WO2017002380A1 - Ophthalmological microscope - Google Patents

Ophthalmological microscope Download PDF

Info

Publication number
WO2017002380A1
WO2017002380A1 PCT/JP2016/053284 JP2016053284W WO2017002380A1 WO 2017002380 A1 WO2017002380 A1 WO 2017002380A1 JP 2016053284 W JP2016053284 W JP 2016053284W WO 2017002380 A1 WO2017002380 A1 WO 2017002380A1
Authority
WO
WIPO (PCT)
Prior art keywords
display
image
unit
light
display control
Prior art date
Application number
PCT/JP2016/053284
Other languages
French (fr)
Japanese (ja)
Inventor
諭史 山本
石鍋 郁夫
美智子 中西
Original Assignee
株式会社トプコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トプコン filed Critical 株式会社トプコン
Publication of WO2017002380A1 publication Critical patent/WO2017002380A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/13Ophthalmic microscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/13Ophthalmic microscopes
    • A61B3/135Slit-lamp microscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/20Surgical microscopes characterised by non-optical aspects
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery

Definitions

  • the present invention relates to an ophthalmic microscope.
  • ophthalmic microscope In the field of ophthalmology, various microscopes are used for magnifying the eyes. As such an ophthalmic microscope, there are a slit lamp microscope and a surgical microscope. There are also ophthalmic microscopes equipped with an imaging device for photographing patient's eyes. Furthermore, an apparatus that can detect a lesion by analyzing a captured image of a patient's eye has been proposed. In this image analysis, contrast processing, RGB division, or the like is used. In addition, wearable devices are being applied to the medical field. For example, a technique for presenting a captured image using a head-up display or a head-mounted display has been proposed.
  • a conventional ophthalmic microscope capable of photographing a patient's eye includes an observation system that guides return light from the patient's eye to an eyepiece, and an imaging system that guides return light branched from the observation system to an imaging device. Therefore, light loss due to branching occurs in both the light guided to the eyepiece lens and the light guided to the imaging device. Even when a photographic image or the like is presented using a head-up display, a member for synthesizing a light beam such as a photographic image with a light beam of an observation image is required, and thus light loss occurs similarly.
  • the observation image is always presented to the user, and a photographed image or the like is presented to assist the observation work. For this reason, the observation image cannot be erased even if only the photographed image or the like is to be confirmed. Further, in such a configuration, the contrast of the presented image is lowered, and it is difficult to perform surgery or medical treatment while observing a captured image or the like. Although it is possible to erase the observation image by using the shutter mechanism, new problems such as an increase in complexity and size of the apparatus and an increase in weight arise.
  • An object of the present invention is to provide an ophthalmic microscope capable of realizing clear and selective presentation of an observation image and a captured image with a simple configuration.
  • the ophthalmic microscope of the embodiment includes an illumination system, a light receiving system, an eyepiece system, a processing unit, and a display control unit.
  • the illumination system irradiates patient eyes with illumination light.
  • the light receiving system guides the return light of the illumination light from the patient's eye to the image sensor.
  • the eyepiece system includes a display unit and an eyepiece lens arranged on the display surface side of the display unit.
  • the processing unit processes output from the image sensor.
  • the display control unit includes a first display control for displaying an observation image, which is a moving image based on repetitive output from the image sensor, on the display unit, and a second display control for displaying the processed image generated by the processing unit on the display unit. And execute.
  • the ophthalmic microscope is used for observing and photographing a magnified image of a patient's eye in medical treatment and surgery in the ophthalmic field.
  • the target site for observation or imaging may be any part of the patient's eye.
  • the anterior segment may be the cornea, corner, vitreous body, crystalline lens, ciliary body, etc. It may be the retina, choroid or vitreous.
  • the target part may be a peripheral part of the eye such as a eyelid or an eye socket.
  • the ophthalmic microscope of the embodiment described below includes a Greenough-type stereomicroscope
  • other embodiments may include a Galileo-type stereomicroscope.
  • the Greenough-type stereomicroscope is characterized by the fact that the left and right optical systems are equipped with individual objective lenses and the fact that the left and right optical axes are non-parallel, so that it is easy to obtain a stereoscopic image and has a high degree of freedom in design.
  • the Galileo stereomicroscope is characterized by the fact that the left and right optical systems have a common objective lens and the right and left optical axes are parallel, and has the advantage that it is easy to combine other optical systems and optical elements. Have.
  • the ophthalmic microscope of the embodiment described below has an optical coherence tomography (OCT) function in addition to a function of observing and photographing a magnified image of a patient's eye, but in other embodiments, the OCT function is It does not have to be provided. Further, instead of or in addition to the OCT function, any measurement function, imaging function, measurement function, treatment function, and the like that can be used in the ophthalmic field may be provided.
  • OCT optical coherence tomography
  • FIGS. 1 to 3 show the configuration of the optical system.
  • FIG. 1 shows an optical system for observing the posterior eye part
  • FIG. 2 shows an optical system for observing the anterior eye part
  • FIG. 3 shows an optical system for providing the OCT function.
  • FIG. 4 shows the configuration of the processing system.
  • the ophthalmic microscope 1 includes an illumination system 10 (10L, 10R), a light receiving system 20 (20L, 20R), an eyepiece system 30 (30L, 30R), an irradiation system 40, and an OCT system 60.
  • an illumination system 10 (10L, 10R)
  • a light receiving system 20 (20L, 20R)
  • an eyepiece system 30 (30L, 30R)
  • an irradiation system 40 and an OCT system 60.
  • the front lens 90 is disposed immediately before the patient's eye E.
  • a contact lens or the like can be used instead of the non-contact front lens 90 as shown in FIG.
  • a contact mirror three-sided mirror or the like
  • the illumination system 10 irradiates the patient's eye E with illumination light.
  • the illumination system 10 includes a light source that emits illumination light, a diaphragm that defines an illumination field, a lens system, and the like.
  • the configuration of the illumination system may be the same as that of a conventional ophthalmologic apparatus (for example, an ophthalmic surgical microscope, a slit lamp microscope, etc.).
  • the illumination systems 10L and 10R of the present embodiment are configured coaxially with the light receiving systems 20L and 20R, respectively.
  • the left light receiving system 20L for acquiring an image presented to the left eye E 0 L of the observer is obliquely provided with a beam splitter 11L made of, for example, a half mirror.
  • the beam splitter 11L couples the optical path of the left illumination system 10L to the optical path of the left light receiving system 20L.
  • the illumination light output from the left illumination system 10L is reflected by the beam splitter 10L and illuminates the patient's eye E coaxially with the left light receiving system 20L.
  • the right light receiving system 20R for acquiring an image presented to the right eye E 0 R of the observer is obliquely provided with a beam splitter 11R that couples the optical path of the right illumination system 10R to the optical path of the right light receiving system 20R. Has been.
  • the position of the illumination light with respect to the optical axis of the light receiving system 20L (20R) can be changed.
  • This configuration is realized, for example, by providing means for changing the irradiation position of the illumination light with respect to the beam splitter 11L (11R) as in the conventional microscope for ophthalmic surgery.
  • the beam splitter 11L (11R) is arranged between the objective lens 21L (21R) and the patient's eye E, but the position where the optical path of the illumination light is coupled to the light receiving system 20L (20R) is received. It can be at any position in the system 20L (20R). Further, the illumination system and the light receiving system may be arranged non-coaxially. This configuration is applied to a slit lamp microscope, an ophthalmic surgical microscope, and the like.
  • the left light receiving system 20 has a configuration for acquiring an image presented to the left eye E 0 L of the observer, and the right light receiving system 20R is used to acquire an image presented to the right eye E 0 R. It has a configuration.
  • the left light receiving system 20L and the right light receiving system 20R have the same configuration.
  • the left light receiving system 20L (right light receiving system 20R) includes an objective lens 21L (21R), an imaging lens 22L (22R), and an image sensor 23L (23R).
  • an afocal optical path (parallel optical path) is formed between the objective lens 21L (21R) and the imaging lens 22L (22R). It is easy to arrange optical elements such as filters and to couple optical paths from other optical systems by arranging optical path coupling members (that is, the degree of freedom and expandability of the optical configuration is improved). )
  • Symbol AL1 indicates the optical axis (objective optical axis) of the objective lens 21L of the left light receiving system 20L
  • symbol AR1 indicates the optical axis (objective optical axis) of the objective lens 21R of the right light receiving system 20R.
  • the light receiving element 23L (23R) is an area sensor such as a CCD image sensor or a CMOS image sensor.
  • the above is the configuration of the light receiving system 20 when observing the posterior segment (fundus) of the patient's eye E (FIG. 1).
  • the focus lens 24L (24R) and the wedge prism 25L (25R) are arranged at the position on the patient's eye E side with respect to the objective lens 21L (21R). Is done.
  • the focus lens 24L (24R) of this example is a concave lens, and acts to extend the focal length of the objective lens 21L (21R).
  • the wedge prism 25L (25R) deflects the optical path (objective optical axis AL1 (AR1)) of the left light receiving system 20L (right light receiving system 20R) outward by a predetermined angle (indicated by symbols AL2 and AR2).
  • AL1 object optical axis
  • AR2 predetermined angle
  • the focus lens 24L and the wedge prism 25L are arranged in the left light receiving system 20L
  • the focus lens 24R and the wedge prism 25R are arranged in the right light receiving system 20R, whereby the focal position F1 for observing the posterior eye part is observed.
  • a convex lens can be used as the focus lens.
  • the focus lens is disposed in the optical path when observing the posterior eye part, and is retracted from the optical path when observing the anterior eye part.
  • the focal length can be changed continuously or stepwise.
  • the wedge prism 25L has a base direction outside (that is, a base-out arrangement), but a base-in arrangement wedge prism can be used.
  • the wedge prism is disposed in the optical path when observing the posterior eye part, and is retracted from the optical path when observing the anterior eye part.
  • a pair of left and right eyepiece systems 30L and 30R are provided.
  • Acquiring left eyepiece system 30L has a configuration to present an image of the obtained patient's eye E by the left light receiving system 20L on the viewer's left eye E 0 L
  • right ocular system 30R is the right light receiving system 20R having a configuration for presenting an image of the patient's eye E, which is the right eye E 0 R.
  • the left eyepiece system 30L and the right eyepiece system 30R have the same configuration.
  • the left eyepiece system 30L (right eyepiece system 30R) includes a display unit 31L (31R) and an eyepiece lens 32L (32R).
  • Display unit 31L (31R) is a flat panel display such as an LCD, for example.
  • the interval between the left eyepiece system 30L and the right eyepiece system 30R can be changed according to the eye width of the observer.
  • the relative orientation of the left eyepiece system 30L and the right eyepiece system 30R can be changed. That is, the angle formed by the optical axis of the left eyepiece system 30L and the optical axis of the right eyepiece system 30R can be changed. Thereby, the convergence of both eyes E 0 L and E 0 R can be induced, and stereoscopic viewing by the observer can be supported.
  • the irradiation system 40 irradiates the patient's eye E with light (measurement light) for performing OCT measurement from a direction different from the objective optical axes (AL1 and AR1, and AL2 and AR2) of the light receiving system 20.
  • the illumination system may be capable of irradiating the patient's eye with other light in addition to the measurement light for OCT. Specific examples thereof include light for laser treatment (aiming light, treatment laser light).
  • the irradiation system 40 includes an optical scanner 41, an imaging lens 42, a relay lens 43, and a deflection mirror 44. Light from the OCT unit 60 is guided to the optical scanner 41.
  • the light (measurement light) from the OCT section 60 is guided by the optical fiber 51 and emitted from the end face of the fiber.
  • a collimating lens 52 is disposed at a position facing the fiber end face.
  • the measurement light converted into a parallel light beam by the collimator lens 52 is guided to the optical scanner 41.
  • the optical scanner 41 is a two-dimensional optical scanner, and includes an x scanner 41H that deflects light in the horizontal direction (x direction) and a y scanner 41V that deflects light in the vertical direction (y direction).
  • Each of the x scanner 41H and the y scanner 41V may be an arbitrary type of optical scanner, and for example, a galvanometer mirror is used.
  • the optical scanner 41 is disposed, for example, at the exit pupil position of the collimating lens 52 or a position in the vicinity thereof. Furthermore, the optical scanner 41 is disposed, for example, at the entrance pupil position of the imaging lens 42 or a position in the vicinity thereof.
  • a two-dimensional optical scanner When a two-dimensional optical scanner is configured by combining two one-dimensional optical scanners as in this example, the two one-dimensional optical scanners are arranged apart from each other by a predetermined distance (for example, about 10 mm).
  • a one-dimensional optical scanner can be placed at the exit pupil position and / or the entrance pupil position.
  • the imaging lens 42 once forms an image of the parallel light flux (measurement light) that has passed through the optical scanner 41. Further, in order to re-image this measurement light in the patient's eye E (observation site such as fundus and cornea), this light is relayed by the relay lens 43 and reflected by the deflection mirror 44 toward the patient's eye E.
  • the position of the deflection mirror 44 is determined in advance so that the measurement light guided by the irradiation system 40 is irradiated to the patient's eye E from a direction different from the objective optical axis (AL1 and AR1, and AL2 and AR2) of the light receiving system 20.
  • the deflection mirror 44 is disposed at a position between the left light receiving system 20L and the right light receiving system 20R where the respective objective optical axes are disposed non-parallel.
  • One of the factors enabling such an arrangement is an improvement in the degree of freedom of the optical configuration due to the arrangement of the relay lens 43.
  • the distance between the position conjugate with the horizontal optical scanner (x scanner 41H in this example) and the objective lenses 21L and 21R can be designed to be sufficiently small. Can be achieved.
  • the scanable range can be expanded by applying the imaging lens 42 (or imaging lens system) having a variable focal length. Is possible.
  • any configuration for expanding the scannable range can be applied.
  • any one or more of the collimating lens 52, the imaging lens 42, and the relay lens 43 can be moved along the optical axis. There is a configuration.
  • the OCT unit 60 includes an interference optical system for performing OCT.
  • An example of the configuration of the OCT unit 60 is shown in FIG.
  • the optical system shown in FIG. 3 is an example of a swept source OCT, which divides light from a wavelength sweep type light source (wavelength variable light source) into measurement light and reference light, and returns return light of measurement light from the patient eye E. Interference light is generated by interfering with the reference light passing through the reference light path, and this interference light is detected.
  • the detection result (detection signal) of the interference light by the interference optical system is a signal indicating the spectrum of the interference light, and is sent to the control unit 100.
  • the light source unit 61 includes a wavelength swept light source capable of scanning (sweeping) the wavelength of the emitted light, as in a general swept source type OCT apparatus.
  • the light source unit 61 temporally changes the output wavelength in the near-infrared wavelength band that cannot be visually recognized by the human eye.
  • the light L0 output from the light source unit 61 is guided to the polarization controller 63 by the optical fiber 62 and its polarization state is adjusted.
  • the light L0 is guided to the fiber coupler 65 by the optical fiber 64 and converted into the measurement light LS and the reference light LR. Divided.
  • the reference light LR is guided to a collimator 67 by an optical fiber 66A, converted into a parallel light beam, and guided to a corner cube 70 via an optical path length correction member 68 and a dispersion compensation member 69.
  • the optical path length correction member 68 functions as a delay unit for matching the optical path length (optical distance) of the reference light LR with the optical path length of the measurement light LS.
  • the dispersion compensation member 69 acts as a dispersion compensation means for matching the dispersion characteristics between the reference light LR and the measurement light LS.
  • the corner cube 70 folds the traveling direction of the reference light LR in the reverse direction.
  • the corner cube 70 is movable in a direction along the incident optical path and the outgoing optical path of the reference light LR, thereby changing the length of the optical path of the reference light LR.
  • any one of a means for changing the length of the optical path of the measurement light LS and a means for changing the length of the optical path of the reference light LR may be provided.
  • the reference light LR that has passed through the corner cube 70 passes through the dispersion compensation member 69 and the optical path length correction member 68, is converted from a parallel light beam into a focused light beam by the collimator 71, enters the optical fiber 72, and is guided to the polarization controller 73. Accordingly, the polarization state of the reference light LR is adjusted. Further, the reference light LR is guided to the attenuator 75 by the optical fiber 74, and the light amount is adjusted under the control of the control unit 100. The reference light LR whose light amount has been adjusted is guided to the fiber coupler 77 by the optical fiber 76.
  • the measurement light LS generated by the fiber coupler 65 is guided by the optical fiber 51 and emitted from the end face of the fiber, and is converted into a parallel light beam by the collimator lens 52.
  • the measurement light LS converted into a parallel light beam is irradiated to the patient's eye E via the optical scanner 41, the imaging lens 42, the relay lens 43, and the deflection mirror 44.
  • the measurement light LS is reflected and scattered at various depth positions of the patient's eye E.
  • the return light of the measurement light LS from the patient's eye E includes reflected light and backscattered light, travels in the same direction as the forward path in the reverse direction, is guided to the fiber coupler 65, and passes through the optical fiber 66B to the fiber coupler 77. To reach.
  • the fiber coupler 77 combines the measurement light LS incident through the optical fiber 66B and the reference light LR incident through the optical fiber 76 to generate interference light.
  • the fiber coupler 77 generates a pair of interference light LC by dividing the interference light at a predetermined branching ratio (for example, 1: 1).
  • the pair of interference lights LC emitted from the fiber coupler 77 are guided to the detector 79 by optical fibers 78A and 78B, respectively.
  • the detector 79 is, for example, a balanced photodiode (Balanced Photo Diode) that includes a pair of photodetectors that respectively detect a pair of interference light LC and outputs a difference between detection results obtained by these.
  • the detector 79 sends the detection result (detection signal) to the control unit 100.
  • the swept source OCT is applied, but other types of OCT, such as a spectral domain OCT, can be applied.
  • Control unit 100 The control unit 100 executes control of each unit of the ophthalmic microscope 1 (see FIG. 4). Examples of control of the illumination system 10 include the following: turning on / off the light source, adjusting the amount of light; adjusting the diaphragm; adjusting the slit width when slit illumination is possible. Control of the image sensor 23 includes exposure adjustment, gain adjustment, and shooting rate adjustment.
  • the control unit 100 displays various information on the display unit 31.
  • the control unit 100 displays an image (or an image or data obtained by processing the image) acquired by the image sensor 23L on the display unit 31L, and an image (or the image acquired by the image sensor 23R).
  • the image or data obtained by processing is displayed on the display unit 31R.
  • the control of the optical scanner 41 is to sequentially deflect the measurement light LS so that the measurement light LS is irradiated to a plurality of positions according to a preset OCT scan pattern, for example.
  • Control targets included in the OCT unit 60 include a light source unit 61, a polarization controller 63, a corner cube 70, a polarization controller 73, an attenuator 75, a detector 79, and the like.
  • control unit 100 controls various mechanisms.
  • a stereo angle changing unit 20A a focusing unit 24A, an optical path deflecting unit 25A, an interval changing unit 30A, and an orientation changing unit 30B are provided.
  • the stereo angle changing unit 20A relatively rotates and moves the left light receiving system 20L and the right light receiving system 20R. That is, the stereo angle changing unit 20A relatively moves the left light receiving system 20L and the right light receiving system 20R so as to change the angle formed by the objective optical axes (for example, AL1 and AR1).
  • This relative movement is, for example, to move the left light receiving system 20L and the right light receiving system 20R by the same angle in opposite rotational directions.
  • the direction of the angle bisector formed by the objective optical axes (for example, AL1 and AR1) is constant.
  • the focusing unit 24A inserts / withdraws the left and right focus lenses 24L and 24R from the optical path.
  • the focusing unit 24A may be configured to simultaneously insert / retract the left and right focus lenses 24L and 24R.
  • the focusing unit 24A may be configured to change the focal position by moving the left and right focus lenses 24L and 24R in the optical axis direction (simultaneously), or the left and right focus lenses 24L and 24R It may be configured to change the focal length by changing the refractive power of 24R (simultaneously).
  • the optical path deflecting unit 25A inserts / withdraws the left and right wedge prisms 25L and 25R with respect to the optical path.
  • the optical path deflecting unit 25A may be configured to simultaneously insert / retract the left and right wedge prisms 25L and 25R.
  • the optical path deflecting unit 25A changes the direction of the optical paths of the left and right light receiving systems 20L and 20R by changing the prism amounts (and prism directions) of the left and right wedge prisms 25L and 25R (simultaneously). May be configured.
  • the interval changing unit 30A changes the interval between the left and right eyepiece systems 30L and 30R.
  • the interval changing unit 30A may be configured to relatively move the left and right eyepiece systems 30L and 30R without changing the relative directions of the optical axes of each other.
  • the orientation changing unit 30B changes the relative orientation of the left and right eyepiece systems 30L and 30R.
  • the direction changing unit 30B relatively moves the left eyepiece system 30L and the right eyepiece system 30R so as to change the angle formed by the optical axes of each other.
  • This relative movement is, for example, to move the left eyepiece system 30L and the right eyepiece system 30R by the same angle in opposite rotation directions.
  • the direction of the bisector of the angle formed by the optical axes of each other is constant.
  • the control unit 100 includes a processor.
  • processor means, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), an ASIC (Application Specific Integrated Circuit), a programmable logic device (eg, SPLD (Simple ProGLD)). It means a circuit such as Programmable Logic Device (FPGA) or Field Programmable Gate Array (FPGA).
  • the control unit 100 implements the functions according to the embodiment by reading and executing a program stored in a storage circuit or a storage device, for example.
  • the control unit 100 may include a storage device that stores images acquired by the ophthalmic microscope 1 and information (images, electronic medical record information, etc.) generated by other devices. In addition, the control unit 100 can acquire an image stored in an external storage device by controlling the communication unit 400.
  • the data processing unit 200 executes various types of data processing. This data processing includes processing for forming an image, processing for processing an image, and the like. In addition, the data processing unit 200 may be capable of executing processing for analyzing images, inspection results, and measurement results, and processing for information related to the subject (electronic medical record information, etc.).
  • the data processing unit 200 includes a processor.
  • the data processing unit 200 includes a magnification changing unit 210, an image processing unit 220, and an OCT image forming unit 230.
  • the magnification changing unit 210 enlarges the image acquired by the image sensor 23.
  • This process is a so-called digital zoom process, and includes a process of cutting out a part of an image acquired by the image sensor 23 and a process of creating an enlarged image of the part.
  • the image clipping range is set by the observer or by the control unit 100.
  • the magnification changing unit 210 performs the same processing on the image (left image) acquired by the image sensor 23L of the left light receiving system 20L and the image (right image) acquired by the image sensor 23R of the right light receiving system 20R. Apply. Thereby, images of the same magnification are presented to the left eye E 0 L and the right eye E 0 R of the observer. In this way, the magnification changing unit 210 functions to change the display magnification of the image presented to the observer by processing the output from the image sensor 23 (23L, 23R).
  • the optical zoom function is realized by providing a variable magnification lens (variable lens system) in each of the left and right light receiving systems 20L and 20R.
  • a variable magnification lens variable lens system
  • Control related to the optical zoom function is executed by the control unit 100.
  • the image processing unit 220 processes signals output from the image sensors 23L and 23R. That is, the image processing unit 220 performs processing on the image of the patient's eye E obtained by the imaging elements 23L and 23R.
  • the processing executed by the image processing unit 220 is arbitrary.
  • the image processing unit 220 can execute arbitrary image processing and arbitrary analysis processing.
  • the image processing unit 220 can execute image correction (contrast correction, color correction, sharpening, etc.), feature detection (feature extraction), pattern matching, and the like.
  • the image processing unit 220 can perform RGB division of a color image and composition processing of single-color images (R image, G image, and B image) obtained thereby.
  • the processor included in the image processing unit 220 executes the above-described processing, for example, by executing application software stored in advance in the ophthalmic microscope 1 or application software available via a network.
  • the image generated by the image processing unit 220 based on the outputs from the image sensors 23L and 23R is referred to as a “processed image”.
  • processed images include image-corrected images (contrast-enhanced images, color-corrected images, sharpened images, etc.), images obtained by enhancing or extracting regions detected by feature detection, and monochromatic image synthesis There is a red free image (a composite image of a G image and a B image) obtained by the above.
  • the light receiving system 20 of the present embodiment includes a left light receiving system 20L and a right light receiving system 20R.
  • the left image acquired by the imaging device 23L (left imaging device) of the left light receiving system 20L and the right image acquired by the imaging device 23R (right imaging device) of the right light receiving system 20R are separately sent to the image processing unit 220. Entered.
  • the image processing unit 220 processes the left image and the right image separately. At this time, the image processing unit 220 performs the same process or different processes on the left image and the right image.
  • each of the left imaging element 23L and the right imaging element 23R repeatedly outputs a signal (video signal).
  • Repetitive outputs (at least a part thereof) from each of the left imaging element 23L and the right imaging element 23R are sequentially input to the image processing unit 220 via the control unit 100.
  • a signal sequentially input to the image processing unit 220 corresponds to a frame of a moving image.
  • the image processing unit 220 can perform processing on each frame.
  • the image processing unit 220 can perform processing on one or more representative frames.
  • the image processing unit 220 can apply a thinning process to frames constituting a moving image, and perform a process on each frame obtained thereby.
  • the image processing unit 220 can select one or more frames from the frames constituting the moving image, and perform processing on each selected frame.
  • the OCT image forming unit 230 forms an image of the patient's eye E based on the detection result of the interference light LC obtained by the detector 79 of the OCT unit 60.
  • the control unit 100 sends detection signals sequentially output from the detector 79 to the OCT image forming unit 230.
  • the OCT image forming unit 230 performs, for example, a Fourier transform or the like on the spectrum distribution based on the detection result obtained by the detector 79 for each series of wavelength scans (for each A line), thereby reflecting the reflection intensity profile in each A line. Form.
  • the OCT image forming unit 230 forms image data by imaging each A-line profile. Thereby, a B-scan image (cross-sectional image) and volume data (three-dimensional image data) are obtained.
  • the data processing unit 200 may have a function of analyzing the image (OCT image) formed by the OCT image forming unit 230.
  • This analysis function includes retinal thickness analysis and comparative analysis with normal eyes. Such an analysis function is executed using known application software.
  • the data processing unit 200 may have a function of analyzing an image acquired by the light receiving system 20.
  • the data processing unit 200 may include an analysis function that combines analysis of an image acquired by the light receiving system 20 and analysis of an OCT image.
  • the user interface (UI) 300 has a function for exchanging information between an observer or the like and the ophthalmic microscope 1.
  • the user interface 300 includes a display device and an operation device (input device).
  • the display device may include the display unit 31 and may include other display devices.
  • the operation device includes various hardware keys and / or software keys. It is possible to integrally configure at least a part of the operation device and at least a part of the display device.
  • a touch panel display is an example.
  • the communication unit 400 performs a process for transmitting information to another apparatus and a process for receiving information transmitted from the other apparatus.
  • the communication unit 400 may include a communication device that conforms to a predetermined network (LAN, Internet, etc.). For example, the communication unit 400 acquires information from an electronic medical record database or a medical image database via a LAN provided in a medical institution.
  • the communication unit 400 transmits images acquired by the ophthalmic microscope 1 (images acquired by the light receiving system 20, OCT images, etc.) to the external monitor substantially in real time. can do.
  • the control unit 100 controls the left and right illumination systems 10L and 10R to start irradiation of illumination light to the patient's eye E, and is acquired by the left imaging element 23L at a predetermined rate.
  • An image (left observation image) is displayed on the left display unit 31L at a predetermined frame rate
  • an image (right observation image) acquired by the right imaging element 23R at a predetermined frame rate is displayed on the right display unit 31R at a predetermined frame rate.
  • the display control of the left observation image and the display control of the right observation image are synchronized.
  • the user can perform binocular observation (stereoscopic observation) of the patient's eye E in real time via the left and right eyepiece systems 30L and 30R.
  • the user operates the left and right light receiving systems 20L and 20R so that a desired observation field is obtained.
  • the observation magnification (the magnification of the observation image displayed on the display units 31L and 31R) is also adjusted.
  • the observation magnification is changed by a digital zoom (magnification changing unit 210).
  • the user aligns the observation field with a desired part of the patient's eye E and performs an operation for instructing photographing at a desired timing.
  • This operation is a predetermined operation using the user interface 300.
  • the left and right captured images acquired by the left imaging element 23L and the right imaging element 23R in response to the imaging instruction operation are sent to the image processing unit 220 via the control unit 100.
  • the image processing unit 220 performs one or more preset processes on each of the left and right captured images acquired in step S2. Thereby, a left processed image and a right processed image are generated.
  • the control unit 100 stores the left processed image and the right processed image generated in step S3. These images are stored in the above-described storage device provided in the control unit 100, for example.
  • step S6 Stop presenting the observed image and present the processed image
  • the control unit 100 reads the left processed image and the right processed image stored in step S4 from the storage device. Further, the control unit 100 displays the left processed image instead of the left observed image displayed on the left display unit 31L, and displays the right processed image instead of the right observed image displayed on the right display unit 31R. Display. Thereby, the left processed image and the right processed image are presented to the user.
  • the control unit 100 can display a list of information (information that can be presented by a user instruction) stored in the storage device on the left display unit 31L and the right display unit 31R (list on other display devices). May be displayed). This list is displayed, for example, outside the observation image.
  • This information includes at least the processed image. Further, this information may include an OCT image acquired up to this stage, an OCT image acquired in the past, analysis data based on the OCT image (layer thickness distribution, etc.), electronic medical record information of the patient, and the like. .
  • the user can specify desired information from this list using the user interface 300.
  • the control unit 100 reads the designated information from the storage device and displays it on the left display unit 31L and the right display unit 31R. According to this configuration, desired information can be presented at a desired timing.
  • step S8 End the presentation of the processed image and restart the presentation of the observation image
  • the control unit 100 displays the left observation image instead of the left processing image displayed on the left display unit 31L, and the right processing displayed on the right display unit 31R.
  • a right observation image is displayed instead of the image.
  • step S16 The processed image is presented together with the observation image
  • the control unit 100 reads the left processed image and the right processed image stored in step S14 from the storage device. Further, the control unit 100 displays the left processed image together with the left observation image displayed on the left display unit 31L, and displays the right processed image together with the right observation image displayed on the right display unit 31R.
  • the processed image can be displayed on the observation image.
  • This process is executed using a layer function, for example. That is, the observation image is displayed on the first layer, and the processed image is displayed on the second layer.
  • the opacity (alpha value) is arbitrarily set and can be adjusted by the user, for example.
  • the observation image and the processed image can be displayed in different areas.
  • the display size of the observation image and the display size of the processed image may be changeable. For example, if you want to pay attention to the observed image, enlarge the size of the observed image (and reduce the size of the processed image), and if you want to pay attention to the processed image, increase the size of the processed image (and reduce the size of the observed image). Can do.
  • step S18 Resume observation of patient's eyes
  • the control unit 100 ends the display of the left processed image displayed on the left display unit 31L, and displays the right processed image displayed on the right display unit 31R. Terminate. Thereby, the real-time observation of the patient's eye E can be resumed.
  • the ophthalmic microscope of the present embodiment includes an illumination system (10L, 10R), a light receiving system (20L, 20R), an eyepiece system (30L, 30R), a processing unit (image processing unit 220), and a display control unit ( A control unit 100).
  • the illumination system illuminates the patient's eyes with illumination light.
  • the light receiving system guides the return light of the illumination light irradiated to the patient's eye to the imaging elements (23L, 23R).
  • the imaging device may be an external device connected to an ophthalmic microscope.
  • the eyepiece system includes a display unit (31L, 31R) and an eyepiece lens (32L, 32R) arranged on the display surface side of the display unit.
  • the processing unit processes output from the image sensor.
  • the display control unit controls the display unit to display an observation image, which is a moving image based on repetitive output from the image sensor (first display control), and the image (processed image) generated by the processing unit to the display unit. Control to display (second display control) is executed.
  • the processed image may be an image obtained by processing an image (captured image) captured by the image sensor, or a captured image itself.
  • the light receiving system (20L, 20R) may be configured to guide the return light of the illumination light from the patient's eye to each of the left imaging element (23L) and the right imaging element (23R).
  • the eyepiece system may include a left eyepiece system (31L) and a right eyepiece system (30R).
  • the left eyepiece system includes a left display unit (31L) and a left eyepiece lens (32L) disposed on the display surface side of the left display unit.
  • the right eyepiece system includes a right display unit (31R) and a right eyepiece lens (32R) disposed on the display surface side of the right display unit.
  • the display control unit controls the left display unit (31L) to display a left observation image that is a moving image based on repetitive output from the left imaging element (23L), Control for causing the right display unit (31R) to display a right observation image, which is a moving image based on repetitive output from the image sensor (23R), is executed synchronously. Further, in the second display control, the display control unit controls the left display unit (31L) to display the left processed image generated by the processing unit (data processing unit 220) based on the output from the left imaging element (23L). And control for causing the right display unit (31R) to display the right processed image generated by the processing unit based on the output from the right imaging device (23R).
  • synchronously execute means that two control timings are associated with each other.
  • the display timing of the left and right observation images (or left and right processed images) is controlled so that the left observation image (or left processed image) and the right observation image (or right processed image) are displayed substantially simultaneously.
  • the light receiving system may include a left light receiving system (20L) and a right light receiving system (20R).
  • the left light receiving system includes a left objective lens (21L), and guides return light of illumination light from the patient's eye to the left imaging element (23L) via the left objective lens.
  • the right light receiving system includes a right objective lens (21L), and guides return light of illumination light from the patient's eye to the right imaging element (23R) via the right objective lens.
  • the optical axis of the left objective lens (21L) and the optical axis of the right objective lens (21R) are arranged non-parallel to each other.
  • a processed image including a moving image can be presented to the user. Therefore, the display control unit (control unit 100) displays the moving image generated by the processing unit (image processing unit 220) on the display unit (31L, 31R) based on the repetitive output from the image sensor (23L, 23R).
  • the second display control can be executed so as to display.
  • the observation image and the processed image can be displayed separately.
  • the ophthalmic microscope includes an operation unit (user interface 300).
  • the display control unit (control unit 100) is configured to be able to switch and execute the first display control and the second display control in response to an operation using the operation unit.
  • the flowchart shown in FIG. 5 shows an example of a usage pattern realized by such a configuration.
  • the observation image and the processed image can be displayed in parallel.
  • the observation image and the processed image can be displayed side by side or superimposed. Therefore, the display control unit (control unit 100) is configured to execute the first display control and the second display control in parallel.
  • the ophthalmic microscope includes an operation unit (user interface 300).
  • the display control unit (control unit 100) continuously executes the first display control. Further, the display control unit operates to start the second display control when the first operation is performed using the operation unit, and to end the second display control when the second operation is performed.
  • the flowchart shown in FIG. 6 shows an example of a usage pattern realized by such a configuration.
  • patient eye data obtained by OCT can be presented to the user via the eyepiece system.
  • OCT image or analysis data of a patient's eye can be presented to the user via the eyepiece system.
  • settings and conditions related to OCT can be presented to the user via the eyepiece system.
  • the ophthalmic microscope according to the present embodiment is configured to acquire an observation image and a captured image using the same image sensor, and an observation system and an imaging system as in a conventional ophthalmic microscope. Therefore, there is no light loss due to branching, and the contrast of the presented image is not deteriorated. In addition, it is possible to switch between an observation image and a captured image (processed image) or present them together. Since the control for that purpose is only display control for the eyepiece system, it does not cause problems such as complication and enlargement of the apparatus and increase in weight. Thus, according to the present embodiment, clear and selective presentation of an observation image and a captured image can be realized with a simple configuration.

Abstract

Provided is an ophthalmological microscope that can, by means of a simple configuration, achieve selective presentation, clear observational images, and clear photographic images. The ophthalmological microscope according to the embodiments is provided with an illumination system, a light-receiving system, an ocular system, a processing unit, and a display control unit. The illumination system emits illumination light at a patient's eye. The light-receiving system guides return light that is illumination light from the patient's eye to an imaging element. The ocular system includes a display unit and an ocular lens that is arranged on a display-surface side of the display unit. The processing unit processes output from the imaging element. The display control unit executes first display control that causes an observational image that is a moving image based on repetitive output from the imaging element to be displayed on the display unit and second display control that causes a processed image that has been generated by the processing unit to be displayed on the display unit.

Description

眼科用顕微鏡Ophthalmic microscope
 本発明は、眼科用顕微鏡に関する。 The present invention relates to an ophthalmic microscope.
 眼科分野では眼を拡大観察するために各種の顕微鏡が使用される。そのような眼科用顕微鏡として、スリットランプ顕微鏡や手術用顕微鏡がある。また、患者眼を撮影するための撮像装置を備えた眼科用顕微鏡もある。更に、患者眼の撮影像を解析して病変部を検出できる装置も提案されている。この画像解析では、コントラスト処理やRGB分割などが用いられる。また、ウェアラブルデバイスの医療分野への応用が進められており、たとえば、ヘッドアップディスプレイやヘッドマウントディスプレイを利用して撮影像等を提示する技術が提案されている。 In the field of ophthalmology, various microscopes are used for magnifying the eyes. As such an ophthalmic microscope, there are a slit lamp microscope and a surgical microscope. There are also ophthalmic microscopes equipped with an imaging device for photographing patient's eyes. Furthermore, an apparatus that can detect a lesion by analyzing a captured image of a patient's eye has been proposed. In this image analysis, contrast processing, RGB division, or the like is used. In addition, wearable devices are being applied to the medical field. For example, a technique for presenting a captured image using a head-up display or a head-mounted display has been proposed.
国際公開第2012/172907号International Publication No. 2012/172907 特開2013-39148号公報JP 2013-39148 A 特許第5160958号明細書Japanese Patent No. 5160958 特開2015-43920号公報JP 2015-43920 A
 患者眼の撮影が可能な従来の眼科用顕微鏡は、患者眼からの戻り光を接眼レンズに導く観察系と、この観察系から分岐された戻り光を撮像装置に導く撮影系とを備える。そのため、接眼レンズに導かれる光と、撮像装置に導かれる光の双方に、分岐による光損失が発生してしまう。ヘッドアップディスプレイを利用して撮影像等を提示する場合にも、撮影像等の光束を観察像の光束に合成する部材が必要であるため、同様に光損失が発生してしまう。 A conventional ophthalmic microscope capable of photographing a patient's eye includes an observation system that guides return light from the patient's eye to an eyepiece, and an imaging system that guides return light branched from the observation system to an imaging device. Therefore, light loss due to branching occurs in both the light guided to the eyepiece lens and the light guided to the imaging device. Even when a photographic image or the like is presented using a head-up display, a member for synthesizing a light beam such as a photographic image with a light beam of an observation image is required, and thus light loss occurs similarly.
 また、ヘッドアップディスプレイを利用する場合、観察像は常にユーザに提示され、それによる観察作業を補助するために撮影像等が提示される。そのため、撮影像等のみを確認したい場合であっても、観察像を消すことができない。更に、このような構成では提示画像のコントラストが低下するため、撮影像等を観察しながら手術や診療を行うことは困難である。なお、シャッタ機構を用いれば観察像を消すことは可能であるが、装置の複雑化や大型化、重量の増加といった新たな問題が生じる。 Also, when using the head-up display, the observation image is always presented to the user, and a photographed image or the like is presented to assist the observation work. For this reason, the observation image cannot be erased even if only the photographed image or the like is to be confirmed. Further, in such a configuration, the contrast of the presented image is lowered, and it is difficult to perform surgery or medical treatment while observing a captured image or the like. Although it is possible to erase the observation image by using the shutter mechanism, new problems such as an increase in complexity and size of the apparatus and an increase in weight arise.
 本発明の目的は、観察像及び撮影像の明瞭かつ選択的な提示を簡易な構成で実現可能な眼科用顕微鏡を提供することにある。 An object of the present invention is to provide an ophthalmic microscope capable of realizing clear and selective presentation of an observation image and a captured image with a simple configuration.
 実施形態の眼科用顕微鏡は、照明系と、受光系と、接眼系と、処理部と、表示制御部とを備える。照明系は、患者眼に照明光を照射する。受光系は、患者眼からの照明光の戻り光を撮像素子に導く。接眼系は、表示部と、表示部の表示面側に配置された接眼レンズとを含む。処理部は、撮像素子からの出力を処理する。表示制御部は、撮像素子からの反復的出力に基づく動画像である観察像を表示部に表示させる第1表示制御と、処理部により生成された処理画像を表示部に表示させる第2表示制御とを実行する。 The ophthalmic microscope of the embodiment includes an illumination system, a light receiving system, an eyepiece system, a processing unit, and a display control unit. The illumination system irradiates patient eyes with illumination light. The light receiving system guides the return light of the illumination light from the patient's eye to the image sensor. The eyepiece system includes a display unit and an eyepiece lens arranged on the display surface side of the display unit. The processing unit processes output from the image sensor. The display control unit includes a first display control for displaying an observation image, which is a moving image based on repetitive output from the image sensor, on the display unit, and a second display control for displaying the processed image generated by the processing unit on the display unit. And execute.
 実施形態の眼科用顕微鏡によれば、明瞭な観察像と明瞭な撮影像との選択的な提示を簡易な構成で実現することが可能である。 According to the ophthalmic microscope of the embodiment, selective presentation of a clear observation image and a clear captured image can be realized with a simple configuration.
実施形態に係る眼科用顕微鏡の構成の一例を表す概略図である。It is a schematic diagram showing an example of composition of an ophthalmic microscope concerning an embodiment. 実施形態に係る眼科用顕微鏡の構成の一例を表す概略図である。It is a schematic diagram showing an example of composition of an ophthalmic microscope concerning an embodiment. 実施形態に係る眼科用顕微鏡の構成の一例を表す概略図である。It is a schematic diagram showing an example of composition of an ophthalmic microscope concerning an embodiment. 実施形態に係る眼科用顕微鏡の構成の一例を表す概略図である。It is a schematic diagram showing an example of composition of an ophthalmic microscope concerning an embodiment. 実施形態に係る眼科用顕微鏡の使用形態の一例を表すフローチャートである。It is a flowchart showing an example of the usage pattern of the ophthalmic microscope which concerns on embodiment. 実施形態に係る眼科用顕微鏡の使用形態の一例を表すフローチャートである。It is a flowchart showing an example of the usage pattern of the ophthalmic microscope which concerns on embodiment.
 本発明に係る眼科用顕微鏡の実施形態の例について、図面を参照しながら詳細に説明する。なお、この明細書で引用された文献の内容や任意の公知技術を、本発明の実施形態に援用できる。 Examples of embodiments of an ophthalmic microscope according to the present invention will be described in detail with reference to the drawings. In addition, the content of the literature referred by this specification and arbitrary well-known techniques can be used for embodiment of this invention.
 眼科用顕微鏡は、眼科分野における診療や手術において患者眼の拡大像を観察及び撮影するために使用される。観察や撮影の対象部位は、患者眼の任意の部位であってよく、たとえば、前眼部においては角膜や隅角や硝子体や水晶体や毛様体などであってよく、後眼部においては網膜や脈絡膜や硝子体であってよい。また、対象部位は、瞼や眼窩など眼の周辺部位であってもよい。 The ophthalmic microscope is used for observing and photographing a magnified image of a patient's eye in medical treatment and surgery in the ophthalmic field. The target site for observation or imaging may be any part of the patient's eye. For example, the anterior segment may be the cornea, corner, vitreous body, crystalline lens, ciliary body, etc. It may be the retina, choroid or vitreous. Further, the target part may be a peripheral part of the eye such as a eyelid or an eye socket.
 以下に説明する実施形態の眼科用顕微鏡はグリノー式実体顕微鏡を備えているが、他の実施形態ではガリレオ式実体顕微鏡を備えていてよい。グリノー式実体顕微鏡は、左右の光学系が個別の対物レンズを備えている点や、左右の光軸が非平行である点を特徴とし、立体像を得やすい、設計の自由度が高いといった利点を有する。一方、ガリレオ式実体顕微鏡は、左右の光学系が共通の対物レンズを備えている点や、左右の光軸が平行である点を特徴とし、他の光学系や光学素子を組み合わせ易いといった利点を有する。 Although the ophthalmic microscope of the embodiment described below includes a Greenough-type stereomicroscope, other embodiments may include a Galileo-type stereomicroscope. The Greenough-type stereomicroscope is characterized by the fact that the left and right optical systems are equipped with individual objective lenses and the fact that the left and right optical axes are non-parallel, so that it is easy to obtain a stereoscopic image and has a high degree of freedom in design. Have On the other hand, the Galileo stereomicroscope is characterized by the fact that the left and right optical systems have a common objective lens and the right and left optical axes are parallel, and has the advantage that it is easy to combine other optical systems and optical elements. Have.
 また、以下に説明する実施形態の眼科用顕微鏡は、患者眼の拡大像を観察及び撮影する機能に加えて光コヒーレンストモグラフィ(OCT)機能を備えているが、他の実施形態ではOCT機能が設けられていなくてよい。また、OCT機能の代わりに又はそれに加えて、眼科分野において使用可能な任意の計測機能、イメージング機能、測定機能、治療機能などが設けられていてよい。 In addition, the ophthalmic microscope of the embodiment described below has an optical coherence tomography (OCT) function in addition to a function of observing and photographing a magnified image of a patient's eye, but in other embodiments, the OCT function is It does not have to be provided. Further, instead of or in addition to the OCT function, any measurement function, imaging function, measurement function, treatment function, and the like that can be used in the ophthalmic field may be provided.
[構成]
 実施形態に係る眼科用顕微鏡の構成を図1~図4に示す。図1~図3は光学系の構成を示す。図1は後眼部を観察するときの光学系を示し、図2は前眼部を観察するときの光学系を示す。図3は、OCT機能を提供するための光学系を示す。図4は処理系の構成を示す。
[Constitution]
The configuration of the ophthalmic microscope according to the embodiment is shown in FIGS. 1 to 3 show the configuration of the optical system. FIG. 1 shows an optical system for observing the posterior eye part, and FIG. 2 shows an optical system for observing the anterior eye part. FIG. 3 shows an optical system for providing the OCT function. FIG. 4 shows the configuration of the processing system.
 眼科用顕微鏡1は、照明系10(10L、10R)と、受光系20(20L、20R)と、接眼系30(30L、30R)と、照射系40と、OCT系60とを備える。後眼部(網膜等)を観察するときには、患者眼Eの直前に前置レンズ90が配置される。なお、図1に示すような非接触の前置レンズ90の代わりにコンタクトレンズ等を用いることが可能である。また、隅角を観察するときにはコンタクトミラー(三面鏡等)等を用いることができる。 The ophthalmic microscope 1 includes an illumination system 10 (10L, 10R), a light receiving system 20 (20L, 20R), an eyepiece system 30 (30L, 30R), an irradiation system 40, and an OCT system 60. When observing the posterior eye part (retinal or the like), the front lens 90 is disposed immediately before the patient's eye E. A contact lens or the like can be used instead of the non-contact front lens 90 as shown in FIG. In addition, when observing the corner angle, a contact mirror (three-sided mirror or the like) can be used.
(照明系10)
 照明系10は、患者眼Eに照明光を照射する。図示は省略するが、照明系10は、照明光を発する光源や、照明野を規定する絞りや、レンズ系などを含む。照明系の構成は、従来の眼科装置(たとえば眼科手術用顕微鏡、スリットランプ顕微鏡等)と同様であってよい。
(Lighting system 10)
The illumination system 10 irradiates the patient's eye E with illumination light. Although not shown, the illumination system 10 includes a light source that emits illumination light, a diaphragm that defines an illumination field, a lens system, and the like. The configuration of the illumination system may be the same as that of a conventional ophthalmologic apparatus (for example, an ophthalmic surgical microscope, a slit lamp microscope, etc.).
 本実施形態の照明系10L及び10Rは、それぞれ受光系20L及び20Rと同軸に構成されている。具体的には、観察者の左眼ELに提示される像を取得するための左受光系20Lには、たとえばハーフミラーからなるビームスプリッタ11Lが斜設されている。ビームスプリッタ11Lは、左受光系20Lの光路に左照明系10Lの光路を結合している。左照明系10Lから出力された照明光は、ビームスプリッタ10Lにより反射され、左受光系20Lと同軸で患者眼Eを照明する。同様に、観察者の右眼ERに提示される像を取得するための右受光系20Rには、右受光系20Rの光路に右照明系10Rの光路を結合するビームスプリッタ11Rが斜設されている。 The illumination systems 10L and 10R of the present embodiment are configured coaxially with the light receiving systems 20L and 20R, respectively. Specifically, the left light receiving system 20L for acquiring an image presented to the left eye E 0 L of the observer is obliquely provided with a beam splitter 11L made of, for example, a half mirror. The beam splitter 11L couples the optical path of the left illumination system 10L to the optical path of the left light receiving system 20L. The illumination light output from the left illumination system 10L is reflected by the beam splitter 10L and illuminates the patient's eye E coaxially with the left light receiving system 20L. Similarly, the right light receiving system 20R for acquiring an image presented to the right eye E 0 R of the observer is obliquely provided with a beam splitter 11R that couples the optical path of the right illumination system 10R to the optical path of the right light receiving system 20R. Has been.
 受光系20L(20R)の光軸に対する照明光の位置を変更可能に構成することができる。この構成は、たとえば、従来の眼科手術用顕微鏡と同様に、ビームスプリッタ11L(11R)に対する照明光の照射位置を変更するための手段を設けることにより実現される。 The position of the illumination light with respect to the optical axis of the light receiving system 20L (20R) can be changed. This configuration is realized, for example, by providing means for changing the irradiation position of the illumination light with respect to the beam splitter 11L (11R) as in the conventional microscope for ophthalmic surgery.
 本例では、対物レンズ21L(21R)と患者眼Eとの間にビームスプリッタ11L(11R)が配置されているが、照明光の光路が受光系20L(20R)に結合される位置は、受光系20L(20R)の任意の位置でよい。また、照明系と受光系とが非同軸に配置されてもよい。この構成は、スリットランプ顕微鏡や眼科手術用顕微鏡などにおいて適用される。 In this example, the beam splitter 11L (11R) is arranged between the objective lens 21L (21R) and the patient's eye E, but the position where the optical path of the illumination light is coupled to the light receiving system 20L (20R) is received. It can be at any position in the system 20L (20R). Further, the illumination system and the light receiving system may be arranged non-coaxially. This configuration is applied to a slit lamp microscope, an ophthalmic surgical microscope, and the like.
(受光系20)
 本実施形態では、左右一対の受光系20L及び20Rが設けられている。左受光系20Lは、観察者の左眼ELに提示される像を取得するための構成を有し、右受光系20Rは、右眼ERに提示される像を取得するための構成を有する。左受光系20Lと右受光系20Rは同じ構成を備える。左受光系20L(右受光系20R)は、対物レンズ21L(21R)と、結像レンズ22L(22R)と、撮像素子23L(23R)とを含む。
(Light receiving system 20)
In the present embodiment, a pair of left and right light receiving systems 20L and 20R are provided. The left light receiving system 20L has a configuration for acquiring an image presented to the left eye E 0 L of the observer, and the right light receiving system 20R is used to acquire an image presented to the right eye E 0 R. It has a configuration. The left light receiving system 20L and the right light receiving system 20R have the same configuration. The left light receiving system 20L (right light receiving system 20R) includes an objective lens 21L (21R), an imaging lens 22L (22R), and an image sensor 23L (23R).
 なお、結像レンズ22L(22R)が設けられていない構成を適用することも可能である。本実施形態のように結像レンズ22L(22R)が設けられている場合、対物レンズ21L(21R)と結像レンズ22L(22R)との間をアフォーカルな光路(平行光路)とすることができ、フィルタ等の光学素子を配置することや、光路結合部材を配置して他の光学系からの光路を結合することが容易になる(すなわち、光学的構成の自由度や拡張性が向上される)。 Note that a configuration in which the imaging lens 22L (22R) is not provided may be applied. When the imaging lens 22L (22R) is provided as in the present embodiment, an afocal optical path (parallel optical path) is formed between the objective lens 21L (21R) and the imaging lens 22L (22R). It is easy to arrange optical elements such as filters and to couple optical paths from other optical systems by arranging optical path coupling members (that is, the degree of freedom and expandability of the optical configuration is improved). )
 符号AL1は、左受光系20Lの対物レンズ21Lの光軸(対物光軸)を示し、符号AR1は、右受光系20Rの対物レンズ21Rの光軸(対物光軸)を示す。受光素子23L(23R)は、たとえばCCDイメージセンサやCMOSイメージセンサ等のエリアセンサである。 Symbol AL1 indicates the optical axis (objective optical axis) of the objective lens 21L of the left light receiving system 20L, and symbol AR1 indicates the optical axis (objective optical axis) of the objective lens 21R of the right light receiving system 20R. The light receiving element 23L (23R) is an area sensor such as a CCD image sensor or a CMOS image sensor.
 以上は、患者眼Eの後眼部(眼底)を観察するときの受光系20の構成である(図1)。一方、前眼部を観察するときには、図2に示すように、対物レンズ21L(21R)に対して患者眼E側の位置に、フォーカスレンズ24L(24R)とウェッジプリズム25L(25R)とが配置される。本例のフォーカスレンズ24L(24R)は凹レンズであり、対物レンズ21L(21R)の焦点距離を延長するように作用する。ウェッジプリズム25L(25R)は、左受光系20L(右受光系20R)の光路(対物光軸AL1(AR1))を所定角度だけ外側に偏向する(符号AL2及びAR2で示す)。このように、フォーカスレンズ24L及びウェッジプリズム25Lが左受光系20Lに配置され、かつ、フォーカスレンズ24R及びウェッジプリズム25Rが右受光系20Rに配置されることにより、後眼部観察用の焦点位置F1から前眼部観察用の焦点位置F2に切り替えられる。 The above is the configuration of the light receiving system 20 when observing the posterior segment (fundus) of the patient's eye E (FIG. 1). On the other hand, when observing the anterior segment, as shown in FIG. 2, the focus lens 24L (24R) and the wedge prism 25L (25R) are arranged at the position on the patient's eye E side with respect to the objective lens 21L (21R). Is done. The focus lens 24L (24R) of this example is a concave lens, and acts to extend the focal length of the objective lens 21L (21R). The wedge prism 25L (25R) deflects the optical path (objective optical axis AL1 (AR1)) of the left light receiving system 20L (right light receiving system 20R) outward by a predetermined angle (indicated by symbols AL2 and AR2). As described above, the focus lens 24L and the wedge prism 25L are arranged in the left light receiving system 20L, and the focus lens 24R and the wedge prism 25R are arranged in the right light receiving system 20R, whereby the focal position F1 for observing the posterior eye part is observed. To the focal position F2 for anterior ocular segment observation.
 フォーカスレンズとして凸レンズを用いることが可能である。その場合、フォーカスレンズは、後眼部観察時に光路に配置され、前眼部観察時に光路から退避される。フォーカスレンズの挿入/退避によって焦点距離を切り替える代わりに、たとえば光軸方向に移動可能なフォーカスレンズを設けることにより焦点距離を連続的又は段階的に変更できるように構成することが可能である。 A convex lens can be used as the focus lens. In this case, the focus lens is disposed in the optical path when observing the posterior eye part, and is retracted from the optical path when observing the anterior eye part. Instead of switching the focal length by inserting / retracting the focus lens, for example, by providing a focus lens that can move in the optical axis direction, the focal length can be changed continuously or stepwise.
 図2に示す例では、ウェッジプリズム25L(25R)の基底方向は外側である(つまりベースアウト配置である)が、ベースイン配置のウェッジプリズムを用いることができる。その場合、ウェッジプリズムは、後眼部観察時に光路に配置され、前眼部観察時に光路から退避される。ウェッジプリズムの挿入/退避によって光路の方向を切り替える代わりに、プリズム量(及びプリズム方向)が可変なプリズムを設けることにより光路の向きを連続的又は段階的に変更できるように構成することが可能である。 In the example shown in FIG. 2, the wedge prism 25L (25R) has a base direction outside (that is, a base-out arrangement), but a base-in arrangement wedge prism can be used. In this case, the wedge prism is disposed in the optical path when observing the posterior eye part, and is retracted from the optical path when observing the anterior eye part. Instead of switching the direction of the optical path by inserting / retracting the wedge prism, it is possible to change the direction of the optical path continuously or stepwise by providing a prism with a variable prism amount (and prism direction). is there.
(接眼系30)
 本実施形態では、左右一対の接眼系30L及び30Rが設けられている。左接眼系30Lは、左受光系20Lにより取得された患者眼Eの像を観察者の左眼ELに提示するための構成を有し、右接眼系30Rは、右受光系20Rにより取得された患者眼Eの像を右眼ERに提示するための構成を有する。左接眼系30Lと右接眼系30Rは同じ構成を備える。左接眼系30L(右接眼系30R)は、表示部31L(31R)と、接眼レンズ32L(32R)とを含む。表示部31L(31R)は、たとえばLCD等のフラットパネルディスプレイである。
(Eyepiece 30)
In the present embodiment, a pair of left and right eyepiece systems 30L and 30R are provided. Acquiring left eyepiece system 30L has a configuration to present an image of the obtained patient's eye E by the left light receiving system 20L on the viewer's left eye E 0 L, right ocular system 30R is the right light receiving system 20R having a configuration for presenting an image of the patient's eye E, which is the right eye E 0 R. The left eyepiece system 30L and the right eyepiece system 30R have the same configuration. The left eyepiece system 30L (right eyepiece system 30R) includes a display unit 31L (31R) and an eyepiece lens 32L (32R). Display unit 31L (31R) is a flat panel display such as an LCD, for example.
 左接眼系30Lと右接眼系30Rとの間隔を変更することが可能である。それにより、左接眼系30Lと右接眼系30Rとの間隔を観察者の眼幅に応じて調整することができる。また、左接眼系30Lと右接眼系30Rとの相対的向きを変更することが可能である。つまり、左接眼系30Lの光軸と右接眼系30Rの光軸とがなす角度を変更することが可能である。それにより、両眼EL及びERの輻輳を誘発することができ、観察者による立体視を支援することができる。 It is possible to change the interval between the left eyepiece system 30L and the right eyepiece system 30R. Thereby, the interval between the left eyepiece system 30L and the right eyepiece system 30R can be adjusted according to the eye width of the observer. In addition, the relative orientation of the left eyepiece system 30L and the right eyepiece system 30R can be changed. That is, the angle formed by the optical axis of the left eyepiece system 30L and the optical axis of the right eyepiece system 30R can be changed. Thereby, the convergence of both eyes E 0 L and E 0 R can be induced, and stereoscopic viewing by the observer can be supported.
(照射系40)
 照射系40は、OCT計測を行うための光(測定光)を、受光系20の対物光軸(AL1及びAR1、並びにAL2及びAR2)と異なる方向から患者眼Eに照射する。他の実施形態において、照射系は、OCTのための測定光に加え、他の光を患者眼に照射可能であってよい。その具体例として、レーザ治療のための光(照準光、治療用レーザ光)がある。
(Irradiation system 40)
The irradiation system 40 irradiates the patient's eye E with light (measurement light) for performing OCT measurement from a direction different from the objective optical axes (AL1 and AR1, and AL2 and AR2) of the light receiving system 20. In other embodiments, the illumination system may be capable of irradiating the patient's eye with other light in addition to the measurement light for OCT. Specific examples thereof include light for laser treatment (aiming light, treatment laser light).
 照射系40は、光スキャナ41と、結像レンズ42と、リレーレンズ43と、偏向ミラー44とを含む。光スキャナ41にはOCT部60からの光が導かれる。 The irradiation system 40 includes an optical scanner 41, an imaging lens 42, a relay lens 43, and a deflection mirror 44. Light from the OCT unit 60 is guided to the optical scanner 41.
 OCT部60からの光(測定光)は、光ファイバ51により導かれ、そのファイバ端面から出射する。このファイバ端面に臨む位置には、コリメートレンズ52が配置されている。コリメートレンズ52によって平行光束とされた測定光は、光スキャナ41に導かれる。 The light (measurement light) from the OCT section 60 is guided by the optical fiber 51 and emitted from the end face of the fiber. A collimating lens 52 is disposed at a position facing the fiber end face. The measurement light converted into a parallel light beam by the collimator lens 52 is guided to the optical scanner 41.
 光スキャナ41は、2次元光スキャナであり、水平方向(x方向)へ光を偏向するxスキャナ41Hと、垂直方向(y方向)へ光を偏向するyスキャナ41Vとを含む。xスキャナ41H及びyスキャナ41Vは、それぞれ任意の形態の光スキャナであってよく、たとえばガルバノミラーが使用される。光スキャナ41は、たとえば、コリメートレンズ52の射出瞳位置又はその近傍位置に配置される。更に、光スキャナ41は、たとえば、結像レンズ42の入射瞳位置又はその近傍位置に配置される。 The optical scanner 41 is a two-dimensional optical scanner, and includes an x scanner 41H that deflects light in the horizontal direction (x direction) and a y scanner 41V that deflects light in the vertical direction (y direction). Each of the x scanner 41H and the y scanner 41V may be an arbitrary type of optical scanner, and for example, a galvanometer mirror is used. The optical scanner 41 is disposed, for example, at the exit pupil position of the collimating lens 52 or a position in the vicinity thereof. Furthermore, the optical scanner 41 is disposed, for example, at the entrance pupil position of the imaging lens 42 or a position in the vicinity thereof.
 本例のように2つの1次元光スキャナを組み合わせて2次元光スキャナを構成する場合、2つの1次元光スキャナは所定距離(たとえば10mm程度)だけ離れて配置されるので、たとえば、いずれかの1次元光スキャナを上記射出瞳位置及び/又は上記入射瞳位置に配置することができる。 When a two-dimensional optical scanner is configured by combining two one-dimensional optical scanners as in this example, the two one-dimensional optical scanners are arranged apart from each other by a predetermined distance (for example, about 10 mm). A one-dimensional optical scanner can be placed at the exit pupil position and / or the entrance pupil position.
 結像レンズ42は、光スキャナ41を通過した平行光束(測定光)を一旦結像させる。更に、この測定光を患者眼E(眼底、角膜等の観察部位)において再結像させるために、この光をリレーレンズ43によりリレーし、偏向ミラー44により患者眼Eに向けて反射する。 The imaging lens 42 once forms an image of the parallel light flux (measurement light) that has passed through the optical scanner 41. Further, in order to re-image this measurement light in the patient's eye E (observation site such as fundus and cornea), this light is relayed by the relay lens 43 and reflected by the deflection mirror 44 toward the patient's eye E.
 照射系40により導かれてきた測定光が受光系20の対物光軸(AL1及びAR1、並びにAL2及びAR2)と異なる方向から患者眼Eに照射されるように、偏向ミラー44の位置は予め決定されている。本例では、互いの対物光軸が非平行に配置された左受光系20Lと右受光系20Rとの間の位置に偏向ミラー44が配置されている。このような配置を可能にする要因の一つに、リレーレンズ43を配置したことによる光学的構成の自由度の向上がある。また、たとえば、水平方向の光スキャナ(本例ではxスキャナ41H)と共役な位置と、対物レンズ21L及び21Rとの間の距離を十分に小さく設計することが可能となるため、装置の小型化を図ることができる。 The position of the deflection mirror 44 is determined in advance so that the measurement light guided by the irradiation system 40 is irradiated to the patient's eye E from a direction different from the objective optical axis (AL1 and AR1, and AL2 and AR2) of the light receiving system 20. Has been. In this example, the deflection mirror 44 is disposed at a position between the left light receiving system 20L and the right light receiving system 20R where the respective objective optical axes are disposed non-parallel. One of the factors enabling such an arrangement is an improvement in the degree of freedom of the optical configuration due to the arrangement of the relay lens 43. Further, for example, the distance between the position conjugate with the horizontal optical scanner (x scanner 41H in this example) and the objective lenses 21L and 21R can be designed to be sufficiently small. Can be achieved.
 一般に、光スキャナ41によるスキャン可能範囲(スキャン可能角度)は制限されているので、焦点距離が可変な結像レンズ42(又は結像レンズ系)を適用することによってスキャン可能範囲を拡大することが可能である。その他にも、スキャン可能範囲を拡大するための任意の構成を適用することが可能である。また、焦点距離(OCT計測におけるフォーカス位置)を変更するための手段の例として、コリメートレンズ52、結像レンズ42及びリレーレンズ43のうちのいずれか1つ以上を光軸に沿って移動可能とした構成がある。 In general, since the scanable range (scannable angle) by the optical scanner 41 is limited, the scanable range can be expanded by applying the imaging lens 42 (or imaging lens system) having a variable focal length. Is possible. In addition, any configuration for expanding the scannable range can be applied. Further, as an example of means for changing the focal length (focus position in OCT measurement), any one or more of the collimating lens 52, the imaging lens 42, and the relay lens 43 can be moved along the optical axis. There is a configuration.
(OCT部60)
 OCT部60は、OCTを実行するための干渉光学系を含む。OCT部60の構成の例を図3に示す。図3に示す光学系は、スウェプトソースOCTの例であり、波長掃引型光源(波長可変光源)からの光を測定光と参照光とに分割し、患者眼Eからの測定光の戻り光と参照光路を経由した参照光とを干渉させて干渉光を生成し、この干渉光を検出する。干渉光学系による干渉光の検出結果(検出信号)は、干渉光のスペクトルを示す信号であり、制御部100に送られる。
(OCT section 60)
The OCT unit 60 includes an interference optical system for performing OCT. An example of the configuration of the OCT unit 60 is shown in FIG. The optical system shown in FIG. 3 is an example of a swept source OCT, which divides light from a wavelength sweep type light source (wavelength variable light source) into measurement light and reference light, and returns return light of measurement light from the patient eye E. Interference light is generated by interfering with the reference light passing through the reference light path, and this interference light is detected. The detection result (detection signal) of the interference light by the interference optical system is a signal indicating the spectrum of the interference light, and is sent to the control unit 100.
 光源ユニット61は、一般的なスウェプトソースタイプのOCT装置と同様に、出射光の波長を走査(掃引)可能な波長掃引型光源を含む。光源ユニット61は、人眼では視認できない近赤外の波長帯において、出力波長を時間的に変化させる。 The light source unit 61 includes a wavelength swept light source capable of scanning (sweeping) the wavelength of the emitted light, as in a general swept source type OCT apparatus. The light source unit 61 temporally changes the output wavelength in the near-infrared wavelength band that cannot be visually recognized by the human eye.
 光源ユニット61から出力された光L0は、光ファイバ62により偏波コントローラ63に導かれてその偏光状態が調整され、光ファイバ64によりファイバカプラ65に導かれて測定光LSと参照光LRとに分割される。 The light L0 output from the light source unit 61 is guided to the polarization controller 63 by the optical fiber 62 and its polarization state is adjusted. The light L0 is guided to the fiber coupler 65 by the optical fiber 64 and converted into the measurement light LS and the reference light LR. Divided.
 参照光LRは、光ファイバ66Aによりコリメータ67に導かれて平行光束に変換され、光路長補正部材68及び分散補償部材69を経由し、コーナーキューブ70に導かれる。光路長補正部材68は、参照光LRの光路長(光学距離)と測定光LSの光路長とを合わせるための遅延手段として作用する。分散補償部材69は、参照光LRと測定光LSとの間の分散特性を合わせるための分散補償手段として作用する。 The reference light LR is guided to a collimator 67 by an optical fiber 66A, converted into a parallel light beam, and guided to a corner cube 70 via an optical path length correction member 68 and a dispersion compensation member 69. The optical path length correction member 68 functions as a delay unit for matching the optical path length (optical distance) of the reference light LR with the optical path length of the measurement light LS. The dispersion compensation member 69 acts as a dispersion compensation means for matching the dispersion characteristics between the reference light LR and the measurement light LS.
 コーナーキューブ70は、参照光LRの進行方向を逆方向に折り返す。コーナーキューブ70は、参照光LRの入射光路及び出射光路に沿う方向に移動可能とされ、それにより参照光LRの光路の長さが変更される。なお、測定光LSの光路の長さを変更するための手段と、参照光LRの光路の長さを変更するための手段のうちのいずれか一方が設けられていればよい。 The corner cube 70 folds the traveling direction of the reference light LR in the reverse direction. The corner cube 70 is movable in a direction along the incident optical path and the outgoing optical path of the reference light LR, thereby changing the length of the optical path of the reference light LR. Note that any one of a means for changing the length of the optical path of the measurement light LS and a means for changing the length of the optical path of the reference light LR may be provided.
 コーナーキューブ70を経由した参照光LRは、分散補償部材69及び光路長補正部材68を経由し、コリメータ71によって平行光束から集束光束に変換されて光ファイバ72に入射し、偏波コントローラ73に導かれて参照光LRの偏光状態が調整される。更に、参照光LRは、光ファイバ74によりアッテネータ75に導かれて、制御部100の制御の下で光量が調整される。光量が調整された参照光LRは、光ファイバ76によりファイバカプラ77に導かれる。 The reference light LR that has passed through the corner cube 70 passes through the dispersion compensation member 69 and the optical path length correction member 68, is converted from a parallel light beam into a focused light beam by the collimator 71, enters the optical fiber 72, and is guided to the polarization controller 73. Accordingly, the polarization state of the reference light LR is adjusted. Further, the reference light LR is guided to the attenuator 75 by the optical fiber 74, and the light amount is adjusted under the control of the control unit 100. The reference light LR whose light amount has been adjusted is guided to the fiber coupler 77 by the optical fiber 76.
 一方、ファイバカプラ65により生成された測定光LSは、光ファイバ51により導かれてファイバ端面から出射され、コリメータレンズ52により平行光束とされる。平行光束にされた測定光LSは、光スキャナ41、結像レンズ42、リレーレンズ43及び偏向ミラー44を経由して患者眼Eに照射される。測定光LSは、患者眼Eの様々な深さ位置において反射・散乱される。患者眼Eからの測定光LSの戻り光は、反射光や後方散乱光を含み、往路と同じ経路を逆向きに進行してファイバカプラ65に導かれ、光ファイバ66Bを経由してファイバカプラ77に到達する。 On the other hand, the measurement light LS generated by the fiber coupler 65 is guided by the optical fiber 51 and emitted from the end face of the fiber, and is converted into a parallel light beam by the collimator lens 52. The measurement light LS converted into a parallel light beam is irradiated to the patient's eye E via the optical scanner 41, the imaging lens 42, the relay lens 43, and the deflection mirror 44. The measurement light LS is reflected and scattered at various depth positions of the patient's eye E. The return light of the measurement light LS from the patient's eye E includes reflected light and backscattered light, travels in the same direction as the forward path in the reverse direction, is guided to the fiber coupler 65, and passes through the optical fiber 66B to the fiber coupler 77. To reach.
 ファイバカプラ77は、光ファイバ66Bを介して入射された測定光LSと、光ファイバ76を介して入射された参照光LRとを合成して(干渉させて)干渉光を生成する。ファイバカプラ77は、所定の分岐比(たとえば1:1)でこの干渉光を分割することにより、一対の干渉光LCを生成する。ファイバカプラ77から出射した一対の干渉光LCは、それぞれ光ファイバ78A及び78Bにより検出器79に導かれる。 The fiber coupler 77 combines the measurement light LS incident through the optical fiber 66B and the reference light LR incident through the optical fiber 76 to generate interference light. The fiber coupler 77 generates a pair of interference light LC by dividing the interference light at a predetermined branching ratio (for example, 1: 1). The pair of interference lights LC emitted from the fiber coupler 77 are guided to the detector 79 by optical fibers 78A and 78B, respectively.
 検出器79は、たとえば一対の干渉光LCをそれぞれ検出する一対のフォトディテクタを含み、これらによる検出結果の差分を出力するバランスドフォトダイオード(Balanced Photo Diode)である。検出器79は、その検出結果(検出信号)を制御部100に送る。 The detector 79 is, for example, a balanced photodiode (Balanced Photo Diode) that includes a pair of photodetectors that respectively detect a pair of interference light LC and outputs a difference between detection results obtained by these. The detector 79 sends the detection result (detection signal) to the control unit 100.
 本例ではスウェプトソースOCTが適用されているが、他のタイプのOCT、たとえばスペクトラルドメインOCTを適用することが可能である。 In this example, the swept source OCT is applied, but other types of OCT, such as a spectral domain OCT, can be applied.
(制御部100)
 制御部100は、眼科用顕微鏡1の各部の制御を実行する(図4参照)。照明系10の制御の例として次のものがある:光源の点灯、消灯、光量調整;絞りの調整;スリット照明が可能な場合にはスリット幅の調整。撮像素子23の制御として、露光調整やゲイン調整や撮影レート調整などがある。
(Control unit 100)
The control unit 100 executes control of each unit of the ophthalmic microscope 1 (see FIG. 4). Examples of control of the illumination system 10 include the following: turning on / off the light source, adjusting the amount of light; adjusting the diaphragm; adjusting the slit width when slit illumination is possible. Control of the image sensor 23 includes exposure adjustment, gain adjustment, and shooting rate adjustment.
 制御部100は、各種の情報を表示部31に表示させる。たとえば、制御部100は、撮像素子23Lにより取得された画像(又はそれを処理して得られた画像やデータ)を表示部31Lに表示させ、かつ、撮像素子23Rにより取得された画像(又はそれを処理して得られた画像やデータ)を表示部31Rに表示させる。 The control unit 100 displays various information on the display unit 31. For example, the control unit 100 displays an image (or an image or data obtained by processing the image) acquired by the image sensor 23L on the display unit 31L, and an image (or the image acquired by the image sensor 23R). The image or data obtained by processing is displayed on the display unit 31R.
 光スキャナ41の制御は、たとえば、予め設定されたOCTスキャンパターンに応じた複数の位置に測定光LSが照射されるように、測定光LSを順次に偏向するものである。 The control of the optical scanner 41 is to sequentially deflect the measurement light LS so that the measurement light LS is irradiated to a plurality of positions according to a preset OCT scan pattern, for example.
 OCT部60に含まれる制御対象としては、光源ユニット61、偏波コントローラ63、コーナーキューブ70、偏波コントローラ73、アッテネータ75、検出器79などがある。 Control targets included in the OCT unit 60 include a light source unit 61, a polarization controller 63, a corner cube 70, a polarization controller 73, an attenuator 75, a detector 79, and the like.
 更に、制御部100は、各種の機構を制御する。そのような機構としては、ステレオ角変更部20A、合焦部24A、光路偏向部25A、間隔変更部30A、及び向き変更部30Bが設けられている。 Furthermore, the control unit 100 controls various mechanisms. As such a mechanism, a stereo angle changing unit 20A, a focusing unit 24A, an optical path deflecting unit 25A, an interval changing unit 30A, and an orientation changing unit 30B are provided.
 ステレオ角変更部20Aは、左受光系20Lと右受光系20Rとを相対的に回転移動する。すなわち、ステレオ角変更部20Aは、互いの対物光軸(たとえばAL1とAR1)がなす角度を変更するように左受光系20Lと右受光系20Rとを相対移動させる。この相対移動は、たとえば、左受光系20Lと右受光系20Rとを反対の回転方向に同じ角度だけ移動させるものである。この移動態様においては、互いの対物光軸(たとえばAL1とAR1)がなす角の二等分線の向きは一定である。一方、当該二等分線の向きが変化するように上記相対移動を行うことも可能である。 The stereo angle changing unit 20A relatively rotates and moves the left light receiving system 20L and the right light receiving system 20R. That is, the stereo angle changing unit 20A relatively moves the left light receiving system 20L and the right light receiving system 20R so as to change the angle formed by the objective optical axes (for example, AL1 and AR1). This relative movement is, for example, to move the left light receiving system 20L and the right light receiving system 20R by the same angle in opposite rotational directions. In this movement mode, the direction of the angle bisector formed by the objective optical axes (for example, AL1 and AR1) is constant. On the other hand, it is also possible to perform the relative movement so that the direction of the bisector changes.
 合焦部24Aは、左右のフォーカスレンズ24L及び24Rを光路に対して挿入/退避させる。合焦部24Aは、左右のフォーカスレンズ24L及び24Rを同時に挿入/退避させるように構成されていてよい。他の例において、合焦部24Aは、左右のフォーカスレンズ24L及び24Rを(同時に)光軸方向に移動させることによって焦点位置を変更するように構成されてよく、或いは、左右のフォーカスレンズ24L及び24Rの屈折力を(同時に)変更することによって焦点距離を変更するように構成されてよい。 The focusing unit 24A inserts / withdraws the left and right focus lenses 24L and 24R from the optical path. The focusing unit 24A may be configured to simultaneously insert / retract the left and right focus lenses 24L and 24R. In another example, the focusing unit 24A may be configured to change the focal position by moving the left and right focus lenses 24L and 24R in the optical axis direction (simultaneously), or the left and right focus lenses 24L and 24R It may be configured to change the focal length by changing the refractive power of 24R (simultaneously).
 光路偏向部25Aは、左右のウェッジプリズム25L及び25Rを光路に対して挿入/退避させる。光路偏向部25Aは、左右のウェッジプリズム25L及び25Rを同時に挿入/退避させるように構成されていてよい。他の例において、光路偏向部25Aは、左右のウェッジプリズム25L及び25Rのプリズム量(及びプリズム方向)を(同時に)変更することによって左右の受光系20L及び20Rの光路の向きを変更するように構成されてよい。 The optical path deflecting unit 25A inserts / withdraws the left and right wedge prisms 25L and 25R with respect to the optical path. The optical path deflecting unit 25A may be configured to simultaneously insert / retract the left and right wedge prisms 25L and 25R. In another example, the optical path deflecting unit 25A changes the direction of the optical paths of the left and right light receiving systems 20L and 20R by changing the prism amounts (and prism directions) of the left and right wedge prisms 25L and 25R (simultaneously). May be configured.
 間隔変更部30Aは、左右の接眼系30L及び30Rの間隔を変更する。間隔変更部30Aは、互いの光軸の相対的向きを変化させずに左右の接眼系30L及び30Rを相対的に移動するように構成されてよい。 The interval changing unit 30A changes the interval between the left and right eyepiece systems 30L and 30R. The interval changing unit 30A may be configured to relatively move the left and right eyepiece systems 30L and 30R without changing the relative directions of the optical axes of each other.
 向き変更部30Bは、左右の接眼系30L及び30Rの相対的向きを変更する。向き変更部30Bは、互いの光軸がなす角度を変更するように左接眼系30Lと右接眼系30Rとを相対移動させる。この相対移動は、たとえば、左接眼系30Lと右接眼系30Rとを反対の回転方向に同じ角度だけ移動させるものである。この移動態様においては、互いの光軸がなす角の二等分線の向きは一定である。一方、当該二等分線の向きが変化するように上記相対移動を行うことも可能である。 The orientation changing unit 30B changes the relative orientation of the left and right eyepiece systems 30L and 30R. The direction changing unit 30B relatively moves the left eyepiece system 30L and the right eyepiece system 30R so as to change the angle formed by the optical axes of each other. This relative movement is, for example, to move the left eyepiece system 30L and the right eyepiece system 30R by the same angle in opposite rotation directions. In this movement mode, the direction of the bisector of the angle formed by the optical axes of each other is constant. On the other hand, it is also possible to perform the relative movement so that the direction of the bisector changes.
 制御部100はプロセッサを含む。本明細書において「プロセッサ」は、たとえば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、ASIC(Application Specific Integrated Circuit)、プログラマブル論理デバイス(たとえば、SPLD(Simple Programmable Logic Device)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array))等の回路を意味する。制御部100は、たとえば、記憶回路や記憶装置に格納されているプログラムを読み出し実行することで、実施形態に係る機能を実現する。 The control unit 100 includes a processor. In this specification, “processor” means, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), an ASIC (Application Specific Integrated Circuit), a programmable logic device (eg, SPLD (Simple ProGLD)). It means a circuit such as Programmable Logic Device (FPGA) or Field Programmable Gate Array (FPGA). The control unit 100 implements the functions according to the embodiment by reading and executing a program stored in a storage circuit or a storage device, for example.
 制御部100は、眼科用顕微鏡1により取得された画像や、他の装置により生成された情報(画像、電子カルテ情報等)が記憶される記憶装置を備えていてよい。また、制御部100は、通信部400を制御することにより、外部の記憶装置に格納されている画像を取得することができる。 The control unit 100 may include a storage device that stores images acquired by the ophthalmic microscope 1 and information (images, electronic medical record information, etc.) generated by other devices. In addition, the control unit 100 can acquire an image stored in an external storage device by controlling the communication unit 400.
(データ処理部200)
 データ処理部200は、各種のデータ処理を実行する。このデータ処理には、画像を形成する処理や、画像を加工する処理などが含まれる。また、データ処理部200は、画像や検査結果や測定結果を解析する処理や、被検者に関する情報(電子カルテ情報等)に関する処理を実行可能であってよい。データ処理部200はプロセッサを含む。データ処理部200には、倍率変更部210と、画像処理部220と、OCT画像形成部230とが含まれる。
(Data processing unit 200)
The data processing unit 200 executes various types of data processing. This data processing includes processing for forming an image, processing for processing an image, and the like. In addition, the data processing unit 200 may be capable of executing processing for analyzing images, inspection results, and measurement results, and processing for information related to the subject (electronic medical record information, etc.). The data processing unit 200 includes a processor. The data processing unit 200 includes a magnification changing unit 210, an image processing unit 220, and an OCT image forming unit 230.
(倍率変更部210)
 倍率変更部210は、撮像素子23により取得された画像を拡大する。この処理は、いわゆるデジタルズーム処理であり、撮像素子23により取得された画像の一部を切り取る処理と、その部分の拡大画像を作成する処理とを含む。画像の切り取り範囲は、観察者により又は制御部100により設定される。倍率変更部210は、左受光系20Lの撮像素子23Lにより取得された画像(左画像)と、右受光系20Rの撮像素子23Rにより取得された画像(右画像)とに対して、同じ処理を施す。それにより、観察者の左眼ELと右眼ERとに同じ倍率の画像が提示される。このように、倍率変更部210は、撮像素子23(23L、23R)からの出力を処理することにより、観察者に提示される画像の表示倍率を変更するよう機能する。
(Magnification change unit 210)
The magnification changing unit 210 enlarges the image acquired by the image sensor 23. This process is a so-called digital zoom process, and includes a process of cutting out a part of an image acquired by the image sensor 23 and a process of creating an enlarged image of the part. The image clipping range is set by the observer or by the control unit 100. The magnification changing unit 210 performs the same processing on the image (left image) acquired by the image sensor 23L of the left light receiving system 20L and the image (right image) acquired by the image sensor 23R of the right light receiving system 20R. Apply. Thereby, images of the same magnification are presented to the left eye E 0 L and the right eye E 0 R of the observer. In this way, the magnification changing unit 210 functions to change the display magnification of the image presented to the observer by processing the output from the image sensor 23 (23L, 23R).
 このようなデジタルズーム機能に加えて、いわゆる光学ズーム機能を設けることが可能である。光学ズーム機能は、左右の受光系20L及び20Rのそれぞれに変倍レンズ(変倍レンズ系)を設けることにより実現される。具体例として、変倍レンズを(選択的に)光路に対して挿入/退避する構成や、変倍レンズを光軸方向に移動させる構成がある。光学ズーム機能に関する制御は制御部100によって実行される。 In addition to such a digital zoom function, a so-called optical zoom function can be provided. The optical zoom function is realized by providing a variable magnification lens (variable lens system) in each of the left and right light receiving systems 20L and 20R. As a specific example, there is a configuration in which the variable magnification lens is (selectively) inserted / retracted with respect to the optical path, or a configuration in which the variable magnification lens is moved in the optical axis direction. Control related to the optical zoom function is executed by the control unit 100.
(画像処理部220)
 画像処理部220は、撮像素子23L及び23Rから出力された信号を処理する。つまり、画像処理部220は、撮像素子23L及び23Rにより得られた患者眼Eの画像に処理を施す。
(Image processing unit 220)
The image processing unit 220 processes signals output from the image sensors 23L and 23R. That is, the image processing unit 220 performs processing on the image of the patient's eye E obtained by the imaging elements 23L and 23R.
 画像処理部220が実行する処理は任意である。画像処理部220は、任意の画像処理や任意の解析処理を実行可能である。たとえば、画像処理部220は、画像補正(コントラスト補正、色補正、鮮鋭化等)、特徴検出(特徴抽出)、パターンマッチングなどを実行可能である。また、画像処理部220は、カラー画像のRGB分割や、これにより得られた単色画像(R画像、G画像及びB画像)の合成処理を行うことができる。 The processing executed by the image processing unit 220 is arbitrary. The image processing unit 220 can execute arbitrary image processing and arbitrary analysis processing. For example, the image processing unit 220 can execute image correction (contrast correction, color correction, sharpening, etc.), feature detection (feature extraction), pattern matching, and the like. Further, the image processing unit 220 can perform RGB division of a color image and composition processing of single-color images (R image, G image, and B image) obtained thereby.
 画像処理部220に含まれるプロセッサは、眼科用顕微鏡1に予め格納されたアプリケーションソフトウェア又はネットワーク経由で利用可能なアプリケーションソフトウェアを実行することにより、たとえば上記の処理を実行する。 The processor included in the image processing unit 220 executes the above-described processing, for example, by executing application software stored in advance in the ophthalmic microscope 1 or application software available via a network.
 画像処理部220が撮像素子23L及び23Rからの出力に基づき生成する画像を「処理画像」と呼ぶ。処理画像の例として、画像補正が施された画像(コントラスト強調画像、色補正画像、鮮鋭化画像等)、特徴検出により検出された領域を強調又は抽出して得られた画像、単色画像の合成により得られたレッドフリー画像(G画像とB画像との合成画像)などがある。 The image generated by the image processing unit 220 based on the outputs from the image sensors 23L and 23R is referred to as a “processed image”. Examples of processed images include image-corrected images (contrast-enhanced images, color-corrected images, sharpened images, etc.), images obtained by enhancing or extracting regions detected by feature detection, and monochromatic image synthesis There is a red free image (a composite image of a G image and a B image) obtained by the above.
 本実施形態の受光系20は、左受光系20Lと右受光系20Rとを備える。左受光系20Lの撮像素子23L(左撮像素子)により取得された左画像と、右受光系20Rの撮像素子23R(右撮像素子)により取得された右画像とは、別々に画像処理部220に入力される。画像処理部220は、左画像と右画像とを別々に処理する。このとき、画像処理部220は、左画像と右画像とに同一の処理又は異なる処理を施す。左画像及び右画像が動画像である場合、左撮像素子23L及び右撮像素子23Rのそれぞれは反復的に信号(映像信号)を出力する。左撮像素子23L及び右撮像素子23Rのそれぞれからの反復的出力(その少なくとも一部)は、制御部100を介して画像処理部220に逐次に入力される。画像処理部220に逐次に入力される信号は動画像のフレームに相当する。画像処理部220は、各フレームに対して処理を施すことができる。或いは、画像処理部220は、1以上の代表的なフレームに対して処理を施すことができる。たとえば、画像処理部220は、動画像を構成するフレームに間引き処理を適用し、それにより得られた各フレームに対して処理を施すことができる。また、画像処理部220は、動画像を構成するフレームから1以上のフレームを選択し、選択された各フレームに対して処理を施すことができる。 The light receiving system 20 of the present embodiment includes a left light receiving system 20L and a right light receiving system 20R. The left image acquired by the imaging device 23L (left imaging device) of the left light receiving system 20L and the right image acquired by the imaging device 23R (right imaging device) of the right light receiving system 20R are separately sent to the image processing unit 220. Entered. The image processing unit 220 processes the left image and the right image separately. At this time, the image processing unit 220 performs the same process or different processes on the left image and the right image. When the left image and the right image are moving images, each of the left imaging element 23L and the right imaging element 23R repeatedly outputs a signal (video signal). Repetitive outputs (at least a part thereof) from each of the left imaging element 23L and the right imaging element 23R are sequentially input to the image processing unit 220 via the control unit 100. A signal sequentially input to the image processing unit 220 corresponds to a frame of a moving image. The image processing unit 220 can perform processing on each frame. Alternatively, the image processing unit 220 can perform processing on one or more representative frames. For example, the image processing unit 220 can apply a thinning process to frames constituting a moving image, and perform a process on each frame obtained thereby. In addition, the image processing unit 220 can select one or more frames from the frames constituting the moving image, and perform processing on each selected frame.
(OCT画像形成部230)
 OCT画像形成部230は、OCT部60の検出器79により得られた干渉光LCの検出結果に基づいて、患者眼Eの画像を形成する。制御部100は、検出器79から順次に出力される検出信号をOCT画像形成部230に送る。OCT画像形成部230は、たとえば一連の波長走査毎に(Aライン毎に)、検出器79により得られた検出結果に基づくスペクトル分布にフーリエ変換等を施すことにより、各Aラインにおける反射強度プロファイルを形成する。更に、OCT画像形成部230は、各Aラインプロファイルを画像化することにより画像データを形成する。それにより、Bスキャン像(断面像)やボリュームデータ(3次元画像データ)が得られる。
(OCT image forming unit 230)
The OCT image forming unit 230 forms an image of the patient's eye E based on the detection result of the interference light LC obtained by the detector 79 of the OCT unit 60. The control unit 100 sends detection signals sequentially output from the detector 79 to the OCT image forming unit 230. The OCT image forming unit 230 performs, for example, a Fourier transform or the like on the spectrum distribution based on the detection result obtained by the detector 79 for each series of wavelength scans (for each A line), thereby reflecting the reflection intensity profile in each A line. Form. Further, the OCT image forming unit 230 forms image data by imaging each A-line profile. Thereby, a B-scan image (cross-sectional image) and volume data (three-dimensional image data) are obtained.
 データ処理部200は、OCT画像形成部230により形成された画像(OCT画像)を解析する機能を備えていてよい。この解析機能としては、網膜厚解析や、正常眼との比較解析などがある。このような解析機能は、公知のアプリケーションソフトウェアを用いて実行される。また、データ処理部200は、受光系20により取得された画像を解析する機能を備えていてよい。また、データ処理部200は、受光系20により取得された画像の解析とOCT画像の解析とを組み合わせた解析機能を備えていてもよい。 The data processing unit 200 may have a function of analyzing the image (OCT image) formed by the OCT image forming unit 230. This analysis function includes retinal thickness analysis and comparative analysis with normal eyes. Such an analysis function is executed using known application software. Further, the data processing unit 200 may have a function of analyzing an image acquired by the light receiving system 20. The data processing unit 200 may include an analysis function that combines analysis of an image acquired by the light receiving system 20 and analysis of an OCT image.
(ユーザインターフェイス300)
 ユーザインターフェイス(UI)300は、観察者等と眼科用顕微鏡1との間で情報のやりとりを行うための機能を備える。ユーザインターフェイス300は、表示デバイスと操作デバイス(入力デバイス)とを含む。表示デバイスは、表示部31を含んでよく、それ以外の表示デバイスを含んでもよい。操作デバイスは、各種のハードウェアキー及び/又はソフトウェアキーを含む。操作デバイスの少なくとも一部と表示デバイスの少なくとも一部とを一体的に構成することが可能である。タッチパネルディスプレイはその一例である。
(User interface 300)
The user interface (UI) 300 has a function for exchanging information between an observer or the like and the ophthalmic microscope 1. The user interface 300 includes a display device and an operation device (input device). The display device may include the display unit 31 and may include other display devices. The operation device includes various hardware keys and / or software keys. It is possible to integrally configure at least a part of the operation device and at least a part of the display device. A touch panel display is an example.
(通信部400)
 通信部400は、他の装置に情報を送信する処理と、他の装置から送られた情報を受信する処理とを行う。通信部400は、既定のネットワーク(LAN、インターネット等)に準拠した通信デバイスを含んでいてよい。たとえば、通信部400は、医療機関内に設けられたLANを介して、電子カルテデータベースや医用画像データベースから情報を取得する。また、外部モニタが設けられている場合、通信部400は、眼科用顕微鏡1により取得される画像(受光系20により取得される画像、OCT画像等)を、実質的にリアルタイムで外部モニタに送信することができる。
(Communication unit 400)
The communication unit 400 performs a process for transmitting information to another apparatus and a process for receiving information transmitted from the other apparatus. The communication unit 400 may include a communication device that conforms to a predetermined network (LAN, Internet, etc.). For example, the communication unit 400 acquires information from an electronic medical record database or a medical image database via a LAN provided in a medical institution. When an external monitor is provided, the communication unit 400 transmits images acquired by the ophthalmic microscope 1 (images acquired by the light receiving system 20, OCT images, etc.) to the external monitor substantially in real time. can do.
[使用形態]
 本実施形態の眼科用顕微鏡の使用形態について説明する。眼科用顕微鏡の使用形態の一例を図5に示す。
[Usage form]
A usage pattern of the ophthalmic microscope of the present embodiment will be described. An example of the usage form of the ophthalmic microscope is shown in FIG.
(S1:患者眼の観察を開始する)
 ユーザが所定の操作を行うと、制御部100は、左右の照明系10L及び10Rを制御して患者眼Eへの照明光の照射を開始させるとともに、左撮像素子23Lにより所定レートで取得される画像(左観察像)を左表示部31Lに所定フレームレートで表示させ、かつ、右撮像素子23Rにより所定レートで取得される画像(右観察像)を右表示部31Rに所定フレームレートで表示させる。このとき、左観察像の表示制御と右観察像の表示制御とは同期されている。ユーザは、左右の接眼系30L及び30Rを介して患者眼Eをリアルタイムで双眼観察(立体観察)することができる。
(S1: Start observation of patient's eyes)
When the user performs a predetermined operation, the control unit 100 controls the left and right illumination systems 10L and 10R to start irradiation of illumination light to the patient's eye E, and is acquired by the left imaging element 23L at a predetermined rate. An image (left observation image) is displayed on the left display unit 31L at a predetermined frame rate, and an image (right observation image) acquired by the right imaging element 23R at a predetermined frame rate is displayed on the right display unit 31R at a predetermined frame rate. . At this time, the display control of the left observation image and the display control of the right observation image are synchronized. The user can perform binocular observation (stereoscopic observation) of the patient's eye E in real time via the left and right eyepiece systems 30L and 30R.
 ユーザは、所望の観察野が得られるように左右の受光系20L及び20Rを操作する。このとき、観察倍率(表示部31L及び31Rに表示される観察像の倍率)の調整も行われる。観察倍率は、デジタルズーム(倍率変更部210)により変更される。 The user operates the left and right light receiving systems 20L and 20R so that a desired observation field is obtained. At this time, the observation magnification (the magnification of the observation image displayed on the display units 31L and 31R) is also adjusted. The observation magnification is changed by a digital zoom (magnification changing unit 210).
(S2:患者眼を撮影する)
 ユーザは、患者眼Eの所望の部位に観察野を合わせ、所望のタイミングで撮影を指示する操作を行う。この操作は、ユーザインターフェイス300を用いた所定の操作である。撮影指示操作に対応して左撮像素子23L及び右撮像素子23Rにより取得された左右の撮影像は、制御部100を介して画像処理部220に送られる。
(S2: Photograph patient's eyes)
The user aligns the observation field with a desired part of the patient's eye E and performs an operation for instructing photographing at a desired timing. This operation is a predetermined operation using the user interface 300. The left and right captured images acquired by the left imaging element 23L and the right imaging element 23R in response to the imaging instruction operation are sent to the image processing unit 220 via the control unit 100.
(S3:撮影像を処理する)
 画像処理部220は、ステップS2で取得された左右の撮影像のそれぞれに対し、予め設定された1以上の処理を施す。それにより、左処理画像と右処理画像とが生成される。
(S3: Process the captured image)
The image processing unit 220 performs one or more preset processes on each of the left and right captured images acquired in step S2. Thereby, a left processed image and a right processed image are generated.
(S4:処理画像を格納する)
 制御部100は、ステップS3で生成された左処理画像及び右処理画像を格納する。これら画像は、たとえば、制御部100に設けられた前述の記憶装置に格納される。
(S4: Store the processed image)
The control unit 100 stores the left processed image and the right processed image generated in step S3. These images are stored in the above-described storage device provided in the control unit 100, for example.
(S5:ユーザが処理画像の提示を指示する)
 この段階では左右の観察像(動画像)が提示されている。ユーザは、所望のタイミングで、処理画像の提示を指示する操作を行う。この操作は、ユーザインターフェイス300を用いた所定の操作である。
(S5: The user instructs presentation of the processed image)
At this stage, left and right observation images (moving images) are presented. The user performs an operation to instruct the presentation of the processed image at a desired timing. This operation is a predetermined operation using the user interface 300.
(S6:観察像の提示を停止し、処理画像を提示する)
 制御部100は、ステップS5で行われた操作を受け、ステップS4で格納された左処理画像及び右処理画像を記憶装置から読み出す。更に、制御部100は、左表示部31Lに表示されている左観察像に代えて左処理画像を表示させ、かつ、右表示部31Rに表示されている右観察像に代えて右処理画像を表示させる。それにより、左処理画像と右処理画像とがユーザに提示される。
(S6: Stop presenting the observed image and present the processed image)
In response to the operation performed in step S5, the control unit 100 reads the left processed image and the right processed image stored in step S4 from the storage device. Further, the control unit 100 displays the left processed image instead of the left observed image displayed on the left display unit 31L, and displays the right processed image instead of the right observed image displayed on the right display unit 31R. Display. Thereby, the left processed image and the right processed image are presented to the user.
 なお、制御部100は、記憶装置に格納されている情報(ユーザの指示により提示可能な情報)のリストを左表示部31L及び右表示部31Rに表示させることができる(他の表示デバイスにリストを表示させてもよい)。このリストは、たとえば、観察像の外部に表示される。この情報には、処理画像が少なくとも含まれる。更に、この情報は、この段階までに取得されたOCT画像、過去に取得されたOCT画像、OCT画像に基づく解析データ(層厚分布等)、当該患者の電子カルテ情報などを含んでいてもよい。ユーザは、ユーザインターフェイス300を用いて、このリストから所望の情報を指定することができる。制御部100は、指定された情報を記憶装置から読み出して左表示部31L及び右表示部31Rに表示させる。この構成によれば、所望の情報を所望のタイミングで提示することができる。 The control unit 100 can display a list of information (information that can be presented by a user instruction) stored in the storage device on the left display unit 31L and the right display unit 31R (list on other display devices). May be displayed). This list is displayed, for example, outside the observation image. This information includes at least the processed image. Further, this information may include an OCT image acquired up to this stage, an OCT image acquired in the past, analysis data based on the OCT image (layer thickness distribution, etc.), electronic medical record information of the patient, and the like. . The user can specify desired information from this list using the user interface 300. The control unit 100 reads the designated information from the storage device and displays it on the left display unit 31L and the right display unit 31R. According to this configuration, desired information can be presented at a desired timing.
(S7:ユーザが観察の再開を指示する)
 処理画像の確認が完了したら、ユーザは、観察像の提示を指示する操作、つまり観察の再開を指示する操作を行う。この操作は、ユーザインターフェイス300を用いた所定の操作である。
(S7: The user gives an instruction to resume observation)
When the confirmation of the processed image is completed, the user performs an operation for instructing presentation of an observation image, that is, an operation for instructing resumption of observation. This operation is a predetermined operation using the user interface 300.
(S8:処理画像の提示を終了し、観察像の提示を再開する)
 制御部100は、ステップS7で行われた操作を受け、左表示部31Lに表示されている左処理画像に代えて左観察像を表示させ、かつ、右表示部31Rに表示されている右処理画像に代えて右観察像を表示させる。それにより、患者眼Eのリアルタイム観察を再開することができる。
(S8: End the presentation of the processed image and restart the presentation of the observation image)
In response to the operation performed in step S7, the control unit 100 displays the left observation image instead of the left processing image displayed on the left display unit 31L, and the right processing displayed on the right display unit 31R. A right observation image is displayed instead of the image. Thereby, the real-time observation of the patient's eye E can be resumed.
(他の使用形態)
 図5に示す使用形態では、観察像と処理画像とが互いに排他的に表示される。つまり、観察像と処理画像とが切り替え表示される。これに対し、観察像と処理画像とを並行して表示させることも可能である。このような使用形態の例を図6に示す。ステップS11~S15は、それぞれ、図5のステップS1~S5と同じ要領で行われる。
(Other usage patterns)
In the usage pattern shown in FIG. 5, the observation image and the processed image are displayed exclusively with each other. That is, the observation image and the processed image are switched and displayed. On the other hand, it is also possible to display the observation image and the processed image in parallel. An example of such usage is shown in FIG. Steps S11 to S15 are performed in the same manner as steps S1 to S5 in FIG.
(S16:観察像とともに処理画像を提示する)
 制御部100は、ステップS15で行われた操作を受け、ステップS14で格納された左処理画像及び右処理画像を記憶装置から読み出す。更に、制御部100は、左表示部31Lに表示されている左観察像とともに左処理画像を表示させ、かつ、右表示部31Rに表示されている右観察像とともに右処理画像を表示させる。
(S16: The processed image is presented together with the observation image)
In response to the operation performed in step S15, the control unit 100 reads the left processed image and the right processed image stored in step S14 from the storage device. Further, the control unit 100 displays the left processed image together with the left observation image displayed on the left display unit 31L, and displays the right processed image together with the right observation image displayed on the right display unit 31R.
 このとき、観察像に重ねて処理画像を表示することができる。この処理は、たとえば、レイヤ機能を利用して実行される。つまり、第1レイヤに観察像が表示され、第2レイヤに処理画像が表示される。不透明度(アルファ値)は任意に設定され、たとえばユーザにより調整可能とされる。 At this time, the processed image can be displayed on the observation image. This process is executed using a layer function, for example. That is, the observation image is displayed on the first layer, and the processed image is displayed on the second layer. The opacity (alpha value) is arbitrarily set and can be adjusted by the user, for example.
 或いは、観察像と処理画像とを異なる領域に表示させることができる。この場合、観察像の表示サイズと処理画像の表示サイズとが変更可能であってよい。たとえば、観察像に注目したいときには観察像のサイズを拡大し(かつ処理画像のサイズを縮小し)、処理画像に注目したいときには処理画像のサイズを拡大する(かつ観察像のサイズを縮小する)ことができる。 Alternatively, the observation image and the processed image can be displayed in different areas. In this case, the display size of the observation image and the display size of the processed image may be changeable. For example, if you want to pay attention to the observed image, enlarge the size of the observed image (and reduce the size of the processed image), and if you want to pay attention to the processed image, increase the size of the processed image (and reduce the size of the observed image). Can do.
(S17:ユーザが処理画像の提示の終了を指示する)
 処理画像の確認が完了したら、ユーザは、処理画像の提示の終了を指示する操作、つまり観察の再開を指示する操作を行う。この操作は、ユーザインターフェイス300を用いた所定の操作である。
(S17: The user instructs the end of the presentation of the processed image)
When the confirmation of the processed image is completed, the user performs an operation for instructing to end the presentation of the processed image, that is, an operation for instructing to resume observation. This operation is a predetermined operation using the user interface 300.
(S18:患者眼の観察を再開する)
 制御部100は、ステップS17で行われた操作を受け、左表示部31Lに表示されている左処理画像の表示を終了させ、かつ、右表示部31Rに表示されている右処理画像の表示を終了させる。それにより、患者眼Eのリアルタイム観察を再開することができる。
(S18: Resume observation of patient's eyes)
In response to the operation performed in step S17, the control unit 100 ends the display of the left processed image displayed on the left display unit 31L, and displays the right processed image displayed on the right display unit 31R. Terminate. Thereby, the real-time observation of the patient's eye E can be resumed.
[作用・効果]
 本実施形態の眼科用顕微鏡の作用及び効果について説明する。
[Action / Effect]
The operation and effect of the ophthalmic microscope of the present embodiment will be described.
 本実施形態の眼科用顕微鏡は、照明系(10L、10R)と、受光系(20L、20R)と、接眼系(30L、30R)と、処理部(画像処理部220)と、表示制御部(制御部100)とを備える。 The ophthalmic microscope of the present embodiment includes an illumination system (10L, 10R), a light receiving system (20L, 20R), an eyepiece system (30L, 30R), a processing unit (image processing unit 220), and a display control unit ( A control unit 100).
 照明系は、患者眼に照明光を照射する。受光系は、患者眼に照射された照明光の戻り光を撮像素子(23L、23R)に導く。ここで、撮像素子は、眼科用顕微鏡に接続された外部デバイスであってもよい。接眼系は、表示部(31L、31R)と、表示部の表示面側に配置された接眼レンズ(32L、32R)とを含む。処理部は、撮像素子からの出力を処理する。表示制御部は、撮像素子からの反復的出力に基づく動画像である観察像を表示部に表示させる制御(第1表示制御)と、処理部により生成された画像(処理画像)を表示部に表示させる制御(第2表示制御)とを実行する。なお、処理画像は、撮像素子によりキャプチャされた画像(撮影像)を処理して得られた画像、又は撮影像自体であってよい。 The illumination system illuminates the patient's eyes with illumination light. The light receiving system guides the return light of the illumination light irradiated to the patient's eye to the imaging elements (23L, 23R). Here, the imaging device may be an external device connected to an ophthalmic microscope. The eyepiece system includes a display unit (31L, 31R) and an eyepiece lens (32L, 32R) arranged on the display surface side of the display unit. The processing unit processes output from the image sensor. The display control unit controls the display unit to display an observation image, which is a moving image based on repetitive output from the image sensor (first display control), and the image (processed image) generated by the processing unit to the display unit. Control to display (second display control) is executed. The processed image may be an image obtained by processing an image (captured image) captured by the image sensor, or a captured image itself.
 実施形態において、受光系(20L、20R)は、患者眼からの照明光の戻り光を左撮像素子(23L)及び右撮像素子(23R)のそれぞれに導くよう構成されてよい。また、接眼系は、左接眼系(31L)と右接眼系(30R)とを備えてよい。左接眼系は、左表示部(31L)と、この左表示部の表示面側に配置された左接眼レンズ(32L)とを含む。右接眼系は、右表示部(31R)と、この右表示部の表示面側に配置された右接眼レンズ(32R)とを含む。表示制御部(制御部100)は、第1表示制御において、左撮像素子(23L)からの反復的出力に基づく動画像である左観察像を左表示部(31L)に表示させる制御と、右撮像素子(23R)からの反復的出力に基づく動画像である右観察像を右表示部(31R)に表示させる制御とを同期的に実行する。更に、表示制御部は、第2表示制御において、左撮像素子(23L)からの出力に基づき処理部(データ処理部220)により生成された左処理画像を左表示部(31L)に表示させる制御と、右撮像素子(23R)からの出力に基づき処理部により生成された右処理画像を右表示部(31R)に表示させる制御とを同期的に実行する。 In the embodiment, the light receiving system (20L, 20R) may be configured to guide the return light of the illumination light from the patient's eye to each of the left imaging element (23L) and the right imaging element (23R). The eyepiece system may include a left eyepiece system (31L) and a right eyepiece system (30R). The left eyepiece system includes a left display unit (31L) and a left eyepiece lens (32L) disposed on the display surface side of the left display unit. The right eyepiece system includes a right display unit (31R) and a right eyepiece lens (32R) disposed on the display surface side of the right display unit. In the first display control, the display control unit (control unit 100) controls the left display unit (31L) to display a left observation image that is a moving image based on repetitive output from the left imaging element (23L), Control for causing the right display unit (31R) to display a right observation image, which is a moving image based on repetitive output from the image sensor (23R), is executed synchronously. Further, in the second display control, the display control unit controls the left display unit (31L) to display the left processed image generated by the processing unit (data processing unit 220) based on the output from the left imaging element (23L). And control for causing the right display unit (31R) to display the right processed image generated by the processing unit based on the output from the right imaging device (23R).
 ここで、「同期的に実行する」とは、2つの制御のタイミングが互いに対応付けられていることを意味する。たとえば、左観察像(又は左処理画像)と右観察像(又は右処理画像)とが実質的に同時に表示されるように、左右の観察像(又は左右の処理画像)の表示タイミングが制御される。 Here, “synchronously execute” means that two control timings are associated with each other. For example, the display timing of the left and right observation images (or left and right processed images) is controlled so that the left observation image (or left processed image) and the right observation image (or right processed image) are displayed substantially simultaneously. The
 更に、受光系は、左受光系(20L)と右受光系(20R)とを備えていてよい。左受光系は、左対物レンズ(21L)を含み、患者眼からの照明光の戻り光を左対物レンズを介して左撮像素子(23L)に導く。右受光系は、右対物レンズ(21L)を含み、患者眼からの照明光の戻り光を右対物レンズを介して右撮像素子(23R)に導く。更に、左対物レンズ(21L)の光軸と右対物レンズ(21R)の光軸とは互いに非平行に配置されている。 Furthermore, the light receiving system may include a left light receiving system (20L) and a right light receiving system (20R). The left light receiving system includes a left objective lens (21L), and guides return light of illumination light from the patient's eye to the left imaging element (23L) via the left objective lens. The right light receiving system includes a right objective lens (21L), and guides return light of illumination light from the patient's eye to the right imaging element (23R) via the right objective lens. Furthermore, the optical axis of the left objective lens (21L) and the optical axis of the right objective lens (21R) are arranged non-parallel to each other.
 実施形態において、動画像からなる処理画像をユーザに提示することができる。そのために、表示制御部(制御部100)は、撮像素子(23L、23R)からの反復的出力に基づき処理部(画像処理部220)により生成された動画像を表示部(31L、31R)に表示させるように第2表示制御を実行することができる。 In the embodiment, a processed image including a moving image can be presented to the user. Therefore, the display control unit (control unit 100) displays the moving image generated by the processing unit (image processing unit 220) on the display unit (31L, 31R) based on the repetitive output from the image sensor (23L, 23R). The second display control can be executed so as to display.
 実施形態において、観察像と処理画像とを別々に表示することができる。そのために、眼科用顕微鏡は操作部(ユーザインターフェイス300)を備える。表示制御部(制御部100)は、操作部を用いた操作に対応して第1表示制御と第2表示制御とを切り替えて実行できるように構成される。図5に記載のフローチャートは、このような構成により実現される使用形態の例を示している。 In the embodiment, the observation image and the processed image can be displayed separately. For this purpose, the ophthalmic microscope includes an operation unit (user interface 300). The display control unit (control unit 100) is configured to be able to switch and execute the first display control and the second display control in response to an operation using the operation unit. The flowchart shown in FIG. 5 shows an example of a usage pattern realized by such a configuration.
 実施形態において、観察像と処理画像とを並行して表示することができる。たとえば、観察像と処理画像とを並べて又は重ねて表示することができる。そのために、表示制御部(制御部100)は、第1表示制御と第2表示制御とを並行して実行できるように構成される。 In the embodiment, the observation image and the processed image can be displayed in parallel. For example, the observation image and the processed image can be displayed side by side or superimposed. Therefore, the display control unit (control unit 100) is configured to execute the first display control and the second display control in parallel.
 このような並行表示の例として、観察像を常時表示させつつ、ユーザからの指示に応じて処理画像の表示をオン/オフできるように構成することが可能である。そのために、眼科用顕微鏡は操作部(ユーザインターフェイス300)を備える。表示制御部(制御部100)は、第1表示制御を継続的に実行する。更に、表示制御部は、操作部を用いて第1操作が行われたときに第2表示制御を開始し、かつ、第2操作が行われたときに第2表示制御を終了するよう動作する。図6に記載のフローチャートは、このような構成により実現される使用形態の例を示している。 As an example of such parallel display, it is possible to configure the display of the processed image to be turned on / off according to an instruction from the user while always displaying the observation image. For this purpose, the ophthalmic microscope includes an operation unit (user interface 300). The display control unit (control unit 100) continuously executes the first display control. Further, the display control unit operates to start the second display control when the first operation is performed using the operation unit, and to end the second display control when the second operation is performed. . The flowchart shown in FIG. 6 shows an example of a usage pattern realized by such a configuration.
 実施形態において、OCTによって得られた患者眼のデータを接眼系を介してユーザに提示することができる。たとえば、患者眼のOCT画像や解析データを提示することが可能である。また、OCTに関する設定や条件を接眼系を介してユーザに提示することができる。たとえば、OCTスキャンの範囲を表す情報を観察像や撮影像に重ねて提示することが可能である。 In the embodiment, patient eye data obtained by OCT can be presented to the user via the eyepiece system. For example, it is possible to present an OCT image or analysis data of a patient's eye. In addition, settings and conditions related to OCT can be presented to the user via the eyepiece system. For example, it is possible to present information representing the range of the OCT scan superimposed on the observation image or the captured image.
 以上のように、本実施形態に係る眼科用顕微鏡は、観察像と撮影像とを同じ撮像素子を用いて取得するよう構成されており、従来の眼科用顕微鏡のように観察系と撮影系とを分岐させる部材を備えていないため、分岐による光損失が無く、提示画像のコントラストが劣化することもない。また、観察像と撮影像(処理画像)とを切り替えて提示したり、それらをともに提示したりすることができる。そのための制御は、接眼系に対する表示制御だけであるため、装置の複雑化や大型化、重量の増加といった問題を発生させることはない。このように、本実施形態によれば、観察像及び撮影像の明瞭かつ選択的な提示を簡易な構成で実現することが可能である。 As described above, the ophthalmic microscope according to the present embodiment is configured to acquire an observation image and a captured image using the same image sensor, and an observation system and an imaging system as in a conventional ophthalmic microscope. Therefore, there is no light loss due to branching, and the contrast of the presented image is not deteriorated. In addition, it is possible to switch between an observation image and a captured image (processed image) or present them together. Since the control for that purpose is only display control for the eyepiece system, it does not cause problems such as complication and enlargement of the apparatus and increase in weight. Thus, according to the present embodiment, clear and selective presentation of an observation image and a captured image can be realized with a simple configuration.
 上記の実施形態は、本発明を実施するための例示に過ぎない。本発明を実施しようとする者は、本発明の要旨の範囲内において任意の変形、省略、追加、置換等を施すことが可能である。 The above embodiment is merely an example for carrying out the present invention. A person who intends to implement the present invention can make arbitrary modifications, omissions, additions, substitutions and the like within the scope of the present invention.
1 眼科用顕微鏡
10L、10R 照明系
20L、20R 受光系
23L、23R 撮像素子
30L、30R 接眼系
31L、31R 表示部
32L、32R 接眼レンズ
100 制御部
220 画像処理部
1 Ophthalmic Microscope 10L, 10R Illumination System 20L, 20R Light Receiving System 23L, 23R Image Sensor 30L, 30R Eyepiece System 31L, 31R Display Unit 32L, 32R Eyepiece 100 Control Unit 220 Image Processing Unit

Claims (8)

  1.  患者眼に照明光を照射する照明系と、
     前記患者眼からの前記照明光の戻り光を撮像素子に導く受光系と、
     表示部と、前記表示部の表示面側に配置された接眼レンズとを含む接眼系と、
     前記撮像素子からの出力を処理する処理部と、
     前記撮像素子からの反復的出力に基づく動画像である観察像を前記表示部に表示させる第1表示制御と、前記処理部により生成された処理画像を前記表示部に表示させる第2表示制御とを実行する表示制御部と
     を備える眼科用顕微鏡。
    An illumination system that emits illumination light to the patient's eyes;
    A light receiving system for guiding the return light of the illumination light from the patient's eye to an image sensor;
    An eyepiece system including a display unit and an eyepiece disposed on a display surface side of the display unit;
    A processing unit for processing the output from the image sensor;
    A first display control for displaying an observation image, which is a moving image based on repetitive output from the image sensor, on the display unit; a second display control for displaying the processed image generated by the processing unit on the display unit; An ophthalmic microscope comprising: a display control unit that executes
  2.  前記受光系は、前記患者眼からの前記照明光の戻り光を左撮像素子及び右撮像素子のそれぞれに導き、
     前記接眼系は、
     左表示部と前記左表示部の表示面側に配置された左接眼レンズとを含む左接眼系と、
     右表示部と前記右表示部の表示面側に配置された右接眼レンズとを含む右接眼系と
     を備え、
     前記表示制御部は、
     前記第1表示制御において、前記左撮像素子からの反復的出力に基づく動画像である左観察像を前記左表示部に表示させる制御と、前記右撮像素子からの反復的出力に基づく動画像である右観察像を前記右表示部に表示させる制御とを同期的に実行し、
     前記第2表示制御において、前記左撮像素子からの出力に基づき前記処理部により生成された左処理画像を前記左表示部に表示させる制御と、前記右撮像素子からの出力に基づき前記処理部により生成された右処理画像を前記右表示部に表示させる制御とを同期的に実行する
     ことを特徴とする請求項1に記載の眼科用顕微鏡。
    The light receiving system guides the return light of the illumination light from the patient's eye to each of the left image sensor and the right image sensor,
    The eyepiece system is
    A left eyepiece system including a left display portion and a left eyepiece lens disposed on the display surface side of the left display portion;
    A right eyepiece system including a right display portion and a right eyepiece lens disposed on the display surface side of the right display portion,
    The display control unit
    In the first display control, the left display image, which is a moving image based on repetitive output from the left image sensor, is displayed on the left display unit, and the moving image is based on repetitive output from the right image sensor. A control to display a right observation image on the right display unit synchronously,
    In the second display control, the left processing image generated by the processing unit based on the output from the left imaging device is displayed on the left display unit, and the processing unit based on the output from the right imaging device. 2. The ophthalmic microscope according to claim 1, wherein control for displaying the generated right processed image on the right display unit is executed synchronously.
  3.  前記受光系は、
     左対物レンズを含み、前記患者眼からの前記照明光の戻り光を前記左対物レンズを介して前記左撮像素子に導く左受光系と、
     右対物レンズを含み、前記患者眼からの前記照明光の戻り光を前記右対物レンズを介して前記右撮像素子に導く右受光系と
     を備え、
     前記左対物レンズの光軸と前記右対物レンズの光軸とが非平行に配置されている
     ことを特徴とする請求項2に記載の眼科用顕微鏡。
    The light receiving system is
    A left light receiving system that includes a left objective lens and guides the return light of the illumination light from the patient's eye to the left imaging element via the left objective lens;
    A right light receiving system that includes a right objective lens and guides the return light of the illumination light from the patient's eye to the right imaging element through the right objective lens,
    The ophthalmic microscope according to claim 2, wherein the optical axis of the left objective lens and the optical axis of the right objective lens are arranged non-parallel to each other.
  4.  前記表示制御部は、前記第2表示制御において、前記撮像素子からの反復的出力に基づき前記処理部により生成された動画像を前記表示部に表示させる
     ことを特徴とする請求項1~請求項3のいずれか一項に記載の眼科用顕微鏡。
    The display control unit causes the display unit to display a moving image generated by the processing unit based on repetitive output from the imaging device in the second display control. The ophthalmic microscope according to any one of 3.
  5.  操作部を更に備え、
     前記表示制御部は、前記操作部を用いた操作に対応して前記第1表示制御と前記第2表示制御とを切り替えて実行する
     ことを特徴とする請求項1~請求項4のいずれか一項に記載の眼科用顕微鏡。
    It further includes an operation unit,
    5. The display control unit according to claim 1, wherein the display control unit switches between the first display control and the second display control in response to an operation using the operation unit. The ophthalmic microscope according to Item.
  6.  前記表示制御部は、前記第1表示制御と前記第2表示制御とを並行して実行可能である
     ことを特徴とする請求項1~請求項4のいずれか一項に記載の眼科用顕微鏡。
    The ophthalmic microscope according to any one of claims 1 to 4, wherein the display control unit is capable of executing the first display control and the second display control in parallel.
  7.  操作部を更に備え、
     前記表示制御部は、前記第1表示制御を継続的に実行し、
     前記操作部を用いて第1操作が行われたときに前記第2表示制御を開始し、かつ、第2操作が行われたときに前記第2表示制御を終了する
     ことを特徴とする請求項6に記載の眼科用顕微鏡。
    It further includes an operation unit,
    The display control unit continuously executes the first display control,
    The second display control is started when a first operation is performed using the operation unit, and the second display control is ended when a second operation is performed. The ophthalmic microscope according to 6.
  8.  OCT光源からの光を測定光と参照光とに分割し、前記患者眼からの前記測定光の戻り光と前記参照光との干渉光を検出するOCT系と、
     前記干渉光の検出結果を処理してデータを生成するOCTデータ生成部と
     を備え、
     前記表示制御部は、前記OCTデータ生成部により生成されたデータを前記表示部に表示させる第3表示制御を実行する
     ことを特徴とする請求項1~請求項7のいずれか一項に記載の眼科用顕微鏡。
    An OCT system that splits light from an OCT light source into measurement light and reference light, and detects interference light between the return light of the measurement light from the patient's eye and the reference light;
    An OCT data generation unit that processes the detection result of the interference light and generates data;
    8. The display control unit according to claim 1, wherein the display control unit executes a third display control for causing the display unit to display data generated by the OCT data generation unit. Ophthalmic microscope.
PCT/JP2016/053284 2015-06-30 2016-02-03 Ophthalmological microscope WO2017002380A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015132086A JP6505527B2 (en) 2015-06-30 2015-06-30 Ophthalmic microscope
JP2015-132086 2015-06-30

Publications (1)

Publication Number Publication Date
WO2017002380A1 true WO2017002380A1 (en) 2017-01-05

Family

ID=57609315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053284 WO2017002380A1 (en) 2015-06-30 2016-02-03 Ophthalmological microscope

Country Status (2)

Country Link
JP (1) JP6505527B2 (en)
WO (1) WO2017002380A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020020959A1 (en) * 2018-07-24 2020-01-30 Sony Corporation Distributed image processing system in operating theater

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3925582A4 (en) 2019-03-07 2022-04-13 Sony Group Corporation Surgical microscope system, image processing method, program, and image processing device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012172907A1 (en) * 2011-06-14 2012-12-20 株式会社トプコン Slit-lamp microscope
JP2013527775A (en) * 2010-03-23 2013-07-04 ニューロビジョン イメージング,エルエルシー Apparatus and method for imaging an eye
JP2013540538A (en) * 2010-10-26 2013-11-07 ハーグ−シュトライト アーゲー Optometry device with digital image output

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5632386B2 (en) * 2008-11-26 2014-11-26 カール ツアイス メディテック アクチエンゲゼルシャフト Imaging system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013527775A (en) * 2010-03-23 2013-07-04 ニューロビジョン イメージング,エルエルシー Apparatus and method for imaging an eye
JP2013540538A (en) * 2010-10-26 2013-11-07 ハーグ−シュトライト アーゲー Optometry device with digital image output
WO2012172907A1 (en) * 2011-06-14 2012-12-20 株式会社トプコン Slit-lamp microscope

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020020959A1 (en) * 2018-07-24 2020-01-30 Sony Corporation Distributed image processing system in operating theater
US11896195B2 (en) 2018-07-24 2024-02-13 Sony Corporation Distributed image processing system in operating theater

Also Published As

Publication number Publication date
JP2017012431A (en) 2017-01-19
JP6505527B2 (en) 2019-04-24

Similar Documents

Publication Publication Date Title
JP6499937B2 (en) Ophthalmic microscope system
JP6502720B2 (en) Ophthalmic microscope
JP6490469B2 (en) Ophthalmic microscope system
WO2016170817A1 (en) Ophthalmic surgical microscope
JP6499936B2 (en) Ophthalmic microscope system
JP6490519B2 (en) Ophthalmic microscope system
WO2016170816A1 (en) Ophthalmic surgical microscope
JP6505539B2 (en) Ophthalmic microscope
JP6915968B2 (en) Ophthalmic Surgical Microscope
JP6538466B2 (en) Ophthalmic microscope
WO2017002380A1 (en) Ophthalmological microscope
WO2016170815A1 (en) Ophthalmic surgical microscope
EP3636137B1 (en) Ophthalmic microscope and function expansion unit
EP3620104B1 (en) Ophthalmic microscope and functionality enhancement unit
WO2017110145A1 (en) Ophthalmic microscope system
JP2017029333A (en) Ophthalmologic microscope
WO2017002383A1 (en) Opthalmologic microscope system
JP6588750B2 (en) Ophthalmic microscope system
JP6577266B2 (en) Ophthalmic microscope
JP6707162B2 (en) Ophthalmic microscope system
JP2017012536A (en) Ophthalmic microscope
JP2022091766A (en) OCT function expansion unit
WO2019044861A1 (en) Ophthalmic microscope
JP2019042478A (en) Ophthalmologic microscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817490

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16817490

Country of ref document: EP

Kind code of ref document: A1