WO2017002624A1 - Power generation system - Google Patents

Power generation system Download PDF

Info

Publication number
WO2017002624A1
WO2017002624A1 PCT/JP2016/067819 JP2016067819W WO2017002624A1 WO 2017002624 A1 WO2017002624 A1 WO 2017002624A1 JP 2016067819 W JP2016067819 W JP 2016067819W WO 2017002624 A1 WO2017002624 A1 WO 2017002624A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling water
passage
evaporator
working fluid
engine
Prior art date
Application number
PCT/JP2016/067819
Other languages
French (fr)
Japanese (ja)
Inventor
晋 福永
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Publication of WO2017002624A1 publication Critical patent/WO2017002624A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • F02G5/04Profiting from waste heat of exhaust gases in combination with other waste heat from combustion engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present disclosure relates to a power generation system, and more particularly, to a power generation system having a Rankine cycle in which an evaporator evaporates a working fluid with engine coolant.
  • the Rankine cycle is an evaporator that evaporates the working fluid with a heat source, an expander that expands the working fluid, a condenser that condenses the working fluid with a cooling source, and circulates the working fluid in the circulation channel. Arranged in order of circulatory organs.
  • Patent Document 1 discloses a Rankine cycle in which an evaporator heats a working fluid with engine coolant.
  • the temperature of the cooling water that has passed through the engine is not always the same temperature, but varies depending on the operating conditions of the vehicle. For this reason, when the temperature of the cooling water is low (for example, when the engine is warmed up), the evaporator cannot properly evaporate the working fluid with the cooling water, and the Rankine cycle may not operate.
  • the present disclosure has been made in view of these points, and an object thereof is to appropriately evaporate a working fluid with engine cooling water in a Rankine cycle.
  • an exhaust gas is discharged and an evaporator through which circulating cooling water passes, and an evaporator that evaporates a working fluid having a lower melting point than the cooling water by the cooling water in the circulation flow path.
  • An expander that expands the working fluid, a condenser that condenses the working fluid, a Rankine cycle that is arranged in order of the circulator that circulates the working fluid in the circulation flow path, and the cooling water that has passed through the engine A first cooling water passage that is introduced into the evaporator, a second cooling water passage that is branched from the first cooling water passage and is connected to the first cooling water passage, an exhaust passage for the exhaust, and the second Provided is a power generation system comprising: a heat exchanger provided at a location where the cooling water passage intersects, and recovering the heat of the exhaust gas into the cooling water of the second cooling water passage.
  • the power generation system is provided at a branch point of the first cooling water passage with the second cooling water passage, and adjusts a flow rate of the cooling water flowing from the first cooling water passage to the second cooling water passage.
  • a first flow rate adjusting member may be further provided.
  • the power generation system further includes a control unit that controls the operation of the first flow rate adjusting member, and the control unit controls the first flow rate adjusting member according to an evaporation state of the working fluid in the evaporator. It is good also as operating and adjusting the flow volume of the cooling water which flows into the said 2nd cooling water channel
  • the power generation system adjusts a bypass passage that bypasses the evaporator in the first cooling water passage, a flow rate of cooling water introduced into the evaporator, and a flow rate of cooling water flowing into the bypass passage. And a flow rate adjusting member.
  • the power generation system further includes a control unit that controls the operation of the second flow rate adjustment member, and the control unit operates the second flow rate adjustment member when the engine is warmed up, so that the evaporator
  • the cooling water may be caused to flow through the bypass passage without introducing the cooling water into the bypass passage.
  • the working fluid can be appropriately evaporated by the engine coolant in the Rankine cycle.
  • FIG. 1 is a schematic diagram illustrating an example of a configuration of a power generation system S according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram illustrating a configuration of a power generation system 900 according to a comparative example.
  • FIG. Drawing 1 is a mimetic diagram showing an example of composition of power generation system S concerning one embodiment.
  • the power generation system S is mounted on a vehicle having an engine that is an internal combustion engine.
  • the power generation system S is mounted on a large vehicle such as a truck or a bus.
  • the power generation system S regenerates power by using the waste heat generated in the vehicle by the Rankine cycle.
  • the power generation system S includes an engine 10, an exhaust passage 20, a cooling water passage 30, a Rankine cycle 40, a sensor group 70, and an ECU 80.
  • the engine 10 is an engine including a plurality of cylinders, and is a diesel engine in the present embodiment.
  • the engine 10 generates power by burning and expanding a mixture of fuel and intake air (air) in a cylinder.
  • the intake air is drawn into the cylinders of the engine 10 through an intake passage (not shown). Further, the engine 10 exhausts exhaust gas (exhaust gas) after combustion.
  • the exhaust passage 20 is a passage for exhausting the exhaust discharged from the engine 10 to the outside of the vehicle.
  • the exhaust flow path is indicated by a dashed arrow.
  • a supercharger 22 In the exhaust passage 20, a supercharger 22, an aftertreatment device 23, and a heat exchanger 24 are provided.
  • the supercharger 22 is a device that supercharges intake air sucked into the engine 10 by using exhaust pressure as a power source.
  • the supercharger 22 is, for example, a turbocharger, and includes a turbine provided in the exhaust passage 20 and a compressor provided in the intake passage.
  • the post-processing device 23 is a device that purifies exhaust gas.
  • the post-processing device 23 collects PM in exhaust gas or selectively reduces and purifies NO x in exhaust gas using ammonia (NH 3 ) hydrolyzed from urea water as a reducing agent. To do.
  • NH 3 ammonia
  • the heat exchanger 24 is provided at a location where the exhaust passage 20 and the cooling water passage 30 (specifically, a first bypass passage 31a described later) intersect.
  • the heat exchanger 24 is a device that recovers the heat of the exhaust gas in the exhaust passage 20 into the cooling water in the cooling water passage 30. Thereby, the cooling water flowing through the cooling water passage 30 is warmed.
  • the cooling water passage 30 is a passage for circulating cooling water for cooling the engine 10 in order to prevent the engine 10 from being overheated.
  • the flow path of the cooling water is indicated by solid arrows.
  • the cooling water passage 30 is provided so that the cooling water passes through the engine 10, and the cooling water takes the heat of the engine 10 to lower the temperature of the engine 10.
  • the cooling water warmed after passing through the engine 10 is introduced into the evaporator 43 of the Rankine cycle 40 as a heat source.
  • the cooling water passage 30 includes a first bypass passage 31a, a second bypass passage 31b, a third bypass passage 31c, a radiator 32, a pump 33, a first adjustment valve 34, a second adjustment valve 35, A third adjustment valve 36 is provided.
  • the first bypass passage 31 a is a passage that branches from the downstream side of the engine 10 in the cooling water passage 30 and is connected to the cooling water passage 30 on the upstream side of the evaporator 43.
  • the first bypass passage 31a is configured to pass through the heat exchanger 24 on the way. Thereby, the cooling water flowing through the first bypass passage 31a recovers the heat of the exhaust gas by the heat exchanger 24 and is warmed.
  • the cooling water sent from the first bypass passage 31a to the cooling water passage 30 joins with the cooling water that does not flow through the first bypass passage 31a, whereby the temperature of the cooling water sent to the evaporator 43 rises.
  • the cooling water passage 30 corresponds to the first cooling water passage
  • the first bypass passage 31a corresponds to the second cooling water passage.
  • the second bypass passage 31b is a passage that branches from the upstream of the evaporator 43 of the Rankine cycle 40 in the cooling water passage 30 and bypasses the evaporator 43. For example, when the engine 10 is warmed up, the cooling water is bypassed from the evaporator 43 by the second bypass passage 31b.
  • the third bypass passage 31 c is a passage that branches from the upstream side of the radiator 32 in the cooling water passage 30 and bypasses the radiator 32. For example, when the engine 10 is warmed up, the engine 10 is warmed by the cooling water flowing through the third bypass passage 31c.
  • the radiator 32 dissipates the cooling water whose temperature has increased by passing through the engine 10. Specifically, the radiator 32 lowers the temperature of the cooling water by releasing the heat of the sent cooling water into the atmosphere.
  • a cooling fan may be provided behind the radiator 32 in order to promote heat dissipation of the cooling water.
  • the pump 33 circulates the cooling water in the cooling water passage 30.
  • the pump 33 is provided on the downstream side of the engine 10 and pumps the cooling water.
  • the pump 33 operates by receiving a driving force from the engine 10, for example.
  • the first adjusting valve 34 is a flow rate adjusting member that adjusts the flow rate of the coolant that has passed through the engine 10 to the first bypass passage 31a.
  • the first adjustment valve 34 is provided at a branch point between the cooling water passage 30 and the first bypass passage 31a. Thereby, the flow rate of the cooling water for recovering the heat of the exhaust in the heat exchanger 24 can be adjusted.
  • the second adjustment valve 35 adjusts the flow rate of the cooling water to be sent to the evaporator 43 and the flow rate of the cooling water to be diverted to the second bypass passage 31b.
  • the second adjustment valve 35 is provided at the branch point of the cooling water passage 30 to the second bypass passage 31b.
  • the first adjustment valve 34 corresponds to a first flow rate adjustment member
  • the second adjustment valve 35 corresponds to a second flow rate adjustment member.
  • the third adjustment valve 36 adjusts the flow rate of the cooling water to be sent to the radiator 32 and the flow rate of the cooling water to be diverted to the third bypass passage 31c.
  • the third adjustment valve 36 is provided at the branch point of the cooling water passage 30 to the third bypass passage 31c.
  • Rankine cycle 40 is a power generation cycle that generates electric power using cooling water that has passed through engine 10.
  • the Rankine cycle 40 includes a circulation channel 41, a pump 42, an evaporator 43, an expander 44, and a condenser 45.
  • a pump 42, an evaporator 43, an expander 44, and a condenser 45 are arranged in this order in the circulation flow path 41 to form a closed circuit.
  • the circulation channel 41 is a channel through which the working fluid circulates, and is indicated by a one-dot chain line in FIG.
  • the Rankine cycle 40 of the present embodiment is an organic Rankine cycle in which chlorofluorocarbon, which is a medium having a low boiling point, is circulated as a working fluid.
  • the melting point of the working fluid is lower than the melting point of the cooling water.
  • the working fluid for example, known HFC-245fa and HFC-134a are used.
  • the pump 42 is a circulator that circulates the working fluid in the circulation channel 41.
  • the pump 42 sucks the liquid-phase working fluid and pumps it to the evaporator 43.
  • a centrifugal pump, a gear pump, or the like is used as the pump 42.
  • the evaporator 43 is provided on the downstream side of the pump 42 in the circulation flow path 41 and evaporates the working fluid with cooling water. Specifically, the evaporator 43 heats the working fluid by exchanging heat between the working fluid sent from the pump 42 and the cooling water flowing through the cooling water passage 30. In the present embodiment, the cooling water whose exhaust heat has been recovered by the heat exchanger 24 is introduced into the evaporator 43, so that the working fluid can be heated by the cooling water whose temperature is higher than when passing through the engine 10.
  • the expander 44 is provided on the downstream side of the evaporator 43 in the circulation channel 41, and expands the gas phase working fluid heated by the evaporator 43.
  • the expander 44 generates a rotational driving force by expanding the working fluid.
  • a power generator 44 a is connected to the expander 44.
  • the generator 44a generates electric power by being rotated by the rotational driving force generated by the expander 44.
  • the generated electric power is supplied to, for example, a vehicle battery.
  • the condenser 45 is provided on the downstream side of the expander 44 in the circulation channel 41, and condenses the working fluid expanded by the expander 44. Specifically, the condenser 45 liquefies the working fluid by exchanging heat between the working fluid discharged from the expander 44 and the atmosphere as a cooling source. The liquefied working fluid is supplied to the pump 42.
  • the sensor group 70 has a plurality of sensors and can detect various states relating to the vehicle. For example, the sensor group 70 detects the temperature of the cooling water in the cooling water passage 30. The sensor group 70 may detect the heating state of the working fluid in the evaporator 43.
  • the ECU 80 is an electronic control unit (Electric Control Unit) including a microcomputer having a CPU, a ROM, a RAM, and the like.
  • the ECU 80 controls the operation of each device described above.
  • the ECU 80 has a function of a control unit that controls operations of the first adjustment valve 34, the second adjustment valve 35, and the third adjustment valve 36. Further, the ECU 80 may control the operation of the Rankine cycle 40.
  • the first adjustment valve 34 adjusts the opening and closing of the valve so that a part of the cooling water passing through the engine 10 flows to the first bypass passage 31a. Then, the cooling water that has flowed into the first bypass passage 31 a recovers the heat of the exhaust gas that flows through the exhaust passage 20 by the heat exchanger 24. The cooling water from which the heat has been recovered merges with the cooling water that has not flowed through the first bypass passage 31a at the connection point between the first bypass passage 31a and the cooling water passage 30. Thereby, the cooling water is warmed and becomes higher than the temperature when passing through the engine 10.
  • the cooling water whose temperature has been increased is introduced into the evaporator 43 of the Rankine cycle 40.
  • the Rankine cycle 40 can operate appropriately.
  • the temperature of the cooling water that has passed through the engine 10 is low, the temperature is increased by the heat exchanger 24, so that the evaporator 43 can appropriately heat the working fluid.
  • the Rankine cycle 40 can be started early.
  • the cooling water that has passed through the evaporator 43 is radiated when passing through the radiator 32, or bypasses the radiator 32 through the third bypass passage 31c.
  • the coolant passes through the engine 10, it absorbs heat inside the engine 10 and warms up. Thereafter, the cooling water circulates as described above, and continues to serve as a heat source for heating the working fluid in the evaporator 43.
  • the ECU 80 may control the open / close state of the first adjustment valve 34 in accordance with the heating state of the working fluid in the evaporator 43. For example, when the working fluid is sufficiently heated in the evaporator 43, the ECU 80 changes the open / close state of the first adjustment valve 34 so that the cooling water does not flow into the first bypass passage 31a. Thereby, since cooling water does not collect
  • the ECU 80 may control the second adjustment valve 35 so that the cooling water flows to the second bypass passage 31b without being introduced into the evaporator 43 at the start of warm-up. In such a case, the cooling water that has not been heat-recovered as the working fluid in the evaporator 43 passes through the engine 10, so that the temperature of the engine 10 having a low temperature can be effectively increased. Can be promoted.
  • FIG. 2 is a schematic diagram showing a configuration of a power generation system 900 according to a comparative example.
  • the heat exchanger 24, the first bypass passage 31a, and the first adjustment valve 34 shown in FIG. 1 are not provided. That is, in the comparative example, the cooling water that has passed through the engine 10 is introduced into the evaporator 43 of the Rankine cycle 40 without collecting the heat of the exhaust.
  • the evaporator 43 cannot appropriately heat the working fluid using the cooling water as a heat source, and the Rankine cycle 40 may not operate.
  • the engine 10 is warm when the temperature of the engine 10 is low, the temperature of the cooling water passing through the engine 10 is also low, so the evaporator 43 cannot properly heat the working fluid with the cooling water.
  • the cooling water that has passed through the engine 10 includes the heat exchanger 24 and the first bypass passage 31a so that the heat of the exhaust can be recovered.
  • the temperature of the cooling water rises in order to recover the heat of the exhaust gas.
  • the cooling water whose temperature has risen is introduced into the evaporator 43, so that the evaporator 43 appropriately heats the working fluid using the cooling water as a heat source. it can. As a result, it becomes possible to start the Rankine cycle 40 early.
  • the present invention has an effect that the working fluid can be appropriately evaporated by engine coolant in the Rankine cycle, and is useful for a power generation system and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Provided is a power generation system comprising: an engine (10) which discharges exhaust and through which circulating cooling water passes; a Rankine cycle in which disposed sequentially within a circulation flow path (41) are an evaporator (43) that uses cooling water to evaporate a working fluid having a boiling point lower than that of the cooling water, an expander (44) that expands the working fluid, a condenser (45) that condenses the working fluid, and a pump (42) that causes the working fluid to circulate within the circulation flow path (41); a cooling water passage (30) that introduces the cooling water that has passed through the engine (10) to the evaporator (43); a first bypass passage (31a) that branches from the cooling water passage (30) and then connects thereto; and a heat exchanger (24) that is provided at a location where an exhaust passage (20) for the exhaust and the first bypass passage (31a) intersect, and that recovers the heat from the exhaust to the cooling water in the first bypass passage (31a).

Description

発電システムPower generation system
 本開示は、発電システムに関し、より詳細には、蒸発器がエンジンの冷却水によって作動流体を蒸発させるランキンサイクルを有する発電システムに関する。 The present disclosure relates to a power generation system, and more particularly, to a power generation system having a Rankine cycle in which an evaporator evaporates a working fluid with engine coolant.
 近年、車両で発生する廃熱を利用して動力に回生するために、ランキンサイクルを有する発電装置の車両への搭載が検討されている。ランキンサイクルとは、循環流路内に、熱源によって作動流体を蒸発させる蒸発器、作動流体を膨張させる膨張器、冷却源によって作動流体を凝縮させる凝縮器、作動流体を循環流路内で循環させる循環器の順に配置したものである。 In recent years, in order to regenerate power using waste heat generated in a vehicle, mounting of a power generation device having a Rankine cycle on the vehicle has been studied. The Rankine cycle is an evaporator that evaporates the working fluid with a heat source, an expander that expands the working fluid, a condenser that condenses the working fluid with a cooling source, and circulates the working fluid in the circulation channel. Arranged in order of circulatory organs.
 ランキンサイクルとして、沸点の低い媒体を作動流体として用いるオーガニックランキンサイクルが利用されている。例えば、下記の特許文献1には、蒸発器が、エンジンの冷却水によって作動流体を加熱するランキンサイクルが開示されている。 An organic Rankine cycle that uses a medium with a low boiling point as a working fluid is used as the Rankine cycle. For example, Patent Document 1 below discloses a Rankine cycle in which an evaporator heats a working fluid with engine coolant.
日本国特開2005-282363号公報Japanese Unexamined Patent Publication No. 2005-282363
 エンジンを通過した冷却水の温度は、常に同じ温度ではなく、車両の動作状況に応じて変動する。このため、冷却水の温度が低い場合(例えば、エンジンの暖機時)には、蒸発器が冷却水によって作動流体を適切に蒸発させることができず、ランキンサイクルが動作しない恐れがある。 The temperature of the cooling water that has passed through the engine is not always the same temperature, but varies depending on the operating conditions of the vehicle. For this reason, when the temperature of the cooling water is low (for example, when the engine is warmed up), the evaporator cannot properly evaporate the working fluid with the cooling water, and the Rankine cycle may not operate.
 そこで、本開示はこれらの点に鑑みてなされたものであり、ランキンサイクルにおいてエンジンの冷却水で作動流体を適切に蒸発させることを目的とする。 Therefore, the present disclosure has been made in view of these points, and an object thereof is to appropriately evaporate a working fluid with engine cooling water in a Rankine cycle.
 本開示の一の態様においては、排気を排出すると共に、循環する冷却水が通過するエンジンと、循環流路内に、前記冷却水によって前記冷却水よりも融点が低い作動流体を蒸発させる蒸発器、前記作動流体を膨張させる膨張器、前記作動流体を凝縮させる凝縮器、前記作動流体を前記循環流路内で循環させる循環器の順に配置されたランキンサイクルと、前記エンジンを通過した前記冷却水を、前記蒸発器に導入する第1冷却水通路と、前記第1冷却水通路から分岐した後に前記第1冷却水通路と接続する第2冷却水通路と、前記排気の排気通路と前記第2冷却水通路とが交差する箇所に設けられ、前記排気の熱を前記第2冷却水通路の冷却水に回収する熱交換器と、を備えることを特徴とする発電システムを提供する。
 かかる発電システムによれば、エンジンを通過した冷却水が、第2冷却水通路において熱交換器を通過する際に、排気の熱を回収するため、冷却水の温度が上昇する。そして、温度が上昇した冷却水が蒸発器に導入されるため、エンジンを通過した直後の冷却水の温度が低くても、蒸発器が冷却水を熱源として作動流体を適切に加熱できる。この結果、ランキンサイクルを早期に始動させることが可能となる。
In one aspect of the present disclosure, an exhaust gas is discharged and an evaporator through which circulating cooling water passes, and an evaporator that evaporates a working fluid having a lower melting point than the cooling water by the cooling water in the circulation flow path. , An expander that expands the working fluid, a condenser that condenses the working fluid, a Rankine cycle that is arranged in order of the circulator that circulates the working fluid in the circulation flow path, and the cooling water that has passed through the engine A first cooling water passage that is introduced into the evaporator, a second cooling water passage that is branched from the first cooling water passage and is connected to the first cooling water passage, an exhaust passage for the exhaust, and the second Provided is a power generation system comprising: a heat exchanger provided at a location where the cooling water passage intersects, and recovering the heat of the exhaust gas into the cooling water of the second cooling water passage.
According to such a power generation system, when the cooling water that has passed through the engine passes through the heat exchanger in the second cooling water passage, the heat of the exhaust gas is recovered, so that the temperature of the cooling water rises. And since the cooling water whose temperature rose is introduced into the evaporator, even if the temperature of the cooling water immediately after passing through the engine is low, the evaporator can appropriately heat the working fluid using the cooling water as a heat source. As a result, the Rankine cycle can be started early.
 また、前記発電システムは、前記第1冷却水通路において前記第2冷却水通路との分岐点に設けられ、前記第1冷却水通路から前記第2冷却水通路へ流れる冷却水の流量を調整する第1流量調整部材を更に備えることとしてもよい。 The power generation system is provided at a branch point of the first cooling water passage with the second cooling water passage, and adjusts a flow rate of the cooling water flowing from the first cooling water passage to the second cooling water passage. A first flow rate adjusting member may be further provided.
 また、前記発電システムは、前記第1流量調整部材の動作を制御する制御部を更に備え、前記制御部は、前記蒸発器における前記作動流体の蒸発状態に応じて、前記第1流量調整部材を動作させて前記第2冷却水通路へ流れる冷却水の流量を調整することとしてもよい。 The power generation system further includes a control unit that controls the operation of the first flow rate adjusting member, and the control unit controls the first flow rate adjusting member according to an evaporation state of the working fluid in the evaporator. It is good also as operating and adjusting the flow volume of the cooling water which flows into the said 2nd cooling water channel | path.
 また、前記発電システムは、前記第1冷却水通路において前記蒸発器を迂回する迂回通路と、前記蒸発器へ導入される冷却水の流量及び前記迂回通路へ流れる冷却水の流量を調整する第2流量調整部材と、を更に備えることとしてもよい。 In addition, the power generation system adjusts a bypass passage that bypasses the evaporator in the first cooling water passage, a flow rate of cooling water introduced into the evaporator, and a flow rate of cooling water flowing into the bypass passage. And a flow rate adjusting member.
 また、前記発電システムは、前記第2流量調整部材の動作を制御する制御部を更に備え、前記制御部は、前記エンジンの暖機時に、前記第2流量調整部材を動作させて、前記蒸発器に冷却水を導入させずに前記迂回通路に冷却水を流させることとしてもよい。 The power generation system further includes a control unit that controls the operation of the second flow rate adjustment member, and the control unit operates the second flow rate adjustment member when the engine is warmed up, so that the evaporator The cooling water may be caused to flow through the bypass passage without introducing the cooling water into the bypass passage.
 本開示によれば、ランキンサイクルにおいてエンジンの冷却水で作動流体を適切に蒸発させることができるという効果を奏する。 According to the present disclosure, there is an effect that the working fluid can be appropriately evaporated by the engine coolant in the Rankine cycle.
図1は、本開示の一の実施形態に係る発電システムSの構成の一例を示す模式図である。FIG. 1 is a schematic diagram illustrating an example of a configuration of a power generation system S according to an embodiment of the present disclosure. 図2は、比較例に係る発電システム900の構成を示す模式図である。FIG. 2 is a schematic diagram illustrating a configuration of a power generation system 900 according to a comparative example.
 <発電システムの構成>
 図1を参照しながら、本開示の一の実施形態に係る発電システムSの構成について説明する。図1は、一の実施形態に係る発電システムSの構成の一例を示す模式図である。
<Configuration of power generation system>
The configuration of the power generation system S according to one embodiment of the present disclosure will be described with reference to FIG. Drawing 1 is a mimetic diagram showing an example of composition of power generation system S concerning one embodiment.
 発電システムSは、内燃機関であるエンジンを有する車両に搭載されている。例えば、発電システムSは、トラックやバス等の大型車両に搭載されている。発電システムSは、ランキンサイクルによって、車両で発生する廃熱を利用して動力に回生する。図1に示すように、発電システムSは、エンジン10と、排気通路20と、冷却水通路30と、ランキンサイクル40と、センサ群70と、ECU80とを有する。 The power generation system S is mounted on a vehicle having an engine that is an internal combustion engine. For example, the power generation system S is mounted on a large vehicle such as a truck or a bus. The power generation system S regenerates power by using the waste heat generated in the vehicle by the Rankine cycle. As shown in FIG. 1, the power generation system S includes an engine 10, an exhaust passage 20, a cooling water passage 30, a Rankine cycle 40, a sensor group 70, and an ECU 80.
 エンジン10は、複数の気筒を含むエンジンであり、本実施形態ではディーゼルエンジンである。エンジン10は、気筒内で燃料と吸気(空気)の混合気を燃焼、膨張させて、動力を発生させる。吸気は、不図示の吸気通路によりエンジン10の気筒に吸入されている。また、エンジン10は、燃焼後の排気(排出ガス)を排出する。 The engine 10 is an engine including a plurality of cylinders, and is a diesel engine in the present embodiment. The engine 10 generates power by burning and expanding a mixture of fuel and intake air (air) in a cylinder. The intake air is drawn into the cylinders of the engine 10 through an intake passage (not shown). Further, the engine 10 exhausts exhaust gas (exhaust gas) after combustion.
 排気通路20は、エンジン10から排出された排気を車両の外部へ排出する通路である。図1において、排気の流路は破線の矢印で示されている。排気通路20には、過給機22と、後処理装置23と、熱交換器24とが設けられている。 The exhaust passage 20 is a passage for exhausting the exhaust discharged from the engine 10 to the outside of the vehicle. In FIG. 1, the exhaust flow path is indicated by a dashed arrow. In the exhaust passage 20, a supercharger 22, an aftertreatment device 23, and a heat exchanger 24 are provided.
 過給機22は、排気の圧力を動力源として、エンジン10に吸入される吸気を過給する装置である。過給機22は、例えばターボチャージャであり、排気通路20に設けられたタービンと、吸気通路に設けられたコンプレッサとを有する。 The supercharger 22 is a device that supercharges intake air sucked into the engine 10 by using exhaust pressure as a power source. The supercharger 22 is, for example, a turbocharger, and includes a turbine provided in the exhaust passage 20 and a compressor provided in the intake passage.
 後処理装置23は、排気を浄化する装置である。例えば、後処理装置23は、排気中のPMを捕集したり、尿素水から加水分解されて生成されるアンモニア(NH)を還元剤として排気中のNOを選択的に還元浄化したりする。 The post-processing device 23 is a device that purifies exhaust gas. For example, the post-processing device 23 collects PM in exhaust gas or selectively reduces and purifies NO x in exhaust gas using ammonia (NH 3 ) hydrolyzed from urea water as a reducing agent. To do.
 熱交換器24は、排気通路20と冷却水通路30(具体的には、後述する第1迂回通路31a)とが交差する箇所に設けられている。熱交換器24は、排気通路20の排気の熱を、冷却水通路30の冷却水に回収する装置である。これにより、冷却水通路30を流れる冷却水が、温まる。 The heat exchanger 24 is provided at a location where the exhaust passage 20 and the cooling water passage 30 (specifically, a first bypass passage 31a described later) intersect. The heat exchanger 24 is a device that recovers the heat of the exhaust gas in the exhaust passage 20 into the cooling water in the cooling water passage 30. Thereby, the cooling water flowing through the cooling water passage 30 is warmed.
 冷却水通路30は、エンジン10が過熱状態になることを防止するために、エンジン10を冷却する冷却水を循環させる通路である。図1において、冷却水の流路は実線の矢印で示されている。冷却水通路30は、エンジン10内を冷却水が通過するように設けられており、冷却水がエンジン10の熱を奪うことでエンジン10の温度を下げる。本実施形態において、エンジン10を通過して温まった冷却水は、熱源として、ランキンサイクル40の蒸発器43に導入される。冷却水通路30には、第1迂回通路31aと、第2迂回通路31bと、第3迂回通路31cと、ラジエータ32と、ポンプ33と、第1調整バルブ34と、第2調整バルブ35と、第3調整バルブ36とが設けられている。 The cooling water passage 30 is a passage for circulating cooling water for cooling the engine 10 in order to prevent the engine 10 from being overheated. In FIG. 1, the flow path of the cooling water is indicated by solid arrows. The cooling water passage 30 is provided so that the cooling water passes through the engine 10, and the cooling water takes the heat of the engine 10 to lower the temperature of the engine 10. In the present embodiment, the cooling water warmed after passing through the engine 10 is introduced into the evaporator 43 of the Rankine cycle 40 as a heat source. The cooling water passage 30 includes a first bypass passage 31a, a second bypass passage 31b, a third bypass passage 31c, a radiator 32, a pump 33, a first adjustment valve 34, a second adjustment valve 35, A third adjustment valve 36 is provided.
 第1迂回通路31aは、冷却水通路30においてエンジン10の下流側から分岐した後に、冷却水通路30に蒸発器43の上流側で接続する通路である。第1迂回通路31aは、途中で熱交換器24を通過する構成となっている。これにより、第1迂回通路31aを流れる冷却水は、熱交換器24によって排気の熱を回収し、温まる。第1迂回通路31aから冷却水通路30へ送られてきた冷却水は、第1迂回通路31aを流れない冷却水と合流することで、蒸発器43に送られる冷却水の温度が上昇する。なお、本実施形態においては、冷却水通路30が第1冷却水通路に該当し、第1迂回通路31aが第2冷却水通路に該当する。 The first bypass passage 31 a is a passage that branches from the downstream side of the engine 10 in the cooling water passage 30 and is connected to the cooling water passage 30 on the upstream side of the evaporator 43. The first bypass passage 31a is configured to pass through the heat exchanger 24 on the way. Thereby, the cooling water flowing through the first bypass passage 31a recovers the heat of the exhaust gas by the heat exchanger 24 and is warmed. The cooling water sent from the first bypass passage 31a to the cooling water passage 30 joins with the cooling water that does not flow through the first bypass passage 31a, whereby the temperature of the cooling water sent to the evaporator 43 rises. In the present embodiment, the cooling water passage 30 corresponds to the first cooling water passage, and the first bypass passage 31a corresponds to the second cooling water passage.
 第2迂回通路31bは、冷却水通路30においてランキンサイクル40の蒸発器43の上流から分岐して、蒸発器43を迂回する通路である。例えば、エンジン10の暖機時には、第2迂回通路31bによって冷却水を蒸発器43から迂回させる。 The second bypass passage 31b is a passage that branches from the upstream of the evaporator 43 of the Rankine cycle 40 in the cooling water passage 30 and bypasses the evaporator 43. For example, when the engine 10 is warmed up, the cooling water is bypassed from the evaporator 43 by the second bypass passage 31b.
 第3迂回通路31cは、冷却水通路30においてラジエータ32の上流から分岐して、ラジエータ32を迂回する通路である。例えば、エンジン10の暖機時には、第3迂回通路31cを流れる冷却水によってエンジン10を温める。 The third bypass passage 31 c is a passage that branches from the upstream side of the radiator 32 in the cooling water passage 30 and bypasses the radiator 32. For example, when the engine 10 is warmed up, the engine 10 is warmed by the cooling water flowing through the third bypass passage 31c.
 ラジエータ32は、エンジン10を通過することで温度が上昇した冷却水の放熱を行う。具体的には、ラジエータ32は、送られてきた冷却水の熱を大気中に放出することで、冷却水の温度を下げる。なお、冷却水の放熱を促進するために、ラジエータ32の後方に冷却ファンが設けられていてもよい。 The radiator 32 dissipates the cooling water whose temperature has increased by passing through the engine 10. Specifically, the radiator 32 lowers the temperature of the cooling water by releasing the heat of the sent cooling water into the atmosphere. A cooling fan may be provided behind the radiator 32 in order to promote heat dissipation of the cooling water.
 ポンプ33は、冷却水通路30内で冷却水を循環させる。ポンプ33は、エンジン10の下流側に設けられており、冷却水を圧送する。ポンプ33は、例えばエンジン10から駆動力を受けて動作する。 The pump 33 circulates the cooling water in the cooling water passage 30. The pump 33 is provided on the downstream side of the engine 10 and pumps the cooling water. The pump 33 operates by receiving a driving force from the engine 10, for example.
 第1調整バルブ34は、エンジン10を通過した冷却水の第1迂回通路31aへ迂回させる流量を調整する流量調整部材である。第1調整バルブ34は、冷却水通路30において第1迂回通路31aとの分岐点に設けられている。これにより、熱交換器24において排気の熱を回収する冷却水の流量を調整できる。 The first adjusting valve 34 is a flow rate adjusting member that adjusts the flow rate of the coolant that has passed through the engine 10 to the first bypass passage 31a. The first adjustment valve 34 is provided at a branch point between the cooling water passage 30 and the first bypass passage 31a. Thereby, the flow rate of the cooling water for recovering the heat of the exhaust in the heat exchanger 24 can be adjusted.
 第2調整バルブ35は、蒸発器43へ送る冷却水の流量と、第2迂回通路31bへ迂回させる冷却水の流量を調整する。第2調整バルブ35は、冷却水通路30において第2迂回通路31bへの分岐点に設けられている。なお、本実施形態では、第1調整バルブ34が第1流量調整部材に該当し、第2調整バルブ35が第2流量調整部材に該当する。 The second adjustment valve 35 adjusts the flow rate of the cooling water to be sent to the evaporator 43 and the flow rate of the cooling water to be diverted to the second bypass passage 31b. The second adjustment valve 35 is provided at the branch point of the cooling water passage 30 to the second bypass passage 31b. In the present embodiment, the first adjustment valve 34 corresponds to a first flow rate adjustment member, and the second adjustment valve 35 corresponds to a second flow rate adjustment member.
 第3調整バルブ36は、ラジエータ32へ送る冷却水の流量と、第3迂回通路31cへ迂回させる冷却水の流量とを調整する。第3調整バルブ36は、冷却水通路30において第3迂回通路31cへの分岐点に設けられている。 The third adjustment valve 36 adjusts the flow rate of the cooling water to be sent to the radiator 32 and the flow rate of the cooling water to be diverted to the third bypass passage 31c. The third adjustment valve 36 is provided at the branch point of the cooling water passage 30 to the third bypass passage 31c.
 ランキンサイクル40は、エンジン10を通過した冷却水を利用して電力を発生させる発電サイクルである。ランキンサイクル40は、図1に示すように、循環流路41と、ポンプ42と、蒸発器43と、膨張器44と、凝縮器45とを有する。ランキンサイクル40においては、循環流路41に、ポンプ42、蒸発器43、膨張器44、凝縮器45の順に配置され、閉回路を形成している。 Rankine cycle 40 is a power generation cycle that generates electric power using cooling water that has passed through engine 10. As shown in FIG. 1, the Rankine cycle 40 includes a circulation channel 41, a pump 42, an evaporator 43, an expander 44, and a condenser 45. In the Rankine cycle 40, a pump 42, an evaporator 43, an expander 44, and a condenser 45 are arranged in this order in the circulation flow path 41 to form a closed circuit.
 循環流路41は、作動流体が循環する流路であり、図1において一点鎖線で示されている。本実施形態のランキンサイクル40は、沸点の低い媒体であるフロン等を作動流体として循環させるオーガニックランキンサイクルである。作動流体の融点は、冷却水の融点よりも低い。作動流体としては、例えば公知のHFC-245faやHFC-134aが利用される。 The circulation channel 41 is a channel through which the working fluid circulates, and is indicated by a one-dot chain line in FIG. The Rankine cycle 40 of the present embodiment is an organic Rankine cycle in which chlorofluorocarbon, which is a medium having a low boiling point, is circulated as a working fluid. The melting point of the working fluid is lower than the melting point of the cooling water. As the working fluid, for example, known HFC-245fa and HFC-134a are used.
 ポンプ42は、作動流体を循環流路41内で循環させる循環器である。ポンプ42は、液相の作動流体を吸入して、蒸発器43に圧送する。ポンプ42としては、遠心ポンプやギアポンプ等が用いられる。 The pump 42 is a circulator that circulates the working fluid in the circulation channel 41. The pump 42 sucks the liquid-phase working fluid and pumps it to the evaporator 43. As the pump 42, a centrifugal pump, a gear pump, or the like is used.
 蒸発器43は、循環流路41においてポンプ42の下流側に設けられ、冷却水によって作動流体を蒸発させる。具体的には、蒸発器43は、ポンプ42から送られてくる作動流体と、冷却水通路30を流れる冷却水との間で熱交換を行うことにより、作動流体を加熱する。本実施形態では、熱交換器24によって排気の熱を回収した冷却水が蒸発器43に導入されるので、エンジン10を通過した時よりも昇温した冷却水によって作動流体を加熱できる。 The evaporator 43 is provided on the downstream side of the pump 42 in the circulation flow path 41 and evaporates the working fluid with cooling water. Specifically, the evaporator 43 heats the working fluid by exchanging heat between the working fluid sent from the pump 42 and the cooling water flowing through the cooling water passage 30. In the present embodiment, the cooling water whose exhaust heat has been recovered by the heat exchanger 24 is introduced into the evaporator 43, so that the working fluid can be heated by the cooling water whose temperature is higher than when passing through the engine 10.
 膨張器44は、循環流路41において蒸発器43の下流側に設けられ、蒸発器43で加熱された気相の作動流体を膨張させる。膨張器44は、作動流体が膨張することで、回転駆動力を発生させる。膨張器44には、発電機44aが連結されている。発電機44aは、膨張器44が発生した回転駆動力により回転することで、電力を発生させる。発生した電力は、例えば車両のバッテリー等に供給される。 The expander 44 is provided on the downstream side of the evaporator 43 in the circulation channel 41, and expands the gas phase working fluid heated by the evaporator 43. The expander 44 generates a rotational driving force by expanding the working fluid. A power generator 44 a is connected to the expander 44. The generator 44a generates electric power by being rotated by the rotational driving force generated by the expander 44. The generated electric power is supplied to, for example, a vehicle battery.
 凝縮器45は、循環流路41において膨張器44の下流側に設けられ、膨張器44が膨張させた作動流体を凝縮させる。具体的には、凝縮器45は、膨張器44から吐出される作動流体と、冷却源である大気との間で熱交換を行うことにより、作動流体を液化する。液化した作動流体は、ポンプ42に供給される。 The condenser 45 is provided on the downstream side of the expander 44 in the circulation channel 41, and condenses the working fluid expanded by the expander 44. Specifically, the condenser 45 liquefies the working fluid by exchanging heat between the working fluid discharged from the expander 44 and the atmosphere as a cooling source. The liquefied working fluid is supplied to the pump 42.
 センサ群70は、複数のセンサを有し、車両に関する様々な状態を検出可能である。例えば、センサ群70は、冷却水通路30の冷却水の温度を検出する。また、センサ群70は、蒸発器43における作動流体の加熱状態を検出してもよい。 The sensor group 70 has a plurality of sensors and can detect various states relating to the vehicle. For example, the sensor group 70 detects the temperature of the cooling water in the cooling water passage 30. The sensor group 70 may detect the heating state of the working fluid in the evaporator 43.
 ECU80は、CPU、ROM、RAM等を有するマイクロコンピュータを備えた電子制御装置(Electric Control Unit)である。ECU80は、前述した各装置の動作を制御する。例えば、ECU80は、第1調整バルブ34、第2調整バルブ35及び第3調整バルブ36の動作を制御する制御部の機能を有する。また、ECU80は、ランキンサイクル40の動作を制御してもよい。 The ECU 80 is an electronic control unit (Electric Control Unit) including a microcomputer having a CPU, a ROM, a RAM, and the like. The ECU 80 controls the operation of each device described above. For example, the ECU 80 has a function of a control unit that controls operations of the first adjustment valve 34, the second adjustment valve 35, and the third adjustment valve 36. Further, the ECU 80 may control the operation of the Rankine cycle 40.
 <ランキンサイクルの動作時の冷却水の流れについて>
 上述した発電システムSにおいて、ランキンサイクル40の動作時の冷却水の流れについて説明する。ここでは、エンジン10から排気が排出されると共に、冷却水通路30を冷却水が循環しているものとする。
<About the flow of cooling water during Rankine cycle operation>
In the power generation system S described above, the flow of cooling water during the operation of the Rankine cycle 40 will be described. Here, it is assumed that the exhaust gas is discharged from the engine 10 and the cooling water is circulating in the cooling water passage 30.
 まず、第1調整バルブ34は、エンジン10を通過する冷却水の一部が第1迂回通路31aへ流れるように、バルブの開閉を調整する。すると、第1迂回通路31aへ流れた冷却水は、熱交換器24によって、排気通路20を流れる排気の熱を回収する。熱を回収した冷却水は、第1迂回通路31aと冷却水通路30の接続点において、第1迂回通路31aを流れなかった冷却水と合流する。これにより、冷却水が温まり、エンジン10を通過した際の温度よりも高くなる。 First, the first adjustment valve 34 adjusts the opening and closing of the valve so that a part of the cooling water passing through the engine 10 flows to the first bypass passage 31a. Then, the cooling water that has flowed into the first bypass passage 31 a recovers the heat of the exhaust gas that flows through the exhaust passage 20 by the heat exchanger 24. The cooling water from which the heat has been recovered merges with the cooling water that has not flowed through the first bypass passage 31a at the connection point between the first bypass passage 31a and the cooling water passage 30. Thereby, the cooling water is warmed and becomes higher than the temperature when passing through the engine 10.
 温度が高くなった冷却水は、ランキンサイクル40の蒸発器43に導入される。これにより、熱源としての冷却水による作動流体の加熱が促進されるので、ランキンサイクル40が適切に動作できる。特に、エンジン10を通過した冷却水の温度が低い場合でも、熱交換器24によって温度が高められるので、蒸発器43が作動流体を適切に加熱できる。この結果、ランキンサイクル40を早期に始動させることができる。 The cooling water whose temperature has been increased is introduced into the evaporator 43 of the Rankine cycle 40. Thereby, since heating of the working fluid by the cooling water as a heat source is promoted, the Rankine cycle 40 can operate appropriately. In particular, even when the temperature of the cooling water that has passed through the engine 10 is low, the temperature is increased by the heat exchanger 24, so that the evaporator 43 can appropriately heat the working fluid. As a result, the Rankine cycle 40 can be started early.
 蒸発器43を通過した冷却水は、ラジエータ32を通過する際に放熱され、又は第3迂回通路31cによってラジエータ32を迂回する。そして、冷却水は、エンジン10を通過する際に、エンジン10の内部の熱を吸収して温まる。その後、冷却水は、前述したように循環し、蒸発器43で作動流体を加熱する熱源の役割を維持し続ける。 The cooling water that has passed through the evaporator 43 is radiated when passing through the radiator 32, or bypasses the radiator 32 through the third bypass passage 31c. When the coolant passes through the engine 10, it absorbs heat inside the engine 10 and warms up. Thereafter, the cooling water circulates as described above, and continues to serve as a heat source for heating the working fluid in the evaporator 43.
 なお、ECU80は、蒸発器43における作動流体の加熱状態に応じて、第1調整バルブ34の開閉状態を制御してもよい。例えば、蒸発器43における作動流体の加熱が十分に行われている場合には、ECU80は、第1迂回通路31aへ冷却水が流れないように第1調整バルブ34の開閉状態を変更する。これにより、冷却水が熱交換器24において排気の熱を回収しないので、冷却水が余計に温まることを抑制できる。この結果、余計に温まった冷却水をラジエータ32で冷却する必要もなくなる。 Note that the ECU 80 may control the open / close state of the first adjustment valve 34 in accordance with the heating state of the working fluid in the evaporator 43. For example, when the working fluid is sufficiently heated in the evaporator 43, the ECU 80 changes the open / close state of the first adjustment valve 34 so that the cooling water does not flow into the first bypass passage 31a. Thereby, since cooling water does not collect | recover the heat | fever of exhaust_gas | exhaustion in the heat exchanger 24, it can suppress that cooling water warms up excessively. As a result, it is not necessary to cool the excessively heated cooling water with the radiator 32.
 また、エンジン10の暖機開始時には、冷却水が熱交換器24において排気の熱を回収しても、直ぐに冷却水の温度が蒸発器43において作動流体を適切に加熱可能な温度まで上昇しないことがある。そこで、ECU80は、暖機開始時には、冷却水が蒸発器43に導入されずに第2迂回通路31bへ流れるように、第2調整バルブ35を制御してもよい。かかる場合には、蒸発器43において作動流体に熱回収されていない冷却水がエンジン10を通過することで、温度が低いエンジン10の温度を効果的に高めることができるので、エンジン10の暖機を促進させることが可能となる。 In addition, even when the cooling water recovers the heat of the exhaust gas in the heat exchanger 24 when the engine 10 starts to warm up, the temperature of the cooling water does not immediately rise to a temperature at which the working fluid can be appropriately heated in the evaporator 43. There is. Therefore, the ECU 80 may control the second adjustment valve 35 so that the cooling water flows to the second bypass passage 31b without being introduced into the evaporator 43 at the start of warm-up. In such a case, the cooling water that has not been heat-recovered as the working fluid in the evaporator 43 passes through the engine 10, so that the temperature of the engine 10 having a low temperature can be effectively increased. Can be promoted.
 <本実施形態における効果>
 図2に示す比較例に係る発電システム900と対比しながら、本実施形態に係る発電システムSの有効性について説明する。
<Effect in this embodiment>
The effectiveness of the power generation system S according to the present embodiment will be described in comparison with the power generation system 900 according to the comparative example illustrated in FIG.
 図2は、比較例に係る発電システム900の構成を示す模式図である。比較例においては、図1に示す熱交換器24、第1迂回通路31a及び第1調整バルブ34が設けられていない。すなわち、比較例においては、エンジン10を通過した冷却水は、排気の熱を回収せずに、ランキンサイクル40の蒸発器43に導入される。かかる比較例において、エンジン10を通過した冷却水の温度が低い場合には、蒸発器43が冷却水を熱源として作動流体を適切に加熱できず、ランキンサイクル40が動作しない恐れがある。特に、エンジン10の温度が低いエンジン10の暖機時には、エンジン10を通過する冷却水の温度も低いので、蒸発器43が冷却水によって作動流体を適切に加熱できない。 FIG. 2 is a schematic diagram showing a configuration of a power generation system 900 according to a comparative example. In the comparative example, the heat exchanger 24, the first bypass passage 31a, and the first adjustment valve 34 shown in FIG. 1 are not provided. That is, in the comparative example, the cooling water that has passed through the engine 10 is introduced into the evaporator 43 of the Rankine cycle 40 without collecting the heat of the exhaust. In such a comparative example, when the temperature of the cooling water that has passed through the engine 10 is low, the evaporator 43 cannot appropriately heat the working fluid using the cooling water as a heat source, and the Rankine cycle 40 may not operate. In particular, when the engine 10 is warm when the temperature of the engine 10 is low, the temperature of the cooling water passing through the engine 10 is also low, so the evaporator 43 cannot properly heat the working fluid with the cooling water.
 これに対して、本実施形態では、エンジン10を通過した冷却水が排気の熱を回収可能とするために、熱交換器24及び第1迂回通路31aを有する。かかる場合には、エンジン10を通過した冷却水が、第1迂回通路31aにおいて熱交換器24を通過する際に、排気の熱を回収するため、冷却水の温度が上昇する。このため、エンジン10を通過した直後の冷却水の温度が低くても、温度が上昇した冷却水が蒸発器43に導入されるため、蒸発器43が冷却水を熱源として作動流体を適切に加熱できる。この結果、ランキンサイクル40を早期に始動させることが可能となる。 In contrast, in the present embodiment, the cooling water that has passed through the engine 10 includes the heat exchanger 24 and the first bypass passage 31a so that the heat of the exhaust can be recovered. In such a case, when the cooling water that has passed through the engine 10 passes through the heat exchanger 24 in the first bypass passage 31a, the temperature of the cooling water rises in order to recover the heat of the exhaust gas. For this reason, even if the temperature of the cooling water immediately after passing through the engine 10 is low, the cooling water whose temperature has risen is introduced into the evaporator 43, so that the evaporator 43 appropriately heats the working fluid using the cooling water as a heat source. it can. As a result, it becomes possible to start the Rankine cycle 40 early.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。そのような変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。 As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
 本出願は、2015年06月30日付で出願された日本国特許出願(特願2015-130701)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application (Japanese Patent Application No. 2015-130701) filed on June 30, 2015, the contents of which are incorporated herein by reference.
 本発明は、ランキンサイクルにおいてエンジンの冷却水で作動流体を適切に蒸発できるという効果を有し、発電システム等に有用である。 The present invention has an effect that the working fluid can be appropriately evaporated by engine coolant in the Rankine cycle, and is useful for a power generation system and the like.
 10  エンジン
 20  排気通路
 24  熱交換器
 30  冷却水通路
 31a  第1迂回通路
 31b  第2迂回通路
 32  ラジエータ
 34  第1調整バルブ
 35  第2調整バルブ
 40  ランキンサイクル
 41  循環流路
 42  ポンプ
 43  蒸発器
 44  膨張器
 45  凝縮器
 80  ECU
 S  発電システム
DESCRIPTION OF SYMBOLS 10 Engine 20 Exhaust passage 24 Heat exchanger 30 Cooling water passage 31a 1st bypass passage 31b 2nd bypass passage 32 Radiator 34 1st adjustment valve 35 2nd adjustment valve 40 Rankine cycle 41 Circulation flow path 42 Pump 43 Evaporator 44 Expander 45 Condenser 80 ECU
S power generation system

Claims (6)

  1.  排気を排出すると共に、循環する冷却水が通過するエンジンと、
     循環流路内に、前記冷却水によって前記冷却水よりも融点が低い作動流体を蒸発させる蒸発器、前記作動流体を膨張させる膨張器、前記作動流体を凝縮させる凝縮器、前記作動流体を前記循環流路内で循環させる循環器の順に配置されたランキンサイクルと、
     前記エンジンを通過した前記冷却水を、前記蒸発器に導入する第1冷却水通路と、
     前記第1冷却水通路から分岐した後に前記第1冷却水通路と接続する第2冷却水通路と、
     前記排気の排気通路と前記第2冷却水通路とが交差する箇所に設けられ、前記排気の熱を前記第2冷却水通路の冷却水に回収する熱交換器と、
     を備えることを特徴とする発電システム。
    An engine that exhausts exhaust and through which circulating cooling water passes;
    An evaporator for evaporating the working fluid having a lower melting point than the cooling water by the cooling water, an expander for expanding the working fluid, a condenser for condensing the working fluid, and circulating the working fluid in the circulation channel Rankine cycle arranged in the order of the circulator to circulate in the flow path,
    A first cooling water passage for introducing the cooling water that has passed through the engine into the evaporator;
    A second cooling water passage connected to the first cooling water passage after branching from the first cooling water passage;
    A heat exchanger provided at a location where the exhaust passage of the exhaust and the second cooling water passage intersect, and recovering the heat of the exhaust into the cooling water of the second cooling water passage;
    A power generation system comprising:
  2.  前記第1冷却水通路において前記第2冷却水通路との分岐点に設けられ、前記第1冷却水通路から前記第2冷却水通路へ流れる冷却水の流量を調整する第1流量調整部材を更に備えることを特徴とする、
     請求項1に記載の発電システム。
    A first flow rate adjusting member that is provided at a branch point of the first cooling water passage with the second cooling water passage and adjusts the flow rate of the cooling water flowing from the first cooling water passage to the second cooling water passage; Characterized by comprising,
    The power generation system according to claim 1.
  3.  前記第1流量調整部材の動作を制御する制御部を更に備え、
     前記制御部は、前記蒸発器における前記作動流体の蒸発状態に応じて、前記第1流量調整部材を動作させて前記第2冷却水通路へ流れる冷却水の流量を調整することを特徴とする、
     請求項2に記載の発電システム。
    A control unit for controlling the operation of the first flow rate adjusting member;
    The control unit adjusts the flow rate of the cooling water flowing into the second cooling water passage by operating the first flow rate adjusting member according to the evaporation state of the working fluid in the evaporator.
    The power generation system according to claim 2.
  4.  前記第1冷却水通路において前記蒸発器を迂回する迂回通路と、
     前記蒸発器へ導入される冷却水の流量及び前記迂回通路へ流れる冷却水の流量を調整する第2流量調整部材と、を更に備えることを特徴とする、
     請求項1から3のいずれか1項に記載の発電システム。
    A bypass passage that bypasses the evaporator in the first cooling water passage;
    A second flow rate adjusting member that adjusts the flow rate of the cooling water introduced into the evaporator and the flow rate of the cooling water flowing into the bypass passage,
    The power generation system according to any one of claims 1 to 3.
  5.  前記第2流量調整部材の動作を制御する制御部を更に備え、
     前記制御部は、前記エンジンの暖機時に、前記第2流量調整部材を動作させて、前記蒸発器に冷却水を導入させずに前記迂回通路に冷却水を流させることを特徴とする、
     請求項4に記載の発電システム。
    A controller for controlling the operation of the second flow rate adjusting member;
    The control unit operates the second flow rate adjusting member when the engine is warmed up, and causes the cooling water to flow through the bypass passage without introducing the cooling water into the evaporator.
    The power generation system according to claim 4.
  6.  前記制御部は、前記エンジンの暖気後、前記第2流量調整部材を動作させて、前記蒸発器に冷却水を流させることを特徴とする、
     請求項5に記載の発電システム。
    The controller is configured to operate the second flow rate adjusting member after the engine is warmed to flow cooling water through the evaporator.
    The power generation system according to claim 5.
PCT/JP2016/067819 2015-06-30 2016-06-15 Power generation system WO2017002624A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015130701A JP2017014949A (en) 2015-06-30 2015-06-30 Power generation system
JP2015-130701 2015-06-30

Publications (1)

Publication Number Publication Date
WO2017002624A1 true WO2017002624A1 (en) 2017-01-05

Family

ID=57608594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/067819 WO2017002624A1 (en) 2015-06-30 2016-06-15 Power generation system

Country Status (2)

Country Link
JP (1) JP2017014949A (en)
WO (1) WO2017002624A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6831318B2 (en) * 2017-11-22 2021-02-17 株式会社神戸製鋼所 Thermal energy recovery system
FR3091898B1 (en) 2019-01-23 2021-04-09 Ifp Energies Now COOLING CIRCUIT OF A THERMAL ENGINE EQUIPPED WITH A HEAT RECOVERY CIRCUIT

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126697A1 (en) * 2007-04-05 2008-10-23 Calsonic Kansei Corporation Rankine cycle system
WO2013046885A1 (en) * 2011-09-30 2013-04-04 日産自動車株式会社 Rankine cycle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008126697A1 (en) * 2007-04-05 2008-10-23 Calsonic Kansei Corporation Rankine cycle system
WO2013046885A1 (en) * 2011-09-30 2013-04-04 日産自動車株式会社 Rankine cycle

Also Published As

Publication number Publication date
JP2017014949A (en) 2017-01-19

Similar Documents

Publication Publication Date Title
EP3064733B1 (en) Engine cooling system
JP4089619B2 (en) Rankine cycle system
WO2012043335A1 (en) Apparatus for utilizing waste heat from internal combustion engine
JP4089539B2 (en) Rankine cycle
US10094246B2 (en) Waste heat recovery for power generation and engine warm up
EP3064734B1 (en) Engine cooling system
JP2008038916A (en) Rankine cycle
JP2009236014A (en) Waste heat recovery system
BRPI0805148B1 (en) Internal combustion engine and method for operating an internal combustion engine
WO2013046853A1 (en) Waste heat regeneration system
KR20190127562A (en) Engine cooling system with two thermostats, including a closed loop in a rankine cycle
US9896985B2 (en) Method and apparatus for recovering energy from coolant in a vehicle exhaust system
US10082047B2 (en) Rapid warm-up schemes of engine and engine coolant for higher fuel efficiency
WO2017002624A1 (en) Power generation system
JP2004346831A (en) Cooling system for vehicle
JP6197459B2 (en) Engine cooling system
JP2011052662A (en) Waste heat recovery device for vehicle
JP2005273543A (en) Waste heat utilization device
JP2009052405A (en) Waste heat recovery device
JP2006299850A (en) Waste heat recovery system for internal combustion engine for vehicle
JP2017120067A (en) Control device for vehicular cooling system
JP6593056B2 (en) Thermal energy recovery system
JP2010229844A (en) Waste heat recovery apparatus
JP2018150873A (en) Ranking cycle system and control method of ranking cycle system
JP7333212B2 (en) Method of operating Rankine cycle system and waste heat recovery device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817733

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16817733

Country of ref document: EP

Kind code of ref document: A1