WO2017005716A1 - Method for producing a coolable electronic component and assembly comprising an electronic component and a cooling element - Google Patents

Method for producing a coolable electronic component and assembly comprising an electronic component and a cooling element Download PDF

Info

Publication number
WO2017005716A1
WO2017005716A1 PCT/EP2016/065765 EP2016065765W WO2017005716A1 WO 2017005716 A1 WO2017005716 A1 WO 2017005716A1 EP 2016065765 W EP2016065765 W EP 2016065765W WO 2017005716 A1 WO2017005716 A1 WO 2017005716A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic component
cooling element
interface
mounting surface
assembly
Prior art date
Application number
PCT/EP2016/065765
Other languages
German (de)
French (fr)
Inventor
Martin Franke
Peter Frühauf
Rüdiger Knofe
Bernd Müller
Stefan Nerreter
Michael Niedermayer
Ulrich Wittreich
Manfred ZÄSKE
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2017005716A1 publication Critical patent/WO2017005716A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • H01L21/4878Mechanical treatment, e.g. deforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • H01L21/4882Assembly of heatsink parts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3675Cooling facilitated by shape of device characterised by the shape of the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L2224/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • H01L2224/081Disposition
    • H01L2224/0812Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/08151Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/08221Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/08245Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/80003Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding involving a temporary auxiliary member not forming part of the bonding apparatus
    • H01L2224/80004Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding involving a temporary auxiliary member not forming part of the bonding apparatus being a removable or sacrificial coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/80009Pre-treatment of the bonding area
    • H01L2224/8001Cleaning the bonding area, e.g. oxide removal step, desmearing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/80009Pre-treatment of the bonding area
    • H01L2224/8003Reshaping the bonding area in the bonding apparatus, e.g. flattening the bonding area
    • H01L2224/80047Reshaping the bonding area in the bonding apparatus, e.g. flattening the bonding area by mechanical means, e.g. severing, pressing, stamping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/808Bonding techniques
    • H01L2224/80801Soldering or alloying
    • H01L2224/8082Diffusion bonding
    • H01L2224/8083Solid-solid interdiffusion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/808Bonding techniques
    • H01L2224/80894Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces
    • H01L2224/80895Direct bonding, i.e. joining surfaces by means of intermolecular attracting interactions at their interfaces, e.g. covalent bonds, van der Waals forces between electrically conductive surfaces, e.g. copper-copper direct bonding, surface activated bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/80909Post-treatment of the bonding area
    • H01L2224/80948Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/80986Specific sequence of steps, e.g. repetition of manufacturing steps, time sequence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • H01L23/4275Cooling by change of state, e.g. use of heat pipes by melting or evaporation of solids

Definitions

  • a method of producing a coolable electronic component and assembly comprising an electronic component and a cooling element
  • the invention relates to a method of producing a coolable electronic component, said electronic component Kom ⁇ an interface provides on which a cooling member having a mounting side can be mounted.
  • Au ⁇ ßerdem the invention relates to an assembly with a elekt ⁇ tronic component and a cooling element which is in contact with the electronic component.
  • heatsink are for example made of aluminum are used, which provide a mounting ⁇ page is available, with which they can be placed on a boundary surface of the electronic component.
  • the heat sink used to use often have ribs to increase the surface for heat dissipation and can be cost-effective as an extruded profile in ⁇ example in aluminum produce.
  • the possible heat output of such passive cooler is however bound by physical limits so that encounter limits ⁇ conventional cooling elements in heat dissipation to their performance.
  • a more heat-conductive metal such as copper can also be selected.
  • heatsinks are uneconomical due to higher material and manufacturing costs.
  • Another possibility is an active cooling by a forced convection of a coolant, in ⁇ example of air, which is moved by means of a fan or a liquid that can be used for example in so-called heat pipes. Also such
  • Cooling solutions are more expensive than passive cooling and also less reliable, so there is a desire to dispense with an active cooling solution.
  • the object of the invention is therefore to provide a method for producing a coolable electronic component or an assembly with an electronic component and a contact with this cooling element, with which a comparatively high Enticarmungs antique be implemented with ver ⁇ comparatively simple and reliable means can.
  • the electronic component and the cooling element are connected by cold welding lead ⁇ bend together.
  • the boundary surface of the electronic component and the mounting surface of the cooling element must be made of the same material, which must be suitable for cold welding.
  • Cold welding increases the mechanical stability of the connection, which, after cold welding, is no longer achieved by adhesion forces, but rather by the formation of chemical or metallic bonds between the joining partners.
  • metallic joining partners it can be said that the metallic structures of the joining partners grow together, so that a phase boundary after cold welding no longer exists. ⁇ advantageous way can be reduced in this way still further the thermal resistance between the elekt ⁇ tronic component and the cooling element.
  • a cooling of the electronic component takes place after joining advantageous over the interface of the electronic component and the mounting surface of the cooling element.
  • a more ⁇ tes bonding between these components leads to a direct material connection of the cooling element to the electronic component, whereby the thermal contact resistance can be minimized in comparison advantageous ⁇ equal to conventional joining methods.
  • the cooling capacity of the contact ments alone by modifying the joining process advantageous ⁇ improves.
  • interface materials thermal interface matarial, TIM for short
  • TIM thermal interface matarial, TIM for short
  • the joining partners are additionally provided by a spring force, adhesion or Screw connection can be pressed.
  • an electronic component to a entippondes elekt ⁇ ronisches component can be used which is directly provided with the cooling component. It can also be an electronic module to be cooled, in which case the cooling element is connected to the electronic module.
  • the electronic assembly may provide a housing for this purpose, for example.
  • the cold welding of the electronic component with the cooling element after the pushing is supported by the electronic component and the cooling element are pressed together.
  • This can intensify the process of cold welding the one hand accelerates and at the other hand, ⁇ , even if this process to the pushing of the components is also triggered spontaneously.
  • Compressing the components makes cold welding more accessible to an industrial application.
  • the compression can also be assisted by introducing the electronic component provided with the cooling element into a vacuum. This has the advantage that air that is still in the joint gap, is sucked, whereby on the one hand increases the contact pressure between the electronic component and the cooling element and on the other hand, the available effective joining surface is increased.
  • the heat ⁇ transition between the cold-welded parts can thus still be improved by further reducing the thermal resistance.
  • the interface and the mounting surface are cleaned prior to the on ⁇ push of dirt. If the joining surfaces are cleaned again just before pushing, the joining result can be advantageously further improved. This, too, ultimately reduces the thermal resistance of the joint.
  • the interface and the mounting surface are polished before pushing.
  • the smoothness of the interface and the Monta ⁇ ge Formation can be increased, whereby greater forces of adhesion act according to the pushing.
  • polishing especially when performed immediately prior to pushing, allows cleaning of the mating surfaces of, for example, oxides which would reduce the effect of cold welding following insertion.
  • the electronic component is coated with the material from which the cooling element is made prior to insertion.
  • a subsequent coating with the material from which also the Cooling element then allows a push and cold welding of the electronic component and the cooling element.
  • a coating method can be selected for the coating of the electronic component, which allows a good connection of the layer to the electronic component, so that there is also a heat transfer is ensured with a low thermal resistance.
  • thermal spraying processes, electrochemical coating processes or the like can be used
  • Mounting surface are provided after their preparation for pushing with a protective layer, which is removed only immediately before pushing. As a result, the respective joining surfaces are protected from environmental influences. Pollution, for example by fats and oxidation are thereby effectively prevented.
  • the above-mentioned object is achieved by the above-mentioned assembly according to the invention that the contact at a transition between the electronic component and the cooling element consists of an immediate material ⁇ conclusive cold weld connection without joining adjuvants.
  • a connection can, as already explained in detail, be produced by pushing and possibly subsequent cold welding.
  • the assembly can be due to ⁇ for the reasons already explained above by means of the cooling element advantageously with a relatively high We ⁇ kungsgrad entracermmen.
  • the transition which comes about after assembly between the interface of the electronic component and the mounting surface of the cooling element, is flat from ⁇ formed. This has the advantage that the interface and The mounting surface can be easily edited to produce the necessary smoothness for pushing.
  • Example ⁇ as can be achieved the smoothness by polishing on a polishing wheel. In this case, average roughness depths R z of 0.04 to 0.25 are achievable (values in ym).
  • FIG. 1 shows an exemplary embodiment of the assembly according to the invention, in which an electronic component is used as the electronic component, as a side view,
  • FIG 2 shows a further embodiment of the assembly according to the invention, in which an electronic component is an electronic assembly for use, partially cut, and FIG 3 to 7 selected production steps of exporting ⁇ approximately example of Ferti ⁇ off procedure according to the invention, wherein the participating Comp ⁇ components of the manufacturing steps are shown as Soan ⁇ view and partially cut.
  • FIG. 1 shows a substrate 11 on which an electronic component 12 in the form of a chip is mounted.
  • adeel element 13 On a top of the device 12 is adeel element 13 is mounted aluminum with cooling fins 14.
  • a transition 15 between the device 12 and the cooling element 13 was generated by pushing and comes by Adphaseskr te, which fix the cooling element 13 cohesively without joining aids on the component.
  • an electronic component 16 is mounted on the substrate.
  • This has a plurality of electronic construction ⁇ stones 17, which are combined in a housing 18th In an interior of the housing 18, a heat from the blocks 17 conductive medium 19 is provided.
  • This may be, for example TERIAL to potting compound or a Phasen chirma- which can latently store heat by liquefaction, which can be time-delayed bring ⁇ passed to the cooling element. 13
  • the housing 18 is made of aluminum. After placing the cooling element 13, which also consists of aluminum, takes place at the transition 15, a cold welding. After the cold welding, the transition 15 itself is no longer visible, since the structure of the housing 18 is fused with the structure of the cooling element 13.
  • FIG. 3 shows a preliminary manufacturing step for the installation of a cooling element 13 on a component 12 to know he is ⁇ .
  • a polishing pad 20 is used, with which an interface 21 of the component 12 and a mounting surface 22 of the cooling element 13 is polished ⁇ the.
  • the interface 21 and the mounting surface 22 are available for subsequent assembly of the illustrated components by pushing (not shown). Pushing takes place by approaching the mounting surface 22 and the boundary surface 21 until it touches, so that an intimate connection is established between these two joining surfaces due to adhesion forces.
  • a pressing that is, applying a joining force, can take place during the pushing.
  • cold welding can take place in the transition between the mounting surface 22 and the interface 21.
  • FIG. 4 shows a production step with which the component 12 can be provided with a layer 25 forming the interface 21 in a sputtering installation 23 by sputtering in a process chamber 24.
  • a target 26 is used, which provides the material for the layer 25 available.
  • the resulting layer 25 has a very smooth surface due to the choice of the method.
  • the ⁇ se is ideal for a subsequent assembly ⁇ step by pushing a cooling element.
  • the layer 25 is made of aluminum.
  • Protective layer 27 can be provided. This may be, for example, a film which adheres adhesively to the interface 21 and the mounting surface 22 and can be removed without residue directly before pushing the two components.
  • FIG. 6 An assembly by pushing is shown in Figure 6.
  • the cooling element 14 has simply been placed on the component 12, where it is fixed there due to adhesion forces. Subsequently, the joined components are inserted into a vacuum chamber 28 and a vacuum 29 is generated by means of a pump 29. As a result, air molecules are sucked out of the transition 15. A subsequent cold welding ofdeele ⁇ ment 13 with the layer 25 (see FIG. 5) of the device 12 is supported by the vacuum. To recognize the is
  • FIG. 7 shows how the pushing can alternatively also be supported by generating a contact pressure g due to the weight of a mass 30. Again, it can be seen that after cold welding the overlay 15 can only be indicated by a dot-dash line.
  • the manufacturing steps of FIGS. 6 and 7 can also be combined by using the mass 30 in a vacuum chamber 28.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

The invention relates to a method for producing a coolable electronic component (12) by a cooling element (13) being connected to said component. According to the invention, it is provided that the connection is produced by pushing, also called direct bonding, wherein the joining surfaces of the electronic component (12) and of the cooling element (13) are so smooth that adhesion forces lead to a cohesive connection at a transition between these two components (15). This cohesive connection can be further strengthened by subsequent cold-welding. The advantage of the resulting transition (15) is a thermal resistance which is lower in comparison to transitions with a joining aid, and for this reason heat can advantageously be drawn from the electronic component (12) by the cooling element (13) more effectively. An assembly which has been produced in accordance with said method also forms the subject matter of the invention.

Description

Beschreibung description
Verfahren zum Erzeugen einer kühlbaren elektronischen Komponente und Baugruppe mit einer elektronischen Komponente und einem Kühlelement A method of producing a coolable electronic component and assembly comprising an electronic component and a cooling element
Die Erfindung betrifft ein Verfahren zum Erzeugen einer kühlbaren elektronischen Komponente, wobei die elektronische Kom¬ ponente eine Grenzfläche zur Verfügung stellt, auf der ein Kühlelement mit einer Montageseite montiert werden kann. Au¬ ßerdem betrifft die Erfindung eine Baugruppe mit einer elekt¬ ronischen Komponente und einem Kühlelement, welches mit der elektronischen Komponente in Kontakt steht. The invention relates to a method of producing a coolable electronic component, said electronic component Kom ¬ an interface provides on which a cooling member having a mounting side can be mounted. Au ¬ ßerdem the invention relates to an assembly with a elekt ¬ tronic component and a cooling element which is in contact with the electronic component.
Es ist hinlänglich bekannt, dass elektronische Komponenten mit vorzugsweise passiven Kühlelementen versehen werden, um die Verlustwärme, die während des Betriebs der elektronischen Komponente entsteht, abzuführen. Die fortschreitende Erhöhung der durch elektronische Komponenten umgesetztem Leistungen bei gleichzeitigerer Miniaturisierung der zum Einsatz kommenden Bauelemente führt dazu, dass pro zur Verfügung stehender Flächeneinheit der elektronischen Komponente immer größere Wärmemengen transportiert werden müssen. Dabei sind es die immer kleiner werdenden Kontaktflächen zwischen den elektronischen Komponenten als Wärmequelle und den zum Einsatz kommenden Kühlkörpern oder Medien, die eine effektive Entwärmung der elektronischen Komponenten erschweren. Andererseits ist eine zuverlässige Entwärmung Voraussetzung für eine einwand¬ freie Funktion der mit den elektronischen Komponenten realisierten Schaltungen. It is well known that electronic components are preferably provided with passive cooling elements to dissipate the heat lost during operation of the electronic component. The progressive increase in the power converted by electronic components with simultaneous miniaturization of the components used leads to ever greater amounts of heat having to be transported per available unit area of the electronic component. It is the ever-decreasing contact surfaces between the electronic components as a heat source and the heat sinks or media used that make effective cooling of the electronic components difficult. On the other hand, a reliable cooling is a prerequisite for a perfect ¬ free function of realized with the electronic components circuits.
Bei konventionellen Kühlkörpertechnologien kommen Kühlkörper beispielsweise aus Aluminium zum Einsatz, die eine Montage¬ seite zur Verfügung stellen, mit der sie auf eine Grenzfläche der elektronischen Komponente aufgesetzt werden können. Die zum Einsatz kommenden Kühlkörper haben häufig Rippen zur Vergrößerung der Oberfläche zur Wärmeabgabe und lassen sich bei¬ spielsweise in Aluminium kostengünstig als Strangpressprofil herstellen. Die mögliche Wärmeabgabe solcher passiven Kühler ist jedoch an physikalische Grenzen gebunden, so dass konventionelle Kühlelemente bei der Entwärmung an ihre Leistungs¬ grenzen stoßen. Statt Aluminium kann auch ein besser wärme- leitfähiges Metall wie Kupfer ausgewählt werden. Allerdings sind derartige Kühlkörper aufgrund von höheren Material- und Fertigungskosten unwirtschaftlich . In conventional heat sink technology heatsink are for example made of aluminum are used, which provide a mounting ¬ page is available, with which they can be placed on a boundary surface of the electronic component. The heat sink used to use often have ribs to increase the surface for heat dissipation and can be cost-effective as an extruded profile in ¬ example in aluminum produce. The possible heat output of such passive cooler is however bound by physical limits so that encounter limits ¬ conventional cooling elements in heat dissipation to their performance. Instead of aluminum, a more heat-conductive metal such as copper can also be selected. However, such heatsinks are uneconomical due to higher material and manufacturing costs.
Eine andere Möglichkeit besteht in einer aktiven Kühlung durch eine erzwungene Konvektion eines Kühlmittels, bei¬ spielsweise von Luft, die mittels eines Lüfters bewegt wird oder einer Flüssigkeit, die beispielsweise in sogenannten Heat-Pipes zum Einsatz kommen kann. Auch derartige Another possibility is an active cooling by a forced convection of a coolant, in ¬ example of air, which is moved by means of a fan or a liquid that can be used for example in so-called heat pipes. Also such
Entwärmungslösungen sind teurer als eine passive Kühlung und zudem auch weniger zuverlässig, so dass ein Bestreben besteht, auf eine aktive Kühlungslösung zu verzichten. Cooling solutions are more expensive than passive cooling and also less reliable, so there is a desire to dispense with an active cooling solution.
Die Aufgabe der Erfindung besteht daher darin, ein Verfahren zum Erzeugen einer kühlbaren elektronischen Komponente bzw. eine Baugruppe mit einer elektronischen Komponente und einem mit diesem in Kontakt stehenden Kühlelement anzugeben, mit dem eine vergleichsweise hohe Entwärmungsleistung mit ver¬ gleichsweise einfachen und zuverlässigen Mitteln umgesetzt werden kann. The object of the invention is therefore to provide a method for producing a coolable electronic component or an assembly with an electronic component and a contact with this cooling element, with which a comparatively high Entwärmungsleistung be implemented with ver ¬ comparatively simple and reliable means can.
Diese Aufgabe wird mit dem eingangs angegebenen Verfahren er¬ findungsgemäß dadurch gelöst, dass die Grenzfläche und die Montagefläche von der elektronischen Komponente und dem Kühlelement hinreichend glatt ausgeführt werden, damit diese auf- grund von Adhäsionskräften aneinander haften. Dies ermöglicht es, dass das Kühlelement und die elektronische Komponente über die Grenzfläche und die Montagefläche durch Anschieben miteinander verbunden werden, wobei die elektronische Kompo¬ nente und das Kühlelement durch Kaltverschweißen bleibend miteinander verbunden werden. Das Anschieben zweier Bauteile wird auch als Ansprengen oder direktes Bonden (direct This object is achieved according to the invention with the method given in the introduction in that the interface and the mounting surface are made sufficiently smooth by the electronic component and the cooling element so that they adhere to one another due to adhesion forces. This makes it possible that the cooling element and the electronic component via the interface and the mounting surface by pushing be connected to each other, wherein the electronic compo ¬ component and the cooling element are joined by cold welding engagement with each other. The pushing of two components is also called wringing or direct bonding (direct
bonding) bezeichnet. Hierbei werden zwei Bauteile, die ange¬ schoben werden sollen, mit den glatten Fügeflächen in Kontakt gebracht, wobei diese aufgrund von Adhäsionskräften an den Fügeflächen stoffflüssig miteinander verbunden werden. Glatt im Zusammenhang mit dieser Erfindung sind damit Fügeflächen, deren Oberflächengüte ausreicht, um ein Fügen aufgrund der wirkenden Adhäsionskräfte zwischen den Fügeflächen zu bewirken. Solche Oberflächen können beispielsweise durch Polieren hergestellt werden. Die Fügeflächen bei dem erfindungsgemäßen Verfahren werden einerseits durch die Grenzfläche der Kompo¬ nente und andererseits durch die Montagefläche des Kühlele- ments zur Verfügung gestellt. bonding). Here are two components to be ¬ pushed, with the smooth joining surfaces in contact brought, which are connected to each other due to adhesion forces at the joining surfaces fluidly. Smooth in the context of this invention are thus joining surfaces whose surface finish is sufficient to cause a joining due to the acting adhesion forces between the joining surfaces. Such surfaces can be made, for example, by polishing. The joining surfaces in the inventive process are provided on the one hand by the boundary surface of the compo nent ¬ and secondly by the mounting surface of Kühlele- ments are available.
Gemäß der Erfindung ist vorgesehen, dass die elektronische Komponente und das Kühlelement durch Kaltverschweißen blei¬ bend miteinander verbunden werden. Hierzu muss die Grenzflä- che der elektronischen Komponente und die Montagefläche des Kühlelements aus demselben Material bestehen, welches zum Kaltverschweißen geeignet sein muss. Dies gilt vorzugsweise für metallische Werkstoffe. Das Kaltverschweißen verstärkt die mechanische Stabilität der Anbindung, die nach dem Kalt- verschweißen nicht mehr durch Adhäsionskräfte zustande kommt, sondern durch den Aufbau chemischer oder metallischer Bindungen zwischen den Fügepartnern. Im Falle von metallischen Fügepartnern kann man sagen, dass die metallischen Gefüge der Fügepartner gleichsam zusammenwachsen, so dass eine Phasen- grenze nach dem Kaltverschweißen nicht mehr besteht. Vorteil¬ haft lässt sich der thermische Widerstand zwischen der elekt¬ ronischen Komponente und dem Kühlelement auf diese Weise noch weiter verringern. Eine Entwärmung der elektronischen Komponente erfolgt nach dem Fügen vorteilhaft über die Grenzfläche der elektronischen Komponente und die Montagefläche des Kühlelements. Ein direk¬ tes Bonden zwischen diesen Bauteilen führt zu einer direkten stofflichen Anbindung des Kühlelements an der elektronischen Komponente, womit der thermische Übergangswiderstand im Ver¬ gleich zu herkömmlichen Fügeverfahren vorteilhaft minimiert werden kann. Hierdurch wird die Kühlleistung des Kontaktele- ments allein durch Modifizierung des Fügeverfahrens vorteil¬ haft verbessert. According to the invention, it is provided that the electronic component and the cooling element are connected by cold welding lead ¬ bend together. For this purpose, the boundary surface of the electronic component and the mounting surface of the cooling element must be made of the same material, which must be suitable for cold welding. This is preferably true for metallic materials. Cold welding increases the mechanical stability of the connection, which, after cold welding, is no longer achieved by adhesion forces, but rather by the formation of chemical or metallic bonds between the joining partners. In the case of metallic joining partners, it can be said that the metallic structures of the joining partners grow together, so that a phase boundary after cold welding no longer exists. ¬ advantageous way can be reduced in this way still further the thermal resistance between the elekt ¬ tronic component and the cooling element. A cooling of the electronic component takes place after joining advantageous over the interface of the electronic component and the mounting surface of the cooling element. A more ¬ tes bonding between these components leads to a direct material connection of the cooling element to the electronic component, whereby the thermal contact resistance can be minimized in comparison advantageous ¬ equal to conventional joining methods. As a result, the cooling capacity of the contact ments alone by modifying the joining process advantageous ¬ improves.
Im Vergleich hierzu werden gemäß dem Stand der Technik typischerweise sogenannte Interfacematerialien (thermal interface matarial, kurz TIM) in Form von Pasten oder Folien verwendet, die den Kühlkörper dauerelastisch oder formstabil an die elektronische Komponente anzubinden, wobei die Fügepartner zusätzlich durch eine Federkraft, Klebung oder Schraubverbindung angepresst werden können. Hierbei sind bei der By comparison, according to the prior art, so-called interface materials (thermal interface matarial, TIM for short) in the form of pastes or films are used, which bond the heat sink to the electronic component in a permanently elastic or dimensionally stable manner, wherein the joining partners are additionally provided by a spring force, adhesion or Screw connection can be pressed. Here are in the
Entwärmung aber die thermischen Widerstände zu überwinden, die durch das Interfacematerial selbst sowie die Kontaktwi¬ derstände zwischen der elektronischen Komponente und dem Interfacematerial sowie zwischen dem Interfacematerial und dem Kühlkörper auftreten. Diese Widerstände erhöhen sich insbesondere bei einer thermischen Wechselbeanspruchung der Baugruppe während des Betriebs. Durch die erfindungsgemäß direk¬ te Anbindung des Kühlelements an der elektronischen Komponente unter Ausnutzung der Adhäsionskräfte wird ohne ein Interfacematerial eine innige Verbindung zwischen diesen Komponenten hergestellt, so dass nur eine Phasengrenze entsteht und so der thermische Gesamtwiderstand des Übergangs verringert werden kann. Heat dissipation but to overcome the thermal resistances that occur through the interface material itself and the Kontaktwi ¬ resistance between the electronic component and the interface material and between the interface material and the heat sink. These resistances increase in particular during a thermal cycling of the assembly during operation. By the present invention direct ¬ te connection of the cooling element to the electronic component taking advantage of the adhesion forces an intimate connection between these components is produced without an interface material so that only arises a phase boundary, and thus the total thermal resistance of the junction can be reduced.
Als elektronische Komponente kann ein zu entwärmendes elekt¬ ronisches Bauelement verwendet werden, welches direkt mit der Kühlkomponente versehen wird. Es kann auch eine elektronische Baugruppe entwärmt werden, wobei das Kühlelement in diesem Fall an die elektronische Baugruppe angebunden wird. Die elektronische Baugruppe kann zu diesem Zweck beispielsweise ein Gehäuse zur Verfügung stellen. As an electronic component to a entwärmendes elekt ¬ ronisches component can be used which is directly provided with the cooling component. It can also be an electronic module to be cooled, in which case the cooling element is connected to the electronic module. The electronic assembly may provide a housing for this purpose, for example.
Vorteilhaft ist es, wenn das Kaltverschweißen der elektronischen Komponente mit dem Kühlelement nach dem Anschieben unterstützt wird, indem die elektronischen Komponente und das Kühlelement zusammengepresst werden. Hierdurch kann der Pro- zess des Kaltverschweißens einerseits beschleunigt und ande¬ rerseits intensiviert werden, auch wenn dieser Prozess nach dem Anschieben der Bauteile auch spontan ausgelöst wird. Ein Zusammenpressen der Bauteile macht das Kaltverschweißen damit einer industriellen Anwendung besser zugänglich. Das Zusammenpressen kann auch durch Einbringen der mit dem Kühlelement versehenen elektronischen Komponente in ein Vakuum unterstützt werden. Dies hat den Vorteil, dass Luft, die sich noch in dem Fügespalt befindet, abgesaugt wird, wodurch einerseits der Anpressdruck zwischen der elektronischen Komponente und dem Kühlelement vergrößert und zum anderen die zur Verfügung stehende effektive Fügefläche vergrößert wird. Der Wärmeüber¬ gang zwischen den kaltverschweißten Bauteilen lässt sich durch eine weitere Verringerung des thermischen Widerstands damit noch verbessern. Gemäß einer anderen Ausgestaltung der Erfindung ist vorgesehen, dass die Grenzfläche und die Montagefläche vor dem An¬ schieben von Verschmutzungen gereinigt werden. Werden die Fügeflächen unmittelbar vor dem Anschieben noch einmal gereinigt, lässt sich das Fügeergebnis dadurch vorteilhaft weiter verbessern. Auch dies verringert letztendlich den thermischen Widerstand der Fügestelle. It is advantageous if the cold welding of the electronic component with the cooling element after the pushing is supported by the electronic component and the cooling element are pressed together. This can intensify the process of cold welding the one hand accelerates and at the other hand, ¬, even if this process to the pushing of the components is also triggered spontaneously. Compressing the components makes cold welding more accessible to an industrial application. The compression can also be assisted by introducing the electronic component provided with the cooling element into a vacuum. This has the advantage that air that is still in the joint gap, is sucked, whereby on the one hand increases the contact pressure between the electronic component and the cooling element and on the other hand, the available effective joining surface is increased. The heat ¬ transition between the cold-welded parts can thus still be improved by further reducing the thermal resistance. According to another embodiment of the invention, it is provided that the interface and the mounting surface are cleaned prior to the on ¬ push of dirt. If the joining surfaces are cleaned again just before pushing, the joining result can be advantageously further improved. This, too, ultimately reduces the thermal resistance of the joint.
Weiterhin ist es vorteilhaft, wenn die Grenzfläche und die Montagefläche vor dem Anschieben poliert werden. Hierdurch kann einerseits die Glattheit der Grenzfläche und der Monta¬ gefläche vergrößert werden, wodurch größere Adhäsionskräfte nach dem Anschieben wirken. Außerdem ermöglicht das Polieren, insbesondere, wenn es unmittelbar vor dem Anschieben durchgeführt wird, ein Reinigen der Fügeflächen beispielsweise von Oxiden, die den Effekt eines Kaltverschweißens im Anschluss an das Anschieben verringern würden. Furthermore, it is advantageous if the interface and the mounting surface are polished before pushing. In this way, on the one hand, the smoothness of the interface and the Monta ¬ gefläche can be increased, whereby greater forces of adhesion act according to the pushing. In addition, polishing, especially when performed immediately prior to pushing, allows cleaning of the mating surfaces of, for example, oxides which would reduce the effect of cold welding following insertion.
Vorteilhaft kann auch vorgesehen werden, dass die elektronische Komponente vor dem Anschieben mit dem Material beschich- tet wird, aus dem das Kühlelement besteht. Hierdurch wird es vorteilhaft möglich, dass die elektronische Komponente aus einem beliebigen Material hergestellt werden kann. Ein anschließendes Beschichten mit dem Material, aus dem auch das Kühlelement besteht, ermöglicht anschließend ein Anschieben und Kaltverschweißen der elektronischen Komponente und dem Kühlelement. Dabei kann für das Beschichten der elektronischen Komponente ein Beschichtungsverfahren gewählt werden, welches eine gute Anbindung der Schicht an die elektronische Komponente erlaubt, so dass dort ebenfalls ein Wärmeübergang mit einem geringen thermischen Wiederstand gewährleistet ist. Zur Anwendung kommen können je nach Aufbau und Beschaffenheit der elektronischen Komponente thermische Spritzverfahren, elektrochemische Beschichtungsverfahren oder Advantageously, it can also be provided that the electronic component is coated with the material from which the cooling element is made prior to insertion. This advantageously makes it possible for the electronic component to be made of any desired material. A subsequent coating with the material from which also the Cooling element then allows a push and cold welding of the electronic component and the cooling element. In this case, a coating method can be selected for the coating of the electronic component, which allows a good connection of the layer to the electronic component, so that there is also a heat transfer is ensured with a low thermal resistance. Depending on the structure and nature of the electronic component, thermal spraying processes, electrochemical coating processes or the like can be used
Abscheideverfahren aus der Gasphase (Physical Vapor Depositi- on, kur PVD, beispielsweise Sputtern, und Chemical Vapor De- position, kurz CVD) . Vorteilhaft ist es auch, wenn die Grenzfläche und/oder die Separation methods from the gas phase (physical vapor deposition, short PVD, for example sputtering, and chemical vapor deposition, CVD for short). It is also advantageous if the interface and / or the
Montagefläche nach deren Vorbereitung für ein Anschieben mit einer Schutzschicht versehen werden, die erst unmittelbar vor dem Anschieben wieder entfernt wird. Dadurch bleiben die jeweiligen Fügeflächen vor Umwelteinflüssen geschützt. Eine Verschmutzung beispielsweise durch Fette sowie Oxidation werden dadurch wirksam verhindert. Mounting surface are provided after their preparation for pushing with a protective layer, which is removed only immediately before pushing. As a result, the respective joining surfaces are protected from environmental influences. Pollution, for example by fats and oxidation are thereby effectively prevented.
Weiterhin wird die oben angegebene Aufgabe durch die eingangs angegebene Baugruppe erfindungsgemäß dadurch gelöst, dass der Kontakt an einem Übergang zwischen der elektronischen Komponente und dem Kühlelement aus einer unmittelbaren stoff¬ schlüssigen Kaltschweiß-Verbindung ohne Fügehilfsstoffe besteht. Eine solche Verbindung kann, wie bereits ausführlich erläutert, durch Anschieben und evtl. anschließendes Kaltver- schweißen erzeugt werden. Die Baugruppe lässt sich infolge¬ dessen aus den oben bereits erläuterten Gründen mittels des Kühlelements vorteilhaft mit einem vergleichsweise hohen Wir¬ kungsgrad entwärmen. Vorteilhaft ist es, wenn der Übergang, der nach der Montage zwischen der Grenzfläche der elektronischen Komponente und der Montagefläche des Kühlelements zustande kommt, plan aus¬ gebildet ist. Dies hat den Vorteil, dass die Grenzfläche und die Montagefläche einfach bearbeitet werden können, um die notwendige Glattheit zum Anschieben zu erzeugen. Beispiels¬ weise kann die Glattheit durch Polieren auf einer Polierscheibe erreicht werden. Hierbei sind gemittelte Rauhtiefen Rz von 0,04 bis 0,25 erreichbar (Werte in ym) . Furthermore, the above-mentioned object is achieved by the above-mentioned assembly according to the invention that the contact at a transition between the electronic component and the cooling element consists of an immediate material ¬ conclusive cold weld connection without joining adjuvants. Such a connection can, as already explained in detail, be produced by pushing and possibly subsequent cold welding. The assembly can be due to ¬ for the reasons already explained above by means of the cooling element advantageously with a relatively high We ¬ kungsgrad entwärmmen. It is advantageous if the transition, which comes about after assembly between the interface of the electronic component and the mounting surface of the cooling element, is flat from ¬ formed. This has the advantage that the interface and The mounting surface can be easily edited to produce the necessary smoothness for pushing. Example ¬ as can be achieved the smoothness by polishing on a polishing wheel. In this case, average roughness depths R z of 0.04 to 0.25 are achievable (values in ym).
Weitere Einzelheiten der Erfindung werden nachfolgend anhand der Zeichnung beschrieben. Gleiche oder sich entsprechende Zeichnungselemente sind jeweils mit den gleichen Bezugszei- chen versehen und werden nur insoweit mehrfach erläutert, wie sich Unterschiede zwischen den einzelnen Figuren ergeben. Es zeigen : ein Ausführungsbeispiel der erfindungsgemäßen Baugruppe, bei der als elektronische Komponen te ein elektronisches Bauelement zum Einsatz kommt, als Seitenansicht, Further details of the invention are described below with reference to the drawing. Identical or corresponding drawing elements are each provided with the same reference numerals and will only be explained several times to the extent that differences arise between the individual figures. 1 shows an exemplary embodiment of the assembly according to the invention, in which an electronic component is used as the electronic component, as a side view,
Figur 2 ein weiteres Ausführungsbeispiel der erfin- dungsgemäßen Baugruppe, bei der als elektronische Komponente eine elektronische Baugruppe zum Einsatz kommt, teilweise aufgeschnitten und Figur 3 bis 7 ausgewählte Fertigungsschritte eines Ausfüh¬ rungsbeispiels des erfindungsgemäßen Ferti¬ gungsverfahrens, wobei die beteiligten Kompo¬ nenten der Fertigungsschritte als Seitenan¬ sicht und teilweise aufgeschnitten dargestellt sind. 2 shows a further embodiment of the assembly according to the invention, in which an electronic component is an electronic assembly for use, partially cut, and FIG 3 to 7 selected production steps of exporting ¬ approximately example of Ferti ¬ off procedure according to the invention, wherein the participating Comp ¬ components of the manufacturing steps are shown as Seitenan ¬ view and partially cut.
In Figur 1 ist ein Substrat 11 dargestellt, auf dem ein elektronisches Bauelement 12 in Form eines Chips montiert ist. Auf einer Oberseite des Bauelements 12 ist ein Kühlel ment 13 aus Aluminium mit Kühlrippen 14 montiert. Ein Über gang 15 zwischen dem Bauelement 12 und dem Kühlelement 13 wurde durch Anschieben erzeugt und kommt durch Adhäsionskr te zustande, die das Kühlelement 13 stoffschlüssig ohne Füge- hilfsstoffe auf dem Bauelement fixieren. FIG. 1 shows a substrate 11 on which an electronic component 12 in the form of a chip is mounted. On a top of the device 12 is a Kühlel element 13 is mounted aluminum with cooling fins 14. A transition 15 between the device 12 and the cooling element 13 was generated by pushing and comes by Adhäsionskr te, which fix the cooling element 13 cohesively without joining aids on the component.
Gemäß Figur 2 ist auf dem Substrat eine elektronische Bau- gruppe 16 montiert. Diese weist mehrere elektronische Bau¬ steine 17 auf, die in einem Gehäuse 18 zusammengefasst sind. In einem Innenraum des Gehäuses 18 ist ein die Wärme aus den Bausteinen 17 leitendes Medium 19 vorgesehen. Hierbei kann es sich beispielsweise um Vergussmasse oder ein Phasenwechselma- terial handeln, welches durch Verflüssigung latent Wärme speichern kann, die zeitverzögert an das Kühlelement 13 abge¬ geben werden kann. According to FIG. 2, an electronic component 16 is mounted on the substrate. This has a plurality of electronic construction ¬ stones 17, which are combined in a housing 18th In an interior of the housing 18, a heat from the blocks 17 conductive medium 19 is provided. This may be, for example TERIAL to potting compound or a Phasenwechselma- which can latently store heat by liquefaction, which can be time-delayed abge ¬ passed to the cooling element. 13
Das Gehäuse 18 besteht aus Aluminium. Nach Aufsetzen des Kühlelements 13, welches ebenfalls aus Aluminium besteht, findet an den Übergang 15 ein Kaltverschweißen statt. Nach dem Kaltverschweißen ist der Übergang 15 an sich nicht mehr zu erkennen, da das Gefüge des Gehäuses 18 mit dem Gefüge des Kühlelements 13 verschmolzen ist. The housing 18 is made of aluminum. After placing the cooling element 13, which also consists of aluminum, takes place at the transition 15, a cold welding. After the cold welding, the transition 15 itself is no longer visible, since the structure of the housing 18 is fused with the structure of the cooling element 13.
In Figur 3 ist ein vorbereitender Fertigungsschritt für die Montage eines Kühlelements 13 auf einem Bauelement 12 zu er¬ kennen. Für diesen Fertigungsschritt kommt eine Polierscheibe 20 zum Einsatz, mit der eine Grenzfläche 21 des Bauelements 12 und eine Montagefläche 22 des Kühlelements 13 poliert wer¬ den. Die Grenzfläche 21 und die Montagefläche 22 stehen für eine anschließende Montage der dargestellten Bauteile durch Anschieben zur Verfügung (nicht dargestellt) . Ein Anschieben erfolgt durch Annähern der Montagefläche 22 und der Grenzflä- che 21 bis zu deren Berührung, so dass zwischen diesen beiden Fügeflächen aufgrund von Adhäsionskräften eine innige Verbindung zustande kommt. Um diese Adhäsionskräfte hervorzurufen, kann beim Anschieben unterstützend ein Andrücken, also ein Beaufschlagen mit einer Fügekraft, erfolgen. Nach dem An- schieben kann je nach Materialpaarung der Fügeflächen ein Kaltverschweißen im Übergang zwischen Montagefläche 22 und Grenzfläche 21 erfolgen. In Figur 4 ist ein Fertigungsschritt dargestellt, mit dem in einer Sputter-Anlage 23 durch Sputtern in einer Prozesskammer 24 das Bauelement 12 mit einer die Grenzfläche 21 bildenden Schicht 25 versehen werden kann. Hierbei kommt ein Target 26 zum Einsatz, welches den Werkstoff für die Schicht 25 zur Verfügung stellt. Die entstehende Schicht 25 weist aufgrund der Wahl des Verfahrens eine sehr glatte Oberfläche auf. Die¬ se eignet sich hervorragend für einen nachfolgenden Montage¬ schritt durch Anschieben eines Kühlelements. Die Schicht 25 wird aus Aluminium hergestellt. 3 shows a preliminary manufacturing step for the installation of a cooling element 13 on a component 12 to know he is ¬. For this production step, a polishing pad 20 is used, with which an interface 21 of the component 12 and a mounting surface 22 of the cooling element 13 is polished ¬ the. The interface 21 and the mounting surface 22 are available for subsequent assembly of the illustrated components by pushing (not shown). Pushing takes place by approaching the mounting surface 22 and the boundary surface 21 until it touches, so that an intimate connection is established between these two joining surfaces due to adhesion forces. In order to produce these adhesion forces, a pressing, that is, applying a joining force, can take place during the pushing. After insertion, depending on the material pairing of the joining surfaces, cold welding can take place in the transition between the mounting surface 22 and the interface 21. FIG. 4 shows a production step with which the component 12 can be provided with a layer 25 forming the interface 21 in a sputtering installation 23 by sputtering in a process chamber 24. Here, a target 26 is used, which provides the material for the layer 25 available. The resulting layer 25 has a very smooth surface due to the choice of the method. The ¬ se is ideal for a subsequent assembly ¬ step by pushing a cooling element. The layer 25 is made of aluminum.
In Figur 5 ist dargestellt, dass die Montagefläche 22 des Kühlelements 13 und die Grenzfläche 21 des Bauelements 12 (welches mit einer Schicht 25 versehen wurde) mit einer In Figure 5 it is shown that the mounting surface 22 of the cooling element 13 and the interface 21 of the device 12 (which was provided with a layer 25) with a
Schutzschicht 27 versehen werden kann. Hierbei kann es sich beispielsweise um Folie handeln, die adhäsiv auf der Grenzfläche 21 und der Montagefläche 22 haftet und direkt vor dem Anschieben der beiden Bauteile rückstandsfrei abgezogen werden kann. Protective layer 27 can be provided. This may be, for example, a film which adheres adhesively to the interface 21 and the mounting surface 22 and can be removed without residue directly before pushing the two components.
Eine Montage durch Anschieben ist in Figur 6 dargestellt. Das Kühlelement 14 ist einfach auf das Bauelement 12 aufgesetzt worden wobei es dort auf Grund von Adhäsionskräften fixiert ist. Anschließend werden die gefügten Bauteile in eine Vaku- umkammer 28 eingesetzt und mittels einer Pumpe 29 ein Vakuum erzeugt. Hierdurch werden Luftmoleküle aus dem Übergang 15 abgesaugt. Ein anschließendes Kaltverschweißen des Kühlele¬ ments 13 mit der Schicht 25 (vgl. Figur 5) des Bauelements 12 wird durch das Vakuum unterstützt. Zu erkennen ist die An assembly by pushing is shown in Figure 6. The cooling element 14 has simply been placed on the component 12, where it is fixed there due to adhesion forces. Subsequently, the joined components are inserted into a vacuum chamber 28 and a vacuum 29 is generated by means of a pump 29. As a result, air molecules are sucked out of the transition 15. A subsequent cold welding of Kühlele ¬ ment 13 with the layer 25 (see FIG. 5) of the device 12 is supported by the vacuum. To recognize the is
Schicht 25 nach dem Kaltverschweißen nicht mehr, da das Gefüge der Schicht mit dem Gefüge des Kühlkörpers 13 aus Alumini¬ um verschmilzt. Der Übergang 15 ist daher durch eine strichpunktierte Linie in Figur 6 angedeutet. In Figur 7 ist dargestellt, wie das Anschieben alternativ auch durch Erzeugen einer Anpresskraft g aufgrund der Gewichtskraft einer Masse 30 unterstützt werden kann. Auch hier ist zu erkennen, dass nach einem Kaltverschweißen der Über- gang 15 nur noch durch eine strichpunktierte Linie angedeutet werden kann. Die Fertigungsschritte der Figuren 6 und 7 las¬ sen sich auch kombinieren, indem die Masse 30 in einer Vakuumkammer 28 Verwendung findet. Layer 25 after cold welding no longer, since the structure of the layer with the structure of the heat sink 13 of aluminum ¬ merges. The transition 15 is therefore indicated by a dot-dash line in FIG. FIG. 7 shows how the pushing can alternatively also be supported by generating a contact pressure g due to the weight of a mass 30. Again, it can be seen that after cold welding the overlay 15 can only be indicated by a dot-dash line. The manufacturing steps of FIGS. 6 and 7 can also be combined by using the mass 30 in a vacuum chamber 28.

Claims

Patentansprüche claims
1. Verfahren zum Erzeugen einer kühlbaren elektronischen Komponente (12, 16), wobei die elektronische Komponente (12, 16) eine Grenzfläche (21) zur Verfügung stellt, auf der ein Kühlelement (13) mit einer Montagefläche (22) montiert werden kann, A method of producing a coolable electronic component (12, 16), wherein the electronic component (12, 16) provides an interface (21) on which a cooling element (13) having a mounting surface (22) can be mounted,
d a d u r c h g e k e n n z e i c h n e t, characterized,
dass that
· die Grenzfläche (21) und die Montagefläche (22) hinrei¬ chend glatt ausgeführt werden, damit diese auf Grund von Adhäsionskräften aneinander haften, · The interface (21) and the mounting surface (22) are carried out accordingly rea ¬ smooth, so that they adhere due to adhesion forces to each other,
• das Kühlelement (13) und die elektronische Komponente • the cooling element (13) and the electronic component
(12, 16) über die Grenzfläche (21) und die Montagefläche (22) durch Anschieben miteinander verbunden werden, wobei die elektronische Komponente (12, 16) und das Kühl¬ element (13) durch Kaltverschweißen bleibend miteinander verbunden werden. (12, 16) via the interface (21) and the mounting surface (22) are connected by pushing together, wherein the electronic component (12, 16) and the cooling ¬ element (13) are permanently connected to each other by cold welding.
2. Verfahren nach Anspruch 1, 2. The method according to claim 1,
d a d u r c h g e k e n n z e i c h n e t, characterized,
dass die elektronische Komponente durch ein elektronisches Bauelement (12) oder die elektronische Baugruppe (16) ausge¬ bildet ist. is that the electronic component by an electronic component (12) or the electronic assembly (16) being formed ¬.
3. Verfahren nach Anspruch 1 oder 2, 3. The method according to claim 1 or 2,
d a d u r c h g e k e n n z e i c h n e t, characterized,
dass das Kaltverschweißen der elektronische Komponente (12, 16) mit dem Kühlelement (13) nach dem Anschieben unterstützt wird, indem die elektronische Komponente (12, 16) und das Kühlelement (13) zusammengepresst werden. in that the cold welding of the electronic component (12, 16) to the cooling element (13) after being pushed on is assisted by the fact that the electronic component (12, 16) and the cooling element (13) are pressed together.
4. Verfahren nach Anspruch 3, 4. The method according to claim 3,
d a d u r c h g e k e n n z e i c h n e t, characterized,
dass das Zusammenpressen durch Einbringen der mit dem Kühlelement (13) versehenen elektronischen Komponente (12, 16) in ein Vakuum unterstützt wird. in that the compression is assisted by introducing the electronic component (12, 16) provided with the cooling element (13) into a vacuum.
5. Verfahren nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, 5. Method according to one of the preceding claims, characterized in that
dass die Grenzfläche (21) und die Montagefläche (22) vor dem Anschieben von Verschmutzungen gereinigt werden. that the interface (21) and the mounting surface (22) are cleaned prior to the introduction of dirt.
6. Verfahren nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, 6. The method according to one of the preceding claims, d a d u c h e c e n e c e n e,
dass die Grenzfläche (21) und die Montagefläche (22) vor dem Anschieben poliert werden. the interface (21) and the mounting surface (22) are polished before being pushed.
7. Verfahren nach Anspruch 6, 7. The method according to claim 6,
d a d u r c h g e k e n n z e i c h n e t, characterized,
dass die elektronische Komponente (12, 16) vor dem Anschieben mit demjenigen Material beschichtet wird, aus dem das Kühl- element (13) besteht. the electronic component (12, 16) is coated before being pushed with the material of which the cooling element (13) is made.
8. Verfahren nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, 8. Method according to one of the preceding claims, characterized in that
dass die Grenzfläche (21) und/oder die Montagefläche (22) mit einer Schutzschicht (27) versehen werden, die unmittelbar vor dem Anschieben entfernt wird. in that the boundary surface (21) and / or the mounting surface (22) are provided with a protective layer (27) which is removed immediately before pushing.
9. Baugruppe mit einer elektronischen Komponente (12, 16) und einem Kühlelement (13), welches mit der elektronischen Kompo- nente (12, 16) in Kontakt steht, 9. assembly having an electronic component (12, 16) and a cooling element (13) which is in contact with the electronic component (12, 16),
d a d u r c h g e k e n n z e i c h n e t, characterized,
dass der Kontakt an einem Übergang (15) zwischen der elektronischen Komponente (12, 16) und dem Kühlelement (13) aus ei¬ ner unmittelbaren Kaltschweiß-Verbindung ohne Fügehilfsstoffe besteht. that the contact at a junction (15) between the electronic component (12, 16) and the cooling element (13) from ei ¬ ner direct cold welding connection is without joining auxiliary.
10. Baugruppe nach Anspruch 9 10. Assembly according to claim 9
d a d u r c h g e k e n n z e i c h n e t, characterized,
dass der Übergang (15) plan ausgebildet ist. that the transition (15) is planar.
PCT/EP2016/065765 2015-07-06 2016-07-05 Method for producing a coolable electronic component and assembly comprising an electronic component and a cooling element WO2017005716A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015212571.8 2015-07-06
DE102015212571.8A DE102015212571A1 (en) 2015-07-06 2015-07-06 A method of producing a coolable electronic component and assembly comprising an electronic component and a cooling element

Publications (1)

Publication Number Publication Date
WO2017005716A1 true WO2017005716A1 (en) 2017-01-12

Family

ID=56360400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/065765 WO2017005716A1 (en) 2015-07-06 2016-07-05 Method for producing a coolable electronic component and assembly comprising an electronic component and a cooling element

Country Status (2)

Country Link
DE (1) DE102015212571A1 (en)
WO (1) WO2017005716A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220139979A1 (en) * 2019-03-13 2022-05-05 Sony Semiconductor Solutions Corporation Semiconductor device, imaging device, and method of manufacturing semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4425389A1 (en) * 1994-07-19 1996-01-25 Bosch Gmbh Robert Electrically and thermally conductive motor vehicle component coupler
US20130217188A1 (en) * 2012-02-16 2013-08-22 Taiwan Semiconductor Manufacturing Company, Ltd. Structures and Formation Methods of Packages with Heat Sinks
US20140011324A1 (en) * 2012-06-05 2014-01-09 Taiwan Semiconductor Manufacturing Company, Ltd. Hybrid Bonding Systems and Methods for Semiconductor Wafers
US20140091370A1 (en) * 2012-10-03 2014-04-03 International Business Machines Corporation Transistor formation using cold welding
FR2999336A1 (en) * 2012-12-07 2014-06-13 Commissariat Energie Atomique ELECTRONIC COMPONENT COMPRISING A HEAT ABSORBER MATERIAL AND METHOD FOR MANUFACTURING THE ELECTRONIC COMPONENT

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3937387A (en) * 1974-03-12 1976-02-10 Nasa Method of fluxless brazing and diffusion bonding of aluminum containing components
US4865245A (en) * 1987-09-24 1989-09-12 Santa Barbara Research Center Oxide removal from metallic contact bumps formed on semiconductor devices to improve hybridization cold-welds
WO2001069676A2 (en) * 2000-03-13 2001-09-20 Sun Microsystems, Inc. Method and apparatus for bonding substrates
US8222724B2 (en) * 2008-02-14 2012-07-17 Mitsubishi Heavy Industries, Ltd. Semiconductor element module and method for manufacturing the same
DE102013110815B3 (en) * 2013-09-30 2014-10-30 Semikron Elektronik Gmbh & Co. Kg Power semiconductor device and method for producing a power semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4425389A1 (en) * 1994-07-19 1996-01-25 Bosch Gmbh Robert Electrically and thermally conductive motor vehicle component coupler
US20130217188A1 (en) * 2012-02-16 2013-08-22 Taiwan Semiconductor Manufacturing Company, Ltd. Structures and Formation Methods of Packages with Heat Sinks
US20140011324A1 (en) * 2012-06-05 2014-01-09 Taiwan Semiconductor Manufacturing Company, Ltd. Hybrid Bonding Systems and Methods for Semiconductor Wafers
US20140091370A1 (en) * 2012-10-03 2014-04-03 International Business Machines Corporation Transistor formation using cold welding
FR2999336A1 (en) * 2012-12-07 2014-06-13 Commissariat Energie Atomique ELECTRONIC COMPONENT COMPRISING A HEAT ABSORBER MATERIAL AND METHOD FOR MANUFACTURING THE ELECTRONIC COMPONENT

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SCHMIDT M A: "WAFER-TO-WAFER BONDING FOR MICROSTRUCTURE FORMATION", PROCEEDINGS OF THE IEEE, IEEE. NEW YORK, US, vol. 86, no. 8, 1 August 1998 (1998-08-01), pages 1575 - 1585, XP000848427, ISSN: 0018-9219, DOI: 10.1109/5.704262 *

Also Published As

Publication number Publication date
DE102015212571A1 (en) 2017-01-12

Similar Documents

Publication Publication Date Title
DE102009044641B4 (en) Device with a semiconductor chip and metal foil and a method for producing the device
DE102008048005B3 (en) Power semiconductor module arrangement and method for producing a power semiconductor module arrangement
EP3103138B1 (en) Method for mounting an electrical component in which a cap is used
DE102010003533B4 (en) Substrate arrangement, method for producing a substrate arrangement, method for producing a power semiconductor module and method for producing a power semiconductor module arrangement
DE102009002065A1 (en) Module with stable solder connection
DE102009001722B4 (en) Method for applying a heat transfer medium to a heat dissipation surface
EP2234156A2 (en) Power module and method for producing a fixed power module for high voltage applications
DE102008026801A1 (en) Heat transfer device for double-sided cooling of a semiconductor device and method for its assembly
DE102015109186A1 (en) Semiconductor device, semiconductor system and method of forming a semiconductor device
DE102019211109A1 (en) Method and cooling body arrangement for cooling semiconductor chips with integrated electronic circuits for power electronic applications
DE102004041088A1 (en) Semiconductor component in flat conductor technology with a semiconductor chip
DE102009024371B4 (en) Method for producing a converter arrangement with cooling device and converter arrangement
DE102016115221A1 (en) Method for connecting at least two substrates to form a module
DE102010001666A1 (en) Electrical or electronic composite component e.g. junction FET (JFET) has connection layer and interlayer whose active compound is arranged on attaching layers along opposite side of sinter layers
WO2017005716A1 (en) Method for producing a coolable electronic component and assembly comprising an electronic component and a cooling element
DE102011076774A1 (en) Semiconductor component for use in e.g. power electronic area, has solderable layers formed at surfaces of carrier and cooling body, respectively, where surfaces of carrier and body face body and carrier, respectively
DE102014206606A1 (en) Method for mounting an electrical component on a substrate
EP2100331A1 (en) Electronic component module and method for the production thereof
WO2018037047A1 (en) Power module, method for producing same, and power electronics circuit
DE102012215656A1 (en) Power semiconductor module and method for producing a power semiconductor module
EP3345217B2 (en) Cooling device, method for producing a cooling device and power circuit
DE10217214B4 (en) Cooling arrangement for a circuit arrangement
DE102015115133B3 (en) Method for connecting a heat sink with at least one circuit carrier by shrinking
DE102004002743A1 (en) Cooling body for power electronics especially in automotive field has a thick coating of ceramic or hard material applied by thermal spraying or vapor deposition
WO2018202438A1 (en) Electronic assembly having a component installed between two substrates, and method for producing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16735647

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16735647

Country of ref document: EP

Kind code of ref document: A1