WO2017004987A1 - 一种全工况运行的预凝式热源塔装置 - Google Patents

一种全工况运行的预凝式热源塔装置 Download PDF

Info

Publication number
WO2017004987A1
WO2017004987A1 PCT/CN2016/073262 CN2016073262W WO2017004987A1 WO 2017004987 A1 WO2017004987 A1 WO 2017004987A1 CN 2016073262 W CN2016073262 W CN 2016073262W WO 2017004987 A1 WO2017004987 A1 WO 2017004987A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
heat source
source tower
electric
sump
Prior art date
Application number
PCT/CN2016/073262
Other languages
English (en)
French (fr)
Inventor
梁彩华
黄世芳
徐洁月
张小松
Original Assignee
东南大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东南大学 filed Critical 东南大学
Publication of WO2017004987A1 publication Critical patent/WO2017004987A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B29/00Combined heating and refrigeration systems, e.g. operating alternately or simultaneously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/06Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the arrangements for the supply of heat-exchange fluid for the subsequent treatment of primary air in the room units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28CHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA COME INTO DIRECT CONTACT WITHOUT CHEMICAL INTERACTION
    • F28C1/00Direct-contact trickle coolers, e.g. cooling towers
    • F28C1/14Direct-contact trickle coolers, e.g. cooling towers comprising also a non-direct contact heat exchange

Definitions

  • the partial pressure of water vapor in the air is much greater than the partial pressure of water vapor on the surface of the solution. Since the inlet of the heat source tower is under negative pressure, the water droplets in the air around the heat source tower will be easily sucked into the tower with the incoming air, resulting in The drop in solution concentration is more serious and the solution regeneration load increases sharply.
  • the function of the heat source tower is equivalent to the cooling tower.
  • the condensing heat of the chiller is mainly evaporated by the partial cooling water in the tower to dissipate the condensed heat into the environment, thereby generating a large amount of cooling water consumption. Not a very rich area, it is a constraint.
  • the present invention provides a solution regeneration load that can reduce the heat source tower heat pump unit under various working conditions in winter heating operation, reduce solution regeneration energy consumption, reduce cooling water consumption during summer cooling operation, and improve heat source tower heat pump.
  • the pre-condensation heat source tower device operated under full operating conditions of the system in winter and summer.
  • the heat exchanger solution inlet, the finned tube heat exchanger solution outlet is connected to the first input end of the liquid collecting tank, the second electric three-way valve second outlet is connected to the inlet of the spraying device, and the spraying device is located in the fin tube exchange Directly above the heat exchanger, the liquid collecting tank is located directly below the finned tube heat exchanger, and the outlet of the liquid collecting tank is divided into two paths, one passage through the first electromagnetic valve to the second input end of the liquid collecting tank, and the other passing through the first
  • the second electromagnetic valve is connected to the water outlet of the heat source tower; the finned tube heat exchanger is also an integral part of the air circuit;
  • the air circuit includes a baffle, a finned tube heat exchanger, a packing, a liquid trap, a fan, and a connecting passage thereof.
  • the baffle is located at a lower side of the heat source tower and outside the finned tube heat exchanger, the filler is located in the middle of the heat source tower, the liquid trap is located above the liquid trap, and the fan is located at the liquid trap Above.
  • the main solution circuit and the pre-condensation and spray frost suppression circuit are connected in parallel, and the solution or the cooling water enters from the solution inlet end of the heat source tower, and is connected in parallel after passing through the first electric three-way valve.
  • the form is divided into two strands, which respectively enter the main solution loop and the pre-condensation and spray frost suppression loops, and are collected in the sump.
  • the fin-and-tube heat exchanger pre-condenses moisture in the air entering the heat source tower, and prevents raindrops caused by negative pressure of the air inlet of the heat source tower in rainy or foggy weather. Or mist inhalation Inside the heat source tower.
  • the spray device can spray the solution of the low freezing point on the fin-tube heat exchanger directly below the spray tube, and collect the spray in the liquid collection tank directly below the fin-tube heat exchanger.
  • the solution when the first electromagnetic valve is opened and the second electromagnetic valve is closed, the collected solution is merged into the liquid collecting tank to ensure stable operation of the finned tube heat exchanger and fully utilize the heat exchange area.
  • the figure includes: fan 1, liquid receiver 2, liquid distributor 3, packing 4, finned tube heat exchanger 5, finned tube heat exchanger solution inlet 5a, finned tube heat exchanger solution outlet 5b, first Electric three-way valve 6, first electric three-way valve inlet 6a, first electric three-way valve first outlet 6b, first electric three-way valve second outlet 6c, second electric three-way valve 7, and second electric three-way Valve inlet 7a, second electric three-way valve first outlet 7b, second electric three-way valve second outlet 7c, first solenoid valve 8, second solenoid valve 9, shower device 10, deflector 11, collecting liquid The tank 12, the sump 13, the sump output end 13a, the sump first input end 13b, and the sump second input end 13c.
  • the main solution circuit includes a liquid distributor 3, a packing 4, a liquid collecting tank 13, a first electric three-way valve 6 and a connecting pipe thereof arranged in order from the top to the bottom; in the main solution circuit, the solution inlet end of the heat source tower is connected first.
  • An electric three-way valve inlet 6a, a first electric three-way valve first outlet 6b is connected to the inlet of the liquid distributor 3, the packing 4 is located directly below the liquid distributor 3, and the liquid collecting tank 13 is located directly below the packing 4.
  • the sump output end 13a is connected to the solution outlet end of the heat source tower; the first electric three-way valve 6 and the sump 13 are simultaneously a group of pre-condensation and spray frost suppression circuits.
  • the filler 4 is simultaneously an integral part of the air circuit;
  • the air circuit comprises a baffle 11, a finned tube heat exchanger 5, a packing 4, a liquid trap 2, a fan 1 and a connecting passage thereof, the deflector 11 being located at a lower side of the heat source tower and at the finned tube heat exchanger On the outside of the 5, the packing 4 is located in the middle of the heat source tower, the liquid trap 2 is located above the liquid trap 3, and the blower 1 is located above the liquid trap 2.
  • the specific method of the present invention is that the heat source tower winter heating operation is divided into two modes, a winter heating non-frosting mode and a winter heating frosting mode.
  • the end flows out and enters the evaporator of the heat pump unit.
  • the solution in the fin-tube heat exchanger 5 is The air is heat exchanged, the fin surface temperature of the finned tube heat exchanger 5 is lower than the air dew point temperature, and the moisture in the air is condensed on the fin surface of the finned tube heat exchanger 5, and the condensed water is transferred from the finned tube heat exchanger 5 Fin surface dripping backward flow
  • the first solenoid valve 8 is closed, the second solenoid valve 9 is opened, and the condensed water flows out of the sump 12 and then flows out from the drain port of the heat source tower through the second solenoid valve 9.
  • the solution is divided into two paths in the second electric three-way valve 7, and one solution flows out from the first outlet 7b of the second electric three-way valve, enters the fin-tube heat exchanger 5, and the solution exchanges heat in the finned tube
  • the second outlet 7c of the valve flows out, and the solution enters the spraying device 10 to dissolve
  • the liquid is sprayed onto the fin surface of the fin-and-tube heat exchanger 5, and the fin surface temperature of the fin-and-tube heat exchanger 5 is lower than the air dew point due to heat exchange between the solution in the fin-and-tube heat exchanger 5 and the air.
  • the first electromagnetic valve 8 flows into the liquid collecting tank 13, and the solution whose temperature rises in the liquid collecting tank 13 flows out from the liquid collecting tank output end 13a through the solution outlet end of the heat source tower, and enters the evaporator of the heat pump unit.
  • the air in the environment enters the finned tube heat exchanger 5 via the deflector 11 under the suction of the fan 1, and exchanges heat with the solution therein, at which time the moisture in the air will be in the finned tube heat exchanger 5.
  • the surface of the fin is frosted, the air temperature is lowered, the air flows out of the fin-and-tube heat exchanger 5, and then enters the packing 4.
  • the heat and mass transfer is carried out with the solution in the packing 4, and the air releases heat, and the temperature thereof is further lowered, and the air is simultaneously
  • the water still partially enters the solution, and the air flows out from the upper portion of the filler 4 and enters the liquid trap 2, and the liquid droplets carried in the air are removed by the liquid trap 2.
  • the heat source tower heat pump works as a water-cooled chiller. That is, the heat source tower function is equivalent to the cooling tower. At this time, the working medium in the heat source tower is cooling water instead of solution.
  • the high-temperature cooling water from the condenser of the heat pump unit enters from the inlet end of the solution of the heat source tower, and is divided into two paths when passing through the first electric three-way valve 6, and one cooling water flows out from the first outlet 6b of the first electric three-way valve to enter the cloth.
  • the outlet 6c flows out and enters the second electric three-way valve 7, at which time all the cooling water flows out from the first outlet 7b of the second electric three-way valve, enters the fin-tube heat exchanger 5, and the cooling water is in the fin-tube heat exchanger 5
  • the medium exchanges heat with the air, and after the temperature of the cooling water is lowered, it flows out from the fin-tube heat exchanger solution outlet 5b, flows into the sump 13 from the first input end 13b of the sump, and cools after the temperature in the sump 13 is lowered.
  • the air in the environment enters the finned tube heat exchanger 5 via the deflector 11 under the suction of the fan 1, where it exchanges heat with the cooling water, and the air temperature rises, and the air is supplied from the finned tube heat exchanger 5 After flowing out, it enters the packing 4, and the cooling water in the packing 4 carries out heat and mass transfer, the air temperature further rises, and the water vapor which is evaporated by the partial cooling water enters the air, and the air flows out from the upper part of the packing 4 and enters the liquid collection.
  • the droplets carried in the air will be removed by the liquid trap 2, and the air will flow out of the liquid trap 2 and be sucked and pressurized by the fan 1 to be discharged from the heat source tower.
  • the air entering the heat source tower first exchanges heat with the cooling water in the finned tube heat exchanger 5, and after the temperature of the cooling water is lowered, it directly enters the liquid collecting tank 13 and bears the heat source.
  • the partial heat load of the tower heat dissipation is equivalent to reducing the amount of heat that the cooling water emits in the filler 4 by the form of water evaporation (ie, The heat load of the filler 4 is lowered, thereby reducing the evaporation water evaporation loss of the heat source tower, thereby realizing water saving while improving system efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种全工况运行的预凝式热源塔装置,包括主溶液回路、预凝与喷淋抑霜回路及空气回路。主溶液回路与预凝与喷淋抑霜回路为并列连接,溶液或冷却水从热源塔的溶液入口端进入后,经第一电动三通阀(6)后以并联形式分为两股,分别进入主溶液回路与预凝与喷淋抑霜回路,并在集液池(13)汇集。该热源塔装置能够降低热源塔热泵机组在冬季制热运行各种工况下的溶液再生负荷,减少溶液再生能源消耗,同时减少夏季制冷运行时的冷却水消耗,提高热源塔热泵系统的冬夏综合性能。

Description

一种全工况运行的预凝式热源塔装置 技术领域
本发明属于制冷空调热泵技术领域,涉及一种可实现全工况运行的预凝式热源塔装置。
背景技术
现有中央空调系统冷热源方案都存在各自的优点及缺陷:冷水机组+锅炉方案具有夏季制冷效率高等优点,但冬季存在冷水机组闲置,锅炉供热一次能源利用率低等不足;空气源热泵具有结构紧凑,使用灵活,兼顾供冷供热的优点,但夏季制冷效率偏低,冬季制热存在结霜问题;水/地源热泵兼顾供冷供热,效率高,但受地理/地质条件限制且初投资较高。
热源塔热泵系统作为一种新型的建筑空调系统冷热源,在夏季制冷时与常规水冷冷水机组无异,具有水冷冷水机组的高效率;在冬季制热时热源塔中的工作介质为具有较低冰点的溶液,在塔中溶液与空气换热,从空气中吸取热量作为热泵的低位热源,在实现热源塔热泵制热的同时,避免常规空气源热泵的结霜问题。
热源塔热泵系统在冬季制热运行时,利用溶液在热源塔中与空气进行传热传质,实现显热和潜热的交换,因通常空气中的水蒸气分压力大于溶液表面的水蒸气分压力,在换热过程中,空气中的水分将进入溶液,导致溶液的浓度降低,冰点升高,而为保证系统的稳定运行,必须保证溶液的冰点温度低于热泵的蒸发温度。因此,在运行过程中需对溶液浓度以通过再生的方式进行控制,但溶液再生过程是一个消耗大量能量的过程。在雨天或雾天,空气中水蒸气分压力远大于溶液表面水蒸气分压力的同时,由于热源塔进风口呈负压,热源塔周围空气中的水滴将容易随进风被吸入塔内,导致溶液浓度下降更为严重,溶液再生负荷急剧增加。在夏季热源塔的功能相当于冷却塔,将冷水机组的冷凝热量在塔中主要通过部分冷却水蒸发来实现将冷凝热散到环境中,由此产生了大量的冷却水消耗,这对水资源不是很丰富的地区来说,是一个制约。
因此,为降低热源塔热泵系统冬季制热运行时的溶液再生负荷,减少溶液再生的能源消耗,同时减少夏季制冷运行时的冷却水消耗,提高热源塔热泵系统的冬夏综合性能,设计出一种可在冬夏季各种运行工况下都实现高效运行的热源塔成为本领域技 术人员迫切需要解决的技术难题。
发明内容
技术问题:本发明提供一种能够降低热源塔热泵机组在冬季制热运行各种工况下的溶液再生负荷,减少溶液再生能源消耗,同时减少夏季制冷运行时的冷却水消耗,提高热源塔热泵系统冬夏综合性能的全工况运行的预凝式热源塔装置。
技术方案:为解决上述技术问题,本发明的全工况运行的预凝式热源塔装置,包括热源塔塔体和设置在塔体中的主溶液回路、预凝与喷淋抑霜回路和空气回路。
主溶液回路包括从上至下依次设置的布液器、填料、集液池、第一电动三通阀及其连接管道。主溶液回路中,热源塔的溶液入口端连接第一电动三通阀入口,第一电动三通阀第一出口连接布液器的入口,填料位于布液器的正下方,集液池位于填料的正下方且在塔身最底部,集液池输出端接热源塔的溶液出口端。所述第一电动三通阀和集液池同时是预凝与喷淋抑霜回路的组成部分,所述填料同时是空气回路的组成部分;
预凝与喷淋抑霜回路包括第一电动三通阀、第二电动三通阀、喷淋装置、翅片管换热器、集液槽、第一电磁阀、第二电磁阀、集液池及其连接管道。预凝与喷淋抑霜回路中,第一电动三通阀第二出口连接第二电动三通阀入口,第二电动三通阀第一出口连接位于热源塔下部侧面进风位置的翅片管换热器溶液入口,翅片管换热器溶液出口与集液池第一输入端相连,第二电动三通阀第二出口连接喷淋装置的入口,所述喷淋装置位于翅片管换热器的正上方,所述集液槽位于翅片管换热器的正下方,集液槽的出口分成两路,一路通过第一电磁阀接集液池第二输入端,另外一路通过第二电磁阀接热源塔的排水口;所述翅片管换热器同时是空气回路的组成部分;
空气回路包括导流板、翅片管换热器、填料、收液器、风机及其连接通道。所述导流板位于热源塔下部侧面且在翅片管换热器的外侧,所述填料位于热源塔的中部,所述收液器位于布液器的上方,所述风机位于收液器的上方。
进一步的,本发明热源塔装置中,主溶液回路与预凝与喷淋抑霜回路为并列连接,溶液或冷却水从热源塔的溶液入口端进入后,经第一电动三通阀后以并联形式分为两股,分别进入主溶液回路与预凝与喷淋抑霜回路,并在集液池汇集。
进一步的,本发明热源塔装置中,所述翅片管换热器对进入热源塔的空气中的水分进行预凝,并在雨天或大雾天气时,防止热源塔进风口负压导致的雨滴或雾滴吸入 热源塔内部。
进一步的,本发明热源塔装置中,喷淋装置能将低冰点的溶液喷淋于其正下方的翅片管换热器,位于翅片管换热器正下方的集液槽收集所喷淋溶液,当第一电磁阀开启,第二电磁阀关闭时上述收集的溶液汇入集液池,保证翅片管换热器稳定运行,充分利用其换热面积。
进一步的,本发明中,热源塔为逆流热源塔或横流热源塔。
有益效果:本发明与现有技术相比,具有以下优点:
本发明一种全工况运行的预凝式热源塔装置,在夏季通过翅片管换热器的作用,可减少机组冷凝热散热过程中冷却水的消耗;在冬季制热运行时,通过将空气中水分预凝的方式,大大的减少空气中水分在热源塔中进入溶液的量,从而降低热泵机组的溶液再生负荷及其再生热源需求,提高了热源塔热泵机组的综合性能,实现节能节水。
附图说明
图1是一种全工况运行的预凝式热源塔装置的原理示意图。
图中有:风机1、收液器2、布液器3、填料4、翅片管换热器5、翅片管换热器溶液入口5a、翅片管换热器溶液出口5b、第一电动三通阀6、第一电动三通阀入口6a、第一电动三通阀第一出口6b、第一电动三通阀第二出口6c、第二电动三通阀7、第二电动三通阀入口7a、第二电动三通阀第一出口7b、第二电动三通阀第二出口7c、第一电磁阀8、第二电磁阀9、喷淋装置10、导流板11、集液槽12、集液池13、集液池输出端13a、集液池第一输入端13b、集液池第二输入端13c。
具体实施方式
下面结合实施例和说明书附图对本发明的技术方案作进一步的描述。
本发明提供的一种全工况运行的预凝式热源塔装置,其原理图如图1所示,该热源塔包括热源塔塔体和设置在塔体中的主溶液回路、预凝与喷淋抑霜回路和空气回路。
主溶液回路包括从上至下依次设置的布液器3、填料4、集液池13、第一电动三通阀6及其连接管道;主溶液回路中,热源塔的溶液入口端连接第一电动三通阀入口6a,第一电动三通阀第一出口6b连接布液器3的入口,所述填料4位于布液器3的正下方,所述集液池13位于填料4的正下方且在塔身最底部,集液池输出端13a接热源塔的溶液出口端;所述第一电动三通阀6和集液池13同时是预凝与喷淋抑霜回路的组 成部分,所述填料4同时是空气回路的组成部分;
预凝与喷淋抑霜回路包括第一电动三通阀6、第二电动三通阀7、喷淋装置10、翅片管换热器5、集液槽12、第一电磁阀8、第二电磁阀9、集液池13及其连接管道;第一电动三通阀第二出口6c连接第二电动三通阀入口7a,第二电动三通阀第一出口7b连接位于热源塔下部侧面进风位置的翅片管换热器溶液入口5a,翅片管换热器溶液出口5b与集液池第一输入端13b相连,第二电动三通阀第二出口7c连接喷淋装置10的入口,所述喷淋装置10位于翅片管换热器5的正上方,所述集液槽12位于翅片管换热器5的正下方,集液槽12的出口分成两路,一路通过第一电磁阀8接集液池第二输入端13c,另外一路通过第二电磁阀9接热源塔的排水口;所述翅片管换热器5同时是空气回路的组成部分;
空气回路包括导流板11、翅片管换热器5、填料4、收液器2、风机1及其连接通道,所述导流板11位于热源塔下部侧面且在翅片管换热器5的外侧,所述填料4位于热源塔的中部,所述收液器2位于布液器3的上方,所述风机1位于收液器2的上方。
本发明的具体方法是:热源塔冬季制热运行分为二种模式,冬季制热不结霜模式和冬季制热结霜模式。
冬季制热不结霜模式:冬季制热运行时,当空气在热源塔的翅片管换热器5的翅片表面只凝露而不冻结或不出现结霜时,运行此模式,可实现对进入热源塔的空气中的水分预凝。此时,低温溶液从热泵机组蒸发器流出后由热源塔的溶液入口端进入,经过第一电动三通阀6时分为两路,一路溶液由第一电动三通阀第一出口6b流出,进入布液器3,溶液由布液器3布撒于填料4之上,溶液在填料4表面形成液膜,在重力的作用下,由填料4上部流到填料4下部,在这过程中与空气进行传热传质,溶液温度升高,浓度降低,最终溶液由填料4下部流入集液池13中;另一路溶液由第一电动三通阀第二出口6c流出,进入第二电动三通阀7,此时溶液全部从第二电动三通阀第一出口7b流出,进入翅片管换热器5,溶液在翅片管换热器5中与空气进行换热,溶液温度升高后,从翅片管换热器溶液出口5b流出,由集液池第一输入端13b流入集液池13,集液池13中温度升高后的溶液从集液池输出端13a经热源塔的溶液出口端流出,进入热泵机组的蒸发器中。同时因进入第二电动三通阀7的全部溶液都从第二电动三通阀第一出口7b流出,则喷淋装置10中无溶液喷淋,同时因翅片管换热器5中溶液与空气进行换热,翅片管换热器5的翅片表面温度低于空气露点温度,空气中水分在翅片管换热器5的翅片表面凝结,凝结水从翅片管换热器5的翅片表面滴落后流 入集液槽12,此时第一电磁阀8关闭,第二电磁阀9打开,凝结水从集液槽12流出后经过第二电磁阀9从热源塔的排水口流出。环境中的空气在风机1的抽吸作用下,经过导流板11进入翅片管换热器5,在其中与溶液进行换热,此时空气中的水分凝结成水滴,空气温度下降,同时绝对含湿量也降低,实现预凝,空气从翅片管换热器5中流出后进入填料4,在填料4中与溶液进行传热传质,空气再次放出热量,其温度进一步降低,同时空气中水分尚有部分进入溶液,空气从填料4的上部流出后进入收液器2,空气中所携带的液滴将被收液器2所除去,空气流出收液器2后被风机1吸入加压后排出热源塔。
冬季制热结霜模式:当空气经过热源塔的翅片管换热器5的翅片表面出现结霜时,运行此模式。此时,低温溶液从热泵机组蒸发器流出后由热源塔的溶液入口端进入,经过第一电动三通阀6时分为两路,一路溶液由第一电动三通阀第一出口6b流出,进入布液器3,溶液由布液器3布撒于填料4之上,溶液在填料4表面形成液膜,在重力的作用下,由填料4上部流到填料4下部,在这过程中与空气进行传热传质,溶液的温度升高,浓度降低,最终溶液由填料4下部流入集液池13中;另一路溶液由第一电动三通阀第二出口6c流出,进入第二电动三通阀7,此时溶液在第二电动三通阀7中被分成两路,一路溶液从第二电动三通阀第一出口7b流出,进入翅片管换热器5,溶液在翅片管换热器5中与空气进行换热,溶液温度升高后,从翅片管换热器溶液出口5b流出,由集液池第一输入端13b流入集液池13;另一路溶液从第二电动三通阀第二出口7c流出,溶液进入喷淋装置10,溶液被喷淋至翅片管换热器5的翅片表面,因翅片管换热器5中溶液与空气进行换热时,翅片管换热器5的翅片表面温度低于空气露点温度且低于0℃,空气中水分在翅片管换热器5的翅片表面结成霜,喷淋的溶液在翅片管换热器5的翅片表面与霜进行接触(因溶液具有较低冰点,喷淋至霜表面时,霜将融化),霜被融化后与溶液一道流入集液槽12,此时第二电磁阀9关闭,第一电磁阀8打开,溶液从集液槽12流出后经过第一电磁阀8流入集液池13,集液池13中温度升高后的溶液从集液池输出端13a经热源塔的溶液出口端流出,进入热泵机组的蒸发器中。环境中的空气在风机1的抽吸作用下,经导流板11进入翅片管换热器5,在其中与溶液进行换热,此时空气中水分将在翅片管换热器5的翅片表面结成霜,空气温度降低,空气从翅片管换热器5中流出后进入填料4,在填料4中与溶液进行传热传质,空气放出热量,其温度进一步降低,同时空气中水分尚有部分进入溶液,空气从填料4的上部流出后进入收液器2,空气中所携带的液滴被收液器2所除去, 空气流出收液器2后被风机1吸入加压后排出热源塔。
冬季的下雨和大雾天气一般出现在环境温度相对较高时(此时热源塔运行不结霜模式),当热源塔在雨天或大雾环境运行时,由于风机1的抽吸作用,热源塔进风口处将呈负压,进风口侧空气中的雨滴或雾滴将会被直接以液态的形式吸入塔内,而这部分对热源塔换热不产生贡献的同时,反而因其以液态形式直接进入溶液,使得溶液浓度降低,造成再生负荷升高。而本发明一种可全工况运行的预凝式热源塔装置在此运行环境下,因翅片管换热器5的存在,可有效阻挡空气中的液滴进入填料,并将液滴收集于集液槽12,经第二电磁阀9从热源塔的排水口排出。
夏季制冷运行:夏季热源塔热泵工作时相当于水冷冷水机组,即此时热源塔功能相当于冷却塔,此时热源塔中的工作介质为冷却水,而不是溶液。热泵机组冷凝器中出来的高温冷却水由热源塔的溶液入口端进入,经过第一电动三通阀6时分为两路,一路冷却水由第一电动三通阀第一出口6b流出,进入布液器3,冷却水由布液器3布撒于填料4之上,冷却水在填料4表面形成液膜,在重力的作用下,由填料4上部流到填料4下部,在这过程中与空气进行传热传质,部分冷却水蒸发变成水蒸气进入空气,其余冷却水温度降低,最终冷却水由填料4下部流入集液池13中;另一路冷却水由第一电动三通阀第二出口6c流出,进入第二电动三通阀7,此时冷却水全部从第二电动三通阀第一出口7b流出,进入翅片管换热器5,冷却水在翅片管换热器5中与空气进行换热,冷却水温度降低后,从翅片管换热器溶液出口5b流出,由集液池第一输入端13b流入集液池13,集液池13中温度降低后的冷却水从集液池输出端13a经热源塔的溶液出口端流出,进入热泵机组的冷凝器中,同时因进入第二电动三通阀7中的全部冷却水都从第二电动三通阀第一出口7b流出,则喷淋装置10不工作,第一电磁阀8、第二电磁阀9都关闭。环境中的空气在风机1的抽吸作用下,经导流板11进入翅片管换热器5,在其中与冷却水进行换热,空气温度升高,空气从翅片管换热器5中流出后进入填料4,在填料4中冷却水进行传热传质,空气温度进一步升高,同时部分冷却水蒸发所变成的水蒸气进入空气,空气从填料4的上部流出后进入收液器2,空气中所携带的液滴将被收液器2所除去,空气流出收液器2后被风机1吸入加压后排出热源塔。
热源塔在夏季制冷工况运行时,因进入热源塔的空气首先与翅片管换热器5中冷却水进行换热,此部分冷却水温度降低后,直接进入集液池13,承担了热源塔散热的部分热负荷,相当于减少了冷却水在填料4中通过以水分蒸发形式而散发的热量(即 降低填料4的热负荷),从而减小热源塔的冷却水蒸发损失,实现了节水的同时提高了系统效率。
以上所述仅是本发明的优选实施方式,本装置也同样适用于横流型热源塔,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和等同替换,这些对本发明权利要求进行改进和等同替换后的技术方案,均落入本发明的保护范围。

Claims (5)

  1. 一种全工况运行的预凝式热源塔装置,其特征在于:该装置包括热源塔塔体和设置在塔体中的主溶液回路、预凝与喷淋抑霜回路和空气回路;
    所述主溶液回路包括从上至下依次设置的布液器(3)、填料(4)、集液池(13)、第一电动三通阀(6)及其连接管道;所述热源塔的溶液入口端连接第一电动三通阀入口(6a),第一电动三通阀第一出口(6b)连接布液器(3)的入口,所述填料(4)位于布液器(3)的正下方,所述集液池(13)位于填料(4)的正下方且在塔身最底部,集液池输出端(13a)接热源塔的溶液出口端;所述第一电动三通阀(6)和集液池(13)同时是预凝与喷淋抑霜回路的组成部分,所述填料(4)同时是空气回路的组成部分;
    所述预凝与喷淋抑霜回路包括第一电动三通阀(6)、第二电动三通阀(7)、喷淋装置(10)、翅片管换热器(5)、集液槽(12)、第一电磁阀(8)、第二电磁阀(9)、集液池(13)及其连接管道;第一电动三通阀第二出口(6c)连接第二电动三通阀入口(7a),第二电动三通阀第一出口(7b)连接位于热源塔下部侧面进风位置的翅片管换热器溶液入口(5a),翅片管换热器溶液出口(5b)与集液池第一输入端(13b)相连,第二电动三通阀第二出口(7c)连接喷淋装置(10)的入口,所述喷淋装置(10)位于翅片管换热器(5)的正上方,所述集液槽(12)位于翅片管换热器(5)的正下方,集液槽(12)的出口分成两路,一路通过第一电磁阀(8)接集液池第二输入端(13c),另外一路通过第二电磁阀(9)接热源塔的排水口;所述翅片管换热器(5)同时是空气回路的组成部分;
    所述空气回路包括导流板(11)、翅片管换热器(5)、填料(4)、收液器(2)、风机(1)及其连接通道,所述导流板(11)位于热源塔下部侧面且在翅片管换热器(5)的外侧,所述填料(4)位于热源塔的中部,所述收液器(2)位于布液器(3)的上方,所述风机(1)位于收液器(2)的上方。
  2. 根据权利要求1所述的一种全工况运行的预凝式热源塔装置,其特征在于:所述主溶液回路与预凝与喷淋抑霜回路为并列连接,溶液或冷却水从热源塔的溶液入口端进入后,经第一电动三通阀(6)后以并联形式分为两股,分别进入主溶液回路与预凝与喷淋抑霜回路,并在集液池(13)汇集。
  3. 根据权利要求1所述的一种全工况运行的预凝式热源塔装置,其特征在于,所述翅片管换热器(5)对进入热源塔的空气中的水分进行预凝,并在雨天或大雾天气 时,防止热源塔进风口负压导致的雨滴或雾滴吸入热源塔内部。
  4. 根据权利要求1所述的一种全工况运行的预凝式热源塔装置,其特征在于,所述喷淋装置(10)能将低冰点的溶液喷淋于其正下方的翅片管换热器(5),位于翅片管换热器(5)正下方的集液槽(12)收集所喷淋溶液,当第一电磁阀(8)开启,第二电磁阀(9)关闭时上述收集的溶液汇入集液池(13),保证翅片管换热器(5)稳定运行,充分利用其换热面积。
  5. 根据权利要求1所述的一种全工况运行的预凝式热源塔装置,其特征在于,所述热源塔为逆流热源塔或横流热源塔。
PCT/CN2016/073262 2015-07-09 2016-02-03 一种全工况运行的预凝式热源塔装置 WO2017004987A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510401944.4A CN104990305B (zh) 2015-07-09 2015-07-09 一种全工况运行的预凝式热源塔装置
CN201510401944.4 2015-07-09

Publications (1)

Publication Number Publication Date
WO2017004987A1 true WO2017004987A1 (zh) 2017-01-12

Family

ID=54302154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/073262 WO2017004987A1 (zh) 2015-07-09 2016-02-03 一种全工况运行的预凝式热源塔装置

Country Status (2)

Country Link
CN (1) CN104990305B (zh)
WO (1) WO2017004987A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2608912A1 (es) * 2017-01-23 2017-04-17 Universidad Politécnica De Cartagena Torre de refrigeración invertida de tiro mecánico
CN107270740A (zh) * 2017-07-07 2017-10-20 河北爱节水泵科技有限公司 一种冷却水综合处理系统
CN107966043A (zh) * 2018-01-17 2018-04-27 酷仑冷却技术(上海)有限公司 一种用于焊接管生产线乳化液冷却的绝热闭式冷却系统
CN108266832A (zh) * 2018-02-06 2018-07-10 贵州电网有限责任公司 一种溶液型防结霜复式室外换热装置
CN108847293A (zh) * 2018-07-23 2018-11-20 上海核工程研究设计院有限公司 一种可喷淋分离型热管冷凝段乏燃料池冷却系统
CN109548378A (zh) * 2018-12-14 2019-03-29 南京工程学院 一种数据中心冷却系统与热源塔热泵耦合系统
CN109870042A (zh) * 2019-03-25 2019-06-11 北京凯德菲节能工程技术有限公司 一种低耗能逆流闭式冷却塔
CN109925833A (zh) * 2019-04-16 2019-06-25 青岛美克热源塔热泵研究有限公司 低温载冷水汽核化凝结除霾塔
CN109990625A (zh) * 2019-04-28 2019-07-09 洛阳鼎瑞节能科技有限公司 一种智控紧凑型干湿联合蒸发式空冷器
CN114777523A (zh) * 2022-04-25 2022-07-22 山东和同信息科技股份有限公司 一种四面进风可调可控的干湿联合冷却塔
CN114788993A (zh) * 2022-03-31 2022-07-26 福建浩氧环保有限公司 一种新型独立双水箱喷淋塔

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104990305B (zh) * 2015-07-09 2017-08-25 东南大学 一种全工况运行的预凝式热源塔装置
CN105627628B (zh) * 2016-03-21 2018-08-24 浦江县安恒进出口有限公司 热源塔化学热泵的制备方法
CN106871516B (zh) * 2017-03-23 2023-09-08 南京工程学院 一种具有制冰功能的热源塔装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06323761A (ja) * 1993-05-17 1994-11-25 Tada Denki Kk 密閉形冷却塔
CN102901374A (zh) * 2012-09-28 2013-01-30 东南大学 具有预凝功能的热源塔装置
CN202955805U (zh) * 2012-11-23 2013-05-29 西安工程大学 一种淋水预冷型闭式蒸发冷却冷水机组
CN103697554A (zh) * 2013-12-27 2014-04-02 湖南大学 一种闭式热源塔接水分水集液循环系统
CN104990305A (zh) * 2015-07-09 2015-10-21 东南大学 一种全工况运行的预凝式热源塔装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100580342C (zh) * 2008-05-21 2010-01-13 刘秋克 一种热源塔热泵
CN103292402B (zh) * 2013-06-19 2015-12-09 东南大学 具有过滤和低漂液性能的热源塔装置
CN103438613B (zh) * 2013-09-02 2015-05-13 东南大学 复式一体化热源塔热泵装置
CN104061643B (zh) * 2014-06-23 2017-01-04 西安工程大学 闭式热源塔热泵与蒸发冷却联合的空调系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06323761A (ja) * 1993-05-17 1994-11-25 Tada Denki Kk 密閉形冷却塔
CN102901374A (zh) * 2012-09-28 2013-01-30 东南大学 具有预凝功能的热源塔装置
CN202955805U (zh) * 2012-11-23 2013-05-29 西安工程大学 一种淋水预冷型闭式蒸发冷却冷水机组
CN103697554A (zh) * 2013-12-27 2014-04-02 湖南大学 一种闭式热源塔接水分水集液循环系统
CN104990305A (zh) * 2015-07-09 2015-10-21 东南大学 一种全工况运行的预凝式热源塔装置

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2608912A1 (es) * 2017-01-23 2017-04-17 Universidad Politécnica De Cartagena Torre de refrigeración invertida de tiro mecánico
CN107270740A (zh) * 2017-07-07 2017-10-20 河北爱节水泵科技有限公司 一种冷却水综合处理系统
CN107270740B (zh) * 2017-07-07 2023-08-11 河北爱节能源科技有限公司 一种冷却水综合处理系统
CN107966043B (zh) * 2018-01-17 2023-11-07 酷仑冷却技术(上海)有限公司 一种用于焊接管生产线乳化液冷却的绝热闭式冷却系统
CN107966043A (zh) * 2018-01-17 2018-04-27 酷仑冷却技术(上海)有限公司 一种用于焊接管生产线乳化液冷却的绝热闭式冷却系统
CN108266832A (zh) * 2018-02-06 2018-07-10 贵州电网有限责任公司 一种溶液型防结霜复式室外换热装置
CN108266832B (zh) * 2018-02-06 2023-12-01 贵州电网有限责任公司 一种溶液型防结霜复式室外换热装置
CN108847293A (zh) * 2018-07-23 2018-11-20 上海核工程研究设计院有限公司 一种可喷淋分离型热管冷凝段乏燃料池冷却系统
CN109548378A (zh) * 2018-12-14 2019-03-29 南京工程学院 一种数据中心冷却系统与热源塔热泵耦合系统
CN109548378B (zh) * 2018-12-14 2024-01-30 南京工程学院 一种数据中心冷却系统与热源塔热泵耦合系统
CN109870042A (zh) * 2019-03-25 2019-06-11 北京凯德菲节能工程技术有限公司 一种低耗能逆流闭式冷却塔
CN109925833A (zh) * 2019-04-16 2019-06-25 青岛美克热源塔热泵研究有限公司 低温载冷水汽核化凝结除霾塔
CN109990625A (zh) * 2019-04-28 2019-07-09 洛阳鼎瑞节能科技有限公司 一种智控紧凑型干湿联合蒸发式空冷器
CN109990625B (zh) * 2019-04-28 2023-10-27 洛阳鼎瑞节能科技有限公司 一种智控紧凑型干湿联合蒸发式空冷器
CN114788993A (zh) * 2022-03-31 2022-07-26 福建浩氧环保有限公司 一种新型独立双水箱喷淋塔
CN114777523B (zh) * 2022-04-25 2023-08-22 山东和同信息科技股份有限公司 一种四面进风可调可控的干湿联合冷却塔
CN114777523A (zh) * 2022-04-25 2022-07-22 山东和同信息科技股份有限公司 一种四面进风可调可控的干湿联合冷却塔

Also Published As

Publication number Publication date
CN104990305B (zh) 2017-08-25
CN104990305A (zh) 2015-10-21

Similar Documents

Publication Publication Date Title
WO2017004987A1 (zh) 一种全工况运行的预凝式热源塔装置
CN203116249U (zh) 带冷凝器冷却装置的风冷空调系统
CN203116203U (zh) 带冷凝器冷却过冷装置的风冷空调系统
WO2017063321A1 (zh) 基于超疏水翅片管换热器的空气源热泵喷淋除霜装置
CN104197588B (zh) 一种复合结构湿膜表冷器
CN201104060Y (zh) 一种间接蒸发式冷却/冷凝装置
CN101581522B (zh) 空气源热泵防止结霜的方法
CN103712477B (zh) 热泵供热除雾节水型冷却塔
WO2011044801A1 (zh) 太阳能次生源热源塔热泵成套装置
CN206755485U (zh) 一种节能除湿新风机
CN203672184U (zh) 一种热泵供热除雾节水型冷却塔
CN111964168B (zh) 制冷控湿净化集水一体的离子液体除湿空调系统
CN203116193U (zh) 直接蒸发冷却器与蒸发式冷凝器相结合的冷水机组
CN108800646A (zh) 一种蒸发冷空气源热泵机组
CN202709319U (zh) 智能定点制冷节能空调系统
CN101398234A (zh) 低温风冷热泵机组
CN105135739A (zh) 多功能热泵型蒸发式冷凝空调机组
CN202885340U (zh) 高效能源塔供能装置
WO2010006553A1 (zh) 带填料的板管蒸发式冷凝冷水机组
CN205119549U (zh) 多功能热泵型蒸发式冷凝空调机组
CN103423815A (zh) 一种溶液辅助储能型家用空调器
CN109798624A (zh) 间接蒸发内冷型热泵式溶液新风除湿装置
CN109621464B (zh) 一种用于对接开式或闭式热源塔的防冻液浓缩装置
CN103398430A (zh) 一种热泵式余热回收新风机组
CN207849614U (zh) 一种用于数据机房的联合冷却空调系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16820643

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16820643

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/11/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16820643

Country of ref document: EP

Kind code of ref document: A1