WO2017006524A1 - Beam tilt angle control device, antenna system, wireless communication device, and beam tilt angle control method - Google Patents

Beam tilt angle control device, antenna system, wireless communication device, and beam tilt angle control method Download PDF

Info

Publication number
WO2017006524A1
WO2017006524A1 PCT/JP2016/002950 JP2016002950W WO2017006524A1 WO 2017006524 A1 WO2017006524 A1 WO 2017006524A1 JP 2016002950 W JP2016002950 W JP 2016002950W WO 2017006524 A1 WO2017006524 A1 WO 2017006524A1
Authority
WO
WIPO (PCT)
Prior art keywords
tilt angle
dielectric
angle control
dielectric plates
antenna
Prior art date
Application number
PCT/JP2016/002950
Other languages
French (fr)
Japanese (ja)
Inventor
浩介 田邊
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2017006524A1 publication Critical patent/WO2017006524A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/12Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems
    • H01Q3/14Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems for varying the relative position of primary active element and a refracting or diffracting device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/02Refracting or diffracting devices, e.g. lens, prism
    • H01Q15/08Refracting or diffracting devices, e.g. lens, prism formed of solid dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/06Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using refracting or diffracting devices, e.g. lens

Definitions

  • the present invention relates to a beam tilt angle control device, an antenna system, a radio communication device, and a beam tilt angle control method, and more particularly to a beam tilt angle control device, an antenna system, a radio communication device, and a beam using at least two dielectric plates.
  • the present invention relates to a tilt angle control method.
  • a parabolic antenna or a planar antenna with directivity is used.
  • the beam direction may be shifted due to a positional shift at the time of antenna installation or vibration of the antenna, which may affect the wireless communication.
  • Patent Document 1 discloses a technique related to a planar microwave antenna that can easily finely adjust the beam directivity while the antenna is fixed.
  • Patent Document 2 discloses a technique for adjusting a tilt angle of a beam by providing a dielectric cover having an inclination angle so as to face a slot array antenna.
  • the beam direction may be shifted due to a positional shift or the like when the antenna is installed.
  • a deviation in the beam direction can be corrected by adjusting the tilt angle of the beam.
  • the tilt angle of a beam is adjusted by displacing the positions of two fan-shaped (center angle is 90 degrees) beam tilt plates within the same plane.
  • an object of the present invention is to provide a beam tilt angle control device, an antenna system, a wireless communication device, and a beam tilt angle control method capable of suppressing a decrease in gain when controlling the tilt angle of a beam. That is.
  • a beam tilt angle control device includes a first dielectric plate, and a second dielectric plate at least partially disposed so as to be able to overlap with the first dielectric plate in the thickness direction.
  • the thickness direction of the first and second dielectric plates is provided by changing at least the area where the first and second dielectric plates overlap in the thickness direction of the first and second dielectric plates. The tilt angle of the beam propagating to is controlled.
  • a beam tilt angle control method includes: a first dielectric plate; and a second dielectric plate at least partially disposed so as to be able to overlap with the first dielectric plate in the thickness direction.
  • the first and second dielectric plates are changed by changing the overlapping area of the first and second dielectric plates in the thickness direction of the first and second dielectric plates. The tilt angle of the beam propagating in the thickness direction of the dielectric plate is controlled.
  • a beam tilt angle control device an antenna system, a wireless communication device, and a beam tilt angle control method capable of suppressing a decrease in gain when controlling the beam tilt angle.
  • FIG. 1 is a front view showing a beam tilt angle control device according to a first embodiment
  • FIG. 2 is a cross-sectional view taken along section line II-II in FIG.
  • FIG. 3 is a cross-sectional view taken along section line III-III in FIG.
  • It is a figure which shows the relationship between rotation angle (alpha) 1 and (alpha) 2 and tilt angle (delta) of a beam tilt angle control apparatus.
  • It is sectional drawing which shows the antenna system provided with the beam tilt angle control apparatus concerning Embodiment 1.
  • FIG. 6 is a cross-sectional view showing another configuration example of the antenna system according to the first exemplary embodiment;
  • FIG. 6 is a cross-sectional view showing another configuration example of the antenna system according to the first exemplary embodiment;
  • FIG. 6 is a cross-sectional view showing another configuration example of the antenna system according to the first exemplary embodiment;
  • FIG. 6 is a cross-sectional view showing another configuration example of the antenna system according to the first exemplary embodiment;
  • FIG. It is a figure which shows the system configuration
  • FIG. It is a figure which shows the system configuration
  • FIG. 1 is a front view of the beam tilt angle control apparatus according to the first embodiment.
  • 2 is a cross-sectional view taken along a cutting line II-II in FIG.
  • FIG. 3 is a cross-sectional view taken along section line III-III in FIG.
  • the beam tilt angle control device 1 according to the present embodiment includes a dielectric plate 11 (first dielectric plate), a dielectric plate 12 (second dielectric plate), Is provided.
  • Each of the dielectric plate 11 and the dielectric plate 12 is a semicircular plate-like member, and can be configured using a resin material (relative dielectric constant is about 3 to 4) such as polycarbonate or ABS resin.
  • a resin material such as polycarbonate or ABS resin.
  • the diameters of the dielectric plate 11 and the dielectric plate 12 can be the same.
  • the dielectric plate 11 and the dielectric plate 12 are arranged so as to be superposed in the thickness direction (z-axis direction) of the dielectric plates 11 and 12, respectively.
  • the dielectric plate 11 and the dielectric plate 12 are arranged so that the principal surfaces of the dielectric plate 11 and the dielectric plate 12 are parallel to the xy plane, respectively.
  • the dielectric plate 11 and the dielectric plate 12 are configured to be rotatable about a rotation shaft 13.
  • the dielectric plate 11 and the dielectric plate 12 are configured to be rotatable in directions opposite to each other about the rotation shaft 13.
  • the dielectric plate 11 and the dielectric plate 12 are rotated.
  • the dielectric plate 11 and the dielectric plate 12 are rotated.
  • the dielectric plate 11 is rotated clockwise by an angle ⁇ 1
  • the beam propagates in the z-axis direction, that is, in the thickness direction of the dielectric plate 11 and the dielectric plate 12.
  • the speed of the electromagnetic field of the beam is delayed.
  • can be expressed by the following equation.
  • ⁇ r is the dielectric constant of the dielectric plate
  • t is the thickness of the dielectric plate
  • is the wavelength in free space.
  • ⁇ / 8 [rad] (45 degrees).
  • the dielectric plate 11 and the dielectric plate 12 are configured to be rotatable about a rotation shaft 13. Therefore, in the z-axis direction through which the beam passes, a region 19 without a dielectric plate, a region with one dielectric plate (see the cross-sectional view in FIG. 3), and a region with two dielectric plates (the cross-section in FIG. 2) (See the figure) can be variably formed.
  • the region 19 without the dielectric plate has a phase delay amount of 0
  • the region with one dielectric plate has a phase delay amount of ⁇
  • the region with two dielectric plates has a phase delay amount of 2.
  • FIG. 4 is a diagram showing the relationship between the rotation angles ⁇ 1 and ⁇ 2 of the beam tilt angle control device 1 and the tilt angle ⁇ (the angle formed by the normal of the dielectric plates 11 and 12 and the beam direction).
  • the horizontal axis of the graph of FIG. 4 is the radiation angle
  • the vertical axis is the gain.
  • the two semicircular dielectric plates 11 and 12 are Form one circle.
  • FIG. 5 is a diagram illustrating a simulation result of the relationship between the rotation angles ⁇ 1 and ⁇ 2 of the beam tilt angle control device 1 and the tilt angle.
  • the horizontal axis of the graph of FIG. 5 is the radiation angle, and the vertical axis is the gain.
  • the simulation result shown in FIG. 5 is a simulation result when the diameter of the dielectric plates 11 and 12 is 200 [mm].
  • the radiation angle of the beam is shifted to the minus side.
  • This result corresponds to the operation of the beam tilt angle control device 1 described in FIG. Further, for example, focusing on the result that the angles ⁇ 1 and ⁇ 2 of the dielectric plates 11 and 12 are 0 degrees, the gain decreases by 5 [dB] when the radiation angle is shifted by 1 degree. In other words, this means that the gain decreases by 5 [dB] when the angle of the antenna device is shifted by 1 degree.
  • the angle deviation of the antenna device can be compensated, and the gain is improved by 5 [dB]. can do.
  • the beam tilt angle control device 1 changes the area where the dielectric plates 11 and 12 overlap in the thickness direction (z-axis direction) of the dielectric plates 11 and 12, thereby The tilt angle of the beam propagating in the thickness direction of the plates 11 and 12 can be controlled.
  • a parabolic antenna or a planar antenna having directivity is used.
  • the beam direction may be shifted due to a positional shift at the time of antenna installation or vibration of the antenna, which may affect the wireless communication.
  • the antenna may be attached to a thin pole.
  • the pole may sway due to traffic such as a car or strong wind.
  • traffic such as a car or strong wind.
  • such a beam shift can be corrected by adjusting the tilt angle of the beam.
  • the tilt angle of a beam is adjusted by displacing the positions of two fan-shaped (center angle is 90 degrees) beam tilt plates within the same plane.
  • the dielectric plate 11 and the dielectric plate 12 at least partially disposed so as to be able to overlap with the dielectric plate 11 in the thickness direction are provided.
  • the tilt angle of the beam propagating in the thickness direction of the dielectric plates 11 and 12 is controlled by changing the area where the dielectric plates 11 and 12 overlap at least in the thickness direction of the dielectric plates 11 and 12. Yes.
  • the phase delay amount is 0 in the region without the dielectric plate
  • the phase delay amount is ⁇ in the region with one dielectric plate
  • the phase delay amount is 2 ⁇ in the region with two dielectric plates. ⁇ .
  • the beam tilt angle control apparatus 1 in the beam tilt angle control apparatus 1 according to the present embodiment, at least a part of two or more dielectric plates are arranged so as to overlap each other in the thickness direction, thereby providing three or more different phase delay amounts. A region having the same can be formed.
  • the technique disclosed in Patent Document 1 only regions having two different phase delay amounts are formed. Therefore, in the beam tilt angle control apparatus 1 according to the present embodiment, the phase distribution in the plane perpendicular to the traveling direction of the beam can be made smoother than the technique disclosed in Patent Document 1, so that the beam The phase efficiency can be improved. Therefore, it is possible to suppress a decrease in gain when controlling the tilt angle of the beam.
  • the beam tilt angle control device 1 shifts the beam to the x-axis minus side has been described (see FIG. 4).
  • the beam may be shifted to the x-axis plus side.
  • the beam may be shifted to the y-axis plus side, or the beam may be shifted to the y-axis minus side. Further, the beam may be shifted in an oblique direction. That is, in the beam tilt angle control apparatus 1 according to the present embodiment, the tilt angle of the beam propagating in the thickness direction of the dielectric plates 11 and 12 is changed by changing the overlapping area and the overlapping position of the dielectric plates 11 and 12. Can be controlled arbitrarily.
  • the case where the semicircular dielectric plate 11 and the dielectric plate 12 are used has been described.
  • a fan-shaped dielectric plate (having a central angle of (Greater than 0 and smaller than 360) may be used (when the central angle is 180 degrees, the shape is semicircular).
  • the diameters of the dielectric plate 11 and the dielectric plate 12 may be different.
  • FIG. 6 is a cross-sectional view showing an antenna system provided with the beam tilt angle control device according to the present embodiment.
  • the antenna system 5_1 includes a beam tilt angle control device 1 and an antenna device 14.
  • the antenna device 14 is configured using a parabolic antenna, and the beam tilt angle control device 1 is disposed so as to face the radiation surface of the antenna device 14.
  • the beam radiated from the antenna device 14 passes through the beam tilt angle control device 1 and is then radiated to the space.
  • the beam is incident on the antenna device 14, the beam after passing through the beam tilt angle control device 1 is received by the antenna device 14.
  • the configuration and operation of the beam tilt angle control device 1 are the same as those described above.
  • FIG. 7 is a cross-sectional view showing another configuration example of the antenna system according to the present embodiment.
  • the antenna system 5_2 includes a beam tilt angle control device 1 and an antenna device 14.
  • the antenna device 14 is configured using a parabolic antenna, and the beam tilt angle control device 1 is disposed so as to face the radiation surface of the antenna device 14.
  • the beam tilt angle control device 1 is disposed inside the radome 15. By arranging the beam tilt angle control device 1 inside the radome 15 in this way, the beam tilt angle control device 1 can be protected from the external environment (such as wind and rain), and the landscape can be improved.
  • FIG. 8 is a cross-sectional view showing another configuration example of the antenna system according to the present embodiment.
  • the antenna system 5_3 includes a beam tilt angle control device 1, a lens antenna 16, and a primary radiator 17.
  • the lens antenna 16 and the primary radiator 17 constitute an antenna device.
  • the surface on the primary radiator 17 side of the lens antenna 16 is convex (curved), and the surface on the side opposite to the primary radiator 17 is flat.
  • the beam tilt angle control device 1 is disposed so as to face the radiation surface of the lens antenna 16.
  • FIG. 9 is a cross-sectional view showing another configuration example of the antenna system according to the present embodiment.
  • the antenna system 5_4 includes a beam tilt angle control device 1, a lens antenna 18, and a primary radiator 17.
  • the lens antenna 18 and the primary radiator 17 constitute an antenna device.
  • the surface on the primary radiator 17 side of the lens antenna 18 is a flat surface, and the surface on the side opposite to the primary radiator 17 is convex (curved).
  • the beam tilt angle control device 1 is disposed between the lens antenna 18 and the primary radiator 17.
  • FIG. 10 is a cross-sectional view showing another configuration example of the antenna system according to the present embodiment.
  • the antenna system 5_5 includes a beam tilt angle control device 1 ', a lens antenna 19, and a primary radiator 17.
  • the lens antenna 19 and the primary radiator 17 constitute an antenna device.
  • the surface of the lens antenna 19 on the primary radiator 17 side is a flat surface, and the surface on the side opposite to the primary radiator 17 is convex (curved).
  • the dielectric plates 11 ′ and 12 ′ (beam tilt angle control device 1 ′) having a shape (curved shape) corresponding to the convex surface of the lens antenna 19 are used. It arrange
  • the antenna system described above can be used for any wireless communication device.
  • a beam tilt angle control device an antenna system, a wireless communication device, and a beam tilt angle control method capable of suppressing a decrease in gain when controlling the tilt angle of a beam.
  • FIG. 11 is a front view and a side view showing the beam tilt angle control apparatus according to the second embodiment.
  • the beam tilt angle control device 2 according to the present embodiment includes a dielectric plate 21 and a dielectric plate 22.
  • the dielectric plate 21 and the dielectric plate 22 respectively leave a part of the circular dielectric plates 23 and 25 in a semicircular shape (indicated by reference numerals 24 and 26) while leaving the outer peripheral portions of the circular dielectric plates 23 and 25. It is a shape that penetrates the surface.
  • the dielectric plate 21 and the dielectric plate 22 can be configured using a resin material (relative dielectric constant is about 3 to 4) such as polycarbonate or ABS resin.
  • a resin material such as polycarbonate or ABS resin.
  • the diameters of the dielectric plate 21 and the dielectric plate 22 can be the same.
  • the dielectric plate 21 and the dielectric plate 22 are arranged so as to overlap in the thickness direction of the dielectric plates 21 and 22, respectively.
  • the dielectric plate 21 and the dielectric plate 22 are configured to be rotatable about a rotation shaft 29.
  • the dielectric plate 21 and the dielectric plate 22 are configured to be rotatable in directions opposite to each other about the rotation shaft 29.
  • a rotation mechanism 27 is provided on the side surface side of the dielectric plate 21. The rotation mechanism 27 rotates while contacting the side surface of the dielectric plate 21, so that the dielectric plate 21 moves the rotation shaft 29. Rotate to the center.
  • a rotation mechanism 28 is provided on the side surface side of the dielectric plate 22, and the rotation of the rotation mechanism 28 while contacting the side surface of the dielectric plate 22 causes the dielectric plate 22 to rotate. It rotates around the shaft 29.
  • the rotation mechanism 27 and the rotation mechanism 28 are driven using a motor 34_1 and a motor 34_2 (generically referred to as the motor 34 in FIG. 11), respectively.
  • FIG. 12 is a diagram showing a system configuration of the antenna system according to the present embodiment.
  • the antenna system 30_1 according to the present embodiment includes a beam tilt angle control device 2, an antenna device 14, a radio device 31, a sensor 32, a displacement amount detection unit 41, an angle detection unit 42, and a control unit 43.
  • a drive unit 44 motors 34_1 and 34_2, and encoders 35_1 and 35_2.
  • the reception signal received by the antenna device 14 is supplied to the wireless device 31.
  • the wireless device 31 performs predetermined signal processing on the received signal.
  • the sensor 32 detects the displacement of the antenna device 14.
  • the displacement information of the antenna device 14 detected by the sensor 32 is supplied to the displacement amount detection unit 41.
  • the sensor 32 can be configured using an acceleration sensor attached to the antenna device 14.
  • the displacement amount detection unit 41 calculates the displacement amount of the antenna device 14 using the displacement information (acceleration information) supplied from the sensor 32, and outputs the calculated displacement amount to the control unit 43.
  • the angle detection unit 42 acquires the rotation angle information of the dielectric plate 21 from the encoder 35_1 and outputs the acquired rotation angle information to the control unit 43. Similarly, the angle detection unit 42 acquires the rotation angle information of the dielectric plate 22 from the encoder 35_2, and outputs the acquired rotation angle information to the control unit 43.
  • the control unit 43 controls the positions of the dielectric plates 21 and 22 based on the displacement amount of the antenna device 14 detected by the sensor 32. Specifically, the control unit 43 uses the displacement amount of the antenna device 14 supplied from the displacement amount detection unit 41 to determine the target positions (that is, target angles) of the dielectric plates 21 and 22. At this time, the control unit 43 determines the tilt angle of the beam that maximizes the gain of the beam received by the antenna device 14 (that is, the tilt angle that cancels the displacement of the antenna device 14). A target angle of the dielectric plates 21 and 22 to be a tilt angle is determined.
  • control unit 43 obtains the rotation angle information of the dielectric plates 21 and 22 (that is, the current rotation angle information of the dielectric plates 21 and 22) acquired from the angle detection unit 42 and the dielectric plates 21 and 22. Are compared with each other, and the drive amount for the angle of the dielectric plates 21 and 22 to be the target angle is calculated. The calculated drive amount is supplied to the drive unit 44 as a control signal.
  • the drive unit 44 drives the dielectric plates 21 and 22 according to the control signal (drive amount) output from the control unit 43. Specifically, the drive unit 44 outputs a drive signal corresponding to the control signal (drive amount) supplied from the control unit 43 to the motors 34_1 and 34_2.
  • the motors 34_1 and 34_2 respectively rotate the dielectric plates 21 and 22 in accordance with the drive signal supplied from the drive unit 44. By such an operation, the angle of the dielectric plates 21 and 22 can be set as a target angle. Therefore, the tilt angle of the beam can be set to a tilt angle that maximizes the gain.
  • a beam tilt angle control device an antenna system, a wireless communication device, and a beam tilt angle control method capable of suppressing a decrease in gain when controlling the beam tilt angle.
  • FIG. 13 is a diagram illustrating a system configuration of the antenna system according to the third embodiment.
  • the antenna system 30_2 according to the present embodiment is different from the antenna system 30_1 described in the second embodiment in that the sensor 32 and the displacement amount detection unit 41 are not provided, the reception level detection unit 51 is provided, In addition, the operation of the control unit 53 is different. Since other than this is the same as that of the antenna system 30_1 according to the second embodiment, the same components are denoted by the same reference numerals, and redundant description is omitted.
  • the radio 31 outputs a reception level signal (for example, RSSI (Received Signal Strength Indicator)) corresponding to the signal level of the received signal received by the antenna device 14 to the reception level detection unit 51.
  • the reception level detection unit 51 detects the reception level of the signal received by the antenna device 14. Specifically, the reception level detection unit 51 detects the reception level of the antenna device 14 using the reception level signal supplied from the wireless device 31, and outputs the detected reception level to the control unit 53.
  • the control unit 53 controls the positions of the dielectric plates 21 and 22 based on the reception level detected by the reception level detection unit 51. Specifically, the control unit 53 instructs the drive unit 44 to drive the dielectric plates 21 and 22 while monitoring the reception level of the antenna device 14 supplied from the reception level detection unit 51. Then, when the reception level of the antenna device 14 supplied from the reception level detection unit 51 reaches the maximum value (or may exceed a predetermined threshold), the control unit 53 may adjust the dielectric plates 21 and 22. The drive unit 44 is instructed to stop driving.
  • the angles ⁇ 1 and ⁇ 2 of the dielectric plates 21 and 22 at which the reception level of the antenna device 14 becomes the maximum value may be specified.
  • the control unit 53 53 can grasp the angles ⁇ 1 and ⁇ 2 of the dielectric plates 21 and 22 at which the reception level of the antenna device 14 becomes the maximum value. Information on the angles ⁇ 1 and ⁇ 2 can be used in the next control.
  • FIG. 14 is a diagram of a system configuration of the antenna system according to the fourth embodiment.
  • the antenna system 30_3 according to the present embodiment has a configuration in which the antenna system 30_1 described in the second embodiment and the antenna system 30_2 described in the third embodiment are combined.
  • symbol is attached
  • the control unit 63 included in the antenna system 30_3 according to the present embodiment can be implemented by combining the operation of the antenna system 30_1 described in the second embodiment and the operation of the antenna system 30_2 described in the third embodiment. . That is, the control unit 63 controls the positions of the dielectric plates 21 and 22 based on the displacement amount of the antenna device 14 detected by the sensor 32 and the reception level detected by the reception level detection unit 51.
  • the control unit 63 determines the target position (that is, the target angle) of the dielectric plates 21 and 22 using the displacement amount of the antenna device 14 supplied from the displacement amount detection unit 41. At this time, the control unit 63 determines the tilt angle of the beam so that the gain of the beam received by the antenna device 14 is maximized, and sets the target angle of the dielectric plates 21 and 22 for setting the beam to this tilt angle. decide. Then, the control unit 63 obtains the rotation angle information of the dielectric plates 21 and 22 (that is, the current rotation angle information of the dielectric plates 21 and 22) acquired from the angle detection unit 42 and the dielectric plates 21 and 22. Are compared with each other to calculate the driving amount for setting the angles of the dielectric plates 21 and 22 to the target angle. The calculated drive amount is supplied to the drive unit 44 as a control signal.
  • the drive unit 44 outputs a drive signal corresponding to the control signal (drive amount) supplied from the control unit 63 to the motors 34_1 and 34_2.
  • the motors 34_1 and 34_2 respectively rotate the dielectric plates 21 and 22 in accordance with the drive signal supplied from the drive unit 44.
  • the control unit 63 monitors the reception level detected by the reception level detection unit 51. In this way, by monitoring the reception level, even if the target angles of the dielectric plates 21 and 22 are slightly shifted, the dielectric plates 21 and 22 are moved to positions where the beam gain is maximized. be able to.
  • the operation of the antenna system 30_1 described in the second embodiment and the operation of the antenna system 30_2 described in the third embodiment may be used depending on the situation. Good.
  • the control unit 63 controls the positions of the dielectric plates 21 and 22 based on the displacement amount of the antenna device 14 detected by the sensor 32 with respect to the shaking (that is, rapid change) of the antenna device 14. (Refer to Embodiment 2).
  • the control unit 53 is based on the reception level detected by the reception level detection unit 51.
  • the positions of the dielectric plates 21 and 22 may be controlled (see Embodiment 3).
  • the beam tilt angle control device 70 is formed by cutting a circular dielectric plate with a straight line connecting two points on the circumference of the circular dielectric plate.
  • Two dielectric plates 71 and 72 may be used.
  • the phase delay of the beam passing through the beam tilt angle control device 70_1 when the two dielectric plates 71 and 72 are arranged so as not to overlap in the thickness direction, the phase delay of the beam passing through the beam tilt angle control device 70_1.
  • the amount becomes uniform throughout the beam tilt angle control device 70_1 (phase delay amount ⁇ ). Therefore, the phase distribution of the beam becomes flat.
  • the dielectric plate 72 is moved to the dielectric plate 71 side, and is arranged so that the dielectric plate 71 and the dielectric plate 72 overlap in the thickness direction.
  • the number of dielectric plates in the thickness direction that is, the number of dielectric plates through which the beam passes
  • the area has two dielectric plates (phase delay amount is 2 ⁇ ⁇ ), one area (phase delay amount is ⁇ ), and the region 73 without dielectric plates (phase delay amount is 0).
  • the amount of phase delay can be gradually reduced from the region having two dielectric plates toward the region 73 having no dielectric plate. Therefore, the phase distribution of the beam can be changed smoothly (see the phase distribution graph).
  • the beam tilt angle control device 80 may be configured by using three dielectric plates 81, 82, 83 having different shapes.
  • Each of the three dielectric plates 81, 82, 83 has a shape obtained by cutting a circle having the same diameter by a straight line connecting two points on the circumference. Therefore, when the dielectric plates 81, 82, and 83 are stacked, the circumferential portions of the dielectric plates 81, 82, and 83 coincide with each other.
  • the number of dielectric plates in the thickness direction can be changed (refer to the sectional view). Specifically, there are three areas of dielectric plates (phase delay amount is 3 ⁇ ⁇ ), two areas (phase delay amount is 2 ⁇ ⁇ ), one area (phase delay amount is ⁇ ), and A region 84 having no dielectric plate (the phase delay amount is 0) can be formed. In this case, the amount of phase delay can be gradually reduced from the region having three dielectric plates to the region 84 having no dielectric plate. Therefore, the phase distribution of the beam can be changed smoothly (see the phase distribution graph). Since the beam tilt angle control device 80 shown in FIG. 17 uses three dielectric plates, the tilt of the phase distribution is larger than that of the beam tilt angle control device 70 using two dielectric plates shown in FIG. Can be smoothed.
  • the beam tilt angle control device 90 may be configured by using four dielectric plates 91 to 94 having different shapes.
  • each of the dielectric plates 91 and 94 can be formed by cutting the circular dielectric plate along a straight line connecting two points on the circumference of the circular dielectric plate.
  • Each of the dielectric plates 92 and 93 can be formed by cutting the circular dielectric plate along a straight line connecting two points on the circumference of the circular dielectric plate. That is, when the dielectric plate 91 and the dielectric plate 94 are combined, a circular shape is obtained, and when the dielectric plate 92 and the dielectric plate 93 are combined, a circular shape is formed.
  • the two dielectric plates 91 and 94 are arranged so as not to overlap in the thickness direction, and the two dielectric plates 92 and 93 are made thick.
  • the dielectric plates 91 and 94 and the dielectric plates 92 and 93 are arranged so as to overlap each other in the thickness direction.
  • the phase delay amount is uniform in the entire beam tilt angle control device 90_1. Therefore, the phase distribution of the beam becomes flat.
  • phase delay amount is 4 ⁇ ⁇
  • three regions phase delay amount is 3 ⁇ ⁇
  • two regions phase delay amount is 2 ⁇ ⁇
  • One region phase delay amount is ⁇
  • a region 95 without a dielectric plate phase delay amount is 0
  • the phase delay amount can be gradually decreased from the region having four dielectric plates toward the region 95 having no dielectric plate.
  • the phase distribution of the beam can be changed smoothly (see the phase distribution graph). Since the beam tilt angle control device 90 shown in FIG. 19 uses four dielectric plates, the tilt of the phase distribution is larger than that of the beam tilt angle control device 80 using three dielectric plates shown in FIG. Can be smoothed.
  • the beam tilt angle control device 90 shown in FIGS. 18 and 19 includes a plurality of combinations of dielectric plates that are circular when the two dielectric plates are aligned with each other on the same plane. Can be made flat, that is, a state where the beam is not tilted.
  • each dielectric plate included in the beam tilt angle control device is the same.
  • the thickness of each dielectric plate may be different.
  • the material of each dielectric plate included in the beam tilt angle control device is the same.
  • the material of each dielectric plate may be different. That is, in the present invention, the size, thickness, material, and the like of each dielectric plate included in the beam tilt angle control device can be determined in consideration of the beam characteristics and the beam tilt angle.

Landscapes

  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

A beam tilt angle control device (1) of the present invention is provided with at least a dielectric plate (11), and a dielectric plate (12) that is disposed such that at least a part thereof overlaps the dielectric plate (11) in the thickness direction. A beam tilt angle control device (1) of the present invention is configured such that the tilt angle of a beam propagating in the thickness direction of the dielectric plates (11, 12) is controlled by changing the area where the dielectric plates (11, 12) overlap each other in the thickness direction of the dielectric plates (11, 12).

Description

ビームチルト角制御装置、アンテナシステム、無線通信装置、及びビームチルト角制御方法Beam tilt angle control device, antenna system, wireless communication device, and beam tilt angle control method
 本発明はビームチルト角制御装置、アンテナシステム、無線通信装置、及びビームチルト角制御方法に関し、特に少なくとも2枚の誘電体板を用いたビームチルト角制御装置、アンテナシステム、無線通信装置、及びビームチルト角制御方法に関する。 The present invention relates to a beam tilt angle control device, an antenna system, a radio communication device, and a beam tilt angle control method, and more particularly to a beam tilt angle control device, an antenna system, a radio communication device, and a beam using at least two dielectric plates. The present invention relates to a tilt angle control method.
 マイクロ波を用いた無線通信では、指向性を備えたパラボラアンテナや平面型アンテナ等が用いられている。指向性アンテナを用いた無線通信では、アンテナ設置時の位置ずれやアンテナの振動等によってビームの方向がずれてしまう場合があり、無線通信に影響を与える場合があった。 In radio communication using microwaves, a parabolic antenna or a planar antenna with directivity is used. In wireless communication using a directional antenna, the beam direction may be shifted due to a positional shift at the time of antenna installation or vibration of the antenna, which may affect the wireless communication.
 特許文献1には、アンテナを固定したままでビームの指向性を容易に微調整することができる平面型マイクロ波アンテナに関する技術が開示されている。また、特許文献2には、傾斜角を有する誘電体カバーをスロットアレーアンテナと対向するように設けてビームのチルト角を調整する技術が開示されている。 Patent Document 1 discloses a technique related to a planar microwave antenna that can easily finely adjust the beam directivity while the antenna is fixed. Patent Document 2 discloses a technique for adjusting a tilt angle of a beam by providing a dielectric cover having an inclination angle so as to face a slot array antenna.
特開平7-170121号公報JP-A-7-170121 特開2004-15408号公報Japanese Patent Laid-Open No. 2004-15408
 背景技術で説明したように、指向性アンテナを用いた無線通信では、アンテナ設置時の位置ずれ等によりビームの方向がずれてしまう場合があった。例えば、このようなビーム方向のずれはビームのチルト角を調整することで修正することができる。特許文献1に開示されている技術では、扇状(中心角が90度)の2枚のビームチルト板の位置を同一面内において変位させることで、ビームのチルト角を調整している。 As described in the background art, in wireless communication using a directional antenna, the beam direction may be shifted due to a positional shift or the like when the antenna is installed. For example, such a deviation in the beam direction can be corrected by adjusting the tilt angle of the beam. In the technique disclosed in Patent Document 1, the tilt angle of a beam is adjusted by displacing the positions of two fan-shaped (center angle is 90 degrees) beam tilt plates within the same plane.
 しかしながら、特許文献1に開示されている技術では、扇状の2枚のビームチルト板を同一面内において変位させているのみであり(つまり、2枚のビームチルト板は重ならない)、このためビームのチルト角を制御する際に位相能率が低下し、利得が低下するという問題があった。 However, in the technique disclosed in Patent Document 1, only two fan-shaped beam tilt plates are displaced in the same plane (that is, the two beam tilt plates do not overlap). When the tilt angle is controlled, there is a problem that the phase efficiency is lowered and the gain is lowered.
 上記課題に鑑み本発明の目的は、ビームのチルト角を制御する際に利得が低下することを抑制可能なビームチルト角制御装置、アンテナシステム、無線通信装置、及びビームチルト角制御方法を提供することである。 In view of the above problems, an object of the present invention is to provide a beam tilt angle control device, an antenna system, a wireless communication device, and a beam tilt angle control method capable of suppressing a decrease in gain when controlling the tilt angle of a beam. That is.
 本発明にかかるビームチルト角制御装置は、第1の誘電体板と、少なくとも一部が前記第1の誘電体板と厚さ方向において重畳可能に配置された第2の誘電体板と、を少なくとも備え、前記第1及び第2の誘電体板の厚さ方向において前記第1及び第2の誘電体板が重なる面積を変えることで、前記第1及び第2の誘電体板の厚さ方向に伝搬するビームのチルト角を制御する。 A beam tilt angle control device according to the present invention includes a first dielectric plate, and a second dielectric plate at least partially disposed so as to be able to overlap with the first dielectric plate in the thickness direction. The thickness direction of the first and second dielectric plates is provided by changing at least the area where the first and second dielectric plates overlap in the thickness direction of the first and second dielectric plates. The tilt angle of the beam propagating to is controlled.
 本発明にかかるビームチルト角制御方法は、第1の誘電体板と、少なくとも一部が前記第1の誘電体板と厚さ方向において重畳可能に配置された第2の誘電体板と、を用いたビームチルト角制御方法であって、前記第1及び第2の誘電体板の厚さ方向において前記第1及び第2の誘電体板が重なる面積を変えることで、前記第1及び第2の誘電体板の厚さ方向に伝搬するビームのチルト角を制御する。 A beam tilt angle control method according to the present invention includes: a first dielectric plate; and a second dielectric plate at least partially disposed so as to be able to overlap with the first dielectric plate in the thickness direction. In the beam tilt angle control method used, the first and second dielectric plates are changed by changing the overlapping area of the first and second dielectric plates in the thickness direction of the first and second dielectric plates. The tilt angle of the beam propagating in the thickness direction of the dielectric plate is controlled.
 本発明により、ビームのチルト角を制御する際に利得が低下することを抑制可能なビームチルト角制御装置、アンテナシステム、無線通信装置、及びビームチルト角制御方法を提供することができる。 According to the present invention, it is possible to provide a beam tilt angle control device, an antenna system, a wireless communication device, and a beam tilt angle control method capable of suppressing a decrease in gain when controlling the beam tilt angle.
実施の形態1にかかるビームチルト角制御装置を示す正面図である。1 is a front view showing a beam tilt angle control device according to a first embodiment; 図1の切断線II-IIにおける断面図である。FIG. 2 is a cross-sectional view taken along section line II-II in FIG. 図1の切断線III-IIIにおける断面図である。FIG. 3 is a cross-sectional view taken along section line III-III in FIG. ビームチルト角制御装置の回動角α1、α2とチルト角δとの関係を示す図である。It is a figure which shows the relationship between rotation angle (alpha) 1 and (alpha) 2 and tilt angle (delta) of a beam tilt angle control apparatus. ビームチルト角制御装置の回動角α1、α2とチルト角との関係のシミュレーション結果を示す図である。It is a figure which shows the simulation result of the relationship between rotation angle (alpha) 1, (alpha) 2 of a beam tilt angle control apparatus, and a tilt angle. 実施の形態1にかかるビームチルト角制御装置を備えたアンテナシステムを示す断面図である。It is sectional drawing which shows the antenna system provided with the beam tilt angle control apparatus concerning Embodiment 1. FIG. 実施の形態1にかかるアンテナシステムの他の構成例を示す断面図である。FIG. 6 is a cross-sectional view showing another configuration example of the antenna system according to the first exemplary embodiment; 実施の形態1にかかるアンテナシステムの他の構成例を示す断面図である。FIG. 6 is a cross-sectional view showing another configuration example of the antenna system according to the first exemplary embodiment; 実施の形態1にかかるアンテナシステムの他の構成例を示す断面図である。FIG. 6 is a cross-sectional view showing another configuration example of the antenna system according to the first exemplary embodiment; 実施の形態1にかかるアンテナシステムの他の構成例を示す断面図である。FIG. 6 is a cross-sectional view showing another configuration example of the antenna system according to the first exemplary embodiment. 実施の形態2にかかるビームチルト角制御装置を示す正面図および側面図である。It is the front view and side view which show the beam tilt angle control apparatus concerning Embodiment 2. FIG. 実施の形態2にかかるアンテナシステムのシステム構成を示す図である。It is a figure which shows the system configuration | structure of the antenna system concerning Embodiment 2. FIG. 実施の形態3にかかるアンテナシステムのシステム構成を示す図である。It is a figure which shows the system configuration | structure of the antenna system concerning Embodiment 3. 実施の形態4にかかるアンテナシステムのシステム構成を示す図である。It is a figure which shows the system configuration | structure of the antenna system concerning Embodiment 4. ビームチルト角制御装置の他の構成例を示す正面図である。It is a front view which shows the other structural example of a beam tilt angle control apparatus. ビームチルト角制御装置の他の構成例を示す正面図および断面図である。It is the front view and sectional drawing which show the other structural example of a beam tilt angle control apparatus. ビームチルト角制御装置の他の構成例を示す正面図および断面図である。It is the front view and sectional drawing which show the other structural example of a beam tilt angle control apparatus. ビームチルト角制御装置の他の構成例を示す正面図である。It is a front view which shows the other structural example of a beam tilt angle control apparatus. ビームチルト角制御装置の他の構成例を示す正面図および断面図である。It is the front view and sectional drawing which show the other structural example of a beam tilt angle control apparatus.
<実施の形態1>
 以下、図面を参照して本発明の実施の形態について説明する。
 図1は、実施の形態1にかかるビームチルト角制御装置を示す正面図である。図2は、図1の切断線II-IIにおける断面図である。図3は、図1の切断線III-IIIにおける断面図である。図1~図3に示すように、本実施の形態にかかるビームチルト角制御装置1は、誘電体板11(第1の誘電体板)と誘電体板12(第2の誘電体板)とを備える。誘電体板11および誘電体板12はそれぞれ半円形の板状部材であり、例えばポリカーボネートやABS樹脂などの樹脂材料(比誘電率が3~4程度)を用いて構成することができる。例えば、誘電体板11および誘電体板12のそれぞれの直径は同一とすることができる。
<Embodiment 1>
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a front view of the beam tilt angle control apparatus according to the first embodiment. 2 is a cross-sectional view taken along a cutting line II-II in FIG. FIG. 3 is a cross-sectional view taken along section line III-III in FIG. As shown in FIGS. 1 to 3, the beam tilt angle control device 1 according to the present embodiment includes a dielectric plate 11 (first dielectric plate), a dielectric plate 12 (second dielectric plate), Is provided. Each of the dielectric plate 11 and the dielectric plate 12 is a semicircular plate-like member, and can be configured using a resin material (relative dielectric constant is about 3 to 4) such as polycarbonate or ABS resin. For example, the diameters of the dielectric plate 11 and the dielectric plate 12 can be the same.
 図2、図3に示すように、誘電体板11および誘電体板12はそれぞれ少なくとも一部が誘電体板11、12の厚さ方向(z軸方向)において重畳可能に配置されている。誘電体板11および誘電体板12はそれぞれ、誘電体板11および誘電体板12のそれぞれの主面がxy平面と平行になるように配置されている。 2 and 3, at least a part of the dielectric plate 11 and the dielectric plate 12 are arranged so as to be superposed in the thickness direction (z-axis direction) of the dielectric plates 11 and 12, respectively. The dielectric plate 11 and the dielectric plate 12 are arranged so that the principal surfaces of the dielectric plate 11 and the dielectric plate 12 are parallel to the xy plane, respectively.
 誘電体板11および誘電体板12は、回動軸13を中心に回動可能に構成されている。例えば、誘電体板11および誘電体板12は、回動軸13を中心に互いに逆方向に回動可能に構成されている。ここで、誘電体板11の直径とx軸との成す角度をα1とし、誘電体板12の直径とx軸との成す角度をα2とすると、誘電体板11および誘電体板12は、回動軸13を中心に互いに逆方向に回動する際、α1=α2の関係を保持しながら回動する。具体的には、誘電体板11が時計回りに角度α1回動した場合、誘電体板12は反時計回りに角度α2(α2=α1)回動する。 The dielectric plate 11 and the dielectric plate 12 are configured to be rotatable about a rotation shaft 13. For example, the dielectric plate 11 and the dielectric plate 12 are configured to be rotatable in directions opposite to each other about the rotation shaft 13. Here, when the angle between the diameter of the dielectric plate 11 and the x axis is α1, and the angle between the diameter of the dielectric plate 12 and the x axis is α2, the dielectric plate 11 and the dielectric plate 12 are rotated. When rotating in the opposite directions around the moving shaft 13, it rotates while maintaining the relationship of α1 = α2. Specifically, when the dielectric plate 11 is rotated clockwise by an angle α1, the dielectric plate 12 is rotated counterclockwise by an angle α2 (α2 = α1).
 本実施の形態において、ビームはz軸方向、つまり誘電体板11および誘電体板12の厚さ方向に伝搬する。ビームが誘電体板11、12を通過する際、ビームの電磁界の速度が遅れる。例えば、誘電体板11、12の一枚当たりの位相遅延量をΔθとすると、Δθは次の式で表すことができる。 In this embodiment, the beam propagates in the z-axis direction, that is, in the thickness direction of the dielectric plate 11 and the dielectric plate 12. When the beam passes through the dielectric plates 11 and 12, the speed of the electromagnetic field of the beam is delayed. For example, if the phase delay amount per dielectric plate 11 and 12 is Δθ, Δθ can be expressed by the following equation.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ここで、εは誘電体板の比誘電率、tは誘電体板の厚さ、λは自由空間における波長を示す。例えば、誘電体板の比誘電率をε=3、波長をλ=5[mm](周波数60[GHz])、誘電体板の厚さをt=2[mm]とすると、Δθ=π/8[rad](45度)となる。 Here, ε r is the dielectric constant of the dielectric plate, t is the thickness of the dielectric plate, and λ is the wavelength in free space. For example, when the relative dielectric constant of the dielectric plate is ε r = 3, the wavelength is λ = 5 [mm] (frequency 60 [GHz]), and the thickness of the dielectric plate is t = 2 [mm], Δθ = π / 8 [rad] (45 degrees).
 図1に示すように、本実施の形態にかかるビームチルト角制御装置1では、誘電体板11および誘電体板12を回動軸13を中心に回動可能に構成している。よって、ビームが通過するz軸方向において、誘電体板がない領域19、誘電体板が1枚の領域(図3の断面図参照)、及び誘電体板が2枚の領域(図2の断面図参照)をそれぞれ可変的に形成することができる。ここで、誘電体板がない領域19は位相遅延量が0であり、誘電体板が1枚の領域は位相遅延量がΔθであり、誘電体板が2枚の領域は位相遅延量が2×Δθである。 As shown in FIG. 1, in the beam tilt angle control apparatus 1 according to the present embodiment, the dielectric plate 11 and the dielectric plate 12 are configured to be rotatable about a rotation shaft 13. Therefore, in the z-axis direction through which the beam passes, a region 19 without a dielectric plate, a region with one dielectric plate (see the cross-sectional view in FIG. 3), and a region with two dielectric plates (the cross-section in FIG. 2) (See the figure) can be variably formed. Here, the region 19 without the dielectric plate has a phase delay amount of 0, the region with one dielectric plate has a phase delay amount of Δθ, and the region with two dielectric plates has a phase delay amount of 2. × Δθ.
 図4は、ビームチルト角制御装置1の回動角α1、α2とチルト角δ(誘電体板11、12の法線とビーム方向とが成す角)との関係を示す図である。図4のグラフの横軸は放射角度、縦軸は利得である。図4の左図に示すように、誘電体板11、12の角度α1、α2がそれぞれ0度の場合は(α1=α2=0度)、2枚の半円形の誘電体板11、12が1つの円を形成する。このとき、ビームは円全体において1枚の誘電体板を通過することになるので、ビームのチルト角は変化しない。よって、ビームの放射角度は変化しない(δ=δ0=0度)。 FIG. 4 is a diagram showing the relationship between the rotation angles α1 and α2 of the beam tilt angle control device 1 and the tilt angle δ (the angle formed by the normal of the dielectric plates 11 and 12 and the beam direction). The horizontal axis of the graph of FIG. 4 is the radiation angle, and the vertical axis is the gain. As shown in the left diagram of FIG. 4, when the angles α1 and α2 of the dielectric plates 11 and 12 are 0 degrees (α1 = α2 = 0 degrees), the two semicircular dielectric plates 11 and 12 are Form one circle. At this time, since the beam passes through one dielectric plate in the entire circle, the tilt angle of the beam does not change. Therefore, the radiation angle of the beam does not change (δ = δ0 = 0 degree).
 一方、図4の中央の図に示すように、誘電体板11、12の角度α1、α2をそれぞれ30度とした場合(α1=α2=30度)、つまり、誘電体板11を時計回りにα1=30度回動させ、誘電体板12を反時計回りにα2=30度回動させた場合は、ビームの放射角度がx軸マイナス側にシフトする。このときのチルト角は、δ=δ1(δ1>0)となる。 On the other hand, as shown in the center diagram of FIG. 4, when the angles α1 and α2 of the dielectric plates 11 and 12 are each 30 degrees (α1 = α2 = 30 degrees), that is, the dielectric plate 11 is rotated clockwise. When α1 = 30 degrees is rotated and the dielectric plate 12 is rotated counterclockwise by α2 = 30 degrees, the beam radiation angle is shifted to the x-axis minus side. The tilt angle at this time is δ = δ1 (δ1> 0).
 また、図4の右図に示すように、誘電体板11、12の角度α1、α2をそれぞれ60度とした場合(α1=α2=60度)、つまり、誘電体板11を時計回りにα1=60度回動させ、誘電体板12を反時計回りにα2=60度回動させた場合は、ビームの放射角度がx軸マイナス側にシフトする。このときのチルト角は、δ=δ2(δ2>δ1)となる。 Further, as shown in the right diagram of FIG. 4, when the angles α1 and α2 of the dielectric plates 11 and 12 are 60 degrees (α1 = α2 = 60 degrees), that is, the dielectric plate 11 is rotated α1 clockwise. When the dielectric plate 12 is rotated counterclockwise by α2 = 60 degrees and the dielectric plate 12 is rotated counterclockwise by α2 = 60 degrees, the beam radiation angle is shifted to the x-axis minus side. The tilt angle at this time is δ = δ2 (δ2> δ1).
 図1に示すビームチルト角制御装置1では、2枚の半円形の誘電体板11、12を用いているので、2枚の半円形の誘電体板11、12が半円形状に重なった場合、つまり、α1=α2=90度となった場合に、x軸マイナス側におけるビームのチルト角が最も大きくなる。 In the beam tilt angle control apparatus 1 shown in FIG. 1, since two semicircular dielectric plates 11 and 12 are used, the two semicircular dielectric plates 11 and 12 overlap in a semicircular shape. That is, when α1 = α2 = 90 degrees, the tilt angle of the beam on the negative side of the x axis becomes the largest.
 図5は、ビームチルト角制御装置1の回動角α1、α2とチルト角との関係のシミュレーション結果を示す図である。図5のグラフの横軸は放射角度、縦軸は利得である。図5に示すシミュレーション結果は、誘電体板11、12の直径が200[mm]である場合のシミュレーション結果である。また、誘電体板の比誘電率をε=3、波長をλ=5[mm](周波数60[GHz])、誘電体板の厚さをt=2[mm]としている。この場合、上記の式(1)から、Δθ=π/8[rad](45度)となる。 FIG. 5 is a diagram illustrating a simulation result of the relationship between the rotation angles α1 and α2 of the beam tilt angle control device 1 and the tilt angle. The horizontal axis of the graph of FIG. 5 is the radiation angle, and the vertical axis is the gain. The simulation result shown in FIG. 5 is a simulation result when the diameter of the dielectric plates 11 and 12 is 200 [mm]. The relative dielectric constant of the dielectric plate is ε r = 3, the wavelength is λ = 5 [mm] (frequency 60 [GHz]), and the thickness of the dielectric plate is t = 2 [mm]. In this case, from the above equation (1), Δθ = π / 8 [rad] (45 degrees).
 図5に示すように、誘電体板11、12の角度α1、α2を増加させるにつれて、ビームの放射角度がマイナス側にシフトする。この結果は、図4で説明したビームチルト角制御装置1の動作と対応している。また、例えば、誘電体板11、12の角度α1、α2が0度の結果に着目すると、放射角度が1度シフトした場合、利得は5[dB]減少する。つまりこれはアンテナ装置の角度が1度ずれた場合、利得が5[dB]減少することを意味する。しかし、本実施の形態にかかるビームチルト角制御装置1を用いてビームの放射角度を1度シフトさせることで、このアンテナ装置の角度のずれを補償することができ、利得を5[dB]改善することができる。 As shown in FIG. 5, as the angles α1 and α2 of the dielectric plates 11 and 12 are increased, the radiation angle of the beam is shifted to the minus side. This result corresponds to the operation of the beam tilt angle control device 1 described in FIG. Further, for example, focusing on the result that the angles α1 and α2 of the dielectric plates 11 and 12 are 0 degrees, the gain decreases by 5 [dB] when the radiation angle is shifted by 1 degree. In other words, this means that the gain decreases by 5 [dB] when the angle of the antenna device is shifted by 1 degree. However, by shifting the radiation angle of the beam by 1 degree using the beam tilt angle control device 1 according to the present embodiment, the angle deviation of the antenna device can be compensated, and the gain is improved by 5 [dB]. can do.
 このように、本実施の形態にかかるビームチルト角制御装置1は、誘電体板11、12の厚さ方向(z軸方向)において誘電体板11、12が重なる面積を変えることで、誘電体板11、12の厚さ方向に伝搬するビームのチルト角を制御することができる。 As described above, the beam tilt angle control device 1 according to the present embodiment changes the area where the dielectric plates 11 and 12 overlap in the thickness direction (z-axis direction) of the dielectric plates 11 and 12, thereby The tilt angle of the beam propagating in the thickness direction of the plates 11 and 12 can be controlled.
 背景技術で説明したように、マイクロ波を用いた無線通信では、指向性を備えたパラボラアンテナや平面型アンテナ等が用いられている。指向性アンテナを用いた無線通信では、アンテナ設置時の位置ずれやアンテナの振動等によってビームの方向がずれてしまう場合があり、無線通信に影響を与える場合があった。 As described in the background art, in radio communication using microwaves, a parabolic antenna or a planar antenna having directivity is used. In wireless communication using a directional antenna, the beam direction may be shifted due to a positional shift at the time of antenna installation or vibration of the antenna, which may affect the wireless communication.
 具体的には、アンテナを設置する際、金具を使用してアンテナの方向を調整する。アンテナの方向を調整した後、アンテナを固定するためにボルト・ナットを使用して本締めをするが、この本締めをするときにアンテナの向きが僅かにずれてしまい、無線通信に影響を与える場合があった。特にこの問題は、アンテナのビーム幅が狭いときに問題になる。 Specifically, when installing the antenna, adjust the direction of the antenna using metal fittings. After adjusting the direction of the antenna, tighten it with bolts and nuts to fix the antenna. However, the direction of the antenna slightly shifts when this final tightening is performed, affecting wireless communication. There was a case. This problem is particularly problematic when the beam width of the antenna is narrow.
 また、アンテナを細いポールに取り付ける場合がある。この場合は、例えば自動車などの通行や強風などでポールが揺れることがある。アンテナのビーム幅が狭いときには、このポールの揺れに伴うアンテナのビームのずれが問題となる。 Also, the antenna may be attached to a thin pole. In this case, for example, the pole may sway due to traffic such as a car or strong wind. When the beam width of the antenna is narrow, the beam deviation of the antenna due to the swing of the pole becomes a problem.
 例えば、このようなビームのずれはビームのチルト角を調整することで修正することができる。特許文献1に開示されている技術では、扇状(中心角が90度)の2枚のビームチルト板の位置を同一面内において変位させることで、ビームのチルト角を調整している。 For example, such a beam shift can be corrected by adjusting the tilt angle of the beam. In the technique disclosed in Patent Document 1, the tilt angle of a beam is adjusted by displacing the positions of two fan-shaped (center angle is 90 degrees) beam tilt plates within the same plane.
 しかしながら、特許文献1に開示されている技術では、扇状の2枚のビームチルト板を同一面内において変位させているのみであり(つまり、2枚のビームチルト板は重ならない)、このためビームのチルト角を制御する際に位相能率が低下し、利得が低下するという問題があった。 However, in the technique disclosed in Patent Document 1, only two fan-shaped beam tilt plates are displaced in the same plane (that is, the two beam tilt plates do not overlap). When the tilt angle is controlled, there is a problem that the phase efficiency is lowered and the gain is lowered.
 これに対して本実施の形態にかかるビームチルト角制御装置1では、誘電体板11と、少なくとも一部が誘電体板11と厚さ方向において重畳可能に配置された誘電体板12と、を少なくとも配置し、誘電体板11、12の厚さ方向において誘電体板11、12が重なる面積を変えることで、誘電体板11、12の厚さ方向に伝搬するビームのチルト角を制御している。 On the other hand, in the beam tilt angle control device 1 according to the present embodiment, the dielectric plate 11 and the dielectric plate 12 at least partially disposed so as to be able to overlap with the dielectric plate 11 in the thickness direction are provided. The tilt angle of the beam propagating in the thickness direction of the dielectric plates 11 and 12 is controlled by changing the area where the dielectric plates 11 and 12 overlap at least in the thickness direction of the dielectric plates 11 and 12. Yes.
 つまり、本実施の形態にかかるビームチルト角制御装置1では、誘電体板11、12の少なくとも一部が厚さ方向において互いに重なるようにすることで、誘電体板がない領域、誘電体板が1枚の領域、及び誘電体板が2枚の領域をそれぞれ可変的に形成することができる。ここで、誘電体板がない領域は位相遅延量が0であり、誘電体板が1枚の領域は位相遅延量がΔθであり、誘電体板が2枚の領域は位相遅延量が2×Δθである。 That is, in the beam tilt angle control device 1 according to the present embodiment, at least a part of the dielectric plates 11 and 12 overlap each other in the thickness direction, so that the region without the dielectric plate, that is, the dielectric plate One region and two regions of the dielectric plate can be variably formed. Here, the phase delay amount is 0 in the region without the dielectric plate, the phase delay amount is Δθ in the region with one dielectric plate, and the phase delay amount is 2 × in the region with two dielectric plates. Δθ.
 すなわち、本実施の形態にかかるビームチルト角制御装置1では、2枚以上の誘電体板の少なくとも一部が厚さ方向において互いに重なるように配置することで、3つ以上の異なる位相遅延量を有する領域を形成することができる。一方、特許文献1に開示されている技術では、2つの異なる位相遅延量を有する領域を形成するのみである。したがって、本実施の形態にかかるビームチルト角制御装置1では、特許文献1に開示されている技術と比べて、ビームの進行方向と垂直な面における位相分布を滑らかにすることができるので、ビームの位相能率を向上させることができる。よって、ビームのチルト角を制御する際に利得が低下することを抑制することができる。 In other words, in the beam tilt angle control apparatus 1 according to the present embodiment, at least a part of two or more dielectric plates are arranged so as to overlap each other in the thickness direction, thereby providing three or more different phase delay amounts. A region having the same can be formed. On the other hand, in the technique disclosed in Patent Document 1, only regions having two different phase delay amounts are formed. Therefore, in the beam tilt angle control apparatus 1 according to the present embodiment, the phase distribution in the plane perpendicular to the traveling direction of the beam can be made smoother than the technique disclosed in Patent Document 1, so that the beam The phase efficiency can be improved. Therefore, it is possible to suppress a decrease in gain when controlling the tilt angle of the beam.
 なお、上記ではビームチルト角制御装置1がビームをx軸マイナス側にシフトさせる場合について説明した(図4参照)。しかし本実施の形態にかかるビームチルト角制御装置1では、ビームをx軸プラス側にシフトさせてもよい。この場合は、図4の左図(α1=α2=0度)に示す誘電体板11を反時計回りに、誘電体板12を時計回りに回動する。換言すると、誘電体板11、12がx軸プラス側に集まるようにする。 In the above description, the case where the beam tilt angle control device 1 shifts the beam to the x-axis minus side has been described (see FIG. 4). However, in the beam tilt angle control apparatus 1 according to the present embodiment, the beam may be shifted to the x-axis plus side. In this case, the dielectric plate 11 shown in the left diagram of FIG. 4 (α1 = α2 = 0 degrees) is rotated counterclockwise and the dielectric plate 12 is rotated clockwise. In other words, the dielectric plates 11 and 12 are gathered on the x-axis plus side.
 同様に、本実施の形態にかかるビームチルト角制御装置1では、ビームをy軸プラス側にシフトさせてもよく、またビームをy軸マイナス側にシフトさせてもよい。更に、ビームを斜め方向にシフトさせてもよい。すなわち、本実施の形態にかかるビームチルト角制御装置1では、誘電体板11、12が重なる面積および重なる位置を変えることで、誘電体板11、12の厚さ方向に伝搬するビームのチルト角を任意に制御することができる。 Similarly, in the beam tilt angle control apparatus 1 according to this embodiment, the beam may be shifted to the y-axis plus side, or the beam may be shifted to the y-axis minus side. Further, the beam may be shifted in an oblique direction. That is, in the beam tilt angle control apparatus 1 according to the present embodiment, the tilt angle of the beam propagating in the thickness direction of the dielectric plates 11 and 12 is changed by changing the overlapping area and the overlapping position of the dielectric plates 11 and 12. Can be controlled arbitrarily.
 また、上記では、誘電体板11および誘電体板12を回動軸13を中心に互いに逆方向に回動可能する際、α1=α2の関係を保持しながら回動する場合について説明した。しかし本実施の形態にかかるビームチルト角制御装置1では、誘電体板11および誘電体板12を回動する際、α1とα2とがそれぞれ異なる値となるようにしてもよい。このように、α1およびα2の値をそれぞれ独立に制御することで、ビームのチルト角をより柔軟に制御することができる。 In the above description, the case where the dielectric plate 11 and the dielectric plate 12 are rotated while maintaining the relationship of α1 = α2 when the dielectric plate 11 and the dielectric plate 12 can be rotated in the opposite directions around the rotation shaft 13 has been described. However, in the beam tilt angle control apparatus 1 according to the present embodiment, when the dielectric plate 11 and the dielectric plate 12 are rotated, α1 and α2 may have different values. Thus, by independently controlling the values of α1 and α2, the tilt angle of the beam can be controlled more flexibly.
 また、上記では、半円形の誘電体板11および誘電体板12を用いた場合について説明したが、本実施の形態にかかるビームチルト角制御装置1では、扇型の誘電体板(中心角が0より大きく360よりも小さい)を用いてもよい(中心角が180度の場合は半円形となる)。また、例えば、誘電体板11および誘電体板12のそれぞれの直径を異なるようにしてもよい。また、扇型の中心側を切り欠いた形状としてもよい。すなわち、本実施の形態にかかるビームチルト角制御装置1では、ビームのチルト角に応じて誘電体板の形状を決定することができる。更に、複数の誘電体板はそれぞれ異なる形状を備えていてもよい。 In the above description, the case where the semicircular dielectric plate 11 and the dielectric plate 12 are used has been described. However, in the beam tilt angle control device 1 according to the present embodiment, a fan-shaped dielectric plate (having a central angle of (Greater than 0 and smaller than 360) may be used (when the central angle is 180 degrees, the shape is semicircular). Further, for example, the diameters of the dielectric plate 11 and the dielectric plate 12 may be different. Moreover, it is good also as a shape which notched the fan-shaped center side. That is, in the beam tilt angle control device 1 according to the present embodiment, the shape of the dielectric plate can be determined according to the tilt angle of the beam. Further, the plurality of dielectric plates may have different shapes.
 図6は、本実施の形態にかかるビームチルト角制御装置を備えたアンテナシステムを示す断面図である。図6に示すように、アンテナシステム5_1は、ビームチルト角制御装置1とアンテナ装置14とを備える。例えば、アンテナ装置14はパラボラアンテナを用いて構成されており、ビームチルト角制御装置1は、アンテナ装置14の放射面と対向するように配置されている。アンテナ装置14からビームが放射される場合は、アンテナ装置14から放射されたビームがビームチルト角制御装置1を通過した後、空間に放射される。また、アンテナ装置14にビームが入射する場合は、ビームチルト角制御装置1を通過した後のビームをアンテナ装置14で受信する。なお、ビームチルト角制御装置1の構成および動作については上記で説明した場合と同様である。 FIG. 6 is a cross-sectional view showing an antenna system provided with the beam tilt angle control device according to the present embodiment. As shown in FIG. 6, the antenna system 5_1 includes a beam tilt angle control device 1 and an antenna device 14. For example, the antenna device 14 is configured using a parabolic antenna, and the beam tilt angle control device 1 is disposed so as to face the radiation surface of the antenna device 14. When a beam is radiated from the antenna device 14, the beam radiated from the antenna device 14 passes through the beam tilt angle control device 1 and is then radiated to the space. When the beam is incident on the antenna device 14, the beam after passing through the beam tilt angle control device 1 is received by the antenna device 14. Note that the configuration and operation of the beam tilt angle control device 1 are the same as those described above.
 図7は、本実施の形態にかかるアンテナシステムの他の構成例を示す断面図である。図7に示すように、アンテナシステム5_2は、ビームチルト角制御装置1とアンテナ装置14とを備える。例えば、アンテナ装置14はパラボラアンテナを用いて構成されており、ビームチルト角制御装置1は、アンテナ装置14の放射面と対向するように配置されている。更に、図7に示すアンテナシステム5_2は、ビームチルト角制御装置1がレドーム15の内部に配置されている。このようにレドーム15の内部にビームチルト角制御装置1を配置することで、ビームチルト角制御装置1を外部環境(風雨等)から保護することができ、また景観をよくすることができる。 FIG. 7 is a cross-sectional view showing another configuration example of the antenna system according to the present embodiment. As shown in FIG. 7, the antenna system 5_2 includes a beam tilt angle control device 1 and an antenna device 14. For example, the antenna device 14 is configured using a parabolic antenna, and the beam tilt angle control device 1 is disposed so as to face the radiation surface of the antenna device 14. Further, in the antenna system 5_2 shown in FIG. 7, the beam tilt angle control device 1 is disposed inside the radome 15. By arranging the beam tilt angle control device 1 inside the radome 15 in this way, the beam tilt angle control device 1 can be protected from the external environment (such as wind and rain), and the landscape can be improved.
 図8は、本実施の形態にかかるアンテナシステムの他の構成例を示す断面図である。図8に示すように、アンテナシステム5_3は、ビームチルト角制御装置1とレンズアンテナ16と一次放射器17とを備える。ここで、レンズアンテナ16および一次放射器17はアンテナ装置を構成している。レンズアンテナ16の一次放射器17側の面は凸状(湾曲状)になっており、一次放射器17と反対側の面は平面になっている。また、ビームチルト角制御装置1は、レンズアンテナ16の放射面と対向するように配置されている。 FIG. 8 is a cross-sectional view showing another configuration example of the antenna system according to the present embodiment. As shown in FIG. 8, the antenna system 5_3 includes a beam tilt angle control device 1, a lens antenna 16, and a primary radiator 17. Here, the lens antenna 16 and the primary radiator 17 constitute an antenna device. The surface on the primary radiator 17 side of the lens antenna 16 is convex (curved), and the surface on the side opposite to the primary radiator 17 is flat. Further, the beam tilt angle control device 1 is disposed so as to face the radiation surface of the lens antenna 16.
 図9は、本実施の形態にかかるアンテナシステムの他の構成例を示す断面図である。図9に示すように、アンテナシステム5_4は、ビームチルト角制御装置1とレンズアンテナ18と一次放射器17とを備える。ここで、レンズアンテナ18および一次放射器17はアンテナ装置を構成している。レンズアンテナ18の一次放射器17側の面は平面になっており、一次放射器17と反対側の面は凸状(湾曲状)になっている。図9に示すアンテナシステム5_4では、レンズアンテナ18と一次放射器17との間にビームチルト角制御装置1を配置している。 FIG. 9 is a cross-sectional view showing another configuration example of the antenna system according to the present embodiment. As shown in FIG. 9, the antenna system 5_4 includes a beam tilt angle control device 1, a lens antenna 18, and a primary radiator 17. Here, the lens antenna 18 and the primary radiator 17 constitute an antenna device. The surface on the primary radiator 17 side of the lens antenna 18 is a flat surface, and the surface on the side opposite to the primary radiator 17 is convex (curved). In the antenna system 5_4 illustrated in FIG. 9, the beam tilt angle control device 1 is disposed between the lens antenna 18 and the primary radiator 17.
 図10は、本実施の形態にかかるアンテナシステムの他の構成例を示す断面図である。図10に示すように、アンテナシステム5_5は、ビームチルト角制御装置1’とレンズアンテナ19と一次放射器17とを備える。ここで、レンズアンテナ19および一次放射器17はアンテナ装置を構成している。レンズアンテナ19の一次放射器17側の面は平面になっており、一次放射器17と反対側の面は凸状(湾曲状)になっている。図10に示すアンテナシステム5_5では、レンズアンテナ19の凸状の面と対応する形状(湾曲状)の誘電体板11’、12’(ビームチルト角制御装置1’)を、レンズアンテナ19の凸状の面と対向するように配置している。 FIG. 10 is a cross-sectional view showing another configuration example of the antenna system according to the present embodiment. As shown in FIG. 10, the antenna system 5_5 includes a beam tilt angle control device 1 ', a lens antenna 19, and a primary radiator 17. Here, the lens antenna 19 and the primary radiator 17 constitute an antenna device. The surface of the lens antenna 19 on the primary radiator 17 side is a flat surface, and the surface on the side opposite to the primary radiator 17 is convex (curved). In the antenna system 5_5 shown in FIG. 10, the dielectric plates 11 ′ and 12 ′ (beam tilt angle control device 1 ′) having a shape (curved shape) corresponding to the convex surface of the lens antenna 19 are used. It arrange | positions so that a planar surface may be opposed.
 なお、上記で説明したアンテナシステムは、任意の無線通信装置に用いることができる。 The antenna system described above can be used for any wireless communication device.
 以上で説明した発明により、ビームのチルト角を制御する際に利得が低下することを抑制可能なビームチルト角制御装置、アンテナシステム、無線通信装置、及びビームチルト角制御方法を提供することができる。 According to the invention described above, it is possible to provide a beam tilt angle control device, an antenna system, a wireless communication device, and a beam tilt angle control method capable of suppressing a decrease in gain when controlling the tilt angle of a beam. .
<実施の形態2>
 次に、本発明の実施の形態2について説明する。図11は、実施の形態2にかかるビームチルト角制御装置を示す正面図および側面図である。図11に示すように、本実施の形態にかかるビームチルト角制御装置2は、誘電体板21と誘電体板22とを備える。誘電体板21および誘電体板22はそれぞれ、円形の誘電体板23、25の外周部分を残しつつ、円形の誘電体板23、25の一部を半円形状(符号24、26で示す)に刳り貫いた形状である。誘電体板21および誘電体板22は、例えばポリカーボネートやABS樹脂などの樹脂材料(比誘電率が3~4程度)を用いて構成することができる。例えば、誘電体板21および誘電体板22のそれぞれの直径は同一とすることができる。
<Embodiment 2>
Next, a second embodiment of the present invention will be described. FIG. 11 is a front view and a side view showing the beam tilt angle control apparatus according to the second embodiment. As shown in FIG. 11, the beam tilt angle control device 2 according to the present embodiment includes a dielectric plate 21 and a dielectric plate 22. The dielectric plate 21 and the dielectric plate 22 respectively leave a part of the circular dielectric plates 23 and 25 in a semicircular shape (indicated by reference numerals 24 and 26) while leaving the outer peripheral portions of the circular dielectric plates 23 and 25. It is a shape that penetrates the surface. The dielectric plate 21 and the dielectric plate 22 can be configured using a resin material (relative dielectric constant is about 3 to 4) such as polycarbonate or ABS resin. For example, the diameters of the dielectric plate 21 and the dielectric plate 22 can be the same.
 図11の側面図に示すように、誘電体板21および誘電体板22はそれぞれ誘電体板21、22の厚さ方向において重畳するように配置されている。誘電体板21および誘電体板22は、回動軸29を中心に回動可能に構成されている。例えば、誘電体板21および誘電体板22は、回動軸29を中心に互いに逆方向に回動可能に構成されている。誘電体板21の側面側には回動機構27が設けられており、回動機構27が誘電体板21の側面と当接しつつ回動することで、誘電体板21が回動軸29を中心に回動する。同様に、誘電体板22の側面側には回動機構28が設けられており、回動機構28が誘電体板22の側面と当接しつつ回動することで、誘電体板22が回動軸29を中心に回動する。回動機構27および回動機構28はそれぞれ、モータ34_1、モータ34_2(図11では総称してモータ34と記載している)を用いて駆動する。 As shown in the side view of FIG. 11, the dielectric plate 21 and the dielectric plate 22 are arranged so as to overlap in the thickness direction of the dielectric plates 21 and 22, respectively. The dielectric plate 21 and the dielectric plate 22 are configured to be rotatable about a rotation shaft 29. For example, the dielectric plate 21 and the dielectric plate 22 are configured to be rotatable in directions opposite to each other about the rotation shaft 29. A rotation mechanism 27 is provided on the side surface side of the dielectric plate 21. The rotation mechanism 27 rotates while contacting the side surface of the dielectric plate 21, so that the dielectric plate 21 moves the rotation shaft 29. Rotate to the center. Similarly, a rotation mechanism 28 is provided on the side surface side of the dielectric plate 22, and the rotation of the rotation mechanism 28 while contacting the side surface of the dielectric plate 22 causes the dielectric plate 22 to rotate. It rotates around the shaft 29. The rotation mechanism 27 and the rotation mechanism 28 are driven using a motor 34_1 and a motor 34_2 (generically referred to as the motor 34 in FIG. 11), respectively.
 なお、誘電体板21、22を用いてビームのチルト角を制御する動作については、実施の形態1で説明した場合と同様であるので、重複した説明は省略する。 Note that the operation of controlling the tilt angle of the beam using the dielectric plates 21 and 22 is the same as that described in the first embodiment, and therefore a duplicate description is omitted.
 次に、本実施の形態にかかるアンテナシステムについて説明する。図12は、本実施の形態にかかるアンテナシステムのシステム構成を示す図である。図12に示すように、本実施の形態にかかるアンテナシステム30_1は、ビームチルト角制御装置2、アンテナ装置14、無線機31、センサ32、変位量検出部41、角度検出部42、制御部43、駆動部44、モータ34_1、34_2、及びエンコーダ35_1、35_2を備える。 Next, the antenna system according to this embodiment will be described. FIG. 12 is a diagram showing a system configuration of the antenna system according to the present embodiment. As shown in FIG. 12, the antenna system 30_1 according to the present embodiment includes a beam tilt angle control device 2, an antenna device 14, a radio device 31, a sensor 32, a displacement amount detection unit 41, an angle detection unit 42, and a control unit 43. , A drive unit 44, motors 34_1 and 34_2, and encoders 35_1 and 35_2.
 無線機31には、アンテナ装置14で受信した受信信号が供給される。無線機31は、受信信号に所定の信号処理を行う。センサ32は、アンテナ装置14の変位を検出する。センサ32で検出されたアンテナ装置14の変位情報は、変位量検出部41に供給される。例えば、センサ32は、アンテナ装置14に取り付けられた加速度センサを用いて構成することができる。変位量検出部41は、センサ32から供給された変位情報(加速度情報)を用いてアンテナ装置14の変位量を算出し、算出された変位量を制御部43に出力する。 The reception signal received by the antenna device 14 is supplied to the wireless device 31. The wireless device 31 performs predetermined signal processing on the received signal. The sensor 32 detects the displacement of the antenna device 14. The displacement information of the antenna device 14 detected by the sensor 32 is supplied to the displacement amount detection unit 41. For example, the sensor 32 can be configured using an acceleration sensor attached to the antenna device 14. The displacement amount detection unit 41 calculates the displacement amount of the antenna device 14 using the displacement information (acceleration information) supplied from the sensor 32, and outputs the calculated displacement amount to the control unit 43.
 角度検出部42は、エンコーダ35_1から誘電体板21の回動角情報を取得し、この取得した回動角情報を制御部43に出力する。同様に、角度検出部42は、エンコーダ35_2から誘電体板22の回動角情報を取得し、この取得した回動角情報を制御部43に出力する。 The angle detection unit 42 acquires the rotation angle information of the dielectric plate 21 from the encoder 35_1 and outputs the acquired rotation angle information to the control unit 43. Similarly, the angle detection unit 42 acquires the rotation angle information of the dielectric plate 22 from the encoder 35_2, and outputs the acquired rotation angle information to the control unit 43.
 制御部43は、センサ32で検出されたアンテナ装置14の変位量に基づいて誘電体板21、22の位置を制御する。具体的には、制御部43は、変位量検出部41から供給されたアンテナ装置14の変位量を用いて、誘電体板21、22の目標位置(つまり、目標角度)を決定する。このとき、制御部43は、アンテナ装置14で受信するビームの利得が最大となるようなビームのチルト角(つまり、アンテナ装置14の変位を相殺するようなチルト角)を決定し、ビームがこのチルト角となるような誘電体板21、22の目標角度を決定する。そして、制御部43は、角度検出部42から取得した誘電体板21、22の回動角情報(つまり、誘電体板21、22の現在の回動角情報)と、誘電体板21、22の目標角度と、を比較し、誘電体板21、22の角度が目標角度となるための駆動量を算出する。算出された駆動量は、制御信号として駆動部44に供給される。 The control unit 43 controls the positions of the dielectric plates 21 and 22 based on the displacement amount of the antenna device 14 detected by the sensor 32. Specifically, the control unit 43 uses the displacement amount of the antenna device 14 supplied from the displacement amount detection unit 41 to determine the target positions (that is, target angles) of the dielectric plates 21 and 22. At this time, the control unit 43 determines the tilt angle of the beam that maximizes the gain of the beam received by the antenna device 14 (that is, the tilt angle that cancels the displacement of the antenna device 14). A target angle of the dielectric plates 21 and 22 to be a tilt angle is determined. Then, the control unit 43 obtains the rotation angle information of the dielectric plates 21 and 22 (that is, the current rotation angle information of the dielectric plates 21 and 22) acquired from the angle detection unit 42 and the dielectric plates 21 and 22. Are compared with each other, and the drive amount for the angle of the dielectric plates 21 and 22 to be the target angle is calculated. The calculated drive amount is supplied to the drive unit 44 as a control signal.
 駆動部44は、制御部43から出力された制御信号(駆動量)に応じて誘電体板21、22を駆動する。具体的には、駆動部44は、制御部43から供給された制御信号(駆動量)に応じた駆動信号をモータ34_1、34_2に出力する。モータ34_1、34_2はそれぞれ、駆動部44から供給された駆動信号に応じて、誘電体板21、22を回動させる。このような動作により、誘電体板21、22の角度を目標角度とすることができる。よって、ビームのチルト角を利得が最大となるようなチルト角とすることができる。 The drive unit 44 drives the dielectric plates 21 and 22 according to the control signal (drive amount) output from the control unit 43. Specifically, the drive unit 44 outputs a drive signal corresponding to the control signal (drive amount) supplied from the control unit 43 to the motors 34_1 and 34_2. The motors 34_1 and 34_2 respectively rotate the dielectric plates 21 and 22 in accordance with the drive signal supplied from the drive unit 44. By such an operation, the angle of the dielectric plates 21 and 22 can be set as a target angle. Therefore, the tilt angle of the beam can be set to a tilt angle that maximizes the gain.
 本実施の形態においても、ビームのチルト角を制御する際に利得が低下することを抑制可能なビームチルト角制御装置、アンテナシステム、無線通信装置、及びビームチルト角制御方法を提供することができる。 Also in the present embodiment, it is possible to provide a beam tilt angle control device, an antenna system, a wireless communication device, and a beam tilt angle control method capable of suppressing a decrease in gain when controlling the beam tilt angle. .
<実施の形態3>
 次に、本発明の実施の形態3について説明する。図13は、実施の形態3にかかるアンテナシステムのシステム構成を示す図である。本実施の形態にかかるアンテナシステム30_2は、実施の形態2で説明したアンテナシステム30_1と比べて、センサ32および変位量検出部41を備えていない点、受信レベル検出部51を備えている点、並びに制御部53の動作が異なる。これ以外については実施の形態2にかかるアンテナシステム30_1と同様であるので、同一の構成要素には同一の符号を付し、重複した説明は省略する。
<Embodiment 3>
Next, a third embodiment of the present invention will be described. FIG. 13 is a diagram illustrating a system configuration of the antenna system according to the third embodiment. The antenna system 30_2 according to the present embodiment is different from the antenna system 30_1 described in the second embodiment in that the sensor 32 and the displacement amount detection unit 41 are not provided, the reception level detection unit 51 is provided, In addition, the operation of the control unit 53 is different. Since other than this is the same as that of the antenna system 30_1 according to the second embodiment, the same components are denoted by the same reference numerals, and redundant description is omitted.
 無線機31は、アンテナ装置14で受信した受信信号の信号レベルに対応した受信レベル信号(例えば、RSSI(Received Signal Strength Indicator))を受信レベル検出部51に出力する。受信レベル検出部51は、アンテナ装置14で受信した信号の受信レベルを検出する。具体的には、受信レベル検出部51は、無線機31から供給された受信レベル信号を用いてアンテナ装置14の受信レベルを検出し、検出された受信レベルを制御部53に出力する。 The radio 31 outputs a reception level signal (for example, RSSI (Received Signal Strength Indicator)) corresponding to the signal level of the received signal received by the antenna device 14 to the reception level detection unit 51. The reception level detection unit 51 detects the reception level of the signal received by the antenna device 14. Specifically, the reception level detection unit 51 detects the reception level of the antenna device 14 using the reception level signal supplied from the wireless device 31, and outputs the detected reception level to the control unit 53.
 制御部53は、受信レベル検出部51で検出された受信レベルに基づいて誘電体板21、22の位置を制御する。具体的には、制御部53は、受信レベル検出部51から供給されたアンテナ装置14の受信レベルをモニタしつつ、誘電体板21、22を駆動するように駆動部44に指示を出す。そして、制御部53は、受信レベル検出部51から供給されたアンテナ装置14の受信レベルが最大値となった場合(または、所定の閾値を超えた場合でもよい)、誘電体板21、22の駆動を停止するように駆動部44に指示を出す。このように、アンテナ装置14の受信レベルをモニタしつつ、誘電体板21、22を駆動することで、アンテナ装置14の受信レベルが最大値となる誘電体板21、22の角度α1、α2(または、所定の閾値を超える誘電体板21、22の角度α1、α2でもよい)を特定することができる。このとき、制御部53には、角度検出部42から誘電体板21、22の回動角情報(つまり、誘電体板21、22の現在の回動角情報)が供給されるので、制御部53はアンテナ装置14の受信レベルが最大値となる誘電体板21、22の角度α1、α2を把握することができる。この角度α1、α2の情報は、次回の制御の際に用いることができる。 The control unit 53 controls the positions of the dielectric plates 21 and 22 based on the reception level detected by the reception level detection unit 51. Specifically, the control unit 53 instructs the drive unit 44 to drive the dielectric plates 21 and 22 while monitoring the reception level of the antenna device 14 supplied from the reception level detection unit 51. Then, when the reception level of the antenna device 14 supplied from the reception level detection unit 51 reaches the maximum value (or may exceed a predetermined threshold), the control unit 53 may adjust the dielectric plates 21 and 22. The drive unit 44 is instructed to stop driving. In this way, by driving the dielectric plates 21 and 22 while monitoring the reception level of the antenna device 14, the angles α1 and α2 of the dielectric plates 21 and 22 at which the reception level of the antenna device 14 becomes the maximum value ( Alternatively, the angles α1 and α2 of the dielectric plates 21 and 22 exceeding a predetermined threshold may be specified. At this time, since the rotation angle information of the dielectric plates 21 and 22 (that is, the current rotation angle information of the dielectric plates 21 and 22) is supplied from the angle detection unit 42 to the control unit 53, the control unit 53 53 can grasp the angles α1 and α2 of the dielectric plates 21 and 22 at which the reception level of the antenna device 14 becomes the maximum value. Information on the angles α1 and α2 can be used in the next control.
<実施の形態4>
 次に、本発明の実施の形態4について説明する。図14は、実施の形態4にかかるアンテナシステムのシステム構成を示す図である。本実施の形態にかかるアンテナシステム30_3は、実施の形態2にで説明したアンテナシステム30_1と実施の形態3で説明したアンテナシステム30_2とを組み合わせた構成を備える。なお、実施の形態2、3にかかるアンテナシステム30_1、30_2と同一の構成要素には同一の符号を付し、重複した説明は省略する。
<Embodiment 4>
Next, a fourth embodiment of the present invention will be described. FIG. 14 is a diagram of a system configuration of the antenna system according to the fourth embodiment. The antenna system 30_3 according to the present embodiment has a configuration in which the antenna system 30_1 described in the second embodiment and the antenna system 30_2 described in the third embodiment are combined. In addition, the same code | symbol is attached | subjected to the component same as antenna system 30_1 and 30_2 concerning Embodiment 2, 3, and the overlapping description is abbreviate | omitted.
 本実施の形態にかかるアンテナシステム30_3が備える制御部63は、実施の形態2で説明したアンテナシステム30_1の動作と実施の形態3で説明したアンテナシステム30_2の動作とを組み合わせて実施することができる。つまり、制御部63は、センサ32で検出されたアンテナ装置14の変位量および受信レベル検出部51で検出された受信レベルに基づいて誘電体板21、22の位置を制御する。 The control unit 63 included in the antenna system 30_3 according to the present embodiment can be implemented by combining the operation of the antenna system 30_1 described in the second embodiment and the operation of the antenna system 30_2 described in the third embodiment. . That is, the control unit 63 controls the positions of the dielectric plates 21 and 22 based on the displacement amount of the antenna device 14 detected by the sensor 32 and the reception level detected by the reception level detection unit 51.
 例えば、制御部63は、変位量検出部41から供給されたアンテナ装置14の変位量を用いて、誘電体板21、22の目標位置(つまり、目標角度)を決定する。このとき、制御部63は、アンテナ装置14で受信するビームの利得が最大となるようなビームのチルト角を決定し、ビームをこのチルト角とするための誘電体板21、22の目標角度を決定する。そして、制御部63は、角度検出部42から取得した誘電体板21、22の回動角情報(つまり、誘電体板21、22の現在の回動角情報)と、誘電体板21、22の目標角度と、を比較し、誘電体板21、22の角度を目標角度とするための駆動量を算出する。算出された駆動量は、制御信号として駆動部44に供給される。 For example, the control unit 63 determines the target position (that is, the target angle) of the dielectric plates 21 and 22 using the displacement amount of the antenna device 14 supplied from the displacement amount detection unit 41. At this time, the control unit 63 determines the tilt angle of the beam so that the gain of the beam received by the antenna device 14 is maximized, and sets the target angle of the dielectric plates 21 and 22 for setting the beam to this tilt angle. decide. Then, the control unit 63 obtains the rotation angle information of the dielectric plates 21 and 22 (that is, the current rotation angle information of the dielectric plates 21 and 22) acquired from the angle detection unit 42 and the dielectric plates 21 and 22. Are compared with each other to calculate the driving amount for setting the angles of the dielectric plates 21 and 22 to the target angle. The calculated drive amount is supplied to the drive unit 44 as a control signal.
 駆動部44は、制御部63から供給された制御信号(駆動量)に応じた駆動信号をモータ34_1、34_2に出力する。モータ34_1、34_2はそれぞれ、駆動部44から供給された駆動信号に応じて、誘電体板21、22を回動させる。 The drive unit 44 outputs a drive signal corresponding to the control signal (drive amount) supplied from the control unit 63 to the motors 34_1 and 34_2. The motors 34_1 and 34_2 respectively rotate the dielectric plates 21 and 22 in accordance with the drive signal supplied from the drive unit 44.
 そして、誘電体板21、22を回動させる際、制御部63は、受信レベル検出部51で検出された受信レベルをモニタする。このように、受信レベルをモニタすることで、誘電体板21、22の目標角度が若干ずれていた場合であっても、誘電体板21、22をビームの利得が最大となる位置に移動させることができる。 Then, when the dielectric plates 21 and 22 are rotated, the control unit 63 monitors the reception level detected by the reception level detection unit 51. In this way, by monitoring the reception level, even if the target angles of the dielectric plates 21 and 22 are slightly shifted, the dielectric plates 21 and 22 are moved to positions where the beam gain is maximized. be able to.
 なお、本実施の形態にかかるアンテナシステム30_3では、実施の形態2で説明したアンテナシステム30_1の動作と実施の形態3で説明したアンテナシステム30_2の動作とを、状況に応じて使い分けるようにしてもよい。例えば、アンテナ装置14の揺れ(つまり、早い変化)に対しては、制御部63は、センサ32で検出されたアンテナ装置14の変位量に基づいて誘電体板21、22の位置を制御するようにしてもよい(実施の形態2参照)。また、アンテナ装置14の設置等における変化(つまり、遅い変化)や角度検出部42の積算誤差を補正する際には、制御部53は、受信レベル検出部51で検出された受信レベルに基づいて誘電体板21、22の位置を制御してもよい(実施の形態3参照)。 In the antenna system 30_3 according to the present embodiment, the operation of the antenna system 30_1 described in the second embodiment and the operation of the antenna system 30_2 described in the third embodiment may be used depending on the situation. Good. For example, the control unit 63 controls the positions of the dielectric plates 21 and 22 based on the displacement amount of the antenna device 14 detected by the sensor 32 with respect to the shaking (that is, rapid change) of the antenna device 14. (Refer to Embodiment 2). Further, when correcting a change in installation of the antenna device 14 (that is, a slow change) and an integration error of the angle detection unit 42, the control unit 53 is based on the reception level detected by the reception level detection unit 51. The positions of the dielectric plates 21 and 22 may be controlled (see Embodiment 3).
<その他の実施の形態>
 以下、その他の実施の形態として、ビームチルト角制御装置の他の構成例、つまり誘電体板の他の構成例について説明する。
<Other embodiments>
Hereinafter, as another embodiment, another configuration example of the beam tilt angle control device, that is, another configuration example of the dielectric plate will be described.
 例えば、図15の正面図に示すように、ビームチルト角制御装置70は、円形の誘電体板の円周上の2点を結んだ直線で円形の誘電体板を切断することで形成された2枚の誘電体板71、72を用いて構成してもよい。図16のビームチルト角制御装置70_1に示すように、2枚の誘電体板71、72を厚さ方向において重ならないように配置した場合は、ビームチルト角制御装置70_1を通過するビームの位相遅延量がビームチルト角制御装置70_1全体で均等になる(位相遅延量Δθ)。よって、ビームの位相分布は平坦になる。 For example, as shown in the front view of FIG. 15, the beam tilt angle control device 70 is formed by cutting a circular dielectric plate with a straight line connecting two points on the circumference of the circular dielectric plate. Two dielectric plates 71 and 72 may be used. As shown in the beam tilt angle control device 70_1 in FIG. 16, when the two dielectric plates 71 and 72 are arranged so as not to overlap in the thickness direction, the phase delay of the beam passing through the beam tilt angle control device 70_1. The amount becomes uniform throughout the beam tilt angle control device 70_1 (phase delay amount Δθ). Therefore, the phase distribution of the beam becomes flat.
 一方、図16のビームチルト角制御装置70_2に示すように、誘電体板72を誘電体板71側に移動し、誘電体板71と誘電体板72とが厚さ方向において重なるように配置した場合は、厚さ方向における誘電体板の枚数(つまり、ビームが通過する誘電体板の枚数)を変えることができる(断面図参照)。具体的には、誘電体板が2枚の領域(位相遅延量が2×Δθ)、1枚の領域(位相遅延量がΔθ)、そして誘電体板がない領域73(位相遅延量が0)を形成することができる。この場合は、誘電体板が2枚の領域から誘電体板がない領域73に向かって次第に位相遅延量が少なくなるようにすることができる。よって、ビームの位相分布を滑らかに変えることができる(位相分布のグラフ参照)。 On the other hand, as shown in the beam tilt angle control device 70_2 of FIG. 16, the dielectric plate 72 is moved to the dielectric plate 71 side, and is arranged so that the dielectric plate 71 and the dielectric plate 72 overlap in the thickness direction. In this case, the number of dielectric plates in the thickness direction (that is, the number of dielectric plates through which the beam passes) can be changed (refer to the sectional view). More specifically, the area has two dielectric plates (phase delay amount is 2 × Δθ), one area (phase delay amount is Δθ), and the region 73 without dielectric plates (phase delay amount is 0). Can be formed. In this case, the amount of phase delay can be gradually reduced from the region having two dielectric plates toward the region 73 having no dielectric plate. Therefore, the phase distribution of the beam can be changed smoothly (see the phase distribution graph).
 また、例えば、図17の正面図に示すように、ビームチルト角制御装置80は、異なる形状を有する3枚の誘電体板81、82、83を用いて構成してもよい。3枚の誘電体板81、82、83は各々、同一直径の円を円周上の2点を結んだ直線で切断した形状を有する。よって、各々の誘電体板81、82、83を重ねた際、各々の誘電体板81、82、83の円周部分が一致する。 Further, for example, as shown in the front view of FIG. 17, the beam tilt angle control device 80 may be configured by using three dielectric plates 81, 82, 83 having different shapes. Each of the three dielectric plates 81, 82, 83 has a shape obtained by cutting a circle having the same diameter by a straight line connecting two points on the circumference. Therefore, when the dielectric plates 81, 82, and 83 are stacked, the circumferential portions of the dielectric plates 81, 82, and 83 coincide with each other.
 例えば、各々の誘電体板81、82、83が図17の左側において重なるように配置した場合、厚さ方向における誘電体板の枚数を変えることができる(断面図参照)。具体的には、誘電体板が3枚の領域(位相遅延量が3×Δθ)、2枚の領域(位相遅延量が2×Δθ)、1枚の領域(位相遅延量がΔθ)、そして誘電体板がない領域84(位相遅延量が0)を形成することができる。この場合は、誘電体板が3枚の領域から誘電体板がない領域84に向かって次第に位相遅延量が少なくなるようにすることができる。よって、ビームの位相分布を滑らかに変えることができる(位相分布のグラフ参照)。図17に示すビームチルト角制御装置80では3枚の誘電体板を用いているので、図16に示した2枚の誘電体板を用いているビームチルト角制御装置70よりも位相分布の傾斜を滑らかにすることができる。 For example, when each of the dielectric plates 81, 82, 83 is arranged so as to overlap on the left side of FIG. 17, the number of dielectric plates in the thickness direction can be changed (refer to the sectional view). Specifically, there are three areas of dielectric plates (phase delay amount is 3 × Δθ), two areas (phase delay amount is 2 × Δθ), one area (phase delay amount is Δθ), and A region 84 having no dielectric plate (the phase delay amount is 0) can be formed. In this case, the amount of phase delay can be gradually reduced from the region having three dielectric plates to the region 84 having no dielectric plate. Therefore, the phase distribution of the beam can be changed smoothly (see the phase distribution graph). Since the beam tilt angle control device 80 shown in FIG. 17 uses three dielectric plates, the tilt of the phase distribution is larger than that of the beam tilt angle control device 70 using two dielectric plates shown in FIG. Can be smoothed.
 また、例えば、図18の正面図に示すように、ビームチルト角制御装置90は、異なる形状を有する4枚の誘電体板91~94を用いて構成してもよい。例えば、誘電体板91、94はそれぞれ、円形の誘電体板の円周上の2点を結んだ直線で円形の誘電体板を切断することで形成することができる。また、誘電体板92、93はそれぞれ、円形の誘電体板の円周上の2点を結んだ直線で円形の誘電体板を切断することで形成することができる。すなわち、誘電体板91および誘電体板94を合わせると円形となり、誘電体板92および誘電体板93を合わせると円形となる。 Further, for example, as shown in the front view of FIG. 18, the beam tilt angle control device 90 may be configured by using four dielectric plates 91 to 94 having different shapes. For example, each of the dielectric plates 91 and 94 can be formed by cutting the circular dielectric plate along a straight line connecting two points on the circumference of the circular dielectric plate. Each of the dielectric plates 92 and 93 can be formed by cutting the circular dielectric plate along a straight line connecting two points on the circumference of the circular dielectric plate. That is, when the dielectric plate 91 and the dielectric plate 94 are combined, a circular shape is obtained, and when the dielectric plate 92 and the dielectric plate 93 are combined, a circular shape is formed.
 図19のビームチルト角制御装置90_1の断面図に示すように、2枚の誘電体板91、94を厚さ方向において重ならないように配置し、2枚の誘電体板92、93を厚さ方向において重ならないように配置し、更に、誘電体板91、94および誘電体板92、93が厚さ方向において重なるように配置する。この場合は、ビームチルト角制御装置90_1を通過するビームは必ず2枚の誘電体板を通過することになるので、位相遅延量がビームチルト角制御装置90_1全体で均等になる。よって、ビームの位相分布は平坦になる。 As shown in the cross-sectional view of the beam tilt angle control device 90_1 in FIG. 19, the two dielectric plates 91 and 94 are arranged so as not to overlap in the thickness direction, and the two dielectric plates 92 and 93 are made thick. The dielectric plates 91 and 94 and the dielectric plates 92 and 93 are arranged so as to overlap each other in the thickness direction. In this case, since the beam passing through the beam tilt angle control device 90_1 always passes through the two dielectric plates, the phase delay amount is uniform in the entire beam tilt angle control device 90_1. Therefore, the phase distribution of the beam becomes flat.
 一方、図19のビームチルト角制御装置90_2に示すように、各々の誘電体板91~94が図19の左側において重なるように配置した場合、厚さ方向における誘電体板の枚数を変えることができる(断面図参照)。具体的には、誘電体板が4枚の領域(位相遅延量が4×Δθ)、3枚の領域(位相遅延量が3×Δθ)、2枚の領域(位相遅延量が2×Δθ)、1枚の領域(位相遅延量がΔθ)、そして誘電体板がない領域95(位相遅延量が0)を形成することができる。この場合は、誘電体板が4枚の領域から誘電体板がない領域95に向かって次第に位相遅延量が少なくなるようにすることができる。よって、ビームの位相分布を滑らかに変えることができる(位相分布のグラフ参照)。図19に示すビームチルト角制御装置90では4枚の誘電体板を用いているので、図17に示した3枚の誘電体板を用いているビームチルト角制御装置80よりも位相分布の傾斜を滑らかにすることができる。 On the other hand, as shown in the beam tilt angle control device 90_2 of FIG. 19, when the dielectric plates 91 to 94 are arranged so as to overlap on the left side of FIG. 19, the number of dielectric plates in the thickness direction can be changed. Yes (see cross-sectional view). Specifically, four dielectric plates (phase delay amount is 4 × Δθ), three regions (phase delay amount is 3 × Δθ), and two regions (phase delay amount is 2 × Δθ). One region (phase delay amount is Δθ) and a region 95 without a dielectric plate (phase delay amount is 0) can be formed. In this case, the phase delay amount can be gradually decreased from the region having four dielectric plates toward the region 95 having no dielectric plate. Therefore, the phase distribution of the beam can be changed smoothly (see the phase distribution graph). Since the beam tilt angle control device 90 shown in FIG. 19 uses four dielectric plates, the tilt of the phase distribution is larger than that of the beam tilt angle control device 80 using three dielectric plates shown in FIG. Can be smoothed.
 また、図18、図19に示したビームチルト角制御装置90では、2枚の誘電体板を同一平面上において互いに合わせると円形となる誘電体板の組み合わせを複数組備えるので、ビームの位相分布が平坦になる状態、つまり、ビームをチルトさせない状態をつくることができる。 In addition, the beam tilt angle control device 90 shown in FIGS. 18 and 19 includes a plurality of combinations of dielectric plates that are circular when the two dielectric plates are aligned with each other on the same plane. Can be made flat, that is, a state where the beam is not tilted.
 また、上記ではビームチルト角制御装置が備える各々の誘電体板の厚さを同一とした場合について説明したが、各々の誘電体板の厚さが異なるようにしてもよい。また、上記ではビームチルト角制御装置が備える各々の誘電体板の材料を同一とした場合について説明したが、各々の誘電体板の材料が異なるようにしてもよい。すなわち、本発明ではビームの特性やビームのチルト角などを考慮して、ビームチルト角制御装置が備える各々の誘電体板の大きさ、厚さ、材料などを決定することができる。 In the above description, the case where the thickness of each dielectric plate included in the beam tilt angle control device is the same has been described. However, the thickness of each dielectric plate may be different. In the above description, the material of each dielectric plate included in the beam tilt angle control device is the same. However, the material of each dielectric plate may be different. That is, in the present invention, the size, thickness, material, and the like of each dielectric plate included in the beam tilt angle control device can be determined in consideration of the beam characteristics and the beam tilt angle.
 以上、実施の形態を参照して本願発明を説明したが、本願発明は上記によって限定されるものではない。本願発明の構成や詳細には、発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 The present invention has been described above with reference to the embodiment, but the present invention is not limited to the above. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the invention.
 この出願は、2015年7月9日に出願された日本出願特願2015-137620を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2015-137620 filed on July 9, 2015, the entire disclosure of which is incorporated herein.
1、2 ビームチルト角制御装置
11、12 誘電体板
13 回動軸
14 アンテナ装置
15 レドーム
16、18、19 レンズアンテナ
17 一次放射器
21、22 誘電体板
27、28 回動機構
31 無線機
32 センサ
34、34_1、34_2 モータ
35_1、35_2 エンコーダ
41 変位量検出部
42 角度検出部
43、53、63 制御部
44 駆動部
51 受信レベル検出部
1, 2 Beam tilt angle control device 11, 12 Dielectric plate 13 Rotating shaft 14 Antenna device 15 Radome 16, 18, 19 Lens antenna 17 Primary radiators 21, 22 Dielectric plates 27, 28 Rotating mechanism 31 Radio 32 Sensor 34, 34_1, 34_2 Motor 35_1, 35_2 Encoder 41 Displacement detection unit 42 Angle detection unit 43, 53, 63 Control unit 44 Drive unit 51 Reception level detection unit

Claims (14)

  1.  第1の誘電体板と、
     少なくとも一部が前記第1の誘電体板と厚さ方向において重畳可能に配置された第2の誘電体板と、を少なくとも備え、
     前記第1及び第2の誘電体板の厚さ方向において前記第1及び第2の誘電体板が重なる面積を変えることで、前記第1及び第2の誘電体板の厚さ方向に伝搬するビームのチルト角を制御する、
     ビームチルト角制御装置。
    A first dielectric plate;
    And at least a part of the first dielectric plate, and a second dielectric plate disposed so as to be superposed in the thickness direction.
    Propagating in the thickness direction of the first and second dielectric plates by changing the overlapping area of the first and second dielectric plates in the thickness direction of the first and second dielectric plates. Control the tilt angle of the beam,
    Beam tilt angle control device.
  2.  前記第1及び第2の誘電体板はそれぞれ、回動軸を中心に互いに逆方向に回動可能に構成されている、請求項1に記載のビームチルト角制御装置。 The beam tilt angle control device according to claim 1, wherein each of the first and second dielectric plates is configured to be rotatable in directions opposite to each other about a rotation axis.
  3.  前記第1及び第2の誘電体板はそれぞれ半円形である、請求項1または2に記載のビームチルト角制御装置。 The beam tilt angle control device according to claim 1 or 2, wherein each of the first and second dielectric plates is semicircular.
  4.  前記第1及び第2の誘電体板はそれぞれ、円形の誘電体板の外周部分を残しつつ、前記円形の誘電体板の一部を半円形状に刳り貫いた形状である、請求項1または2に記載のビームチルト角制御装置。 The first and second dielectric plates each have a shape in which a part of the circular dielectric plate is pierced into a semicircular shape while leaving an outer peripheral portion of the circular dielectric plate. 3. The beam tilt angle control device according to 2.
  5.  前記第1及び第2の誘電体板はそれぞれ扇形である、請求項1または2に記載のビームチルト角制御装置。 The beam tilt angle control device according to claim 1 or 2, wherein each of the first and second dielectric plates has a fan shape.
  6.  2枚の誘電体板を同一平面上において互いに合わせると円形となる複数の誘電体板の組み合わせを複数組備える、請求項1または2に記載のビームチルト角制御装置。 3. The beam tilt angle control device according to claim 1 or 2, comprising a plurality of combinations of a plurality of dielectric plates that are circular when the two dielectric plates are put together on the same plane.
  7.  請求項1乃至6のいずれか一項に記載のビームチルト角制御装置と、
     前記ビームチルト角制御装置と対向するように配置されたアンテナ装置と、を備える、
     アンテナシステム。
    A beam tilt angle control device according to any one of claims 1 to 6,
    An antenna device arranged to face the beam tilt angle control device,
    Antenna system.
  8.  前記アンテナ装置の変位を検出するセンサと、
     前記センサで検出された前記アンテナ装置の変位量に基づいて前記第1及び第2の誘電体板の位置を制御する制御部と、
     前記制御部から出力された制御信号に応じて前記第1及び第2の誘電体板を駆動する駆動部と、を備える、
     請求項7に記載のアンテナシステム。
    A sensor for detecting a displacement of the antenna device;
    A control unit for controlling the positions of the first and second dielectric plates based on a displacement amount of the antenna device detected by the sensor;
    A drive unit that drives the first and second dielectric plates according to a control signal output from the control unit,
    The antenna system according to claim 7.
  9.  前記アンテナ装置で受信した信号の受信レベルを検出する受信レベル検出部と、
     前記受信レベル検出部で検出された受信レベルに基づいて前記第1及び第2の誘電体板の位置を制御する制御部と、
     前記制御部から出力された制御信号に応じて前記第1及び第2の誘電体板を駆動する駆動部と、を備える、
     請求項7に記載のアンテナシステム。
    A reception level detector that detects a reception level of a signal received by the antenna device;
    A control unit for controlling the positions of the first and second dielectric plates based on the reception level detected by the reception level detection unit;
    A drive unit that drives the first and second dielectric plates according to a control signal output from the control unit,
    The antenna system according to claim 7.
  10.  前記アンテナ装置の変位を検出するセンサと、
     前記アンテナ装置で受信した信号の受信レベルを検出する受信レベル検出部と、
     前記センサで検出された前記アンテナ装置の変位量および前記受信レベル検出部で検出された受信レベルの少なくとも一つに基づいて前記第1及び第2の誘電体板の位置を制御する制御部と、
     前記制御部から出力された制御信号に応じて前記第1及び第2の誘電体板を駆動する駆動部と、を備える、
     請求項7に記載のアンテナシステム。
    A sensor for detecting a displacement of the antenna device;
    A reception level detector that detects a reception level of a signal received by the antenna device;
    A controller that controls the positions of the first and second dielectric plates based on at least one of a displacement amount of the antenna device detected by the sensor and a reception level detected by the reception level detector;
    A drive unit that drives the first and second dielectric plates according to a control signal output from the control unit,
    The antenna system according to claim 7.
  11.  前記ビームチルト角制御装置はレドームの内部に配置されている、請求項7乃至10のいずれか一項に記載のアンテナシステム。 The antenna system according to any one of claims 7 to 10, wherein the beam tilt angle control device is disposed inside a radome.
  12.  前記アンテナ装置はレンズアンテナであり、
     前記ビームチルト角制御装置が備える前記第1及び第2の誘電体板は、前記レンズアンテナの凸状の面と対応する形状である、
     請求項7乃至11のいずれか一項に記載のアンテナシステム。
    The antenna device is a lens antenna;
    The first and second dielectric plates provided in the beam tilt angle control device have a shape corresponding to the convex surface of the lens antenna.
    The antenna system according to any one of claims 7 to 11.
  13.  請求項7乃至12のいずれか一項に記載のアンテナシステムを備える無線通信装置。 A wireless communication apparatus comprising the antenna system according to any one of claims 7 to 12.
  14.  第1の誘電体板と、少なくとも一部が前記第1の誘電体板と厚さ方向において重畳可能に配置された第2の誘電体板と、を用いたビームチルト角制御方法であって、
     前記第1及び第2の誘電体板の厚さ方向において前記第1及び第2の誘電体板が重なる面積を変えることで、前記第1及び第2の誘電体板の厚さ方向に伝搬するビームのチルト角を制御する、
     ビームチルト角制御方法。
    A beam tilt angle control method using a first dielectric plate and a second dielectric plate at least partially disposed so as to be able to overlap with the first dielectric plate in the thickness direction,
    Propagating in the thickness direction of the first and second dielectric plates by changing the overlapping area of the first and second dielectric plates in the thickness direction of the first and second dielectric plates. Control the tilt angle of the beam,
    Beam tilt angle control method.
PCT/JP2016/002950 2015-07-09 2016-06-20 Beam tilt angle control device, antenna system, wireless communication device, and beam tilt angle control method WO2017006524A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015137620 2015-07-09
JP2015-137620 2015-07-09

Publications (1)

Publication Number Publication Date
WO2017006524A1 true WO2017006524A1 (en) 2017-01-12

Family

ID=57685307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/002950 WO2017006524A1 (en) 2015-07-09 2016-06-20 Beam tilt angle control device, antenna system, wireless communication device, and beam tilt angle control method

Country Status (1)

Country Link
WO (1) WO2017006524A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020005233A (en) * 2018-07-02 2020-01-09 日本電信電話株式会社 Phased array antenna system
EP4043842A1 (en) * 2021-02-12 2022-08-17 Rosemount Tank Radar AB Radar level gauge with elastic system
US20220320745A1 (en) * 2019-05-24 2022-10-06 3M Innovative Properties Company Radar reflective article with permittivity gradient

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE886163C (en) * 1943-08-14 1953-08-13 Telefunken Gmbh Directional antenna system
US3226721A (en) * 1948-03-26 1965-12-28 Sperry Rand Corp Scanning antenna utilizing four rotary prisms to produce rectilinear scan and fifth rotary prism to produce conical scan
JPH07170121A (en) * 1993-10-22 1995-07-04 Alps Electric Co Ltd Microwave antenna
JP2009296063A (en) * 2008-06-02 2009-12-17 Toyota Central R&D Labs Inc Array antenna and method for adjusting center direction of beam

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE886163C (en) * 1943-08-14 1953-08-13 Telefunken Gmbh Directional antenna system
US3226721A (en) * 1948-03-26 1965-12-28 Sperry Rand Corp Scanning antenna utilizing four rotary prisms to produce rectilinear scan and fifth rotary prism to produce conical scan
JPH07170121A (en) * 1993-10-22 1995-07-04 Alps Electric Co Ltd Microwave antenna
JP2009296063A (en) * 2008-06-02 2009-12-17 Toyota Central R&D Labs Inc Array antenna and method for adjusting center direction of beam

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020005233A (en) * 2018-07-02 2020-01-09 日本電信電話株式会社 Phased array antenna system
US20220320745A1 (en) * 2019-05-24 2022-10-06 3M Innovative Properties Company Radar reflective article with permittivity gradient
EP4043842A1 (en) * 2021-02-12 2022-08-17 Rosemount Tank Radar AB Radar level gauge with elastic system

Similar Documents

Publication Publication Date Title
WO2017006524A1 (en) Beam tilt angle control device, antenna system, wireless communication device, and beam tilt angle control method
JP6640182B2 (en) Antenna device
US20070241244A1 (en) Method and apparatus for eliminating keyhole problems in an X-Y gimbal assembly
JP2014107600A (en) Array antenna apparatus
JP4119352B2 (en) Lens antenna device
EP3639325A1 (en) Conformal antenna
JP5606217B2 (en) Tracking antenna device
JP3553582B2 (en) Flying object guidance device and guidance method thereof
TWI575812B (en) Slot array antenna with dielectric slab for electrical control of beam down-tilt, base station antenna system, and method for controlling the down-tilt of a radiation pattern of a slot array antenna
JP2009198192A (en) Emblem, correcting tool, and beam direction correcting method of radar wave
US20180145407A1 (en) Antenna apparatus
JP6698977B2 (en) Antenna device, antenna control method, and program
JP2006242622A (en) Radar for mounting in vehicle and mounting method
JPH02174302A (en) Tilt antenna
WO2009081252A1 (en) Covering structure for vehicle-mounted radar device
US11063348B2 (en) Radome and pattern forming method
KR102066936B1 (en) Radar System
CN115639849A (en) Electromechanical composite target over-top tracking method and device
JP2021085859A (en) Millimeter wave sensor mounting structure
JP5230359B2 (en) Antenna device
JP4651700B2 (en) Radar equipment
JP2001235537A (en) Alignment judgment system for directional radar antenna
JP2020162052A (en) Antenna device and reflection phase control method
JP5243326B2 (en) Support device for receiving device
JPH1031062A (en) Radar device and its scanning method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16821003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP