WO2017004479A1 - Dispositif de commande électropneumatique résistant aux explosions - Google Patents

Dispositif de commande électropneumatique résistant aux explosions Download PDF

Info

Publication number
WO2017004479A1
WO2017004479A1 PCT/US2016/040621 US2016040621W WO2017004479A1 WO 2017004479 A1 WO2017004479 A1 WO 2017004479A1 US 2016040621 W US2016040621 W US 2016040621W WO 2017004479 A1 WO2017004479 A1 WO 2017004479A1
Authority
WO
WIPO (PCT)
Prior art keywords
electro
pneumatic controller
base
process control
pressure sensor
Prior art date
Application number
PCT/US2016/040621
Other languages
English (en)
Inventor
Jacob T. R. RENOLLETT
Eric J. BURGETT
Original Assignee
Tescom Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/193,490 external-priority patent/US10385879B2/en
Application filed by Tescom Corporation filed Critical Tescom Corporation
Publication of WO2017004479A1 publication Critical patent/WO2017004479A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C4/00Flame traps allowing passage of gas but not of flame or explosion wave
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/06Means for preventing overload or deleterious influence of the measured medium on the measuring device or vice versa
    • G01L19/0663Flame protection; Flame barriers
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/20Control of fluid pressure characterised by the use of electric means
    • G05D16/2093Control of fluid pressure characterised by the use of electric means with combination of electric and non-electric auxiliary power

Definitions

  • the present invention relates generally to controllers for a process control valve, and, more specifically, to an explosion resistant electro-pneumatic controller.
  • Electro-pneumatic controllers are typically used to control the pressure of control fluid used to position a pneumatically-controlled device, such as a regulator.
  • an electro-pneumatic controller can be used to control the pressure of control fluid into a pneumatic actuator of a process control valve or regulator to position the process control valve or regulator.
  • the electro-pneumatic controllers may include one or more passageways to receive the control fluid, and one or more solenoid valves may control the flow of the control fluid through the passageways.
  • the one or more solenoid valves may be in communication with a microprocessor, which may be in communication with one or more sensors disposed outside of the electro-pneumatic controller to control the electro-pneumatic controller and/or the process control valve or regulator.
  • a microprocessor which may be in communication with one or more sensors disposed outside of the electro-pneumatic controller to control the electro-pneumatic controller and/or the process control valve or regulator.
  • microprocessor may all be disposed within a housing that includes a base and a cover.
  • control fluid may be flammable or explosive in nature.
  • possibility of an internal explosion may be too great to use electro-pneumatic controllers.
  • an electro-pneumatic controller includes a base having a body, a top surface, and a bore formed within the body; a cover coupled to the base, the cover having an open end with a rim, the rim contacting the top surface of the base; a plurality of fluid flow paths formed within the base; and at least one flame arrestor disposed within one of the fluid flow paths.
  • the electro-pneumatic controller may include one or more of the following preferred forms.
  • the electro -pneumatic includes six flame arrestors and/or a breathing flame arrestor.
  • the electro-pneumatic controller includes one or more of a dome loading pressure sensor, an internal pressure sensor, and an external pressure sensor.
  • the dome loading pressure sensor, internal pressure sensor, and external pressure sensor may each have flame arrestors fluidly coupled thereto.
  • the process fluid is flammable.
  • the flame arrestors are capable of withstanding pressure created by an internal explosion.
  • the dome load port includes a single flame arrestor.
  • a process control system includes a regulator having a housing with a top portion; and an electro-pneumatic controller having a base including a body, a top surface, and a bore formed within the body; a cover coupled to the base, the cover having an open end with a rim, the rim contacting the top surface of the base; a plurality of fluid flow paths formed within the base; and at least one flame arrestor disposed within one of the fluid flow paths.
  • FIG. 1 is a schematic view of a process control system including an electro- pneumatic controller of the present disclosure
  • FIG. 2 is a side perspective view of the electro -pneumatic controller of FIG. 1;
  • FIG. 3 is an exploded perspective view of the electro-pneumatic controller of FIG. 1;
  • FIG. 4 is a transparent top perspective view of the electro-pneumatic controller of FIG. 1 illustrating fluid flow paths and flame arrestors disposed in the fluid flow paths;
  • FIG. 5 is a perspective cross-sectional view of the electro-pneumatic controller of FIG. 1;
  • FIG. 6 is a lateral cross-sectional view of the electro-pneumatic controller of FIG. 1;
  • FIG. 7 is a close-up cross- sectional view of a flame arrestor of the electro- pneumatic controller of FIG. 6;
  • FIG. 8 is top schematic view of the electro-pneumatic controller of FIG. 4.
  • a process control system 100 includes an electro- pneumatic controller 110 that is operatively coupled to a regulator 111. More specifically, an outlet port 112 of the electro-pneumatic controller 110 is operatively coupled to a top portion 114 of a housing 116 of the regulator 111 via an adaptor 117, for example.
  • the regulator 111 includes an inlet 118 for receiving inlet pressure in a pressure line 119, and an outlet 120 for directing outlet pressure downstream the regulator 111 in the process line 119.
  • the electro-pneumatic controller 110 includes a base 122 having a body 123 with a top surface 124, a bottom surface 126, a front portion 128, a rear portion 130 (FIG. 2), and a pair of side walls 132 extending from the front portion 128 to the rear portion 130 of the body 123.
  • One side wall 132 of the pair of side walls 132 includes a supply port 134 for receiving supply pressure from an external source, such as supply source 136. In one example, a supply pressure of up to 120 psig/ 8.2 bar, with 110 psig/7.5 bar being typical, is provided.
  • the other side wall 132 includes two conduit connections, a first conduit connection 140 for USB wiring and a second conduit (not shown) connection for internal wiring.
  • a computer 142 may be communicatively coupled to the electro-pneumatic controller 110 via the first conduit connection 140 for USB wiring.
  • a transducer 144 may be disposed downstream the outlet 120 of the regulator 111 and may be communicatively coupled to the electro-pneumatic controller 110.
  • the electro-pneumatic controller 110 senses system pressure through input, e.g., a feedback signal, from the transducer 144, for example.
  • the electro-pneumatic controller 110 reads the input and compares it to a setpoint pressure, which the electro-pneumatic controller 110 may receive from an external source, such as the computer 142, or from a profile on its onboard memory, for example.
  • the rear end 130 of the body 124 of the base 122 includes a gauge port 146, and the side wall 132 includes an exhaust port 148, in addition to the supply port 134.
  • the electro-pneumatic controller 110 also includes a cover
  • the cover 150 that is coupled to the base 122.
  • the cover 150 includes an open end 152, a closed end
  • the open end 152 further includes a rim 156 that contacts the top surface 124 of the base 122.
  • a bore 160 is formed within the body 123 of the base 122 in the top surface 124 of the base 122.
  • a locking mechanisml62 is disposed within the bore 160 of the base 122.
  • the locking mechanisml62 includes a top surface that is flush with the top surface 124 of the base 122, for example.
  • the base 122 further includes an annular projection 168 that upwardly extends from the top surface 124 of the base 122.
  • the annular projection 168 further includes an outside surface 170 having at least one thread or a plurality of threads.
  • the cover 150 likewise includes an inside surface (not shown) also having at least one thread or a plurality of threads. When the cover 150 is coupled to the base 122, the threads on the inside surface of the cover 150 engage the threads on the outside surface 170 of the annular projection 168 to secure the cover 150 to the base 122.
  • the annular projection 168 has a hollow interior and receives circuitry 172, one or more valves 174, such as a solenoid valve and/or an inlet valve and an exhaust valve, and other components of the electro-pneumatic controller 110.
  • the cover 150 encloses at least the circuitry 172, the one or more valves 174 and other components of the electro-pneumatic controller 110 when the cover 150 is disposed on the top surface 124 of the base 122, for example.
  • the electro-pneumatic controller 110 senses system pressure through input, e.g., a feedback signal, of the transducer 144 (FIG. 1) that is mounted downstream the outlet 120 in the process line 119 (FIG. 1). If the feedback signal is lower than a
  • the electro-pneumatic controller 110 activates one valve 174, such as an inlet valve, allowing pressure to flow into the regulator 111. This causes a main valve (not shown) of the regulator 111 to open up, resulting in an increase in downstream system pressure.
  • the electro-pneumatic controller 110 continues to send pressure into the regulator 111 until sensed feedback from the transducer 144, for example, is equal to the setpoint pressure. At that point, the valve 174, such as the inlet valve, is closed, stabilizing the system at that pressure.
  • the electro- pneumatic controller 110 activates another valve 174, such as an exhaust valve, to release pressure from the regulator 111.
  • another valve 174 such as an exhaust valve
  • the electro-pneumatic controller 110 continues to exhaust the pressure until the feedback signal received is equal to the setpoint. At that point, the exhaust valve 174 closes, stabilizing the system at that pressure.
  • a flame arrestor may be disposed within a channel or a passage of the module.
  • a flame arrestor permits fluid to flow through the channel or passage and, at the same time, prevents (e.g., extinguishes) a flame, a fire, or an explosion from reaching the outside environment by absorbing heat associated with the flame, fire, or explosion.
  • the flame arrestor enables a fluid to enter the module from the outside environment while preventing a fire or explosion from exiting a housing or enclosure of the module and igniting the outside environment.
  • FIGS. 4-8 one example of an electro-pneumatic controller 210 constructed, in accordance with the principles of the present invention, to accommodate a plurality of the flame arrestors 212.
  • the process control device 210 illustrated in FIGS. 4-8 takes the form of a valve controller (e.g., the TESCOMTM ER3000 or ER5000 controller) that includes a housing or enclosure 214 and a plurality of fluid flow passageways 216 formed or defined in the housing 214. For clarity purposes, only some of the fluid flow passageways 216 are referenced in FIGS. 4-8.
  • the valve controller is configured to monitor and control the position of a valve.
  • the process control device 210 may also include sensors, electrical circuitry, amplifiers, converters, and/or other electrical components arranged in and/or on the housing 214.
  • the fluid flow passageways 216 are formed or defined in the housing 214. Each fluid flow passageway 216 extends between one of the walls of the housing 214 and an interior portion of the housing 214. Each of the fluid flow passageways 216 thus enables fluid communication between the process control device 210 (e.g., the electrical components of the process control device 210) and the environment outside of the process control device 210. While each fluid flow passageway 216 extends along or is parallel to an axis, one or more fluid flow passageways 216 can, in other examples, extend along a different axes (e.g., an axis oriented at an angle) or the fluid flow passageways may be curved. Each of the fluid flow passageways 216 may be configured to accommodate a flame arrestor 212.
  • a flame arrestor 212 When a flame arrestor 212 is arranged or disposed in one of the fluid flow passageways 216 of the process control device 210, the flame arrestor 212 enables fluid flow between the process control device 210 and the environment outside of the process control device 210, and, simultaneously, prevents a flame, a fire, or an explosion from propagating between the process control device 210 and the environment outside of the process control device 210.
  • inlet pressure enters the controller housing at the supply port 134, passes through a first flame arrestor 212 and into a first solenoid valve 260 before passing through a second flame arrestor 212 an entering the dome.
  • Exhaust pressure enters the controller housing at the exhaust port 148, passes through a third flame arrestor 212 and into a second solenoid 260 before passing through a fourth flame arrestor 212 and entering the dome.
  • An internal pressure transducer 250 may be located in an external pressure port 270 between a fifth flame arrestor 212 and a sixth flame arrestor 212.
  • a breathing flame arrestor 212a may be located in the atmospheric port 240.
  • Three of the ports may include caps 280.
  • the embodiment of the electro-mechanical controller illustrated in FIGS. 4-8 includes six flame arrestors 212 that extinguish all process fluid flow paths to the atmosphere and a breathing flame arrestor 212a that extinguishes the atmospheric flow path.
  • the electro-mechanical controller illustrated in FIGS. 4-8 includes a flow path for internally sensing the pressure in the dome load port 230.
  • the electro-mechanical controller may include one or more of the following forms.
  • the three flame arrestors at the dome load port may be combined into a single flame arrestor by joining the three fluid flow paths into one fluid flow path before entering the dome load port.
  • the flame arrestors on the pressure sensing ports may be replaced by one 0.1 mm hole to transfer the dome load pressure.
  • the flame arrestors in the fluid flow paths may be replaced by a plurality of 0.1 mm holes to extinguish any explosions.
  • the flame arrestor may be integrated into a base mold to reduce base material and to reduce capped ports in the base.
  • the present disclosure provides an electro-pneumatic controller that includes a flame arrestor for use in a process control device the flame arrestor assembly complies with ASME standards governing the proper installation of a flame arrestor within a process control device.
  • the present disclosure provides a process control device constructed to accommodate one or more of the flame arrestor assemblies described herein.
  • the process control device includes one or more passageways each adapted to receive a flame arrestor the process control device is thus configured to facilitate a quick and easy mechanical way of retaining a flame arrestor therein.
  • any reference to "one example” or “an example” means that a particular element, feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment.
  • the appearances of the phrase “in one example” in various places in the specification are not necessarily all referring to the same example.
  • Coupled and “connected” along with their derivatives.
  • some examples may be described using the term “coupled” to indicate that two or more elements are in direct physical or electrical contact.
  • the term “coupled,” however, may also mean that two or more elements are not in direct contact with each other, but yet still cooperate or interact with each other. The examples are not limited in this context.
  • the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having” or any other variation thereof, are intended to cover a non-exclusive inclusion.
  • a process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.
  • "or” refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Fluid Mechanics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Valve Housings (AREA)

Abstract

L'invention concerne un dispositif de commande électropneumatique qui comprend une base ayant un corps, une surface supérieure et un alésage formé à l'intérieur du corps ; un couvercle accouplé à la base, le couvercle ayant une extrémité ouverte avec un rebord, le rebord entrant en contact avec la surface supérieure de la base ; une pluralité de chemins d'écoulement de fluide formés à l'intérieur de la base ; et au moins un pare-flammes disposé à l'intérieur de l'un des chemins d'écoulement de fluide.
PCT/US2016/040621 2015-07-01 2016-07-01 Dispositif de commande électropneumatique résistant aux explosions WO2017004479A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562187804P 2015-07-01 2015-07-01
US62/187,804 2015-07-01
US15/193,490 2016-06-27
US15/193,490 US10385879B2 (en) 2016-06-27 2016-06-27 Explosion resistant electro-pneumatic controller

Publications (1)

Publication Number Publication Date
WO2017004479A1 true WO2017004479A1 (fr) 2017-01-05

Family

ID=56686883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2016/040621 WO2017004479A1 (fr) 2015-07-01 2016-07-01 Dispositif de commande électropneumatique résistant aux explosions

Country Status (2)

Country Link
CN (1) CN106321936A (fr)
WO (1) WO2017004479A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1138994A2 (fr) * 2000-03-01 2001-10-04 The Foxboro Company Positioneur de soupape en service sévère
US20110108292A1 (en) * 2009-11-12 2011-05-12 Daniel Glen Moyer Inline plug flame arrestors
US20130015379A1 (en) * 2010-02-05 2013-01-17 Hoerbiger Automatisierungstechnik Holding Gmbh Fluid-operated actuating drive on a valve
US20150115182A1 (en) * 2013-10-29 2015-04-30 Azbil Corporation Positioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1138994A2 (fr) * 2000-03-01 2001-10-04 The Foxboro Company Positioneur de soupape en service sévère
US20110108292A1 (en) * 2009-11-12 2011-05-12 Daniel Glen Moyer Inline plug flame arrestors
US20130015379A1 (en) * 2010-02-05 2013-01-17 Hoerbiger Automatisierungstechnik Holding Gmbh Fluid-operated actuating drive on a valve
US20150115182A1 (en) * 2013-10-29 2015-04-30 Azbil Corporation Positioner

Also Published As

Publication number Publication date
CN106321936A (zh) 2017-01-11

Similar Documents

Publication Publication Date Title
US8960320B2 (en) Inline plug flame arrestors
EP3100123B1 (fr) Dispositif de commande électronique ayant une soupape d'aération intégrée
US20090013693A1 (en) Integrated fuel nozzle with feedback control for a gas turbine engine
US20160279454A1 (en) Integrated fluid control valve and valve actuator assembly
EP2805888B1 (fr) Système de surveillance de pression pour un réservoir de carburant
US10385879B2 (en) Explosion resistant electro-pneumatic controller
US11154738B2 (en) Quick-response sprinkler
CN104062347A (zh) 浓度确定方法和气体浓度传感器
US10774947B2 (en) Detecting and signaling system
WO2017004479A1 (fr) Dispositif de commande électropneumatique résistant aux explosions
CN106884995A (zh) 一种可调节的燃烧器控制阀
US20220203147A1 (en) Fire extinguisher manifold
US10724650B2 (en) Balanced regulating valve
US9238279B2 (en) Combustible fluid cutting safety system
KR101886984B1 (ko) 안전 보호장치 레귤레이터
US20140116992A1 (en) Welding Enclosure
CN111514496A (zh) 一种开敞空间抑制器
US10240623B2 (en) Locking mechanism and method for an electro-pneumatic controller
US20200355367A1 (en) Clean burning gas flare tip
US20200338376A1 (en) Control mechanisms for fire suppression systems
US20160375285A1 (en) Flame arrestor assembly
JP3194238U (ja) シリンダーキャビネット
KR101521209B1 (ko) 폭압 차단 밸브 및 이를 이용한 발사관 공기 조절 시스템
KR102563201B1 (ko) 방폭 구조를 갖는 자동소화장치 및 그 제어방법
JPS61193677A (ja) 監視装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16751699

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16751699

Country of ref document: EP

Kind code of ref document: A1