WO2017006463A1 - Check valve and purge solenoid valve equipped with check valve - Google Patents

Check valve and purge solenoid valve equipped with check valve Download PDF

Info

Publication number
WO2017006463A1
WO2017006463A1 PCT/JP2015/069659 JP2015069659W WO2017006463A1 WO 2017006463 A1 WO2017006463 A1 WO 2017006463A1 JP 2015069659 W JP2015069659 W JP 2015069659W WO 2017006463 A1 WO2017006463 A1 WO 2017006463A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
check valve
valve body
purge
opening
Prior art date
Application number
PCT/JP2015/069659
Other languages
French (fr)
Japanese (ja)
Inventor
中川 聡
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/069659 priority Critical patent/WO2017006463A1/en
Publication of WO2017006463A1 publication Critical patent/WO2017006463A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir

Definitions

  • the present invention relates to a check valve used in a transpiration gas treatment system of a gasoline vehicle and a purge solenoid valve with a check valve.
  • Gasoline automobiles are equipped with a transpiration gas treatment system for the purpose of preventing the transpiration gas evaporated in the gasoline tank from flowing into the atmosphere.
  • the transpiration gas treatment system controls the flow rate of the transpiration gas flowing through the canister, which has a built-in activated carbon for adsorbing the transpiration gas, the purge pipe connecting the canister and the intake manifold (hereinafter referred to as intake manifold) pipe of the engine, and the purge pipe. And a purge solenoid valve.
  • the air containing the vaporized gas evaporated in the gasoline tank is released to the atmosphere through the canister.
  • the vaporized gas is adsorbed by the activated carbon in the canister, and only clean air is released to the atmosphere.
  • the vaporized gas accumulated in the canister is separated from the activated carbon by being sucked by the negative pressure generated in the intake manifold when the engine is operated, and flows into the engine through the purge pipe and is disposed of for combustion.
  • the purge solenoid valve controls the flow rate of the transpiration gas flowing through the purge pipe by valve opening time control that is duty-driven at a driving frequency of about 10 Hz.
  • valve opening time control that is duty-driven at a driving frequency of about 10 Hz.
  • pressure pulsation is generated in the purge pipe by opening and closing the valve body of the purge solenoid valve at high speed.
  • the check valve follows the pressure pulsation, and there is a problem that an unnecessary opening / closing operation is performed.
  • the check valve collides with the seal surface many times, reducing the life of the check valve and generating noise due to the collision.
  • the check valve since the check valve is affected by engine vibration, the check valve is pressed against the seal surface using a high-load spring so as not to open even under vibration conditions of about 300 m / s 2. There was a need. For this reason, the check valve cannot be opened at the time of a low differential pressure, the pressure loss increases, and there is a problem that the flow rate of the vaporized gas from the canister to the engine decreases.
  • the present invention was made to solve the above-described problems, and aims to suppress unnecessary opening / closing operations of the check valve and improve the valve opening performance of the check valve at the time of low differential pressure.
  • a check valve according to the present invention is a check valve installed in the same pipe as a duty-operated purge solenoid valve, and a valve body that opens and closes a flow path communicating with the pipe, and a valve body in a direction to close the flow path And a damper that generates a damping force in the opening / closing direction with respect to the valve body.
  • the check valve since the check valve includes the damper, the check valve can be prevented from following the pressure pulsation generated by the duty drive of the purge solenoid valve, and the check valve is unnecessary. Opening and closing operations can be suppressed.
  • the damping force of the damper is added to the closing force of the spring as a force against the force in the valve opening direction caused by vibration, so the spring load can be reduced and the check valve opening performance at low differential pressure Can be improved.
  • FIG. 2 (a) shows a valve opening state
  • FIG.2 (b) shows a valve closing state
  • FIG.4 (a) shows a valve opening state
  • FIG.4 (b) shows a valve closing state.
  • FIG. 6 is a cross-sectional view showing an example in which a vent hole is formed in a valve body in a check valve according to Embodiment 2.
  • FIG. It is sectional drawing which shows the structural example of the purge solenoid valve with a non-return valve concerning Embodiment 3 of this invention.
  • FIG. 10 is a cross-sectional view showing a modification of the purge solenoid valve with check valve according to the third embodiment. It is a figure which shows the structural example of the transpiration
  • FIG. 1 is a diagram showing a configuration example of a transpiration gas treatment system using a check valve 7 according to Embodiment 1 of the present invention.
  • the transpiration gas treatment system includes a canister 4 containing activated carbon that absorbs the transpiration gas evaporated in the gasoline tank 3, a purge pipe 5 that connects the canister 4 and the intake manifold pipe 1, and a flow rate of the transpiration gas that flows through the purge pipe 5.
  • a purge solenoid valve 6 to be controlled and a check valve 7 to prevent backflow of the transpiration gas are provided.
  • the air containing the transpiration gas evaporated in the gasoline tank 3 flows to the canister 4, the transpiration gas is adsorbed by the activated carbon in the canister 4, and only clean air is released to the atmosphere.
  • the transpiration gas accumulated in the canister 4 is sucked by the negative pressure generated in the intake manifold pipe 1 downstream from the throttle valve 2, thereby passing through the canister 4, the purge pipe 5 and the intake manifold pipe 1. Then it flows into the engine and is disposed of by combustion.
  • FIG. 2A and 2B are cross-sectional views illustrating a configuration example of the check valve 7 according to Embodiment 1, in which FIG. 2A shows a valve open state, and FIG. 2B shows a valve close state.
  • the check valve 7 is installed in the same purge pipe 5 as the duty solenoid purge solenoid valve 6.
  • the check valve 7 includes a suction port 11 connected to the upstream side of the purge pipe 5, that is, the purge solenoid valve 6 side, and a discharge port 12 connected to the downstream side of the purge pipe 5, that is, the intake manifold pipe 1 side.
  • the suction port 11 and the discharge port 12 constitute a flow path communicating with the purge pipe 5, and the valve body 15 is installed in this flow path.
  • the direction in which the transpiration gas flows from the suction port 11 to the discharge port 12 is referred to as a flow forward direction A
  • the direction in which the transpiration gas flows from the discharge port 12 to the suction port 11 is referred to as a reverse flow direction B.
  • the check valve 7 includes a valve body 15 that opens and closes a flow path that communicates with the purge pipe 5, a spring 17 that presses the valve body 15 in a direction that closes the flow path, and a damping force that opens and closes the valve body 15. And an air damper structure 13 for generating.
  • An elastic body 18 is installed on the sealing surface of the suction port 11 against which the valve body 15 is pressed when the check valve 7 is closed. The elastic body 18 eliminates the gap between the valve body 15 and the sealing surface and prevents the leaked gas from leaking.
  • the elastic body 18 may be installed on the valve body 15.
  • the air damper structure 13 includes a bottomed cylindrical cylinder 14 having an opening formed on the suction port 11 side, a valve body 15 accommodated inside the cylinder 14 so as to be slidable in the opening / closing direction, and the cylinder 14 and the valve body. And a damper chamber 16 formed by 15.
  • the vaporized gas flowing through the flow path is caused to flow into and out of the damper chamber 16 through a gap where the cylinder 14 and the valve body 15 slide, thereby reducing the amount of vaporized gas. It has a damper function.
  • a spring 17 is installed in the damper chamber 16.
  • the valve body 15 slides in the cylinder 14 in accordance with the pressure difference between the suction port 11 and the discharge port 12, and opens and closes the flow path. That is, when the intake manifold pipe 1 has a negative pressure and the discharge port 12 communicated with the intake manifold pipe 1 also has a negative pressure, the valve body 15 becomes a sealing surface of the suction port 11 as shown in FIG. The valve is opened and the transpiration gas in the flow forward direction A flows. On the contrary, when the intake manifold pipe 1 becomes positive pressure and the discharge port 12 communicating with the intake manifold pipe 1 also becomes positive pressure, the valve body 15 comes into contact with the sealing surface of the suction port 11 as shown in FIG. The valve is closed to prevent the transpiration gas from flowing in the reverse flow direction B.
  • the check valve 7 using the spring 17 is advantageous in that it has high durability and is not easily affected by temperature change.
  • the check valve 7 has a vibration magnitude so as not to open when vibration is applied from the outside. It was necessary to press the valve body 15 in the valve closing direction using the spring 17 having a corresponding load. Therefore, conventionally, in the case of the check valve 7 used in the transpiration gas treatment system, it is necessary to use a high-load spring 17 that does not open even under vibration conditions of about 300 m / s 2 in consideration of engine vibration. It was.
  • the valve body 15 cannot be opened at a low differential pressure, the pressure loss in the check valve 7 increases, and the vaporized gas flow rate from the canister 4 to the engine decreases. It was.
  • the air damper structure 13 generates a damping force in the opening / closing direction to hold the valve body 15, so that the load of the spring 17 is applied by the holding force of the air damper structure 13. Can be reduced.
  • the valve body 15 opens at a low differential pressure, and the pressure loss at the low differential pressure can be improved. Therefore, it is possible to minimize the decrease in the vaporized gas flow rate due to the addition of the check valve 7 to the purge pipe 5.
  • F is a holding force for holding the valve body 15
  • c is a damping coefficient of the air damper structure 13
  • k is a spring constant of the spring 17
  • x is a displacement of the valve body 15
  • t is time.
  • the air damper structure 13 is composed of two parts, a bottomed cylindrical cylinder 14 and a valve body 15, and the number of additional parts is less than that of the conventional valve body 15. Therefore, there is an advantage that an increase in cost can be suppressed.
  • the characteristics of the air damper structure 13 can be changed by the amount of transpiration gas flowing into and out of the damper chamber 16, and the change of the transpiration gas amount is adjusted by the size of the sliding gap between the cylinder 14 and the valve body 15. be able to.
  • the size of the gap between the cylinder 14 and the valve body 15 may be adjusted so that the characteristics of the air damper structure 13 corresponding to the responsiveness required in the actual vehicle environment can be obtained. .
  • the cylinder 14 may be formed with a vent hole 19 for allowing the transpiration gas to flow into and out of the damper chamber 16.
  • a vent hole 19 is formed on the bottom surface of the cylinder 14 facing the discharge port 12.
  • the vent hole 19 may be formed in the valve body 15 instead of the cylinder 14. The vent hole 19 is not necessary when a desired amount of transpiration gas can be ensured only by the gap between the cylinder 14 and the valve body 15.
  • the check valve 7 includes the valve body 15 that opens and closes the flow path communicating with the purge pipe 5, the spring 17 that presses the valve body 15 in the direction of closing the flow path, and the valve body. Since the air damper structure 13 that generates the damping force in the opening / closing direction with respect to 15 is configured, it is possible to suppress the check valve 7 from following the pressure pulsation generated by the duty drive of the purge solenoid valve 6. Therefore, an unnecessary opening / closing operation of the check valve 7 can be suppressed.
  • the damping force of the air damper structure 13 is added to the valve closing force of the spring 17 as a force against the valve opening direction force generated by vibration, the load of the spring 17 can be reduced, and the check valve at the time of low differential pressure 7 valve opening performance can be improved.
  • the damper structure is the air damper structure 13 in which the valve body 15 is slidably accommodated in the opening and closing direction inside the cylinder 14 having an opening formed at one end thereof. Since there is a gap between the cylinder 14 and the valve body 15 that allows the flowing vaporized gas to flow into and out of the damper chamber 16 in the cylinder 14, the air damper structure 13 is simply configured. An increase in cost due to the addition can be suppressed. Further, by adjusting the gap between the cylinder 14 and the valve body 15, the characteristics of the air damper structure 13 can be changed.
  • a vent hole 19 is formed in the cylinder 14 or the valve body 15 so that the vaporized gas flowing in the flow path flows into and out of the damper chamber 16 in the cylinder 14, and the size of the vent hole 19 is adjusted. Also, the characteristics of the air damper structure 13 can be changed.
  • FIG. 4 is a cross-sectional view showing a configuration example of a check valve 7 according to Embodiment 2 of the present invention, in which FIG. 4 (a) shows a valve open state and FIG. 4 (b) shows a valve close state.
  • the check valve 7 shown in FIG. 4 is installed in the same purge pipe 5 as the purge solenoid valve 6 in the transpiration gas processing system shown in FIG. In the following, FIG. 1 is used.
  • the check valve 7 includes a suction port 21 connected to the upstream side of the purge pipe 5 and a discharge port 22 connected to the downstream side of the purge pipe 5, and includes the suction port 11 and the discharge port.
  • the valve body 25 is installed in the flow path constituted by 12.
  • the check valve 7 has a valve body 25 that opens and closes a flow path communicating with the purge pipe 5, a spring 27 that presses the valve body 25 in a direction to close the flow path, and a valve body 25. And a diaphragm 23 as a damper structure for generating a damping force in the opening and closing direction.
  • an elastic body 28 is installed on the sealing surface of the suction port 21 to which the valve body 25 is pressed when the valve is closed to prevent leakage of transpiration gas.
  • the elastic body 28 may be installed on the valve body 25.
  • the damper structure of the second embodiment includes a diaphragm 23 to which the valve body 25 is fixed, and a vent hole 29 that allows outside air to flow into and out of the damper chamber 26 in the diaphragm 23.
  • outside air is allowed to flow into and out of the damper chamber 26 in the diaphragm 23 from the vent hole 29, and the damper function is provided by reducing the amount of outside air.
  • a spring 27 is installed in the damper chamber 26.
  • the check valve 7 is prevented from following the pressure pulsation generated by the duty drive of the purge solenoid valve 6, similarly to the air damper structure 13 of the first embodiment. It is possible to suppress an unnecessary opening / closing operation of the check valve 7. Further, as a force against the force in the valve opening direction generated by vibration, the damping force of the damper structure using the diaphragm 23 is added to the valve closing force of the spring 27, so that the load of the spring 27 can be reduced, and at the time of low differential pressure The valve opening performance of the check valve 7 can be improved.
  • the gap between the cylinder 14 and the valve body 15 is reduced, the foreign body may be caught when the foreign substance flows in, and the valve body 15 may be fixed.
  • the sliding gap of the valve body 25 that is, the gap between the valve body 25 and the case can be secured larger than the valve body 15 in the air damper structure 13. It becomes difficult to occur.
  • the gaps between the cylinder 14 and the valve body 15 it is difficult to make the gaps between the cylinder 14 and the valve body 15 the same between a plurality of devices, which may cause variations in the characteristics of the air damper structure 13 between the plurality of devices. .
  • the amount of outside air flowing into and out of the damper chamber 26 in the diaphragm 23 depends only on the dimensions of the air holes 29, and therefore, characteristic variations among a plurality of devices. Can be made relatively small.
  • FIG. 5 is a cross-sectional view showing an example in which the vent hole 29 is formed in the valve body 25 in the check valve 7 according to the second embodiment.
  • the valve body 25 fixed to the diaphragm 23 is formed with a vent hole 29 that allows the flow path and the damper chamber 26 to communicate with each other.
  • the vaporized gas flowing in the flow path is caused to flow into and out of the damper chamber 26 from the vent hole 29, and the diaphragm 23 has a damper function by reducing the amount of vaporized gas.
  • Embodiment 3 the check valve using the conventional spring has advantages such as high durability and being hardly affected by temperature change, but in order to prevent the valve from being opened when vibration is applied from the outside.
  • a spring that requires a sufficient flow rate such as a purge solenoid valve, but that is used under severe conditions, such as conditions where engine vibrations are applied, will greatly increase the pressure loss at low differential pressure.
  • the check valves according to the first and second embodiments can reduce the load of the spring as much as the holding force by the damper structure is applied. Therefore, when compared under the same vibration conditions, the check valve according to Embodiments 1 and 2 improves the pressure loss increase at the time of low differential pressure compared to the conventional check valve using a high-load spring. can do. Therefore, without losing the merit of the check valve using the spring, the purge solenoid valve and the check valve that are used under conditions with severe vibration such as a transpiration gas treatment system are integrated into one component. It is possible.
  • FIG. 6 is a cross-sectional view showing a configuration example of a purge solenoid valve with a check valve according to Embodiment 3 of the present invention.
  • the purge solenoid valve with check valve shown in FIG. 6 has a configuration in which the check valve 7 shown in FIG. 2 of the first embodiment is combined with the purge solenoid valve 6, and is the same as or corresponds to FIG. Parts are denoted by the same reference numerals and description thereof is omitted.
  • the purge solenoid valve 6 and the check valve 7 are closed.
  • the purge solenoid valve with check valve includes a suction port 31 connected to the upstream side of the purge pipe 5, a discharge port 12 connected to the downstream side of the purge pipe 5, and a magnetic plunger 32. And a solenoid portion 33 that pulls the plunger 32 in the valve opening direction, and a spring 34 that presses the plunger 32 in the valve closing direction.
  • a valve portion 35 having elasticity is attached to one end surface of the plunger 32.
  • a valve seat 36 that contacts the valve portion 35 is formed in the middle of the flow path from the suction port 31 to the discharge port 12, and the valve portion 35 contacts the valve seat 36 to close the valve portion 35. Opens away from the valve seat 36.
  • the solenoid unit 33 is composed of a coil and a core.
  • the solenoid 33 generates an electromagnetic force in the core by energizing the coil, and the plunger 32 is pulled in the valve opening direction away from the valve seat 36.
  • the engine control unit controls the energization of the solenoid unit 33 by pulse width modulation (PWM), and the purge solenoid valve 6 is duty-driven at a drive frequency of about 10 Hz, thereby reducing the valve opening time of the valve unit 35. Control.
  • PWM pulse width modulation
  • the purge solenoid valve 6 is duty-driven at a drive frequency of about 10 Hz, thereby reducing the valve opening time of the valve unit 35. Control.
  • the spring 34 presses the plunger 32 toward the valve seat 36 and closes the valve.
  • the check valve 7 is disposed downstream of the valve seat 36 in the flow path extending from the suction port 31 to the discharge port 12.
  • the valve body 15 of the check valve 7 opens, and the vaporized gas in the forward flow direction A flows.
  • the valve body 15 of the check valve 7 is closed as shown in FIG. Stop.
  • FIG. 7 is a sectional view showing a modification of the purge solenoid valve with check valve according to Embodiment 3 of the present invention.
  • FIG. 8 is a diagram showing a configuration example of a transpiration gas treatment system using the purge solenoid valve with a check valve shown in FIG.
  • a turbocharger compressor 8 is installed upstream of the throttle valve 2 of the intake manifold 1.
  • the atmosphere taken in upstream of the intake manifold 1 is compressed by the compressor 8 and introduced into the engine through the throttle valve 2. Therefore, when the compressor 8 is operating, the intake manifold pipe 1 becomes a positive pressure due to the supercharged air, and it becomes difficult to suck the vaporized gas using the negative pressure. Therefore, during supercharging when the compressor 8 is operating, the vaporized gas of the canister 4 is caused to flow to the purge pipe 5, the purge solenoid valve 6, and the second pipe 5b using the negative pressure generated upstream of the compressor 8. Introduced into the engine.
  • the vaporized gas of the canister 4 is caused to flow to the purge pipe 5, the purge solenoid valve 6, and the first pipe 5a using the negative pressure generated in the intake manifold pipe 1. Install into the engine.
  • a first check valve 7a and a first check valve 7a that prevent backflow are respectively connected to the first pipe 5a and the second pipe 5b that branch from the upstream position of the purge solenoid valve 6 in the purge pipe 5 and constitute a part of the purge pipe 5.
  • 2 Check valve 7b is installed.
  • the purge solenoid valve with a check valve shown in FIG. 7 has a configuration in which the first check valve 7 a and the second check valve 7 b are integrated with the purge solenoid valve 6. Further, the purge pipe 5 is branched into a first pipe 5a and a second pipe 5b inside the purge solenoid valve with a check valve.
  • the purge solenoid valve with a check valve is connected to the suction port 31 connected to the upstream side of the purge pipe 5 and the first pipe 5 a on the downstream side of the purge pipe 5.
  • the discharge port 12 of the first check valve 7a and the discharge port 12 of the second check valve 7b connected to the second pipe 5b on the downstream side of the purge pipe 5 are provided.
  • a valve seat 36 that contacts the valve portion 35 is formed in the middle of the flow path communicating with the suction port 31, and the flow path is branched downstream of the valve seat 36 so that the first check valve 7a
  • the discharge port 12 communicates with the discharge port 12 of the second check valve 7b.
  • the vaporized gas in the canister 4 is discharged from the purge pipe 5, the suction port 31 of the purge solenoid valve 6, and the first check valve 7a due to the negative pressure of the intake manifold pipe 1. It flows into the intake manifold pipe 1 via the port 12 and the first pipe 5a, and is introduced into the engine.
  • the purge solenoid valve 6 is opened, the vaporized gas in the canister 4 is caused by the negative pressure on the upstream side of the compressor 8, thereby causing the purge pipe 5, the suction port 31 of the purge solenoid valve 6, and the second check valve. It flows to the upstream side of the compressor 8 via the discharge port 12 of the 7b and the second pipe 5b, and is introduced into the engine via the throttle valve 2.
  • the check valve 7 having the structure shown in FIG. 2 is combined with the purge solenoid valve 6.
  • the structure shown in FIG. The check valve 7 may be combined.
  • a purge solenoid valve with a check valve having the structure shown in FIG. 6 is installed on the first pipe 5a branched from the purge pipe 5, and also branched from the purge pipe 5.
  • a purge solenoid valve with a check valve having the structure shown in FIG. 6 may be provided for the second pipe 5b.
  • the purge solenoid valve 6 and the check valve 7 that are duty-driven are integrally formed. Therefore, the purge solenoid valve 6 and the check valve 7 are provided in the middle of the purge pipe 5. Compared with the case where each is installed, there are advantages such as reduction of parts such as a hose pipe connecting the purge pipe 5, the purge solenoid valve 6 and the check valve 7, and simplification of the vehicle body assembling work.
  • the check valve according to the present invention is provided with a damper that generates a damping force in the opening / closing direction with respect to the valve body, it is suitable for use in a transpiration gas treatment system of a vehicle in which pressure pulsation and vibration occur. Yes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
  • Check Valves (AREA)

Abstract

A check valve (7) is configured so as to be equipped with: a valve body (15) that opens/closes a flow path communicating with a purge pipe (5); a spring (17) that presses the valve body (15) in the direction for closing the flow path; and an air damper structure (13) that generates attenuation force in the opening/closing directions with respect to the valve body (15). Thus, it is possible to prevent following movement of the check valve (7) in response to pressure pulsation generated by duty driving of a purge solenoid valve (6), and it is possible to prevent unnecessary opening/closing operations of the check valve (7). Furthermore, attenuation force from the air damper structure (13) is applied to the closing force of the spring (17) when vibration occurs, so the load on the spring (17) can be reduced, and valve-opening performance of the check valve (7) at the time of a low pressure differential can be improved.

Description

逆止弁および逆止弁付きパージソレノイドバルブCheck valve and purge solenoid valve with check valve
 この発明は、ガソリン自動車の蒸散ガス処理システムに用いられる逆止弁、および逆止弁付きパージソレノイドバルブに関するものである。 The present invention relates to a check valve used in a transpiration gas treatment system of a gasoline vehicle and a purge solenoid valve with a check valve.
 ガソリン自動車には、ガソリンタンクで蒸発した蒸散ガスが大気に流出してしまうことを防止する目的で、蒸散ガス処理システムが搭載されている。蒸散ガス処理システムは、蒸散ガスを吸着させるための活性炭を内蔵したキャニスタと、キャニスタとエンジンのインテークマニホールド(以下、インマニ)配管とを接続するパージ配管と、パージ配管を流れる蒸散ガスの流量を制御するパージソレノイドバルブとを備えている。 Gasoline automobiles are equipped with a transpiration gas treatment system for the purpose of preventing the transpiration gas evaporated in the gasoline tank from flowing into the atmosphere. The transpiration gas treatment system controls the flow rate of the transpiration gas flowing through the canister, which has a built-in activated carbon for adsorbing the transpiration gas, the purge pipe connecting the canister and the intake manifold (hereinafter referred to as intake manifold) pipe of the engine, and the purge pipe. And a purge solenoid valve.
 ガソリンタンクで蒸発した蒸散ガスを含む空気は、キャニスタを通って大気に放出されるようになっており、その際にキャニスタ内の活性炭に蒸散ガスが吸着され、清浄な空気のみが大気に放出される。
 また、キャニスタ内に蓄積された蒸散ガスは、エンジン作動時にインマニに発生する負圧により吸引されることによって、活性炭から分離され、パージ配管を通ってエンジンへ流れて燃焼処分される。
The air containing the vaporized gas evaporated in the gasoline tank is released to the atmosphere through the canister. At that time, the vaporized gas is adsorbed by the activated carbon in the canister, and only clean air is released to the atmosphere. The
Further, the vaporized gas accumulated in the canister is separated from the activated carbon by being sucked by the negative pressure generated in the intake manifold when the engine is operated, and flows into the engine through the purge pipe and is disposed of for combustion.
 通常、蒸散ガス処理システムにはインマニ負圧が作用しており、パージ配管を通じて、キャニスタからインマニ配管へ蒸散ガスが流れるようになっている。しかし、ターボチャージャ搭載車では、ターボ過給によりインマニに正圧が発生することがあり、その場合にはパージ配管を蒸散ガスが逆流し、逆流した蒸散ガスがキャニスタから大気へ流出する懸念がある。これを防止するため、ターボチャージャ搭載車の蒸散ガス処理システムにおいては、パージ配管の逆流を防止する逆止弁が設置されている(例えば、特許文献1,2参照)。 Normally, intake manifold negative pressure acts on the transpiration gas treatment system, and the transpiration gas flows from the canister to the intake manifold piping through the purge piping. However, in a turbocharged vehicle, positive pressure may be generated in the intake manifold due to turbocharging. In such a case, there is a concern that the transpiration gas flows back through the purge pipe, and the transpiration gas that flows backward flows out from the canister . In order to prevent this, a check valve for preventing the backflow of the purge pipe is installed in the transpiration gas processing system of a turbocharger-equipped vehicle (see, for example, Patent Documents 1 and 2).
特開2014-227972号公報JP 2014-227972 A 特開2013-15106号公報JP 2013-15106 A
 上述したような蒸散ガス処理システムにおいて、パージソレノイドバルブは、10Hz程度の駆動周波数でデューティ駆動する開弁時間制御により、パージ配管を流れる蒸散ガスの流量を制御している。このとき、パージソレノイドバルブの弁体が高速に開閉動作することにより、パージ配管内に圧力脈動が発生する。すると、この圧力脈動に逆止弁が追従し、不要な開閉動作をしてしまうという課題があった。その結果、逆止弁がシール面と何度も衝突することになり、逆止弁の寿命が減少すると共に、衝突による騒音が発生する。 In the transpiration gas processing system as described above, the purge solenoid valve controls the flow rate of the transpiration gas flowing through the purge pipe by valve opening time control that is duty-driven at a driving frequency of about 10 Hz. At this time, pressure pulsation is generated in the purge pipe by opening and closing the valve body of the purge solenoid valve at high speed. Then, the check valve follows the pressure pulsation, and there is a problem that an unnecessary opening / closing operation is performed. As a result, the check valve collides with the seal surface many times, reducing the life of the check valve and generating noise due to the collision.
 また、逆止弁はエンジン振動の影響を受けるため、約300m/s程度の振動条件下においても開弁しないように、高荷重のスプリングを使用して逆止弁をシール面に押し付けておく必要があった。そのため、低差圧時に逆止弁が開弁できず、圧力損失が増加し、キャニスタからエンジンへの蒸散ガス流量が低下するという課題があった。 In addition, since the check valve is affected by engine vibration, the check valve is pressed against the seal surface using a high-load spring so as not to open even under vibration conditions of about 300 m / s 2. There was a need. For this reason, the check valve cannot be opened at the time of a low differential pressure, the pressure loss increases, and there is a problem that the flow rate of the vaporized gas from the canister to the engine decreases.
 この発明は、上記のような課題を解決するためになされたもので、逆止弁の不要な開閉動作の抑制、および低差圧時の逆止弁の開弁性能の向上を目的とする。 The present invention was made to solve the above-described problems, and aims to suppress unnecessary opening / closing operations of the check valve and improve the valve opening performance of the check valve at the time of low differential pressure.
 この発明に係る逆止弁は、デューティ駆動するパージソレノイドバルブと同じ配管に設置される逆止弁であって、配管に連通する流路を開閉する弁体と、流路を閉じる方向に弁体を押し付けるスプリングと、弁体に対して開閉方向の減衰力を発生させるダンパとを備えるものである。 A check valve according to the present invention is a check valve installed in the same pipe as a duty-operated purge solenoid valve, and a valve body that opens and closes a flow path communicating with the pipe, and a valve body in a direction to close the flow path And a damper that generates a damping force in the opening / closing direction with respect to the valve body.
 この発明によれば、逆止弁がダンパを備えることにより、パージソレノイドバルブのデューティ駆動により発生する圧力脈動に、逆止弁が追従動作することを抑制することができ、逆止弁の不要な開閉動作を抑制することができる。また、振動により発生する開弁方向の力に抗する力として、スプリングの閉弁力にダンパの減衰力が加わるため、スプリングの荷重を低減でき、低差圧時の逆止弁の開弁性能を向上できる。 According to this invention, since the check valve includes the damper, the check valve can be prevented from following the pressure pulsation generated by the duty drive of the purge solenoid valve, and the check valve is unnecessary. Opening and closing operations can be suppressed. In addition, the damping force of the damper is added to the closing force of the spring as a force against the force in the valve opening direction caused by vibration, so the spring load can be reduced and the check valve opening performance at low differential pressure Can be improved.
この発明の実施の形態1に係る逆止弁を用いた蒸散ガス処理システムの構成例を示す図である。It is a figure which shows the structural example of the transpiration | evaporation gas processing system using the non-return valve which concerns on Embodiment 1 of this invention. 実施の形態1に係る逆止弁の構成例を示す断面図であり、図2(a)は開弁状態、図2(b)は閉弁状態を示す。It is sectional drawing which shows the structural example of the non-return valve which concerns on Embodiment 1, FIG. 2 (a) shows a valve opening state, FIG.2 (b) shows a valve closing state. 実施の形態1に係る逆止弁の簡易モデルを説明する図である。It is a figure explaining the simple model of the non-return valve concerning Embodiment 1. FIG. この発明の実施の形態2に係る逆止弁の構成例を示す断面図であり、図4(a)は開弁状態、図4(b)は閉弁状態を示す。It is sectional drawing which shows the structural example of the non-return valve which concerns on Embodiment 2 of this invention, Fig.4 (a) shows a valve opening state, FIG.4 (b) shows a valve closing state. 実施の形態2に係る逆止弁において通気孔を弁体に形成した例を示す断面図である。6 is a cross-sectional view showing an example in which a vent hole is formed in a valve body in a check valve according to Embodiment 2. FIG. この発明の実施の形態3に係る逆止弁付きパージソレノイドバルブの構成例を示す断面図である。It is sectional drawing which shows the structural example of the purge solenoid valve with a non-return valve concerning Embodiment 3 of this invention. 実施の形態3に係る逆止弁付きパージソレノイドバルブの変形例を示す断面図である。FIG. 10 is a cross-sectional view showing a modification of the purge solenoid valve with check valve according to the third embodiment. 実施の形態3に係る蒸散ガス処理システムの構成例を示す図である。It is a figure which shows the structural example of the transpiration | evaporation gas processing system which concerns on Embodiment 3. FIG.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、この発明の実施の形態1に係る逆止弁7を用いた蒸散ガス処理システムの構成例を示す図である。蒸散ガス処理システムは、ガソリンタンク3で蒸発した蒸散ガスを吸着する活性炭を内蔵したキャニスタ4と、キャニスタ4とインマニ配管1とを接続するパージ配管5と、パージ配管5を流れる蒸散ガスの流量を制御するパージソレノイドバルブ6と、蒸散ガスの逆流を防止する逆止弁7とを備えている。蒸散ガスの回収時、ガソリンタンク3で蒸発した蒸散ガスを含む空気はキャニスタ4へ流れ、キャニスタ4内の活性炭に蒸散ガスが吸着され、清浄な空気のみが大気へ放出される。蒸散ガスの処理時、キャニスタ4内に蓄積された蒸散ガスは、スロットルバルブ2より下流のインマニ配管1に発生する負圧により吸引されることによって、キャニスタ4、パージ配管5およびインマニ配管1を通ってエンジンへ流れ、燃焼処分される。
Hereinafter, in order to explain the present invention in more detail, modes for carrying out the present invention will be described with reference to the accompanying drawings.
Embodiment 1 FIG.
FIG. 1 is a diagram showing a configuration example of a transpiration gas treatment system using a check valve 7 according to Embodiment 1 of the present invention. The transpiration gas treatment system includes a canister 4 containing activated carbon that absorbs the transpiration gas evaporated in the gasoline tank 3, a purge pipe 5 that connects the canister 4 and the intake manifold pipe 1, and a flow rate of the transpiration gas that flows through the purge pipe 5. A purge solenoid valve 6 to be controlled and a check valve 7 to prevent backflow of the transpiration gas are provided. At the time of recovery of the transpiration gas, the air containing the transpiration gas evaporated in the gasoline tank 3 flows to the canister 4, the transpiration gas is adsorbed by the activated carbon in the canister 4, and only clean air is released to the atmosphere. During the treatment of the transpiration gas, the transpiration gas accumulated in the canister 4 is sucked by the negative pressure generated in the intake manifold pipe 1 downstream from the throttle valve 2, thereby passing through the canister 4, the purge pipe 5 and the intake manifold pipe 1. Then it flows into the engine and is disposed of by combustion.
 図2は、実施の形態1に係る逆止弁7の構成例を示す断面図であり、図2(a)は開弁状態、図2(b)は閉弁状態を示す。
 逆止弁7は、デューティ駆動するパージソレノイドバルブ6と同じパージ配管5に設置される。この逆止弁7は、パージ配管5の上流側、つまりパージソレノイドバルブ6側に接続される吸引ポート11と、パージ配管5の下流側、つまりインマニ配管1側に接続される排出ポート12とを備える。これら吸引ポート11と排出ポート12により、パージ配管5に連通する流路が構成され、この流路に弁体15が設置される。以下では、吸引ポート11から排出ポート12へ蒸散ガスが流れる方向を流れ順方向A、排出ポート12から吸引ポート11へ蒸散ガスが流れる方向を逆流方向Bと呼ぶ。
2A and 2B are cross-sectional views illustrating a configuration example of the check valve 7 according to Embodiment 1, in which FIG. 2A shows a valve open state, and FIG. 2B shows a valve close state.
The check valve 7 is installed in the same purge pipe 5 as the duty solenoid purge solenoid valve 6. The check valve 7 includes a suction port 11 connected to the upstream side of the purge pipe 5, that is, the purge solenoid valve 6 side, and a discharge port 12 connected to the downstream side of the purge pipe 5, that is, the intake manifold pipe 1 side. Prepare. The suction port 11 and the discharge port 12 constitute a flow path communicating with the purge pipe 5, and the valve body 15 is installed in this flow path. Hereinafter, the direction in which the transpiration gas flows from the suction port 11 to the discharge port 12 is referred to as a flow forward direction A, and the direction in which the transpiration gas flows from the discharge port 12 to the suction port 11 is referred to as a reverse flow direction B.
 また、逆止弁7は、パージ配管5に連通する流路を開閉する弁体15と、流路を閉じる方向に弁体15を押し付けるスプリング17と、弁体15に対して開閉方向の減衰力を発生させるエアダンパ構造13とを備えている。また、逆止弁7の閉弁時、弁体15が押し付けられる吸引ポート11のシール面には、弾性体18が設置されている。弾性体18は、弁体15とシール面の隙間を無くして蒸散ガスの漏れを防止する。この弾性体18は、弁体15に設置されてもよい。 The check valve 7 includes a valve body 15 that opens and closes a flow path that communicates with the purge pipe 5, a spring 17 that presses the valve body 15 in a direction that closes the flow path, and a damping force that opens and closes the valve body 15. And an air damper structure 13 for generating. An elastic body 18 is installed on the sealing surface of the suction port 11 against which the valve body 15 is pressed when the check valve 7 is closed. The elastic body 18 eliminates the gap between the valve body 15 and the sealing surface and prevents the leaked gas from leaking. The elastic body 18 may be installed on the valve body 15.
 エアダンパ構造13は、吸引ポート11側に開口部が形成された有底円筒形状のシリンダ14と、シリンダ14の内部に開閉方向に摺動可能に収容された弁体15と、シリンダ14と弁体15により形成されるダンパ室16とを備えている。このエアダンパ構造13においては、流路を流れる蒸散ガスを、シリンダ14と弁体15とが摺動する隙間からダンパ室16へ流入およびダンパ室16から流出させるようにし、この蒸散ガス量を絞ることでダンパ機能を持たせている。図1の構成例では、このダンパ室16にスプリング17を設置してある。 The air damper structure 13 includes a bottomed cylindrical cylinder 14 having an opening formed on the suction port 11 side, a valve body 15 accommodated inside the cylinder 14 so as to be slidable in the opening / closing direction, and the cylinder 14 and the valve body. And a damper chamber 16 formed by 15. In this air damper structure 13, the vaporized gas flowing through the flow path is caused to flow into and out of the damper chamber 16 through a gap where the cylinder 14 and the valve body 15 slide, thereby reducing the amount of vaporized gas. It has a damper function. In the configuration example of FIG. 1, a spring 17 is installed in the damper chamber 16.
 弁体15は、吸引ポート11と排出ポート12の圧力差に応じてシリンダ14内を摺動し、流路を開閉するようになっている。即ち、弁体15は、インマニ配管1が負圧になり、このインマニ配管1に連通した排出ポート12も負圧になると、図2(a)のように弁体15が吸引ポート11のシール面から離れて開弁状態となり、流れ順方向Aの蒸散ガスを流す。反対に、インマニ配管1が正圧になり、このインマニ配管1に連通した排出ポート12も正圧になると、図2(b)のように弁体15が吸引ポート11のシール面に当接して閉弁状態となり、蒸散ガスの逆流方向Bの流れを阻止する。 The valve body 15 slides in the cylinder 14 in accordance with the pressure difference between the suction port 11 and the discharge port 12, and opens and closes the flow path. That is, when the intake manifold pipe 1 has a negative pressure and the discharge port 12 communicated with the intake manifold pipe 1 also has a negative pressure, the valve body 15 becomes a sealing surface of the suction port 11 as shown in FIG. The valve is opened and the transpiration gas in the flow forward direction A flows. On the contrary, when the intake manifold pipe 1 becomes positive pressure and the discharge port 12 communicating with the intake manifold pipe 1 also becomes positive pressure, the valve body 15 comes into contact with the sealing surface of the suction port 11 as shown in FIG. The valve is closed to prevent the transpiration gas from flowing in the reverse flow direction B.
 従来は、パージソレノイドバルブ6がデューティ駆動することによりパージ配管5に圧力脈動が発生し、逆止弁7の弁体15がこの圧力脈動に追従して不必要な開閉動作をしてしまった。その結果、弁体15がシール面に何度も衝突することになり、逆止弁7の寿命が減少する問題および衝突による騒音が発生する問題があった。
 これに対し、図1のように、エアダンパ構造13が弁体15に対して開閉方向の減衰力を発生させることで、不要な開閉動作を抑制することができる。これにより、逆止弁7の寿命減少の抑制および騒音発生の抑制が可能となる。
Conventionally, when the purge solenoid valve 6 is driven with a duty, pressure pulsation is generated in the purge pipe 5, and the valve body 15 of the check valve 7 follows this pressure pulsation and performs an unnecessary opening / closing operation. As a result, the valve body 15 collides with the sealing surface many times, and there is a problem that the life of the check valve 7 is reduced and noise due to the collision occurs.
On the other hand, as shown in FIG. 1, the air damper structure 13 generates a damping force in the opening / closing direction with respect to the valve body 15, thereby suppressing unnecessary opening / closing operations. As a result, it is possible to suppress the reduction in the life of the check valve 7 and the generation of noise.
 スプリング17を用いた逆止弁7は、耐久性が高い、温度変化の影響を受けにくいといったメリットがある一方、外部から振動が加わった際に開弁しないようにするために振動の大きさに対応した荷重のスプリング17を用いて弁体15を閉弁方向に押し付ける必要があった。そのため、従来は、蒸散ガス処理システムに用いる逆止弁7の場合、エンジン振動を考慮して、約300m/s程度の振動条件下においても開弁しない高荷重のスプリング17を用いる必要があった。しかし、高荷重のスプリング17を用いると、低差圧時に弁体15が開弁できなくなり、逆止弁7において圧力損失が増加し、キャニスタ4からエンジンへの蒸散ガス流量が低下する問題があった。
 これに対し、図3および式(1)に示すように、エアダンパ構造13が開閉方向の減衰力を発生させて弁体15を保持するため、エアダンパ構造13の保持力分だけスプリング17の荷重を低減させることができる。そのため、低差圧時に弁体15が開弁するようになり、低差圧時の圧力損失を改善できる。それゆえ、パージ配管5に逆止弁7を追加したことによる蒸散ガス流量の低下を最小限にすることができる。
The check valve 7 using the spring 17 is advantageous in that it has high durability and is not easily affected by temperature change. On the other hand, the check valve 7 has a vibration magnitude so as not to open when vibration is applied from the outside. It was necessary to press the valve body 15 in the valve closing direction using the spring 17 having a corresponding load. Therefore, conventionally, in the case of the check valve 7 used in the transpiration gas treatment system, it is necessary to use a high-load spring 17 that does not open even under vibration conditions of about 300 m / s 2 in consideration of engine vibration. It was. However, when the high-load spring 17 is used, the valve body 15 cannot be opened at a low differential pressure, the pressure loss in the check valve 7 increases, and the vaporized gas flow rate from the canister 4 to the engine decreases. It was.
On the other hand, as shown in FIG. 3 and formula (1), the air damper structure 13 generates a damping force in the opening / closing direction to hold the valve body 15, so that the load of the spring 17 is applied by the holding force of the air damper structure 13. Can be reduced. For this reason, the valve body 15 opens at a low differential pressure, and the pressure loss at the low differential pressure can be improved. Therefore, it is possible to minimize the decrease in the vaporized gas flow rate due to the addition of the check valve 7 to the purge pipe 5.
Figure JPOXMLDOC01-appb-I000001
 ここで、Fは弁体15を保持する保持力、cはエアダンパ構造13の減衰係数、kはスプリング17のバネ定数、xは弁体15の変位、tは時間である。
Figure JPOXMLDOC01-appb-I000001
Here, F is a holding force for holding the valve body 15, c is a damping coefficient of the air damper structure 13, k is a spring constant of the spring 17, x is a displacement of the valve body 15, and t is time.
 さらに、エアダンパ構造13は、有底円筒形状のシリンダ14と弁体15の2部品により構成されており、従来の弁体15に対して追加部品が少なくてすむ。よって、コスト増加を抑えることができるメリットがある。また、エアダンパ構造13の特性は、ダンパ室16へ流入および流出する蒸散ガス量により変更することができ、蒸散ガス量の変更は、シリンダ14と弁体15の摺動用の隙間の寸法により調整することができる。逆止弁7を蒸散ガス処理システムで使用する場合、実車環境で求められる応答性に応じたエアダンパ構造13の特性が得られるように、シリンダ14と弁体15の隙間の寸法を調整すればよい。 Further, the air damper structure 13 is composed of two parts, a bottomed cylindrical cylinder 14 and a valve body 15, and the number of additional parts is less than that of the conventional valve body 15. Therefore, there is an advantage that an increase in cost can be suppressed. The characteristics of the air damper structure 13 can be changed by the amount of transpiration gas flowing into and out of the damper chamber 16, and the change of the transpiration gas amount is adjusted by the size of the sliding gap between the cylinder 14 and the valve body 15. be able to. When the check valve 7 is used in a transpiration gas processing system, the size of the gap between the cylinder 14 and the valve body 15 may be adjusted so that the characteristics of the air damper structure 13 corresponding to the responsiveness required in the actual vehicle environment can be obtained. .
 なお、シリンダ14と弁体15の隙間だけでは所望の蒸散ガス量にならない場合、蒸散ガスをダンパ室16へ流入およびダンパ室16から流出させる通気孔19を、シリンダ14に形成してもよい。図1の構成例では、シリンダ14の排出ポート12を向いた底面に、通気孔19が形成されている。この通気孔19の大きさを調整することにより、エアダンパ構造13の特性を容易に変更することができる。
 通気孔19を、シリンダ14ではなく弁体15に形成してもよい。
 シリンダ14と弁体15の隙間だけで所望の蒸散ガス量を確保できる場合には通気孔19は不要である。
Note that if the desired amount of transpiration gas cannot be obtained only by the gap between the cylinder 14 and the valve body 15, the cylinder 14 may be formed with a vent hole 19 for allowing the transpiration gas to flow into and out of the damper chamber 16. In the configuration example of FIG. 1, a vent hole 19 is formed on the bottom surface of the cylinder 14 facing the discharge port 12. By adjusting the size of the vent hole 19, the characteristics of the air damper structure 13 can be easily changed.
The vent hole 19 may be formed in the valve body 15 instead of the cylinder 14.
The vent hole 19 is not necessary when a desired amount of transpiration gas can be ensured only by the gap between the cylinder 14 and the valve body 15.
 以上より、実施の形態1によれば、逆止弁7は、パージ配管5に連通する流路を開閉する弁体15と、流路を閉じる方向に弁体15を押し付けるスプリング17と、弁体15に対して開閉方向の減衰力を発生させるエアダンパ構造13とを備える構成にしたので、パージソレノイドバルブ6のデューティ駆動により発生する圧力脈動に、逆止弁7が追従動作することを抑制することができ、逆止弁7の不要な開閉動作を抑制することができる。また、振動により発生する開弁方向の力に抗する力として、スプリング17の閉弁力にエアダンパ構造13の減衰力が加わるため、スプリング17の荷重を低減でき、低差圧時の逆止弁7の開弁性能を向上できる。 As described above, according to the first embodiment, the check valve 7 includes the valve body 15 that opens and closes the flow path communicating with the purge pipe 5, the spring 17 that presses the valve body 15 in the direction of closing the flow path, and the valve body. Since the air damper structure 13 that generates the damping force in the opening / closing direction with respect to 15 is configured, it is possible to suppress the check valve 7 from following the pressure pulsation generated by the duty drive of the purge solenoid valve 6. Therefore, an unnecessary opening / closing operation of the check valve 7 can be suppressed. Further, since the damping force of the air damper structure 13 is added to the valve closing force of the spring 17 as a force against the valve opening direction force generated by vibration, the load of the spring 17 can be reduced, and the check valve at the time of low differential pressure 7 valve opening performance can be improved.
 また、実施の形態1によれば、ダンパ構造は、一端に開口部が形成されたシリンダ14の内部に弁体15が開閉方向に摺動可能に収容されたエアダンパ構造13であり、流路を流れる蒸散ガスをシリンダ14内のダンパ室16に流入およびダンパ室16から流出させる、シリンダ14と弁体15の隙間を有するようにしたので、エアダンパ構造13を簡易に構成し、このエアダンパ構造13を追加することによるコスト増加を抑制することができる。また、シリンダ14と弁体15の隙間を調整することにより、エアダンパ構造13の特性を変更することができる。あるいは、シリンダ14または弁体15に、流路を流れる蒸散ガスをシリンダ14内のダンパ室16へ流入およびダンパ室16から流出させる通気孔19を形成し、この通気孔19の大きさを調整することによっても、エアダンパ構造13の特性を変更することができる。 According to the first embodiment, the damper structure is the air damper structure 13 in which the valve body 15 is slidably accommodated in the opening and closing direction inside the cylinder 14 having an opening formed at one end thereof. Since there is a gap between the cylinder 14 and the valve body 15 that allows the flowing vaporized gas to flow into and out of the damper chamber 16 in the cylinder 14, the air damper structure 13 is simply configured. An increase in cost due to the addition can be suppressed. Further, by adjusting the gap between the cylinder 14 and the valve body 15, the characteristics of the air damper structure 13 can be changed. Alternatively, a vent hole 19 is formed in the cylinder 14 or the valve body 15 so that the vaporized gas flowing in the flow path flows into and out of the damper chamber 16 in the cylinder 14, and the size of the vent hole 19 is adjusted. Also, the characteristics of the air damper structure 13 can be changed.
実施の形態2.
 上記実施の形態1ではシリンダと弁体の2部品によりダンパ構造を構成したが、本実施の形態2ではダイヤフラムを用いてダンパ構造を構成する。
 図4は、この発明の実施の形態2に係る逆止弁7の構成例を示す断面図であり、図4(a)は開弁状態、図4(b)は閉弁状態を示す。図4に示す逆止弁7は、図1に示した蒸散ガス処理システムにおいて、パージソレノイドバルブ6と同じパージ配管5に設置される。以下では、図1を援用する。
Embodiment 2. FIG.
In the first embodiment, the damper structure is configured by the two parts of the cylinder and the valve body. However, in the second embodiment, the damper structure is configured by using a diaphragm.
4 is a cross-sectional view showing a configuration example of a check valve 7 according to Embodiment 2 of the present invention, in which FIG. 4 (a) shows a valve open state and FIG. 4 (b) shows a valve close state. The check valve 7 shown in FIG. 4 is installed in the same purge pipe 5 as the purge solenoid valve 6 in the transpiration gas processing system shown in FIG. In the following, FIG. 1 is used.
 実施の形態2に係る逆止弁7は、パージ配管5の上流側に接続される吸引ポート21と、パージ配管5の下流側に接続される排出ポート22とを備え、吸引ポート11と排出ポート12により構成された流路に弁体25が設置される。 The check valve 7 according to the second embodiment includes a suction port 21 connected to the upstream side of the purge pipe 5 and a discharge port 22 connected to the downstream side of the purge pipe 5, and includes the suction port 11 and the discharge port. The valve body 25 is installed in the flow path constituted by 12.
 また、実施の形態2に係る逆止弁7は、パージ配管5に連通する流路を開閉する弁体25と、流路を閉じる方向に弁体25を押し付けるスプリング27と、弁体25に対して開閉方向の減衰力を発生させるダンパ構造としてのダイヤフラム23とを備えている。また、閉弁時、弁体25が押し付けられる吸引ポート21のシール面には、蒸散ガスの漏れを防止する弾性体28が設置されている。この弾性体28は、弁体25に設置されていてもよい。 Further, the check valve 7 according to the second embodiment has a valve body 25 that opens and closes a flow path communicating with the purge pipe 5, a spring 27 that presses the valve body 25 in a direction to close the flow path, and a valve body 25. And a diaphragm 23 as a damper structure for generating a damping force in the opening and closing direction. In addition, an elastic body 28 is installed on the sealing surface of the suction port 21 to which the valve body 25 is pressed when the valve is closed to prevent leakage of transpiration gas. The elastic body 28 may be installed on the valve body 25.
 実施の形態2のダンパ構造は、弁体25が固定されたダイヤフラム23と、外気をダイヤフラム23内のダンパ室26に流入およびダンパ室26から流出させる通気孔29とを備えている。図4に示すダンパ構造においては、外気を、通気孔29からダイヤフラム23内のダンパ室26へ流入およびダンパ室26から流出させるようにし、この外気量を絞ることでダンパ機能を持たせている。また、このダンパ室26にスプリング27を設置してある。 The damper structure of the second embodiment includes a diaphragm 23 to which the valve body 25 is fixed, and a vent hole 29 that allows outside air to flow into and out of the damper chamber 26 in the diaphragm 23. In the damper structure shown in FIG. 4, outside air is allowed to flow into and out of the damper chamber 26 in the diaphragm 23 from the vent hole 29, and the damper function is provided by reducing the amount of outside air. A spring 27 is installed in the damper chamber 26.
 ダイヤフラム23を用いたダンパ構造でも、上記実施の形態1のエアダンパ構造13と同様に、パージソレノイドバルブ6のデューティ駆動により発生する圧力脈動に、逆止弁7が追従動作することを抑制することができ、逆止弁7の不要な開閉動作を抑制することができる。また、振動により発生する開弁方向の力に抗する力として、スプリング27の閉弁力にダイヤフラム23を用いたダンパ構造の減衰力が加わるため、スプリング27の荷重を低減でき、低差圧時の逆止弁7の開弁性能を向上できる。 Even in the damper structure using the diaphragm 23, the check valve 7 is prevented from following the pressure pulsation generated by the duty drive of the purge solenoid valve 6, similarly to the air damper structure 13 of the first embodiment. It is possible to suppress an unnecessary opening / closing operation of the check valve 7. Further, as a force against the force in the valve opening direction generated by vibration, the damping force of the damper structure using the diaphragm 23 is added to the valve closing force of the spring 27, so that the load of the spring 27 can be reduced, and at the time of low differential pressure The valve opening performance of the check valve 7 can be improved.
 上記実施の形態1ではシリンダ14と弁体15の間の隙間を小さくすると異物が流入してきた場合に異物噛み込み等が起こって弁体15が固着する可能性があった。
 これに対し、ダイヤフラム23を用いたダンパ構造の場合、エアダンパ構造13における弁体15に比べて、弁体25の摺動用の隙間、つまり弁体25とケースの隙間を大きく確保できるため、異物噛み込み等が起こりにくくなる。
In the first embodiment, if the gap between the cylinder 14 and the valve body 15 is reduced, the foreign body may be caught when the foreign substance flows in, and the valve body 15 may be fixed.
On the other hand, in the case of the damper structure using the diaphragm 23, the sliding gap of the valve body 25, that is, the gap between the valve body 25 and the case can be secured larger than the valve body 15 in the air damper structure 13. It becomes difficult to occur.
 また、上記実施の形態1ではシリンダ14と弁体15の間の隙間を複数の装置間で同じにすることが難しく、そうすると複数の装置間でエアダンパ構造13の特性ばらつきが生じる可能性があった。
 これに対し、ダイヤフラム23を用いたダンパ構造の場合、ダイヤフラム23内のダンパ室26へ流入および流出する外気量は、通気孔29の寸法のみに依るものとなるため、複数の装置間の特性ばらつきを比較的小さくすることができる。
Further, in the first embodiment, it is difficult to make the gaps between the cylinder 14 and the valve body 15 the same between a plurality of devices, which may cause variations in the characteristics of the air damper structure 13 between the plurality of devices. .
On the other hand, in the case of a damper structure using the diaphragm 23, the amount of outside air flowing into and out of the damper chamber 26 in the diaphragm 23 depends only on the dimensions of the air holes 29, and therefore, characteristic variations among a plurality of devices. Can be made relatively small.
 なお、図4の構成例では外気をダンパ室26へ取り入れる構造にしたが、流路を流れる蒸散ガスを取り入れる構造にしてもよい。この構造の一例を、図5に示す。
 図5は、実施の形態2に係る逆止弁7において、通気孔29を弁体25に形成した例を示す断面図である。この例では、ダイヤフラム23に固定された弁体25に、流路とダンパ室26とを連通する通気孔29が形成されている。そして、流路を流れる蒸散ガスを、通気孔29からダンパ室26へ流入および流出させるようにし、この蒸散ガス量を絞ることでダイヤフラム23にダンパ機能を持たせている。
In the configuration example of FIG. 4, the outside air is taken into the damper chamber 26, but a structure may be adopted in which the vaporized gas flowing through the flow path is taken. An example of this structure is shown in FIG.
FIG. 5 is a cross-sectional view showing an example in which the vent hole 29 is formed in the valve body 25 in the check valve 7 according to the second embodiment. In this example, the valve body 25 fixed to the diaphragm 23 is formed with a vent hole 29 that allows the flow path and the damper chamber 26 to communicate with each other. The vaporized gas flowing in the flow path is caused to flow into and out of the damper chamber 26 from the vent hole 29, and the diaphragm 23 has a damper function by reducing the amount of vaporized gas.
実施の形態3.
 上述したように、従来のスプリングを用いた逆止弁は、耐久性が高い、温度変化の影響を受けにくいといったメリットがある一方、外部から振動が加わった際に開弁しないようにするために振動の大きさに対応したスプリング荷重で弁体を閉弁方向に押し付ける必要があり、取り付け環境の振動条件によっては低差圧時に逆止弁において圧力損失が増大するという問題があった。特に、例えばパージソレノイドバルブのように、流量確保が必要であるが、エンジン振動が加わる条件のような過酷条件下で使用されるものには、低差圧時の圧力損失が大幅に増加するスプリングを用いた逆止弁を採用することが困難であった。
 これに対し、上記実施の形態1,2に係る逆止弁は、ダンパ構造による保持力が加わる分、スプリングの荷重を低減することができる。そのため、同一振動条件下で比較した場合、従来の高荷重のスプリングを用いた逆止弁に比べて、実施の形態1,2に係る逆止弁のほうが低差圧時の圧力損失増加を改善することができる。
 よって、スプリングを用いた逆止弁のメリットを失うことなく、蒸散ガス処理システムのような振動が過酷な条件下で使用されるパージソレノイドバルブと逆止弁を一体化させ1つの部品として構成することが可能である。
Embodiment 3 FIG.
As described above, the check valve using the conventional spring has advantages such as high durability and being hardly affected by temperature change, but in order to prevent the valve from being opened when vibration is applied from the outside. There is a need to press the valve body in the valve closing direction with a spring load corresponding to the magnitude of vibration, and there is a problem that pressure loss increases in the check valve at low differential pressure depending on the vibration conditions of the mounting environment. In particular, a spring that requires a sufficient flow rate, such as a purge solenoid valve, but that is used under severe conditions, such as conditions where engine vibrations are applied, will greatly increase the pressure loss at low differential pressure. It was difficult to adopt a check valve using
In contrast, the check valves according to the first and second embodiments can reduce the load of the spring as much as the holding force by the damper structure is applied. Therefore, when compared under the same vibration conditions, the check valve according to Embodiments 1 and 2 improves the pressure loss increase at the time of low differential pressure compared to the conventional check valve using a high-load spring. can do.
Therefore, without losing the merit of the check valve using the spring, the purge solenoid valve and the check valve that are used under conditions with severe vibration such as a transpiration gas treatment system are integrated into one component. It is possible.
 図6は、この発明の実施の形態3に係る逆止弁付きパージソレノイドバルブの構成例を示す断面図である。図6に示す逆止弁付きパージソレノイドバルブは、上記実施の形態1の図2で示した逆止弁7をパージソレノイドバルブ6に組み合わせた構成であり、図6において図2と同一または相当する部分には同一の符号を付し説明を省略する。図6では、パージソレノイドバルブ6および逆止弁7は閉弁状態である。 FIG. 6 is a cross-sectional view showing a configuration example of a purge solenoid valve with a check valve according to Embodiment 3 of the present invention. The purge solenoid valve with check valve shown in FIG. 6 has a configuration in which the check valve 7 shown in FIG. 2 of the first embodiment is combined with the purge solenoid valve 6, and is the same as or corresponds to FIG. Parts are denoted by the same reference numerals and description thereof is omitted. In FIG. 6, the purge solenoid valve 6 and the check valve 7 are closed.
 実施の形態3に係る逆止弁付きパージソレノイドバルブは、パージ配管5の上流側に接続される吸引ポート31と、パージ配管5の下流側に接続される排出ポート12と、磁性体のプランジャ32と、プランジャ32を開弁方向へ引き寄せるソレノイド部33と、プランジャ32を閉弁方向へ押し付けるスプリング34とを備えている。プランジャ32の一端面には、弾性を有する弁部35が取り付けられている。また、吸引ポート31から排出ポート12へ続く流路の途中には弁部35に当接する弁座36が形成されており、弁部35が弁座36に当接して閉弁し、弁部35が弁座36から離れて開弁する。 The purge solenoid valve with check valve according to the third embodiment includes a suction port 31 connected to the upstream side of the purge pipe 5, a discharge port 12 connected to the downstream side of the purge pipe 5, and a magnetic plunger 32. And a solenoid portion 33 that pulls the plunger 32 in the valve opening direction, and a spring 34 that presses the plunger 32 in the valve closing direction. A valve portion 35 having elasticity is attached to one end surface of the plunger 32. Further, a valve seat 36 that contacts the valve portion 35 is formed in the middle of the flow path from the suction port 31 to the discharge port 12, and the valve portion 35 contacts the valve seat 36 to close the valve portion 35. Opens away from the valve seat 36.
 ソレノイド部33は、コイルおよびコアなどから構成される。このソレノイド部33は、コイルへの通電によりコアに電磁力を発生させて、プランジャ32が弁座36から離れる開弁方向へ引き寄せる。例えばエンジンコントロールユニット(ECU)が、パルス幅変調(PWM)によりソレノイド部33への通電を制御し、パージソレノイドバルブ6を10Hz程度の駆動周波数でデューティ駆動することによって弁部35の開弁時間を制御する。コイル無通電時は、スプリング34がプランジャ32を弁座36側へ押し付けて閉弁する。 The solenoid unit 33 is composed of a coil and a core. The solenoid 33 generates an electromagnetic force in the core by energizing the coil, and the plunger 32 is pulled in the valve opening direction away from the valve seat 36. For example, the engine control unit (ECU) controls the energization of the solenoid unit 33 by pulse width modulation (PWM), and the purge solenoid valve 6 is duty-driven at a drive frequency of about 10 Hz, thereby reducing the valve opening time of the valve unit 35. Control. When the coil is not energized, the spring 34 presses the plunger 32 toward the valve seat 36 and closes the valve.
 また、吸引ポート31から排出ポート12へ続く流路において弁座36より下流側に、逆止弁7が配置されている。インマニ配管1が負圧になり、このインマニ配管1に連通した排出ポート12も負圧になると、逆止弁7の弁体15が開き、流れ順方向Aの蒸散ガスを流す。インマニ配管1が正圧になり、このインマニ配管1に連通した排出ポート12も正圧になると、図6のように逆止弁7の弁体15が閉じ、蒸散ガスの逆流方向Bの流れを阻止する。 Further, the check valve 7 is disposed downstream of the valve seat 36 in the flow path extending from the suction port 31 to the discharge port 12. When the intake manifold pipe 1 has a negative pressure and the discharge port 12 communicated with the intake manifold pipe 1 also has a negative pressure, the valve body 15 of the check valve 7 opens, and the vaporized gas in the forward flow direction A flows. When the intake manifold pipe 1 becomes positive pressure and the discharge port 12 communicating with the intake manifold pipe 1 also becomes positive pressure, the valve body 15 of the check valve 7 is closed as shown in FIG. Stop.
 また、1つのパージソレノイドバルブ6と2つの逆止弁7を一体に構成することもできる。
 図7は、この発明の実施の形態3に係る逆止弁付きパージソレノイドバルブの変形例を示す断面図である。図8は、図7に示す逆止弁付きパージソレノイドバルブを用いる蒸散ガス処理システムの構成例を示す図である。
Also, one purge solenoid valve 6 and two check valves 7 can be configured integrally.
FIG. 7 is a sectional view showing a modification of the purge solenoid valve with check valve according to Embodiment 3 of the present invention. FIG. 8 is a diagram showing a configuration example of a transpiration gas treatment system using the purge solenoid valve with a check valve shown in FIG.
 図8において、インマニ配管1のスロットルバルブ2より上流側には、ターボチャージャのコンプレッサ8が設置されている。インマニ配管1の上流側で取り入れられた大気は、コンプレッサ8で圧縮され、スロットルバルブ2を通ってエンジンに導入される。そのため、コンプレッサ8が動作しているときはその過給気によりインマニ配管1が正圧になり、負圧を利用した蒸散ガスの吸引が困難になる。そこで、コンプレッサ8が動作している過給時は、コンプレッサ8より上流側で発生する負圧を利用して、キャニスタ4の蒸散ガスをパージ配管5、パージソレノイドバルブ6、第2配管5bへ流してエンジンへ導入する。他方、コンプレッサ8が動作していない非過給時は、インマニ配管1で発生する負圧を利用して、キャニスタ4の蒸散ガスをパージ配管5、パージソレノイドバルブ6、第1配管5aへ流してエンジンへ導入する。 In FIG. 8, a turbocharger compressor 8 is installed upstream of the throttle valve 2 of the intake manifold 1. The atmosphere taken in upstream of the intake manifold 1 is compressed by the compressor 8 and introduced into the engine through the throttle valve 2. Therefore, when the compressor 8 is operating, the intake manifold pipe 1 becomes a positive pressure due to the supercharged air, and it becomes difficult to suck the vaporized gas using the negative pressure. Therefore, during supercharging when the compressor 8 is operating, the vaporized gas of the canister 4 is caused to flow to the purge pipe 5, the purge solenoid valve 6, and the second pipe 5b using the negative pressure generated upstream of the compressor 8. Introduced into the engine. On the other hand, during non-supercharging when the compressor 8 is not operating, the vaporized gas of the canister 4 is caused to flow to the purge pipe 5, the purge solenoid valve 6, and the first pipe 5a using the negative pressure generated in the intake manifold pipe 1. Install into the engine.
 パージ配管5におけるパージソレノイドバルブ6より上流位置から分岐してパージ配管5の一部を構成する第1配管5aと第2配管5bのそれぞれには、逆流を防止する第1逆止弁7aと第2逆止弁7bが設置される。
 図7に示す逆止弁付きパージソレノイドバルブは、この第1逆止弁7aと第2逆止弁7bを、パージソレノイドバルブ6に一体化した構成である。さらに、この逆止弁付きパージソレノイドバルブの内部において、パージ配管5が第1配管5aと第2配管5bに分岐する構成である。
A first check valve 7a and a first check valve 7a that prevent backflow are respectively connected to the first pipe 5a and the second pipe 5b that branch from the upstream position of the purge solenoid valve 6 in the purge pipe 5 and constitute a part of the purge pipe 5. 2 Check valve 7b is installed.
The purge solenoid valve with a check valve shown in FIG. 7 has a configuration in which the first check valve 7 a and the second check valve 7 b are integrated with the purge solenoid valve 6. Further, the purge pipe 5 is branched into a first pipe 5a and a second pipe 5b inside the purge solenoid valve with a check valve.
 具体的には、図7に示すように、逆止弁付きパージソレノイドバルブは、パージ配管5の上流側に接続される吸引ポート31と、パージ配管5の下流側となる第1配管5aに接続される第1逆止弁7aの排出ポート12と、パージ配管5の下流側となる第2配管5bに接続される第2逆止弁7bの排出ポート12とを備えている。また、吸引ポート31に連通した流路の途中には弁部35に当接する弁座36が形成されており、この弁座36の下流側において流路が分岐して第1逆止弁7aの排出ポート12と第2逆止弁7bの排出ポート12に連通している。 Specifically, as shown in FIG. 7, the purge solenoid valve with a check valve is connected to the suction port 31 connected to the upstream side of the purge pipe 5 and the first pipe 5 a on the downstream side of the purge pipe 5. The discharge port 12 of the first check valve 7a and the discharge port 12 of the second check valve 7b connected to the second pipe 5b on the downstream side of the purge pipe 5 are provided. In addition, a valve seat 36 that contacts the valve portion 35 is formed in the middle of the flow path communicating with the suction port 31, and the flow path is branched downstream of the valve seat 36 so that the first check valve 7a The discharge port 12 communicates with the discharge port 12 of the second check valve 7b.
 非過給時は、パージソレノイドバルブ6が開弁すると、キャニスタ4の蒸散ガスがインマニ配管1の負圧により、パージ配管5、パージソレノイドバルブ6の吸引ポート31、第1逆止弁7aの排出ポート12、第1配管5aを経由してインマニ配管1へ流れ、エンジンへ導入される。
 他方、過給時は、パージソレノイドバルブ6が開弁すると、キャニスタ4の蒸散ガスがコンプレッサ8の上流側の負圧により、パージ配管5、パージソレノイドバルブ6の吸引ポート31、第2逆止弁7bの排出ポート12、第2配管5bを経由してコンプレッサ8上流へ流れ、スロットルバルブ2を経由してエンジンへ導入される。
During non-supercharging, when the purge solenoid valve 6 is opened, the vaporized gas in the canister 4 is discharged from the purge pipe 5, the suction port 31 of the purge solenoid valve 6, and the first check valve 7a due to the negative pressure of the intake manifold pipe 1. It flows into the intake manifold pipe 1 via the port 12 and the first pipe 5a, and is introduced into the engine.
On the other hand, at the time of supercharging, when the purge solenoid valve 6 is opened, the vaporized gas in the canister 4 is caused by the negative pressure on the upstream side of the compressor 8, thereby causing the purge pipe 5, the suction port 31 of the purge solenoid valve 6, and the second check valve. It flows to the upstream side of the compressor 8 via the discharge port 12 of the 7b and the second pipe 5b, and is introduced into the engine via the throttle valve 2.
 なお、図6および図7の例では、パージソレノイドバルブ6に対して図2に示した構造の逆止弁7を組み合わせたが、パージソレノイドバルブ6に対して図4または図5に示した構造の逆止弁7を組み合わせてもよい。
 また、図8に示す蒸散ガス処理システムにおいて、パージ配管5から分岐した第1配管5aに対して図6に示した構造の逆止弁付きパージソレノイドバルブを設置すると共に、同じくパージ配管5から分岐した第2配管5bに対しても図6に示した構造の逆止弁付きパージソレノイドバルブを設置してもよい。
6 and FIG. 7, the check valve 7 having the structure shown in FIG. 2 is combined with the purge solenoid valve 6. However, the structure shown in FIG. The check valve 7 may be combined.
Further, in the transpiration gas treatment system shown in FIG. 8, a purge solenoid valve with a check valve having the structure shown in FIG. 6 is installed on the first pipe 5a branched from the purge pipe 5, and also branched from the purge pipe 5. A purge solenoid valve with a check valve having the structure shown in FIG. 6 may be provided for the second pipe 5b.
 以上より、実施の形態3によれば、デューティ駆動するパージソレノイドバルブ6と逆止弁7とを一体に形成するようにしたので、パージ配管5の途中にパージソレノイドバルブ6と逆止弁7をそれぞれ設置する場合に比べて、パージ配管5とパージソレノイドバルブ6と逆止弁7を接続するホース配管等の部品削減、および車体組み付け作業の簡略化といったメリットが得られる。 As described above, according to the third embodiment, the purge solenoid valve 6 and the check valve 7 that are duty-driven are integrally formed. Therefore, the purge solenoid valve 6 and the check valve 7 are provided in the middle of the purge pipe 5. Compared with the case where each is installed, there are advantages such as reduction of parts such as a hose pipe connecting the purge pipe 5, the purge solenoid valve 6 and the check valve 7, and simplification of the vehicle body assembling work.
 なお、本発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、各実施の形態の任意の構成要素の変形、または各実施の形態の任意の構成要素の省略が可能である。 In the present invention, within the scope of the invention, free combinations of the respective embodiments, modification of arbitrary components of the respective embodiments, or omission of arbitrary components of the respective embodiments are possible.
 この発明に係る逆止弁は、弁体に対して開閉方向の減衰力を発生させるダンパを備えるようにしたので、圧力脈動および振動などが生じる車両の蒸散ガス処理システムなどに用いるのに適している。 Since the check valve according to the present invention is provided with a damper that generates a damping force in the opening / closing direction with respect to the valve body, it is suitable for use in a transpiration gas treatment system of a vehicle in which pressure pulsation and vibration occur. Yes.
 1 インマニ配管、2 スロットルバルブ、3 ガソリンタンク、4 キャニスタ、5 パージ配管、5a 第1配管、5b 第2配管、6 パージソレノイドバルブ、7 逆止弁、7a 第1逆止弁、7b 第2逆止弁、8 コンプレッサ、11,21,31 吸引ポート、12,22 排出ポート、13 エアダンパ構造、14 シリンダ、15,25 弁体、16,26 ダンパ室、17,27 スプリング、18,28 弾性体、19,29 通気孔、23 ダイヤフラム(ダンパ構造)、32 プランジャ、33 ソレノイド部、34 スプリング、35 弁部、36 弁座、A 流れ順方向、B 逆流方向。 1 intake manifold, 2 throttle valve, 3 gasoline tank, 4 canister, 5 purge piping, 5a first piping, 5b second piping, 6 purge solenoid valve, 7 check valve, 7a first check valve, 7b second reverse Stop valve, 8 compressor, 11, 21, 31 suction port, 12, 22 discharge port, 13 air damper structure, 14 cylinder, 15, 25 valve body, 16, 26 damper chamber, 17, 27 spring, 18, 28 elastic body, 19, 29 vent hole, 23 diaphragm (damper structure), 32 plunger, 33 solenoid part, 34 spring, 35 valve part, 36 valve seat, A flow forward direction, B reverse flow direction.

Claims (6)

  1.  デューティ駆動するパージソレノイドバルブと同じ配管に設置される逆止弁であって、
     前記配管に連通する流路を開閉する弁体と、
     前記流路を閉じる方向に前記弁体を押し付けるスプリングと、
     前記弁体に対して開閉方向の減衰力を発生させるダンパとを備えることを特徴とする逆止弁。
    A check valve installed in the same piping as the purge solenoid valve driven by duty,
    A valve body for opening and closing a flow path communicating with the pipe;
    A spring that presses the valve body in a direction to close the flow path;
    A check valve comprising: a damper that generates a damping force in the opening / closing direction with respect to the valve body.
  2.  前記ダンパは、一端に開口部が形成されたシリンダの内部に前記弁体が開閉方向に摺動可能に収容されたエアダンパであり、前記流路を流れる流体を前記シリンダ内に流入および前記シリンダ内から流出させる、前記シリンダと前記弁体の隙間を有することを特徴とする請求項1記載の逆止弁。 The damper is an air damper in which the valve body is slidably accommodated in an opening / closing direction in a cylinder having an opening at one end, and the fluid flowing through the flow path flows into the cylinder and flows into the cylinder. The check valve according to claim 1, further comprising a gap between the cylinder and the valve body that flows out from the cylinder.
  3.  前記シリンダまたは前記弁体は、前記流路を流れる流体を前記シリンダ内へ流入および前記シリンダ内から流出させる通気孔を有することを特徴とする請求項2記載の逆止弁。 3. The check valve according to claim 2, wherein the cylinder or the valve body has a vent hole for allowing a fluid flowing through the flow path to flow into and out of the cylinder.
  4.  前記ダンパは、
     前記弁体が固定されたダイヤフラムと、
     外気または前記流路を流れる流体を前記ダイヤフラム内に流入および前記ダイヤフラム内から流出させる通気孔とを有することを特徴とする請求項1記載の逆止弁。
    The damper is
    A diaphragm to which the valve body is fixed;
    The check valve according to claim 1, further comprising a vent hole for allowing outside air or a fluid flowing through the flow path to flow into and out of the diaphragm.
  5.  逆止弁が、デューティ駆動するパージソレノイドバルブと同じ配管に設置される逆止弁付きパージソレノイドバルブであって、
     前記逆止弁は、
     前記パージソレノイドバルブの流路を開閉する弁体と、
     前記流路を閉じる方向に前記弁体を押し付けるスプリングと、
     前記弁体に対して開閉方向の減衰力を発生させるダンパとを備えることを特徴とする逆止弁付きパージソレノイドバルブ。
    The check valve is a purge solenoid valve with a check valve installed in the same pipe as the duty solenoid purge solenoid valve,
    The check valve is
    A valve body for opening and closing the flow path of the purge solenoid valve;
    A spring that presses the valve body in a direction to close the flow path;
    A purge solenoid valve with a check valve, comprising: a damper that generates a damping force in the opening / closing direction with respect to the valve body.
  6.  前記逆止弁と前記パージソレノイドバルブとが一体に形成されていることを特徴とする請求項5記載の逆止弁付きパージソレノイドバルブ。 The purge solenoid valve with a check valve according to claim 5, wherein the check valve and the purge solenoid valve are integrally formed.
PCT/JP2015/069659 2015-07-08 2015-07-08 Check valve and purge solenoid valve equipped with check valve WO2017006463A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/069659 WO2017006463A1 (en) 2015-07-08 2015-07-08 Check valve and purge solenoid valve equipped with check valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/069659 WO2017006463A1 (en) 2015-07-08 2015-07-08 Check valve and purge solenoid valve equipped with check valve

Publications (1)

Publication Number Publication Date
WO2017006463A1 true WO2017006463A1 (en) 2017-01-12

Family

ID=57685130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069659 WO2017006463A1 (en) 2015-07-08 2015-07-08 Check valve and purge solenoid valve equipped with check valve

Country Status (1)

Country Link
WO (1) WO2017006463A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63134161U (en) * 1987-02-24 1988-09-02
JPH0960740A (en) * 1995-08-25 1997-03-04 Nok Corp Diaphragm valve
JP2002188528A (en) * 2000-12-19 2002-07-05 Honda Motor Co Ltd Vaporized fuel control device for internal combustion engine with supercharger
JP2004068706A (en) * 2002-08-06 2004-03-04 Nissan Motor Co Ltd Fuel gas treating device for engine
JP2008144863A (en) * 2006-12-11 2008-06-26 Nok Corp Check valve
US20110030659A1 (en) * 2009-08-04 2011-02-10 Ford Global Technologies, Llc Bidirectional adsorbent-canister purging
JP2012007639A (en) * 2010-06-23 2012-01-12 Ibs Co Ltd Check valve
JP2014074436A (en) * 2012-10-03 2014-04-24 Fuji Koki Corp Check valve
JP2014111915A (en) * 2012-12-05 2014-06-19 Hamanako Denso Co Ltd Evaporation fuel purge device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63134161U (en) * 1987-02-24 1988-09-02
JPH0960740A (en) * 1995-08-25 1997-03-04 Nok Corp Diaphragm valve
JP2002188528A (en) * 2000-12-19 2002-07-05 Honda Motor Co Ltd Vaporized fuel control device for internal combustion engine with supercharger
JP2004068706A (en) * 2002-08-06 2004-03-04 Nissan Motor Co Ltd Fuel gas treating device for engine
JP2008144863A (en) * 2006-12-11 2008-06-26 Nok Corp Check valve
US20110030659A1 (en) * 2009-08-04 2011-02-10 Ford Global Technologies, Llc Bidirectional adsorbent-canister purging
JP2012007639A (en) * 2010-06-23 2012-01-12 Ibs Co Ltd Check valve
JP2014074436A (en) * 2012-10-03 2014-04-24 Fuji Koki Corp Check valve
JP2014111915A (en) * 2012-12-05 2014-06-19 Hamanako Denso Co Ltd Evaporation fuel purge device

Similar Documents

Publication Publication Date Title
JP5752244B2 (en) Blow-off valve for internal combustion engines
WO2017056833A1 (en) Evaporated fuel processing device
JP6544114B2 (en) Check valve device and evaporated fuel supply system
JP6813349B2 (en) Evaporative fuel processing equipment for internal combustion engine
RU2646209C2 (en) Device for improving vacuum in brakes amplifier
JP6028771B2 (en) Two-stage switching valve
JP6110566B2 (en) Surge under boost compressed air compressor recirculation valve system
JP2015048912A (en) Flow rate selector valve
JP5949150B2 (en) Evaporative fuel purge device
US10557442B2 (en) Purge ejector assembly for an engine
US10495232B2 (en) Dual path dual purge valve system and valve assembly for turbo boosted engine
JP2002535535A (en) Valve for metering and introducing evaporative fuel
JP5689983B2 (en) solenoid valve
JP6289685B2 (en) Solenoid valve and transpiration gas treatment system
US20170328270A1 (en) Valve device for vehicle
US9970337B2 (en) Actuator for valves in internal combustion engines
JP2015094313A (en) Diaphragm actuator and turbocharger
JP2015143485A (en) Internal combustion engine with supercharger
JP2015148173A (en) Check valve device and evaporated fuel supply system with the same
JP6225480B2 (en) Evaporative fuel purge device
US11458834B2 (en) Fluid control valve and evaporated fuel processing device
JPH0972250A (en) Exhaust gas recirculation system
CN110030122B (en) Purifying control electromagnetic valve
WO2017006463A1 (en) Check valve and purge solenoid valve equipped with check valve
JP2020133540A (en) Flow control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15897725

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15897725

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP