WO2017006647A1 - Attachment structure for fiber reinforced plastic cable, manufacturing method for same, strength test method, and sample for strength test - Google Patents

Attachment structure for fiber reinforced plastic cable, manufacturing method for same, strength test method, and sample for strength test Download PDF

Info

Publication number
WO2017006647A1
WO2017006647A1 PCT/JP2016/065928 JP2016065928W WO2017006647A1 WO 2017006647 A1 WO2017006647 A1 WO 2017006647A1 JP 2016065928 W JP2016065928 W JP 2016065928W WO 2017006647 A1 WO2017006647 A1 WO 2017006647A1
Authority
WO
WIPO (PCT)
Prior art keywords
reinforced plastic
strength test
test
fiber reinforced
fiber
Prior art date
Application number
PCT/JP2016/065928
Other languages
French (fr)
Japanese (ja)
Inventor
公喜 内藤
博幸 小熊
林 豊
武俊 中山
穂奈美 野田
Original Assignee
小松精練株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 小松精練株式会社 filed Critical 小松精練株式会社
Publication of WO2017006647A1 publication Critical patent/WO2017006647A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/02Ropes built-up from fibrous or filamentary material, e.g. of vegetable origin, of animal origin, regenerated cellulose, plastics
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D19/00Structural or constructional details of bridges
    • E01D19/16Suspension cables; Cable clamps for suspension cables ; Pre- or post-stressed cables
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/07Reinforcing elements of material other than metal, e.g. of glass, of plastics, or not exclusively made of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/08Members specially adapted to be used in prestressed constructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress

Definitions

  • the present invention relates to a fixing structure of a fiber reinforced plastic cable, a manufacturing method thereof, a strength test method, and a sample for strength test.
  • Metal cables made of metal materials such as steel are used to support or reinforce structures such as bridges and buildings.
  • the metal cable can be used as, for example, a bridge cable, a reinforcing cable for a building, various structures, tendons such as a ground anchor, and the like.
  • FRP Fiber Reinforced Plastics
  • FRP cables do not generate rust and are particularly useful for marine structure applications.
  • Examples of the offshore structure include a tension mooring platform (TLP) used for offshore resource mining and offshore wind power generation.
  • TLP tension mooring platform
  • Patent Document 1 discloses a technique related to a fixing structure provided in an FRP cable.
  • the fixing structure described in this document is formed of a metal material.
  • the FRP cable with the fixing structure fixed is easily damaged in the vicinity of the fixing structure where the tension tends to concentrate. Therefore, a technique capable of effectively suppressing damage to the FRP cable is required.
  • an object of the present invention is to provide a technique that can favorably hold the end portion of a fiber-reinforced plastic cable.
  • a fixing structure for a fiber reinforced plastic cable is made of fiber reinforced plastic, and is provided at a longitudinal end portion of the fiber reinforced plastic cable. To an inclined portion whose diameter decreases toward the longitudinal center of the fiber-reinforced plastic cable.
  • the fixing structure having this configuration is configured to be fixed to various structures or stable ground while the holding portion is held.
  • the holding force applied to the holding part is transmitted to the fiber reinforced plastic cable through the fixing structure.
  • the holding force is relaxed as the diameter decreases along the inclined portion when transmitted through the fixing structure. Therefore, the holding force applied to the fiber reinforced plastic cable from the fixing structure gradually decreases from the rear end portion of the inclined portion having a large diameter toward the tip portion having a small diameter.
  • the tension of the fiber reinforced plastic cable provided with the fixing structure is first applied to the tip of the inclined portion of the fixing structure. Then, the inclined portion of the fixing structure is sequentially deformed from the front end portion having a weak holding force to disperse the tension toward the rear end portion.
  • the tension of the fiber-reinforced plastic cable provided with the fixing structure is not concentrated locally but is distributed along the inclined portion. Therefore, the fiber reinforced plastic cable provided with the fixing structure is hardly damaged.
  • the fixing structure may have a configuration in which a sheet-like fiber reinforced plastic is spirally wound.
  • the fixing structure can be easily formed by winding a sheet-like fiber reinforced plastic.
  • the sheet-like fiber reinforced plastic may have a configuration in which a fiber cloth is impregnated with plastic.
  • particularly high strength can be obtained by using a sheet-like fiber reinforced plastic having a structure in which fiber cloth is impregnated with plastic.
  • an uncured sheet of fiber reinforced plastic is prepared.
  • the uncured sheet is spirally wound around the longitudinal end of the fiber reinforced plastic cable in a direction away from the longitudinal center of the fiber reinforced plastic cable.
  • the uncured sheet wound around the fiber reinforced plastic cable is cured. In this configuration, a fixing structure that hardly damages the fiber reinforced plastic cable can be easily formed by winding an uncured sheet.
  • a test piece of the fiber reinforced plastic cable is prepared.
  • a holding structure having a holding portion and an inclined portion whose diameter decreases from the holding portion toward the central portion in the longitudinal direction of the test piece by fiber reinforced plastic at each of both longitudinal ends of the test piece.
  • the strength test of the test piece is performed in a state where the holding portion of the holding structure provided on the test piece is held. In this configuration, the strength test of the test piece can be performed without breaking the test piece in the vicinity of the holding structure. Thereby, it becomes possible to evaluate the original exact strength of the fiber reinforced plastic cable.
  • an uncured sheet of fiber reinforced plastic may be prepared.
  • the uncured sheet is spirally wound around each end portion in the longitudinal direction of the test piece in a direction away from the longitudinal center portion of the test piece.
  • the uncured sheet wound around the test piece is cured.
  • the holding structure can be easily provided at both ends of the test piece.
  • a sample for strength test of a fiber reinforced plastic cable includes a test piece of a fiber reinforced plastic cable and a holding structure.
  • the holding structure is made of fiber reinforced plastic, provided at both ends of the test piece, a holding part, and an inclined part whose diameter decreases from the holding part toward the longitudinal center of the test piece, Have With this configuration, it is possible to provide a strength test sample capable of evaluating the strength of the test piece without breaking the test piece in the vicinity of the holding structure.
  • the holding structure may have a configuration in which a sheet-like fiber reinforced plastic is wound spirally. In this configuration, a holding structure having an inclined portion can be easily formed by winding a sheet-like fiber reinforced plastic.
  • the sheet-like fiber reinforced plastic may have a configuration in which a fiber cloth is impregnated with plastic.
  • a holding structure having a particularly high strength can be obtained by using a sheet-like fiber-reinforced plastic having a structure in which fiber cloth is impregnated with plastic.
  • FIG. 1 is a front view showing a fixing structure according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along lines AA ′, BB ′, and CC ′ of FIG. 1 showing the fixing structure. It is a figure for demonstrating the retention strength added to an FRP cable from the said fixing structure.
  • 3 is a flowchart showing a method for manufacturing the fixing structure.
  • FIG. 6 is a front view showing an uncured sheet preparation step (step S1-1) of the method for manufacturing the fixing structure.
  • FIG. 5 is a front view showing an uncured sheet winding step (step S1-2) of the method for manufacturing the fixing structure.
  • FIG. 10 is a front view showing a modification of the uncured sheet preparation step (step S1-1) of the method for manufacturing the fixing structure.
  • FIG. 10 is a front view showing a modification of the uncured sheet winding step (step S1-2) of the method for manufacturing the fixing structure.
  • FIG. 6 is a front view showing a first modification of the fixing structure.
  • FIG. 9 is a perspective view showing a second modification of the fixing structure.
  • FIG. 10 is a front view showing a third modification of the fixing structure.
  • 10 is a flowchart showing a manufacturing method of Modification 3 of the fixing structure.
  • FIG. 10 is a cross-sectional view showing a mold setting step (step S2-2) and a casting / curing step (step S2-3) of the manufacturing method of Modification 3 of the fixing structure.
  • FIG. 1 is a front view showing a fixing structure 20 according to the first embodiment of the present invention.
  • the fixing structure 20 is provided at each end of a fiber reinforced plastic (FRP: Fiber Reinforced Plastics) cable 10, and constitutes the FRP cable structure 1 together with the FRP cable 10. Since the fixing structures 20 at both ends of the FRP cable 10 have the same configuration, only the fixing structure 20 at one end will be described below, and the fixing structure 20 at the other end will be described. The description of is omitted.
  • FRP Fiber Reinforced Plastics
  • the fixing structure 20 can correspond to a wide variety of FRP cables 10, and the FRP cable 10 is not limited to a specific type.
  • the FRP cable 10 for example, an FRP wire having a configuration in which a plurality of fiber materials extending along the longitudinal direction are bundled can be used. In this case, it is preferable that the plurality of fiber materials are continuously continuous in the longitudinal direction of the FRP cable 10.
  • the fixing structure 20 includes a holding portion 22 disposed at an end portion in the Z-axis direction, and an inclined portion 21 having a diameter that decreases from the holding portion 22 toward the longitudinal center portion of the FRP cable 10.
  • the inclined portion 21 has a substantially truncated cone shape, and the holding portion 22 has a substantially disk shape.
  • the holding portion 22 and the largest diameter portion of the inclined portion 21 have the same diameter and are continuous.
  • the fixing structure 20 is configured to be fixed to various structures or a stable ground via the holding device 2 in a state where the holding unit 22 is held by the holding device 2 (see FIG. 3).
  • the FRP cable structure 1 provided with the fixing structure 20 can support or reinforce a structure such as a bridge or a building by the tension of the FRP cable 10.
  • the FRP cable structure 1 can be used as, for example, a bridge cable, a reinforcing cable for a building, various structures, tendons such as a ground anchor, and the like.
  • the fixing structure 20 is made of FRP. That is, the FRP cable 10 and the fixing structure 20 constituting the FRP cable structure 1 are both made of FRP. Therefore, since the FRP cable structure 1 is very lightweight as a whole, it contributes to improvement in workability. Moreover, since the FRP cable structure 1 does not generate rust, it is particularly useful for marine structures such as TLP.
  • the FRP that constitutes the fixing structure 20 includes a resin component and a fiber material, and has a configuration in which the fiber material is impregnated with the resin component.
  • the high-strength fixing structure 20 is realized by using an epoxy resin as a resin component and glass fiber as a fiber material.
  • the resin component and the fiber material of the FRP constituting the fixing structure 20 are not limited to specific types.
  • the resin component of the FRP that constitutes the fixing structure 20 may be a resin or an adhesive that has sufficient strength and can be satisfactorily adhered to the FRP cable 10, and is not limited to a specific type.
  • the resin component of the FRP that constitutes the fixing structure 20 for example, vinyl ester resin, polyester resin, polyimide resin, polypropylene resin, polyamide resin, polycarbonate resin, and the like can be employed in addition to the epoxy resin.
  • the FRP fiber material constituting the fixing structure 20 is not limited to a specific type as long as it can exhibit sufficient strength integrally with the resin component.
  • a fiber material of FRP constituting the fixing structure 20 for example, carbon fiber, aramid fiber, boron fiber, or the like can be adopted in addition to glass fiber.
  • the carbon fiber for example, a high-rigidity pitch-based carbon fiber, a high-strength PAN-based carbon fiber, or the like can be used.
  • the fixing structure 20 has a configuration in which a sheet-like FRP (FRP sheet) is spirally wound around the FRP cable 10 downward in the Z-axis direction. That is, the upper end portion in the Z-axis direction of the FRP sheet is inclined by an angle ⁇ with respect to the XY plane, and extends spirally downward in the Z-axis direction. Thereby, the inclined part 21 whose diameter increases stepwise in the Z-axis direction downward is formed.
  • FRP sheet sheet-like FRP
  • FIG. 2 is a cross-sectional view showing the fixing structure 20. More specifically, FIG. 2A shows a cross section of the fixing structure 20 along the line AA ′ in FIG. 1, and FIG. 2B shows the fixing structure 20 along the line BB ′ in FIG. 2C shows a cross section taken along the line CC ′ of FIG. 1 of the fixing structure 20.
  • FIG. 2A shows a cross section of the fixing structure 20 along the line AA ′ in FIG. 1
  • FIG. 2B shows the fixing structure 20 along the line BB ′ in FIG. 2C shows a cross section taken along the line CC ′ of FIG. 1 of the fixing structure 20.
  • FIG. 2A shows a cross section of the fixing structure 20 along the line AA ′ in FIG. 1
  • FIG. 2B shows the fixing structure 20 along the line BB ′ in FIG. 2C shows a cross section taken along the line CC ′ of FIG. 1 of the fixing structure 20.
  • FIG. 2A shows a cross section of the fixing structure 20 along the
  • FIG. 2A shows a portion where the FRP sheet of the inclined portion 21 is wound twice
  • FIG. 2B shows a portion where the FRP sheet of the inclined portion 21 is wound seven times
  • FIG. ) Shows the holding unit 22.
  • the holding portion 22 is a winding end portion of the FRP sheet, and is configured by an FRP sheet wound around 13 times.
  • the winding number and angle ⁇ of the FRP sheet can be appropriately determined according to the type of the FRP cable 10 and the use of the FRP cable structure 1. Further, the winding direction of the FRP sheet in the fixing structure 20 may be left-handed as shown in FIG.
  • the fiber material of the FRP sheet constituting the fixing structure 20 according to the present embodiment is configured as a fiber cloth in which long diameter fibers are two-dimensionally arranged. That is, this FRP sheet has a configuration in which a fiber cloth is impregnated with plastic. Thereby, the fixing structure 20 having particularly high strength is obtained.
  • the fiber cloth may have a woven fabric structure such as plain weave, twill weave, and satin weave.
  • the aspect of the fiber material of the FRP sheet is not limited to the fiber cloth.
  • the fiber material of the FRP sheet may be, for example, a long diameter fiber oriented in the winding direction of the FRP sheet or a short diameter fiber dispersed in a random direction in the plastic.
  • FIG. 3 is a view for explaining the holding force applied from the fixing structure 20 to the FRP cable 10. More specifically, the left diagram of FIG. 3 is a front view showing the fixing structure 20 in a state where the holding unit 22 is held by the holding device 2.
  • the right diagram of FIG. 3 is a graph qualitatively showing the change in the holding force applied from the fixing structure 20 to the FRP cable 10 along the Z-axis direction.
  • the horizontal axis represents the magnitude of the holding force
  • the vertical axis represents the position in the Z-axis direction corresponding to the left diagram of FIG.
  • the holding device 2 includes holding members 2a and 2b that face each other in the X-axis direction, and holds the fixing structure 20 by sandwiching a holding portion 22 of the fixing structure 20 between the holding members 2a and 2b. .
  • the fixing structure 20 is fixed to various structures or stable ground via the holding device 2 in a state where the holding unit 22 is held by the holding device 2.
  • the holding force applied to the holding unit 22 from the holding device 2 is transmitted to the FRP cable 10 through the fixing structure 20.
  • the holding force is relaxed as the diameter decreases along the inclined portion 21 when transmitted through the fixing structure 20. Therefore, the holding force applied to the FRP cable 10 from the fixing structure 20 gradually decreases from the large-diameter rear end G of the inclined portion 21 toward the small-diameter front end F.
  • the holding force applied from the fixing structure 20 to the FRP cable 10 is constant in the holding portion 22, but in the inclined portion 21, the large-diameter rear end portion G to the small-diameter tip portion. It gradually decreases toward F.
  • the change along the Z-axis direction of the holding force in the inclination part 21 is linearly shown for convenience of explanation.
  • the holding force in the inclined portion 21 only needs to monotonously decrease from the large-diameter rear end G toward the small-diameter front end F.
  • the holding force in the inclined portion 21 is considered to change stepwise.
  • the tension of the FRP cable 10 provided with the fixing structure 20 is applied to the small-diameter tip F of the inclined portion 21 of the fixing structure 20. Then, the inclined portion 21 of the fixing structure 20 is deformed sequentially from the front end F having a weak holding force, thereby dispersing the tension toward the rear end G.
  • the tension of the FRP cable 10 provided with the fixing structure 20 is dispersed along the inclined portion 21 without being concentrated in the vicinity of the front end portion F of the inclined portion 21. Therefore, the FRP cable 10 provided with the fixing structure 20 is not easily damaged in the vicinity of the front end portion F of the inclined portion 21.
  • the tension of the FRP cable 10 is dispersed according to the degree of change along the Z-axis direction of the holding force applied from the inclined portion 21 to the FRP cable 10 (inclination at the inclined portion 21 in the graph in the right diagram of FIG. 3). That is, if the change is moderate, the tension distribution region of the FRP cable 10 in the inclined portion 21 becomes wide. On the contrary, if the change is steep, the tension distribution region of the FRP cable 10 in the inclined portion 21 is narrowed.
  • the degree of change along the Z-axis direction of the holding force applied from the inclined portion 21 to the FRP cable 10 is determined by the inclination angle of the inclined portion with respect to the Z-axis. Further, the inclination angle of the inclined portion with respect to the Z-axis direction is determined by the angle ⁇ with respect to the XY plane of the upper end portion of the FRP sheet in the Z-axis direction. Therefore, the width of the tension distribution region of the FRP cable 10 in the inclined portion 21 is determined by the angle ⁇ with respect to the XY plane of the upper end portion in the Z-axis direction of the FRP sheet.
  • the width of the tension distribution region of the FRP cable 10 in the inclined portion 21 can be easily controlled according to the type of the FRP cable 10, the application of the FRP cable structure 1, and the like. .
  • FIG. 4 is a flowchart showing a method for manufacturing the fixing structure 20.
  • 5 and 6 are front views showing the manufacturing process of the fixing structure 20.
  • a method for manufacturing the fixing structure 20 will be described along FIG. 4 with reference to FIGS. 5 and 6 as appropriate.
  • Step S1-1 Uncured sheet preparation process
  • an uncured FRP sheet (uncured sheet) S1 is prepared.
  • FIG. 5 is a front view showing the uncured sheet S1 prepared in step S1-1.
  • the uncured sheet S1 is obtained by filling a fiber cloth with uncured plastic.
  • the uncured plastic of the uncured sheet S1 a room temperature curable adhesive is used for ease of curing.
  • the uncured plastic may be a thermosetting resin.
  • a commercially available prepreg can be used as the uncured sheet S1.
  • the uncured sheet S1 is elongated in the X-axis direction and is cut into a substantially right-angled triangle shape having the upper end portion in the Z-axis direction as a hypotenuse.
  • the angle ⁇ with respect to the XY plane at the upper end portion in the Z-axis direction of the uncured sheet S1 can be appropriately determined according to the configuration of the inclined portion 21 of the fixing structure 20. That is, when the angle ⁇ is increased, the inclination angle of the inclined portion 21 with respect to the Z axis is reduced. On the contrary, when the angle ⁇ is decreased, the inclination angle of the inclined portion 21 with respect to the Z-axis is increased.
  • Step S1-2 Uncured sheet winding process
  • the uncured sheet S1 prepared in step S1-1 is wound around the end of the FRP cable 10.
  • FIG. 6 is a diagram for explaining step S1-2.
  • the end of the FRP cable 10 is set on the short side parallel to the Z-axis direction of the uncured sheet S1. Then, as shown in FIG. 6B, the uncured sheet S1 is wound around the FRP cable 10 while rotating the FRP cable 10 around a central axis parallel to the Z axis.
  • Step S1-3 Curing process
  • the uncured fixing structure 20 obtained in step S1-2 is cured.
  • the uncured fixing structure 20 is left at room temperature.
  • a thermosetting resin is used as the uncured plastic, the uncured fixing structure 20 is heated to a predetermined temperature. Thereby, the fixing structure 20 shown in FIG. 1 is obtained.
  • a rectangular uncured sheet S2 shown in FIG. 7 is prepared in step S1-1. Then, in step S1-2, as shown in FIG. 8, the uncured sheet S2 inclined by the angle ⁇ with respect to the XY plane is spirally wound around the end portion of the FRP cable 10.
  • FIG. 9 is a front view of the fixing structure 20 according to the first modification of the embodiment.
  • the fixing structure 20 according to Modification 1 includes a small diameter portion 20a and a large diameter portion 20b. Both the small diameter portion 20a and the large diameter portion 20b are formed of an FRP sheet.
  • the small diameter portion 20a is provided directly on the FRP cable 10, and the large diameter portion 20b is provided on the holding portion 22a of the small diameter portion 20a.
  • the fixing structure 20 may be configured by only the small diameter portion 20a when the tension of the FRP cable 10 can be sufficiently dispersed only by the inclined portion 21a of the small diameter portion 20a. However, when the tension of the FRP cable 10 cannot be sufficiently dispersed only by the inclined portion 21a of the small diameter portion 20a, the large diameter portion 20b can be provided in the holding portion 22a of the small diameter portion 20a.
  • the holding portion 22 that receives the holding by the holding device 2 is the holding portion 22b of the large-diameter portion 20b.
  • the holding force applied to the holding portion 22b of the large diameter portion 20b is relaxed in two steps by the inclined portion 21b of the large diameter portion 20b and the inclined portion 21a of the small diameter portion 20a, so that the tension of the FRP cable 10 is reduced. It becomes possible to disperse more widely.
  • the fixing structure 20 according to the first modification is configured in two stages of the small diameter part 20a and the large diameter part 20b, the fixing structure 20 may be configured in three or more stages as necessary.
  • FIG. 10 is a perspective view of the fixing structure 20 according to the second modification of the embodiment.
  • the FRP cable 10 provided with the fixing structure 20 according to Modification 2 is configured as an FRP rope in which a plurality of FRP wires 10a are bundled.
  • the FRP cable 10 may be comprised as an FRP rope by which twist was added in the state in which the several FRP wire 10a was bundled.
  • FIG. 11 is a front view of the fixing structure 20 according to the third modification of the embodiment.
  • the fixing structure 20 according to Modification 3 is formed using a mold M, and includes a truncated cone-shaped inclined portion 21 and a disk-shaped holding portion 22.
  • the diameter of the inclined portion 21 is continuously changed unlike the above embodiment.
  • the tension of the FRP cable 10 can be dispersed by the inclined portion 21 as in the fixing structure 20 according to the embodiment.
  • FIG. 12 is a flowchart showing a method for manufacturing the fixing structure 20 according to the third modification.
  • FIG. 13 is a cross-sectional view illustrating a manufacturing process of the fixing structure 20 according to the third modification.
  • a method for manufacturing the fixing structure 20 according to Modification 3 will be described along FIG. 12 with reference to FIG. 13 as appropriate.
  • Step S2-1 Mold and uncured material preparation process
  • a mold M corresponding to the shape of the fixing structure 20 and an uncured FRP material (uncured material) that can be filled in the mold M are prepared.
  • the uncured material the above-mentioned uncured sheet can be used.
  • the uncured material may have a configuration in which a fiber material having a finite fiber length including a short fiber length is dispersed in uncured plastic, for example.
  • Step S2-2 Mold setting process
  • the mold M prepared in step S2-1 is set at the end of the FRP cable 10 as shown in FIG.
  • Step S2-3 Casting / curing process
  • the uncured material prepared in step S2-1 is poured into the mold M set in step S2-2, and then poured into the mold M.
  • the molded uncured material is cured.
  • Step S2-4 Mold removal process
  • the mold M is removed from the fixing structure 20 obtained in step S2-3.
  • the fixing structure 20 according to the third modification shown in FIG. 11 is obtained.
  • FIG. 14 is a front view showing a sample 101 for strength test of the FRP cable 10 according to the present embodiment.
  • the strength test sample 101 includes a test piece 110 of the FRP cable 10 and holding structures 120 provided at both ends of the test piece 110, respectively.
  • the test piece 110 is obtained by cutting the FRP cable 10 used in the first embodiment into a predetermined length.
  • the holding structure 120 has the same configuration as the fixing structure 20 according to the first embodiment. That is, the holding structure 120 includes the inclined portion 121 and the holding portion 122. In the strength test sample 101, the strength test can be performed in the test region 111 between the holding structures 120 of the test piece 110 in a state where the holding portion 122 of the holding structure 120 is held.
  • the strength test of the test piece 110 is performed in a state where both ends of the test piece 110 are directly held.
  • the tension and compressive force generated in the test area 111 of the test piece 110 are concentrated in the vicinity of the holding portion.
  • the test piece 110 is damaged near the holding portion under a load smaller than the load that can actually be withstood.
  • the resin material and the resin component are easily separated at both end portions of the test piece 110.
  • the strength of the test piece 110 is greatly reduced due to the peeling between the resin material and the resin component. Therefore, in this case, the original accurate strength of the test piece 110 cannot be evaluated.
  • the tension and compressive force generated in the test region 111 of the test piece 110 are dispersed along the inclined portion 121 of the holding structure 120, and therefore the tip of the inclined portion 121. Do not concentrate in the vicinity of the part F. Therefore, the test piece 110 provided with the holding structure 120 is not easily damaged in the vicinity of the tip portion F of the inclined portion 121.
  • both ends of the test piece 110 are reinforced by being covered with the holding structure 120 over the entire circumference. Therefore, even if a holding force is applied to the holding portion 122 of the holding structure 120, the resin material and the resin component of the test piece 110 are hardly separated.
  • the strength test sample 101 according to the present embodiment the original accurate strength of the test piece 110 can be evaluated.
  • FIG. 15 is a front view showing a strength test sample 201 of the FRP cable 10 according to a comparative example of the present embodiment.
  • columnar holding structures 220 are provided at both ends of the test piece 110 of the FRP cable 10.
  • the holding structure 220 according to the comparative example does not have a configuration corresponding to the inclined portion 121 of the holding structure 120 according to the embodiment, and is configured only by the holding portion 222.
  • the strength test is performed in the test region 111 between the holding structures 220 of the test piece 110 in a state where the holding portion 222 of the holding structure 220 is held.
  • the holding force applied to the holding portion 222 of the holding structure 220 is transmitted substantially uniformly, and the holding force applied from the holding structure 220 to the test piece 110 is substantially constant along the Z-axis direction.
  • the strength test sample 201 in the strength test sample 201, the tension and the compressive force generated in the test region 111 of the test piece 110 are concentrated in the vicinity of the distal end portion H of the holding structure 220. Therefore, the test piece 110 is damaged near the front end portion H of the holding structure 220 with a load smaller than the load that can actually withstand. For this reason, unlike the strength test sample 101 according to the present embodiment, the strength test sample 201 according to the comparative example cannot evaluate the original accurate strength of the test piece 110.
  • the holding structure 120 for the strength test sample 101 may be configured in the same manner as in the first to third modifications of the first embodiment. That is, the holding structure 120 may be configured in multiple stages, an FRP rope in which a plurality of FRP wires are bundled may be used as the FRP cable 10, and may be molded using a mold. .
  • FIG. 16 is a flowchart showing a strength test method for the FRP cable 10 according to the present embodiment.
  • a strength test sample 101 is prepared (steps S3-1 to S3-4), and a strength test is performed using the strength test sample 101 (step S3-5).
  • the strength test method of the FRP cable 10 will be described with reference to FIG.
  • Step S3-1 Test piece preparation process
  • the test piece 110 of the FRP cable 10 is prepared from the strength test sample 101 shown in FIG.
  • Step S3-2 Uncured sheet preparation process
  • an uncured sheet S3 corresponding to the test piece 110 prepared in step S3-1 is prepared.
  • the configuration of the uncured sheet S3 is the same as the uncured sheet S1 (see FIG. 5) and the uncured sheet S2 (see FIG. 7) according to the first embodiment.
  • Step S3-3 Uncured sheet winding step
  • the uncured holding structure 120 is completed by winding the uncured sheet S3 prepared in step S3-2 on both ends of the test piece 110 prepared in step S3-1.
  • the winding method of the uncured sheet S3 is the same as that of the uncured sheet S1 (see FIG. 6) and the uncured sheet S2 (see FIG. 8) according to the first embodiment. Thereby, the uncured holding structure 120 is completed.
  • Step S3-4 Curing process
  • the uncured holding structure 120 obtained in step S3-3 is cured.
  • the holding structure 120 is completed, and the strength test sample 101 shown in FIG. 14 is obtained.
  • Step S3-5 Strength test process
  • a strength test is performed using the strength test sample 101 obtained in step S3-4.
  • the strength test include a tensile test, a compression test, a bending test, and the like. Any strength test is performed in a state where the holding portion 122 of the holding structure 120 of the strength test sample 101 is held.
  • a strength test will be exemplified using the strength test sample 101.
  • FIG. 17 is a schematic diagram illustrating a strength test for the strength test sample 101.
  • FIG. 17A shows an example of a tensile test
  • FIG. 17B shows an example of a compression test
  • FIG. 17C shows an example of a bending test.
  • the holding portion 122 of the holding structure 120 of the strength test sample 101 is formed by a pair of gripping portions C1U and C1L facing in the Z-axis direction. Hold it.
  • a tensile strength test and (ii) a tensile fatigue test will be described.
  • the test region 111 of the strength test sample 101 is broken at the center in the Z-axis direction, and the original accurate tensile strength of the test piece 110 of the FRP cable 10 is obtained. It is thought that.
  • the test region 111 of the test piece 110 breaks in the vicinity of the gripping portions C1U and C1L, and the above-mentioned The strength was significantly lower than the tensile strength test of the strength test sample 101. Therefore, in this tensile strength test, the original accurate tensile strength of the test piece 110 of the FRP cable 10 is not obtained.
  • the test region 111 of the test piece 110 is deformed mainly in the center region in the Z-axis direction, and the original accurate tensile fatigue characteristic of the test piece 110 of the FRP cable 10 is obtained. It is thought that
  • compression test In the compression test using the strength test sample 101 shown in FIG. 17B, first, the holding portion 122 of the holding structure 120 of the strength test sample 101 is formed by a pair of gripping portions C2U and C2L facing each other in the Z-axis direction. Hold it.
  • a compression strength test As an example of a compression test using the strength test sample 101, (i) a compression strength test and (ii) a compression fatigue test will be described.
  • the test region 111 of the strength test sample 101 is damaged at the center in the Z-axis direction, and the original accurate compressive strength of the test piece 110 of the FRP cable 10 is obtained. It is thought that.
  • the test region 111 of the test piece 110 is deformed mainly in the center region in the Z-axis direction, and the original compression fatigue characteristic of the test piece 110 of the FRP cable 10 is obtained. It is thought that
  • the holding portion 122 of the holding structure 120 of the strength test sample 101 is formed by the pair of gripping portions C3L and C3R facing in the X-axis direction. Hold it.
  • the grip portions C3L and C3R have rotation axes PL and PR parallel to the Y axis, respectively, and can rotate around the rotation axes PL and PR.
  • (i) bending strength test and (ii) plane bending fatigue test will be described.
  • the test region 111 of the strength test sample 101 is broken at the center in the Z-axis direction, and the original accurate bending strength of the test piece 110 of the FRP cable 10 is obtained. It is thought that.
  • the test region 111 of the test piece 110 breaks in the vicinity of the gripping portions C3L and C3R, and the above-mentioned The strength was significantly lower than the bending strength test of the strength test sample 101. Therefore, in this bending strength test, the original accurate bending strength of the test piece 110 of the FRP cable 10 is not obtained.
  • the bending fatigue characteristics of the strength test sample 101 are evaluated by the change in the load applied to the pressers l1 and l2 with the number of vertical movements of the pressers l1 and l2 in the Z-axis direction. Can do.
  • the test region 111 of the test piece 110 is deformed mainly in the center in the Z-axis direction, and the original accurate bending fatigue characteristics of the test piece 110 of the FRP cable 10 are obtained. It is thought that it is obtained.
  • a strength test sample 101 shown in FIG. 14 was produced. Further, a strength test sample 201 shown in FIG. 15 was produced as a comparative example of the present embodiment.
  • the test piece 110 of the same FRP cable 10 is used, and the test region 111 has the same length.
  • Example 1 and Comparative Example 1 an FRP cable (model number “24K1P” manufactured by Komatsu Seiren Co., Ltd.) in which 240,000 carbon fibers were impregnated with a resin component was used as the test piece 110 of the FRP cable 10.
  • Example 2 and Comparative Example 2 an FRP cable (model number “24K2P” manufactured by Komatsu Seiren Co., Ltd.) in which 480,000 carbon fibers were impregnated with a resin component was used as the test piece 110 of the FRP cable 10.
  • FIG. 18A is a stress strain diagram obtained by a tensile strength test using the strength test samples 201 according to Comparative Examples 1 and 2.
  • FIG. 18B is a stress strain diagram obtained by the tensile strength test using the strength test sample 101 according to Examples 1 and 2.
  • FIG. 18A is a stress strain diagram obtained by a tensile strength test using the strength test samples 201 according to Comparative Examples 1 and 2.
  • FIG. 18B is a stress strain diagram obtained by the tensile strength test using the strength test sample 101 according to Examples 1 and 2.
  • FIG. 18A is a stress strain diagram obtained by a tensile strength test using the strength test samples 201 according to Comparative Examples 1 and 2.
  • FIG. 18B is a stress strain diagram obtained by the tensile strength test using the strength test sample 101 according to Examples 1 and 2.
  • the fixing structure 20 having the inclined portion 21 is illustrated, and in the second embodiment, the holding structure 120 having the inclined portion 121 is illustrated.
  • the holding structure 120 is not limited to these configurations.
  • As the fixing structure 20 and the holding structure 120 an arbitrary configuration made of FRP and having the inclined portions 21 and 121 can be adopted.
  • the holding portions 22 and 122 which are cylindrical surfaces parallel to the Z-axis direction are provided.
  • the parts 22 and 122 are not limited to this configuration.
  • any configuration having a larger diameter than the inclined portions 21 and 121 can be employed.
  • the rear end portion G having a large diameter of the inclined portions 21 and 121 may be configured as the holding portions 22 and 122.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Bridges Or Land Bridges (AREA)
  • Reinforcement Elements For Buildings (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

This attachment structure for a fiber reinforced plastic cable is formed from fiber reinforced plastic and is disposed on a longitudinal end part of the fiber reinforced plastic cable, said attachment structure comprising a retention unit and an inclined part having a diameter that becomes smaller from the retention unit toward the longitudinal center part of the fiber reinforced plastic cable. The end part of the fiber reinforced plastic cable can be retained excellently by this attachment structure.

Description

繊維強化プラスチックケーブルの定着構造体及びその製造方法、強度試験方法、並びに強度試験用サンプルFIXED STRUCTURE FOR FIBER-REINFORCED PLASTIC CABLE, ITS MANUFACTURING METHOD, STRESS TEST METHOD, AND STRESS TEST SAMPLE
 本発明は、繊維強化プラスチックケーブルの定着構造体及びその製造方法、強度試験方法、並びに強度試験用サンプルに関する。 The present invention relates to a fixing structure of a fiber reinforced plastic cable, a manufacturing method thereof, a strength test method, and a sample for strength test.
 橋梁や建築物などの構造物を支持ないし補強するために、鋼などの金属材料で形成された金属ケーブルが利用される。金属ケーブルは、例えば、橋梁ケーブル、建築物用の補強ケーブル、各種構造物やグランドアンカ等のテンドンなどとして利用可能である。 Metal cables made of metal materials such as steel are used to support or reinforce structures such as bridges and buildings. The metal cable can be used as, for example, a bridge cable, a reinforcing cable for a building, various structures, tendons such as a ground anchor, and the like.
 近年では、金属ケーブルの代替物として、繊維強化プラスチック(FRP:Fiber Reinforced Plastics)ケーブルが注目されている。FRPケーブルは、金属ケーブルと同等、あるいはそれ以上の高い強度を備えつつ、非常に軽量である。このため、金属ケーブルに代えてFRPケーブルを利用することにより、作業性が大幅に向上する。 In recent years, fiber reinforced plastic (FRP: Fiber Reinforced Plastics) cables have attracted attention as an alternative to metal cables. The FRP cable is very lightweight while having high strength equal to or higher than that of a metal cable. For this reason, workability is greatly improved by using FRP cables instead of metal cables.
 また、FRPケーブルは、金属ケーブルと異なり錆が発生しないため、海洋構造物の用途に特に有用である。海洋構造物としては、例えば、海洋資源採掘や洋上風力発電に用いられる緊張係留式プラットフォーム(TLP:Tension Leg Platform)が挙げられる。 Also, unlike metal cables, FRP cables do not generate rust and are particularly useful for marine structure applications. Examples of the offshore structure include a tension mooring platform (TLP) used for offshore resource mining and offshore wind power generation.
 FRPケーブルの両端部は、各種構造物や安定地盤などに定着される。FRPケーブルの両端部を良好に定着可能とするために、FRPケーブルの両端部には定着構造体が設けられる。FRPケーブルに設けられる定着構造体に関する技術が、例えば、特許文献1に開示されている。本文献に記載の定着構造体は金属材料で形成されている。 両 端 Both ends of the FRP cable are fixed to various structures and stable ground. In order to be able to fix both ends of the FRP cable satisfactorily, fixing structures are provided at both ends of the FRP cable. For example, Patent Document 1 discloses a technique related to a fixing structure provided in an FRP cable. The fixing structure described in this document is formed of a metal material.
特開2013-11162号公報JP 2013-11162 A
 定着構造体が定着された状態のFRPケーブルは、その張力が集中しやすい定着構造体の近傍において損傷を受けやすい。したがって、FRPケーブルが損傷を受けることを効果的に抑制可能な技術が求められる。 The FRP cable with the fixing structure fixed is easily damaged in the vicinity of the fixing structure where the tension tends to concentrate. Therefore, a technique capable of effectively suppressing damage to the FRP cable is required.
 以上のような事情に鑑み、本発明の目的は、繊維強化プラスチックケーブルの端部を良好に保持可能とする技術を提供することにある。 In view of the circumstances as described above, an object of the present invention is to provide a technique that can favorably hold the end portion of a fiber-reinforced plastic cable.
 上記目的を達成するため、本発明の一形態に係る繊維強化プラスチックケーブルの定着構造体は、繊維強化プラスチックから成り、繊維強化プラスチックケーブルの長手方向端部に設けられ、保持部と、上記保持部から上記繊維強化プラスチックケーブルの長手方向中央部に向けて径が小さくなる傾斜部と、を有する。 In order to achieve the above object, a fixing structure for a fiber reinforced plastic cable according to an embodiment of the present invention is made of fiber reinforced plastic, and is provided at a longitudinal end portion of the fiber reinforced plastic cable. To an inclined portion whose diameter decreases toward the longitudinal center of the fiber-reinforced plastic cable.
 この構成の定着構造体は、保持部が保持された状態で各種構造物や安定地盤などに定着されるように構成されている。保持部に加わる保持力は、定着構造体を介して繊維強化プラスチックケーブルまで伝達される。当該保持力は、定着構造体内を伝達される際に、傾斜部に沿って小径になるにつれて緩和される。したがって、定着構造体から繊維強化プラスチックケーブルに加わる保持力は、傾斜部の大径の後端部から小径の先端部に向けて徐々に小さくなる。 The fixing structure having this configuration is configured to be fixed to various structures or stable ground while the holding portion is held. The holding force applied to the holding part is transmitted to the fiber reinforced plastic cable through the fixing structure. The holding force is relaxed as the diameter decreases along the inclined portion when transmitted through the fixing structure. Therefore, the holding force applied to the fiber reinforced plastic cable from the fixing structure gradually decreases from the rear end portion of the inclined portion having a large diameter toward the tip portion having a small diameter.
 定着構造体が設けられた繊維強化プラスチックケーブルの張力は、まず定着構造体の傾斜部の先端部に加わる。そして、定着構造体の傾斜部は、保持力の弱い先端部から順次変形することにより、当該張力を後端部に向けて分散させる。このように、定着構造体が設けられた繊維強化プラスチックケーブルの張力は、局所的に集中せず、傾斜部に沿って分散される。したがって、定着構造体が設けられた繊維強化プラスチックケーブルには損傷が発生しにくい。 The tension of the fiber reinforced plastic cable provided with the fixing structure is first applied to the tip of the inclined portion of the fixing structure. Then, the inclined portion of the fixing structure is sequentially deformed from the front end portion having a weak holding force to disperse the tension toward the rear end portion. Thus, the tension of the fiber-reinforced plastic cable provided with the fixing structure is not concentrated locally but is distributed along the inclined portion. Therefore, the fiber reinforced plastic cable provided with the fixing structure is hardly damaged.
 上記定着構造体は、シート状の繊維強化プラスチックが螺旋状に巻き付けられた構成を有していてもよい。
 上記定着構造体は、シート状の繊維強化プラスチックを巻き付けることによって容易に形成可能である。
The fixing structure may have a configuration in which a sheet-like fiber reinforced plastic is spirally wound.
The fixing structure can be easily formed by winding a sheet-like fiber reinforced plastic.
 上記シート状の繊維強化プラスチックは、繊維クロスがプラスチックによって含浸された構成を有していてもよい。
 上記定着構造体では、繊維クロスがプラスチックによって含浸された構成のシート状の繊維強化プラスチックを用いることにより、特に高い強度が得られる。
The sheet-like fiber reinforced plastic may have a configuration in which a fiber cloth is impregnated with plastic.
In the fixing structure, particularly high strength can be obtained by using a sheet-like fiber reinforced plastic having a structure in which fiber cloth is impregnated with plastic.
 本発明の一形態に係る繊維強化プラスチックケーブルの定着構造体の製造方法では、繊維強化プラスチックの未硬化シートが用意される。
 上記未硬化シートが、繊維強化プラスチックケーブルの長手方向端部に、上記繊維強化プラスチックケーブルの長手方向中央部から離れる方向に向けて螺旋状に巻き付けられる。
 上記繊維強化プラスチックケーブルに巻き付けられた上記未硬化シートが硬化させられる。
 この構成では、繊維強化プラスチックケーブルに損傷が発生しにくい定着構造体を、未硬化シートを巻き付けることによって容易に形成可能である。
In the method for manufacturing a fixing structure of a fiber reinforced plastic cable according to an embodiment of the present invention, an uncured sheet of fiber reinforced plastic is prepared.
The uncured sheet is spirally wound around the longitudinal end of the fiber reinforced plastic cable in a direction away from the longitudinal center of the fiber reinforced plastic cable.
The uncured sheet wound around the fiber reinforced plastic cable is cured.
In this configuration, a fixing structure that hardly damages the fiber reinforced plastic cable can be easily formed by winding an uncured sheet.
 本発明の一形態に係る繊維強化プラスチックケーブルの強度試験方法では、繊維強化プラスチックケーブルの試験片が用意される。
 上記試験片の長手方向両端部のそれぞれに、繊維強化プラスチックによって、保持部と、上記保持部から上記試験片の長手方向中央部に向けて径が小さくなる傾斜部と、を有する保持構造体が設けられる。
 上記試験片に設けられた上記保持構造体の上記保持部を保持した状態で、上記試験片の強度試験が行われる。
 この構成では、試験片を保持構造体の近傍で破断させることなく、試験片の強度試験を行うことが可能となる。これにより、繊維強化プラスチックケーブル本来の正確な強度を評価することが可能となる。
In the strength test method for a fiber reinforced plastic cable according to an embodiment of the present invention, a test piece of the fiber reinforced plastic cable is prepared.
A holding structure having a holding portion and an inclined portion whose diameter decreases from the holding portion toward the central portion in the longitudinal direction of the test piece by fiber reinforced plastic at each of both longitudinal ends of the test piece. Provided.
The strength test of the test piece is performed in a state where the holding portion of the holding structure provided on the test piece is held.
In this configuration, the strength test of the test piece can be performed without breaking the test piece in the vicinity of the holding structure. Thereby, it becomes possible to evaluate the original exact strength of the fiber reinforced plastic cable.
 上記保持構造体を設けるために、繊維強化プラスチックの未硬化シートが用意されてもよい。
 この場合、上記未硬化シートが、上記試験片の長手方向両端部のそれぞれに、上記試験片の長手方向中央部から離れる方向に向けて螺旋状に巻き付けられる。
 上記試験片に巻き付けられた上記未硬化シートが硬化させられる。
 この構成では、試験片の両端部に保持構造体を容易に設けることができる。
In order to provide the holding structure, an uncured sheet of fiber reinforced plastic may be prepared.
In this case, the uncured sheet is spirally wound around each end portion in the longitudinal direction of the test piece in a direction away from the longitudinal center portion of the test piece.
The uncured sheet wound around the test piece is cured.
In this configuration, the holding structure can be easily provided at both ends of the test piece.
 上記引張試験、圧縮試験、及び曲げ試験の少なくとも1つであってもよい。
 この構成では、繊維強化プラスチックケーブル本来の正確な引張強度、圧縮強度、及び曲げ強度を評価することが可能となる。
It may be at least one of the tensile test, the compression test, and the bending test.
With this configuration, it is possible to evaluate the original accurate tensile strength, compressive strength, and bending strength of the fiber-reinforced plastic cable.
 本発明の一形態に係る繊維強化プラスチックケーブルの強度試験用サンプルは、繊維強化プラスチックケーブルの試験片と、保持構造体と、を具備する。
 上記保持構造体は、繊維強化プラスチックから成り、上記試験片の両端部にそれぞれ設けられ、保持部と、上記保持部から上記試験片の長手方向中央部に向けて径が小さくなる傾斜部と、を有する。
 この構成では、試験片を保持構造体の近傍で破断させることなく、試験片の強度を評価することが可能な強度試験用サンプルを提供することができる。
A sample for strength test of a fiber reinforced plastic cable according to an embodiment of the present invention includes a test piece of a fiber reinforced plastic cable and a holding structure.
The holding structure is made of fiber reinforced plastic, provided at both ends of the test piece, a holding part, and an inclined part whose diameter decreases from the holding part toward the longitudinal center of the test piece, Have
With this configuration, it is possible to provide a strength test sample capable of evaluating the strength of the test piece without breaking the test piece in the vicinity of the holding structure.
 上記保持構造体は、シート状の繊維強化プラスチックが螺旋状に巻き付けられた構成を有していてもよい。
 この構成では、シート状の繊維強化プラスチックを巻き付けることによって、傾斜部を有する保持構造体を容易に形成可能である。
The holding structure may have a configuration in which a sheet-like fiber reinforced plastic is wound spirally.
In this configuration, a holding structure having an inclined portion can be easily formed by winding a sheet-like fiber reinforced plastic.
 上記シート状の繊維強化プラスチックは、繊維クロスがプラスチックによって含浸された構成を有していてもよい。
 この構成では、繊維クロスがプラスチックによって含浸された構成のシート状の繊維強化プラスチックを用いることにより、特に高い強度の保持構造体が得られる。
The sheet-like fiber reinforced plastic may have a configuration in which a fiber cloth is impregnated with plastic.
In this configuration, a holding structure having a particularly high strength can be obtained by using a sheet-like fiber-reinforced plastic having a structure in which fiber cloth is impregnated with plastic.
 繊維強化プラスチックケーブルの端部を良好に保持可能とする技術を提供する。 Provide a technology that can hold the ends of fiber reinforced plastic cables well.
本発明の第1の実施形態に係る定着構造体を示す正面図である。1 is a front view showing a fixing structure according to a first embodiment of the present invention. 上記定着構造体を示す、図1のA-A'線、B-B'線、及びC-C'線に沿った断面図である。FIG. 2 is a cross-sectional view taken along lines AA ′, BB ′, and CC ′ of FIG. 1 showing the fixing structure. 上記定着構造体からFRPケーブルに加わる保持力を説明するための図である。It is a figure for demonstrating the retention strength added to an FRP cable from the said fixing structure. 上記定着構造体の製造方法を示すフローチャートである。3 is a flowchart showing a method for manufacturing the fixing structure. 上記定着構造体の製造方法の未硬化シート用意工程(ステップS1-1)を示す正面図である。FIG. 6 is a front view showing an uncured sheet preparation step (step S1-1) of the method for manufacturing the fixing structure. 上記定着構造体の製造方法の未硬化シート巻き付け工程(ステップS1-2)を示す正面図である。FIG. 5 is a front view showing an uncured sheet winding step (step S1-2) of the method for manufacturing the fixing structure. 上記定着構造体の製造方法の未硬化シート用意工程(ステップS1-1)の変形例を示す正面図である。FIG. 10 is a front view showing a modification of the uncured sheet preparation step (step S1-1) of the method for manufacturing the fixing structure. 上記定着構造体の製造方法の未硬化シート巻き付け工程(ステップS1-2)の変形例を示す正面図である。FIG. 10 is a front view showing a modification of the uncured sheet winding step (step S1-2) of the method for manufacturing the fixing structure. 上記定着構造体の変形例1を示す正面図である。FIG. 6 is a front view showing a first modification of the fixing structure. 上記定着構造体の変形例2を示す斜視図である。FIG. 9 is a perspective view showing a second modification of the fixing structure. 上記定着構造体の変形例3を示す正面図である。FIG. 10 is a front view showing a third modification of the fixing structure. 上記定着構造体の変形例3の製造方法を示すフローチャートである。10 is a flowchart showing a manufacturing method of Modification 3 of the fixing structure. 上記定着構造体の変形例3の製造方法の金型セット工程(ステップS2-2)及び注型・硬化工程(ステップS2-3)を示す断面図である。FIG. 10 is a cross-sectional view showing a mold setting step (step S2-2) and a casting / curing step (step S2-3) of the manufacturing method of Modification 3 of the fixing structure. 本発明の第2の実施形態に係るFRPケーブルの強度試験用サンプルを示す正面図である。It is a front view which shows the sample for the strength test of the FRP cable which concerns on the 2nd Embodiment of this invention. 上記強度試験用サンプルの比較例を示す正面図である。It is a front view which shows the comparative example of the said sample for a strength test. 上記強度試験用サンプルを用いる強度試験方法を示すフローチャートである。It is a flowchart which shows the intensity | strength test method using the said sample for an intensity | strength test. 上記強度試験用サンプルの引張試験、圧縮試験、及び曲げ試験を行っている状態を示す概略正面図である。It is a schematic front view which shows the state which is performing the tension test of the said sample for a strength test, the compression test, and the bending test. 実施例及び比較例に係る強度試験用サンプルの引張強度試験の結果を示す応力ひずみ線図である。It is a stress strain diagram which shows the result of the tensile strength test of the sample for a strength test which concerns on an Example and a comparative example.
 以下、図面を参照しながら、本発明の実施形態を説明する。
 図面には、適宜相互に直交するX軸、Y軸、及びZ軸が示されている。X軸、Y軸、及びZ軸は全図において共通である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In the drawing, an X axis, a Y axis, and a Z axis that are orthogonal to each other are shown as appropriate. The X axis, Y axis, and Z axis are common in all drawings.
<第1の実施形態>
[定着構造体20の構成]
 図1は、本発明の第1の実施形態に係る定着構造体20を示す正面図である。
<First Embodiment>
[Configuration of Fixing Structure 20]
FIG. 1 is a front view showing a fixing structure 20 according to the first embodiment of the present invention.
 定着構造体20は、繊維強化プラスチック(FRP:Fiber Reinforced Plastics)ケーブル10の両端部にそれぞれ設けられ、当該FRPケーブル10とともにFRPケーブル構造体1を構成している。FRPケーブル10の両端部の定着構造体20はいずれも同様の構成を有するため、以下では、一方の端部の定着構造体20についての説明のみを行い、他方の端部の定着構造体20についての説明を省略する。 The fixing structure 20 is provided at each end of a fiber reinforced plastic (FRP: Fiber Reinforced Plastics) cable 10, and constitutes the FRP cable structure 1 together with the FRP cable 10. Since the fixing structures 20 at both ends of the FRP cable 10 have the same configuration, only the fixing structure 20 at one end will be described below, and the fixing structure 20 at the other end will be described. The description of is omitted.
 定着構造体20は多種多様なFRPケーブル10に対応可能であり、FRPケーブル10は特定の種類に限定されない。FRPケーブル10としては、例えば、その長手方向に沿って延びる複数の繊維材料が束ねられた構成のFRPワイヤを利用可能である。この場合、複数の繊維材料は、FRPケーブル10の長手方向に切れ目なく連続していることが好ましい。 The fixing structure 20 can correspond to a wide variety of FRP cables 10, and the FRP cable 10 is not limited to a specific type. As the FRP cable 10, for example, an FRP wire having a configuration in which a plurality of fiber materials extending along the longitudinal direction are bundled can be used. In this case, it is preferable that the plurality of fiber materials are continuously continuous in the longitudinal direction of the FRP cable 10.
 定着構造体20は、Z軸方向端部に配置された保持部22と、保持部22からFRPケーブル10の長手方向中央部に向けて径が小さくなる傾斜部21と、から構成されている。傾斜部21は略円錐台状であり、保持部22は略円盤状である。保持部22と、傾斜部21の最も大径の部分とは、相互に等しい径を有するとともに連続している。 The fixing structure 20 includes a holding portion 22 disposed at an end portion in the Z-axis direction, and an inclined portion 21 having a diameter that decreases from the holding portion 22 toward the longitudinal center portion of the FRP cable 10. The inclined portion 21 has a substantially truncated cone shape, and the holding portion 22 has a substantially disk shape. The holding portion 22 and the largest diameter portion of the inclined portion 21 have the same diameter and are continuous.
 定着構造体20は、保持部22が保持装置2(図3参照)によって保持された状態で、保持装置2を介して各種構造物や安定地盤などに定着されるように構成されている。 The fixing structure 20 is configured to be fixed to various structures or a stable ground via the holding device 2 in a state where the holding unit 22 is held by the holding device 2 (see FIG. 3).
 定着構造体20が設けられたFRPケーブル構造体1は、FRPケーブル10の張力によって、橋梁や建築物などの構造物を支持ないし補強することが可能である。FRPケーブル構造体1は、例えば、橋梁ケーブル、建築物用の補強ケーブル、各種構造物やグランドアンカ等のテンドンなどとして利用可能である。 The FRP cable structure 1 provided with the fixing structure 20 can support or reinforce a structure such as a bridge or a building by the tension of the FRP cable 10. The FRP cable structure 1 can be used as, for example, a bridge cable, a reinforcing cable for a building, various structures, tendons such as a ground anchor, and the like.
 定着構造体20は、FRPから成る。つまり、FRPケーブル構造体1を構成するFRPケーブル10及び定着構造体20は、いずれもFRPから成る。したがって、FRPケーブル構造体1は、全体として非常に軽量であるため、作業性の向上に寄与する。また、FRPケーブル構造体1は、錆が発生しないため、TLPなどの海洋構造物の用途に特に有用である。 The fixing structure 20 is made of FRP. That is, the FRP cable 10 and the fixing structure 20 constituting the FRP cable structure 1 are both made of FRP. Therefore, since the FRP cable structure 1 is very lightweight as a whole, it contributes to improvement in workability. Moreover, since the FRP cable structure 1 does not generate rust, it is particularly useful for marine structures such as TLP.
 定着構造体20を構成するFRPは、樹脂成分と繊維材料とから成り、樹脂成分によって繊維材料が含浸された構成を有する。本実施形態では、樹脂成分としてエポキシ樹脂を用い、繊維材料としてガラス繊維を用いた構成により、高強度の定着構造体20が実現されている。しかし、定着構造体20を構成するFRPの樹脂成分及び繊維材料は特定の種類に限定されない。 The FRP that constitutes the fixing structure 20 includes a resin component and a fiber material, and has a configuration in which the fiber material is impregnated with the resin component. In the present embodiment, the high-strength fixing structure 20 is realized by using an epoxy resin as a resin component and glass fiber as a fiber material. However, the resin component and the fiber material of the FRP constituting the fixing structure 20 are not limited to specific types.
 定着構造体20を構成するFRPの樹脂成分は、充分な強度を有し、かつFRPケーブル10に良好に接着可能な樹脂ないし接着剤であればよく、特定の種類に限定されない。定着構造体20を構成するFRPの樹脂成分としては、エポキシ樹脂以外に、例えば、ビニルエステル樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリプロピレン樹脂、ポリアミド樹脂、ポリカーボネート樹脂などを採用可能である。 The resin component of the FRP that constitutes the fixing structure 20 may be a resin or an adhesive that has sufficient strength and can be satisfactorily adhered to the FRP cable 10, and is not limited to a specific type. As the resin component of the FRP that constitutes the fixing structure 20, for example, vinyl ester resin, polyester resin, polyimide resin, polypropylene resin, polyamide resin, polycarbonate resin, and the like can be employed in addition to the epoxy resin.
 定着構造体20を構成するFRPの繊維材料は、樹脂成分と一体として充分な強度を発現可能であればよく、特定の種類に限定されない。定着構造体20を構成するFRPの繊維材料としては、ガラス繊維以外に、例えば、炭素繊維、アラミド繊維、ボロン繊維などを採用可能である。更に、炭素繊維としては、例えば、高剛性ピッチ系炭素繊維、高強度PAN系炭素繊維などを採用可能である。 The FRP fiber material constituting the fixing structure 20 is not limited to a specific type as long as it can exhibit sufficient strength integrally with the resin component. As a fiber material of FRP constituting the fixing structure 20, for example, carbon fiber, aramid fiber, boron fiber, or the like can be adopted in addition to glass fiber. Furthermore, as the carbon fiber, for example, a high-rigidity pitch-based carbon fiber, a high-strength PAN-based carbon fiber, or the like can be used.
 定着構造体20は、FRPケーブル10に対し、シート状のFRP(FRPシート)がZ軸方向下方に向けて螺旋状に巻き付けられた構成を有する。つまり、FRPシートのZ軸方向上端部は、X-Y平面に対して角度αだけ傾斜しており、Z軸方向下方に向けて螺旋状に延びている。これにより、Z軸方向下方に向けて段階的に径が大きくなる傾斜部21が形成される。 The fixing structure 20 has a configuration in which a sheet-like FRP (FRP sheet) is spirally wound around the FRP cable 10 downward in the Z-axis direction. That is, the upper end portion in the Z-axis direction of the FRP sheet is inclined by an angle α with respect to the XY plane, and extends spirally downward in the Z-axis direction. Thereby, the inclined part 21 whose diameter increases stepwise in the Z-axis direction downward is formed.
 図2は定着構造体20を示す断面図である。より詳細には、図2(a)は定着構造体20の図1のA-A'線に沿った断面を示し、図2(b)は定着構造体20の図1のB-B'線に沿った断面を示し、図2(c)は定着構造体20の図1のC-C'線に沿った断面を示している。 FIG. 2 is a cross-sectional view showing the fixing structure 20. More specifically, FIG. 2A shows a cross section of the fixing structure 20 along the line AA ′ in FIG. 1, and FIG. 2B shows the fixing structure 20 along the line BB ′ in FIG. 2C shows a cross section taken along the line CC ′ of FIG. 1 of the fixing structure 20. FIG.
 つまり、図2(a)は傾斜部21のFRPシートが2周巻き付けられた部分を示し、図2(b)は傾斜部21のFRPシートが7周巻き付けられた部分を示し、図2(c)は保持部22を示している。保持部22は、FRPシートの巻き付け端部であり、13周巻き付けられたFRPシートによって構成されている。 2A shows a portion where the FRP sheet of the inclined portion 21 is wound twice, FIG. 2B shows a portion where the FRP sheet of the inclined portion 21 is wound seven times, and FIG. ) Shows the holding unit 22. The holding portion 22 is a winding end portion of the FRP sheet, and is configured by an FRP sheet wound around 13 times.
 なお、FRPシートの巻き付け数や角度αは、FRPケーブル10の種類やFRPケーブル構造体1の用途などに応じて適宜決定可能である。また、定着構造体20におけるFRPシートの巻き付け方向は、図2に示すように左巻きであっても、その反対の右巻きであっても構わない。 In addition, the winding number and angle α of the FRP sheet can be appropriately determined according to the type of the FRP cable 10 and the use of the FRP cable structure 1. Further, the winding direction of the FRP sheet in the fixing structure 20 may be left-handed as shown in FIG.
 本実施形態に係る定着構造体20を構成するFRPシートの繊維材料は、長径の繊維が2次元的に配列された繊維クロスとして構成される。つまり、このFRPシートは、繊維クロスがプラスチックによって含浸された構成を有する。これにより、特に強度の高い定着構造体20が得られる。この繊維クロスは、例えば、平織、綾織、繻子織などの織物の構成を有していてもよい。 The fiber material of the FRP sheet constituting the fixing structure 20 according to the present embodiment is configured as a fiber cloth in which long diameter fibers are two-dimensionally arranged. That is, this FRP sheet has a configuration in which a fiber cloth is impregnated with plastic. Thereby, the fixing structure 20 having particularly high strength is obtained. The fiber cloth may have a woven fabric structure such as plain weave, twill weave, and satin weave.
 なお、FRPシートの繊維材料の態様は、繊維クロスに限定されない。例えば、FRPシートの繊維材料は、例えば、FRPシートの巻き付け方向に配向した長径の繊維や、プラスチック内にランダムな方向に分散した短径の繊維であってもよい。 In addition, the aspect of the fiber material of the FRP sheet is not limited to the fiber cloth. For example, the fiber material of the FRP sheet may be, for example, a long diameter fiber oriented in the winding direction of the FRP sheet or a short diameter fiber dispersed in a random direction in the plastic.
 図3は、定着構造体20からFRPケーブル10に加わる保持力を説明するための図である。より詳細には、図3の左図は、保持部22が保持装置2によって保持された状態の定着構造体20を示す正面図である。図3の右図は、当該定着構造体20からFRPケーブル10に加わる保持力のZ軸方向に沿った変化を定性的に示すグラフである。図3の右図において、横軸は保持力の大きさを示し、縦軸は図3の左図に対応するZ軸方向の位置を示している。 FIG. 3 is a view for explaining the holding force applied from the fixing structure 20 to the FRP cable 10. More specifically, the left diagram of FIG. 3 is a front view showing the fixing structure 20 in a state where the holding unit 22 is held by the holding device 2. The right diagram of FIG. 3 is a graph qualitatively showing the change in the holding force applied from the fixing structure 20 to the FRP cable 10 along the Z-axis direction. In the right diagram of FIG. 3, the horizontal axis represents the magnitude of the holding force, and the vertical axis represents the position in the Z-axis direction corresponding to the left diagram of FIG.
 保持装置2は、X軸方向に相互に対向する保持部材2a,2bを有し、当該保持部材2a,2b間に定着構造体20の保持部22を挟み込むことにより、定着構造体20を保持する。上述のとおり、定着構造体20は、保持部22が保持装置2によって保持された状態で、保持装置2を介して各種構造物や安定地盤などに定着される。 The holding device 2 includes holding members 2a and 2b that face each other in the X-axis direction, and holds the fixing structure 20 by sandwiching a holding portion 22 of the fixing structure 20 between the holding members 2a and 2b. . As described above, the fixing structure 20 is fixed to various structures or stable ground via the holding device 2 in a state where the holding unit 22 is held by the holding device 2.
 保持装置2から保持部22に加わる保持力は、定着構造体20を介してFRPケーブル10まで伝達される。当該保持力は、定着構造体20内を伝達される際に、傾斜部21に沿って小径になるにつれて緩和される。したがって、定着構造体20からFRPケーブル10に加わる保持力は、傾斜部21の大径の後端部Gから小径の先端部Fに向けて徐々に小さくなる。 The holding force applied to the holding unit 22 from the holding device 2 is transmitted to the FRP cable 10 through the fixing structure 20. The holding force is relaxed as the diameter decreases along the inclined portion 21 when transmitted through the fixing structure 20. Therefore, the holding force applied to the FRP cable 10 from the fixing structure 20 gradually decreases from the large-diameter rear end G of the inclined portion 21 toward the small-diameter front end F.
 つまり、図3の右図に示すとおり、定着構造体20からFRPケーブル10に加わる保持力は、保持部22では一定であるものの、傾斜部21では大径の後端部Gから小径の先端部Fに向けて徐々に小さくなる。 That is, as shown in the right diagram of FIG. 3, the holding force applied from the fixing structure 20 to the FRP cable 10 is constant in the holding portion 22, but in the inclined portion 21, the large-diameter rear end portion G to the small-diameter tip portion. It gradually decreases toward F.
 なお、図3の右図では、説明の便宜上、傾斜部21における保持力のZ軸方向に沿った変化を直線的に示している。しかし、傾斜部21における保持力は、大径の後端部Gから小径の先端部Fに向けて単調減少していればよい。図1~3に示すFRPシートが螺旋状に巻き付けられた構成の傾斜部21では、傾斜部21における保持力が段階的に変化しているものと考えられる。 In addition, in the right figure of FIG. 3, the change along the Z-axis direction of the holding force in the inclination part 21 is linearly shown for convenience of explanation. However, the holding force in the inclined portion 21 only needs to monotonously decrease from the large-diameter rear end G toward the small-diameter front end F. In the inclined portion 21 having the configuration in which the FRP sheet shown in FIGS. 1 to 3 is spirally wound, the holding force in the inclined portion 21 is considered to change stepwise.
 定着構造体20が設けられたFRPケーブル10の張力は、まず定着構造体20の傾斜部21の小径の先端部Fに加わる。そして、定着構造体20の傾斜部21は、保持力の弱い先端部Fから順次変形することにより、当該張力を後端部Gに向けて分散させる。 First, the tension of the FRP cable 10 provided with the fixing structure 20 is applied to the small-diameter tip F of the inclined portion 21 of the fixing structure 20. Then, the inclined portion 21 of the fixing structure 20 is deformed sequentially from the front end F having a weak holding force, thereby dispersing the tension toward the rear end G.
 このように、定着構造体20が設けられたFRPケーブル10の張力は、傾斜部21の先端部Fの近傍に集中することなく、傾斜部21に沿って分散される。したがって、定着構造体20が設けられたFRPケーブル10は、傾斜部21の先端部Fの近傍において損傷を受けにくい。 Thus, the tension of the FRP cable 10 provided with the fixing structure 20 is dispersed along the inclined portion 21 without being concentrated in the vicinity of the front end portion F of the inclined portion 21. Therefore, the FRP cable 10 provided with the fixing structure 20 is not easily damaged in the vicinity of the front end portion F of the inclined portion 21.
 FRPケーブル10の張力は、傾斜部21からFRPケーブル10に加わる保持力のZ軸方向に沿った変化の程度(図3の右図のグラフの傾斜部21における傾き)に応じて分散する。つまり、当該変化が緩やかであれば、傾斜部21におけるFRPケーブル10の張力の分散領域が広くなる。反対に、当該変化が急峻であれば、傾斜部21におけるFRPケーブル10の張力の分散領域が狭くなる。 The tension of the FRP cable 10 is dispersed according to the degree of change along the Z-axis direction of the holding force applied from the inclined portion 21 to the FRP cable 10 (inclination at the inclined portion 21 in the graph in the right diagram of FIG. 3). That is, if the change is moderate, the tension distribution region of the FRP cable 10 in the inclined portion 21 becomes wide. On the contrary, if the change is steep, the tension distribution region of the FRP cable 10 in the inclined portion 21 is narrowed.
 傾斜部21からFRPケーブル10に加わる保持力のZ軸方向に沿った変化の程度は、傾斜部のZ軸に対する傾斜角度によって決定する。また、傾斜部のZ軸方向に対する傾斜角度は、FRPシートのZ軸方向上端部のX-Y平面に対する角度αによって決定する。したがって、傾斜部21におけるFRPケーブル10の張力の分散領域の広さは、FRPシートのZ軸方向上端部のX-Y平面に対する角度αによって決定する。 The degree of change along the Z-axis direction of the holding force applied from the inclined portion 21 to the FRP cable 10 is determined by the inclination angle of the inclined portion with respect to the Z-axis. Further, the inclination angle of the inclined portion with respect to the Z-axis direction is determined by the angle α with respect to the XY plane of the upper end portion of the FRP sheet in the Z-axis direction. Therefore, the width of the tension distribution region of the FRP cable 10 in the inclined portion 21 is determined by the angle α with respect to the XY plane of the upper end portion in the Z-axis direction of the FRP sheet.
 つまり、角度αを大きくすると、傾斜部21のZ軸に対する傾斜角度が小さくなるため、傾斜部21からFRPケーブル10に加わる保持力のZ軸方向に沿った変化が小さくなる。したがって、角度αを大きくすることにより、傾斜部21におけるFRPケーブル10の張力の分散領域を広くすることができる。 That is, when the angle α is increased, the inclination angle of the inclined portion 21 with respect to the Z axis is reduced, so that the change in the holding force applied from the inclined portion 21 to the FRP cable 10 along the Z-axis direction is reduced. Therefore, by increasing the angle α, the tension distribution region of the FRP cable 10 in the inclined portion 21 can be widened.
 反対に、角度αを小さくすると、傾斜部21のZ軸に対する傾斜角度が大きくなるため、傾斜部21からFRPケーブル10に加わる保持力のZ軸方向に沿った変化が大きくなる。したがって、角度αを小さくすることにより、傾斜部21におけるFRPケーブル10の張力の分散領域を狭くすることができる。 On the contrary, when the angle α is decreased, the inclination angle of the inclined portion 21 with respect to the Z-axis increases, so that the change in the holding force applied from the inclined portion 21 to the FRP cable 10 along the Z-axis direction increases. Therefore, by reducing the angle α, the dispersion region of the tension of the FRP cable 10 in the inclined portion 21 can be narrowed.
 このように、定着構造体20では、FRPケーブル10の種類やFRPケーブル構造体1の用途などに応じて、傾斜部21におけるFRPケーブル10の張力の分散領域の広さを容易に制御可能である。 As described above, in the fixing structure 20, the width of the tension distribution region of the FRP cable 10 in the inclined portion 21 can be easily controlled according to the type of the FRP cable 10, the application of the FRP cable structure 1, and the like. .
[定着構造体20の製造方法]
 図4は、定着構造体20の製造方法を示すフローチャートである。図5及び図6は、定着構造体20の製造過程を示す正面図である。以下、定着構造体20の製造方法について、図4に沿って、図5及び図6を適宜参照しながら説明する。
[Method for Manufacturing Fixing Structure 20]
FIG. 4 is a flowchart showing a method for manufacturing the fixing structure 20. 5 and 6 are front views showing the manufacturing process of the fixing structure 20. Hereinafter, a method for manufacturing the fixing structure 20 will be described along FIG. 4 with reference to FIGS. 5 and 6 as appropriate.
 (ステップS1-1:未硬化シート用意工程)
 ステップS1-1では、未硬化のFRPシート(未硬化シート)S1を用意する。
 図5は、ステップS1-1で用意される未硬化シートS1を示す正面図である。未硬化シートS1は、繊維クロスに未硬化プラスチックを充填することにより得られる。
(Step S1-1: Uncured sheet preparation process)
In step S1-1, an uncured FRP sheet (uncured sheet) S1 is prepared.
FIG. 5 is a front view showing the uncured sheet S1 prepared in step S1-1. The uncured sheet S1 is obtained by filling a fiber cloth with uncured plastic.
 未硬化シートS1の未硬化プラスチックとしては、硬化の容易性から常温硬化型の接着剤を用いている。しかし、未硬化プラスチックは熱硬化型樹脂であってもよい。なお、未硬化シートS1としては、市販のプリプレグを利用することも可能である。 As the uncured plastic of the uncured sheet S1, a room temperature curable adhesive is used for ease of curing. However, the uncured plastic may be a thermosetting resin. In addition, as the uncured sheet S1, a commercially available prepreg can be used.
 未硬化シートS1は、X軸方向に細長く、Z軸方向上端部を斜辺とする略直角三角形状に切断されている。
 未硬化シートS1のZ軸方向上端部のX-Y平面に対する角度αは、定着構造体20の傾斜部21の構成に応じて適宜決定可能である。つまり、角度αを大きくすると、傾斜部21のZ軸に対する傾斜角度が小さくなる。反対に、角度αを小さくすると、傾斜部21のZ軸に対する傾斜角度が大きくなる。
The uncured sheet S1 is elongated in the X-axis direction and is cut into a substantially right-angled triangle shape having the upper end portion in the Z-axis direction as a hypotenuse.
The angle α with respect to the XY plane at the upper end portion in the Z-axis direction of the uncured sheet S1 can be appropriately determined according to the configuration of the inclined portion 21 of the fixing structure 20. That is, when the angle α is increased, the inclination angle of the inclined portion 21 with respect to the Z axis is reduced. On the contrary, when the angle α is decreased, the inclination angle of the inclined portion 21 with respect to the Z-axis is increased.
 (ステップS1-2:未硬化シート巻き付け工程)
 ステップS1-2では、ステップS1-1で用意された未硬化シートS1を、FRPケーブル10の端部に巻き付ける。
 図6は、ステップS1-2を説明するための図である。
(Step S1-2: Uncured sheet winding process)
In step S1-2, the uncured sheet S1 prepared in step S1-1 is wound around the end of the FRP cable 10.
FIG. 6 is a diagram for explaining step S1-2.
 まず、図6(a)に示すように、未硬化シートS1のZ軸方向に平行な短辺上にFRPケーブル10の端部をセットする。そして、図6(b)に示すように、FRPケーブル10をZ軸に平行な中心軸を中心に回転させながら、未硬化シートS1をFRPケーブル10に巻き付けていく。 First, as shown in FIG. 6A, the end of the FRP cable 10 is set on the short side parallel to the Z-axis direction of the uncured sheet S1. Then, as shown in FIG. 6B, the uncured sheet S1 is wound around the FRP cable 10 while rotating the FRP cable 10 around a central axis parallel to the Z axis.
 これにより、未硬化シートS1のZ軸方向上端部がZ軸方向下方に向けて螺旋を描きながら傾斜部21が形成されていく。未硬化シートS1の巻き付けが完了すると、未硬化の定着構造体20が得られる。 Thereby, the inclined portion 21 is formed while the upper end portion in the Z-axis direction of the uncured sheet S1 draws a spiral toward the lower side in the Z-axis direction. When the winding of the uncured sheet S1 is completed, an uncured fixing structure 20 is obtained.
 (ステップS1-3:硬化工程)
 ステップS1-3では、ステップS1-2で得られた未硬化の定着構造体20を硬化させる。
 ステップS1-3では、未硬化プラスチックとして常温硬化型の接着剤を用いた場合には、未硬化の定着構造体20を常温で放置する。未硬化プラスチックとして熱硬化型樹脂を用いた場合には、未硬化の定着構造体20を所定温度に加熱する。
 これにより、図1に示す定着構造体20が得られる。
(Step S1-3: Curing process)
In step S1-3, the uncured fixing structure 20 obtained in step S1-2 is cured.
In step S1-3, when a room-temperature curable adhesive is used as the uncured plastic, the uncured fixing structure 20 is left at room temperature. When a thermosetting resin is used as the uncured plastic, the uncured fixing structure 20 is heated to a predetermined temperature.
Thereby, the fixing structure 20 shown in FIG. 1 is obtained.
 (定着構造体20の製造方法の変形例)
 図7及び図8は、上記実施形態に係る定着構造体20の製造過程の変形例を示す正面図である。
(Modification of Manufacturing Method of Fixing Structure 20)
7 and 8 are front views showing modifications of the manufacturing process of the fixing structure 20 according to the embodiment.
 本変形例では、ステップS1-1において、図7に示す矩形の未硬化シートS2が用意される。そして、ステップS1-2において、図8に示すように、X-Y平面に対して角度αだけ傾けた未硬化シートS2をFRPケーブル10の端部に螺旋状に巻き付ける。 In this modification, a rectangular uncured sheet S2 shown in FIG. 7 is prepared in step S1-1. Then, in step S1-2, as shown in FIG. 8, the uncured sheet S2 inclined by the angle α with respect to the XY plane is spirally wound around the end portion of the FRP cable 10.
 そして、未硬化シートS2の巻き付けが終了した後に、図8(b)に示すX-Y平面に平行な切断面CPに沿って未硬化シートS2を切断する。
 これにより、上記実施形態と同様の未硬化の定着構造体20が得られる。
Then, after the uncured sheet S2 has been wound, the uncured sheet S2 is cut along a cutting plane CP parallel to the XY plane shown in FIG. 8B.
Thereby, an uncured fixing structure 20 similar to that of the above-described embodiment is obtained.
 その後、上記実施形態と同様のステップS1-3を行うことにより、図1に示す定着構造体20が得られる。 Thereafter, by performing the same step S1-3 as in the above embodiment, the fixing structure 20 shown in FIG. 1 is obtained.
[定着構造体20の変形例]
 以下、上記実施形態の変形例に係る定着構造体20について説明する。なお、各変形例に係る定着構造体20の構成は、以下に説明する構成以外について上記実施形態と共通する。また、各変形例に係る定着構造体20について、上記実施形態と共通する構成には同一の名称及び符号を用い、当該構成の説明を適宜省略する。
[Modification of Fixing Structure 20]
Hereinafter, a fixing structure 20 according to a modification of the above embodiment will be described. The configuration of the fixing structure 20 according to each modification is common to the above embodiment except for the configuration described below. Further, regarding the fixing structure 20 according to each modification, the same name and reference numeral are used for the configuration common to the above-described embodiment, and the description of the configuration is appropriately omitted.
 (1)変形例1
 図9は、上記実施形態の変形例1に係る定着構造体20の正面図である。
 変形例1に係る定着構造体20は、小径部20a及び大径部20bから構成されている。小径部20a及び大径部20bはいずれもFRPシートにより形成されている。また、小径部20aはFRPケーブル10に直接設けられ、大径部20bは小径部20aの保持部22aに設けられている。
(1) Modification 1
FIG. 9 is a front view of the fixing structure 20 according to the first modification of the embodiment.
The fixing structure 20 according to Modification 1 includes a small diameter portion 20a and a large diameter portion 20b. Both the small diameter portion 20a and the large diameter portion 20b are formed of an FRP sheet. The small diameter portion 20a is provided directly on the FRP cable 10, and the large diameter portion 20b is provided on the holding portion 22a of the small diameter portion 20a.
 定着構造体20は、小径部20aの傾斜部21aのみでFRPケーブル10の張力を充分に分散させられる場合には、小径部20aのみによって構成されていてもよい。しかし、小径部20aの傾斜部21aのみではFRPケーブル10の張力を充分に分散させられない場合に、小径部20aの保持部22aに大径部20bを設けることができる。 The fixing structure 20 may be configured by only the small diameter portion 20a when the tension of the FRP cable 10 can be sufficiently dispersed only by the inclined portion 21a of the small diameter portion 20a. However, when the tension of the FRP cable 10 cannot be sufficiently dispersed only by the inclined portion 21a of the small diameter portion 20a, the large diameter portion 20b can be provided in the holding portion 22a of the small diameter portion 20a.
 この場合、保持装置2による保持を受ける保持部22は、大径部20bの保持部22bとなる。この構成では、大径部20bの保持部22bに加わる保持力が、大径部20bの傾斜部21bと小径部20aの傾斜部21aとによって2段階で緩和されるため、FRPケーブル10の張力をより広く分散させることが可能となる。 In this case, the holding portion 22 that receives the holding by the holding device 2 is the holding portion 22b of the large-diameter portion 20b. In this configuration, the holding force applied to the holding portion 22b of the large diameter portion 20b is relaxed in two steps by the inclined portion 21b of the large diameter portion 20b and the inclined portion 21a of the small diameter portion 20a, so that the tension of the FRP cable 10 is reduced. It becomes possible to disperse more widely.
 なお、変形例1に係る定着構造体20は小径部20a及び大径部20bの2段に構成されているが、定着構造体20は必要に応じて3段以上に構成されていてもよい。 In addition, although the fixing structure 20 according to the first modification is configured in two stages of the small diameter part 20a and the large diameter part 20b, the fixing structure 20 may be configured in three or more stages as necessary.
 (2)変形例2
 図10は、上記実施形態の変形例2に係る定着構造体20の斜視図である。
 変形例2に係る定着構造体20が設けられるFRPケーブル10は、図10(a)に示すように、複数のFRPワイヤ10aが束ねられたFRPロープとして構成される。
 また、FRPケーブル10は、図10(b)に示すように、複数のFRPワイヤ10aが束ねられた状態で捻りが加えられたFRPロープとして構成されていてもよい。
(2) Modification 2
FIG. 10 is a perspective view of the fixing structure 20 according to the second modification of the embodiment.
As shown in FIG. 10A, the FRP cable 10 provided with the fixing structure 20 according to Modification 2 is configured as an FRP rope in which a plurality of FRP wires 10a are bundled.
Moreover, as shown in FIG.10 (b), the FRP cable 10 may be comprised as an FRP rope by which twist was added in the state in which the several FRP wire 10a was bundled.
 (3)変形例3
 図11は、上記実施形態の変形例3に係る定着構造体20の正面図である。
 変形例3に係る定着構造体20は、金型Mを用いて成形されており、円錐台状の傾斜部21と、円盤状の保持部22と、を有する。変形例3に係る定着構造体20は、上記実施形態とは異なり、傾斜部21の径が連続的に変化している。
 変形例3に係る定着構造体20でも、上記実施形態に係る定着構造体20と同様に、傾斜部21によってFRPケーブル10の張力を分散させることが可能である。
(3) Modification 3
FIG. 11 is a front view of the fixing structure 20 according to the third modification of the embodiment.
The fixing structure 20 according to Modification 3 is formed using a mold M, and includes a truncated cone-shaped inclined portion 21 and a disk-shaped holding portion 22. In the fixing structure 20 according to the modification 3, the diameter of the inclined portion 21 is continuously changed unlike the above embodiment.
Also in the fixing structure 20 according to the modification 3, the tension of the FRP cable 10 can be dispersed by the inclined portion 21 as in the fixing structure 20 according to the embodiment.
 図12は、変形例3に係る定着構造体20の製造方法を示すフローチャートである。図13は、変形例3に係る定着構造体20の製造過程を示す断面図である。以下、変形例3に係る定着構造体20の製造方法について、図12に沿って、図13を適宜参照しながら説明する。 FIG. 12 is a flowchart showing a method for manufacturing the fixing structure 20 according to the third modification. FIG. 13 is a cross-sectional view illustrating a manufacturing process of the fixing structure 20 according to the third modification. Hereinafter, a method for manufacturing the fixing structure 20 according to Modification 3 will be described along FIG. 12 with reference to FIG. 13 as appropriate.
 (ステップS2-1:金型及び未硬化材用意工程)
 ステップS2-1では、定着構造体20の形状に対応する金型Mと、当該金型Mに充填可能な未硬化のFRP材(未硬化材)と、を用意する。未硬化材としては、上述の未硬化シートが利用可能である。また、未硬化材は、例えば、未硬化プラスチックに短繊維長を含む有限な繊維長の繊維材料が分散された構成とすることもできる。
(Step S2-1: Mold and uncured material preparation process)
In step S2-1, a mold M corresponding to the shape of the fixing structure 20 and an uncured FRP material (uncured material) that can be filled in the mold M are prepared. As the uncured material, the above-mentioned uncured sheet can be used. In addition, the uncured material may have a configuration in which a fiber material having a finite fiber length including a short fiber length is dispersed in uncured plastic, for example.
 (ステップS2-2:金型セット工程)
 ステップS2-2では、図13(a)に示すように、ステップS2-1で用意された金型MをFRPケーブル10の端部にセットする。
(Step S2-2: Mold setting process)
In step S2-2, the mold M prepared in step S2-1 is set at the end of the FRP cable 10 as shown in FIG.
 (ステップS2-3:注型・硬化工程)
 ステップS2-3では、図13(b)に示すように、ステップS2-2でセットされた金型Mに、ステップS2-1で用意された未硬化材を注型し、金型Mに注型した未硬化材を硬化させる。
(Step S2-3: Casting / curing process)
In step S2-3, as shown in FIG. 13B, the uncured material prepared in step S2-1 is poured into the mold M set in step S2-2, and then poured into the mold M. The molded uncured material is cured.
 (ステップS2-4:金型取り外し工程)
 ステップS2-4では、ステップS2-3で得られた定着構造体20から金型Mを取り外す。
 これにより、図11に示す変形例3に係る定着構造体20が得られる。
(Step S2-4: Mold removal process)
In step S2-4, the mold M is removed from the fixing structure 20 obtained in step S2-3.
Thereby, the fixing structure 20 according to the third modification shown in FIG. 11 is obtained.
<第2の実施形態>
 本発明の第2の実施形態では、第1の実施形態に係る定着構造体20と同様の構成の保持構造体120を用いることによって、第1の実施形態で用いたようなFRPケーブル10本来の正確な強度を評価することが可能となる。以下、第2の実施形態について詳細に説明する。
<Second Embodiment>
In the second embodiment of the present invention, by using the holding structure 120 having the same configuration as the fixing structure 20 according to the first embodiment, the original FRP cable 10 as used in the first embodiment is used. Accurate strength can be evaluated. Hereinafter, the second embodiment will be described in detail.
[FRPケーブル10の強度試験用サンプル101]
 図14は、本実施形態に係るFRPケーブル10の強度試験用サンプル101を示す正面図である。強度試験用サンプル101は、FRPケーブル10の試験片110と、試験片110の両端部にそれぞれ設けられた保持構造体120と、により構成されている。
[Sample 101 for strength test of FRP cable 10]
FIG. 14 is a front view showing a sample 101 for strength test of the FRP cable 10 according to the present embodiment. The strength test sample 101 includes a test piece 110 of the FRP cable 10 and holding structures 120 provided at both ends of the test piece 110, respectively.
 試験片110は、第1の実施形態で用いたFRPケーブル10を所定の長さに切断したものである。
 保持構造体120は、第1の実施形態に係る定着構造体20と同様の構成を有する。つまり、保持構造体120は、傾斜部121と、保持部122と、を有する。強度試験用サンプル101では、保持構造体120の保持部122が保持された状態で、試験片110の保持構造体120間の試験領域111において強度試験を行うことが可能である。
The test piece 110 is obtained by cutting the FRP cable 10 used in the first embodiment into a predetermined length.
The holding structure 120 has the same configuration as the fixing structure 20 according to the first embodiment. That is, the holding structure 120 includes the inclined portion 121 and the holding portion 122. In the strength test sample 101, the strength test can be performed in the test region 111 between the holding structures 120 of the test piece 110 in a state where the holding portion 122 of the holding structure 120 is held.
 ここで、試験片110の両端部が直接保持された状態で試験片110の強度試験を行う場合を想定する。
 この場合、試験片110の試験領域111に生じる張力や圧縮力が保持部分の近傍に集中する。これにより、試験片110は、実際に耐えうる荷重より小さい荷重で、保持部分の近傍に損傷を受けてしまう。
 また、この場合、試験片110の両端部に直接保持力が加わるため、試験片110の両端部で樹脂材料と樹脂成分との剥離が発生しやすい。樹脂材料と樹脂成分との剥離によって試験片110の強度が大幅に低下してしまう。
 したがって、この場合には、試験片110本来の正確な強度を評価することができない。
Here, it is assumed that the strength test of the test piece 110 is performed in a state where both ends of the test piece 110 are directly held.
In this case, the tension and compressive force generated in the test area 111 of the test piece 110 are concentrated in the vicinity of the holding portion. As a result, the test piece 110 is damaged near the holding portion under a load smaller than the load that can actually be withstood.
Further, in this case, since a holding force is directly applied to both end portions of the test piece 110, the resin material and the resin component are easily separated at both end portions of the test piece 110. The strength of the test piece 110 is greatly reduced due to the peeling between the resin material and the resin component.
Therefore, in this case, the original accurate strength of the test piece 110 cannot be evaluated.
 この点、本実施形態に係る強度試験用サンプル101では、試験片110の試験領域111に生じる張力や圧縮力が、保持構造体120の傾斜部121に沿って分散するため、傾斜部121の先端部Fの近傍に集中しない。したがって、保持構造体120が設けられた試験片110は、傾斜部121の先端部Fの近傍において損傷を受けにくい。 In this regard, in the strength test sample 101 according to the present embodiment, the tension and compressive force generated in the test region 111 of the test piece 110 are dispersed along the inclined portion 121 of the holding structure 120, and therefore the tip of the inclined portion 121. Do not concentrate in the vicinity of the part F. Therefore, the test piece 110 provided with the holding structure 120 is not easily damaged in the vicinity of the tip portion F of the inclined portion 121.
 また、本実施形態に係る強度試験用サンプル101では、試験片110の両端部がその全周にわたって保持構造体120によって覆われることにより補強されている。したがって、保持構造体120の保持部122に保持力が加わっても、試験片110の樹脂材料と樹脂成分との剥離が発生しにくい。 Further, in the strength test sample 101 according to the present embodiment, both ends of the test piece 110 are reinforced by being covered with the holding structure 120 over the entire circumference. Therefore, even if a holding force is applied to the holding portion 122 of the holding structure 120, the resin material and the resin component of the test piece 110 are hardly separated.
 したがって、本実施形態に係る強度試験用サンプル101を用いることにより、試験片110本来の正確な強度を評価することが可能となる。 Therefore, by using the strength test sample 101 according to the present embodiment, the original accurate strength of the test piece 110 can be evaluated.
 図15は、本実施形態の比較例に係るFRPケーブル10の強度試験用サンプル201を示す正面図である。比較例に係る強度試験用サンプル201では、FRPケーブル10の試験片110の両端部に、柱状の保持構造体220が設けられている。比較例に係る保持構造体220は、実施例に係る保持構造体120の傾斜部121に対応する構成を有さず、保持部222のみによって構成されている。 FIG. 15 is a front view showing a strength test sample 201 of the FRP cable 10 according to a comparative example of the present embodiment. In the strength test sample 201 according to the comparative example, columnar holding structures 220 are provided at both ends of the test piece 110 of the FRP cable 10. The holding structure 220 according to the comparative example does not have a configuration corresponding to the inclined portion 121 of the holding structure 120 according to the embodiment, and is configured only by the holding portion 222.
 比較例に係る強度試験用サンプル201では、保持構造体220の保持部222が保持された状態で、試験片110の保持構造体220間の試験領域111において強度試験が行われる。強度試験用サンプル201では、保持構造体220の保持部222に加わる保持力がほぼ均一に伝達され、保持構造体220から試験片110に加わる保持力はZ軸方向に沿ってほぼ一定となる。 In the strength test sample 201 according to the comparative example, the strength test is performed in the test region 111 between the holding structures 220 of the test piece 110 in a state where the holding portion 222 of the holding structure 220 is held. In the strength test sample 201, the holding force applied to the holding portion 222 of the holding structure 220 is transmitted substantially uniformly, and the holding force applied from the holding structure 220 to the test piece 110 is substantially constant along the Z-axis direction.
 このため、強度試験用サンプル201では、試験片110の試験領域111に生じる張力や圧縮力が保持構造体220の先端部Hの近傍に集中する。したがって、試験片110は、実際に耐えうる荷重より小さい荷重で、保持構造体220の先端部Hの近傍に損傷を受けてしまう。
 このため、比較例に係る強度試験用サンプル201では、本実施形態に係る強度試験用サンプル101とは異なり、試験片110本来の正確な強度を評価することができない。
For this reason, in the strength test sample 201, the tension and the compressive force generated in the test region 111 of the test piece 110 are concentrated in the vicinity of the distal end portion H of the holding structure 220. Therefore, the test piece 110 is damaged near the front end portion H of the holding structure 220 with a load smaller than the load that can actually withstand.
For this reason, unlike the strength test sample 101 according to the present embodiment, the strength test sample 201 according to the comparative example cannot evaluate the original accurate strength of the test piece 110.
 なお、強度試験用サンプル101の保持構造体120は、第1の実施形態の変形例1~3と同様に構成されていてもよい。
 つまり、保持構造体120は、多段に構成されていてもよく、FRPケーブル10として複数のFRPワイヤが束ねられたFRPロープが用いられてもよく、金型を用いて成形されていていてもよい。
The holding structure 120 for the strength test sample 101 may be configured in the same manner as in the first to third modifications of the first embodiment.
That is, the holding structure 120 may be configured in multiple stages, an FRP rope in which a plurality of FRP wires are bundled may be used as the FRP cable 10, and may be molded using a mold. .
[FRPケーブル10の強度試験方法]
 図16は、本実施形態に係るFRPケーブル10の強度試験方法を示すフローチャートである。図16に示す強度試験方法では、まず強度試験用サンプル101を作製し(ステップS3-1~S3-4)、当該強度試験用サンプル101を用いて強度試験を行う(ステップS3-5)。以下、FRPケーブル10の強度試験方法について、図16に沿って説明する。
[FRP cable 10 strength test method]
FIG. 16 is a flowchart showing a strength test method for the FRP cable 10 according to the present embodiment. In the strength test method shown in FIG. 16, first, a strength test sample 101 is prepared (steps S3-1 to S3-4), and a strength test is performed using the strength test sample 101 (step S3-5). Hereinafter, the strength test method of the FRP cable 10 will be described with reference to FIG.
 (ステップS3-1:試験片用意工程)
 ステップS3-1では、図14に示す強度試験用サンプル101のうちFRPケーブル10の試験片110を用意する。
(Step S3-1: Test piece preparation process)
In step S3-1, the test piece 110 of the FRP cable 10 is prepared from the strength test sample 101 shown in FIG.
 (ステップS3-2:未硬化シート用意工程)
 ステップS3-2では、ステップS3-1で用意された試験片110に対応する未硬化シートS3を用意する。
 未硬化シートS3の構成は、第1の実施形態に係る未硬化シートS1(図5参照)や未硬化シートS2(図7参照)と同様である。
(Step S3-2: Uncured sheet preparation process)
In step S3-2, an uncured sheet S3 corresponding to the test piece 110 prepared in step S3-1 is prepared.
The configuration of the uncured sheet S3 is the same as the uncured sheet S1 (see FIG. 5) and the uncured sheet S2 (see FIG. 7) according to the first embodiment.
 (ステップS3-3:未硬化シート巻き付け工程)
 ステップS3-3では、ステップS3-1で用意された試験片110の両端部にそれぞれ、ステップS3-2で用意された未硬化シートS3を巻き付けることにより未硬化の保持構造体120が完成する。
 未硬化シートS3の巻き付け方法は、第1の実施形態に係る未硬化シートS1(図6参照)や未硬化シートS2(図8参照)と同様である。
 これにより、未硬化の保持構造体120が完成する。
(Step S3-3: Uncured sheet winding step)
In step S3-3, the uncured holding structure 120 is completed by winding the uncured sheet S3 prepared in step S3-2 on both ends of the test piece 110 prepared in step S3-1.
The winding method of the uncured sheet S3 is the same as that of the uncured sheet S1 (see FIG. 6) and the uncured sheet S2 (see FIG. 8) according to the first embodiment.
Thereby, the uncured holding structure 120 is completed.
 (ステップS3-4:硬化工程)
 ステップS3-4では、ステップS3-3で得られた未硬化の保持構造体120を硬化させる。
 以上のステップS3-1~S3-4により、保持構造体120が完成し、図14に示す強度試験用サンプル101が得られる。
(Step S3-4: Curing process)
In step S3-4, the uncured holding structure 120 obtained in step S3-3 is cured.
Through the above steps S3-1 to S3-4, the holding structure 120 is completed, and the strength test sample 101 shown in FIG. 14 is obtained.
 (ステップS3-5:強度試験工程)
 ステップS3-5では、ステップS3-4で得られた強度試験用サンプル101を用いて強度試験を行う。
 強度試験としては、例えば、引張試験、圧縮試験、曲げ試験などが挙げられる。いずれの強度試験も、強度試験用サンプル101の保持構造体120の保持部122を保持した状態で行われる。以下、強度試験用サンプル101を用いて強度試験を例示する。
(Step S3-5: Strength test process)
In step S3-5, a strength test is performed using the strength test sample 101 obtained in step S3-4.
Examples of the strength test include a tensile test, a compression test, a bending test, and the like. Any strength test is performed in a state where the holding portion 122 of the holding structure 120 of the strength test sample 101 is held. Hereinafter, a strength test will be exemplified using the strength test sample 101.
[強度試験の例示]
 図17は、強度試験用サンプル101についての強度試験を例示する模式図である。図17(a)は引張試験の一例を示し、図17(b)は圧縮試験の一例を示し、図17(c)は曲げ試験の一例を示す。
[Example of strength test]
FIG. 17 is a schematic diagram illustrating a strength test for the strength test sample 101. FIG. 17A shows an example of a tensile test, FIG. 17B shows an example of a compression test, and FIG. 17C shows an example of a bending test.
 (引張試験)
 図17(a)に示す強度試験用サンプル101を用いた引張試験では、まず、Z軸方向に対向する一対の把持部C1U,C1Lで強度試験用サンプル101の保持構造体120の保持部122を把持する。
 以下、強度試験用サンプル101を用いた引張試験の一例として、(i)引張強度試験及び(ii)引張疲労試験について説明する。
(Tensile test)
In the tensile test using the strength test sample 101 shown in FIG. 17A, first, the holding portion 122 of the holding structure 120 of the strength test sample 101 is formed by a pair of gripping portions C1U and C1L facing in the Z-axis direction. Hold it.
Hereinafter, as an example of a tensile test using the strength test sample 101, (i) a tensile strength test and (ii) a tensile fatigue test will be described.
 (i)引張強度試験
 強度試験用サンプル101を用いた引張強度試験では、Z軸方向上側の把持部C1Uを上昇させることにより、強度試験用サンプル101の試験領域111にZ軸方向の引張力を加える。
 この引張強度試験では、把持部C1Uの上昇量と、把持部C1Uに加える荷重とによって、応力ひずみ線図が得られる。この応力ひずみ線図から、FRPケーブル10の試験片110のヤング率などの物性値を求めることができる。
(I) Tensile strength test In the tensile strength test using the strength test sample 101, the tensile force in the Z-axis direction is applied to the test region 111 of the strength test sample 101 by raising the grip portion C1U on the upper side in the Z-axis direction. Add.
In this tensile strength test, a stress-strain diagram is obtained by the amount of increase of the gripping part C1U and the load applied to the gripping part C1U. From this stress strain diagram, physical properties such as the Young's modulus of the test piece 110 of the FRP cable 10 can be obtained.
 上記の強度試験用サンプル101を用いた引張強度試験では、強度試験用サンプル101の試験領域111がZ軸方向中央部で破断し、FRPケーブル10の試験片110本来の正確な引張強度が得られているものと考えられる。 In the tensile strength test using the strength test sample 101 described above, the test region 111 of the strength test sample 101 is broken at the center in the Z-axis direction, and the original accurate tensile strength of the test piece 110 of the FRP cable 10 is obtained. It is thought that.
 これに対し、一対の把持部C1U,C1Lで試験片110の両端部を直接把持して行う引張強度試験では、試験片110の試験領域111が把持部C1U,C1Lの近傍で破断し、上記の強度試験用サンプル101の引張強度試験よりも強度が大幅に低くなった。したがって、この引張強度試験では、FRPケーブル10の試験片110本来の正確な引張強度が得られていない。 On the other hand, in the tensile strength test performed by directly gripping both ends of the test piece 110 with the pair of gripping portions C1U and C1L, the test region 111 of the test piece 110 breaks in the vicinity of the gripping portions C1U and C1L, and the above-mentioned The strength was significantly lower than the tensile strength test of the strength test sample 101. Therefore, in this tensile strength test, the original accurate tensile strength of the test piece 110 of the FRP cable 10 is not obtained.
 (ii)引張疲労試験
 強度試験用サンプル101を用いた引張疲労試験では、Z軸方向上側の把持部C1Uを繰り返しZ軸方向に上下動させることにより、強度試験用サンプル101の試験領域111に繰り返しZ軸方向の引張力を加える。
 この引張疲労試験では、把持部C1UのZ軸方向への上下動の回数に伴う、把持部C1Uに加える荷重の変化によって、強度試験用サンプル101の引張疲労特性を評価することができる。
(Ii) Tensile fatigue test In the tensile fatigue test using the strength test sample 101, the gripping portion C1U on the upper side in the Z-axis direction is repeatedly moved up and down in the Z-axis direction to repeat the test in the test region 111 of the sample 101 for strength test. Apply tensile force in the Z-axis direction.
In this tensile fatigue test, the tensile fatigue characteristics of the sample 101 for strength test can be evaluated by the change in the load applied to the grip portion C1U with the number of vertical movements of the grip portion C1U in the Z-axis direction.
 上記の強度試験用サンプル101を用いた引張疲労試験では、試験片110の試験領域111が主にZ軸方向中央領域で変形し、FRPケーブル10の試験片110本来の正確な引張疲労特性が得られているものと考えられる。 In the tensile fatigue test using the above-described strength test sample 101, the test region 111 of the test piece 110 is deformed mainly in the center region in the Z-axis direction, and the original accurate tensile fatigue characteristic of the test piece 110 of the FRP cable 10 is obtained. It is thought that
 これに対し、一対の把持部C1U,C1Lで試験片110の両端部を直接把持して行う引張疲労試験では、試験片110の試験領域111が把持部C1U,C1Lの近傍で急激に変形し、上記の強度試験用サンプル101の引張疲労試験よりも寿命特性が低下していた。このため、この引張疲労試験では、FRPケーブル10の試験片110本来の正確な引張疲労特性が得られていない。 On the other hand, in a tensile fatigue test performed by directly gripping both ends of the test piece 110 with a pair of gripping portions C1U and C1L, the test region 111 of the test piece 110 is rapidly deformed in the vicinity of the gripping portions C1U and C1L. The life characteristics were lower than those of the tensile fatigue test of the sample for strength test 101 described above. For this reason, in this tensile fatigue test, the exact tensile fatigue characteristics inherent to the test piece 110 of the FRP cable 10 are not obtained.
 (圧縮試験)
 図17(b)に示す強度試験用サンプル101を用いた圧縮試験では、まず、Z軸方向に対向する一対の把持部C2U,C2Lで強度試験用サンプル101の保持構造体120の保持部122を把持する。
 以下、強度試験用サンプル101を用いた圧縮試験の一例として、(i)圧縮強度試験及び(ii)圧縮疲労試験について説明する。
(Compression test)
In the compression test using the strength test sample 101 shown in FIG. 17B, first, the holding portion 122 of the holding structure 120 of the strength test sample 101 is formed by a pair of gripping portions C2U and C2L facing each other in the Z-axis direction. Hold it.
Hereinafter, as an example of a compression test using the strength test sample 101, (i) a compression strength test and (ii) a compression fatigue test will be described.
 (i)圧縮強度試験
 強度試験用サンプル101を用いた圧縮強度試験では、Z軸方向上側の把持部C2Uを下降させることにより、強度試験用サンプル101の試験領域111にZ軸方向の圧縮力を加える。
 この圧縮強度試験では、把持部C2Uの下降量と、把持部C2Uに加える荷重とによって、応力ひずみ線図が得られる。この応力ひずみ線図から、FRPケーブル10の試験片110のヤング率などの物性値を求めることができる。
(I) Compressive strength test In the compressive strength test using the strength test sample 101, the compressive force in the Z-axis direction is applied to the test region 111 of the strength test sample 101 by lowering the grip portion C2U on the upper side in the Z-axis direction. Add.
In this compressive strength test, a stress-strain diagram is obtained by the descending amount of the grip portion C2U and the load applied to the grip portion C2U. From this stress strain diagram, physical properties such as the Young's modulus of the test piece 110 of the FRP cable 10 can be obtained.
 上記の強度試験用サンプル101を用いた圧縮強度試験では、強度試験用サンプル101の試験領域111がZ軸方向中央部で損傷し、FRPケーブル10の試験片110本来の正確な圧縮強度が得られているものと考えられる。 In the compressive strength test using the strength test sample 101 described above, the test region 111 of the strength test sample 101 is damaged at the center in the Z-axis direction, and the original accurate compressive strength of the test piece 110 of the FRP cable 10 is obtained. It is thought that.
 これに対し、一対の把持部C2U,C2Lで試験片110の両端部を直接把持して行う圧縮強度試験では、試験片110の試験領域111が把持部C2U,C2Lの近傍で座屈し、上記の強度試験用サンプル101の圧縮強度試験よりも強度が大幅に低くなった。したがって、この圧縮強度試験では、FRPケーブル10の試験片110本来の正確な圧縮強度が得られていない。 On the other hand, in a compressive strength test performed by directly gripping both ends of the test piece 110 with a pair of gripping parts C2U and C2L, the test region 111 of the test piece 110 buckles in the vicinity of the gripping parts C2U and C2L, and the above-mentioned The strength was significantly lower than the compressive strength test of the strength test sample 101. Therefore, in this compressive strength test, the original accurate compressive strength of the test piece 110 of the FRP cable 10 is not obtained.
 (ii)圧縮疲労試験
 強度試験用サンプル101を用いた圧縮疲労試験では、Z軸方向上側の把持部C2Uを繰り返しZ軸方向に上下動させることにより、強度試験用サンプル101の試験領域111に繰り返しZ軸方向の圧縮力を加える。
 この圧縮疲労試験では、把持部C2UのZ軸方向への上下動の回数に伴う、把持部C2Uに加える荷重の変化によって、強度試験用サンプル101の圧縮疲労特性を評価することができる。
(Ii) Compression fatigue test In the compression fatigue test using the strength test sample 101, the gripping portion C2U on the upper side in the Z-axis direction is repeatedly moved up and down in the Z-axis direction, so that the test is repeated in the test region 111 of the strength test sample 101. Apply compressive force in the Z-axis direction.
In this compression fatigue test, the compression fatigue characteristics of the strength test sample 101 can be evaluated by the change in the load applied to the grip portion C2U with the number of vertical movements of the grip portion C2U in the Z-axis direction.
 上記の強度試験用サンプル101を用いた圧縮疲労試験では、試験片110の試験領域111が主にZ軸方向中央領域で変形し、FRPケーブル10の試験片110本来の正確な圧縮疲労特性が得られているものと考えられる。 In the compression fatigue test using the strength test sample 101 described above, the test region 111 of the test piece 110 is deformed mainly in the center region in the Z-axis direction, and the original compression fatigue characteristic of the test piece 110 of the FRP cable 10 is obtained. It is thought that
 これに対し、一対の把持部C2U,C2Lで試験片110の両端部を直接把持して行う圧縮疲労試験では、試験片110の試験領域111が把持部C2U,C2Lの近傍で急激に変形し、上記の強度試験用サンプル101の圧縮疲労試験よりも寿命特性が低下していた。このため、この圧縮疲労試験では、FRPケーブル10の試験片110本来の正確な圧縮疲労特性が得られていない。 On the other hand, in a compression fatigue test performed by directly gripping both ends of the test piece 110 with a pair of gripping portions C2U and C2L, the test region 111 of the test piece 110 is rapidly deformed in the vicinity of the gripping portions C2U and C2L. The life characteristics were lower than those of the compression fatigue test of the sample for strength test 101 described above. For this reason, in this compression fatigue test, the exact compression fatigue characteristic of the test piece 110 of the FRP cable 10 is not obtained.
 (曲げ試験)
 図17(c)に示す強度試験用サンプル101を用いた曲げ試験では、まず、X軸方向に対向する一対の把持部C3L,C3Rで強度試験用サンプル101の保持構造体120の保持部122を把持する。把持部C3L,C3Rはそれぞれ、Y軸に平行な回転軸PL,PRを有し、回転軸PL,PRを中心に回転可能である。
 以下、強度試験用サンプル101を用いた曲げ試験の一例として、(i)曲げ強度試験及び(ii)平面曲げ疲労試験について説明する。
(Bending test)
In the bending test using the strength test sample 101 shown in FIG. 17C, first, the holding portion 122 of the holding structure 120 of the strength test sample 101 is formed by the pair of gripping portions C3L and C3R facing in the X-axis direction. Hold it. The grip portions C3L and C3R have rotation axes PL and PR parallel to the Y axis, respectively, and can rotate around the rotation axes PL and PR.
Hereinafter, as an example of a bending test using the strength test sample 101, (i) bending strength test and (ii) plane bending fatigue test will be described.
 (i)曲げ強度試験
 強度試験用サンプル101を用いた曲げ強度試験では、Z軸方向上側の押圧子l1を下降させることにより、強度試験用サンプル101の試験領域111のX軸方向中央部にZ軸方向下方への曲げ力を加える。
 この曲げ強度試験では、押圧子l1の下降量と、押圧子l1に加える荷重とによって、応力ひずみ線図が得られる。この応力ひずみ線図から、FRPケーブル10の試験片110のヤング率などの物性値を求めることができる。
(I) Bending strength test In the bending strength test using the strength test sample 101, the Z-axis direction central portion of the test region 111 of the strength test sample 101 is lowered by lowering the presser l1 on the upper side in the Z-axis direction. Apply bending force downward in the axial direction.
In this bending strength test, a stress-strain diagram is obtained by the descending amount of the presser l1 and the load applied to the presser l1. From this stress strain diagram, physical properties such as the Young's modulus of the test piece 110 of the FRP cable 10 can be obtained.
 上記の強度試験用サンプル101を用いた曲げ強度試験では、強度試験用サンプル101の試験領域111がZ軸方向中央部で破断し、FRPケーブル10の試験片110本来の正確な曲げ強度が得られているものと考えられる。 In the bending strength test using the strength test sample 101 described above, the test region 111 of the strength test sample 101 is broken at the center in the Z-axis direction, and the original accurate bending strength of the test piece 110 of the FRP cable 10 is obtained. It is thought that.
 これに対し、一対の把持部C3L,C3Rで試験片110の両端部を直接把持して行う曲げ強度試験では、試験片110の試験領域111が把持部C3L,C3Rの近傍で破断し、上記の強度試験用サンプル101の曲げ強度試験よりも強度が大幅に低くなった。したがって、この曲げ強度試験では、FRPケーブル10の試験片110本来の正確な曲げ強度が得られていない。 On the other hand, in the bending strength test performed by directly gripping both ends of the test piece 110 with the pair of gripping portions C3L and C3R, the test region 111 of the test piece 110 breaks in the vicinity of the gripping portions C3L and C3R, and the above-mentioned The strength was significantly lower than the bending strength test of the strength test sample 101. Therefore, in this bending strength test, the original accurate bending strength of the test piece 110 of the FRP cable 10 is not obtained.
 (ii)平面曲げ疲労試験
 強度試験用サンプル101を用いた平面曲げ疲労試験では、Z軸方向に対向する一対の押圧子l1,l2で試験片110の試験領域111のX軸方向中央部を挟む。そして、試験片110の試験領域111のX軸方向中央部を挟んだ押圧子l1,l2を繰り返しZ軸方向に上下動させることにより、強度試験用サンプル101の試験領域111のX軸方向中央部に繰り返しZ軸方向上方及び下方への曲げ力を加える。
 この平面曲げ疲労試験では、押圧子l1,l2のZ軸方向への上下動の回数に伴う、押圧子l1,l2に加える荷重の変化によって、強度試験用サンプル101の曲げ疲労特性を評価することができる。
(Ii) Plane Bending Fatigue Test In the plane bending fatigue test using the strength test sample 101, the X-axis direction central portion of the test region 111 of the test piece 110 is sandwiched between a pair of pressers l1 and l2 facing in the Z-axis direction. . Then, by repeatedly moving the pressers 11 and 12 sandwiching the central portion of the test region 111 of the test piece 110 in the Z-axis direction, the central portion of the test region 111 of the strength test sample 101 in the X-axis direction. Repeatedly apply bending force upward and downward in the Z-axis direction.
In this plane bending fatigue test, the bending fatigue characteristics of the strength test sample 101 are evaluated by the change in the load applied to the pressers l1 and l2 with the number of vertical movements of the pressers l1 and l2 in the Z-axis direction. Can do.
 上記の強度試験用サンプル101を用いた平面曲げ疲労試験では、試験片110の試験領域111が主にZ軸方向中央部で変形し、FRPケーブル10の試験片110本来の正確な曲げ疲労特性が得られているものと考えられる。 In the plane bending fatigue test using the above-described strength test sample 101, the test region 111 of the test piece 110 is deformed mainly in the center in the Z-axis direction, and the original accurate bending fatigue characteristics of the test piece 110 of the FRP cable 10 are obtained. It is thought that it is obtained.
 これに対し、一対の把持部C3L,C3Rで試験片110の両端部を直接把持して行う平面曲げ疲労試験では、試験片110の試験領域111が把持部C3L,C3Rの近傍で急激に変形し、上記の強度試験用サンプル101の平面曲げ疲労試験よりも寿命特性が低下していた。このため、この平面曲げ疲労試験では、FRPケーブル10の試験片110本来の正確な曲げ疲労特性が得られていない。 On the other hand, in a plane bending fatigue test performed by directly gripping both ends of the test piece 110 with a pair of gripping portions C3L and C3R, the test region 111 of the test piece 110 is rapidly deformed in the vicinity of the gripping portions C3L and C3R. The life characteristics were lower than those in the plane bending fatigue test of the above-described strength test sample 101. For this reason, in this plane bending fatigue test, the original accurate bending fatigue characteristics of the test piece 110 of the FRP cable 10 are not obtained.
[実施例及び比較例]
 本実施形態の実施例として図14に示す強度試験用サンプル101を作製した。また、本実施形態の比較例として図15に示す強度試験用サンプル201を作製した。実施例に係る強度試験用サンプル101と比較例に係る強度試験用サンプル201とでは、同一のFRPケーブル10の試験片110を用い、試験領域111を同一の長さとした。
[Examples and Comparative Examples]
As an example of this embodiment, a strength test sample 101 shown in FIG. 14 was produced. Further, a strength test sample 201 shown in FIG. 15 was produced as a comparative example of the present embodiment. In the strength test sample 101 according to the example and the strength test sample 201 according to the comparative example, the test piece 110 of the same FRP cable 10 is used, and the test region 111 has the same length.
 実施例1及び比較例1では、FRPケーブル10の試験片110として、24万本の炭素繊維が樹脂成分によって含浸されたFRPケーブル(小松精練株式会社製 型番「24K1P」)を用いた。
 実施例2及び比較例2では、FRPケーブル10の試験片110として、48万本の炭素繊維が樹脂成分によって含浸されたFRPケーブル(小松精練株式会社製 型番「24K2P」)を用いた。
In Example 1 and Comparative Example 1, an FRP cable (model number “24K1P” manufactured by Komatsu Seiren Co., Ltd.) in which 240,000 carbon fibers were impregnated with a resin component was used as the test piece 110 of the FRP cable 10.
In Example 2 and Comparative Example 2, an FRP cable (model number “24K2P” manufactured by Komatsu Seiren Co., Ltd.) in which 480,000 carbon fibers were impregnated with a resin component was used as the test piece 110 of the FRP cable 10.
 図18(a)は、比較例1,2に係る強度試験用サンプル201を用いた引張強度試験によって得られた応力ひずみ線図である。図18(b)は、実施例1,2に係る強度試験用サンプル101を用いた引張強度試験によって得られた応力ひずみ線図である。 FIG. 18A is a stress strain diagram obtained by a tensile strength test using the strength test samples 201 according to Comparative Examples 1 and 2. FIG. FIG. 18B is a stress strain diagram obtained by the tensile strength test using the strength test sample 101 according to Examples 1 and 2. FIG.
 比較例1と実施例1とを比較すると、比較例1では引張ひずみεが1.5%付近になるときに強度試験用サンプル201が破断しているのに対し、実施例1では引張ひずみεが2.25%付近になるまで強度試験用サンプル101が破断していない。
 また、比較例1に係る強度試験用サンプル201では保持構造体220の先端部Hの近傍で破断していたのに対し、実施例1に係る強度試験用サンプル101は試験領域111の中央部で破断していた。
Comparing Comparative Example 1 and Example 1, in Comparative Example 1, the strength test sample 201 was broken when the tensile strain ε was about 1.5%, whereas in Example 1, the tensile strain ε was broken. The strength test sample 101 is not broken until is about 2.25%.
Further, the strength test sample 201 according to the comparative example 1 was broken near the front end portion H of the holding structure 220, whereas the strength test sample 101 according to the first example was broken at the central portion of the test region 111. It was broken.
 比較例2と実施例2とを比較すると、比較例2では引張ひずみεが1.1%付近になるときに強度試験用サンプル201が破断しているのに対し、実施例2では引張ひずみεが2.25%付近になるまで強度試験用サンプル101が破断していない。
 また、比較例2に係る強度試験用サンプル201は保持構造体220の先端部Hの近傍で破断していたのに対し、実施例2に係る強度試験用サンプル101は試験領域111の中央部で破断していた。
Comparing Comparative Example 2 and Example 2, in Comparative Example 2, the strength test sample 201 was broken when the tensile strain ε was close to 1.1%, whereas in Example 2, the tensile strain ε The strength test sample 101 is not broken until is about 2.25%.
Further, the strength test sample 201 according to the comparative example 2 was fractured in the vicinity of the front end portion H of the holding structure 220, whereas the strength test sample 101 according to the example 2 was at the center portion of the test region 111. It was broken.
 以上のとおり、実施例1,2に係る強度試験用サンプル101ではFRPケーブル10の試験片110本来の正確な評価結果が得られたが、比較例1,2に係る強度試験用サンプル201ではFRPケーブル10の試験片110本来の正確な評価結果が得られなかった。 As described above, with the strength test sample 101 according to Examples 1 and 2, the original accurate evaluation result of the test piece 110 of the FRP cable 10 was obtained, but with the strength test sample 201 according to Comparative Examples 1 and 2, FRP was obtained. The original accurate evaluation result of the test piece 110 of the cable 10 was not obtained.
<その他の実施形態>
 以上、本発明の実施形態について説明したが、本発明は上述の実施形態にのみ限定されるものではなく種々変更を加え得ることは勿論である。
<Other embodiments>
As mentioned above, although embodiment of this invention was described, this invention is not limited only to the above-mentioned embodiment, Of course, a various change can be added.
 例えば、上記の第1の実施形態では傾斜部21を有する定着構造体20を例示し、上記の第2の実施形態では傾斜部121を有する保持構造体120を例示したが、定着構造体20及び保持構造体120はこれらの構成に限定されない。定着構造体20及び保持構造体120としては、FRPから成り、かつ傾斜部21,121を有する任意の構成を採用可能である。 For example, in the first embodiment, the fixing structure 20 having the inclined portion 21 is illustrated, and in the second embodiment, the holding structure 120 having the inclined portion 121 is illustrated. The holding structure 120 is not limited to these configurations. As the fixing structure 20 and the holding structure 120, an arbitrary configuration made of FRP and having the inclined portions 21 and 121 can be adopted.
 また、第1の実施形態に係る定着構造体20及び第2の実施形態に係る保持構造体120では、Z軸方向に平行な円筒面である保持部22,122が設けられているが、保持部22,122はこの構成に限定されない。保持部22,122としては、傾斜部21,121より大径となる任意の構成を採用可能である。更に、傾斜部21,121の大径の後端部Gが保持部22,122として構成されていてもよい。 In the fixing structure 20 according to the first embodiment and the holding structure 120 according to the second embodiment, the holding portions 22 and 122 which are cylindrical surfaces parallel to the Z-axis direction are provided. The parts 22 and 122 are not limited to this configuration. As the holding portions 22 and 122, any configuration having a larger diameter than the inclined portions 21 and 121 can be employed. Furthermore, the rear end portion G having a large diameter of the inclined portions 21 and 121 may be configured as the holding portions 22 and 122.
1…FRPケーブル構造体
10…FRPケーブル
20…定着構造体
21…傾斜部
22…保持部
DESCRIPTION OF SYMBOLS 1 ... FRP cable structure 10 ... FRP cable 20 ... Fixing structure 21 ... Inclination part 22 ... Holding part

Claims (10)

  1.  繊維強化プラスチックから成り、
     繊維強化プラスチックケーブルの長手方向端部に設けられ、
     保持部と、前記保持部から前記繊維強化プラスチックケーブルの長手方向中央部に向けて径が小さくなる傾斜部と、を有する
     繊維強化プラスチックケーブルの定着構造体。
    Made of fiber reinforced plastic,
    Provided at the longitudinal end of the fiber reinforced plastic cable,
    A fixing structure for a fiber-reinforced plastic cable, comprising: a holding portion; and an inclined portion having a diameter that decreases from the holding portion toward a longitudinal central portion of the fiber-reinforced plastic cable.
  2.  請求項1に記載の繊維強化プラスチックケーブルの定着構造体であって、
     シート状の繊維強化プラスチックが螺旋状に巻き付けられた構成を有する
     繊維強化プラスチックケーブルの定着構造体。
    A fixing structure for a fiber-reinforced plastic cable according to claim 1,
    A fixing structure for a fiber-reinforced plastic cable having a configuration in which a sheet-like fiber-reinforced plastic is wound in a spiral.
  3.  請求項2に記載の繊維強化プラスチックケーブルの定着構造体であって、
     前記シート状の繊維強化プラスチックは、繊維クロスがプラスチックによって含浸された構成を有する
     繊維強化プラスチックケーブルの定着構造体。
    A fixing structure for a fiber-reinforced plastic cable according to claim 2,
    The sheet-like fiber reinforced plastic has a structure in which a fiber cloth is impregnated with plastic. A fixing structure of a fiber reinforced plastic cable.
  4.  繊維強化プラスチックの未硬化シートを用意し、
     前記未硬化シートを、繊維強化プラスチックケーブルの長手方向端部に、前記繊維強化プラスチックケーブルの長手方向中央部から離れる方向に向けて螺旋状に巻き付け、
     前記繊維強化プラスチックケーブルに巻き付けられた前記未硬化シートを硬化させる
     繊維強化プラスチックケーブルの定着構造体の製造方法。
    Prepare an uncured sheet of fiber reinforced plastic,
    The uncured sheet is spirally wound around the longitudinal direction end of the fiber reinforced plastic cable in a direction away from the longitudinal center of the fiber reinforced plastic cable,
    A method for manufacturing a fixing structure of a fiber reinforced plastic cable, wherein the uncured sheet wound around the fiber reinforced plastic cable is cured.
  5.  繊維強化プラスチックケーブルの試験片を用意し、
     前記試験片の長手方向両端部のそれぞれに、繊維強化プラスチックによって、保持部と、前記保持部から前記試験片の長手方向中央部に向けて径が小さくなる傾斜部と、を有する保持構造体を設け、
     前記試験片に設けられた前記保持構造体の前記保持部を保持した状態で、前記試験片の強度試験を行う
     繊維強化プラスチックケーブルの強度試験方法。
    Prepare a specimen of fiber reinforced plastic cable,
    A holding structure having a holding portion and an inclined portion whose diameter decreases from the holding portion toward the longitudinal central portion of the test piece by fiber reinforced plastic at each of both ends in the longitudinal direction of the test piece. Provided,
    A strength test method for a fiber reinforced plastic cable, wherein the strength test of the test piece is performed in a state where the holding portion of the holding structure provided on the test piece is held.
  6.  請求項5に記載の繊維強化プラスチックケーブルの強度試験方法であって、
     前記保持構造体を設けるために、
     繊維強化プラスチックの未硬化シートを用意し、
     前記未硬化シートを、前記試験片の長手方向両端部のそれぞれに、前記試験片の長手方向中央部から離れる方向に向けて螺旋状に巻き付け、
     前記試験片に巻き付けられた前記未硬化シートを硬化させる
     繊維強化プラスチックケーブルの強度試験方法。
    It is the strength test method of the fiber reinforced plastic cable according to claim 5,
    In order to provide the holding structure,
    Prepare an uncured sheet of fiber reinforced plastic,
    The uncured sheet is spirally wound around each of both end portions in the longitudinal direction of the test piece in a direction away from the longitudinal center portion of the test piece,
    A strength test method for a fiber-reinforced plastic cable, wherein the uncured sheet wound around the test piece is cured.
  7.  請求項5又は6に記載の繊維強化プラスチックケーブルの強度試験方法であって、
     前記強度試験は、引張試験、圧縮試験、及び曲げ試験の少なくとも1つである
     繊維強化プラスチックケーブルの強度試験方法。
    It is the strength test method of the fiber reinforced plastic cable according to claim 5 or 6,
    The strength test is at least one of a tensile test, a compression test, and a bending test.
  8.  繊維強化プラスチックケーブルの試験片と、
     繊維強化プラスチックから成り、前記試験片の両端部にそれぞれ設けられ、保持部と、前記保持部から前記試験片の長手方向中央部に向けて径が小さくなる傾斜部と、を有する保持構造体と、
     を具備する繊維強化プラスチックケーブルの強度試験用サンプル。
    A fiber reinforced plastic cable specimen;
    A holding structure made of fiber reinforced plastic, provided at both ends of the test piece, and having a holding part, and an inclined part whose diameter decreases from the holding part toward the longitudinal center part of the test piece; ,
    A sample for strength test of a fiber reinforced plastic cable comprising:
  9.  請求項8に記載の繊維強化プラスチックケーブルの強度試験用サンプルであって、
     前記保持構造体は、シート状の繊維強化プラスチックが螺旋状に巻き付けられた構成を有する
     繊維強化プラスチックケーブルの強度試験用サンプル。
    A sample for strength test of a fiber reinforced plastic cable according to claim 8,
    The holding structure has a configuration in which a sheet-like fiber-reinforced plastic is spirally wound. A sample for strength test of a fiber-reinforced plastic cable.
  10.  請求項9に記載の繊維強化プラスチックケーブルの強度試験用サンプルであって、
     前記シート状の繊維強化プラスチックは、繊維クロスがプラスチックによって含浸された構成を有する
     繊維強化プラスチックケーブルの強度試験用サンプル。
    A sample for strength test of the fiber reinforced plastic cable according to claim 9,
    The sheet-like fiber reinforced plastic has a configuration in which a fiber cloth is impregnated with plastic. A sample for strength test of a fiber reinforced plastic cable.
PCT/JP2016/065928 2015-07-08 2016-05-30 Attachment structure for fiber reinforced plastic cable, manufacturing method for same, strength test method, and sample for strength test WO2017006647A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015137298A JP6586695B2 (en) 2015-07-08 2015-07-08 FIXED STRUCTURE FOR FIBER-REINFORCED PLASTIC CABLE, ITS MANUFACTURING METHOD, STRESS TEST METHOD, AND STRESS TEST SAMPLE
JP2015-137298 2015-07-08

Publications (1)

Publication Number Publication Date
WO2017006647A1 true WO2017006647A1 (en) 2017-01-12

Family

ID=57685084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065928 WO2017006647A1 (en) 2015-07-08 2016-05-30 Attachment structure for fiber reinforced plastic cable, manufacturing method for same, strength test method, and sample for strength test

Country Status (2)

Country Link
JP (1) JP6586695B2 (en)
WO (1) WO2017006647A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01114728U (en) * 1988-01-28 1989-08-02
JPH06287949A (en) * 1993-04-02 1994-10-11 Tokyu Constr Co Ltd Fixing device of frp cable
JP5514966B1 (en) * 2013-05-20 2014-06-04 極東鋼弦コンクリート振興株式会社 Fixture for fiber reinforced plastic filaments
JP2014125707A (en) * 2012-12-27 2014-07-07 Tokyo Seiko Co Ltd Terminal fixing structure and method of striatum made of fiber reinforced plastics

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01114728U (en) * 1988-01-28 1989-08-02
JPH06287949A (en) * 1993-04-02 1994-10-11 Tokyu Constr Co Ltd Fixing device of frp cable
JP2014125707A (en) * 2012-12-27 2014-07-07 Tokyo Seiko Co Ltd Terminal fixing structure and method of striatum made of fiber reinforced plastics
JP5514966B1 (en) * 2013-05-20 2014-06-04 極東鋼弦コンクリート振興株式会社 Fixture for fiber reinforced plastic filaments

Also Published As

Publication number Publication date
JP6586695B2 (en) 2019-10-09
JP2017020217A (en) 2017-01-26

Similar Documents

Publication Publication Date Title
CN1113139C (en) Truss structure
Asyraf et al. Filament-wound glass-fibre reinforced polymer composites: Potential applications for cross arm structure in transmission towers
Al-Shammari et al. Stiffness to Weight Ratio of Various Mechanical and Thermal Loaded Hyper Composite Plate Structures
JPWO2016132437A1 (en) Composite wire terminal fixing structure
JP5913085B2 (en) End fixing structure and method of fiber reinforced plastic filament
WO2013133437A1 (en) High-basis-weight carbon fiber sheet for rtm process, and rtm process
WO2022007705A1 (en) Elastomer-bonded fiber-reinforced composite wire material and preparation method therefor
CN103994136A (en) Hemispherical joint for composite material joining
JP6586695B2 (en) FIXED STRUCTURE FOR FIBER-REINFORCED PLASTIC CABLE, ITS MANUFACTURING METHOD, STRESS TEST METHOD, AND STRESS TEST SAMPLE
Markkula et al. Uniaxial tension and compression characterization of hybrid CNS–glass fiber–epoxy composites
De Sousa et al. Effect of different fiber angles for composite material with fiberglass reinforced on mechanical properties
CN204531181U (en) The extremity fixing structure of compound thread like body
Liu et al. On the configuration evolution of soft filaments under combined tension and torsion
Javořík Numerical optimization of large shade sail support
CN104405136B (en) The method that non-stretching type fiber prestress applies
JP2022047219A (en) Fixation structure
Yeung et al. Composite tension members for structural applications
CN204418504U (en) A kind of CFRP drag-line propping up structure for string
Avdic Simulating a tensile test of a carbon fiber composite test specimen in ABAQUS
Arashmehr et al. Numerical and experimental stress analysis of stiffened cylindrical composite shell under transverse end load
JP5966390B2 (en) Continuous fiber reinforcement and method for producing continuous fiber reinforcement
EP3043986A1 (en) Fibre reinforced rigging component with a bend feature and method for its manufacture
JP6963242B2 (en) Repair members for columnar workpieces, columnar workpieces and their repair methods
CN108166489A (en) New Anchor Cable tensioner and anchor cable two times tensioning system
SABĂU et al. NUMERICAL SIMULATION OF FLEXURAL BEHAVIOR OF GLASS FIBER REINFORCED POLYMER COMPOSITES

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821118

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16821118

Country of ref document: EP

Kind code of ref document: A1