JP7425298B2 - Ni-plated steel sheet for battery cans and manufacturing method thereof - Google Patents

Ni-plated steel sheet for battery cans and manufacturing method thereof Download PDF

Info

Publication number
JP7425298B2
JP7425298B2 JP2020035831A JP2020035831A JP7425298B2 JP 7425298 B2 JP7425298 B2 JP 7425298B2 JP 2020035831 A JP2020035831 A JP 2020035831A JP 2020035831 A JP2020035831 A JP 2020035831A JP 7425298 B2 JP7425298 B2 JP 7425298B2
Authority
JP
Japan
Prior art keywords
steel sheet
plated steel
layer
plating layer
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020035831A
Other languages
Japanese (ja)
Other versions
JP2021138986A (en
Inventor
浩輔 川本
靖人 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2020035831A priority Critical patent/JP7425298B2/en
Publication of JP2021138986A publication Critical patent/JP2021138986A/en
Application granted granted Critical
Publication of JP7425298B2 publication Critical patent/JP7425298B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、電池缶用Niめっき鋼板、及びその製造方法に関する。 The present invention relates to a Ni-plated steel sheet for battery cans and a method for manufacturing the same.

Niめっき鋼板から構成される電池缶は、電解液を収納する機能に加え、正極端子又は負極端子としての機能も有する。例えばアルカリマンガン乾電池において電池缶は正極端子として用いられ、ニッケル水素電池及びリチウムイオン電池において電池缶は負極端子として用いられる。ここで、Niめっき鋼板の接触抵抗が高いほど、電池の接触不良が生じやすくなる。また、Niめっき鋼板の接触抵抗が高いほど、電池の内部抵抗が高まり、作動電圧の低下及び放電持続時間の減少などが生じる。そのため、電池缶用Niめっき鋼板には、その接触抵抗を低くすることが求められる。 A battery can made of a Ni-plated steel plate has the function of storing an electrolyte and also functions as a positive electrode terminal or a negative electrode terminal. For example, a battery can is used as a positive terminal in an alkaline manganese dry battery, and a battery can is used as a negative terminal in a nickel-metal hydride battery and a lithium ion battery. Here, the higher the contact resistance of the Ni-plated steel plate, the more likely battery contact failure will occur. Furthermore, the higher the contact resistance of the Ni-plated steel sheet, the higher the internal resistance of the battery, resulting in lower operating voltage and shorter discharge duration. Therefore, Ni-plated steel sheets for battery cans are required to have low contact resistance.

電池缶用Niめっき鋼板の接触抵抗を減少させる手段の一つとして、NiめっきにCoを添加することが挙げられる。Niめっきの表面には酸化膜層(不働態層)が存在する。この酸化膜層は、Niめっき鋼板の耐食性を向上させる反面、Niめっき鋼板の接触抵抗を増大させる。Niめっきに含まれるCoは、この酸化皮膜を脆弱にし、Niめっき鋼板の接触抵抗を低下させる働きを有する。また、Coは、接触抵抗の低下以外の作用効果も有するので、電池缶用Niめっき鋼板において広く用いられている。 One way to reduce the contact resistance of Ni-plated steel sheets for battery cans is to add Co to Ni plating. An oxide film layer (passive layer) exists on the surface of the Ni plating. While this oxide film layer improves the corrosion resistance of the Ni-plated steel sheet, it also increases the contact resistance of the Ni-plated steel sheet. Co contained in the Ni plating has the function of making this oxide film brittle and reducing the contact resistance of the Ni-plated steel sheet. Furthermore, since Co has effects other than reducing contact resistance, it is widely used in Ni-plated steel sheets for battery cans.

例えば特許文献1には、内面にニッケル-リン合金層が形成され、場合によりその下層にはニッケル-コバルト合金層が形成され、外面にニッケル-コバルト合金層が形成されている電池ケースが開示されている。 For example, Patent Document 1 discloses a battery case in which a nickel-phosphorus alloy layer is formed on the inner surface, a nickel-cobalt alloy layer is optionally formed below the nickel-phosphorus alloy layer, and a nickel-cobalt alloy layer is formed on the outer surface. ing.

特許文献2には、鋼板からなるめっき原板の内外面に、ニッケル-コバルト合金めっきを施した表面処理鋼板を、DI成形法、又はDTR成形法によって成形して得られる電池ケースが開示されている。 Patent Document 2 discloses a battery case obtained by molding a surface-treated steel plate in which the inner and outer surfaces of a plated original plate made of a steel plate are plated with a nickel-cobalt alloy using a DI forming method or a DTR forming method. .

特許文献3には、内面には、鉄-ニッケル-錫拡散層が形成されており、外面には鉄-ニッケル-コバルト拡散層が形成されている電池ケースが開示されている。 Patent Document 3 discloses a battery case in which an iron-nickel-tin diffusion layer is formed on the inner surface and an iron-nickel-cobalt diffusion layer is formed on the outer surface.

特許文献4には、鋼板からなるめっき原板において、ケース外面に相当する面では、最表層として圧下率0.1~5%の調質圧延を施したニッケル層を有し、前記ニッケル層が無光沢ニッケルめっき層、半光沢ニッケルめっき層、ニッケル-コバルトめっき層あるいは下層として無光沢ニッケルめっき、上層をニッケル-コバルトめっきの2層めっき層であることを特徴とすることを特徴とする電池ケース用表面処理鋼板が開示されている。 Patent Document 4 discloses that in a plated original plate made of a steel plate, the surface corresponding to the outer surface of the case has a nickel layer that has been temper-rolled at a reduction rate of 0.1 to 5% as the outermost layer, and the nickel layer is free. For battery cases, characterized by having a bright nickel plating layer, a semi-bright nickel plating layer, a nickel-cobalt plating layer, or a two-layer plating layer with a matte nickel plating as the lower layer and a nickel-cobalt plating as the upper layer. A surface-treated steel sheet is disclosed.

特許文献5には、鋼板からなるめっき原板の最表層に光沢ニッケル-コバルト合金めっきを有する表面処理鋼板を、深絞り成形法、DI成形法又はDTR成形法によって成形して得られる電池ケースが開示されている。 Patent Document 5 discloses a battery case obtained by forming a surface-treated steel sheet having a bright nickel-cobalt alloy plating on the outermost layer of a plated original plate made of a steel plate by deep drawing, DI forming, or DTR forming. has been done.

国際公開第1999/003161号International Publication No. 1999/003161 国際公開第1997/042667号International Publication No. 1997/042667 国際公開第1998/010475号International Publication No. 1998/010475 特開2002-155394号公報Japanese Patent Application Publication No. 2002-155394 国際公開第2000/065671号International Publication No. 2000/065671

電池缶用Niめっき鋼板の接触抵抗の低減を目的としてCoを用いる場合、Niめっき中のCo含有量を10質量%以上とすることが通常である。また、その他の目的でCoを用いる場合でも、1質量%程度のCoをNiめっき層に含有させることが多い。 When Co is used for the purpose of reducing the contact resistance of Ni-plated steel sheets for battery cans, the Co content in the Ni plating is usually 10% by mass or more. Furthermore, even when Co is used for other purposes, the Ni plating layer often contains about 1% by mass of Co.

一方、電池缶用Niめっき鋼板には、低い接触抵抗に加えて、高い耐金属溶出性が求められる。Niめっき中のCoは、電解液中に溶出しやすいので、Niめっき鋼板の耐金属溶出性を低下させる。また、Coは高価な元素であり、Niめっき中に多量のCoを含有させた場合、電池缶用Niめっき鋼板の価格が増大する。 On the other hand, Ni-plated steel sheets for battery cans are required to have high metal elution resistance in addition to low contact resistance. Since Co in Ni plating is easily eluted into the electrolyte, it reduces the metal elution resistance of the Ni-plated steel sheet. Moreover, Co is an expensive element, and when a large amount of Co is contained in Ni plating, the price of the Ni-plated steel sheet for battery cans increases.

上述の事情に鑑みて、本発明は、Coの使用量を抑制し、且つ電解液へのCo溶出を抑制しながら、Niめっき層にCoを含まないNiめっき鋼板よりも低い接触抵抗を確保することが可能な電池缶用Niめっき鋼板、及びその製造方法を提供することを、その課題とする。 In view of the above circumstances, the present invention suppresses the amount of Co used and suppresses Co elution into the electrolyte, while ensuring a lower contact resistance than a Ni-plated steel sheet that does not contain Co in the Ni-plated layer. The object of the present invention is to provide a Ni-plated steel sheet for battery cans and a method for manufacturing the same.

本発明の要旨は以下の通りである。
(1)本発明の一態様に係る電池缶用Niめっき鋼板は、母材鋼板と、前記母材鋼板の表面に設けられたNiめっき層とを備え、前記Niめっき層は、前記母材鋼板の表面に形成されているNi-Fe合金層を含み、前記Niめっき層における、Ni含有量に対するCo含有量の比が0.0005~0.10%である。
(2)上記(1)に記載の電池缶用Niめっき鋼板では、前記Ni-Fe合金層は、前記Niめっき層の一部に形成されていてもよい。
(3)上記(1)に記載の電池缶用Niめっき鋼板では、前記Ni-Fe合金層は、前記Niめっき層の最表面まで形成されていてもよい。
(4)上記(1)~(3)のいずれか一項に記載の電池缶用Niめっき鋼板では、片面あたりのNi付着量が2.5~33.2g/mであってもよい。
(5)本発明の別の態様に係る電池缶用Niめっき鋼板の製造方法は、上記(1)~(4のいずれか一項に記載の電池缶用Niめっき鋼板の製造方法であって、[Co2+]/[Ni2+]を0.0001~0.02%としたNiめっき浴を用いて母材鋼板に電気めっきをして、素材Niめっき鋼板を得る工程と、前記素材Niめっき鋼板を焼鈍する工程とを備える。
(6)上記(5)に記載の電池缶用Niめっき鋼板の製造方法では、前記電気めっきにおける電流密度を100~5000A/mとしてもよい。
(7)上記(5)又は(6)に記載の電池缶用Niめっき鋼板の製造方法では、前記素材Niめっき鋼板のNi付着量を片面あたり2.5~33.2g/mとしてもよい。
The gist of the invention is as follows.
(1) A Ni-plated steel sheet for a battery can according to one aspect of the present invention includes a base steel plate and a Ni plating layer provided on the surface of the base steel plate, and the Ni plating layer is formed on the base steel plate. The ratio of the Co content to the Ni content in the Ni plating layer is 0.0005 to 0.10%.
(2) In the Ni-plated steel sheet for battery cans according to (1) above, the Ni--Fe alloy layer may be formed on a part of the Ni-plated layer.
(3) In the Ni-plated steel sheet for battery cans according to (1) above, the Ni--Fe alloy layer may be formed up to the outermost surface of the Ni plating layer.
(4) In the Ni-plated steel sheet for battery cans according to any one of (1) to (3) above, the amount of Ni deposited on one side may be 2.5 to 33.2 g/m 2 .
(5) A method for manufacturing a Ni-plated steel sheet for battery cans according to another aspect of the present invention is a method for manufacturing a Ni-plated steel sheet for battery cans according to any one of (1) to (4) above, comprising: A step of electroplating a base material steel plate using a Ni plating bath containing [Co 2+ ]/[Ni 2+ ] of 0.0001 to 0.02% to obtain a material Ni-plated steel sheet; and a step of obtaining a material Ni-plated steel sheet. and annealing the.
(6) In the method for manufacturing a Ni-plated steel sheet for battery cans according to (5) above, the current density in the electroplating may be 100 to 5000 A/m 2 .
(7) In the method for manufacturing a Ni-plated steel sheet for battery cans according to (5) or (6) above, the amount of Ni deposited on the raw material Ni-plated steel sheet may be 2.5 to 33.2 g/m 2 per side. .

本発明によれば、Coの使用量を抑制し、且つ電解液へのCo溶出を抑制しながら、Co非含有Niめっき鋼板よりも低い接触抵抗を確保することが可能な電池缶用Niめっき鋼板、及びその製造方法を提供することができる。 According to the present invention, a Ni-plated steel sheet for battery cans is capable of ensuring lower contact resistance than a Co-free Ni-plated steel sheet while suppressing the amount of Co used and suppressing Co elution into the electrolyte. , and a method for manufacturing the same.

部分拡散層を有する、本実施形態に係る電池缶用Niめっき鋼板の概念図である。FIG. 2 is a conceptual diagram of a Ni-plated steel sheet for a battery can according to the present embodiment, which has a partial diffusion layer. 全拡散層を有する、本実施形態に係る電池缶用Niめっき鋼板の概念図である。FIG. 2 is a conceptual diagram of a Ni-plated steel sheet for a battery can according to the present embodiment, which has a full diffusion layer. 接触抵抗値を評価するための試験体(対称セル)の模式図である。FIG. 2 is a schematic diagram of a test specimen (symmetrical cell) for evaluating contact resistance values. 接触抵抗の評価用の等価回路の図である。FIG. 3 is a diagram of an equivalent circuit for evaluating contact resistance.

Coの使用量を抑制し、且つ電解液へのCo溶出を抑制しながら、Co非含有Niめっき鋼板よりも低い接触抵抗を確保するための手段について本発明者らは鋭意検討した。具体的に本発明者らは、Co質量対接触抵抗特性(ΔRCo)という評価基準を導入し、これを向上させるための手段を検討した。ΔRCoは、CoによるNiめっき鋼板の接触抵抗減少値(ΔR)を、Niめっき層における、Ni含有量に対するCo含有量の比(Niめっき層Co/Ni)で割って得られる値、即ち下記式1によって得られる値である。
ΔRCo=ΔR/(Niめっき層Co/Ni) 式1
The present inventors have conducted extensive studies on means for ensuring lower contact resistance than a Co-free Ni-plated steel sheet while suppressing the amount of Co used and suppressing Co elution into the electrolytic solution. Specifically, the present inventors introduced an evaluation criterion of Co mass vs. contact resistance characteristic (ΔR Co ) and investigated means for improving this. ΔR Co is the value obtained by dividing the contact resistance reduction value (ΔR) of a Ni-plated steel sheet due to Co by the ratio of Co content to Ni content in the Ni-plated layer (Ni-plated layer Co/Ni), that is, the following: This is the value obtained by Equation 1.
ΔR Co =ΔR/(Ni plating layer Co/Ni) Formula 1

ΔRとは、Niめっき鋼板の接触抵抗値(R)と、Niめっき層中のCo含有量が0%であるNiめっき鋼板(即ちCo非含有Niめっき鋼板)の接触抵抗値(RCo=0)との差、即ち下記式2によって得られる値である。
ΔR=RCo=0-R 式2
ΔR is the contact resistance value (R) of a Ni-plated steel sheet and the contact resistance value (R Co = 0 ), that is, the value obtained by the following equation 2.
ΔR=R Co=0 -R Formula 2

ΔRCoが高いほど、Coによる接触抵抗の減少効率が優れていることになる。本発明者らの検討の結果、Niめっき層Co/Niを0.0005~0.10%の範囲内にすることにより、ΔRCoが大幅に向上することが判明した。Niめっき層Co/Niを0.10%超に増大させた場合、Niめっき鋼板の接触抵抗はさらに減少するものの、その減少量はCo使用量に対して小さく、従ってΔRCoが劣ることとなった。また、Niめっき層Co/Niを0.10%超に増大させた場合、耐Co溶出性も損なわれた。 The higher ΔR Co is, the more efficient the reduction in contact resistance by Co is. As a result of studies conducted by the present inventors, it has been found that ΔR Co can be significantly improved by setting the Co/Ni ratio of the Ni plating layer within the range of 0.0005 to 0.10%. When the Ni plating layer Co/Ni is increased to more than 0.10%, the contact resistance of the Ni-plated steel sheet further decreases, but the amount of decrease is small compared to the amount of Co used, and therefore ΔR Co becomes inferior. Ta. Furthermore, when the Co/Ni content of the Ni plating layer was increased to more than 0.10%, Co elution resistance was also impaired.

以上の知見によって得られた本実施形態に係る電池缶用Niめっき鋼板(以下、「Niめっき鋼板」と略す)1は、図1-1及び図1-2に示されるように、母材鋼板11と、前記母材鋼板の表面に設けられたNiめっき層12とを備え、Niめっき層12における、Ni含有量に対するCo含有量の比(Niめっき層Co/Ni)が0.0005~0.10%である。以下に、本実施形態に係るNiめっき鋼板1について詳述する。 As shown in FIGS. 1-1 and 1-2, the Ni-plated steel sheet for battery cans (hereinafter abbreviated as "Ni-plated steel sheet") 1 according to the present embodiment obtained from the above findings is a base material steel plate. 11 and a Ni plating layer 12 provided on the surface of the base steel plate, the ratio of Co content to Ni content (Ni plating layer Co/Ni) in the Ni plating layer 12 is 0.0005 to 0. .10%. Below, the Ni-plated steel sheet 1 according to this embodiment will be explained in detail.

(母材鋼板11)
母材鋼板11は、Niめっき鋼板1の基材となる鋼板である。母材鋼板11の成分、板厚、及び金属組織などは特に限定されない。母材鋼板11を電池容器の素材として用いる場合、例えば母材鋼板11を低炭アルミキルド鋼、及びIF鋼(Interstitial Free Steel/極低炭素鋼)等とすることがよい。母材鋼板11の化学組成(質量%)の具体的な例を挙げると以下の通りである。
(例1)低炭アルミキルド鋼
C:0.057、Si:0.004、Mn:0.29、P:0.014、S:0.007、Al:0.050、Cu:0.034、Ni:0.021、残部:鉄及び不純物を含む
(例2)IF鋼
C:0.004、Si:0.01、Mn:0.16、P:0.013、S:0.006、Ti:0.013、Al:0.029、Cu:0.027、Ni:0.022、残部:鉄及び不純物を含む
(例3)IF鋼
C:0.0012、Si:0.01未満、Mn:0.29、P:0.014、S:0.001未満、Ti:0.020、Al:0.051、Cu:0.031、Ni:0.023、残部:鉄及び不純物を含む
(Base material steel plate 11)
The base steel plate 11 is a steel plate that becomes the base material of the Ni-plated steel plate 1. The components, plate thickness, metal structure, etc. of the base steel plate 11 are not particularly limited. When the base steel plate 11 is used as a material for a battery container, the base steel plate 11 is preferably made of, for example, low carbon aluminum killed steel, IF steel (Interstitial Free Steel/ultra low carbon steel), or the like. A specific example of the chemical composition (% by mass) of the base steel plate 11 is as follows.
(Example 1) Low carbon aluminum killed steel C: 0.057, Si: 0.004, Mn: 0.29, P: 0.014, S: 0.007, Al: 0.050, Cu: 0.034, Ni: 0.021, balance: containing iron and impurities (Example 2) IF steel C: 0.004, Si: 0.01, Mn: 0.16, P: 0.013, S: 0.006, Ti : 0.013, Al: 0.029, Cu: 0.027, Ni: 0.022, balance: Contains iron and impurities (Example 3) IF steel C: 0.0012, Si: less than 0.01, Mn : 0.29, P: 0.014, S: less than 0.001, Ti: 0.020, Al: 0.051, Cu: 0.031, Ni: 0.023, balance: Contains iron and impurities.

母材鋼板11の厚さも特に限定されない。Niめっき鋼板1を電池容器の素材として用いる場合、母材鋼板11の厚さを例えば0.15~0.8mmとすることがよい。 The thickness of the base steel plate 11 is also not particularly limited. When using the Ni-plated steel plate 1 as a material for a battery container, the thickness of the base steel plate 11 is preferably 0.15 to 0.8 mm, for example.

(Niめっき層12)
Niめっき層12は、母材鋼板11の表面に配された、Niめっきに含まれるNiと、母材鋼板11のFeと合金化することによって得られる層である。Niめっき層12は、Niめっきの一部を合金化することによって得られる層、即ちNi層及びNi-Fe合金層からなる部分拡散層であってもよく、Niめっきの全部を合金化することによって得られる層、即ちNi-Fe合金層からなる全拡散層であってもよい。言い換えれば、Niめっき層12は、一部にNi-Fe合金層が形成されている部分拡散層であってもよく、Feが最表層まで拡散し、Ni-Fe合金層が最表面まで形成されている全拡散層であってもよい。また、Niめっき層12は、母材鋼板11の一方の表面にのみ配されていても、両方の表面に配されていてもよい。Niめっき鋼板1が、部分拡散層及び全拡散層を兼備することも妨げられない。
(Ni plating layer 12)
The Ni plating layer 12 is a layer obtained by alloying Ni contained in the Ni plating disposed on the surface of the base steel plate 11 and Fe of the base steel plate 11. The Ni plating layer 12 may be a layer obtained by alloying a part of the Ni plating, that is, a partial diffusion layer consisting of a Ni layer and a Ni-Fe alloy layer, or may be a layer obtained by alloying a part of the Ni plating. In other words, it may be a fully diffused layer made of a Ni--Fe alloy layer. In other words, the Ni plating layer 12 may be a partially diffused layer in which a Ni-Fe alloy layer is formed in a part, in which Fe is diffused to the outermost layer and the Ni-Fe alloy layer is formed to the outermost surface. It may also be a full diffusion layer. Further, the Ni plating layer 12 may be disposed on only one surface of the base steel plate 11, or may be disposed on both surfaces. It is also possible for the Ni-plated steel sheet 1 to have both a partial diffusion layer and a full diffusion layer.

図1-1に部分拡散層の概念図を示し、図1-2に全拡散層の概念図を示す。図1-1及び図1-2の上部は、Niめっき鋼板1の断面の概念図である。図1-1及び図1-2の下部は、Niめっき鋼板1の表面から内部に向けてGDS分析をした場合の、Coピーク強度、Niピーク強度、及びFeピーク強度と、最表面からの深さ方向の距離との関係を示すグラフである。本実施形態では、Niめっき層12の最表面から、Fe強度が母材のFe強度(最大Fe強度)の1/10になる位置までの領域を、Ni層121と定義する。また、Fe強度が母材のFe強度(最大Fe強度)の1/10になる位置から、Ni強度がNiめっき層12のNi強度(最大Ni強度)の1/10になる位置までの領域を、Ni-Fe合金層122と定義する。 Figure 1-1 shows a conceptual diagram of a partial diffusion layer, and Figure 1-2 shows a conceptual diagram of a total diffusion layer. The upper part of FIGS. 1-1 and 1-2 is a conceptual diagram of a cross section of the Ni-plated steel plate 1. The lower part of Figures 1-1 and 1-2 shows the Co peak intensity, Ni peak intensity, and Fe peak intensity and the depth from the outermost surface when GDS analysis is performed from the surface to the inside of the Ni-plated steel sheet 1. It is a graph showing the relationship with the distance in the horizontal direction. In this embodiment, the region from the outermost surface of the Ni plating layer 12 to the position where the Fe strength is 1/10 of the Fe strength (maximum Fe strength) of the base material is defined as the Ni layer 121. In addition, the area from the position where the Fe strength is 1/10 of the Fe strength of the base material (maximum Fe strength) to the position where the Ni strength is 1/10 of the Ni strength of the Ni plating layer 12 (maximum Ni strength) is , a Ni--Fe alloy layer 122.

Feの拡散がNiめっき層12の最表面まで及ばない場合、GDS分析チャートは図1-1のようになり、Niめっき層12はNi層121を含む部分拡散層となる。FeがNiめっき層12の最表面まで十分に拡散している場合、GDS分析チャートは図1-2のようになり、Niめっき層12はNi層121を含まない全拡散層となる。上述のように、本実施形態に係るNiめっき鋼板1のNiめっき層12は、いずれの形態をも具備することができる。 When the diffusion of Fe does not reach the outermost surface of the Ni plating layer 12, the GDS analysis chart becomes as shown in FIG. 1-1, and the Ni plating layer 12 becomes a partial diffusion layer including the Ni layer 121. When Fe is sufficiently diffused to the outermost surface of the Ni plating layer 12, the GDS analysis chart becomes as shown in FIG. As described above, the Ni plating layer 12 of the Ni-plated steel sheet 1 according to the present embodiment can have any form.

Niめっき層12は、微量のCoを含む。Niめっき層12における、Ni含有量に対するCo含有量の比(Niめっき層Co/Ni)は、0.0005~0.10%の範囲内とされる。ここで、「Ni含有量」及び「Co含有量」とは、それぞれNi付着量及びCo付着量を意味する。Niめっき層Co/Niは、Niめっき層12における、Co付着量をNi付着量で割って得られる値である。従って、Niめっき層Co/Niは、Ni含有量に対するCo含有量の比の、Niめっき層12全体にわたっての平均値と解される。 Ni plating layer 12 contains a trace amount of Co. The ratio of the Co content to the Ni content (Ni plating layer Co/Ni) in the Ni plating layer 12 is within the range of 0.0005 to 0.10%. Here, "Ni content" and "Co content" mean the amount of Ni deposited and the amount of Co deposited, respectively. The Ni plating layer Co/Ni is a value obtained by dividing the amount of Co deposited by the amount of Ni deposited in the Ni plating layer 12. Therefore, the Ni plating layer Co/Ni is understood to be the average value of the ratio of the Co content to the Ni content over the entire Ni plating layer 12.

Niめっき層Co/Niを0.10%以下とすることにより、Niめっき鋼板1の耐Co溶出性が飛躍的に改善される。一方、Niめっき層Co/Niを0.0005%以上とすることにより、Niめっき鋼板1の接触抵抗値を減少させることができる。また、Niめっき層Co/Niを0.0005~0.10%の範囲内とすることにより、Co質量対接触抵抗特性(ΔRCo)が大幅に向上する。Niめっき層Co/Niが0.10%を超過した場合、耐Co溶出性が損なわれる一方で、ΔRCoが損なわれ、Co使用量に見合った接触抵抗の減少効果が得られない。Niめっき層Co/Niを0.001%以上、0.004%以上、0.01%以上、0.02%以上、0.03%以上、0.04%以上、又は0.05%以上としてもよい。Niめっき層Co/Niを0.09%以下、0.08%以下、又は0.07%以下としてもよい。 By setting the Co/Ni ratio in the Ni plating layer to 0.10% or less, the Co elution resistance of the Ni-plated steel sheet 1 is dramatically improved. On the other hand, by setting the Co/Ni content of the Ni plating layer to 0.0005% or more, the contact resistance value of the Ni-plated steel sheet 1 can be reduced. Furthermore, by setting the Co/Ni ratio in the Ni plating layer within the range of 0.0005 to 0.10%, the Co mass versus contact resistance characteristic (ΔR Co ) is significantly improved. If the Co/Ni ratio in the Ni plating layer exceeds 0.10%, Co elution resistance is impaired, ΔR Co is impaired, and the effect of reducing contact resistance commensurate with the amount of Co used cannot be obtained. Ni plating layer Co/Ni is 0.001% or more, 0.004% or more, 0.01% or more, 0.02% or more, 0.03% or more, 0.04% or more, or 0.05% or more Good too. The Ni plating layer Co/Ni may be 0.09% or less, 0.08% or less, or 0.07% or less.

Niめっき層Co/Niが上述の範囲内である限り、Niめっき層12の平均組成、及び厚さ等は特に限定されず、Niめっき鋼板1の用途に応じて適宜設定することが出来る。Niめっき層12が、その特性を損なわない範囲内で不純物を含んでいてもよい。 As long as the Ni plating layer Co/Ni is within the above-mentioned range, the average composition, thickness, etc. of the Ni plating layer 12 are not particularly limited, and can be appropriately set according to the use of the Ni plating steel sheet 1. The Ni plating layer 12 may contain impurities within a range that does not impair its characteristics.

例えば、Niめっき層12の片面当たりNi付着量を2.5~33.2g/mとしてもよい。Niめっき層12におけるNi付着量を2.5g/m以上とすることで、Niめっき鋼板1の耐食性等を確実に確保することが出来るので好ましい。Niめっき層12におけるNi付着量を33.2g/m以下とすることで、Niめっき鋼板1の製造コストを低減することが出来るので好ましい。また、片面当たりNi付着量が35.6g/m超では、Niめっき層12の硬度が過剰となり加工性が損なわれる。さらにこの場合、内部応力により、Niめっき層12にクラックが誘起されることもある。Niめっき層12の片面当たりNi付着量を2.5g/m以上としてもよい。Niめっき鋼板1の片面当たりNi付着量を32.7g/m以下としてもよい。 For example, the amount of Ni deposited on one side of the Ni plating layer 12 may be 2.5 to 33.2 g/m 2 . It is preferable to set the amount of Ni deposited in the Ni plating layer 12 to 2.5 g/m 2 or more, since the corrosion resistance of the Ni-plated steel sheet 1 can be ensured. It is preferable that the amount of Ni deposited in the Ni plating layer 12 be 33.2 g/m 2 or less, since the manufacturing cost of the Ni-plated steel sheet 1 can be reduced. Further, if the amount of Ni deposited on one side exceeds 35.6 g/m 2 , the hardness of the Ni plating layer 12 becomes excessive and workability is impaired. Furthermore, in this case, cracks may be induced in the Ni plating layer 12 due to internal stress. The amount of Ni deposited on one side of the Ni plating layer 12 may be 2.5 g/m 2 or more. The amount of Ni deposited on one side of the Ni-plated steel sheet 1 may be 32.7 g/m 2 or less.

Niめっき層12におけるNiの付着量は、ICP発光分光分析法(ICP-OES)によって測定する。まず、所定面積のNiめっき層12を酸で溶解する。次に、溶解液に含まれるTotal-Ni量をICP-OESで定量分析する。ICP-OESで定量したTotal-Ni量を上述の所定面積で割ることにより、単位面積当たりのNi付着量を求めることが出来る。また、Niめっき層12におけるCoの付着量は、ICP質量分析法(ICP-MS)によって測定する。溶解させたNiめっき層12におけるCo量をICP-MSによって、Ni量をICP-OESによって定量分析することにより、Niめっき層における、Ni含有量に対するCo含有量の比(Co/Ni)を求めることができる。 The amount of Ni deposited on the Ni plating layer 12 is measured by ICP optical emission spectroscopy (ICP-OES). First, a predetermined area of the Ni plating layer 12 is dissolved with acid. Next, the amount of Total-Ni contained in the solution is quantitatively analyzed by ICP-OES. By dividing the Total-Ni amount quantified by ICP-OES by the above-mentioned predetermined area, the amount of Ni attached per unit area can be determined. Further, the amount of Co deposited on the Ni plating layer 12 is measured by ICP mass spectrometry (ICP-MS). By quantitatively analyzing the amount of Co in the dissolved Ni plating layer 12 by ICP-MS and the amount of Ni by ICP-OES, the ratio of the Co content to the Ni content (Co/Ni) in the Ni plating layer is determined. be able to.

次に、本実施形態に係るNiめっき鋼板1の好ましい製造方法について説明する。ただし、上述の要件を備えるNiめっき鋼板は、その製造方法とは関係なく本実施形態に係るNiめっき鋼板1であるとみなされる。 Next, a preferred method for manufacturing the Ni-plated steel sheet 1 according to this embodiment will be described. However, a Ni-plated steel sheet that meets the above requirements is considered to be the Ni-plated steel sheet 1 according to the present embodiment, regardless of its manufacturing method.

本実施形態に係るNiめっき鋼板1の製造方法は、[Co2+]/[Ni2+]を0.0001~0.02%としたNiめっき浴を用いて、電流密度を100~5000A/mとして、母材鋼板に電気めっきをして素材Niめっき鋼板を得る工程S1と、素材Niめっき鋼板を焼鈍する工程S2とを備える。 The method for manufacturing the Ni-plated steel sheet 1 according to the present embodiment uses a Ni plating bath containing [Co 2+ ]/[Ni 2+ ] of 0.0001 to 0.02%, and a current density of 100 to 5000 A/m 2 . The method includes a step S1 of electroplating a base material steel plate to obtain a raw Ni-plated steel sheet, and a step S2 of annealing the raw Ni-plated steel sheet.

電気めっき工程S1では、母材鋼板11にNiめっきを施して、素材Niめっき鋼板を得る。なお、本実施形態では、Niめっき後に得られる合金化されていないNiめっき鋼板を、素材Niめっき鋼板と称する。電気めっきに用いるNiめっき浴は、[Co2+]/[Ni2+]を0.0001~0.02%としたものとされる。[Co2+]とは、Niめっき浴にCo2+の形態で含まれるCoの濃度(g/L)であり、[Ni2+]とは、Niめっき浴にNi2+の形態で含まれるNiの濃度(g/L)である。
めっき浴における[Co2+]/[Ni2+]よりも、Niめっき層におけるNi含有量に対するCo含有量の比の方がわずかに高くなる傾向にある。Co及びNiを共析させる合金めっきにおいては、Coの析出速度がNiの析出速度より高いからである。そのため、[Co2+]/[Ni2+]を0.0001~0.02%の範囲内とすることにより、NiめっきにおけるNi含有量に対するCo含有量の比を0.0005~0.10%の範囲内とすることができる。そして、NiめっきにおけるNiとCoとの比率は、続く焼鈍工程S2を経ても維持される。
In the electroplating step S1, the base steel plate 11 is plated with Ni to obtain a raw Ni-plated steel plate. In addition, in this embodiment, the unalloyed Ni-plated steel sheet obtained after Ni plating is referred to as a raw Ni-plated steel sheet. The Ni plating bath used for electroplating has a [Co 2+ ]/[Ni 2+ ] content of 0.0001 to 0.02%. [Co 2+ ] is the concentration (g/L) of Co contained in the form of Co 2+ in the Ni plating bath, and [Ni 2+ ] is the concentration of Ni contained in the form of Ni 2+ in the Ni plating bath. (g/L).
The ratio of Co content to Ni content in the Ni plating layer tends to be slightly higher than [Co 2+ ]/[Ni 2+ ] in the plating bath. This is because in alloy plating in which Co and Ni are eutectoid, the precipitation rate of Co is higher than that of Ni. Therefore, by setting [Co 2+ ]/[Ni 2+ ] within the range of 0.0001 to 0.02%, the ratio of Co content to Ni content in Ni plating can be increased to 0.0005 to 0.10%. It can be within the range. The ratio of Ni to Co in Ni plating is maintained even after the subsequent annealing step S2.

[Co2+]/[Ni2+]を上述の範囲内とする限り、Niめっき浴の組成は特に限定されない。また、電気めっき条件も特に限定されず、必要とされるNi付着量に応じて適宜選択することができる。なお、素材Niめっき鋼板のNi付着量を片面あたり1.34~35.60g/mとすることにより、焼鈍工程S2の後に得られるNiめっき鋼板1の片面あたりのNi付着量を2.5~33.2g/mとすることができるので、好ましい。素材Niめっき鋼板の片面あたりの好ましいNi付着量は、上述されたNiめっき鋼板1の片面あたりの好ましいNi付着量に準じる。また、電流密度は100~5000A/mの範囲内とすることが好ましい。電流密度を100A/m以上とすることにより、好ましいNi付着量とすることができる。電流密度を5000A/m以下とすることにより、めっき表面焼け等を防止することができる。 The composition of the Ni plating bath is not particularly limited as long as [Co 2+ ]/[Ni 2+ ] is within the above range. Furthermore, the electroplating conditions are not particularly limited, and can be appropriately selected depending on the required amount of Ni deposited. In addition, by setting the Ni adhesion amount of the raw material Ni-plated steel sheet to 1.34 to 35.60 g/m 2 per one side, the Ni adhesion amount per one side of the Ni-plated steel sheet 1 obtained after the annealing step S2 is 2.5 g/m2. It is preferable because it can be set to 33.2 g/m 2 . The preferred amount of Ni deposited per side of the raw material Ni-plated steel sheet is based on the preferred amount of Ni deposited per side of the Ni-plated steel sheet 1 described above. Further, the current density is preferably within the range of 100 to 5000 A/m 2 . By setting the current density to 100 A/m 2 or more, a preferable amount of Ni deposited can be obtained. By setting the current density to 5000 A/m 2 or less, it is possible to prevent the plating surface from burning.

続く焼鈍工程S2では、素材Niめっき鋼板を焼鈍し、Niめっきを合金化する。これにより、Niめっきと母材鋼板11との間で相互拡散が生じ、Niめっき層12が形成される。焼鈍条件は特に限定されず、Niめっきの膜厚に応じて適宜選択することができる。例えば、N-4%H中で25℃から720℃まで平均昇温速度20℃/secで加熱し、720℃で20秒保持後、300℃まで平均冷却速度30℃/secで冷却するヒートパターンや、より拡散を促進するためにはN-4%H中で25℃から830℃まで平均昇温速度15℃/secで加熱し、830℃で60秒保持後、300℃まで平均冷却速度20℃/secで冷却するヒートパターンなどがある。 In the subsequent annealing step S2, the raw material Ni-plated steel sheet is annealed, and the Ni plating is alloyed. As a result, mutual diffusion occurs between the Ni plating and the base steel plate 11, and a Ni plating layer 12 is formed. The annealing conditions are not particularly limited and can be appropriately selected depending on the thickness of the Ni plating. For example, heat from 25°C to 720°C in N 2 -4% H 2 at an average temperature increase rate of 20°C/sec, hold at 720°C for 20 seconds, and then cool to 300°C at an average cooling rate of 30°C/sec. To create a heat pattern or to further promote diffusion, heat from 25°C to 830°C at an average temperature increase rate of 15°C/sec in N 2 -4% H 2 , hold at 830°C for 60 seconds, and then heat to 300°C. There is a heat pattern that cools at an average cooling rate of 20° C./sec.

以上のように、本実施形態における電池缶用Niめっき鋼板は、Niめっき層に微量のCoを添加することで、鋼板の接触抵抗を減少させるとともに、耐食性を向上するものである。Niめっき層に、Coに加えて、同様に耐食性を向上させる元素である微量のSn、Znの1種以上を複合添加することも可能である。Snは、鋼板の加工性を向上させる元素であるとともに、鋼板の耐金属溶出性を向上する元素である。Znは、Sn、Coと同様に、鋼板の耐食性を向上する元素である。Niめっき層に、Sn、Znの1種以上をSnと同様に微量添加することで、鋼板の耐食性をさらに向上させることができる。また、Niめっき層にSnを添加する場合は、鋼板の加工性をも向上させることができる。 As described above, in the Ni-plated steel sheet for battery cans in this embodiment, by adding a trace amount of Co to the Ni plating layer, the contact resistance of the steel sheet is reduced and the corrosion resistance is improved. In addition to Co, it is also possible to add a small amount of one or more of Sn and Zn, which are elements that similarly improve corrosion resistance, to the Ni plating layer. Sn is an element that improves the workability of a steel plate and also improves the metal elution resistance of a steel plate. Zn, like Sn and Co, is an element that improves the corrosion resistance of steel sheets. By adding a small amount of one or more of Sn and Zn to the Ni plating layer in the same manner as Sn, the corrosion resistance of the steel sheet can be further improved. Furthermore, when Sn is added to the Ni plating layer, the workability of the steel sheet can also be improved.

本実施形態における電池缶用Niめっき鋼板は、電池缶用途のみならず、接触抵抗に加えて耐食性が求められる素材に適している。例えば、内部が燃料を通過する燃料管としても、好適に用いることができる。 The Ni-plated steel sheet for battery cans in this embodiment is suitable not only for battery can applications but also for materials that require corrosion resistance in addition to contact resistance. For example, it can be suitably used as a fuel pipe through which fuel passes.

(Niめっき層中のCo濃度と、Niめっき鋼板の耐Co溶出性、Co質量対接触抵抗特性との関係)
種々のNiめっき浴組成(表1)、Ni電解条件(表2)、焼鈍条件(表3)にて、母材鋼板(表4)を用いて複数のNiめっき鋼板を製造し、これらの耐Co溶出性、及びCo質量対接触抵抗特性(ΔRCo)を評価した。なお、「浴組成」は、浴に添加した試薬の量であり、「めっき液中金属イオン濃度」は、浴の分析結果である。NiSO・6HO試薬中に微量のCo元素が含有されているので、浴組成におけるCo量と、めっき液中のCoイオン濃度量との間には、若干の相違が生じた。
(Relationship between Co concentration in Ni-plated layer, Co elution resistance of Ni-plated steel sheet, and Co mass versus contact resistance characteristics)
A plurality of Ni-plated steel sheets were manufactured using the base steel sheet (Table 4) under various Ni plating bath compositions (Table 1), Ni electrolytic conditions (Table 2), and annealing conditions (Table 3), and their durability was evaluated. Co elution properties and Co mass versus contact resistance characteristics (ΔR Co ) were evaluated. Note that the "bath composition" is the amount of reagent added to the bath, and the "metal ion concentration in the plating solution" is the analysis result of the bath. Since the NiSO 4 .6H 2 O reagent contained a trace amount of Co element, a slight difference occurred between the amount of Co in the bath composition and the amount of Co ion concentration in the plating solution.

Figure 0007425298000001
Figure 0007425298000001

Figure 0007425298000002
Figure 0007425298000002

Figure 0007425298000003
Figure 0007425298000003

Figure 0007425298000004
Figure 0007425298000004

各試料のNiめっき層における、Ni含有量に対するCo含有量の比(Niめっき層Co/Ni)は、各試料のNiめっき層を溶解し、溶解液を定量分析することによって測定した。溶解液のNi量はICP-OESによって測定し、Co量はICP-MSにより測定した。 The ratio of Co content to Ni content (Ni plating layer Co/Ni) in the Ni plating layer of each sample was measured by dissolving the Ni plating layer of each sample and quantitatively analyzing the solution. The amount of Ni in the solution was measured by ICP-OES, and the amount of Co was measured by ICP-MS.

各試料のNiめっき層が全拡散及び部分拡散のいずれであるかの判断は、GDSによる深さ方向元素分布により判定した。最表面のFeの強度がFeの最大強度の1/10超となるものを全拡散と判断し、1/10以下となるものを部分拡散と判断した。(図1-1及び1-2参照) Whether the Ni plating layer of each sample was completely diffused or partially diffused was determined based on the element distribution in the depth direction by GDS. A case where the intensity of Fe on the outermost surface was more than 1/10 of the maximum intensity of Fe was determined to be total diffusion, and a case where the intensity was 1/10 or less was determined to be partial diffusion. (See Figures 1-1 and 1-2)

各試料の接触抵抗値(R)の評価は、以下の手順で行った。まず、各試料をφ15mmの円盤に打ち抜き加工した。次に、市販のアルカリ乾電池に用いられる正極材料(MnO、導電助剤、及び電解液(KOH水溶液)から構成される)1.0gを、円盤状に加工された各試料で挟み、金型を用いて荷重20kNでの加圧を行い、ペレット状にした。このペレットを、CR2016コインセル内に装入し、電池環境を模擬した試験体(対称セル、図2参照)を作製した。そして、このコインセルに交流インピーダンス測定を行った。交流インピーダンス測定条件は以下の通りとした。
機材 :ソーラトロン製 Modulab
周波数範囲 :1MHz~0.1Hz
振幅 :10mV
測定環境温度 :23℃
接触抵抗の定量解析には等価回路を使用し、フィッティング計算により接触抵抗を推定した。図3に、評価のために使用した等価回路を示す。上記機材に内蔵されたソフトウェアZ plotを使用して、Instant fitによってRsに該当する抵抗を算出した。なお、図3においてRsは接触抵抗であり、Rpは化学反応抵抗(MnO起因と推定)であり、CPEはconstant phase elementである。厳密には、Rsは接触抵抗に加えてリード線の抵抗も含むが、リード線の抵抗は無視できる程度に小さい。
Evaluation of the contact resistance value (R) of each sample was performed according to the following procedure. First, each sample was punched into a disk with a diameter of 15 mm. Next, 1.0 g of a positive electrode material (consisting of MnO 2 , a conductive additive, and an electrolyte (KOH aqueous solution)) used in commercially available alkaline batteries was sandwiched between each sample processed into a disk shape, and then placed in a mold. Pressure was applied using a load of 20 kN to form pellets. This pellet was placed in a CR2016 coin cell to produce a test body (symmetrical cell, see FIG. 2) that simulated the battery environment. Then, alternating current impedance measurement was performed on this coin cell. The AC impedance measurement conditions were as follows.
Equipment: Solartron Modulab
Frequency range: 1MHz to 0.1Hz
Amplitude: 10mV
Measurement environment temperature: 23℃
An equivalent circuit was used for quantitative analysis of contact resistance, and contact resistance was estimated by fitting calculation. Figure 3 shows the equivalent circuit used for evaluation. Using the software Z plot built into the above equipment, the resistance corresponding to Rs was calculated by Instant fit. Note that in FIG. 3, Rs is contact resistance, Rp is chemical reaction resistance (estimated to be caused by MnO 2 ), and CPE is constant phase element. Strictly speaking, Rs includes the resistance of the lead wire in addition to the contact resistance, but the resistance of the lead wire is so small that it can be ignored.

表5及び表6に記載の水準1、水準18、水準20、水準22、水準24、水準26、水準28、水準30、水準32、及び水準35は、Niめっき層にCoが含まれないNiめっき鋼板である。これらのNiめっき鋼板を基準試料とした。各試料の接触抵抗値差分(ΔR)は、各試料の接触抵抗値(R)と基準試料の接触抵抗値(RCo=0)との差とした。各水準の評価において用いられた基準試料の番号を、表6に示す。基準試料の製造条件は、Co含有量を除き、評価対象の試料の製造条件と可能な限り同一となるようにした。
各試料のCo質量対接触抵抗特性(ΔRCo)は、各試料のΔRをCo/Niで割ることによって求めた。ΔRCoが3.00以上である試料を、Coの使用量を抑制しながら、接触抵抗の低下が達成された試料とみなし、評価欄に「○」と記載した。Coの使用量に見合った接触抵抗向上効果が確保できなかった試料に関しては、評価欄に「×」と記載した。
Level 1, Level 18, Level 20, Level 22, Level 24, Level 26, Level 28, Level 30, Level 32, and Level 35 listed in Tables 5 and 6 are Ni plating layers that do not contain Co. It is a plated steel plate. These Ni-plated steel plates were used as reference samples. The contact resistance value difference (ΔR) of each sample was defined as the difference between the contact resistance value (R) of each sample and the contact resistance value (R Co = 0 ) of the reference sample. Table 6 shows the reference sample numbers used in the evaluation of each level. The manufacturing conditions of the reference sample were made to be as similar as possible to the manufacturing conditions of the sample to be evaluated, except for the Co content.
The Co mass vs. contact resistance characteristic (ΔR Co ) of each sample was determined by dividing ΔR of each sample by Co/Ni. A sample with ΔR Co of 3.00 or more was regarded as a sample in which a reduction in contact resistance was achieved while suppressing the amount of Co used, and was written as "○" in the evaluation column. For samples in which the effect of improving contact resistance commensurate with the amount of Co used was not ensured, "x" was written in the evaluation column.

各試料の耐Co溶出性の評価は、以下の手順で行った。35%KOH溶液を200ml準備し、作用極に試料を、対極に白金を、参照極にHg/HgO電極を用いて、各々の電極を溶液に浸漬させた。次に、MnOの定電位である0.3V vs.Hg/HgOに作用極を保持し、30日間経過後の溶液を採取し、溶液中のCo濃度をICP-Massで測定した。溶液中のCo濃度が5.0×10-7mg/L未満である試料を、電解液へのCo溶出が抑制された試料とみなし、評価欄に「○」と記載した。電解液へのCo抑制が抑制されなかった試料に関しては、評価欄に「×」と記載した。 The Co elution resistance of each sample was evaluated using the following procedure. 200 ml of 35% KOH solution was prepared, and each electrode was immersed in the solution using a sample as a working electrode, platinum as a counter electrode, and a Hg/HgO electrode as a reference electrode. Next, the constant potential of MnO 2 is 0.3V vs. The working electrode was maintained in Hg/HgO, and the solution was collected after 30 days, and the Co concentration in the solution was measured by ICP-Mass. A sample in which the Co concentration in the solution was less than 5.0×10 −7 mg/L was regarded as a sample in which Co elution into the electrolyte was suppressed, and was written as “○” in the evaluation column. Regarding samples in which the suppression of Co in the electrolyte was not suppressed, "x" was written in the evaluation column.

各試料の製造条件及び構成を表5に示し、各試料の特性評価結果を表6に示す。発明範囲外の値には下線を付した。 Table 5 shows the manufacturing conditions and composition of each sample, and Table 6 shows the characteristics evaluation results of each sample. Values outside the invention range are underlined.

Figure 0007425298000005
Figure 0007425298000005

Figure 0007425298000006
Figure 0007425298000006

上述の通り、水準1、水準18、水準20、水準22、水準24、水準26、水準28、水準30、水準32、及び水準35は、Niめっき層中にCoを含まない基準試料(Co非含有Niめっき鋼板)である。
水準2は、Niめっき層Co/Niが不足しており、接触抵抗の改善効果が見られなかった。
水準12~17は、Niめっき層Co/Niが過剰であり、Co使用量に見合った接触抵抗の改善効果が見られなかった。また、水準12~17は、耐Co溶出性も不足した。
一方、本発明例では良好な耐Co溶出性、及び高いΔRCoが得られた。
As mentioned above, level 1, level 18, level 20, level 22, level 24, level 26, level 28, level 30, level 32, and level 35 are standard samples that do not contain Co in the Ni plating layer (Co-free). Ni-plated steel sheet).
In level 2, the Ni plating layer Co/Ni was insufficient, and no improvement effect on contact resistance was observed.
For levels 12 to 17, the Ni plating layer Co/Ni was excessive, and no improvement effect on contact resistance commensurate with the amount of Co used was observed. In addition, levels 12 to 17 also lacked Co elution resistance.
On the other hand, in the example of the present invention, good Co elution resistance and high ΔR Co were obtained.

本発明によれば、Coの使用量を抑制し、且つ電解液へのCo溶出を抑制しながら、Co非含有Niめっき鋼板よりも低い接触抵抗を確保することが可能な電池缶用Niめっき鋼板、及びその製造方法を提供することができるので、きわめて大きな産業上の利用可能性を有する。 According to the present invention, a Ni-plated steel sheet for battery cans is capable of ensuring lower contact resistance than a Co-free Ni-plated steel sheet while suppressing the amount of Co used and suppressing Co elution into the electrolyte. , and a method for manufacturing the same, it has extremely large industrial applicability.

1 電池缶用Niめっき鋼板(Niめっき鋼板)
11 母材鋼板
12 Niめっき層
121 Ni層
122 Ni-Fe合金層
1 Ni-plated steel sheet for battery cans (Ni-plated steel sheet)
11 Base steel plate 12 Ni plating layer 121 Ni layer 122 Ni-Fe alloy layer

Claims (7)

母材鋼板と、前記母材鋼板の表面に設けられたNiめっき層とを備え、
前記Niめっき層は、前記母材鋼板の表面に形成されているNi-Fe合金層を含み、
前記Niめっき層における、Ni含有量に対するCo含有量の比が0.0005~0.10%であることを特徴とする電池缶用Niめっき鋼板。
comprising a base steel plate and a Ni plating layer provided on the surface of the base steel plate,
The Ni plating layer includes a Ni-Fe alloy layer formed on the surface of the base steel plate,
A Ni-plated steel sheet for a battery can, characterized in that the ratio of Co content to Ni content in the Ni-plated layer is 0.0005 to 0.10%.
前記Ni-Fe合金層は、前記Niめっき層の一部に形成されていることを特徴とする請求項1に記載の電池缶用Niめっき鋼板。 The Ni-plated steel sheet for a battery can according to claim 1, wherein the Ni--Fe alloy layer is formed on a part of the Ni plating layer. 前記Ni-Fe合金層は、前記Niめっき層の最表面まで形成されていることを特徴とする請求項1に記載の電池缶用Niめっき鋼板。 The Ni-plated steel sheet for a battery can according to claim 1, wherein the Ni--Fe alloy layer is formed up to the outermost surface of the Ni plating layer. 片面あたりのNi付着量が2.5~33.2g/mであることを特徴とする請求項1~3のいずれか一項に記載の電池缶用Niめっき鋼板。 The Ni-plated steel sheet for battery cans according to any one of claims 1 to 3, characterized in that the amount of Ni deposited on one side is 2.5 to 33.2 g/m 2 . [Co2+]/[Ni2+]を0.0001~0.02%としたNiめっき浴を用いて母材鋼板に電気めっきをして、素材Niめっき鋼板を得る工程と、
前記素材Niめっき鋼板を焼鈍する工程と
を備える請求項1~4のいずれか一項に記載の電池缶用Niめっき鋼板の製造方法。
A step of electroplating a base steel plate using a Ni plating bath containing [Co 2+ ]/[Ni 2+ ] 0.0001 to 0.02% to obtain a raw Ni-plated steel plate;
The method for producing a Ni-plated steel sheet for a battery can according to any one of claims 1 to 4, comprising the step of annealing the raw Ni-plated steel sheet.
前記電気めっきにおける電流密度を100~5000A/mとすることを特徴とする請求項5に記載の電池缶用Niめっき鋼板の製造方法。 The method for manufacturing a Ni-plated steel sheet for battery cans according to claim 5, characterized in that the current density in the electroplating is 100 to 5000 A/m 2 . 前記素材Niめっき鋼板のNi付着量を片面あたり2.5~33.2g/mとすることを特徴とする請求項5又は6に記載の電池缶用Niめっき鋼板の製造方法。 The method for manufacturing a Ni-plated steel sheet for a battery can according to claim 5 or 6, characterized in that the amount of Ni deposited on the raw Ni-plated steel sheet is 2.5 to 33.2 g/m 2 per side.
JP2020035831A 2020-03-03 2020-03-03 Ni-plated steel sheet for battery cans and manufacturing method thereof Active JP7425298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020035831A JP7425298B2 (en) 2020-03-03 2020-03-03 Ni-plated steel sheet for battery cans and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020035831A JP7425298B2 (en) 2020-03-03 2020-03-03 Ni-plated steel sheet for battery cans and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2021138986A JP2021138986A (en) 2021-09-16
JP7425298B2 true JP7425298B2 (en) 2024-01-31

Family

ID=77667962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020035831A Active JP7425298B2 (en) 2020-03-03 2020-03-03 Ni-plated steel sheet for battery cans and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP7425298B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013005774A1 (en) 2011-07-07 2013-01-10 東洋鋼鈑株式会社 Surface-treated steel sheet for battery case, process for producing same, battery case, and battery
WO2018159760A1 (en) 2017-03-02 2018-09-07 新日鐵住金株式会社 Surface-treated steel sheet
WO2019159794A1 (en) 2018-02-14 2019-08-22 日本製鉄株式会社 Surface-treated steel sheet for battery containers and method for producing surface-treated steel sheet for battery containers
WO2020009213A1 (en) 2018-07-06 2020-01-09 日本製鉄株式会社 Surface-treated steel sheet and method for manufacturing surface-treated steel sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013005774A1 (en) 2011-07-07 2013-01-10 東洋鋼鈑株式会社 Surface-treated steel sheet for battery case, process for producing same, battery case, and battery
WO2018159760A1 (en) 2017-03-02 2018-09-07 新日鐵住金株式会社 Surface-treated steel sheet
WO2019159794A1 (en) 2018-02-14 2019-08-22 日本製鉄株式会社 Surface-treated steel sheet for battery containers and method for producing surface-treated steel sheet for battery containers
WO2020009213A1 (en) 2018-07-06 2020-01-09 日本製鉄株式会社 Surface-treated steel sheet and method for manufacturing surface-treated steel sheet

Also Published As

Publication number Publication date
JP2021138986A (en) 2021-09-16

Similar Documents

Publication Publication Date Title
KR102557132B1 (en) Surface-treated metal plate, battery container and battery
JP7187469B2 (en) Surface-treated steel sheet and manufacturing method thereof
JP6394847B1 (en) Surface-treated steel sheet
KR20140033058A (en) Surface-treated steel sheet for battery cases, battery case, and battery
JP2006093096A (en) Plated steel sheet for battery container, battery container using same, and battery using its battery container
US9887396B2 (en) Surface-treated steel sheet for battery containers, battery container, and battery
WO2015015847A1 (en) Method for producing surface-treated steel sheet for battery containers
US11618965B2 (en) Ni-plated steel sheet and method for manufacturing Ni-plated steel sheet
JP7425298B2 (en) Ni-plated steel sheet for battery cans and manufacturing method thereof
JP7078185B2 (en) Ni-plated steel sheet and its manufacturing method
JP7095810B2 (en) Ni-plated steel sheet and its manufacturing method
JP7475931B2 (en) Ni-plated steel foil for nickel-hydrogen secondary battery current collector, nickel-hydrogen secondary battery current collector, and nickel-hydrogen secondary battery
WO2021200506A1 (en) Ni-PLATED STEEL FOIL FOR NICKEL HYDROGEN SECONDARY BATTERY COLLECTORS, NICKEL HYDROGEN SECONDARY BATTERY COLLECTOR, AND NICKEL HYDROGEN SECONDARY BATTERY
JP2007059087A (en) Plated steel sheet for battery case, battery case using same, and battery using the battery case
US20120121984A1 (en) Alkaline collector anode
JP7060186B1 (en) Surface-treated steel sheet
CN116670335B (en) Surface-treated steel sheet
JP4798953B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP4911952B2 (en) Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and battery using the battery container
JP4968877B2 (en) Plated steel sheet for battery container, method for producing the same, battery container using the plated steel sheet for battery container, and battery using the battery container
CN115244224A (en) Metal member, connection terminal, and method for manufacturing metal member
JP2012114097A (en) Plated steel sheet for battery container, method for producing the same, battery container using the plated steel sheet for battery container and battery using the battery container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240101

R151 Written notification of patent or utility model registration

Ref document number: 7425298

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151