WO2017005642A1 - Dispositif de mesures biomecaniques des vaisseaux et d'analyse volumetrique des membres - Google Patents

Dispositif de mesures biomecaniques des vaisseaux et d'analyse volumetrique des membres Download PDF

Info

Publication number
WO2017005642A1
WO2017005642A1 PCT/EP2016/065559 EP2016065559W WO2017005642A1 WO 2017005642 A1 WO2017005642 A1 WO 2017005642A1 EP 2016065559 W EP2016065559 W EP 2016065559W WO 2017005642 A1 WO2017005642 A1 WO 2017005642A1
Authority
WO
WIPO (PCT)
Prior art keywords
limb
biomechanical
volumetric
measurements
probe
Prior art date
Application number
PCT/EP2016/065559
Other languages
English (en)
Inventor
Jean TRIBOULET
Michel DAUZAT
Florent VEYE
Sandrine MESTRE
Isabelle QUERE
Nicolas BERRON
Original Assignee
Universite De Montpellier
Centre National De La Recherche Scientifique
Axlr Satt Du Languedoc Roussillon
Centre Hospitalier Universitaire De Montpellier
Centre Hospitalier Universitaire De Nimes
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite De Montpellier, Centre National De La Recherche Scientifique, Axlr Satt Du Languedoc Roussillon, Centre Hospitalier Universitaire De Montpellier, Centre Hospitalier Universitaire De Nimes filed Critical Universite De Montpellier
Priority to US15/740,744 priority Critical patent/US20180317772A1/en
Priority to EP16741255.0A priority patent/EP3316764A1/fr
Priority to CA2992591A priority patent/CA2992591A1/fr
Publication of WO2017005642A1 publication Critical patent/WO2017005642A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/0035Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for acquisition of images from more than one imaging mode, e.g. combining MRI and optical tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/004Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0048Detecting, measuring or recording by applying mechanical forces or stimuli
    • A61B5/0053Detecting, measuring or recording by applying mechanical forces or stimuli by applying pressure, e.g. compression, indentation, palpation, grasping, gauging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0064Body surface scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1073Measuring volume, e.g. of limbs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1079Measuring physical dimensions, e.g. size of the entire body or parts thereof using optical or photographic means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/40Positioning of patients, e.g. means for holding or immobilising parts of the patient's body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/44Constructional features of the ultrasonic, sonic or infrasonic diagnostic device
    • A61B8/4416Constructional features of the ultrasonic, sonic or infrasonic diagnostic device related to combined acquisition of different diagnostic modalities, e.g. combination of ultrasound and X-ray acquisitions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/488Diagnostic techniques involving Doppler signals

Definitions

  • the present invention relates to a non-vulnerable device for bio-morphological characterization of a human limb and biomechanical evaluation of blood vessels, as well as a method of assisting in the definition of the compression orthosis adapted to the limb to be treated.
  • the present invention is in the field of medical instrumentation.
  • compression orthoses are not always perfectly adapted to the morphology of the limb on which they are placed and to the biomechanical characteristics. veins, their wall and their tissue environment. Indeed, the compression orthoses are manufactured from standards relating to a morphological standard, without taking into account the individual characteristics of each patient, including morphological. The therapeutic result is thus not always optimally achieved.
  • a first technique consists in measuring the volume of water displaced during the immersion of the member to be treated. This technique, although theoretically simple, is not always easy to implement depending on the degree of mobility and / or the state of health of the patient, for example after recent surgery or in case of skin lesions. Moreover, it does not make it possible to carry out local or segmental measurements, and it therefore does not allow to highlight the distribution of an edema on the limb.
  • Another technique is to perform perimeter measurements at different levels of the limb. This technique is very simple to implement and widely practiced in the hospital environment; however, it is very approximate, tedious and poorly reproducible.
  • Another object of the invention is to solve at least one of these problems by a new system of volumetric measurements and morphological characterization of a human limb, in parallel with the anatomical and biomechanical evaluation of the blood vessels of the limb, and the where appropriate, relate to the compression parameters.
  • Another object of the invention is to provide such an ergonomic system adapted to medical use, easy to implement, non-invasive and non-invasive.
  • Another object of the invention is to propose such a system capable of producing reproducible, reliable and precise measurements.
  • a device for geometric measurements preferably three-dimensional (3D) - and volumetric including:
  • an articulated and motorized frame arranged on the one hand for positioning at least a part of the plurality of acquisition systems in a peripheral manner to said member, and on the other hand for moving at least part of the plurality of the systems of acquisition in relation to that member,
  • a device for processing the geometrical and / or volumetric data arranged to represent the acquisition data in the form of a plurality of points having a set of coordinates in a three-dimensional reference frame, and for example in the form of a mesh optionally including textured information of the member observed and provided by the image acquisition systems, and - an anatomical and biomechanical measurement device comprising a probe holder comprising:
  • the characterization system makes it possible to propose a new device for characterizing a limb, in which the measuring and volumetric device making it possible to reconstruct a 3D digital model of said limb is completed by an anatomical measurements device and biomechanics for determining a number of morphological and / or biomechanical variables of the vascular system afferent to said member. It is thus possible to measure and understand, among others, the role of mechanical stresses on vascular walls in the vascular disease affecting said limb, and to predict the effects of different modalities and compressive forces in order to refine the prescription.
  • the invention for the aspect of anatomical and biomechanical measurements, aims to characterize on the one hand the anatomy and the geometry - in particular diameter, circumference, section, parietal thickness - and on the other hand the biomechanical characteristics - such as the modulus of elasticity - of the blood vessels to better adapt the compression orthosis on said limb.
  • the anatomical and biomechanical measurements are primarily, but not exclusively, performed by an ultrasound system coupled with a measurement of the force exerted by the ultrasound probe on said limb during the measurement.
  • the coupling of the ultrasound probe and the force sensor is performed by the probe holder.
  • Ultrasound measurements advantageously make it possible to determine in particular the dimensional and / or transverse properties of said blood vessels. More particularly, the position and orientation of the cross section of the blood vessel is determined, possibly in different positions.
  • the measurement of force concomitant with ultrasound measurement can also be used to standardize the biomechanical measurements thus produced, for example by means of a servo-control enabling the force, the pressure, or their effects to be maintained at a set point.
  • the characterization system according to the invention thus makes it possible to measure vascular and / or arterial variables without insertions of sensors and / or medical devices inside said limb, thereby contributing to improving the ergonomics of the measuring system and the comfort of the patient. patient, while excluding the various risks (particularly haemorrhagic or infectious) related to the vulnérantes techniques.
  • the ultrasound imaging is performed in real time in order to study the dynamic evolution of the morphological and biomechanical variables of the vascular system, such as, for example, the variation of the arterial diameter during the cardiac cycles. It is also possible to evaluate in real time the effect of different modalities and parameters of compression on the geometry of superficial and deep vessels.
  • the measurements of 2D geometry and volumetry of the member to be characterized are performed by a plurality of three-dimensional sensors placed around said member.
  • the number of three-dimensional sensors can vary according to the size and shape of said member, the degrees of freedom of the frame on which they are mounted, as well as intrinsic characteristics of said three-dimensional sensors (resolution, field coverage, range ... ) and scan time constraints.
  • the surface of said zone In order to perform a complete or partial digitization of the member to be characterized, it is necessary for the surface of said zone to be digitized to be entirely imaged by the plurality of three-dimensional sensors.
  • the plurality of three-dimensional sensors implemented must be arranged to scan at least collectively the entire surface of said portion. Segmental. If the entire member is to be imaged, then the plurality of three-dimensional sensors implemented must be arranged to scan, at least collectively, the entire surface of said member.
  • the number and arrangement of the three-dimensional sensors used can be adapted according to the situations.
  • the complete scanning of the segmental part or of the entire member may be obtained by any means and may thus comprise means of displacements, possibly motorized, said three-dimensional sensors around the member to be characterized if the measurement field of the three-dimensional sensors does not allow image the entire surface from a single position or to shorten the scan time.
  • the hinged frame which has at least one means arranged on the one hand to support at least one three-dimensional sensor, and on the other hand to achieve a movement relative to that member.
  • This movement can be predefined via at least one particular kinematic link. It may be for example a rotational movement and / or a translational movement.
  • the at least one means is arranged to allow said at least one three-dimensional sensor to measure at least one other part of the surface of the member to be characterized or of the segmental portion of said member.
  • the articulated frame can be motorized to control more finely said movements of the sensors relative to the member to be measured.
  • the motorization means of said frame can be arranged to be controlled remotely to program specific movements and / or predefined.
  • the three-dimensional sensors can be of any type, and are designed to perform a volume mesh of the imaged surface.
  • the device according to the invention implements a plurality of three-dimensional laser cameras, advantageously seven.
  • each three-dimensional sensor thus makes a mesh of the surface of said member or the segmental portion of said member independently.
  • Each three-dimensional sensor digitizes the surface of at least a portion of said member as a set of points having a particular set of coordinates in a particular three-dimensional frame.
  • the device implements measurement data processing means which are arranged to aggregate the different sets of points of the different sensors in a repository. unique three-dimensional.
  • At least one three-dimensional sensor can be used to record the successive positions of at least a portion of the other three-dimensional sensors, said at least one sensor used to record their successive positions can be immobile and / or at least one predetermined position.
  • each three-dimensional sensor is calibrated and / or has intrinsic calibration means that make compatible the three-dimensional referential of each set of points.
  • the morphological characterization system implements calibration means common to at least a portion of the three-dimensional sensors in order to make the three-dimensional reference frames of said at least part of the three-dimensional sensors compatible and / or identical.
  • the geometric and volumetric measurement device thus makes it possible to digitize at least a part of the member to be characterized quickly and accurately. Indeed, by using a plurality of three-dimensional sensors possibly mobile around said member, the acquisition times of the images are reduced since each sensor is only responsible for measuring at least part of said member.
  • the volume mesh thus obtained is more accurate because the measurement thus produced is more comfortable for the patient, faster and therefore less exposed to parasitic movement of the limb during the recording due to patient discomfort.
  • the characterization device is thus more ergonomic since it at the same time responds to a need for improved comfort during this digitization phase.
  • the measurements carried out with the characterization system according to the invention can be carried out indifferently in the presence or in the absence of the orthosis in order to precisely measure the effects of this on at least a part of the limb.
  • anatomical and biomechanical measurements can be performed simultaneously with the volumetric measurements or, alternatively.
  • the system according to the invention may furthermore comprise an analysis device, arranged on the one hand to merge at least part of the volumetric data and at least part of the anatomical and biomechanical data, and on the other hand to determine morphological variables of said limb and / or biomechanical variables of the vascular system of said limb.
  • an analysis device arranged on the one hand to merge at least part of the volumetric data and at least part of the anatomical and biomechanical data, and on the other hand to determine morphological variables of said limb and / or biomechanical variables of the vascular system of said limb.
  • Data fusion consists of a set of processes that aim to integrate multiple data, representing a varied number of different physical measurements (for example optical, mechanical, electrical ...) of the same object, in order to aggregate them in a unique, coherent, precise and useful representation.
  • the data fusion can for example consist in superimposing the ultrasound measurements - and the morphological variables of the vascular system thus characterized - to the numerical voluminal model of the limb in order to visualize a numerical representation and true to the reality of the vascular system during at least one cardiac cycle or dynamic maneuver (movement, compression ...) and its location in said limb.
  • the analysis device thus makes it possible to aggregate at least a part of the volumetric data and at least a part of the biomechanical data, in particular in order to establish relationships between the biometric data measured by the biomechanical measurement device and the model. digital of the at least a part of the member.
  • the analysis device can implement, for example, the following analysis method:
  • the blood flow conditions in the vascular system are determined using at least one representative variable of numerical type preferentially. This variable is deduced / calculated from the different measurements made. It is then merged with the geometric model to visualize on a three-dimensional digital representation the distribution of said variable representative of the vascular system of the limb.
  • the data fusion thus makes it possible to superimpose dimensional measurements, possibly dynamic, with superficial or deep biomechanical measurements made on the at least part of the data. of the limb in order to precisely locate said biomechanical measurements and to improve the understanding of the effects of the orthosis on said limb.
  • At least part of the plurality of three-dimensional image acquisition systems of the system according to the invention can operate synchronously.
  • the volumetric measuring device may further comprise a tool for geometric and volumetric measurement of said member, arranged to determine representative areas of said member for the determination of its shape and volume.
  • the representative areas are those that can provide a better understanding of a given pathology affecting said member and / or be located around a manifestation or consequence of the pathology.
  • the volumetric measurement aid tool can be arranged to detect particular volumes on a limb, such as deformations representative of certain pathologies.
  • the volumetric measurement aid tool can compare the morphology of said member to a database comprising typical morphologies of said members, as described in the standards.
  • the frame may comprise at least one arm for supporting at least a part of the plurality of three-dimensional image acquisition systems.
  • said at least one arm is arranged to pivot around said member.
  • the amplitude of rotation of the at least one arm of said frame can be between 0 and 90 °.
  • the amplitude of the rotation of the arms of the frame and supporting at least a portion of the three-dimensional sensors is, as described above, conditioned in particular by the need to achieve an overlap of the surfaces of the member to be characterized between least part of the three-dimensional sensors and at least one other part.
  • the necessary amplitude of rotation is of the order of fifteen degrees.
  • the probe holder may be mounted on an articulated and / or motorized arm, integral or not with the frame and arranged to put said probe holder in contact with the limb and / or to move said holder probe on said member.
  • the articulated arm allows movements in space by supporting the probe holder, allowing a more precise examination of the limb to be characterized.
  • the articulated arm can be motorized to perform movements automatically and / or predefined.
  • servocontrol of the ultrasound probe in contact with the member to be characterized as a function of the pressure measured by the force sensor may allow more reliable and reproducible measurements to be made.
  • the probe holder has a shape and proportions that make it easily grippable. It is especially designed in lightweight materials to minimize its weight and facilitate the manipulation of the probe during the characterization of the examined limb.
  • the choice of materials can also be conditioned by the medical nature of its application: it can be designed preferentially in plastic material.
  • the biomechanical measurement device of the system according to the invention may comprise at least one sensor for measuring the interface pressure placed in contact with the skin of said member.
  • the device may also be supplemented with an intramuscular pressure sensor for measuring blood pressure within a muscle of said limb, and / or an intravascular pressure sensor for measuring blood pressure within a limb. vessel of said member.
  • an intramuscular pressure sensor for measuring blood pressure within a muscle of said limb
  • an intravascular pressure sensor for measuring blood pressure within a limb. vessel of said member.
  • the acquisition of data from at least part of the sensors that comprises said biomechanical measuring device can be performed synchronously.
  • the adaptation of the biomechanical measurement device to the evaluation of the vascular physiopathology of at least a part of the member to be characterized finally makes it possible to merge, using the analysis device according to the invention, a larger number of data coming from other sensors placed preferentially on the surface of at least part of said member and making it possible to measure other physical quantities and / or other morphological, physical or chemical variables. It is thus possible to better understand the effects of the orthosis on said member.
  • the analysis device can thus also make it possible to relate the variations in interface pressure with, for example, the intramuscular or interstitial pressure and the blood pressure on the one hand, and the geometry of the various vessels examined, superficial and deep, on the other hand.
  • the interface pressure can be measured by different types of sensors, preferably hydraulic or pneumatic by moving a fluid inside a pocket or a flat balloon in contact with the skin.
  • Electrical sensors resistive or capacitive are also known.
  • the interface pressure sensors are distributed on the surface of the member to be characterized, preferably according to a normalization well known to those skilled in the art.
  • the interface sensors are arranged to be placed in contact with the member to be characterized, in the presence or absence of the compression orthosis.
  • the interface pressure sensors may consist of pneumatic sensors associated with piezoelectric pressure transducers.
  • the acquisition of the data from the different sensors used for the biomechanical measurements and / or the plurality of three-dimensional sensors used for the volumetric measurements is done by any known means, analogically and / or numerically.
  • the data are all digitized in order to be exploited by a processing unit, preferably a computer.
  • a means for conditioning, shaping and / or pretreating the signals from at least one of the various sensors included in the biomechanical measurement device can be implemented in the characterization system according to the invention.
  • the device according to the invention thus measures at least one mechanical property of the superficial and / or deep vascular system in order, as previously explained, to determine a numerical representative parameter and to merge it with the three-dimensional geometric model.
  • the measured mechanical property is the compression of said vascular system under the effect of the application of the probe thereon and measured by the force sensor embarked by the probe holder.
  • the measurement is made at one or more places and over a period of time to measure its evolution over time, as a function, for example, of the support and the withdrawal of the probe. This measurement thus makes it possible to measure the compression and the relaxation of the vascular system under the effect of this pressure exerted.
  • the representative variable calculated from these measurements is the elasticity of the wall of the vascular system, making it possible to highlight the distensibility and / or the compliance of the corresponding vascular wall.
  • This representative variable is deduced from the measurement and the ultrasound image made, and then calculated according to several known means, including modeling.
  • a model based on the evaluation of the hysteresis observed on the evolution of the vascular wall during the compression and relaxation of the vascular system can ultimately calculate the elasticity of said vascular system.
  • a method of assisting with the definition or selection or adaptation of compression orthoses for a limb implementing the bio-morphological characterization system according to the invention.
  • any of the embodiments of the invention comprising at least one of the following steps:
  • the method according to this other aspect of the invention also makes it possible to adapt a pre-existing orthosis to the geometry of the limb on which it was used.
  • the biomechanical measurements can be performed at least during the step of geometric and / or volumetric measurements of said member.
  • the biomechanical data are used to determine a certain number of morphological and / or biomechanical variables representative of the vascular system of the vascular system of said limb. These measurements can be made dynamically.
  • the morphological and / or biomechanical variables representative of the vascular system are mainly deduced from the ultrasound images, and then supplemented by the measurements of at least one other sensor.
  • a model based on the evaluation of the hysteresis observed on the evolution of the vascular wall imaged by the ultrasound probe during compression and relaxation of the vascular system makes it possible in fine to calculate the elasticity of said vascular system.
  • biomechanical measurements are made at a single point, thus making it possible to measure a representative variable of the vascular system at this point.
  • the representative variable is then propagated to the entire vascular system, considering that the biomechanical properties of said vascular system are isotropic and homogeneous.
  • a mathematical model can propagate the value of said representative variable through the numerical model of said vascular system to calculate estimated values of said representative variable as a function of the measured value and calculated at a point.
  • the measurements are made at several points and / or several different zones in order to refine said mathematical model and to calculate several values of the representative variable as a function of the location of the portion of the vascular system considered.
  • the method according to the invention may comprise a step of preprocessing the ultrasound images made, prior to the merging of the data.
  • This pretreatment step notably consists in processing the noise of the images and / or removing or identifying the artifacts (diffraction, refraction, inclusions %) in order to facilitate the extraction of the geometrical information.
  • a next step is also to extract the contours of at least a portion of at least one recorded ultrasound image.
  • several methods well known to those skilled in the art exist, such as derivative methods, by segmentation, by active contours ...
  • pre-treatments can be carried out once all the measurements have been carried out - in post-processing - or then carried out in real time as the various data are acquired. In all cases of figure, they make it possible to reconcile the data obtained by the said measurements
  • the method may further comprise a step of definition, adaptation or selecting a compression orthosis for the limb, according to the at least one biometric variable and / or the at least one geometric and / or volumetric variable. It may also preferably comprise an additional step of developing a predictive biomechanical model of the effects of the compression orthosis on the limb and its vascular system.
  • FIG. 1A illustrates a schematic overall view of the volumetric measuring device according to the invention
  • FIG. 1B illustrates a first embodiment of the volumetric measuring device according to the invention
  • FIG. 2 illustrates the probe holder used to carry out part of the biomechanical measurements of the vascular system of the limb
  • FIG. 3 illustrates an articulated arm for the probe holder and according to a particular embodiment of the invention
  • FIG. 4 illustrates the principle of bio-morphological characterization according to the invention
  • FIGURE 5 illustrates an ultrasound image analysis sequence performed during the biomechanical measurements.
  • the embodiments which will be described hereinafter are in no way limiting; it will be possible to imagine variants of the invention comprising only a selection of characteristics described hereinafter isolated from the other characteristics described, if this selection of characteristics is sufficient to confer a technical advantage or to differentiate the invention compared to the prior art.
  • This selection comprises at least one preferably functional feature without structural details, or with only a portion of the structural details if that portion alone is sufficient to provide a technical advantage or to differentiate the invention from the prior art.
  • An orthosis is an appliance that compensates for an absent or deficit function of a limb, assists a joint or muscle structure, stabilizes a body segment during a rehabilitation or rest phase. It differs from the prosthesis, which has the function of replacing a missing element of the human body.
  • FIGURE 1A illustrates a schematic overview of the volumetric measuring device 100 according to the invention and FIGURE 1B illustrates a particular embodiment of the invention.
  • FIG. 1B The patient to whom one of the members must benefit from the installation of an orthosis is installed on a measuring bench, part of which is shown in FIG. 1B.
  • the measurement bench typically comprises a first structure - optional and not shown - allowing the patient to be comfortably installed for the morphological analysis of his limb on which the orthosis will be placed, and a second structure 100 shown on FIGURES 1A and 1B and which make it possible to place said member 110 inside a measuring zone. More particularly, FIG. 1A schematically illustrates such an installation for characterizing a lower limb 110.
  • the lower limb 110 is placed inside an articulated frame 120 which has a plurality of three-dimensional sensors 131-137 in the peripheral space of said member 110.
  • the frame 120 consists of a base 124 at the end 123 of which two sensors 137a, 137b make it possible to image the arch of the limb 110.
  • a frame 125 extends in a direction substantially parallel to the elongation of the lower limb 110.
  • the frame 125 supports a circular arm 121 to which the three-dimensional sensors 131-135 are fixed.
  • the circular arm 121 is hinged to provide a clearance to the right or left and thus allow the patient to introduce or remove its member 110 from the measurement zone inside said frame 120.
  • the frame 125 can be telescopic in order to adapt to the sizes of the lower limbs of different patients.
  • the circular arm 121 supports five three-dimensional sensors 131-135 which can be articulated and / or motorized so as to scan about the lower limb 110.
  • the circular arms 121, 122 may also alternatively be articulated and / or motorized so as to rotate about the lower limb 110.
  • the articulation of the different sensors may be collective, that is, that is to say implementation by the articulation and / or rotation of the arm or arms that support them (s) and / or the frame; alternatively, the articulation of the different sensors can be individual, each sensor having its own means of articulation and / or rotation relative to the frame or frame that supports it.
  • the means of articulation and / or rotation are well known as such and not described here.
  • the distance separating the circular arms 121 from the base 124 may also be adjustable so as to adapt the volumetric measuring device 100 to the dimensions of the member 110 to be characterized.
  • FIG. 1A also illustrates the installation of surface pressure sensors 141-143 used to measure, for example, the pressure exerted by the orthosis on the lower limb 110 when the latter is being put into operation. place, or superficial pressure in the absence of orthosis.
  • three sensors 141 143 are thus arranged along the lower limb 110.
  • the position of the surface pressure sensors 141-143 can be chosen so as to characterize the zones which are moreover imaged by the three-dimensional sensors 131-137 in order to be able to - in fine - merge the data and to establish a more complete analysis of said member 110 and the effect of the orthosis.
  • the lower limb 110 is placed inside an articulated frame 120 which has a plurality of three-dimensional sensors 131-137 in the peripheral space of said member 110.
  • the frame 120 is constituted a base 124 at the end 123 of which a first sensor 137 makes it possible to image the plantar arch of the member 110.
  • a frame 125 extends in a direction substantially parallel to the elongation of the lower limb 110 and supports two circular arms 121, 122 on which are fixed the three-dimensional sensors 131-136.
  • each circular arm 121, 122 is arranged on the one hand to allow easy insertion of the member 110 to be characterized inside the device 100 and on the other hand is articulated so as to move the three-dimensional sensors 131-136 around said member.
  • FIG. 2 illustrates the probe holder 200 used to perform part of the biomechanical measurements of the vascular system of the limb 110.
  • the probe holder consists of a frame 201 inside or on which are fixed an ultrasound probe 210 mounted on a linear translation support and connected to a force sensor 220.
  • the probe holder 200 is designed so as to allow the insertion of several types of ultrasound probes 210. It thus comprises fixing means of said probe, not shown in FIGURE 2, such as for example at least one collar passing through the frame 201 and around the probe 210.
  • the active end of the ultrasound probe 210 protrudes from the probe holder so that it can be brought into contact with the skin of the limb 110 to be characterized.
  • the force sensor 220 is fixed close to the ultrasound probe 230 by means of any fastening means 230, and so that it is in contact with the skin of the limb 110 to be characterized when the ultrasound probe 210 is .
  • the most significant force measurements are those made in the axis of the ultrasound probe 210, that is to say substantially perpendicular to the active surface 211 of said probe 210.
  • complementary force measurements in the transverse directions can make it possible to refine the measurements and to correct some errors related to a misalignment of the force sensor 220 with respect to said ultrasound probe 210.
  • FIGURE 3 illustrates an articulated arm 300 for the probe holder 200 and according to a particular embodiment of the invention.
  • the probe holder 200 is fixed on an articulated arm 300 by means of fastening means 307.
  • the articulated arm 300 may be independent of the volumetric measuring device 100, or integral with said volumetric measuring device 100.
  • a ball 306 allows the probe holder
  • a ball 302 can direct the latter in any direction.
  • the articulated arm 300 may comprise an indefinite number of kinematic links.
  • the articulated arm is composed of two intermediate segments 303, 305 interconnected by a ball joint 304.
  • FIG. 4 illustrates the principle of bio-morphological characterization according to the invention, and comprises the following steps:
  • the patient is installed on the analysis bench, and his member 110 is placed inside the frame 120 supporting the sensors 131-137.
  • the member 110 on which the measurements will be made may be maintained by a temporary restraint device; in step 401, the volumetric measurements are carried out.
  • the frame 120 sets in motion the three-dimensional sensors 131-137 to digitize at least a portion of said member 110;
  • step 402 at least one ultrasound measurement of at least a part of the vascular system of said limb is carried out using the probe holder 200, and more particularly via the ultrasound probe
  • step 405 the evolution of the force exerted by the probe 210 on the limb 110 during the ultrasound measurements 402 is recorded via the force sensor 220 on the probe holder 200.
  • step 403 measurements of the superficial pressure exerted by the orthosis on the member 110 are carried out using the interface pressure sensors 141-143;
  • step 407 merging the various data and correlating them in step 407, analyzing the measurements carried out in order in particular to determine the effectiveness and the impact of the compression orthosis on the vascular system of said limb 110 and, finally, to select or adapt an orthosis in a specific way;
  • FIGURE 5 illustrates an ultrasound image analysis sequence performed during the biomechanical measurement step.
  • a region of interest is first determined 501. It includes the vascular vessel 511 whose morphological characters are sought.
  • the region of interest is binarized in step 502 according to a threshold defined according to the measurement parameters and / or the user; it can for example be performed according to a so-called method of calculating gradients, to perform an adaptive thresholding. It can also be predefined, invariant to images and / or patients.
  • the next step 503 consists of reconstructing a coherent geometry of the cell thus isolated in the region of interest, by means of a mathematical morphology operation. It is then possible to determine the position of the vessel walls at step 504 and at step 505. Depending on the orientation of these walls and in the vicinity of the central part of the region of interest, the mean diameter of the vessel is calculated. The position and evolution of the transverse section along the blood vessel is measured. Advantageously, the position, the orientation and the dimensions of the walls of the vessel are measured - possibly using a modeling simplified ellipsoid of the transverse section of said vessel - to calculate the transverse surface (and its evolution) of said vessel in at least one position.
  • At least a portion of the diameters and / or positions and / or dimensions and / or calculated orientations is saved in a file.
  • a simplified visualization 506 - in the form of an ellipsoidal representation of the vessels makes it possible to observe in real time the variation in the diameter of said vessels, said variation being calculated in longitudinal and / or transverse section.
  • the invention is not limited to the examples that have just been described and many adjustments can be made to these examples without departing from the scope of the invention.
  • the various features, shapes, variants and embodiments of the invention can be associated with each other in various combinations to the extent that they are not incompatible or exclusive of each other. In particular all the variants and embodiments described above are combinable with each other.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

L'invention concerne un système non vulnérant de caractérisation biomorphologique d'un membre humain (110) comprenant un dispositif de mesures géométriques et volumétriques (100) comprenant : - une pluralité de systèmes d'acquisition d'images tridimensionnelles (131-137) agencés pour imager ledit membre (110), - un cadre articulé et motorisé (120), agencé pour positionner et déplacer au moins une partie de la pluralité de systèmes d'acquisition (131-137) de manière périphérique audit membre (110), - un dispositif de traitement des données géométriques et volumétriques, agencé pour représenter les données d'acquisition sous la forme d'une pluralité de points présentant un jeu de coordonnées dans un référentiel tridimensionnel, - un dispositif de mesures biomécaniques comprenant un porte-sonde (200) agencé pour relier solidairement au moins une sonde échographique (210) pour imager le système vasculaire relatif audit membre (110) et un capteur de force (220) agencé pour mesurer la pression exercée par ladite sonde (210) sur le membre (110), et - un dispositif d'analyse, agencé d'une part pour fusionner au moins une partie des données volumétriques et au moins une partie des données anatomiques et biomécaniques, et d'autre part pour déterminer des variables morphologiques du membre (110) et/ou des variables biomécaniques du système vasculaire dudit membre.

Description

« Dispositif de mesures biomécaniques des vaisseaux et d'analyse
volumétrique des membres »
Domaine technique
La présente invention concerne un dispositif non vulnérant de caractérisation bio-morphologique d'un membre humain et d'évaluation biomécanique des vaisseaux sanguins, ainsi qu'un procédé d'aide à la définition de l'orthèse de compression adaptée au membre à traiter.
La présente invention se situe dans le domaine de l'instrumentation médicale.
Etat de la technique antérieure
Bien que très largement utilisées dans de nombreux cas, comme le traitement de l'insuffisance veineuse chronique et du lymphœdème, les orthèses de compression ne sont pas toujours parfaitement adaptées ni à la morphologie du membre sur lequel elles sont mises en place ni aux caractéristiques biomécaniques des veines, de leur paroi et de leur environnement tissulaire. En effet, les orthèses de compression sont fabriquées à partir de normes relatives à un standard morphologique, sans prendre en compte les caractéristiques individuelles de chaque patient, notamment morphologiques. Le résultat thérapeutique n'est ainsi pas toujours atteint de manière optimale.
Plusieurs techniques de caractérisation morphologiques et de volumétrie sont connues et applicables dans le domaine médical :
- Une première technique consiste à mesurer le volume d'eau déplacé lors de l'immersion du membre à traiter. Cette technique, bien que théoriquement simple, n'est pas toujours facile à mettre en œuvre selon le degré de mobilité et/ou l'état de santé du patient, par exemple après une chirurgie récente ou en cas de lésions cutanées. Par ailleurs, elle ne permet pas de réaliser des mesures locales ou segmentaires, et elle ne permet donc pas de mettre en évidence la répartition d'un œdème sur le membre.
- Une autre technique consiste à réaliser des mesures périmétriques à différents niveaux du membre. Cette technique est très simple à mettre en œuvre et largement pratiquée dans le milieu hospitalier ; cependant, elle est très approximative, fastidieuse et mal reproductible.
- D'autres techniques utilisent divers procédés, comme des faisceaux de lumière infrarouge, pour effectuer des mesures de diamètres étagées le long du membre et reconstruire sa silhouette (généralement en deux plans), mais ces mesures restent approximatives, notamment en cas de déformations liées à l'œdème, et ne précisent pas le volume de l'extrémité (main ou pied).
- Enfin, la volumétrie laser 3D est déjà exploitée dans le domaine médical pour la caractérisation morphologique de parties du corps
(face, membre...), mais n'a pas fait l'objet de développements techniques spécifiques à l'usage médical (particulièrement en termes d'ergonomie ou de rapidité d'acquisition), ni d'exploitation pour la personnalisation des orthèses fonction des caractéristiques morphologiques et biomécaniques veineuses du patient.
Par ailleurs, si de nombreuses études ont été menées pour l'étude des effets de la compression veineuse, aucune n'a permis d'évaluer en temps réel les caractéristiques biomécaniques de la paroi veineuse ainsi que les contraintes subies et transmises par les tissus d'un membre sur lequel une orthèse de compression doit être mise en place.
La présente invention a pour objet de répondre au moins en grande partie aux problèmes précédents tout en offrant d'autres avantages.
Un autre but de l'invention est de résoudre au moins un de ces problèmes par un nouveau système de mesures volumétriques et de caractérisation morphologique d'un membre humain, en parallèle avec l'évaluation anatomique et biomécanique des vaisseaux sanguins du membre, et les mettre, le cas échéant, en rapport avec les paramètres de compression. Un autre but de l'invention est de proposer un tel système d'ergonomie adaptée à l'usage médical, facile à mettre en œuvre, non invasif et non- vulnérant. Un autre but de l'invention est de proposer un tel système capable de réaliser des mesures reproductibles, fiables et précises.
Exposé de l'invention
On atteint au moins l'un des objectifs précités avec un système non vulnérant de caractérisation bio-morphologique d'un membre humain comprenant :
- un dispositif de mesures géométriques - de préférence tridimensionnelle (3D) - et volumétriques comprenant :
- une pluralité de systèmes d'acquisition d'images tridimensionnelles agencés pour imager ledit membre,
- un cadre articulé et motorisé, agencé d'une part pour positionner au moins une partie de la pluralité des systèmes d'acquisition de manière périphérique audit membre, et d'autre part pour déplacer au moins une partie de la pluralité des systèmes d'acquisition par rapport audit membre,
- un dispositif de traitement des données géométriques et/ou volumétriques, agencé pour représenter les données d'acquisition sous la forme d'une pluralité de points présentant un jeu de coordonnées dans un référentiel tridimensionnel, et par exemple sous la forme d'un maillage incluant éventuellement une information texturée du membre observé et fournie par les systèmes d'acquisition d'images, et - un dispositif de mesures anatomiques et biomécaniques comprenant un porte-sonde comprenant :
- une sonde échographique pour imager le système vasculaire relatif audit membre, et
- un capteur de force agencé pour mesurer la pression exercée par ladite sonde sur le membre, ledit capteur de force étant relié solidairement à la sonde échographique. Ainsi, le système de caractérisation selon l'invention permet de proposer un nouveau dispositif de caractérisation d'un membre, dans lequel le dispositif de mesure et de volumétrie permettant de reconstruire un modèle numérique 3D dudit membre est complété par un dispositif de mesures anatomiques et biomécaniques permettant de déterminer un certain nombre de variables morphologiques et/ou biomécaniques du système vasculaire afférent audit membre. Il est ainsi possible de mesurer et comprendre, entre autres, le rôle des contraintes mécaniques sur les parois vasculaires dans la maladie vasculaire affectant ledit membre, et de prévoir les effets des différentes modalités et forces de compression afin d'en affiner la prescription.
A titre d'exemples non limitatifs, l'invention, pour le volet des mesures anatomiques et biomécaniques, vise à caractériser d'une part l'anatomie et la géométrie - notamment diamètre, circonférence, section, épaisseur pariétale - et d'autre part les caractéristiques biomécaniques - telles que le module d'élasticité - des vaisseaux sanguins afin de mieux adapter l'orthèse de compression sur ledit membre.
Les mesures anatomiques et biomécaniques sont principalement, mais non exclusivement, réalisées par un système d'échographie couplé à une mesure de la force exercée par la sonde échographique sur ledit membre durant la mesure. Le couplage de la sonde échographique et du capteur de force est réalisé par le porte-sonde. Ce couplage astucieux et intégré de manière innovante à un dispositif de caractérisation d'un membre humain permet à la fois de contrôler la pression exercée par l'opérateur et d'enregistrer la force exercée en retour sur ladite sonde échographique, représentative de la pression interstitielle ainsi que de la pression sanguine locale et ses variations.
Les mesures échographiques permettent avantageusement de déterminer notamment les propriétés dimensionnelles et/ou transversales desdits vaisseaux sanguins. Plus particulièrement, la position et l'orientation de la section transverse du vaisseau sanguin est déterminée, éventuellement en différentes positions. La mesure de force concomitante à la mesure échographique peut aussi être utilisée pour normaliser les mesures biomécaniques ainsi réalisées, par exemple à l'aide d'un asservissement permettant de maintenir à un niveau de consigne la force, la pression, ou leurs effets. Le système de caractérisation selon l'invention permet ainsi de mesurer des variables vasculaires et/ou artérielles sans insertions de capteurs et/ou dispositifs médicaux à l'intérieur dudit membre, concourant ainsi à améliorer l'ergonomie du système de mesure et le confort du patient, tout en excluant les risques divers (notamment hémorragiques ou infectieux) afférant aux techniques vulnérantes.
Selon un mode de réalisation particulier, l'imagerie échographique est réalisée en temps réel afin de pouvoir étudier l'évolution dynamique des variables morphologiques et biomécaniques du système vasculaire, comme par exemple la variation du diamètre artériel durant les cycles cardiaques. II est aussi possible d'évaluer en temps réel l'effet des différentes modalités et paramètres de compression sur la géométrie des vaisseaux superficiels et profonds.
Les mesures de géométrie 2D et de volumétrie du membre à caractériser sont réalisées par une pluralité de capteurs tridimensionnels placés autour dudit membre.
Le nombre de capteurs tridimensionnels peut varier en fonction de la taille et de la forme dudit membre, des degrés de liberté du cadre sur lequel ils sont montés, ainsi que des caractéristiques intrinsèques des dits capteurs tridimensionnels (résolution, champ couvert, portée...) et des contraintes de durée de numérisation.
Afin de réaliser une numérisation complète ou partielle du membre à caractériser, il est nécessaire que la surface de ladite zone à numériser soit imagée entièrement par la pluralité de capteurs tridimensionnels. Ainsi, si seule une partie segmentaire dudit membre doit être imagée, la pluralité de capteurs tridimensionnels mis en œuvre doit être agencée de manière à balayer au moins collectivement l'ensemble de la surface de ladite partie segmentaire. Si tout le membre doit être imagé, alors la pluralité de capteurs tridimensionnels mis en œuvre doit être agencée de manière à balayer, au moins collectivement, l'ensemble de la surface dudit membre. Le nombre et la disposition des capteurs tridimensionnels mis en œuvre peuvent-être adaptés en fonction des situations.
Le balayage complet de la partie segmentaire ou du membre entier peut être obtenu par tout moyen et peut ainsi comprendre des moyens de déplacements, éventuellement motorisés, desdits capteurs tridimensionnels autour du membre à caractériser si le champ de mesure des capteurs tridimensionnels ne permet pas d'imager l'ensemble de la surface depuis une seule position ou afin de raccourcir la durée de numérisation.
Dans le cas où un déplacement desdits capteurs autour dudit membre est nécessaire, il peut être réalisé par le cadre articulé qui possède au moins un moyen agencé d'une part pour supporter au moins un capteur tridimensionnel, et d'autre part pour réaliser un mouvement relatif par rapport audit membre.
Ce mouvement peut être prédéfini par l'intermédiaire d'au moins une liaison cinématique particulière. Il peut s'agir par exemple d'un mouvement de rotation et/ou d'un mouvement de translation. D'une manière générale, l'au moins un moyen est agencé pour permettre audit au moins un capteur tridimensionnel de mesurer au moins une autre partie de la surface du membre à caractériser ou de la partie segmentaire dudit membre.
Avantageusement, le cadre articulé peut être motorisé afin de contrôler plus finement lesdits mouvements des capteurs par rapport au membre à mesurer.
Préférentiellement, les moyens de motorisation dudit cadre peuvent être agencés pour être pilotés à distance afin de programmer des mouvements particuliers et/ou prédéfinis.
Les capteurs tridimensionnels peuvent être de n'importe quel type, et sont conçus pour réaliser un maillage volumique de la surface imagée. Préférentiellement, le dispositif selon l'invention met en œuvre une pluralité de caméras laser tridimensionnelles, avantageusement sept.
A titre d'exemple non limitatif, chaque capteur tridimensionnel réalise ainsi un maillage de la surface dudit membre ou de la partie segmentaire dudit membre de manière indépendante. Chaque capteur tridimensionnel numérise la surface d'au moins une partie dudit membre sous la forme d'un ensemble de points présentant un jeu de coordonnées particulier dans un référentiel tridimensionnel particulier.
Afin de pouvoir reconstruire un maillage volumique complet d'au moins une partie dudit membre, le dispositif selon l'invention met en œuvre des moyens de traitement des données de mesures qui sont agencés pour agréger les différents ensembles de points des différents capteurs dans un référentiel tridimensionnel unique.
Alternativement, au moins un capteur tridimensionnel peut être utilisé pour enregistrer les positions successives d'au moins une partie des autres capteurs tridimensionnels, ledit au moins un capteur utilisé pour enregistrer leurs positions successives pouvant être immobile et/ou à au moins une position prédéterminée.
Par ailleurs, de manière avantageuse, chaque capteur tridimensionnel est étalonné et/ou possède des moyens d'étalonnage intrinsèques qui permettent de rendre compatibles les référentiels tridimensionnels de chaque ensemble de points.
Avantageusement et/ou alternativement, le système de caractérisation morphologique met en œuvre des moyens d'étalonnage communs à au moins une partie des capteurs tridimensionnels afin de rendre compatible et/ou identiques les référentiels tridimensionnels de ladite au moins une partie des capteurs tridimensionnels.
Le dispositif de mesures géométriques et volumétriques permet ainsi de numériser au moins une partie du membre à caractériser de manière rapide et précise. En effet, en utilisant une pluralité de capteurs tridimensionnels éventuellement mobiles autour dudit membre, les temps d'acquisition des images sont réduits puisque chaque capteur n'a en charge que de mesurer une partie au moins dudit membre. Le maillage volumique ainsi obtenu est plus précis car la mesure ainsi réalisée est plus confortable pour le patient, plus rapide et donc moins exposée à un mouvement parasite du membre durant l'enregistrement du fait de l'inconfort du patient.
Le dispositif de caractérisation est ainsi plus ergonomique puisqu'il répond en même temps à un besoin d'amélioration du confort durant cette phase de numérisation.
Les mesures réalisées avec le système de caractérisation selon l'invention peuvent être réalisées indifféremment en présence ou en l'absence de l'orthèse afin de mesurer précisément les effets de celle-ci sur au moins une partie du membre.
Par ailleurs, les mesures anatomiques et biomécaniques peuvent être réalisées en même temps que les mesures volumétriques ou, alternativement.
Selon un mode de réalisation particulier, le système selon l'invention peut comprendre par ailleurs un dispositif d'analyse, agencé d'une part pour fusionner au moins une partie des données volumétriques et au moins une partie des données anatomiques et biomécaniques, et d'autre part pour déterminer des variables morphologiques dudit membre et/ou des variables biomécaniques du système vasculaire dudit membre.
La fusion de donnée consiste en un ensemble de processus qui visent à intégrer des données multiples, représentant un nombre varié de mesures physiques différentes (par exemple optiques, mécaniques, électriques...) d'un même objet, afin de les agréger dans une représentation unique, cohérente, précise et utile.
A titre d'exemple non limitatif, la fusion de données peut par exemple consister à superposer les mesures échographiques - et les variables morphologiques du système vasculaire ainsi caractérisé - au modèle volumique numérique du membre afin de visualiser une représentation numérique et fidèle à la réalité du système vasculaire durant au moins un cycle cardiaque ou une manœuvre dynamique (mouvement, compression...) et sa localisation dans ledit membre.
Le dispositif d'analyse selon l'invention permet ainsi d'agréger au moins une partie des données volumétriques et au moins une partie des données biomécaniques afin notamment d'établir des relations entre les données biométriques mesurées par le dispositif de mesures biomécaniques et le modèle numérique de l'au moins une partie du membre.
Pour ce faire, le dispositif d'analyse peut mettre en œuvre par exemple le procédé d'analyse suivant :
- détermination de l'influence de l'orthèse sur au moins une partie du système vasculaire, et plus particulièrement sur sa variation de section,
- couplage de ces résultats avec les mesures des variations dimensionnelles du membre,
- détermination des conditions d'écoulement sanguin dans l'au moins une partie du système vasculaire, par exemple en présence de pathologie (insuffisance, sténose, thrombose...), afin de comprendre les différentes forces mises en jeu,
- intégration de ces données sur le modèle numérique de l'au moins une partie du membre.
Les conditions d'écoulement sanguin dans le système vasculaire sont déterminées à l'aide d'au moins une variable représentative de type numérique préférentiellement. Cette variable est déduite / calculée à partir des différentes mesures réalisées. Elle est ensuite fusionnée au modèle géométrique afin de visualiser sur une représentation numérique tridimensionnelle la distribution de ladite variable représentative du système vasculaire du membre.
La fusion de données permet ainsi de superposer des mesures dimensionnelles, éventuellement dynamiques, avec des mesures biomécaniques superficielles ou profondes réalisées sur l'au moins une partie du membre afin de localiser précisément lesdites mesures biomécaniques et d'améliorer la compréhension des effets de l'orthèse sur ledit membre.
Avantageusement, au moins une partie de la pluralité de systèmes d'acquisition d'images tridimensionnelles du système selon l'invention peut fonctionner de manière synchrone.
Il est ainsi possible de réduire le temps de numérisation de l'au moins une partie du membre à caractériser.
Préférentiellement au système selon l'invention, le dispositif de mesures volumétriques peut comprendre par ailleurs un outil d'aide à la mesure géométrique et volumétrique dudit membre, agencé pour déterminer des zones représentatives dudit membre pour la détermination de sa forme et de son volume.
Les zones représentatives sont celles qui peuvent permettre de mieux comprendre une pathologie donnée affectant ledit membre et/ou être située autour d'une manifestation ou conséquence de la pathologie. L'outil d'aide à la mesure volumétrique peut être notamment agencé pour détecter des volumes particuliers sur un membre, comme par exemple des déformations représentatives de certaines pathologies. A titre d'exemple non limitatif, l'outil d'aide à la mesure volumétrique peut comparer la morphologie dudit membre à une base de données comprenant des morphologies types desdits membres, telles que décrites dans les normes.
Dans une version particulière du système selon l'invention, le cadre peut comprendre au moins un bras pour supporter au moins une partie de la pluralité de systèmes d'acquisition d'images tridimensionnelles. Eventuellement, ledit au moins un bras est agencé pour pivoter autour dudit membre.
Avantageusement, l'amplitude de rotation de l'au moins un bras dudit cadre peut être comprise entre 0 et 90°. L'amplitude de la rotation des bras du cadre et supportant au moins une partie des capteurs tridimensionnels est, comme décrit plus haut, conditionnée notamment par le besoin de réaliser un recouvrement des surfaces du membre à caractériser entre au moins une partie des capteurs tridimensionnels et au moins une autre partie. Typiquement, l'amplitude de rotation nécessaire est de l'ordre de la quinzaine de degrés.
Selon une version préférentielle de l'invention, le porte-sonde peut être monté sur un bras articulé et/ou motorisé, solidaire ou non du cadre et agencé pour mettre en contact ledit porte-sonde avec le membre et/ou déplacer ledit porte-sonde sur ledit membre.
Le bras articulé permet de réaliser des mouvements dans l'espace en soutenant le porte-sonde, permettant ainsi de réaliser un examen plus précis sur le membre à caractériser.
Selon un mode de réalisation de cette version préférentielle, le bras articulé peut être motorisé afin de réaliser des mouvements de manière automatique et/ou prédéfinis.
Avantageusement, un asservissement de la sonde échographique au contact du membre à caractériser en fonction de la pression mesurée par le capteur de force peut permettre de réaliser des mesures plus fiables et plus reproductibles.
D'autre part, le porte-sonde a une forme et des proportions qui le rendent facilement préhensible. Il est notamment conçu dans des matériaux légers afin de minimiser son poids et faciliter la manipulation de la sonde lors de la caractérisation du membre examiné. Le choix des matériaux peut aussi être conditionné par le caractère médical de son application : il peut être conçu préférentiellement en matière plastique.
Avantageusement, le dispositif de mesures biomécaniques du système selon l'invention peut comprendre au moins un capteur pour mesurer la pression d'interface, placé en contact avec la peau dudit membre.
Eventuellement, le dispositif peut aussi être complété par un capteur de pression intramusculaire pour mesurer la pression sanguine à l'intérieur d'un muscle dudit membre, et/ou un capteur de pression intravasculaire pour mesurer la pression sanguine à l'intérieur d'un vaisseau dudit membre. Selon un mode de réalisation particulier du dispositif de mesures biomécaniques selon l'invention, l'acquisition des données issues d'au moins une partie des capteurs que comprend ledit dispositif de mesures biomécanique peut être réalisé de manière synchrone. L'adaptation du dispositif de mesures biomécaniques à l'évaluation de la physiopathologie vasculaire d'au moins une partie du membre à caractériser permet finalement de fusionner à l'aide du dispositif d'analyse selon l'invention un plus grand nombre de données provenant d'autres capteurs placés préférentiellement à la surface d'une partie au moins dudit membre et permettant de mesurer d'autres grandeurs physiques et/ou d'autres variables morphologiques, physiques, ou chimiques. Il est ainsi possible de mieux comprendre les effets de l'orthèse sur ledit membre.
Le dispositif d'analyse selon l'invention peut ainsi permettre en outre de mettre en relation les variations de pression d'interface avec par exemple la pression intramusculaire ou interstitielle et la pression sanguine d'une part, et la géométrie des différents vaisseaux examinés, superficiels et profonds, d'autre part.
La pression d'interface peut être mesurée par différents types de capteurs, préférentiellement hydrauliques ou pneumatiques par déplacement d'un fluide à l'intérieur d'une poche ou d'un ballonnet plat en contact avec la peau .
On connaît aussi des capteurs électriques (résistifs ou capacitifs) .
Les capteurs de pression d'interface sont répartis à la surface du membre à caractériser, préférentiellement selon une normalisation bien connue par l'homme du métier.
De manière préférentielle, les capteurs d'interface sont agencés pour être mis en place en contact avec le membre à caractériser, en présence ou en l'absence de l'orthèse de compression .
A titre d'exemple non limitatif, les capteurs de pression d'interface peuvent consister en des capteurs pneumatiques associés à des transducteurs de pression piézoélectriques. L'acquisition des données issues des différents capteurs utilisés pour les mesures biomécaniques et/ou de la pluralité de capteurs tridimensionnels utilisés pour les mesures volumétriques se fait par tout moyen connu, de manière analogique et/ou numérique. Finalement, les données sont toutes numérisées afin d'être exploitées par une unité de traitement, préférentiellement un ordinateur.
Eventuellement, un moyen pour conditionner, mettre en forme et/ou prétraiter les signaux issus de l'un au moins des différents capteurs compris dans le dispositif de mesures biomécaniques peut être mis en œuvre dans le système de caractérisation selon l'invention.
Typiquement, mais non limitativement, le dispositif selon l'invention mesure ainsi au moins une propriété mécanique du système vasculaire superficiel et/ou profond afin de, comme expliqué précédemment, déterminer un paramètre représentatif numérique et de le fusionner au modèle géométrique tridimensionnel .
Avantageusement, la propriété mécanique mesurée est la compression dudit système vasculaire sous l'effet de l'application de la sonde sur celui-ci et mesurée par le capteur d'effort embarqué par le porte-sonde.
La mesure est réalisée à un ou plusieurs endroits et sur une durée permettant de mesurer son évolution dans le temps, en fonction par exemple de l'appui et du retrait de la sonde. Cette mesure permet ainsi de mesurer la compression et la détente du système vasculaire sous l'effet de cette pression exercée.
La variable représentative calculée à partir de ces mesures est l'élasticité de la paroi du système vasculaire, permettant de mettre en avant la distensibilité et/ou la compliance de la paroi vasculaire correspondante.
Cette variable représentative est déduite de la mesure et de l'image échographique réalisées, et calculée ensuite selon plusieurs moyens connus, dont la modélisation. A titre d'exemple non limitatif, un modèle basé sur l'évaluation de l'hystérésis observée sur l'évolution de la paroi vasculaire durant la compression et la détente du système vasculaire permet de calculer in fine l'élasticité dudit système vasculaire.
Suivant un autre aspect de la même invention, il est proposé un procédé d'aide à la définition ou à la sélection ou à l'adaptation d'orthèses de compression pour un membre, mettant en œuvre le système de caractérisation bio-morphologique selon l'un quelconque des modes de réalisation de l'invention, comprenant au moins l'une des étapes suivantes :
- mesures géométriques et volumétriques dudit membre,
- mesures biomécaniques dudit membre,
- fusion des mesures géométriques et/ou volumétriques et biomécaniques afin de mettre en corrélation au moins une partie desdites mesures géométriques et/ou volumétriques et au moins une partie desdites mesures biomécaniques,
- détermination d'au moins une variable biométrique et/ou d'au moins une variable volumétrique.
Le procédé selon cet autre aspect de l'invention permet aussi d'adapter une orthèse préexistante à la géométrie du membre sur lequel elle était utilisée.
Selon un mode préféré de cet aspect de l'invention, les mesures biomécaniques peuvent être réalisées au moins durant l'étape de mesures géométriques et/ou volumétriques dudit membre.
Comme expliqué dans les paragraphes précédents, les données biomécaniques sont exploitées afin de déterminer un certain nombre de variables morphologiques et/ou biomécaniques représentatives du système vasculaire du système vasculaire dudit membre. Ces mesures peuvent être réalisées de manière dynamique.
Les variables morphologiques et/ou biomécaniques représentatives du système vasculaire sont principalement déduites des images échographiques, et complétées ensuite par les mesures d'au moins un autre capteur. A titre d'exemple non limitatif, un modèle basé sur l'évaluation de l'hystérésis observée sur l'évolution de la paroi vasculaire imagée par la sonde échographique durant la compression et la détente du système vasculaire permet de calculer in fine l'élasticité dudit système vasculaire. Avantageusement, les mesures biomécaniques sont réalisées en un seul point, permettant de mesurer ainsi une variable représentative du système vasculaire en ce point. La variable représentative est ensuite propagée à l'ensemble du système vasculaire, considérant que les propriétés biomécaniques dudit système vasculaire son isotropes et homogènes. Alternativement, un modèle mathématique peut propager la valeur de ladite variable représentative au travers du modèle numérique dudit système vasculaire afin de calculer des valeurs estimatives de ladite variable représentative en fonction de la valeur mesurée et calculée en un point.
Alternativement, les mesures sont réalisées en plusieurs point et/ou plusieurs zones différentes afin de raffiner ledit modèle mathématique et de calculer plusieurs valeurs de la variable représentative en fonction de la localisation de la portion du système vasculaire considérée.
Selon un mode de réalisation particulier, le procédé selon l'invention peut comprendre une étape de prétraitement des images échographiques réalisées, préalable à la fusion des données. Cette étape de prétraitement consiste notamment à traiter le bruit des images et/ou enlever ou identifier les artefacts (diffraction, réfraction, inclusions...) afin de faciliter l'extraction des informations géométriques.
Une étape suivante consiste par ailleurs à extraire les contours d'au moins une partie d'au moins une image échographique enregistrée. Pour ce faire, plusieurs méthodes bien connues de l'homme du métier existent, telles que les méthodes dérivatives, par segmentation, par contours actifs...
Ces prétraitements peuvent être réalisés une fois que toutes les mesures ont été réalisées - en post-traitement - ou alors réalisés en temps réel au fur et à mesure de l'acquisition des différentes données. Dans tous les cas de figure, ils permettent de mettre en concordance les données obtenues par les dites mesures
Sur la base des résultats de fusion de données et/ou en fonction des résultats de mesures volumétriques et biomécaniques, et selon une version avantageuse de cet aspect de l'invention, le procédé peut comprendre en outre une étape de définition, d'adaptation ou de sélection d'une orthèse de compression pour le membre, en fonction de l'au moins une variable biométrique et/ou de l'au moins une variable géométrique et/ou volumétrique. II peut aussi préférentiellement comprendre une étape supplémentaire d'élaboration d'un modèle biomécanique prédictif des effets de l'orthèse de compression sur le membre et son système vasculaire.
Description des figures et des modes de réalisation
D'autres caractéristiques et avantages de l'invention apparaîtront encore au travers de la description qui suit d'une part, et de plusieurs exemples de réalisation donnés à titre indicatif et non limitatif en référence aux dessins schématiques annexés d'autre part, sur lesquels :
- la FIGURE 1A illustre une vue d'ensemble schématique du dispositif de mesure volumétrique selon l'invention,
- la figure 1B illustre un premier mode de réalisation du dispositif de mesure volumétrique selon l'invention,
- la FIGURE 2 illustre le porte-sonde utilisé pour réaliser une partie des mesures biomécaniques du système vasculaire du membre,
- la FIGURE 3 illustre un bras articulé pour le porte-sonde et selon un mode de réalisation particulier de l'invention,
- la FIGURE 4 illustre le principe de caractérisation bio-morphologique selon l'invention, et
- la FIGURE 5 illustre une séquence d'analyse d'images échographiques réalisées durant les mesures biomécaniques. Les modes de réalisation qui seront décrits dans la suite ne sont nullement limitatifs ; on pourra notamment imaginer des variantes de l'invention ne comprenant qu'une sélection de caractéristiques décrites par la suite isolées des autres caractéristiques décrites, si cette sélection de caractéristiques est suffisante pour conférer un avantage technique ou pour différencier l'invention par rapport à l'état antérieur de la technique . Cette sélection comprend au moins une caractéristique de préférence fonctionnelle sans détails structurels, ou avec seulement une partie des détails structurels si cette partie uniquement est suffisante pour conférer un avantage technique ou pour différencier l'invention par rapport à l'état antérieur de la technique.
En particulier toutes les variantes et tous les modes de réalisation décrits sont combinables entre eux si rien ne s'oppose à cette combinaison sur le plan technique.
Sur les figures, les éléments communs à plusieurs figures conservent la même référence.
Une orthèse est un appareillage qui compense une fonction absente ou déficitaire d'un membre, assiste une structure articulaire ou musculaire, stabilise un segment corporel pendant une phase de réadaptation ou de repos. Elle diffère de la prothèse, qui elle, a pour fonction de remplacer un élément manquant du corps humain.
La FIGURE 1A illustre une vue d'ensemble schématique du dispositif de mesure volumétrique 100 selon l'invention et la FIGURE 1 B illustre un mode de réalisation particulier de l'invention.
Le patient dont l'un des membres doit bénéficier de l'installation d'une orthèse est installé sur un banc de mesure dont une partie est représentée sur la FIGURE 1B. Le banc de mesure comprend typiquement une première structure - optionnelle et non représentée - permettant au patient d'être confortablement installé pour l'analyse morphologique de son membre sur lequel l'orthèse sera mise en place, ainsi qu'une deuxième structure 100 représentée sur les FIGURES 1A et 1B et qui permettent de placer ledit membre 110 à l'intérieur d'une zone de mesure. Plus particulièrement, la FIGURE 1A illustre schématiquement une telle installation pour caractériser un membre inférieur 110.
Le membre inférieur 110 est placé à l'intérieur d'un cadre articulé 120 qui dispose plusieurs capteurs tridimensionnels 131-137 dans l'espace périphérique audit membre 110. Le cadre 120 est constitué d'une base 124 à l'extrémité 123 de laquelle deux capteurs 137a, 137b permettent d'imager la voûte plantaire du membre 110. En extension par rapport à ladite base 124, un bâti 125 s'étend dans une direction sensiblement parallèle à l'élongation du membre inférieur 110. Selon un mode de réalisation particulier de l'invention, le bâti 125 supporte un bras circulaire 121sur lequel sont fixés les capteurs tridimensionnels 131-135.
Le bras circulaire 121 est articulé afin de ménager un dégagement à droite ou à gauche et permettre ainsi au patient d'introduire ou d'enlever son membre 110 de la zone de mesure à l'intérieur dudit cadre 120.
Selon un mode de réalisation particulier de l'invention, compatible avec n'importe quelle version du cadre 120, le bâti 125 peut être télescopique afin de s'adapter aux tailles des membres inférieurs de différents patients.
Sur la FIGURE 1A le bras circulaire 121 supporte cinq capteurs tridimensionnels 131-135 qui peuvent être articulés et/ou motorisés de manière à réaliser un balayage autour du membre inférieur 110.
Eventuellement, les bras circulaires 121, 122 peuvent aussi ou alternativement être articulés et/ou motorisés de manière à réaliser une rotation autour du membre inférieur 110. En d'autres termes, l'articulation des différents capteurs peut être collective, c'est-à-dire mise en œuvre par l'articulation et/ou la rotation du ou des bras qui les supporte(nt) et/ou du bâti ; alternativement, l'articulation des différents capteurs peut être individuelle, chaque capteur possédant ses propres moyens d'articulation et/ou de rotation par rapport au bâti ou au cadre qui le supporte. Les moyens d'articulation et/ou de rotation sont bien connus en tant que tels et non décrits ici.
La distance séparant les bras circulaire 121par rapport à la base 124 peut aussi être ajustable de manière à adapter le dispositif de mesure volumétrique 100 aux dimensions du membre 110 à caractériser.
En complément au dispositif de mesure volumétrique 100, la FIGURE 1A illustre aussi la mise en place de capteurs de pression superficielle 141-143 utilisés pour mesurer par exemple la pression exercée par l'orthèse sur le membre inférieur 110 lorsque celle-ci est mise en place, ou la pression superficielle en l'absence d'orthèse. Sur la FIGURE 1A, trois capteurs 141- 143 sont ainsi disposés le long du membre inférieur 110.
De manière préférentielle, la position des capteurs de pression superficielle 141-143 peut être choisie de manière à caractériser les zones qui sont par ailleurs imagées par les capteurs tridimensionnels 131-137 afin de pouvoir - in fine - fusionner les données et d'établir une analyse plus complète dudit membre 110 et de l'effet de l'orthèse.
Dans le mode de réalisation particulier illustré à la FIGURE 1B, le membre inférieur 110 est placé à l'intérieur d'un cadre articulé 120 qui dispose plusieurs capteurs tridimensionnels 131-137 dans l'espace périphérique audit membre 110. Le cadre 120 est constitué d'une base 124 à l'extrémité 123 de laquelle un premier capteur 137 permet d'imager la voûte plantaire du membre 110. En extension par rapport à ladite base 124, un bâti 125 s'étend dans une direction sensiblement parallèle à l'élongation du membre inférieur 110 et supporte deux bras circulaires 121, 122 sur lesquels sont fixés les capteurs tridimensionnels 131-136.
Dans cet exemple, chaque bras circulaire 121, 122 est agencé d'une part pour permettre une insertion aisée du membre 110 à caractériser a l'intérieur du dispositif 100 et d'autre part est articulé de manière déplacer les capteurs tridimensionnels 131-136 autour dudit membre.
Comme expliqué précédemment, le déplacement des capteurs tridimensionnels 131-136 autour dudit membre peut être collectif à l'aide d'une motorisation et d'une articulation indépendante de chaque bras et/ou par une articulation et une motorisation indépendante de chaque capteur afin de permettre - collectivement et/ou individuellement - à ces dernier d'imager plusieurs zones du membre. La FIGURE 2 illustre le porte-sonde 200 utilisé pour réaliser une partie des mesures biomécaniques du système vasculaire du membre 110.
Le porte-sonde est constitué d'un châssis 201 à l'intérieur duquel ou sur lequel sont fixés une sonde échographique 210 montée sur un support à translation linéaire et relié àun capteur de force 220. Le porte-sonde 200 est conçu de manière à autoriser l'insertion de plusieurs types de sondes échographiques 210. Il comprend ainsi des moyens de fixations de ladite sonde, non représentés sur la FIGURE 2, comme par exemple au moins un collier passant au travers du châssis 201 et autour de la sonde 210. L'extrémité active de la sonde échographique 210 dépasse du porte-sonde afin de pouvoir être mise en contact avec la peau du membre 110 à caractériser.
Le capteur de force 220 est fixé à proximité de la sonde échographique 230 grâce à des moyens de fixation quelconques 230, et de manière à ce qu'il soit en contact avec la peau du membre 110 à caractériser lorsque la sonde échographique 210 l'est.
Les mesures de forces les plus significatives sont celles réalisées dans l'axe de la sonde échographique 210, c'est-à-dire sensiblement perpendiculaire à la surface active 211 de ladite sonde 210. Cependant, des mesures complémentaires de forces dans les directions transverses peuvent permettre d'affiner les mesures et de corriger certaines erreurs éventuelles liées à un défaut d'alignement du capteur de force 220 par rapport à ladite sonde échographique 210.
Le capteur de force 220 est agencé pour mesurer au moins la force normale à sa surface de contact 221. La FIGURE 3 illustre un bras articulé 300 pour le porte-sonde 200 et selon un mode de réalisation particulier de l'invention. Le porte-sonde 200 est fixé sur un bras articulé 300 à l'aide de moyens de fixations 307. Le bras articulé 300 peut être indépendant du dispositif de mesures volumétriques 100, ou solidaire dudit dispositif de mesures volumétriques 100. A l'extrémité du bras articulé 300, une rotule 306 permet au porte-sonde
200 de réaliser trois rotations.
A la base 301 du bras articulé 300, une rotule 302 permet d'orienter ce dernier dans n'importe quelle direction.
Entre les deux extrémités, le bras articulé 300 peut comprendre un nombre indéfini de liaisons cinématiques. Sur l'exemple illustré dans la FIGURE 3, le bras articulé est composé de deux segments intermédiaires 303, 305 reliés entre eux par une rotule 304.
La FIGURE 4 illustre le principe de caractérisation bio-morphologique selon l'invention, et comprend les étapes suivantes :
- le patient est installé sur le banc d'analyse, et son membre 110 est placé à l'intérieur du cadre 120 supportant les capteurs 131-137. Eventuellement, le membre 110 sur lequel les mesures vont être réalisées peut être maintenu par un dispositif de contention temporaire ; - à l'étape 401, les mesures volumétriques sont réalisées. Le cadre 120 met en mouvement les capteurs tridimensionnels 131-137 afin de numériser au moins une partie dudit membre 110 ;
- à l'étape 402, au moins une mesure par échographie d'au moins une partie du système vasculaire dudit membre est réalisée à l'aide du porte-sonde 200, et plus particulièrement via la sonde échographique
210, afin de déterminer certaines variables morphologiques dudit système vasculaire, notamment le diamètre du vaisseau à l'étape 404
- à l'étape 405, l'évolution de la force exercée par la sonde 210 sur le membre 110 durant les mesures échographiques 402 est enregistrée via le capteur de force 220 embarqué sur le porte-sonde 200. - à l'étape 403, des mesures de la pression superficielle exercée par l'orthèse sur le membre 110 sont réalisées à l'aide des capteurs de pression d'interface 141-143;
- fusion des différentes données et mise en corrélation à l'étape 407, analyse des mesures réalisées afin notamment de déterminer l'efficacité et l'impact de l'orthèse de compression sur le système vasculaire dudit membre 110 et, finalement, de sélectionner ou adapter une orthèse de manière spécifique ;
- éventuellement, aide à la prescription d'orthèses de compression particulières à l'étape 408, résultant des mesures et des analyses précédentes.
La FIGURE 5 illustre une séquence d'analyse d'images échographiques réalisées durant l'étape des mesures biomécaniques.
Selon cette méthode d'analyse particulière, une région d'intérêt (ROI) est d'abord déterminée 501. Elle comprend notamment le vaisseau vasculaire 511 dont les caractères morphologiques sont recherchés.
Ensuite, la région d'intérêt est binarisée à l'étape 502 en fonction d'un seuil défini en fonction des paramètres de mesures et/ou de l'utilisateur ; il peut par exemple être réalisé suivant une méthode dite de calcul des gradients, permettant de réaliser un seuillage adaptatif. Il peut être aussi prédéfini, de manière invariante aux images et/ou patients.
L'étape suivante 503 consiste à reconstruire une géométrie cohérente de la cellule ainsi isolée dans la région d'intérêt, par le biais d'une opération de morphologie mathématique. II est alors possible de déterminer la position des parois du vaisseau à l'étape 504 et à l'étape 505. Suivant l'orientation de ces parois et au voisinage de la partie centrale de la région d'intérêt, le diamètre moyen du vaisseau est calculé. La position et l'évolution de la section transverse le long du vaisseau sanguin est mesurée. Avantageusement, la position, l'orientation et les dimensions des parois du vaisseau sont mesurées - éventuellement à l'aide d'une modélisation ellipsoïdale simplifiée de la section transverse dudit vaisseau - afin de calculer la surface transverse (et son évolution) dudit vaisseau en au moins une position.
Au moins une partie des diamètres et/ou positions et/ou dimensions et/ou orientations calculés est sauvegardée dans un fichier.
Une visualisation simplifiée 506 - sous la forme d'une représentation ellipsoïdale des vaisseaux permet d'observer en temps réel la variation du diamètre desdits vaisseaux, ladite variation étant calculée suivant une coupe longitudinale et/ou transversale. Bien sûr, l'invention n'est pas limitée aux exemples qui viennent d'être décrits et de nombreux aménagements peuvent être apportés à ces exemples sans sortir du cadre de l'invention. Notamment, les différentes caractéristiques, formes, variantes et modes de réalisation de l'invention peuvent être associées les unes avec les autres selon diverses combinaisons dans la mesure où elles ne sont pas incompatibles ou exclusives les unes des autres. En particulier toutes les variantes et modes de réalisation décrits précédemment sont combinables entre eux.

Claims

Revendications
Système non vulnérant de caractérisation bio-morphologique d'un membre humain (110) comprenant un dispositif de mesures géométriques et volumétriques (100) comprenant :
- une pluralité de systèmes d'acquisition d'images tridimensionnelles (131-137) agencés pour imager ledit membre (110),
- un cadre articulé et motorisé (120), agencé d'une part pour positionner au moins une partie de la pluralité des systèmes d'acquisition (131-137) de manière périphérique audit membre (110), et d'autre part pour déplacer au moins une partie de la pluralité des systèmes d'acquisition (131- 137) par rapport audit membre (110),
- un dispositif de traitement des données géométriques et volumétriques, agencé pour représenter les données d'acquisition sous la forme d'une pluralité de points présentant un jeu de coordonnées dans un référentiel tridimensionnel,
caractérisé en ce qu'il comprend en outre un dispositif de mesures anatomiques et biomécaniques comprenant un porte-sonde (200) comprenant :
- une sonde échographique (210) pour imager le système vasculaire relatif audit membre (110),
- un capteur de force (220) agencé pour mesurer la pression exercée par ladite sonde (210) sur le membre (110), ledit capteur de force (220) étant relié solidairement à ladite sonde échographique (210), et
- un dispositif d'analyse, agencé d'une part pour fusionner au moins une partie des données volumétriques et au moins une partie des données anatomiques et biomécaniques, et d'autre part pour déterminer des variables morphologiques du membre (110) et/ou des variables biomécaniques du système vasculaire dudit membre.
2. Système selon la revendication précédente, caractérisé en ce que au moins une partie de la pluralité de systèmes d'acquisition d'images tridimensionnelles ( 131- 137) fonctionne de manière synchrone.
Système selon l'une quelconque des revendications précédentes, caractérisé en ce que le dispositif de mesures géométriques et volumétriques ( 100) comprend par ailleurs un outil d'aide à la mesure géométrique et volumétrique du membre (110), agencé pour déterminer des zones représentatives dudit membre ( 110) pour la détermination de sa forme et de son volume.
Système selon l'une quelconque des revendications précédentes, caractérisé en ce que le porte-sonde (200) est monté sur un bras articulé et/ou motorisé (300) solidaire du cadre et agencé pour mettre en contact ledit porte-sonde (200) avec le membre ( 110) et/ou déplacer ledit porte- sonde (200) sur ledit membre ( 110) .
Système selon l'une quelconque des revendications précédentes, caractérisé en ce que le dispositif de mesures anatomiques et biomécaniques comprend au moins un capteur pour mesurer la pression d'interface, ledit au moins un capteur étant placé en contact avec la peau du membre ( 110) .
Procédé d'aide à la définition, sélection ou adaptation d'orthèse de compression pour un membre ( 110), mettant en œuvre le système de caractérisation bio-morphologique selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend au moins l'une des étapes suivantes :
- mesures géométriques et volumétriques (401) dudit membre ( 110),
- mesures biomécaniques (402, 403, 405) dudit membre ( 110),
- fusion (407) des mesures géométriques et /ou volumétriques (401) et biomécaniques (402, 403, 405) afin de mettre en corrélation au moins une partie desdites mesures géométriques et/ou volumétriques et au moins une partie desdites mesures biomécaniques, - détermination d'au moins une variable biométrique (404, 406) et/ou d'au moins un paramètre volumétrique.
Procédé selon la revendication précédente, caractérisé en ce que l'étape de mesures biomécaniques (402, 403, 405) du membre (110) est réalisée au moins durant l'étape de mesures géométriques et/ou volumétriques.
8. Procédé selon l'une quelconque des revendications 6 ou 7, caractérisé en ce qu'il comprend en outre une étape de définition, de sélection ou d'adaptation (408) d'une orthèse de compression pour le membre (110), en fonction de l'au moins une variable biométrique et/ou de l'au moins une variable géométrique et /ou volumétrique.
Procédé selon l'une quelconque des revendications 6 à 8, caractérisé en ce qu'il comprend une étape supplémentaire d'élaboration d'un modèle biomécanique prédictif des effets de l'orthèse de compression sur le membre et son système vasculaire.
PCT/EP2016/065559 2015-07-03 2016-07-01 Dispositif de mesures biomecaniques des vaisseaux et d'analyse volumetrique des membres WO2017005642A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/740,744 US20180317772A1 (en) 2015-07-03 2016-07-01 Device for biochemical measurements of vessels and for volumetric analysis of limbs
EP16741255.0A EP3316764A1 (fr) 2015-07-03 2016-07-01 Dispositif de mesures biomecaniques des vaisseaux et d'analyse volumetrique des membres
CA2992591A CA2992591A1 (fr) 2015-07-03 2016-07-01 Dispositif de mesures biomecaniques des vaisseaux et d'analyse volumetrique des membres

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1556324 2015-07-03
FR1556324A FR3038215A1 (fr) 2015-07-03 2015-07-03 Dispositif de mesures biomecaniques des vaisseaux et d'analyse volumetrique des membres.

Publications (1)

Publication Number Publication Date
WO2017005642A1 true WO2017005642A1 (fr) 2017-01-12

Family

ID=54356487

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/065559 WO2017005642A1 (fr) 2015-07-03 2016-07-01 Dispositif de mesures biomecaniques des vaisseaux et d'analyse volumetrique des membres

Country Status (5)

Country Link
US (1) US20180317772A1 (fr)
EP (1) EP3316764A1 (fr)
CA (1) CA2992591A1 (fr)
FR (1) FR3038215A1 (fr)
WO (1) WO2017005642A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019157486A1 (fr) * 2018-02-12 2019-08-15 Massachusetts Institute Of Technology Cadre de fabrication et de conception quantitative pour une interface biomécanique en contact avec un segment corporel biologique

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020512126A (ja) * 2017-03-31 2020-04-23 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 力検出型表面走査システム、デバイス、制御装置、及び方法
CN108403093B (zh) * 2018-02-27 2021-12-14 京东方科技集团股份有限公司 用于确定血管的位置的装置及其方法
AU2022398686A1 (en) * 2021-11-24 2024-06-13 Linus Biotechnology Inc. Devices, systems, and methods for topographic analysis of a biological surface

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2875043A1 (fr) * 2004-09-06 2006-03-10 Innothera Sa Lab Dispositif pour etablir une representation tridimensionnelle complete d'un membre d'un patient a partir d'un nombre reduit de mesures prises sur ce membre
FR2882172A1 (fr) * 2005-02-16 2006-08-18 Innothera Soc Par Actions Simp Dispositif d'aide a la selection d'une orthese de contention par simulation de ses effets sur l'hemodynamique du retour veineux
US20130282141A1 (en) * 2012-03-19 2013-10-24 Massachusetts Institute Of Technology Variable Impedance Mechanical Interface
WO2016033469A1 (fr) * 2014-08-29 2016-03-03 Bionic Skins LLC Mécanismes et procédés pour une interface mécanique entre un dispositif pouvant être porté et un segment d'un corps humain

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2875043A1 (fr) * 2004-09-06 2006-03-10 Innothera Sa Lab Dispositif pour etablir une representation tridimensionnelle complete d'un membre d'un patient a partir d'un nombre reduit de mesures prises sur ce membre
FR2882172A1 (fr) * 2005-02-16 2006-08-18 Innothera Soc Par Actions Simp Dispositif d'aide a la selection d'une orthese de contention par simulation de ses effets sur l'hemodynamique du retour veineux
US20130282141A1 (en) * 2012-03-19 2013-10-24 Massachusetts Institute Of Technology Variable Impedance Mechanical Interface
WO2016033469A1 (fr) * 2014-08-29 2016-03-03 Bionic Skins LLC Mécanismes et procédés pour une interface mécanique entre un dispositif pouvant être porté et un segment d'un corps humain

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
VEYE FLORENT ET AL: "Evaluation of lower limb vein biomechanical properties and the effects of compression stockings, with an instrumented ultrasound probe", 2014 36TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, IEEE, 26 August 2014 (2014-08-26), pages 74 - 77, XP032675676, DOI: 10.1109/EMBC.2014.6943532 *
VEYE FLORENT ET AL: "Possibility of non-invasive blood pressure estimation by measurements of force and arteries diameter", IEEE-EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL AND HEALTH INFORMATICS (BHI), IEEE, 1 June 2014 (2014-06-01), pages 1 - 4, XP032625369, DOI: 10.1109/BHI.2014.6864289 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019157486A1 (fr) * 2018-02-12 2019-08-15 Massachusetts Institute Of Technology Cadre de fabrication et de conception quantitative pour une interface biomécanique en contact avec un segment corporel biologique

Also Published As

Publication number Publication date
FR3038215A1 (fr) 2017-01-06
CA2992591A1 (fr) 2017-01-12
EP3316764A1 (fr) 2018-05-09
US20180317772A1 (en) 2018-11-08

Similar Documents

Publication Publication Date Title
WO2017005642A1 (fr) Dispositif de mesures biomecaniques des vaisseaux et d'analyse volumetrique des membres
Le Floc'h et al. Vulnerable atherosclerotic plaque elasticity reconstruction based on a segmentation-driven optimization procedure using strain measurements: theoretical framework
US20210145608A1 (en) Quantitative Design And Manufacturing Framework For A Biomechanical Interface Contacting A Biological Body Segment
EP3413803B1 (fr) Dispositifs ultrasonores pour estimer la tension artérielle et d'autres propriétés cardiovasculaires
JP6227560B2 (ja) 角膜のoct撮像における精度向上のための方法
US7949385B2 (en) System and method for reconstruction of the human ear canal from optical coherence tomography scans
JP6373005B2 (ja) 動的光トモグラフィーイメージング装置、方法、およびシステム
EP2761327B1 (fr) Systèmes et dispositifs d'interfaçage pour imagerie optique
JP6739439B2 (ja) 物質の力学的特性を評価するためのシステム
JP2014097417A (ja) 光コヒーレンストモグラフィ画像から組織特徴を取得する定量的方法
WO2012025697A1 (fr) Procède et dispositif de détermination dynamique de la position et orientation des éléments osseux du rachis
FR2927794A1 (fr) Procede et dispositif de guidage d'un outil chirurgical dans un corps assiste par un dispositif d'imagerie medicale.
Nair et al. Heartbeat optical coherence elastography: corneal biomechanics in vivo
WO2015034101A2 (fr) Appareil photo-acoustique
FR2924915A1 (fr) Dispositif d'imagerie echographique et appareil de detection et de destruction de concretions solides incorporant un tel dispositif
FR2863086A1 (fr) Procede de production d'une sequence d'images volumiques d'une zone d'un organe d'un etre vivant.
EP3465082B1 (fr) Scanner 3d intra-oral avec segmentation de fluide
FR3002732A1 (fr) Procede automatique de determination predictive de la position de la peau
FR2965651A1 (fr) Reconstruction tomographique d'un objet en mouvement
US20220386862A1 (en) System and method to measure tissue biomechanical properties without external excitation
EP3367878A1 (fr) Système et procédé pour analyser différentes couches rétiniennes
Dementyev et al. Mechanical imaging of soft tissues with miniature climbing robots
Nguyen et al. 7. Inflation testing of the cornea
Chen et al. Feasibility of Nondestructive Measurement of 3D Vascular Intramural Strains by Optical Coherence Elastography Based on Distortion Correction and Digital Volume Correlation
CN118203306A (zh) 用于对组织进行成像的系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16741255

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2992591

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15740744

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016741255

Country of ref document: EP