% or less each, with the balance being Fe and impurities, and having a Ni-plated layer on both sides,
The thickness of the Ni-plated layer on the first surface and the second surface of the Ni-plated steel foil is 0.15 μm or more,
The thickness of the Ni-plated steel foil is 5 μm to 40 μm,
The tensile strength is more than 600 MPa and not more than 1200 MPa,
1. A Ni-plated steel foil for a current collector of a nickel-hydrogen secondary battery, wherein the surface defect area rate of both the first surface and the second surface of the Ni-plated steel foil is 5.00% or less.
前記Niめっき鋼箔の厚みが、10μm~30μmである請求項1に記載のNiめっき鋼箔。 The Ni-plated steel foil according to claim 1, wherein the thickness of the Ni-plated steel foil is 10 μm to 30 μm. 前記Niめっき鋼箔の表面及び裏面の前記Niめっき層の厚みが、それぞれ、0.20μm以上1.50μm以下である請求項1又は2に記載のNiめっき鋼箔。 The Ni-plated steel foil according to claim 1 or 2, wherein the thickness of the Ni-plated layer on the front and back surfaces of the Ni-plated steel foil is 0.20 μm or more and 1.50 μm or less, respectively. 請求項1~3のいずれか一項に記載のニッケル水素二次電池集電体用Niめっき鋼箔からなるニッケル水素二次電池集電体。 A nickel-hydrogen secondary battery current collector made of the Ni-plated steel foil for nickel-hydrogen secondary battery current collector according to any one of claims 1 to 3. 正極集電体上に、正極活物質層、セパレータ、負極活物質層及び負極集電体が順次積層されてなるニッケル水素二次電池であって、前記正極集電体及び前記負極集電体の少なくとも一方が、請求項4に記載のニッケル水素二次電池集電体である、ニッケル水素二次電池。 A nickel-hydrogen secondary battery in which a positive electrode active material layer, a separator, a negative electrode active material layer, and a negative electrode current collector are laminated in this order on a positive electrode current collector, and at least one of the positive electrode current collector and the negative electrode current collector is the nickel-hydrogen secondary battery current collector described in claim 4.
JP2020064395A 2020-03-31 2020-03-31 Ni-plated steel foil for nickel-hydrogen secondary battery current collector, nickel-hydrogen secondary battery current collector, and nickel-hydrogen secondary battery Active JP7474096B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2020064395A JP7474096B2 (en) 2020-03-31 2020-03-31 Ni-plated steel foil for nickel-hydrogen secondary battery current collector, nickel-hydrogen secondary battery current collector, and nickel-hydrogen secondary battery
PCT/JP2021/012383 WO2021200506A1 (en) 2020-03-31 2021-03-24 Ni-PLATED STEEL FOIL FOR NICKEL HYDROGEN SECONDARY BATTERY COLLECTORS, NICKEL HYDROGEN SECONDARY BATTERY COLLECTOR, AND NICKEL HYDROGEN SECONDARY BATTERY
US17/915,435 US20230146305A1 (en) 2020-03-31 2021-03-24 Ni-plated steel foil for nickel-hydrogen secondary battery current collector, nickel-hydrogen secondary battery current collector, and nickel-hydrogen secondary battery
CN202180026786.2A CN115362580A (en) 2020-03-31 2021-03-24 Ni-plated steel foil for nickel-metal hydride secondary battery current collector, and nickel-metal hydride secondary battery
EP21779519.4A EP4131513A4 (en) 2020-03-31 2021-03-24 Ni-plated steel foil for nickel hydrogen secondary battery collectors, nickel hydrogen secondary battery collector, and nickel hydrogen secondary battery
KR1020227029216A KR20220132580A (en) 2020-03-31 2021-03-24 Ni-plated steel foil for a nickel hydride secondary battery current collector, a nickel hydride secondary battery current collector, and a nickel hydride secondary battery
TW110111173A TWI810538B (en) 2020-03-31 2021-03-26 Ni-plated steel foil for nickel-hydrogen secondary battery current collector, nickel-hydrogen secondary battery current collector, and nickel-hydrogen secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020064395A JP7474096B2 (en) 2020-03-31 2020-03-31 Ni-plated steel foil for nickel-hydrogen secondary battery current collector, nickel-hydrogen secondary battery current collector, and nickel-hydrogen secondary battery

Publications (2)

Publication Number Publication Date
JP2021163639A JP2021163639A (en) 2021-10-11
JP7474096B2 true JP7474096B2 (en) 2024-04-24

Family

ID=78003645

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020064395A Active JP7474096B2 (en) 2020-03-31 2020-03-31 Ni-plated steel foil for nickel-hydrogen secondary battery current collector, nickel-hydrogen secondary battery current collector, and nickel-hydrogen secondary battery

Country Status (1)

Country Link
JP (1) JP7474096B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240234740A1 (en) * 2021-04-28 2024-07-11 Toyo Kohan Co., Ltd. Surface treated steel foil for current collector and method for manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085015A (en) 1999-09-17 2001-03-30 Sumitomo Metal Steel Products Inc Porous nickel foil for alkaline storage battery negative electrode and manufacture therefor
WO2013157600A1 (en) 2012-04-19 2013-10-24 新日鐵住金株式会社 Steel foil and method for producing same
WO2013157598A1 (en) 2012-04-19 2013-10-24 新日鐵住金株式会社 Steel foil and method for producing same
JP2013222696A (en) 2012-04-19 2013-10-28 Nippon Steel & Sumitomo Metal Steel foil for secondary battery negative electrode collector
WO2016013575A1 (en) 2014-07-22 2016-01-28 新日鐵住金株式会社 Steel foil for power storage device container, container for power storage device, power storage device, and method for manufacturing steel foil for power storage device container

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001085015A (en) 1999-09-17 2001-03-30 Sumitomo Metal Steel Products Inc Porous nickel foil for alkaline storage battery negative electrode and manufacture therefor
WO2013157600A1 (en) 2012-04-19 2013-10-24 新日鐵住金株式会社 Steel foil and method for producing same
WO2013157598A1 (en) 2012-04-19 2013-10-24 新日鐵住金株式会社 Steel foil and method for producing same
JP2013222696A (en) 2012-04-19 2013-10-28 Nippon Steel & Sumitomo Metal Steel foil for secondary battery negative electrode collector
WO2016013575A1 (en) 2014-07-22 2016-01-28 新日鐵住金株式会社 Steel foil for power storage device container, container for power storage device, power storage device, and method for manufacturing steel foil for power storage device container

Also Published As

Publication number Publication date
JP2021163639A (en) 2021-10-11

Similar Documents

Publication Publication Date Title
JP6152455B2 (en) Surface-treated steel sheet for battery container, battery container and battery
JP7187469B2 (en) Surface-treated steel sheet and manufacturing method thereof
EP3385410A1 (en) Surface-treated steel plate for cell container
JP5218612B2 (en) Stainless steel for fuel cell separator
US9997786B2 (en) Steel foil and method for manufacturing the same
TWI810538B (en) Ni-plated steel foil for nickel-hydrogen secondary battery current collector, nickel-hydrogen secondary battery current collector, and nickel-hydrogen secondary battery
JP2013108146A (en) Aluminum alloy foil for current collector and method of manufacturing the same
KR20190044017A (en) Rolled copper foil for negative electrode cureent collector of secondary battery, negative electrode of secondary battery and secondary battery using the rolled copper, and method for manufacturing rolled copper foil for negative electrode current collector of secondary battery
KR102486559B1 (en) Battery collector and battery
JP2010205507A (en) Lithium battery or copper alloy collector for capacitor and method of manufacturing the same
JP7474096B2 (en) Ni-plated steel foil for nickel-hydrogen secondary battery current collector, nickel-hydrogen secondary battery current collector, and nickel-hydrogen secondary battery
JP7475931B2 (en) Ni-plated steel foil for nickel-hydrogen secondary battery current collector, nickel-hydrogen secondary battery current collector, and nickel-hydrogen secondary battery
JP6033304B2 (en) Surface-treated steel sheet for battery container, battery container and battery
JP7078185B2 (en) Ni-plated steel sheet and its manufacturing method
JP2006351432A (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
CN113166868B (en) Foil for negative electrode collector of secondary battery
TWI507550B (en) Copper - zinc - tin - based copper alloy
JP2007059087A (en) Plated steel sheet for battery case, battery case using same, and battery using the battery case
CN109216591A (en) Battery Ni material, cathode and battery shell material
WO2022231007A1 (en) Surface-treated steel foil
JP7425298B2 (en) Ni-plated steel sheet for battery cans and manufacturing method thereof
WO2023210822A1 (en) Method for producing rolled surface-treated steel sheet, and rolled surface-treated steel sheet
CN109565054B (en) Coating material for negative electrode collector of secondary battery and method for producing same
EP4332274A1 (en) Surface-treated steel foil for current collectors
US11946121B2 (en) Steel sheet for battery outer tube cans, battery outer tube can and battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240412

R150 Certificate of patent or registration of utility model

Ref document number: 7474096

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150