WO2017002869A1 - Brushless motor - Google Patents

Brushless motor Download PDF

Info

Publication number
WO2017002869A1
WO2017002869A1 PCT/JP2016/069305 JP2016069305W WO2017002869A1 WO 2017002869 A1 WO2017002869 A1 WO 2017002869A1 JP 2016069305 W JP2016069305 W JP 2016069305W WO 2017002869 A1 WO2017002869 A1 WO 2017002869A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
rotor
stator
brushless motor
sensor
Prior art date
Application number
PCT/JP2016/069305
Other languages
French (fr)
Japanese (ja)
Inventor
竜 大堀
直樹 塩田
Original Assignee
株式会社ミツバ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ミツバ filed Critical 株式会社ミツバ
Priority to JP2017526404A priority Critical patent/JP6511137B2/en
Publication of WO2017002869A1 publication Critical patent/WO2017002869A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears

Definitions

  • the present invention relates to an inner rotor type brushless motor.
  • This application claims priority based on Japanese Patent Application No. 2015-130039 filed in Japan on June 29, 2015, the contents of which are incorporated herein by reference.
  • the brushless motor there is a so-called inner rotor type motor having a stator around which a coil is wound, and a rotor that is rotatably provided in the radial direction of the stator. Permanent magnets are arranged on the outer periphery of this type of rotor so that magnetic poles of opposite polarity are arranged alternately along the circumferential direction.
  • the stator is composed of a cylindrical stator housing and a cylindrical stator core fitted and fixed to the inner peripheral surface of the stator housing.
  • the stator core is formed in a cylindrical shape by stacking electromagnetic steel plates, for example, and a coil is wound around the stator core.
  • a sensor magnet is attached to the rotating shaft separately from the permanent magnet.
  • the rotor is rotated by detecting the rotational position of the rotor by a combination of a sensor magnet and a rotation sensor (detection element) such as a Hall IC, and performing energization control of the stator coil based on the signal.
  • the present invention provides a brushless motor capable of eliminating the sensor magnet and improving the assemblability by making it possible to detect the rotation of the rotor by using the leakage magnetic flux of the permanent magnet.
  • the brushless motor includes a rotating shaft, a cylindrical stator arranged concentrically with the rotating shaft, and magnetic poles of opposite polarity along the circumferential direction on the outer periphery.
  • An inner rotor type brushless motor comprising a permanent magnet arranged in a row and a rotor integrated with the rotary shaft and disposed on the inner peripheral side of the stator via a gap.
  • a sensor substrate is provided at a position adjacent to the rotor in the axial direction, and the sensor substrate has a recess for receiving the rotation shaft at a part of an outer peripheral edge of the sensor substrate, and the substrate surface is arranged in the axial direction of the rotation shaft.
  • a rotation sensor is mounted on the sensor substrate, which faces the axial end surface of the permanent magnet and detects the rotational position of the rotor according to a magnetic change caused by the rotation of the permanent magnet.
  • the rotational position of the rotor is detected using the leakage magnetic flux of the permanent magnet, so that the sensor magnet can be eliminated. Therefore, the trouble of attaching the sensor magnet to the rotating shaft and the trouble of aligning the sensor magnet and the permanent magnet in the rotational direction can be eliminated. As a result, the assembly of the motor can be improved and the rotor position detection accuracy during driving can be improved.
  • the rotation is performed on the sensor substrate via a spacer that brings the rotation sensor close to an axial end surface of the permanent magnet.
  • a sensor is mounted, and the rotation sensor is disposed at a position facing the axial end surface of the permanent magnet inside the outer diameter of the permanent magnet.
  • the rotation sensor can be brought close to the permanent magnet by configuring as described above, it can be applied without changing the design on the rotor side. Further, since the rotation sensor is arranged inside the outer diameter of the permanent magnet, it can be hardly affected by the stator coil, and the influence of the magnetic field from the stator side can be suppressed during energization. In this case, since the rotation sensor is as close as possible to the permanent magnet, the through-hole mounting is performed in a posture standing with respect to the sensor substrate.
  • the extension portion that brings the axial end surface of the permanent magnet close to the rotation sensor at the axial end portion of the permanent magnet.
  • the rotation sensor is disposed in a position facing the axial end surface of the permanent magnet inside the outer diameter of the permanent magnet. ing.
  • the distance between the permanent magnet and the rotation sensor can be reduced while disposing the rotation sensor at a position away from the stator coil. Further, since the rotation sensor is arranged inside the outer diameter of the permanent magnet, it can be hardly affected by the stator coil, and the influence of the magnetic field from the stator side can be suppressed during energization. In this case, since it approaches from the permanent magnet side, the rotation sensor is surface-mounted on the sensor substrate in a plane.
  • the motor casing and the motor casing that house the stator and the rotor that house the stator and the rotor.
  • Any one of the gear casings to be connected is provided with a bearing housing that houses a bearing that rotatably supports the rotating shaft, and the sensor substrate is fixed to a flange portion formed on an end surface of the bearing housing. .
  • the sensor substrate on which the rotation sensor is mounted can be securely and easily attached and fixed to the casing member.
  • the magnet of the permanent magnet is disposed at the axial end of the permanent magnet.
  • An extension portion having a predetermined length for enhancing the characteristics is provided so as to overhang so as to protrude from the end surface in the axial direction of the stator.
  • Structuring as described above can contribute to an increase in motor output by extending the length of the permanent magnet when there is a restriction on expansion of the rotor diameter. Further, the distance between the rotation sensor for detecting the rotational position of the rotor and the permanent magnet can be reduced by utilizing the extension of the permanent magnet.
  • the coil of the stator is disposed outside in the radial direction of the sensor substrate. Terminals to which the ends of the windings to be configured are connected are arranged.
  • the coil of the stator can be electrically connected to the terminal without being obstructed by the sensor substrate. Therefore, the coil can be easily connected.
  • the permanent magnet has an outer diameter surface on the outer diameter surface.
  • the sensor substrate can easily detect a magnetic change due to the rotation of the permanent magnet, and the rotational position of the rotor can be detected with high accuracy.
  • a cylindrical rotor core is fitted and fixed to the outer periphery of the rotating shaft, and the permanent magnet is disposed on the outer periphery of the rotor core.
  • the maximum thickness in the radial direction of the permanent magnet is greater than or equal to the radial thickness of the rotor core.
  • the stator is formed in a regular polygonal rectangular tube shape.
  • a stator core having a ring yoke portion and a teeth portion projecting radially inward at the center position of the circumferential width of the inner periphery of each flat portion of the ring yoke portion corresponding to each side of the regular polygon
  • a coil that is wound around each of the teeth portions and generates a rotating magnetic field for rotating the rotor by feeding from an external power source, and is formed in a square tube shape of the regular polygon
  • One side of the outer peripheral edge of the sensor substrate is arranged in parallel to one flat portion of the yoke portion.
  • the rotational position of the rotor is detected using the leakage magnetic flux of the permanent magnet, so that the sensor magnet can be eliminated. Therefore, the assembly of the motor can be improved and the accuracy of detecting the rotor position during driving can be improved.
  • FIG. 1 It is a partially exploded perspective view which shows the structure of the motor with a reduction gear in embodiment of this invention. It is sectional drawing which shows the structure of the motor with a reduction gear in embodiment of this invention. It is a perspective view which shows the relationship between a sensor board
  • FIG. 1 is a partially exploded perspective view showing a configuration of a motor with a reduction gear to which a brushless motor according to an embodiment of the present invention is applied
  • FIG. 2 is a sectional view thereof.
  • the axial direction of the rotating shaft 3 is simply referred to as the axial direction
  • the circumferential direction of the rotating shaft 3 is simply referred to as the circumferential direction
  • the radial direction of the rotating shaft 3 is simply referred to as the radial direction.
  • the motor 1 with a speed reducer serves as a drive source for electrical components (for example, a power window, a sunroof, an electric seat, etc.) mounted on a vehicle, and includes a brushless motor 2. And a worm gear speed reducer 4 connected to the rotating shaft 3 of the brushless motor 2.
  • the brushless motor 2 includes a rotating shaft 3, a cylindrical stator 10 disposed concentrically with the rotating shaft 3, and the rotating shaft 3, and is disposed on the inner peripheral side of the stator 10 via a gap. And an inner rotor type brushless motor.
  • the stator 10 includes a stator housing 11 that forms an outline of the stator 10, a stator core 50 disposed in the stator housing 11, and a coil 41 wound around the stator core 50.
  • stator housing 11 is formed of a metal material into a bottomed cylindrical shape having a substantially rounded regular hexagonal cross section. Inside the stator housing 11, a stator core 50 in which a plurality of coils 41 is formed is fixedly arranged along the circumferential direction by fixing means such as adhesion or press fitting.
  • FIG. 3 is a perspective view of the main part of the brushless motor
  • FIG. 4 is a plan view of the main part of the brushless motor.
  • the stator core 50 is formed in a rectangular tube shape having a substantially rounded regular hexagonal cross section that can be press-fitted into the stator housing 11 (see FIG. 2).
  • the stator core 50 has a circumferential width on the inner periphery of each of the ring yoke portion 51 formed in a square cylinder having a substantially rounded regular hexagonal cross section and each flat portion 52 of the ring yoke portion 51 corresponding to each side of the regular hexagon.
  • stator core 50 is wound with a winding 42 around a tooth portion 55 via a resin insulator 70, thereby forming a plurality (six in this embodiment) of coils 41. ing.
  • the teeth portion 55 includes a winding drum portion 56 around which the winding 42 is wound along the radial direction, a flange portion 57 extending along the circumferential direction from the radial inner end of the winding drum portion 56, and It is comprised by.
  • the flange portion 57 is formed integrally with the winding drum portion 56.
  • the flange portion 57 has a radially inner peripheral surface formed into an arc surface.
  • a slot 59 in which the winding 42 of the coil 41 is disposed is provided between adjacent teeth portions 55.
  • Each phase coil 41 generates a rotating magnetic field for rotating the rotor 5 by power supply from an external power source.
  • a bearing housing 13 protrudes from the bottom of the stator housing 11.
  • a bearing 14 for rotatably supporting one end of the rotating shaft 3 is fitted in the bearing housing 13.
  • the opening of the stator housing 11 (the side opposite to the side on which the bearing housing 13 is provided) is connected to the opening of the gear housing 23.
  • the other end of the rotating shaft 3 is inserted into the gear housing 23.
  • FIG. 6 is a perspective view of the gear housing.
  • an opening of the gear housing 23 is provided with a hexagonal connection flange 23 s for connecting the brushless motor 2.
  • a bearing housing 28 is provided in the vicinity of the connection flange 23s, and a bearing 33 is positioned and fitted and fixed to the bearing housing 28 by a bearing stopper 34.
  • the intermediate portion in the length direction of the rotary shaft 3 is rotatably supported by the bearing 33.
  • the rotor 5 includes a cylindrical rotor core 6 press-fitted to the outer periphery of the rotating shaft 3, a plurality of segment-type permanent magnets (rotor magnets) 7 provided on the outer periphery of the rotor core 6, and the outer periphery of the permanent magnet 7. And a magnet cover 8 made of a non-magnetic material (such as stainless steel) fitted in The magnet cover 8 has a role of holding the permanent magnet 7 at a desired position on the outer periphery of the rotor core 6 and also has a role of preventing dust from adhering to and being damaged to the permanent magnet 7.
  • FIG. 5A is a perspective view of a single permanent magnet
  • FIG. 5B is a diagram showing parallel magnetic orientation of the permanent magnet
  • FIG. 5C is a diagram showing a dimensional relationship between the permanent magnet and the rotor core.
  • the permanent magnets 7 are made of ferrite magnets, and each has a sector shape in the axial direction as shown in FIGS. 5A to 5C.
  • the permanent magnets 7 are magnetized from the inner diameter surface 72 toward the outer diameter surface 71, and are arranged at equal intervals so that the magnetic poles of the outer diameter surface 71 are alternately arranged in opposite directions in the circumferential direction.
  • the magnet cover 8 is fitted on the outer periphery of the permanent magnets 7 arranged in the circumferential direction.
  • each permanent magnet 7 has an outer diameter surface 71 whose center of curvature is on a line segment TL that connects the center point TP of the circumferential width on the outer diameter surface 71 and the axis center L ⁇ b> 1 of the rotary shaft 3. It has TR2, and is formed as a cylindrical surface having a radius of curvature R2 smaller than the distance of a line segment TL connecting the center point TP of the circumferential width on the outer diameter surface 71 and the axis center L1 of the rotary shaft 3. .
  • a virtual cylindrical surface 77 drawn with the line segment TL connecting the center point TP of the circumferential width on the outer diameter surface 71 and the axis center L1 of the rotating shaft 3 as the radius R1, and the axis center L1 of the rotating shaft as the center TR1. It is formed in a shape that fits on the inner periphery side.
  • the magnetized magnetic flux 75 is oriented in parallel orientation so that the direction of the magnetized magnetic flux 75 is parallel to the line segment TL connecting the center point TP of the circumferential width on the outer diameter surface 71 and the axis center L1 of the rotary shaft 3. It is magnetized. Furthermore, as shown in FIG. 5C, the radial maximum thickness A of the permanent magnet 7 is set to be equal to or greater than the radial thickness B of the rotor core 6.
  • the rotating shaft 3, the rotor core 6, the permanent magnet 7, and the magnet cover 8 are integrally configured, and the rotor 5 integrated with the rotating shaft 3 rotates by the rotating magnetic field of the coil 41 acting on the permanent magnet 7. .
  • the worm gear speed reducer 4 has a worm 24 housed in the gear housing 23 and a worm wheel 25 that meshes with the worm 24 in addition to the gear housing 23.
  • the gear housing 23 is formed with an accommodation space 27 for accommodating the worm 24 and the worm wheel 25.
  • the other end of the rotating shaft 3 is inserted into the accommodation space 27 of the gear housing 23 while being supported by the bearing 33.
  • a worm 24 is provided on the other end side of the rotating shaft 3 so as to rotate integrally.
  • the worm wheel 25 that meshes with the worm 24 is provided with an output shaft 100 along a direction orthogonal to the rotating shaft 3 of the brushless motor 2. Then, when the output shaft 100 rotates, various electrical components (power window, sunroof, electric seat, etc.) are driven.
  • the outer peripheral surface of the stator housing 11 constituting the stator 10 is formed in a hexagonal shape having a corner portion 11b and a flat portion 11a. Further, the stator core 50 constituting the stator 10 has a flat portion 52 and a flat portion 53.
  • the brushless motor 2 is in such a positional relationship that the flat portion of the stator 10 of the brushless motor 2 (the flat portion 11a of the stator housing 11) is parallel to the axis of the output shaft 100.
  • the worm gear reducer 4 are combined.
  • a cover member 90 (see FIG. 6) having an external connection connector 31 is fixed to the side surface of the gear housing 23.
  • the sensor substrate 80 is disposed at a position adjacent to the rotating shaft 3 in the axial direction of the rotor 5.
  • the sensor substrate 80 is disposed between the rotor 5 and the bearing 33 housed in the gear housing 23 to support the intermediate portion of the rotating shaft 3.
  • FIG. 7 is a perspective view of the sensor substrate.
  • the sensor substrate 80 is composed of a substrate body 81 and three Hall ICs (rotation sensors) 82 mounted on the substrate body 81 via resin spacers 83, respectively.
  • the spacer 83 is provided to bring the Hall IC 82 close to the axial end surface of the permanent magnet 7 in a stable posture and position.
  • the three Hall ICs 82 serve to detect the rotational position of the rotor 5 in accordance with the magnetic change caused by the rotation of the permanent magnet 7. As shown in FIG. 4, the three Hall ICs 82 are arranged at a constant interval on the circumference concentric with the rotation shaft 3, and face the axial end face of the permanent magnet 7 inside the outer diameter of the permanent magnet 7. Yes. Therefore, the Hall IC 82 is inserted in the inner peripheral side of the insulator 70 without interfering with the insulator 70 of the stator 10, and is in close proximity to the axial end surface of the permanent magnet 7.
  • the spacer 83 is provided with a plurality of legs 83c on the lower surface of a cylindrical body 83a on which the main body of the Hall IC 82 is placed.
  • Three slits 83b for receiving the three terminals 82a of the Hall IC 82 are provided on the peripheral wall of the cylindrical body 83a.
  • the Hall IC 82 is placed on the upper surface of the spacer 83, and the three terminals 82a are inserted into the through holes of the substrate body 81 and soldered to the through holes. It is mounted in a standing posture.
  • the substrate body 81 of the sensor substrate 80 has a rectangular shape and has a recess 81a that receives the rotating shaft 3 on one side of the outer periphery. As shown in FIG. 3, the sensor substrate 80 is disposed around the rotation shaft 3 in a posture in which the substrate surface of the substrate body 81 intersects the axis direction of the rotation shaft 3. Further, as shown in FIGS. 3, 4, and 6, the sensor substrate 80 has one side 81b of the outer peripheral edge with respect to one flat portion 52 of the ring yoke portion 51 of the stator core 50 formed in a hexagonal cylindrical shape. Are arranged in such a direction as to be parallel to each other.
  • a bearing housing 28 is provided in the vicinity of the opening of the gear housing 23, and a bearing 33 is fixed to the bearing housing 28.
  • a substrate fixing flange 29 is formed on the end surface of the bearing housing 28 that houses the bearing 33.
  • the sensor substrate 80 is fixed to the substrate fixing flange 29 with screws.
  • a terminal 92 to which the end portion of the winding 42 constituting the coil 41 of the stator 10 is connected is disposed outside the sensor substrate 80 in the radial direction.
  • the hexagonal connection flange portion 23s is provided at the portion of the gear housing 23 where the brushless motor 2 is connected.
  • One straight line portion 23s1 of the hexagonal connection flange portion 23s extends in parallel with the output shaft 100 (see FIG. 1).
  • a flat portion of the hexagonal stator 10 (the flat portion 11a of the stator housing 11) corresponds to each straight portion of the hexagonal connection flange portion 23s.
  • the one straight line portion 23 s 1 extending in parallel with the output shaft 100 of the connection flange portion 23 s in the gear housing 23 is at a position farthest from the output shaft 100.
  • the sensor substrate 80 is disposed inside the one linear portion 23s1. Then, as shown in FIG. 6, the sensor substrate 80 is fixed to the substrate fixing flange 29 of the gear housing 23 so that one side 81 b of the outer peripheral edge of the sensor substrate 80 is parallel to the one linear portion 23 s 1 described above. Has been. Further, the terminal 92 is disposed between one side 81b of the outer peripheral edge of the sensor substrate 80 and one linear portion 23s1 of the connection flange portion 23s as viewed from the axial direction.
  • the rotational position of the rotor 5 is detected using the leakage magnetic flux of the permanent magnet 7, so that the sensor magnet can be eliminated. Therefore, the trouble of attaching the sensor magnet to the rotating shaft 3 and the trouble of positioning the sensor magnet and the permanent magnet 7 in the rotational direction can be eliminated. As a result, the assembly property of the brushless motor 2 can be improved, and the position detection accuracy of the rotor 5 during driving can be improved.
  • the sensor substrate 80 can easily detect a magnetic change due to the rotation of the permanent magnet, and the rotational position of the rotor 5 can be detected with higher accuracy.
  • the maximum radial thickness A of the permanent magnet 7 is set to be equal to or greater than the radial thickness B of the rotor core 6 (see FIG. 5C)
  • the space occupied by the rotor core 6 is made the same as the conventional one. A sufficient thickness in the radial direction of the permanent magnet 7 can be ensured. For this reason, the rotational position of the rotor 5 can be detected with high accuracy while reducing the overall size of the brushless motor 2.
  • the Hall IC 82 is inserted to a position close to the end surface in the axial direction of the permanent magnet 7 using the spacer 83, it can be applied without changing the design of the rotor 5 side. Furthermore, since the Hall IC 82 is disposed inside the outer diameter of the permanent magnet 7, it can be hardly affected by the coil 41 of the stator 10, and the influence of the magnetic field from the stator 10 side when energized can be suppressed. it can.
  • one side 81b of the outer peripheral edge of the sensor substrate 80 is arranged in parallel to one flat portion 52 of the stator core 50 formed in a hexagonal cylindrical shape, it is necessary to accommodate the sensor substrate 80 in an unreasonable space. Thus, it is possible to effectively utilize the arrangement space for various components (such as the sensor board 80 and the terminal 92) in the brushless motor 2.
  • the sensor substrate 80 is fixed to the substrate fixing flange 29 of the bearing housing 28 provided in the gear housing 23, the sensor substrate 80 can be securely and easily and stably attached and fixed to the gear casing (casing member) 23. it can.
  • the terminal 92 for connecting the coil 41 of the stator 10 is arranged outside the sensor substrate 80 in the radial direction, the coil 41 can be connected to the terminal 92 without being obstructed by the sensor substrate 80.
  • the coil 41 can be easily connected.
  • stator core 50 in the above embodiment may be a laminated core formed by laminating core plates or a dust core.
  • a 6-slot brushless motor in which six teeth 55 and six coils are formed has been described.
  • the present invention is not limited to this.
  • a 12-slot brushless motor may be used.
  • the stator may be configured in a polygonal shape with the number of corners corresponding to the number of slots.
  • the number of poles of the rotor 5 may be other than four poles as in the illustrated example.
  • FIG. 8 is a partially exploded perspective view showing a configuration of a motor with a reduction gear in a modified example
  • FIG. 9 is a cross-sectional view showing a configuration of the motor with a reduction gear in the modified example.
  • the same reference numerals are given to the same aspects as those in the above-described embodiment, and the description thereof is omitted.
  • the rotor 105 (rotor core 6, permanent magnet 7, magnet cover 8) is longer than the axial length Ls of the stator core 50.
  • the axial length Lr is set large. That is, an extension Lo of a predetermined length is provided in an overhang shape at the axial end of the rotor core 6 or the permanent magnet 7 on the speed reducer side.
  • the magnetic properties of the permanent magnet 7 can be enhanced compared to the case where the extension Lo is not provided. Therefore, even when the maximum thickness in the radial direction of the permanent magnet 7 is limited, a magnetic field having a magnitude necessary for maintaining the motor performance can be ensured.
  • the sensor substrate 180 on which the Hall IC 182 is mounted is disposed at a position away from the coil 41 of the stator 10, while the axial direction of the permanent magnet 7.
  • the end surface can be brought close to the sensor substrate 180. Therefore, the sensor substrate 180 on which the Hall IC 182 is planarly mounted can be used as the sensor substrate. That is, by using the extended portion Lo of the permanent magnet 7, the distance between the Hall IC 182 for detecting the rotational position of the rotor 5 and the permanent magnet 7 can be approached. Therefore, the surface mounting of the Hall IC 182 becomes possible.
  • the Hall IC is arranged inside the outer diameter of the permanent magnet 7.
  • the influence of the coil 41 of the stator 10 can be made more difficult, and the influence of the magnetic field from the stator 10 side when energized can be suppressed.
  • a magnetic sensor other than the Hall IC can be used as the rotation sensor.
  • the rotational position of the rotor is detected using the leakage magnetic flux of the permanent magnet, so that the sensor magnet can be eliminated. Therefore, the assembly of the motor can be improved and the accuracy of detecting the rotor position during driving can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Brushless Motors (AREA)

Abstract

Provided is an inner rotor-type brushless motor (2) in which a sensor substrate (80) is arranged at a position axially adjacent to a rotor (5) surrounding a rotating shaft (3). A Hall IC (82) that faces an axial end surface of a permanent magnet (7) and that detects the rotational position of the rotor in accordance with electromagnetic changes caused by rotation of the permanent magnet (7) is mounted on the sensor substrate (80).

Description

ブラシレスモータBrushless motor
 本発明は、インナーロータ型のブラシレスモータに関するものである。
 本願は、は、2015年6月29日に、日本に出願された特願2015-130039号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to an inner rotor type brushless motor.
This application claims priority based on Japanese Patent Application No. 2015-130039 filed in Japan on June 29, 2015, the contents of which are incorporated herein by reference.
 ブラシレスモータとしては、コイルが巻装されたステータと、ステータの径方向内側に回転自在に設けられるロータと、を有するいわゆるインナーロータ型のモータがある。この種のロータの外周部には、周方向に沿って逆極性の磁極が交互に並ぶように永久磁石が配設されている。一方、ステータは、筒状のステータハウジングと、このステータハウジングの内周面に嵌合固定される筒状のステータコアと、で構成されている。ステータコアは、例えば、電磁鋼板を積層することで円筒状に形成されるものであって、このステータコアにコイルが巻回されている。 As the brushless motor, there is a so-called inner rotor type motor having a stator around which a coil is wound, and a rotor that is rotatably provided in the radial direction of the stator. Permanent magnets are arranged on the outer periphery of this type of rotor so that magnetic poles of opposite polarity are arranged alternately along the circumferential direction. On the other hand, the stator is composed of a cylindrical stator housing and a cylindrical stator core fitted and fixed to the inner peripheral surface of the stator housing. The stator core is formed in a cylindrical shape by stacking electromagnetic steel plates, for example, and a coil is wound around the stator core.
 ところで、インナーロータ型のブラシレスモータでは、ロータを回転させるために、ロータの回転位置を検出する必要がある。従来では、回転軸に永久磁石とは別にセンサマグネットを取り付けている。そして、センサマグネットとホールIC等の回転センサ(検知素子)の組み合わせで、ロータの回転位置を検出し、その信号に基づいてステータコイルの通電制御を行うことにより、ロータを回転させている。 Incidentally, in the inner rotor type brushless motor, it is necessary to detect the rotational position of the rotor in order to rotate the rotor. Conventionally, a sensor magnet is attached to the rotating shaft separately from the permanent magnet. The rotor is rotated by detecting the rotational position of the rotor by a combination of a sensor magnet and a rotation sensor (detection element) such as a Hall IC, and performing energization control of the stator coil based on the signal.
特開2006-33989号公報JP 2006-33989 A
 上述したように、従来のブラシレスモータでは、永久磁石とは別にセンサマグネットを設けているので、取り付けが面倒であった。その上、取り付け時に永久磁石とセンサマグネットとを回転方向に位置合わせする必要があるので、組立が面倒であった。 As described above, in the conventional brushless motor, since the sensor magnet is provided separately from the permanent magnet, the mounting is troublesome. In addition, assembly is troublesome because it is necessary to align the permanent magnet and the sensor magnet in the rotational direction at the time of attachment.
 そこで本発明は、永久磁石の漏れ磁束を利用してロータの回転を検出できるようにすることで、センサマグネットを廃止し、組立性の向上を図ることのできるブラシレスモータを提供する。 Therefore, the present invention provides a brushless motor capable of eliminating the sensor magnet and improving the assemblability by making it possible to detect the rotation of the rotor by using the leakage magnetic flux of the permanent magnet.
 本発明の第1の態様によれば、ブラシレスモータは、回転軸と、前記回転軸に対して同心に配置された筒状のステータと、外周部に周方向に沿って逆極性の磁極が交互に並ぶ永久磁石を有し、前記回転軸と一体化されて前記ステータの内周側に空隙を介して配置されたロータと、を備えたインナーロータ型のブラシレスモータにおいて、前記回転軸の周囲の前記ロータの軸方向に隣接する位置に、センサ基板を設け、前記センサ基板は、該センサ基板の外周縁の一部に前記回転軸を受け入れる凹部を有すると共に、基板面を前記回転軸の軸線方向に交差させた姿勢で配置され、前記センサ基板上に、前記永久磁石の軸方向端面に対向し前記永久磁石の回転による磁気変化に応じて前記ロータの回転位置を検出する回転センサを実装した。 According to the first aspect of the present invention, the brushless motor includes a rotating shaft, a cylindrical stator arranged concentrically with the rotating shaft, and magnetic poles of opposite polarity along the circumferential direction on the outer periphery. An inner rotor type brushless motor comprising a permanent magnet arranged in a row and a rotor integrated with the rotary shaft and disposed on the inner peripheral side of the stator via a gap. A sensor substrate is provided at a position adjacent to the rotor in the axial direction, and the sensor substrate has a recess for receiving the rotation shaft at a part of an outer peripheral edge of the sensor substrate, and the substrate surface is arranged in the axial direction of the rotation shaft. A rotation sensor is mounted on the sensor substrate, which faces the axial end surface of the permanent magnet and detects the rotational position of the rotor according to a magnetic change caused by the rotation of the permanent magnet.
 上記のように構成することで、永久磁石の漏れ磁束を利用してロータの回転位置を検出するようにしているので、センサマグネットを廃止することができる。従って、回転軸へのセンサマグネットの取り付けの面倒やセンサマグネットと永久磁石の回転方向の位置合わせの面倒を無くすことができる。その結果、モータの組付性の向上が図れると共に、駆動時のロータ位置検出精度の向上が図れる。 By configuring as described above, the rotational position of the rotor is detected using the leakage magnetic flux of the permanent magnet, so that the sensor magnet can be eliminated. Therefore, the trouble of attaching the sensor magnet to the rotating shaft and the trouble of aligning the sensor magnet and the permanent magnet in the rotational direction can be eliminated. As a result, the assembly of the motor can be improved and the rotor position detection accuracy during driving can be improved.
 本発明の第2の態様によれば、本発明の第1の態様に係るブラシレスモータにおいて、前記センサ基板上に、前記回転センサを前記永久磁石の軸方向端面に近接させるスペーサを介して前記回転センサが実装されており、前記回転センサが、前記永久磁石の外径の内側で永久磁石の軸方向端面に対向する位置に配置されている。 According to a second aspect of the present invention, in the brushless motor according to the first aspect of the present invention, the rotation is performed on the sensor substrate via a spacer that brings the rotation sensor close to an axial end surface of the permanent magnet. A sensor is mounted, and the rotation sensor is disposed at a position facing the axial end surface of the permanent magnet inside the outer diameter of the permanent magnet.
 上記のように構成することで、永久磁石に回転センサを近づけることができるので、ロータ側の設計変更をせずに適用することができる。また、回転センサが永久磁石の外径の内側に配置されているので、ステータコイルの影響を受けづらくすることができ、通電時にステータ側からの磁界の影響を抑制することができる。この場合、回転センサは、永久磁石にできるだけ近づけるため、センサ基板に対して立設した姿勢でスルーホール実装することになる。 Since the rotation sensor can be brought close to the permanent magnet by configuring as described above, it can be applied without changing the design on the rotor side. Further, since the rotation sensor is arranged inside the outer diameter of the permanent magnet, it can be hardly affected by the stator coil, and the influence of the magnetic field from the stator side can be suppressed during energization. In this case, since the rotation sensor is as close as possible to the permanent magnet, the through-hole mounting is performed in a posture standing with respect to the sensor substrate.
 本発明の第3の態様によれば、本発明の第1の態様に係るブラシレスモータにおいて、前記永久磁石の軸方向端部に、前記永久磁石の軸方向端面を前記回転センサに近接させる延長部が、前記ステータの軸方向端面よりも突出するようにオーバーハングして設けられており、前記回転センサが、前記永久磁石の外径の内側で永久磁石の軸方向端面に対向する位置に配置されている。 According to the third aspect of the present invention, in the brushless motor according to the first aspect of the present invention, the extension portion that brings the axial end surface of the permanent magnet close to the rotation sensor at the axial end portion of the permanent magnet. However, the rotation sensor is disposed in a position facing the axial end surface of the permanent magnet inside the outer diameter of the permanent magnet. ing.
 上記のように構成することで、回転センサをステータコイルから離れる位置に配置しながら、永久磁石と回転センサの距離を近づけることができる。また、回転センサが永久磁石の外径の内側に配置されているので、ステータコイルの影響を受けづらくすることができ、通電時にステータ側からの磁界の影響を抑制することができる。この場合、永久磁石側から近づいてくるので、回転センサは、センサ基板に対して平面的に面実装することになる。 By configuring as described above, the distance between the permanent magnet and the rotation sensor can be reduced while disposing the rotation sensor at a position away from the stator coil. Further, since the rotation sensor is arranged inside the outer diameter of the permanent magnet, it can be hardly affected by the stator coil, and the influence of the magnetic field from the stator side can be suppressed during energization. In this case, since it approaches from the permanent magnet side, the rotation sensor is surface-mounted on the sensor substrate in a plane.
 本発明の第4の態様によれば、本発明の第1の態様から第3の態様の何れか一の態様に係るブラシレスモータにおいて、前記ステータと前記ロータとを収納するモータケーシングおよびモータケーシングに接続されるギヤケーシングの何れか一方に、前記回転軸を回転自在に支持する軸受を収容する軸受ハウジングが設けられ、該軸受ハウジングの端面に形成されたフランジ部に前記センサ基板が固定されている。 According to a fourth aspect of the present invention, in the brushless motor according to any one of the first to third aspects of the present invention, the motor casing and the motor casing that house the stator and the rotor. Any one of the gear casings to be connected is provided with a bearing housing that houses a bearing that rotatably supports the rotating shaft, and the sensor substrate is fixed to a flange portion formed on an end surface of the bearing housing. .
 上記のように構成することで、回転センサを搭載したセンサ基板を、確実かつ容易にしかも安定してケーシング部材に取り付け固定することができる。 By configuring as described above, the sensor substrate on which the rotation sensor is mounted can be securely and easily attached and fixed to the casing member.
 本発明の第5の態様によれば、本発明の第1の態様から第4の態様の何れか一の態様に係るブラシレスモータにおいて、前記永久磁石の軸方向端部に、当該永久磁石の磁気特性を強めるための所定長さの延長部が、前記ステータの軸方向端面よりも突出するようにオーバーハングして設けられている。 According to a fifth aspect of the present invention, in the brushless motor according to any one of the first to fourth aspects of the present invention, the magnet of the permanent magnet is disposed at the axial end of the permanent magnet. An extension portion having a predetermined length for enhancing the characteristics is provided so as to overhang so as to protrude from the end surface in the axial direction of the stator.
 上記のように構成することで、ロータの径の拡大に制約がある場合に、永久磁石の長さを延長することで、モータ出力の増大に寄与することができる。また、その永久磁石の延長部を利用して、ロータの回転位置検出用の回転センサと永久磁石との間の距離を近づけることができる。 Structuring as described above can contribute to an increase in motor output by extending the length of the permanent magnet when there is a restriction on expansion of the rotor diameter. Further, the distance between the rotation sensor for detecting the rotational position of the rotor and the permanent magnet can be reduced by utilizing the extension of the permanent magnet.
 本発明の第6の態様によれば、本発明の第1の態様から第5の態様の何れか一の態様に係るブラシレスモータにおいて、前記センサ基板の径方向の外側に、前記ステータのコイルを構成する巻線の端部が接続されるターミナルが配置されている。 According to a sixth aspect of the present invention, in the brushless motor according to any one of the first to fifth aspects of the present invention, the coil of the stator is disposed outside in the radial direction of the sensor substrate. Terminals to which the ends of the windings to be configured are connected are arranged.
 上記のように構成することで、センサ基板に邪魔されずに、ステータのコイルをターミナルに電気接続することができる。従って、コイルの結線が楽に行える。 By configuring as described above, the coil of the stator can be electrically connected to the terminal without being obstructed by the sensor substrate. Therefore, the coil can be easily connected.
 本発明の第7の態様によれば、本発明の第1の態様から第6の態様の何れか一の態様に係るブラシレスモータにおいて、前記永久磁石は、外径面が、該外径面上の周方向幅の中心点と前記回転軸の軸中心とを結ぶ線分上に曲率中心を有し、且つ、前記外径面上の周方向幅の中心点と前記回転軸の軸中心とを結ぶ線分の距離よりも小さい曲率半径の円筒面として形成されている。 According to a seventh aspect of the present invention, in the brushless motor according to any one of the first to sixth aspects of the present invention, the permanent magnet has an outer diameter surface on the outer diameter surface. A center of curvature on a line segment connecting the center point of the circumferential width of the rotation axis and the axis center of the rotating shaft, and the center point of the circumferential width on the outer diameter surface and the axis center of the rotating shaft. It is formed as a cylindrical surface having a smaller radius of curvature than the connecting line segment distance.
 上記のように構成することで、永久磁石の断面積を大きく確保することができる。このため、センサ基板によって、永久磁石の回転による磁気変化を検出し易くすることができ、ロータの回転位置を高精度に検出できる。 By configuring as described above, a large cross-sectional area of the permanent magnet can be secured. For this reason, the sensor substrate can easily detect a magnetic change due to the rotation of the permanent magnet, and the rotational position of the rotor can be detected with high accuracy.
 本発明の第8の態様によれば、本発明の第7の態様に係るブラシレスモータにおいて、前記回転軸の外周に円筒状のロータコアが嵌合固定され、前記ロータコアの外周に前記永久磁石が配置されており、前記永久磁石の径方向の最大厚さが、前記ロータコアの径方向の厚さ以上とされている。 According to an eighth aspect of the present invention, in the brushless motor according to the seventh aspect of the present invention, a cylindrical rotor core is fitted and fixed to the outer periphery of the rotating shaft, and the permanent magnet is disposed on the outer periphery of the rotor core. The maximum thickness in the radial direction of the permanent magnet is greater than or equal to the radial thickness of the rotor core.
 上記のように構成することで、ロータコアの占有スペースを従来と同じにしながら、永久磁石の径方向の厚さを十分確保することができる。このため、ブラシレスモータ全体の小型化を図りつつ、ロータの回転位置を高精度に検出できる。 By configuring as described above, it is possible to secure a sufficient thickness in the radial direction of the permanent magnet while keeping the space occupied by the rotor core as before. For this reason, the rotational position of the rotor can be detected with high accuracy while reducing the size of the entire brushless motor.
 本発明の第9の態様によれば、本発明の第1の態様から第8の態様の何れか一の態様に係るブラシレスモータにおいて、前記ステータが、正多角形の角筒状に形成されたリングヨーク部と前記正多角形の各辺に相当する前記リングヨーク部の各平坦部の内周の周方向幅の中央位置に径方向内方へ向けて突設されたティース部とを有するステータコアと、前記各ティース部に巻回されて外部電源からの給電により前記ロータを回転させるための回転磁界を発生するコイルと、を備えており、前記正多角形の角筒状に形成されたリングヨーク部の1つの平坦部に対し、前記センサ基板の外周縁の一辺が平行に配されている。 According to a ninth aspect of the present invention, in the brushless motor according to any one of the first to eighth aspects of the present invention, the stator is formed in a regular polygonal rectangular tube shape. A stator core having a ring yoke portion and a teeth portion projecting radially inward at the center position of the circumferential width of the inner periphery of each flat portion of the ring yoke portion corresponding to each side of the regular polygon And a coil that is wound around each of the teeth portions and generates a rotating magnetic field for rotating the rotor by feeding from an external power source, and is formed in a square tube shape of the regular polygon One side of the outer peripheral edge of the sensor substrate is arranged in parallel to one flat portion of the yoke portion.
 上記のように構成することで、センサ基板を無理なスペースで収容する必要がなくなり、モータ内の各種部品(センサ基板やターミナル等)の配置スペースの有効活用が図れる。 By configuring as described above, it is not necessary to accommodate the sensor board in an unreasonable space, and the space for arranging various parts (sensor board, terminal, etc.) in the motor can be effectively utilized.
 上記のブラシレスモータによれば、永久磁石の漏れ磁束を利用してロータの回転位置を検出するようにしているので、センサマグネットを廃止することができる。従って、モータの組付性の向上が図れると共に、駆動時のロータ位置検出精度の向上が図れる。 According to the above brushless motor, the rotational position of the rotor is detected using the leakage magnetic flux of the permanent magnet, so that the sensor magnet can be eliminated. Therefore, the assembly of the motor can be improved and the accuracy of detecting the rotor position during driving can be improved.
本発明の実施形態における減速機付モータの構成を示す一部分解斜視図である。It is a partially exploded perspective view which shows the structure of the motor with a reduction gear in embodiment of this invention. 本発明の実施形態における減速機付モータの構成を示す断面図である。It is sectional drawing which shows the structure of the motor with a reduction gear in embodiment of this invention. 本発明の実施形態におけるセンサ基板、永久磁石、ステータ等の関係を示す斜視図である。It is a perspective view which shows the relationship between a sensor board | substrate, a permanent magnet, a stator, etc. in embodiment of this invention. 本発明の実施形態におけるセンサ基板、永久磁石、ステータ等との関係を示す平面図である。It is a top view which shows the relationship with the sensor board | substrate, permanent magnet, stator, etc. in embodiment of this invention. 本発明の実施形態における永久磁石の斜視図である。It is a perspective view of the permanent magnet in the embodiment of the present invention. 本発明の実施形態における永久磁石のパラレル磁気配向を示す図である。It is a figure which shows the parallel magnetic orientation of the permanent magnet in embodiment of this invention. 本発明の実施形態における永久磁石とロータコアの寸法関係を示す図である。It is a figure which shows the dimensional relationship of the permanent magnet and rotor core in embodiment of this invention. 本発明の実施形態におけるギヤハウジングの斜視図である。It is a perspective view of the gear housing in the embodiment of the present invention. 本発明の実施形態におけるセンサ基板の斜視図である。It is a perspective view of a sensor substrate in an embodiment of the present invention. 本発明の実施形態の変形例における減速機付モータの構成を示す一部分解斜視図である。It is a partially exploded perspective view which shows the structure of the motor with a reduction gear in the modification of embodiment of this invention. 本発明の実施形態の変形例における減速機付モータの構成を示す断面図である。It is sectional drawing which shows the structure of the motor with a reduction gear in the modification of embodiment of this invention.
 以下、本発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (減速機付モータ)
 図1は、本発明の実施形態に係るブラシレスモータが適用された減速機付モータの構成を示す一部分解斜視図、図2はその断面図である。なお、以下の説明では、回転軸3の軸方向を単に軸方向といい、回転軸3の周方向を単に周方向といい、回転軸3の径方向を単に径方向という。
(Motor with reduction gear)
FIG. 1 is a partially exploded perspective view showing a configuration of a motor with a reduction gear to which a brushless motor according to an embodiment of the present invention is applied, and FIG. 2 is a sectional view thereof. In the following description, the axial direction of the rotating shaft 3 is simply referred to as the axial direction, the circumferential direction of the rotating shaft 3 is simply referred to as the circumferential direction, and the radial direction of the rotating shaft 3 is simply referred to as the radial direction.
 図1および図2に示すように、減速機付モータ1は、例えば車両に搭載される電装品(例えば、パワーウインドウ、サンルーフ、電動シート等)の駆動源となるものであって、ブラシレスモータ2と、ブラシレスモータ2の回転軸3に連結されたウォームギヤ減速機4と、を備えている。 As shown in FIGS. 1 and 2, the motor 1 with a speed reducer serves as a drive source for electrical components (for example, a power window, a sunroof, an electric seat, etc.) mounted on a vehicle, and includes a brushless motor 2. And a worm gear speed reducer 4 connected to the rotating shaft 3 of the brushless motor 2.
 (ブラシレスモータ)
 このブラシレスモータ2は、回転軸3と、回転軸3に対して同心に配置された筒状のステータ10と、回転軸3と一体化されてステータ10の内周側に空隙を介して配置されたロータ5と、を備えたインナーロータ型のブラシレスモータである。
(Brushless motor)
The brushless motor 2 includes a rotating shaft 3, a cylindrical stator 10 disposed concentrically with the rotating shaft 3, and the rotating shaft 3, and is disposed on the inner peripheral side of the stator 10 via a gap. And an inner rotor type brushless motor.
 (ステータ)
 ステータ10は、ステータ10の外郭を形成するステータハウジング11と、ステータハウジング11内に配置されたステータコア50と、ステータコア50に巻装されたコイル41と、を有する。
(Stator)
The stator 10 includes a stator housing 11 that forms an outline of the stator 10, a stator core 50 disposed in the stator housing 11, and a coil 41 wound around the stator core 50.
 (ステータハウジング)
 ステータハウジング11は、金属材料により、断面が略角丸正六角形の有底筒状に形成されている。ステータハウジング11の内側には、複数のコイル41が形成されたステータコア50が、接着や圧入等の固定手段により周方向に沿って固定配置されている。
(Stator housing)
The stator housing 11 is formed of a metal material into a bottomed cylindrical shape having a substantially rounded regular hexagonal cross section. Inside the stator housing 11, a stator core 50 in which a plurality of coils 41 is formed is fixedly arranged along the circumferential direction by fixing means such as adhesion or press fitting.
 (ステータコア)
 図3は、ブラシレスモータの要部の斜視図、図4は、ブラシレスモータの要部の平面図である。
 図3および図4に示すように、ステータコア50は、ステータハウジング11(図2参照)の内部に圧入可能な、断面が略角丸正六角形の角筒状に形成されている。ステータコア50は、断面が略角丸正六角形の角筒状に形成されたリングヨーク部51と、正六角形の各辺に相当するリングヨーク部51の各平坦部52の内周の周方向幅の中央位置に径方向内方へ向けて突設された複数(本実施形態では6個)のティース部55と、を有する。リングヨーク部51の平坦部52は、隣接する角部53間の部分である。ステータコア50には、図2および図3に示すように、樹脂製のインシュレータ70を介してティース部55に巻線42が巻回され、複数(本実施形態では6個)のコイル41が形成されている。
(Stator core)
FIG. 3 is a perspective view of the main part of the brushless motor, and FIG. 4 is a plan view of the main part of the brushless motor.
As shown in FIGS. 3 and 4, the stator core 50 is formed in a rectangular tube shape having a substantially rounded regular hexagonal cross section that can be press-fitted into the stator housing 11 (see FIG. 2). The stator core 50 has a circumferential width on the inner periphery of each of the ring yoke portion 51 formed in a square cylinder having a substantially rounded regular hexagonal cross section and each flat portion 52 of the ring yoke portion 51 corresponding to each side of the regular hexagon. And a plurality (six in this embodiment) of teeth portions 55 projecting radially inward at the center position. The flat portion 52 of the ring yoke portion 51 is a portion between adjacent corner portions 53. As shown in FIGS. 2 and 3, the stator core 50 is wound with a winding 42 around a tooth portion 55 via a resin insulator 70, thereby forming a plurality (six in this embodiment) of coils 41. ing.
 ティース部55は、径方向に沿って延出し巻線42が巻回される巻胴部56と、巻胴部56の径方向内側の先端から周方向に沿って延在する鍔部57と、により構成されている。鍔部57は、巻胴部56と一体に形成されている。鍔部57は、径方向内周面が円弧面に形成されている。隣接するティース部55の間には、コイル41の巻線42が配置されるスロット59が設けられている。各相のコイル41は、外部電源からの給電によりロータ5を回転させるための回転磁界を発生する。 The teeth portion 55 includes a winding drum portion 56 around which the winding 42 is wound along the radial direction, a flange portion 57 extending along the circumferential direction from the radial inner end of the winding drum portion 56, and It is comprised by. The flange portion 57 is formed integrally with the winding drum portion 56. The flange portion 57 has a radially inner peripheral surface formed into an arc surface. A slot 59 in which the winding 42 of the coil 41 is disposed is provided between adjacent teeth portions 55. Each phase coil 41 generates a rotating magnetic field for rotating the rotor 5 by power supply from an external power source.
 図2に示すように、ステータハウジング11の底部には、軸受ハウジング13が突出形成されている。軸受ハウジング13には、回転軸3の一端を回転自在に支持するための軸受14が内嵌されている。ステータハウジング11の開口部(軸受ハウジング13が設けられた側と反対側)は、ギヤハウジング23の開口部に接続されている。回転軸3の他端は、ギヤハウジング23の内部に挿入されている。 2, a bearing housing 13 protrudes from the bottom of the stator housing 11. A bearing 14 for rotatably supporting one end of the rotating shaft 3 is fitted in the bearing housing 13. The opening of the stator housing 11 (the side opposite to the side on which the bearing housing 13 is provided) is connected to the opening of the gear housing 23. The other end of the rotating shaft 3 is inserted into the gear housing 23.
 図6は、ギヤハウジングの斜視図である。
 図6に示すように、ギヤハウジング23の開口部には、ブラシレスモータ2を接続するための六角形の接続フランジ部23sが設けられている。接続フランジ部23sの近傍には、軸受ハウジング28が設けられており、その軸受ハウジング28に、軸受33が軸受ストッパ34により位置決めされて嵌合固定されている。図2に示すように、回転軸3の長さ方向の中間部は、その軸受33によって回転自在に支持されている。
FIG. 6 is a perspective view of the gear housing.
As shown in FIG. 6, an opening of the gear housing 23 is provided with a hexagonal connection flange 23 s for connecting the brushless motor 2. A bearing housing 28 is provided in the vicinity of the connection flange 23s, and a bearing 33 is positioned and fitted and fixed to the bearing housing 28 by a bearing stopper 34. As shown in FIG. 2, the intermediate portion in the length direction of the rotary shaft 3 is rotatably supported by the bearing 33.
 (ロータ)
 ロータ5は、回転軸3の外周に圧入嵌合された円筒状のロータコア6と、ロータコア6の外周に設けられた複数個のセグメント型の永久磁石(ロータマグネット)7と、永久磁石7の外周に嵌合された非磁性材料製(ステンレス製など)のマグネットカバー8と、を有する。マグネットカバー8は、ロータコア6の外周の所望の位置に永久磁石7を保持する役割を有すると共に、永久磁石7への塵埃の付着や損傷を防止する役割を有している。
(Rotor)
The rotor 5 includes a cylindrical rotor core 6 press-fitted to the outer periphery of the rotating shaft 3, a plurality of segment-type permanent magnets (rotor magnets) 7 provided on the outer periphery of the rotor core 6, and the outer periphery of the permanent magnet 7. And a magnet cover 8 made of a non-magnetic material (such as stainless steel) fitted in The magnet cover 8 has a role of holding the permanent magnet 7 at a desired position on the outer periphery of the rotor core 6 and also has a role of preventing dust from adhering to and being damaged to the permanent magnet 7.
 (永久磁石)
 図5Aは、単体の永久磁石の斜視図、図5Bは、永久磁石のパラレル磁気配向を示す図、図5Cは、永久磁石とロータコアの寸法関係を示す図である。
 永久磁石7は、フェライト磁石よりなり、図5A~図5Cに示すように、それぞれが軸方向断面扇形に形成されている。永久磁石7は、内径面72から外径面71に向けて着磁されており、外径面71の磁極が周方向に交互に逆極性で並ぶように等間隔で配列されている。マグネットカバー8は、周方向に配列された永久磁石7の外周に嵌合されている。
(permanent magnet)
5A is a perspective view of a single permanent magnet, FIG. 5B is a diagram showing parallel magnetic orientation of the permanent magnet, and FIG. 5C is a diagram showing a dimensional relationship between the permanent magnet and the rotor core.
The permanent magnets 7 are made of ferrite magnets, and each has a sector shape in the axial direction as shown in FIGS. 5A to 5C. The permanent magnets 7 are magnetized from the inner diameter surface 72 toward the outer diameter surface 71, and are arranged at equal intervals so that the magnetic poles of the outer diameter surface 71 are alternately arranged in opposite directions in the circumferential direction. The magnet cover 8 is fitted on the outer periphery of the permanent magnets 7 arranged in the circumferential direction.
 各永久磁石7は、図5Bに示すように、外径面71が、外径面71上の周方向幅の中心点TPと回転軸3の軸中心L1とを結ぶ線分TL上に曲率中心TR2を有し、且つ、外径面71上の周方向幅の中心点TPと回転軸3の軸中心L1とを結ぶ線分TLの距離よりも小さい曲率半径R2の円筒面として形成されている。つまり、外径面71上の周方向幅の中心点TPと回転軸3の軸中心L1とを結ぶ線分TLを半径R1とし、回転軸の軸中心L1を中心TR1として描いた仮想円筒面77よりも内周側に収まる形状に形成されている。 As shown in FIG. 5B, each permanent magnet 7 has an outer diameter surface 71 whose center of curvature is on a line segment TL that connects the center point TP of the circumferential width on the outer diameter surface 71 and the axis center L <b> 1 of the rotary shaft 3. It has TR2, and is formed as a cylindrical surface having a radius of curvature R2 smaller than the distance of a line segment TL connecting the center point TP of the circumferential width on the outer diameter surface 71 and the axis center L1 of the rotary shaft 3. . That is, a virtual cylindrical surface 77 drawn with the line segment TL connecting the center point TP of the circumferential width on the outer diameter surface 71 and the axis center L1 of the rotating shaft 3 as the radius R1, and the axis center L1 of the rotating shaft as the center TR1. It is formed in a shape that fits on the inner periphery side.
 また、着磁された磁束75の向きが外径面71上の周方向幅の中心点TPと回転軸3の軸中心L1とを結ぶ線分TLに対して平行となるようにパラレル配向に着磁されている。さらに、図5Cに示すように、永久磁石7の径方向の最大厚さAが、ロータコア6の径方向の厚さB以上に設定されている。 Also, the magnetized magnetic flux 75 is oriented in parallel orientation so that the direction of the magnetized magnetic flux 75 is parallel to the line segment TL connecting the center point TP of the circumferential width on the outer diameter surface 71 and the axis center L1 of the rotary shaft 3. It is magnetized. Furthermore, as shown in FIG. 5C, the radial maximum thickness A of the permanent magnet 7 is set to be equal to or greater than the radial thickness B of the rotor core 6.
 これら回転軸3、ロータコア6、永久磁石7およびマグネットカバー8は、一体に構成されており、コイル41の回転磁界が永久磁石7に作用することで、回転軸3と一体のロータ5が回転する。 The rotating shaft 3, the rotor core 6, the permanent magnet 7, and the magnet cover 8 are integrally configured, and the rotor 5 integrated with the rotating shaft 3 rotates by the rotating magnetic field of the coil 41 acting on the permanent magnet 7. .
 (ウォームギヤ減速機)
 図2に示すように、ウォームギヤ減速機4は、ギヤハウジング23の他に、このギヤハウジング23内に収納されるウォーム24と、このウォーム24に噛合うウォームホイール25と、を有している。ギヤハウジング23には、ウォーム24やウォームホイール25を収容する収容空間27が形成されている。回転軸3は、軸受33に支持された状態で他端部がギヤハウジング23の収容空間27の内部に挿入されている。回転軸3の他端部側にはウォーム24が一体回転するように設けられている。
(Worm gear reducer)
As shown in FIG. 2, the worm gear speed reducer 4 has a worm 24 housed in the gear housing 23 and a worm wheel 25 that meshes with the worm 24 in addition to the gear housing 23. The gear housing 23 is formed with an accommodation space 27 for accommodating the worm 24 and the worm wheel 25. The other end of the rotating shaft 3 is inserted into the accommodation space 27 of the gear housing 23 while being supported by the bearing 33. A worm 24 is provided on the other end side of the rotating shaft 3 so as to rotate integrally.
 このウォーム24に噛み合うウォームホイール25には、出力軸100が、ブラシレスモータ2の回転軸3に直交する方向に沿って設けられている。そして、出力軸100が回転することによって、各種の電装品(パワーウインドウ、サンルーフ、電動シート等)が駆動されることになる。 The worm wheel 25 that meshes with the worm 24 is provided with an output shaft 100 along a direction orthogonal to the rotating shaft 3 of the brushless motor 2. Then, when the output shaft 100 rotates, various electrical components (power window, sunroof, electric seat, etc.) are driven.
 このブラシレスモータ2では、ステータ10を構成するステータハウジング11の外周面が、角部11bと平坦部11aを有する六角形状に形成されている。また、ステータ10を構成するステータコア50は、平坦部52と平坦部53とを有している。そして、この減速機付モータ1では、ブラシレスモータ2のステータ10の平坦部(ステータハウジング11の平坦部11a)が、出力軸100の軸線に対して平行をなすような位置関係で、ブラシレスモータ2とウォームギヤ減速機4とが組み合わせられている。なお、ギヤハウジング23の側面には、外部接続コネクタ31を有するカバー部材90(図6参照)が固定されている。 In this brushless motor 2, the outer peripheral surface of the stator housing 11 constituting the stator 10 is formed in a hexagonal shape having a corner portion 11b and a flat portion 11a. Further, the stator core 50 constituting the stator 10 has a flat portion 52 and a flat portion 53. In the motor 1 with a speed reducer, the brushless motor 2 is in such a positional relationship that the flat portion of the stator 10 of the brushless motor 2 (the flat portion 11a of the stator housing 11) is parallel to the axis of the output shaft 100. And the worm gear reducer 4 are combined. A cover member 90 (see FIG. 6) having an external connection connector 31 is fixed to the side surface of the gear housing 23.
 (センサ基板)
 また、ブラシレスモータ2に対するギヤハウジング23の接続部の内側、即ち、ステータハウジング11とギヤハウジング23の接続部の内側には、回転軸3(ロータ5)の回転角度位置を検出する回転検出手段としてのセンサ基板80が設けられている。
(Sensor board)
Further, on the inner side of the connection part of the gear housing 23 to the brushless motor 2, that is, the inner side of the connection part of the stator housing 11 and the gear housing 23, rotation detection means for detecting the rotational angle position of the rotary shaft 3 (rotor 5). The sensor substrate 80 is provided.
 センサ基板80は、回転軸3の周囲のロータ5の軸方向に隣接する位置に配置されている。本実施形態では、センサ基板80は、ロータ5と、回転軸3の中間部を支持するためにギヤハウジング23の内部に収容された軸受33との間に配置されている。 The sensor substrate 80 is disposed at a position adjacent to the rotating shaft 3 in the axial direction of the rotor 5. In the present embodiment, the sensor substrate 80 is disposed between the rotor 5 and the bearing 33 housed in the gear housing 23 to support the intermediate portion of the rotating shaft 3.
 図7は、センサ基板の斜視図である。
 同図に示すように、センサ基板80は、基板本体81と、基板本体81上にそれぞれ樹脂製のスペーサ83を介して実装された3つのホールIC(回転センサ)82と、で構成されている。スペーサ83は、ホールIC82を永久磁石7の軸方向端面に安定した姿勢および位置で近接させるために設けられている。
FIG. 7 is a perspective view of the sensor substrate.
As shown in the figure, the sensor substrate 80 is composed of a substrate body 81 and three Hall ICs (rotation sensors) 82 mounted on the substrate body 81 via resin spacers 83, respectively. . The spacer 83 is provided to bring the Hall IC 82 close to the axial end surface of the permanent magnet 7 in a stable posture and position.
 3つのホールIC82は、永久磁石7の回転による磁気変化に応じてロータ5の回転位置を検出する機能を果たすためのものである。図4に示すように、3つのホールIC82は、回転軸3と同心の円周上に一定の間隔で配置され、永久磁石7の外径の内側で永久磁石7の軸方向端面に対向している。従ってホールIC82は、ステータ10のインシュレータ70に干渉することなく、インシュレータ70の内周側に挿入されることで、永久磁石7の軸方向端面に近接対向している。 The three Hall ICs 82 serve to detect the rotational position of the rotor 5 in accordance with the magnetic change caused by the rotation of the permanent magnet 7. As shown in FIG. 4, the three Hall ICs 82 are arranged at a constant interval on the circumference concentric with the rotation shaft 3, and face the axial end face of the permanent magnet 7 inside the outer diameter of the permanent magnet 7. Yes. Therefore, the Hall IC 82 is inserted in the inner peripheral side of the insulator 70 without interfering with the insulator 70 of the stator 10, and is in close proximity to the axial end surface of the permanent magnet 7.
 図7に示すように、スペーサ83は、上面にホールIC82の本体を載せる円柱体83aの下面に複数の脚部83cを設けたものである。円柱体83aの周壁には、ホールIC82の3本の端子82aを収容する3つのスリット83bが設けられている。ホールIC82は、このスペーサ83の上面に載った状態で、3本の端子82aを基板本体81の各スルーホールに挿通させて各端子82aをスルーホールに半田付けすることで、基板本体81上に立設した姿勢で実装されている。 As shown in FIG. 7, the spacer 83 is provided with a plurality of legs 83c on the lower surface of a cylindrical body 83a on which the main body of the Hall IC 82 is placed. Three slits 83b for receiving the three terminals 82a of the Hall IC 82 are provided on the peripheral wall of the cylindrical body 83a. The Hall IC 82 is placed on the upper surface of the spacer 83, and the three terminals 82a are inserted into the through holes of the substrate body 81 and soldered to the through holes. It is mounted in a standing posture.
 センサ基板80の基板本体81は長方形状のもので、外周縁の一辺に回転軸3を受け入れる凹部81aを有している。センサ基板80は、図3に示すように、基板本体81の基板面を回転軸3の軸線方向に交差させた姿勢で回転軸3の周囲に配置されている。また、センサ基板80は、図3、図4および図6に示すように、六角形筒状に形成されたステータコア50のリングヨーク部51の1つの平坦部52に対して、外周縁の一辺81bが平行となるような向きで配置されている。 The substrate body 81 of the sensor substrate 80 has a rectangular shape and has a recess 81a that receives the rotating shaft 3 on one side of the outer periphery. As shown in FIG. 3, the sensor substrate 80 is disposed around the rotation shaft 3 in a posture in which the substrate surface of the substrate body 81 intersects the axis direction of the rotation shaft 3. Further, as shown in FIGS. 3, 4, and 6, the sensor substrate 80 has one side 81b of the outer peripheral edge with respect to one flat portion 52 of the ring yoke portion 51 of the stator core 50 formed in a hexagonal cylindrical shape. Are arranged in such a direction as to be parallel to each other.
 図6に示すように、ギヤハウジング23の開口部の近傍には、軸受ハウジング28が設けられ、その軸受ハウジング28に軸受33が固定されている。軸受33を収容した軸受ハウジング28の端面には基板固定フランジ29が形成されている。そしてセンサ基板80は、この基板固定フランジ29にネジ固定されている。 As shown in FIG. 6, a bearing housing 28 is provided in the vicinity of the opening of the gear housing 23, and a bearing 33 is fixed to the bearing housing 28. A substrate fixing flange 29 is formed on the end surface of the bearing housing 28 that houses the bearing 33. The sensor substrate 80 is fixed to the substrate fixing flange 29 with screws.
 また、センサ基板80の径方向の外側に位置させて、ステータ10のコイル41を構成する巻線42の端部が接続されるターミナル92が配置されている。ギヤハウジング23のブラシレスモータ2を接続する部分には、前述したように六角形の接続フランジ部23sが設けられている。この六角形の接続フランジ部23sの1つの直線部23s1は、出力軸100(図1参照)と平行に延びている。六角形の接続フランジ部23sの各直線部には、軸方向視六角形状のステータ10の平坦部(ステータハウジング11の平坦部11a)がそれぞれ対応している。 Further, a terminal 92 to which the end portion of the winding 42 constituting the coil 41 of the stator 10 is connected is disposed outside the sensor substrate 80 in the radial direction. As described above, the hexagonal connection flange portion 23s is provided at the portion of the gear housing 23 where the brushless motor 2 is connected. One straight line portion 23s1 of the hexagonal connection flange portion 23s extends in parallel with the output shaft 100 (see FIG. 1). A flat portion of the hexagonal stator 10 (the flat portion 11a of the stator housing 11) corresponds to each straight portion of the hexagonal connection flange portion 23s.
 ギヤハウジング23における接続フランジ部23sの出力軸100と平行に延びた1つの直線部23s1は、出力軸100から一番遠い位置にある。この1つの直線部23s1の内側にセンサ基板80が配置されている。そして、図6に示すように、センサ基板80の外周縁の一辺81bが、前述した1つの直線部23s1と平行となるような向きで、センサ基板80がギヤハウジング23の基板固定フランジ29に固定されている。また、ターミナル92は、軸方向から見て、センサ基板80の外周縁の一辺81bと、前述した接続フランジ部23sの1つの直線部23s1との間に配置されている。 The one straight line portion 23 s 1 extending in parallel with the output shaft 100 of the connection flange portion 23 s in the gear housing 23 is at a position farthest from the output shaft 100. The sensor substrate 80 is disposed inside the one linear portion 23s1. Then, as shown in FIG. 6, the sensor substrate 80 is fixed to the substrate fixing flange 29 of the gear housing 23 so that one side 81 b of the outer peripheral edge of the sensor substrate 80 is parallel to the one linear portion 23 s 1 described above. Has been. Further, the terminal 92 is disposed between one side 81b of the outer peripheral edge of the sensor substrate 80 and one linear portion 23s1 of the connection flange portion 23s as viewed from the axial direction.
 (作用および効果)
 以下、実施形態のブラシレスモータ2の作用および効果について説明する。
 本実施形態のブラシレスモータによれば、永久磁石7の漏れ磁束を利用してロータ5の回転位置を検出するようにしているので、センサマグネットを廃止することができる。従って、回転軸3へのセンサマグネットの取り付けの面倒やセンサマグネットと永久磁石7の回転方向の位置合わせの面倒を無くすことができる。その結果、ブラシレスモータ2の組付性の向上が図れると共に、駆動時のロータ5の位置検出精度の向上が図れる。
(Function and effect)
Hereinafter, the operation and effect of the brushless motor 2 of the embodiment will be described.
According to the brushless motor of this embodiment, the rotational position of the rotor 5 is detected using the leakage magnetic flux of the permanent magnet 7, so that the sensor magnet can be eliminated. Therefore, the trouble of attaching the sensor magnet to the rotating shaft 3 and the trouble of positioning the sensor magnet and the permanent magnet 7 in the rotational direction can be eliminated. As a result, the assembly property of the brushless motor 2 can be improved, and the position detection accuracy of the rotor 5 during driving can be improved.
 しかも、各永久磁石7の外径面71の曲率中心TR2と曲率半径R2を上記のように設定することにより(図5B参照)、永久磁石7の断面積を大きく確保することができる。このため、センサ基板80によって、永久磁石の回転による磁気変化を検出し易くすることができ、ロータ5の回転位置をより高精度に検出できる。
 これに加え、永久磁石7の径方向の最大厚さAが、ロータコア6の径方向の厚さB以上に設定されているので(図5C参照)、ロータコア6の占有スペースを従来と同じにしながら、永久磁石7の径方向の厚さを十分確保することができる。このため、ブラシレスモータ2全体の小型化を図りつつ、ロータ5の回転位置を高精度に検出できる。
Moreover, by setting the curvature center TR2 and the curvature radius R2 of the outer diameter surface 71 of each permanent magnet 7 as described above (see FIG. 5B), a large cross-sectional area of the permanent magnet 7 can be secured. Therefore, the sensor substrate 80 can easily detect a magnetic change due to the rotation of the permanent magnet, and the rotational position of the rotor 5 can be detected with higher accuracy.
In addition to this, since the maximum radial thickness A of the permanent magnet 7 is set to be equal to or greater than the radial thickness B of the rotor core 6 (see FIG. 5C), the space occupied by the rotor core 6 is made the same as the conventional one. A sufficient thickness in the radial direction of the permanent magnet 7 can be ensured. For this reason, the rotational position of the rotor 5 can be detected with high accuracy while reducing the overall size of the brushless motor 2.
 また、スペーサ83を利用して、ホールIC82を永久磁石7の軸方向端面に近い位置まで挿入しているので、ロータ5側の設計変更をせずに適用することができる。さらに、ホールIC82が永久磁石7の外径の内側に配置されているので、ステータ10のコイル41の影響を受けづらくすることができ、通電時にステータ10側からの磁界の影響を抑制することができる。 Further, since the Hall IC 82 is inserted to a position close to the end surface in the axial direction of the permanent magnet 7 using the spacer 83, it can be applied without changing the design of the rotor 5 side. Furthermore, since the Hall IC 82 is disposed inside the outer diameter of the permanent magnet 7, it can be hardly affected by the coil 41 of the stator 10, and the influence of the magnetic field from the stator 10 side when energized can be suppressed. it can.
 また、六角形筒状に形成されたステータコア50の1つの平坦部52に対し、センサ基板80の外周縁の一辺81bが平行に配されているので、センサ基板80を無理なスペースで収容する必要がなくなり、ブラシレスモータ2内の各種部品(センサ基板80やターミナル92等)の配置スペースの有効活用が図れる。 Further, since one side 81b of the outer peripheral edge of the sensor substrate 80 is arranged in parallel to one flat portion 52 of the stator core 50 formed in a hexagonal cylindrical shape, it is necessary to accommodate the sensor substrate 80 in an unreasonable space. Thus, it is possible to effectively utilize the arrangement space for various components (such as the sensor board 80 and the terminal 92) in the brushless motor 2.
 さらに、ギヤハウジング23に設けた軸受ハウジング28の基板固定フランジ29にセンサ基板80を固定するので、センサ基板80を確実かつ容易にしかも安定してギヤケーシング(ケーシング部材)23に取り付け固定することができる。 Further, since the sensor substrate 80 is fixed to the substrate fixing flange 29 of the bearing housing 28 provided in the gear housing 23, the sensor substrate 80 can be securely and easily and stably attached and fixed to the gear casing (casing member) 23. it can.
 また、センサ基板80の径方向の外側に、ステータ10のコイル41を接続するターミナル92を配置しているので、センサ基板80に邪魔されずに、コイル41をターミナル92に接続することができ、コイル41の結線が楽に行える。 In addition, since the terminal 92 for connecting the coil 41 of the stator 10 is arranged outside the sensor substrate 80 in the radial direction, the coil 41 can be connected to the terminal 92 without being obstructed by the sensor substrate 80. The coil 41 can be easily connected.
 なお、本発明は上述の実施形態に限られるものではなく、本発明の趣旨を逸脱しない範囲において、上述の実施形態に種々の変更を加えたものを含む。
 例えば、上記実施形態におけるステータコア50は、コアプレートを積層して形成した積層コアであってもよいし圧粉コアであってもよい。
The present invention is not limited to the above-described embodiment, and includes various modifications made to the above-described embodiment without departing from the spirit of the present invention.
For example, the stator core 50 in the above embodiment may be a laminated core formed by laminating core plates or a dust core.
 また、上記実施形態においては、ティース部55やコイルが6個形成された6スロットのブラシレスモータについて説明した。しかしながら、これに限られるものではなく、例えば12スロットのブラシレスモータであってもよい。その場合、スロットの個数に応じた角数の多角形状にステータを構成すればよい。また、ロータ5の極数も、図示例のような4極以外であってもよい。 In the above embodiment, a 6-slot brushless motor in which six teeth 55 and six coils are formed has been described. However, the present invention is not limited to this. For example, a 12-slot brushless motor may be used. In that case, the stator may be configured in a polygonal shape with the number of corners corresponding to the number of slots. Further, the number of poles of the rotor 5 may be other than four poles as in the illustrated example.
(変形例)
 図8は、変形例における減速機付モータの構成を示す一部分解斜視図、図9は、変形例における減速機付モータの構成を示す断面図である。なお、図8、図9において、前述の実施形態と同一態様には、同一符号を付して説明を省略する。
 図8、図9に示すように、変形例における減速機付モータ101のブラシレスモータ102では、ステータコア50の軸方向長さLsよりも、ロータ105(ロータコア6、永久磁石7、マグネットカバー8)の軸方向長さLrを大きく設定している。つまり、ロータコア6や永久磁石7の減速機側の軸方向端部に所定長さの延長部Loをオーバーハング状に設けている。
(Modification)
FIG. 8 is a partially exploded perspective view showing a configuration of a motor with a reduction gear in a modified example, and FIG. 9 is a cross-sectional view showing a configuration of the motor with a reduction gear in the modified example. 8 and 9, the same reference numerals are given to the same aspects as those in the above-described embodiment, and the description thereof is omitted.
As shown in FIGS. 8 and 9, in the brushless motor 102 of the motor 101 with speed reducer in the modification, the rotor 105 (rotor core 6, permanent magnet 7, magnet cover 8) is longer than the axial length Ls of the stator core 50. The axial length Lr is set large. That is, an extension Lo of a predetermined length is provided in an overhang shape at the axial end of the rotor core 6 or the permanent magnet 7 on the speed reducer side.
 このように、永久磁石7の軸方向端部に延長部Loを設けることにより、延長部Loを設けない場合よりも永久磁石7の磁気特性を強めることができる。従って、永久磁石7の径方向の最大厚さが制限される場合であっても、モータ性能の維持に必要な大きさの磁場を確保することができる。 Thus, by providing the extension Lo at the axial end of the permanent magnet 7, the magnetic properties of the permanent magnet 7 can be enhanced compared to the case where the extension Lo is not provided. Therefore, even when the maximum thickness in the radial direction of the permanent magnet 7 is limited, a magnetic field having a magnitude necessary for maintaining the motor performance can be ensured.
 このように、永久磁石7の軸方向端部に延長部Loを設けることによって、ホールIC182を搭載したセンサ基板180を、ステータ10のコイル41から離れる位置に配置しながら、永久磁石7の軸方向端面をセンサ基板180に近づけることができる。従って、センサ基板として、ホールIC182を平面的に面実装したセンサ基板180を用いることができる。つまり、永久磁石7の延長部Loを利用することで、ロータ5の回転位置検出用のホールIC182と永久磁石7との間の距離の接近が可能になる。従って、ホールIC182の面実装が可能になる。 As described above, by providing the extension Lo at the axial end of the permanent magnet 7, the sensor substrate 180 on which the Hall IC 182 is mounted is disposed at a position away from the coil 41 of the stator 10, while the axial direction of the permanent magnet 7. The end surface can be brought close to the sensor substrate 180. Therefore, the sensor substrate 180 on which the Hall IC 182 is planarly mounted can be used as the sensor substrate. That is, by using the extended portion Lo of the permanent magnet 7, the distance between the Hall IC 182 for detecting the rotational position of the rotor 5 and the permanent magnet 7 can be approached. Therefore, the surface mounting of the Hall IC 182 becomes possible.
 この場合も、ホールICは、永久磁石7の外径の内側に配置する。そすることで、ステータ10のコイル41の影響をより受けづらくすることができ、通電時にステータ10側からの磁界の影響を抑制することができる。 In this case as well, the Hall IC is arranged inside the outer diameter of the permanent magnet 7. As a result, the influence of the coil 41 of the stator 10 can be made more difficult, and the influence of the magnetic field from the stator 10 side when energized can be suppressed.
 また、ロータ5に延長部Loを設けることにより、ロータ5の径の拡大に制約がある場合にも、モータ出力の維持あるいは増大に寄与することができる。 Further, by providing the extension Lo to the rotor 5, it is possible to contribute to the maintenance or increase of the motor output even when the diameter of the rotor 5 is restricted.
 なお、回転センサとしは、ホールIC以外の磁気センサを使用することもできる。
 また、上記実施形態では、センサ基板80、180ロータ5の減速機側に配置した場合を説明したが、反対側に配置することも可能である。
Note that a magnetic sensor other than the Hall IC can be used as the rotation sensor.
In the above-described embodiment, the case where the sensor substrates 80 and 180 are disposed on the speed reducer side of the rotor 5 has been described. However, the sensor substrates 80 and 180 may be disposed on the opposite side.
 上記のブラシレスモータによれば、永久磁石の漏れ磁束を利用してロータの回転位置を検出するようにしているので、センサマグネットを廃止することができる。従って、モータの組付性の向上が図れると共に、駆動時のロータ位置検出精度の向上が図れる。 According to the above brushless motor, the rotational position of the rotor is detected using the leakage magnetic flux of the permanent magnet, so that the sensor magnet can be eliminated. Therefore, the assembly of the motor can be improved and the accuracy of detecting the rotor position during driving can be improved.
 2…ブラシレスモータ 3…回転軸 5…ロータ 7…永久磁石 8…マグネットカバー 10…ステータ 23…ギヤケーシング(ケーシング部材) 28…軸受ハウジング 29…フランジ部 33…軸受 41…コイル 42…巻線 50…ステータコア 51…リングヨーク部 52 平坦部 55…ティース部 71…外径面 72…内径面 80…センサ基板 81a…回転軸を受け入れる凹部 81b…センサ基板の外周縁の一辺 82…ホールIC(回転センサ) 83…スペーサ 92…ターミナル Lo…延長部 L1…回転軸の軸中心 TP…永久磁石の外径面上の周方向幅の中心点 TL…線分 TR2…外径面の曲率中心 R2…曲率半径 2 ... brushless motor 3 ... rotating shaft 5 ... rotor 7 ... permanent magnet 8 ... magnet cover 10 ... stator 23 ... gear casing (casing member) 28 ... bearing housing 29 ... flange part 33 ... bearing 41 ... coil 42 ... winding 50 ... Stator core 51 ... Ring yoke part 52 Flat part 55 ... Teeth part 71 ... Outer diameter surface 72 ... Inner diameter surface 80 ... Sensor substrate 81a ... Recess receiving the rotation axis 81b ... One side of outer periphery of sensor substrate 82 ... Hall IC (rotation sensor) 83 ... Spacer 92 ... Terminal Lo ... Extension part L1 ... Center of rotation axis TP ... Center point of circumferential width on outer diameter surface of permanent magnet TL ... Line segment TR2 ... Center of curvature of outer diameter surface R2 ... Radius of curvature

Claims (9)

  1.  回転軸と、
     前記回転軸に対して同心に配置された筒状のステータと、
     外周部に周方向に沿って逆極性の磁極が交互に並ぶ永久磁石を有し、前記回転軸と一体化されて前記ステータの内周側に空隙を介して配置されたロータと、を備えたインナーロータ型のブラシレスモータにおいて、
     前記回転軸の周囲の前記ロータの軸方向に隣接する位置に、センサ基板を設け、
     前記センサ基板は、該センサ基板の外周縁の一部に前記回転軸を受け入れる凹部を有すると共に、基板面を前記回転軸の軸線方向に交差させた姿勢で配置され、
     前記センサ基板上に、前記永久磁石の軸方向端面に対向し前記永久磁石の回転による磁気変化に応じて前記ロータの回転位置を検出する回転センサを実装した、
     ブラシレスモータ。
    A rotation axis;
    A cylindrical stator disposed concentrically with respect to the rotating shaft;
    A rotor having permanent magnets alternately arranged with magnetic poles of opposite polarity along the circumferential direction on the outer peripheral portion, and a rotor integrated with the rotary shaft and disposed on the inner peripheral side of the stator via a gap. In the inner rotor type brushless motor,
    A sensor board is provided at a position adjacent to the axial direction of the rotor around the rotation axis,
    The sensor substrate has a recess for receiving the rotation shaft in a part of the outer peripheral edge of the sensor substrate, and is arranged in a posture in which the substrate surface intersects the axial direction of the rotation shaft,
    Mounted on the sensor substrate is a rotation sensor that faces the axial end surface of the permanent magnet and detects the rotational position of the rotor according to a magnetic change caused by the rotation of the permanent magnet.
    Brushless motor.
  2.  前記センサ基板上に、前記回転センサを前記永久磁石の軸方向端面に近接させるスペーサを介して前記回転センサが実装されており、前記回転センサが、前記永久磁石の外径の内側で永久磁石の軸方向端面に対向する位置に配置されている、
     請求項1に記載のブラシレスモータ。
    The rotation sensor is mounted on the sensor substrate via a spacer that brings the rotation sensor close to the axial end surface of the permanent magnet, and the rotation sensor is located inside the outer diameter of the permanent magnet. It is arranged at a position facing the axial end face,
    The brushless motor according to claim 1.
  3.  前記永久磁石の軸方向端部に、前記永久磁石の軸方向端面を前記回転センサに近接させる延長部が、前記ステータの軸方向端面よりも突出するようにオーバーハングして設けられており、前記回転センサが、前記永久磁石の外径の内側で永久磁石の軸方向端面に対向する位置に配置されている、
     請求項1に記載のブラシレスモータ。
    An extension part for bringing the axial end face of the permanent magnet close to the rotation sensor is provided on the axial end part of the permanent magnet so as to protrude from the axial end face of the stator, A rotation sensor is disposed at a position facing the axial end surface of the permanent magnet inside the outer diameter of the permanent magnet.
    The brushless motor according to claim 1.
  4.  前記ステータと前記ロータとを収納するモータケーシングおよびモータケーシングに接続されるギヤケーシングの何れか一方に、前記回転軸を回転自在に支持する軸受を収容する軸受ハウジングが設けられ、該軸受ハウジングの端面に形成されたフランジ部に前記センサ基板が固定されている、
     請求項1~請求項3の何れか1項に記載のブラシレスモータ。
    A bearing housing that houses a bearing that rotatably supports the rotating shaft is provided in one of a motor casing that houses the stator and the rotor and a gear casing that is connected to the motor casing, and an end surface of the bearing housing The sensor substrate is fixed to the flange portion formed in
    The brushless motor according to any one of claims 1 to 3.
  5.  前記永久磁石の軸方向端部に、当該永久磁石の磁気特性を強めるための所定長さの延長部が、前記ステータの軸方向端面よりも突出するようにオーバーハングして設けられている、
     請求項1~請求項4の何れか1項に記載のブラシレスモータ。
    An extension portion of a predetermined length for strengthening the magnetic characteristics of the permanent magnet is provided on the axial end portion of the permanent magnet so as to overhang so as to protrude from the axial end surface of the stator.
    The brushless motor according to any one of claims 1 to 4.
  6.  前記センサ基板の径方向の外側に、前記ステータのコイルを構成する巻線の端部が接続されるターミナルが配置されている、
     請求項1~請求項5の何れか1項に記載のブラシレスモータ。
    A terminal to which an end of a winding that constitutes the coil of the stator is connected is disposed outside the sensor substrate in the radial direction.
    The brushless motor according to any one of claims 1 to 5.
  7.  前記永久磁石は、外径面が、該外径面上の周方向幅の中心点と前記回転軸の軸中心とを結ぶ線分上に曲率中心を有し、且つ、前記外径面上の周方向幅の中心点と前記回転軸の軸中心とを結ぶ線分の距離よりも小さい曲率半径の円筒面として形成されている、
     請求項1~請求項6の何れか1項に記載のブラシレスモータ。
    In the permanent magnet, the outer diameter surface has a center of curvature on a line segment connecting the center point of the circumferential width on the outer diameter surface and the axis center of the rotary shaft, and the permanent magnet is on the outer diameter surface. It is formed as a cylindrical surface with a radius of curvature smaller than the distance of the line segment connecting the center point of the circumferential width and the axis center of the rotating shaft,
    The brushless motor according to any one of claims 1 to 6.
  8.  前記回転軸の外周に円筒状のロータコアが嵌合固定され、前記ロータコアの外周に前記永久磁石が配置されており、前記永久磁石の径方向の最大厚さが、前記ロータコアの径方向の厚さ以上とされている、
     請求項7に記載のブラシレスモータ。
    A cylindrical rotor core is fitted and fixed to the outer periphery of the rotating shaft, the permanent magnet is disposed on the outer periphery of the rotor core, and the maximum radial thickness of the permanent magnet is the thickness of the rotor core in the radial direction. It is said that
    The brushless motor according to claim 7.
  9.  前記ステータが、
     正多角形の角筒状に形成されたリングヨーク部と前記正多角形の各辺に相当する前記リングヨーク部の各平坦部の内周の周方向幅の中央位置に径方向内方へ向けて突設されたティース部とを有するステータコアと、
     前記各ティース部に巻回されて外部電源からの給電により前記ロータを回転させるための回転磁界を発生するコイルと、を備えており、
     前記正多角形の角筒状に形成されたリングヨーク部の1つの平坦部に対し、前記センサ基板の外周縁の一辺が平行に配されている、
     請求項1~請求項8の何れか1項に記載のブラシレスモータ。
    The stator is
    Directly inward in the radial direction at the center position of the circumferential width of the inner circumference of the ring yoke portion formed in the shape of a regular polygonal square tube and the flat portion of the ring yoke portion corresponding to each side of the regular polygon A stator core having a teeth portion projecting therefrom,
    A coil that is wound around each tooth portion and generates a rotating magnetic field for rotating the rotor by power feeding from an external power source,
    One side of the outer peripheral edge of the sensor substrate is arranged in parallel to one flat portion of the ring yoke portion formed in the regular polygonal rectangular tube shape,
    The brushless motor according to any one of claims 1 to 8.
PCT/JP2016/069305 2015-06-29 2016-06-29 Brushless motor WO2017002869A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017526404A JP6511137B2 (en) 2015-06-29 2016-06-29 Brushless motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-130039 2015-06-29
JP2015130039 2015-06-29

Publications (1)

Publication Number Publication Date
WO2017002869A1 true WO2017002869A1 (en) 2017-01-05

Family

ID=57608406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069305 WO2017002869A1 (en) 2015-06-29 2016-06-29 Brushless motor

Country Status (2)

Country Link
JP (1) JP6511137B2 (en)
WO (1) WO2017002869A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108429408A (en) * 2017-02-15 2018-08-21 住友重机械工业株式会社 Motor
WO2020164188A1 (en) * 2019-02-14 2020-08-20 深圳亿昇动力科技有限公司 Brushless dc motor and brushless dc motor assembly
JP2020137357A (en) * 2019-02-25 2020-08-31 日本電産サーボ株式会社 motor
JP2021035187A (en) * 2019-08-26 2021-03-01 株式会社ミツバ Motor and manufacturing method of the same
JP2022055000A (en) * 2020-09-28 2022-04-07 ヒロセ電機株式会社 Magnetism detection device and rotation detection device
US20230006516A1 (en) * 2021-06-30 2023-01-05 Makita Corporation Electric work machine
WO2023054609A1 (en) * 2021-09-30 2023-04-06 パナソニックIpマネジメント株式会社 Rotary machine, method for producing rotary machine, and magnetic sensor
WO2023053603A1 (en) * 2021-09-30 2023-04-06 日本電産株式会社 Rotary electric machine
WO2024075390A1 (en) * 2022-10-07 2024-04-11 株式会社デンソー Rotation angle calculation device, rotation angle calculation system, rotation angle calculation method, and rotation angle calculation program
US12034356B2 (en) 2018-12-25 2024-07-09 Nidec Corporation Motor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7284578B2 (en) * 2018-12-27 2023-05-31 ニデックプレシジョン株式会社 Servomotor
CN113659774B (en) * 2021-08-06 2022-09-02 浙江乐歌智能驱动科技有限公司 Mounting structure of brushless direct current motor hall sensor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5937835U (en) * 1982-08-30 1984-03-09 三菱電機株式会社 Rotating machine field mechanism
JPH0287959A (en) * 1988-09-22 1990-03-28 Mitsubishi Electric Corp Brushless motor
JP2001045682A (en) * 1999-07-29 2001-02-16 Fujitsu General Ltd Permanent magnet motor
JP2001186722A (en) * 1999-12-22 2001-07-06 Toshiba Tec Corp Brushless motor
JP2007060844A (en) * 2005-08-25 2007-03-08 Sanyo Denki Co Ltd Rotating electric machine with magnetic sensor
JP2008236839A (en) * 2007-03-16 2008-10-02 Keihin Corp Electric motor and rotary actuator
JP2008295179A (en) * 2007-05-24 2008-12-04 Jtekt Corp Motor and electric power steering system
JP2013207959A (en) * 2012-03-29 2013-10-07 Mitsubishi Electric Corp Dc brushless motor
JP5646119B1 (en) * 2014-01-06 2014-12-24 三菱電機株式会社 Permanent magnet type rotating electric machine

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5937835U (en) * 1982-08-30 1984-03-09 三菱電機株式会社 Rotating machine field mechanism
JPH0287959A (en) * 1988-09-22 1990-03-28 Mitsubishi Electric Corp Brushless motor
JP2001045682A (en) * 1999-07-29 2001-02-16 Fujitsu General Ltd Permanent magnet motor
JP2001186722A (en) * 1999-12-22 2001-07-06 Toshiba Tec Corp Brushless motor
JP2007060844A (en) * 2005-08-25 2007-03-08 Sanyo Denki Co Ltd Rotating electric machine with magnetic sensor
JP2008236839A (en) * 2007-03-16 2008-10-02 Keihin Corp Electric motor and rotary actuator
JP2008295179A (en) * 2007-05-24 2008-12-04 Jtekt Corp Motor and electric power steering system
JP2013207959A (en) * 2012-03-29 2013-10-07 Mitsubishi Electric Corp Dc brushless motor
JP5646119B1 (en) * 2014-01-06 2014-12-24 三菱電機株式会社 Permanent magnet type rotating electric machine

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7153998B2 (en) 2017-02-15 2022-10-17 住友重機械工業株式会社 motor
JP2018133899A (en) * 2017-02-15 2018-08-23 住友重機械工業株式会社 motor
CN108429408A (en) * 2017-02-15 2018-08-21 住友重机械工业株式会社 Motor
US12034356B2 (en) 2018-12-25 2024-07-09 Nidec Corporation Motor
WO2020164188A1 (en) * 2019-02-14 2020-08-20 深圳亿昇动力科技有限公司 Brushless dc motor and brushless dc motor assembly
JP2020137357A (en) * 2019-02-25 2020-08-31 日本電産サーボ株式会社 motor
US11855497B2 (en) 2019-08-26 2023-12-26 Mitsuba Corporation Motor, and method for manufacturing motor
JP7227876B2 (en) 2019-08-26 2023-02-22 株式会社ミツバ Motor and motor manufacturing method
WO2021039065A1 (en) 2019-08-26 2021-03-04 株式会社ミツバ Motor, and method for manufacturing motor
JP7440675B2 (en) 2019-08-26 2024-02-28 株式会社ミツバ Motor and motor manufacturing method
EP4391315A2 (en) 2019-08-26 2024-06-26 Mitsuba Corporation Motor, and method for manufacturing motor
JP2021035187A (en) * 2019-08-26 2021-03-01 株式会社ミツバ Motor and manufacturing method of the same
JP2022055000A (en) * 2020-09-28 2022-04-07 ヒロセ電機株式会社 Magnetism detection device and rotation detection device
JP7421459B2 (en) 2020-09-28 2024-01-24 ヒロセ電機株式会社 Magnetic detection device and rotation detection device
US20230006516A1 (en) * 2021-06-30 2023-01-05 Makita Corporation Electric work machine
US12095312B2 (en) * 2021-06-30 2024-09-17 Makita Corporation Electric work machine
WO2023054609A1 (en) * 2021-09-30 2023-04-06 パナソニックIpマネジメント株式会社 Rotary machine, method for producing rotary machine, and magnetic sensor
WO2023053603A1 (en) * 2021-09-30 2023-04-06 日本電産株式会社 Rotary electric machine
WO2024075390A1 (en) * 2022-10-07 2024-04-11 株式会社デンソー Rotation angle calculation device, rotation angle calculation system, rotation angle calculation method, and rotation angle calculation program

Also Published As

Publication number Publication date
JP6511137B2 (en) 2019-05-15
JPWO2017002869A1 (en) 2018-01-25

Similar Documents

Publication Publication Date Title
JP6511137B2 (en) Brushless motor
WO2017002873A1 (en) Brushless motor
JP3665737B2 (en) nX Reluctance Resolver
JP5850259B2 (en) Rotating electric machine
JP4586717B2 (en) motor
KR101555804B1 (en) Rotary electric machine
JP6140537B2 (en) motor
CN111509885B (en) Motor and air supply device
JP2007267565A (en) Coreless motor
JP2007252096A (en) Brushless motor
JP2012005232A (en) Polar anisotropic ring magnet and brushless motor having the same
US9391488B1 (en) Rotary body driving apparatus
JP7036040B2 (en) motor
JP4801713B2 (en) Brushless DC motor
JP2012244855A (en) Starter generator
JP2014236531A (en) Motor
JP2008061316A (en) Brushless motor and motor sensor
JP6052994B2 (en) Rotor and brushless motor
JP5290608B2 (en) Axial gap motor
JP2016111889A (en) Stepping motor
JPH10243624A (en) Motor
JP7132541B2 (en) Electric motor
JP7389609B2 (en) motor device
JP6208985B2 (en) motor
JP2023040667A (en) motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817977

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017526404

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16817977

Country of ref document: EP

Kind code of ref document: A1