WO2017002365A1 - Cooling device, refrigerant processing device, and refrigerant processing method - Google Patents

Cooling device, refrigerant processing device, and refrigerant processing method Download PDF

Info

Publication number
WO2017002365A1
WO2017002365A1 PCT/JP2016/003123 JP2016003123W WO2017002365A1 WO 2017002365 A1 WO2017002365 A1 WO 2017002365A1 JP 2016003123 W JP2016003123 W JP 2016003123W WO 2017002365 A1 WO2017002365 A1 WO 2017002365A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
liquid
gas
pipe
phase refrigerant
Prior art date
Application number
PCT/JP2016/003123
Other languages
French (fr)
Japanese (ja)
Inventor
広瀬 賢二
吉川 実
寿人 佐久間
雅人 矢野
明日華 松葉
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2017526183A priority Critical patent/JP6763381B2/en
Publication of WO2017002365A1 publication Critical patent/WO2017002365A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/06Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with the heat-exchange conduits forming part of, or being attached to, the tank containing the body of fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/34Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely
    • F28F1/36Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely the means being helically wound fins or wire spirals

Definitions

  • the present invention relates to a cooling device, a refrigerant processing device, and a refrigerant processing method, and more particularly, to a cooling device, a refrigerant processing device, and a refrigerant processing method used in a refrigeration system.
  • Refrigeration systems that transport heat by changing the state of refrigerant are widely used in air conditioning equipment and the like.
  • the refrigerant is generally circulated by a refrigeration cycle described below.
  • heat is absorbed by changing the phase of the refrigerant from the liquid phase to the gas phase at the heat receiving portion.
  • gas-phase refrigerant vapor is pressurized and heated by a compressor to form compressed vapor.
  • heat is discharged
  • the high-temperature refrigerant liquid is converted into a low-temperature refrigerant liquid by the expansion valve.
  • Patent Document 1 An example of such a refrigeration system is described in Patent Document 1.
  • the related refrigeration system described in Patent Document 1 is an application of a refrigeration cycle to an automotive air conditioner.
  • the associated refrigeration system has a compressor, a condenser, a receiver, an internal heat exchanger, an expansion valve, an evaporator, and a control valve.
  • Compressor compresses refrigerant.
  • the condenser condenses the compressed refrigerant by heat exchange with the outside air.
  • the receiver separates the condensed refrigerant into gas and liquid and stores excess refrigerant in the refrigeration cycle.
  • the expansion valve is a temperature type expansion valve, and expands and expands the liquid refrigerant separated into gas and liquid.
  • the evaporator evaporates the expanded refrigerant by heat exchange with the air in the passenger compartment.
  • the internal heat exchanger has a high-pressure passage for flowing high-temperature and high-pressure refrigerant to the expansion valve and a low-pressure passage for flowing low-pressure refrigerant to the compressor, and a high-temperature refrigerant flowing through the high-pressure passage and a low-temperature refrigerant flowing through the low-pressure passage.
  • the control valve adjusts the degree of superheat of the low-pressure refrigerant sent from the internal heat exchanger to the compressor.
  • the control valve adjusts to reduce the degree of superheat of the low-pressure refrigerant sent from the internal heat exchanger to the compressor, so that the refrigerant compressed by the compressor can be reduced.
  • the abnormal temperature rise can be suppressed.
  • JP 2009-008369 A (paragraphs [0006] to [0013], FIG. 1) Utility Model Registration No. 3156355 Japanese Utility Model Publication No. 6-065759 JP 2007-198699 A JP 2006-038328 A
  • a gas-liquid two-phase refrigerant is generated in which a gas-phase refrigerant and a liquid-phase refrigerant are mixed.
  • the efficiency of the compressor is significantly lowered by the liquid-phase refrigerant, and the cooling performance of the entire refrigeration system is lowered.
  • An object of the present invention is a cooling device, a refrigerant processing device, and a refrigerant processing device that solve the above-described problem that, in a refrigeration system that uses refrigerant circulation, cooling performance is reduced when cooling performance is stabilized, and The object is to provide a refrigerant processing method.
  • the cooling device of the present invention separates a heat receiving part that generates a gas-liquid two-phase refrigerant by receiving heat from a gas-phase refrigerant contained in the gas-liquid two-phase refrigerant, and a high-temperature refrigerant liquid and a gas phase that flow from the heat exchange system
  • a refrigerant processing device for exchanging heat of the refrigerant and supplying the gas-phase refrigerant to the heat exchange system.
  • the refrigerant processing apparatus of the present invention includes a first flow path structure in which a high-temperature refrigerant liquid flows, a second flow path structure in which a gas-liquid two-phase refrigerant flows, a mixed refrigerant liquid included in the gas-liquid two-phase refrigerant, A mixed refrigerant liquid separating unit that separates the gas phase refrigerant; and a heat exchange unit that mediates heat exchange between the high-temperature refrigerant liquid and the gas phase refrigerant.
  • the refrigerant treatment method of the present invention includes a step of flowing a high-temperature refrigerant liquid, a step of flowing a gas-liquid two-phase refrigerant, a step of separating a mixed refrigerant liquid and a gas-phase refrigerant contained in the gas-liquid two-phase refrigerant, A step of exchanging heat between the refrigerant liquid and the gas-phase refrigerant, and the step of separating and the step of exchanging heat are performed using a common flow path structure.
  • the cooling device the refrigerant processing device, and the refrigerant processing method of the present invention, in the refrigeration system using the circulation of the refrigerant, it is possible to stabilize the cooling performance without causing a decrease in the cooling performance.
  • FIG. 1 is a schematic diagram showing a configuration of a cooling device 1000 according to the first embodiment of the present invention.
  • the cooling device 1000 includes a refrigerant processing device 1100 and a heat receiving unit 1200.
  • the heat receiving unit 1200 generates a gas-liquid two-phase refrigerant by receiving heat.
  • the heat receiving unit 1200 stores a refrigerant liquid.
  • the refrigerant liquid stored in the heat receiving unit 1200 receives heat from the heating element and the surrounding environment and is vaporized to change into a gas phase refrigerant.
  • the refrigerant liquid stored in the heat receiving unit 1200 and the gas-phase refrigerant are mixed to generate a gas-liquid two-phase refrigerant.
  • the generated gas-liquid two-phase refrigerant is supplied to the refrigerant processing apparatus 1100.
  • the refrigerant processing device 1100 separates the gas-phase refrigerant contained in the gas-liquid two-phase refrigerant, exchanges heat between the high-temperature refrigerant liquid flowing from the heat exchange system 1300 and the gas-phase refrigerant, and passes the gas-phase refrigerant to the heat exchange system 1300. Supply.
  • the refrigerant processing device 1100 separates the gas-phase refrigerant contained in the gas-liquid two-phase refrigerant and supplies only the gas-phase refrigerant to the heat exchange system 1300. Therefore, it is possible to avoid a decrease in performance of the heat exchange system 1300 due to mixing of a liquid-phase refrigerant. As a result, in the cooling system used in a state where gas-liquid two-phase refrigerant is generated by adding surplus refrigerant, by using the cooling device 1000 of the present embodiment, the cooling performance can be stabilized without degrading the cooling performance. Can be achieved.
  • the refrigerant processing device 1100 is configured to exchange heat between the gas-phase refrigerant and the high-temperature refrigerant liquid. Therefore, the work amount when the heat exchange system 1300 obtains the gas-phase refrigerant and sends out the high-temperature refrigerant liquid can be reduced by the same cooling device 1000.
  • the coefficient of performance (COP) of the cooling system can be improved.
  • the refrigerant processing apparatus 1100 may include a first flow path structure 1110, a second flow path structure 1120, a mixed refrigerant liquid separation unit 1130, and a heat exchange unit 1140.
  • the high-temperature refrigerant liquid flows through the first flow path structure 1110.
  • a gas-liquid two-phase refrigerant flows through the second flow path structure 1120.
  • the mixed refrigerant liquid separating unit 1130 separates the mixed refrigerant liquid and the gas phase refrigerant contained in the gas-liquid two-phase refrigerant.
  • the heat exchanging means 1140 mediates heat exchange between the high-temperature refrigerant liquid and the gas-phase refrigerant.
  • the mixed refrigerant liquid separation unit 1130 and the heat exchange unit 1140 may have a common piping structure.
  • the refrigerant treatment method of this embodiment includes a step of flowing a high-temperature refrigerant liquid, a step of flowing a gas-liquid two-phase refrigerant, a step of separating a mixed refrigerant liquid and a gas-phase refrigerant contained in the gas-liquid two-phase refrigerant, and a high temperature A step of exchanging heat between the refrigerant liquid and the gas-phase refrigerant. And the process of carrying out heat exchange with the said process to isolate
  • the process of separating the mixed refrigerant liquid and the gas-phase refrigerant and the process of exchanging heat between the high-temperature refrigerant liquid and the gas-phase refrigerant are performed.
  • a common piping structure flow channel structure
  • size reduction and cost reduction of the refrigerant processing apparatus 1100 can be realized.
  • FIG. 2 is a cross-sectional view showing the configuration of the refrigerant processing apparatus 200 according to the present embodiment.
  • the container section 220 includes an inflow section 221 into which the gas-liquid two-phase refrigerant 22 flows, an exhaust section 222 that is located above the inflow section 221 and from which the gas-phase refrigerant 24 contained in the gas-liquid two-phase refrigerant 22 is discharged, and an inflow section.
  • An outflow portion 223 that is located below 221 and from which the mixed refrigerant liquid 23 flows out is provided.
  • the pipe 210 is disposed through the inside of the container part 220.
  • a metal having excellent heat conduction characteristics such as aluminum and copper
  • a general metal material for example, stainless steel, aluminum, copper, etc. can be used for the material which comprises the container part 220.
  • the gas-liquid two-phase refrigerant 22 generated in the heat receiving part flows into the container part 220 constituting the refrigerant processing apparatus 200 from the inflow part 221.
  • the mixed refrigerant liquid 23 contained in the gas-liquid two-phase refrigerant 22 drops and stays in the container part 220.
  • the gas-phase refrigerant 24 contained in the gas-liquid two-phase refrigerant 22 is discharged from the discharge part 222 located above the inflow part 221. Thereby, the mixed refrigerant liquid 23 and the gas phase refrigerant 24 contained in the gas-liquid two-phase refrigerant 22 are separated. That is, the container part 220 has a function as a mixed refrigerant liquid separation means.
  • the mixed refrigerant liquid piping which connects the outflow part 223 and a heat receiving part, and the mixed refrigerant liquid 23 flows.
  • the mixed refrigerant liquid 23 is returned to the heat receiving portion and can be used again for heat reception.
  • the high-temperature refrigerant liquid 21 flowing through the pipe 210 can exchange heat with the gas-phase refrigerant 24 contained in the gas-liquid two-phase refrigerant 22 that has flowed into the container section 220 via the outer periphery of the pipe 210. That is, the outer peripheral portion of the pipe 210 penetrating the inside of the container portion 220 functions as a heat exchange means that mediates heat exchange between the high-temperature refrigerant liquid 21 and the gas-phase refrigerant 24.
  • the cooling device can be configured by the above-described refrigerant processing device 200 according to the present embodiment and the heat receiving unit that generates a gas-liquid two-phase refrigerant by receiving heat.
  • the refrigerant processing apparatus 200 separates and discharges the gas-phase refrigerant 24 contained in the gas-liquid two-phase refrigerant 22, so that only the gas-phase refrigerant 24 is heated. It becomes possible to supply the switching system. For this reason, it is possible to avoid a decrease in performance of the heat exchange system due to mixing of the liquid-phase refrigerant. As a result, in the cooling system in which gas-liquid two-phase refrigerant is generated due to the addition of surplus refrigerant, the use of the refrigerant processing apparatus 200 of the present embodiment stabilizes the cooling performance without causing a decrease in cooling performance. Can be achieved.
  • the refrigerant processing apparatus 200 of the present embodiment is configured to exchange heat between the gas-phase refrigerant 24 and the high-temperature refrigerant liquid 21. Therefore, the work amount when the heat exchange system acquires the gas-phase refrigerant 24 and delivers the high-temperature refrigerant liquid 21 can be reduced by the same refrigerant processing apparatus 200.
  • coolant 24 are common piping.
  • the structure (the container part 220 and the piping 210 penetrating through the structure) is configured to be integrated. Therefore, the coolant processing apparatus 200 can be reduced in size and cost.
  • FIG. 3 shows a configuration of the refrigerant processing apparatus 300 according to the present embodiment.
  • the refrigerant processing apparatus 300 includes a first pipe 310 through which the high-temperature refrigerant liquid 21 flows, a second pipe 320 that is located below the first pipe 310 and through which the gas-liquid two-phase refrigerant 22 flows, and a first pipe 310. And a housing 330 for housing the second pipe 320.
  • first pipe 310 and the second pipe 320 are arranged in a state where the outer peripheral portion of the first pipe 310 and the outer peripheral portion of the second pipe 320 are in thermal contact with each other.
  • the second pipe 320 includes an outflow hole 321 through which the mixed refrigerant liquid 23 contained in the gas-liquid two-phase refrigerant 22 flows out, below the outer peripheral surface.
  • the accommodating part 330 is equipped with the outflow part 333 into which the mixed refrigerant liquid 23 which flowed out from the outflow hole 321 flows out.
  • a metal having excellent heat conductivity such as aluminum or copper
  • a general metal material such as stainless steel, aluminum, copper, or the like can be used as a material constituting the housing portion 330.
  • the gas-liquid two-phase refrigerant 22 generated in the heat receiving part flows into the second pipe 320.
  • the inflowing gas-liquid two-phase refrigerant 22 hits the inner wall surface of the second pipe 320, the outflow hole 321, or the like, the mixed refrigerant liquid 23 contained in the gas-liquid two-phase refrigerant 22 drops and passes through the outflow hole 321. Stay in 330. Then, it flows out from the refrigerant processing apparatus 300 through the outflow portion 333.
  • the gas-phase refrigerant 24 contained in the gas-liquid two-phase refrigerant 22 passes through the second pipe 320 and is discharged from the refrigerant processing apparatus 300. Thereby, the mixed refrigerant liquid 23 and the gas phase refrigerant 24 contained in the gas-liquid two-phase refrigerant 22 are separated. That is, the 2nd piping 320 provided with the outflow hole 321 has a function as a mixed refrigerant liquid separation means.
  • the mixed refrigerant liquid piping which connects the outflow part 333 and a heat receiving part, and the mixed refrigerant liquid 23 flows.
  • the mixed refrigerant liquid 23 is returned to the heat receiving portion and can be used again for heat reception.
  • the high-temperature refrigerant liquid 21 flowing through the first pipe 310 passes through the outer periphery of the first pipe 310 and the outer periphery of the second pipe 320 that are in thermal contact with the second pipe 320.
  • Heat exchange can be performed with the gas-phase refrigerant 24 contained in the gas-liquid two-phase refrigerant 22 that has flowed in. That is, the outer peripheral portion of the first pipe 310 and the outer peripheral portion of the second pipe 320 that are in thermal contact serve as heat exchange means for mediating heat exchange between the high-temperature refrigerant liquid 21 and the gas-phase refrigerant 24. Function.
  • the cooling device can be configured by the above-described refrigerant processing device 300 according to the present embodiment and the heat receiving unit that generates the gas-liquid two-phase refrigerant by receiving heat.
  • the refrigerant processing apparatus 300 separates and discharges the gas-phase refrigerant 24 contained in the gas-liquid two-phase refrigerant 22, so that only the gas-phase refrigerant 24 is heated. It becomes possible to supply the switching system. For this reason, it is possible to avoid a decrease in performance of the heat exchange system due to mixing of the liquid-phase refrigerant. As a result, in the cooling system in which gas-liquid two-phase refrigerant is generated due to the addition of surplus refrigerant, the use of the refrigerant processing device 300 of the present embodiment stabilizes the cooling performance without causing a reduction in cooling performance. Can be achieved.
  • the refrigerant processing apparatus 300 of the present embodiment is configured such that the gas-phase refrigerant 24 and the high-temperature refrigerant liquid 21 exchange heat. Therefore, the work amount when the heat exchange system acquires the gas-phase refrigerant 24 and delivers the high-temperature refrigerant liquid 21 can be reduced by the same refrigerant processing apparatus 300.
  • coolant 24 are common piping.
  • the structure (first pipe 310 and second pipe 320) is used as a unitary structure. Therefore, the coolant processing apparatus 300 can be reduced in size and cost.
  • FIG. 4 is a cross-sectional view showing the configuration of the refrigerant processing apparatus 400 according to the present embodiment.
  • the refrigerant processing apparatus 400 includes a double pipe 410 and a housing portion 420 that houses the double pipe 410.
  • the double pipe 410 includes an inner layer pipe 411 in which the high-temperature refrigerant liquid 21 flows and an outer layer pipe 412 in which the gas-liquid two-phase refrigerant 22 flows, and shares the outer peripheral surface of the inner layer pipe 411 and the inner peripheral surface of the outer layer pipe 412. Yes.
  • the outer layer pipe 412 includes an outflow hole 413 through which the mixed refrigerant liquid 23 contained in the gas-liquid two-phase refrigerant 22 flows out, below the outer peripheral surface.
  • the accommodating part 420 is equipped with the outflow part 423 into which the mixed refrigerant liquid 23 which flowed out from the outflow hole 413 flows out.
  • a metal having excellent thermal conductivity such as aluminum or copper
  • a general metal material such as stainless steel, aluminum, copper, or the like can be used as a material constituting the accommodating portion 420.
  • the gas-liquid two-phase refrigerant 22 generated in the heat receiving part flows into the outer layer pipe 412 constituting the double pipe 410.
  • the mixed refrigerant liquid 23 contained in the gas-liquid two-phase refrigerant 22 drops and passes through the outflow hole 413 below the outer peripheral surface. And stays in the accommodating part 420. Then, it flows out from the refrigerant processing apparatus 400 through the outflow portion 423.
  • the gas-phase refrigerant 24 contained in the gas-liquid two-phase refrigerant 22 passes through the outer layer pipe 412 and is discharged from the refrigerant processing apparatus 400. Thereby, the mixed refrigerant liquid 23 and the gas phase refrigerant 24 contained in the gas-liquid two-phase refrigerant 22 are separated. That is, the outer layer pipe 412 provided with the outflow hole 413 has a function as a mixed refrigerant liquid separation means.
  • the mixed refrigerant liquid piping which connects the outflow part 423 and a heat receiving part, and the mixed refrigerant liquid 23 flows.
  • the mixed refrigerant liquid 23 is returned to the heat receiving portion and can be used again for heat reception.
  • the high-temperature refrigerant liquid 21 flowing in the inner layer pipe 411 constituting the double pipe 410 flows into the outer layer pipe 412 via the outer peripheral surface of the inner layer pipe 411 shared with the inner peripheral surface of the outer layer pipe 412.
  • Heat exchange can be performed with the gas-phase refrigerant 24 contained in the liquid two-phase refrigerant 22. That is, the double pipe 410 sharing the outer peripheral surface of the inner layer pipe 411 and the inner peripheral surface of the outer layer pipe 412 functions as a heat exchange means for mediating heat exchange between the high-temperature refrigerant liquid 21 and the gas-phase refrigerant 24.
  • the cooling device can be configured by the above-described refrigerant processing device 400 according to the present embodiment and the heat receiving unit that generates the gas-liquid two-phase refrigerant by receiving heat.
  • the refrigerant processing apparatus 400 separates and discharges the gas-phase refrigerant 24 contained in the gas-liquid two-phase refrigerant 21, so that only the gas-phase refrigerant 24 is heated. It becomes possible to supply the switching system. For this reason, it is possible to avoid a decrease in performance of the heat exchange system due to mixing of the liquid-phase refrigerant. As a result, in the cooling system in which gas-liquid two-phase refrigerant is generated due to the addition of surplus refrigerant, the use of the refrigerant processing device 400 of the present embodiment stabilizes the cooling performance without causing a reduction in cooling performance. Can be achieved.
  • the refrigerant processing apparatus 400 of the present embodiment is configured such that the gas-phase refrigerant 24 and the high-temperature refrigerant liquid 21 exchange heat. Therefore, the work amount when the heat exchange system acquires the gas-phase refrigerant 24 and delivers the high-temperature refrigerant liquid 21 can be reduced by the same refrigerant processing apparatus 400.
  • coolant 24 are common piping.
  • the structure (double pipe 410) is used as a unitary structure. Therefore, the coolant processing apparatus 400 can be reduced in size and cost.
  • FIG. 5 shows another configuration of the refrigerant processing apparatus according to the present embodiment.
  • the double pipe 410 is arranged to be inclined with respect to the horizontal direction.
  • the outflow hole 413 was set as the structure located in the vicinity of the lower end part located in the downward direction of a perpendicular direction among the edge parts of the double pipe 410 in the longitudinal direction.
  • FIG. 5 shows a double tube 410 having only one outflow hole 413. With such a configuration, the mixed refrigerant liquid 23 can be efficiently discharged from the double pipe 410.
  • FIG. 6A and 6B show still another configuration of the refrigerant processing apparatus according to the present embodiment.
  • FIG. 6A is a schematic view of a refrigerant processing apparatus 402 according to still another configuration
  • FIG. 6B is a cross-sectional view of a double pipe 430 that constitutes the refrigerant processing apparatus 402.
  • the double pipe 430 constituting the refrigerant processing apparatus 402 includes an inner layer pipe 431 through which the high-temperature refrigerant liquid 21 flows and an outer layer pipe 432 through which the gas-liquid two-phase refrigerant 22 flows.
  • the outer layer pipe 432 has a spiral channel structure, and has a fin structure 433 in the channel structure (FIG. 6B).
  • An outflow hole 433 is provided in the vicinity of the end portion of the double tube 410 in the longitudinal direction.
  • the fin structure 433 becomes an obstacle to the gas-liquid two-phase refrigerant 22 flowing in the outer pipe 432, so that the mixed refrigerant liquid 23 contained in the gas-liquid two-phase refrigerant 22 drops. It becomes easy. Therefore, the mixed refrigerant liquid 23 and the gas phase refrigerant 24 contained in the gas-liquid two-phase refrigerant 22 can be efficiently separated. Furthermore, since the outer layer pipe 432 has a spiral (screw-shaped) flow path structure, the gas phase refrigerant 24 contained in the gas-liquid two-phase refrigerant 22 flowing through the outer layer pipe 432 and the inner layer pipe 411 flow.
  • the distance for heat exchange with the high-temperature refrigerant liquid 21 can be increased. Thereby, the amount of heat exchanged between the high-temperature refrigerant liquid 21 and the gas-phase refrigerant 24 can be increased. Therefore, the work amount in the heat exchange system can be further reduced.
  • FIG. 7 is a schematic diagram showing the configuration of the cooling system 2000 according to the present embodiment.
  • the cooling system 2000 includes a cooling device including a refrigerant processing device 2100 and a heat receiving unit 2200, and a heat exchange system 2300.
  • the heat receiving unit 2200 generates a gas-liquid two-phase refrigerant by receiving heat.
  • the refrigerant processing device 2100 separates the gas-phase refrigerant contained in the gas-liquid two-phase refrigerant and supplies it to the heat exchange system 2300, acquires the high-temperature refrigerant liquid from the heat exchange system 2300, and converts the gas-phase refrigerant and the high-temperature refrigerant liquid to Heat exchange.
  • any one of the refrigerant processing devices 1100, 200, 300, 400, 401, and 402 described in the first to fourth embodiments can be used as the refrigerant processing device 2100.
  • the heat exchange system 2300 includes a compressor 2310 and a heat exchanger 2320.
  • the compressor 2310 compresses the gas phase refrigerant acquired from the refrigerant processing apparatus 2100 to generate a high temperature gas phase refrigerant.
  • the heat exchanger 2320 heat-exchanges the high-temperature gas-phase refrigerant to generate a high-temperature refrigerant liquid, and supplies it to the refrigerant processing device 2100.
  • the cooling system 2000 may further include an expansion valve 2400.
  • the expansion valve 2400 expands the high-temperature refrigerant liquid after heat exchange with the gas-phase refrigerant in the refrigerant processing apparatus 2100 to generate a low-temperature refrigerant liquid, and sends the low-temperature refrigerant liquid to the heat receiving unit 2200.
  • the cooling system 2000 constitutes a refrigeration system that uses refrigerant circulation.
  • a mixed refrigerant liquid pipe 2500 that connects the outflow portion and the heat receiving portion 2200 is provided.
  • the mixed refrigerant liquid flowing out from the outflow part flows through the mixed refrigerant liquid pipe 2500 and flows into the heat receiving part 2200.
  • the mixed refrigerant liquid is refluxed to the heat receiving unit 2200 and can be used again for heat reception.
  • the refrigerant processing device 2100 constituting the cooling system 2000 separates the gas-phase refrigerant contained in the gas-liquid two-phase refrigerant, and only the gas-phase refrigerant is exchanged with the heat exchange system 2300. It is configured to supply to. Therefore, it is possible to prevent a reduction in efficiency of the compressor 2310 due to mixing of a liquid-phase refrigerant. That is, the performance degradation of the heat exchange system 2300 can be avoided. As a result, the cooling system 2000 does not deteriorate the cooling performance even when it is used in a state where a gas-liquid two-phase refrigerant is generated by adding surplus refrigerant.
  • the cooling system 2000 of the present embodiment in the refrigeration system using the circulation of the refrigerant, it is possible to stabilize the cooling performance without causing a decrease in the cooling performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Power Engineering (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

The present invention addresses the problem of deterioration of cooling performance when stabilizing cooling performance in refrigeration system using refrigerant circulation. The cooling device according to the present invention comprises: a heat receiving unit which receives heat in order to generate a gas-liquid two-phase refrigerant; and a refrigerant processing device which separates the gas-phase refrigerant contained in the gas-liquid two-phase refrigerant, causes the gas-phase refrigerant to heat exchange with high-temperature refrigerant liquid flowing from a heat exchange system, and supplies the gas-phase refrigerant to the heat exchange system.

Description

冷却装置、冷媒処理装置、および冷媒処理方法Cooling device, refrigerant processing device, and refrigerant processing method
 本発明は、冷却装置、冷媒処理装置、および冷媒処理方法に関し、特に、冷凍システムに用いられる冷却装置、冷媒処理装置、および冷媒処理方法に関する。 The present invention relates to a cooling device, a refrigerant processing device, and a refrigerant processing method, and more particularly, to a cooling device, a refrigerant processing device, and a refrigerant processing method used in a refrigeration system.
 冷媒の状態変化によって熱を輸送する冷凍システムが、空調設備等に広く用いられている。冷凍システムにおいては一般に、以下に述べる冷凍サイクルにより冷媒が循環する。まず、受熱部で冷媒を液相から気相に相変化させることによって熱を吸収する。次に、気相の冷媒蒸気を圧縮機により加圧・昇温して圧縮蒸気とする。そして、この圧縮蒸気を熱交換器で液相に相変化させることにより、熱を外部に排出する。最後に、高温になった冷媒液を膨張弁によって低温の冷媒液とする。 Refrigeration systems that transport heat by changing the state of refrigerant are widely used in air conditioning equipment and the like. In the refrigeration system, the refrigerant is generally circulated by a refrigeration cycle described below. First, heat is absorbed by changing the phase of the refrigerant from the liquid phase to the gas phase at the heat receiving portion. Next, gas-phase refrigerant vapor is pressurized and heated by a compressor to form compressed vapor. And heat is discharged | emitted outside by changing this compressed steam into a liquid phase with a heat exchanger. Finally, the high-temperature refrigerant liquid is converted into a low-temperature refrigerant liquid by the expansion valve.
 このような冷凍システムの一例が特許文献1に記載されている。 An example of such a refrigeration system is described in Patent Document 1.
 特許文献1に記載された関連する冷凍システムは、冷凍サイクルを自動車用空調装置に適用したものである。関連する冷凍システムは、圧縮機、凝縮器、レシーバ、内部熱交換器、膨張弁、蒸発器、および制御弁を有する。 The related refrigeration system described in Patent Document 1 is an application of a refrigeration cycle to an automotive air conditioner. The associated refrigeration system has a compressor, a condenser, a receiver, an internal heat exchanger, an expansion valve, an evaporator, and a control valve.
 圧縮機は冷媒を圧縮する。凝縮器は、圧縮された冷媒を外気との熱交換により凝縮させる。レシーバは、凝縮された冷媒を気液に分離するとともに冷凍サイクル内の余剰冷媒を蓄えておく。膨張弁は温度式の膨張弁であり、気液分離された液冷媒を絞り膨張させる。蒸発器は、膨張された冷媒を車室内の空気との熱交換により蒸発させる。 Compressor compresses refrigerant. The condenser condenses the compressed refrigerant by heat exchange with the outside air. The receiver separates the condensed refrigerant into gas and liquid and stores excess refrigerant in the refrigeration cycle. The expansion valve is a temperature type expansion valve, and expands and expands the liquid refrigerant separated into gas and liquid. The evaporator evaporates the expanded refrigerant by heat exchange with the air in the passenger compartment.
 ここで内部熱交換器は、膨張弁へ高温・高圧の冷媒を流す高圧通路と圧縮機へ低圧冷媒を流す低圧通路とを有し、高圧通路を流れる高温の冷媒と低圧通路を流れる低温の冷媒との間で熱交換を行う。これにより、高圧通路を流れる冷媒は、低圧通路の冷媒によって過冷却され、低圧通路を流れる冷媒は、高圧通路の冷媒によって過熱されることになるため、冷凍サイクルの効率を向上させることができる。そして制御弁は、内部熱交換器から圧縮機に送られる低圧冷媒の過熱度を調整する。 Here, the internal heat exchanger has a high-pressure passage for flowing high-temperature and high-pressure refrigerant to the expansion valve and a low-pressure passage for flowing low-pressure refrigerant to the compressor, and a high-temperature refrigerant flowing through the high-pressure passage and a low-temperature refrigerant flowing through the low-pressure passage. Exchange heat with Thereby, the refrigerant flowing through the high-pressure passage is supercooled by the refrigerant in the low-pressure passage, and the refrigerant flowing through the low-pressure passage is overheated by the refrigerant in the high-pressure passage, so that the efficiency of the refrigeration cycle can be improved. The control valve adjusts the degree of superheat of the low-pressure refrigerant sent from the internal heat exchanger to the compressor.
 関連する冷凍システムによれば、冷凍負荷が高いときに、制御弁が内部熱交換器から圧縮機に送られる低圧冷媒の過熱度を低減するよう調整することで、圧縮機によって圧縮された冷媒の異常昇温を抑制することができる、としている。 According to the related refrigeration system, when the refrigeration load is high, the control valve adjusts to reduce the degree of superheat of the low-pressure refrigerant sent from the internal heat exchanger to the compressor, so that the refrigerant compressed by the compressor can be reduced. The abnormal temperature rise can be suppressed.
 また、関連技術としては、特許文献2~5に記載された技術がある。 Further, as related technologies, there are technologies described in Patent Documents 2 to 5.
特開2009-008369号公報(段落[0006]~[0013]、図1)JP 2009-008369 A (paragraphs [0006] to [0013], FIG. 1) 実用新案登録第3156355号公報Utility Model Registration No. 3156355 実開平6-065759号公報Japanese Utility Model Publication No. 6-065759 特開2007-198699号公報JP 2007-198699 A 特開2006-038328号公報JP 2006-038328 A
 関連する冷凍システムのように、冷媒の循環を用いる冷凍システムにおいては、冷却性能の安定化を図るため、余剰の冷媒を加えて使用する必要がある。そのため、蒸発器において、気相の冷媒と液相の冷媒が混在した状態である気液二相冷媒が発生する。この気液二相冷媒が圧縮機に流入すると、液相の冷媒により圧縮機の効率が著しく低下し、冷凍システム全体の冷却性能が低下してしまう。 In a refrigeration system that uses refrigerant circulation, such as a related refrigeration system, it is necessary to add extra refrigerant to stabilize the cooling performance. Therefore, in the evaporator, a gas-liquid two-phase refrigerant is generated in which a gas-phase refrigerant and a liquid-phase refrigerant are mixed. When the gas-liquid two-phase refrigerant flows into the compressor, the efficiency of the compressor is significantly lowered by the liquid-phase refrigerant, and the cooling performance of the entire refrigeration system is lowered.
 このように、冷媒の循環を用いる冷凍システムにおいては、冷却性能の安定化を図ると、冷却性能が低下する、という問題があった。 As described above, in the refrigeration system using the circulation of the refrigerant, there is a problem that the cooling performance is lowered when the cooling performance is stabilized.
 本発明の目的は、上述した課題である、冷媒の循環を用いる冷凍システムにおいては、冷却性能の安定化を図ると、冷却性能が低下する、という課題を解決する冷却装置、冷媒処理装置、および冷媒処理方法を提供することにある。 An object of the present invention is a cooling device, a refrigerant processing device, and a refrigerant processing device that solve the above-described problem that, in a refrigeration system that uses refrigerant circulation, cooling performance is reduced when cooling performance is stabilized, and The object is to provide a refrigerant processing method.
 本発明の冷却装置は、受熱することにより気液二相冷媒を生成する受熱部と、気液二相冷媒に含まれる気相冷媒を分離し、熱交換システムから流入する高温冷媒液と気相冷媒を熱交換させ、気相冷媒を熱交換システムに供給する冷媒処理装置、とを有する。 The cooling device of the present invention separates a heat receiving part that generates a gas-liquid two-phase refrigerant by receiving heat from a gas-phase refrigerant contained in the gas-liquid two-phase refrigerant, and a high-temperature refrigerant liquid and a gas phase that flow from the heat exchange system A refrigerant processing device for exchanging heat of the refrigerant and supplying the gas-phase refrigerant to the heat exchange system.
 本発明の冷媒処理装置は、高温冷媒液が流動する第1の流路構造と、気液二相冷媒が流動する第2の流路構造と、気液二相冷媒に含まれる混合冷媒液と気相冷媒を分離する混合冷媒液分離手段と、高温冷媒液と気相冷媒との間の熱交換を媒介する熱交換手段、とを備える。 The refrigerant processing apparatus of the present invention includes a first flow path structure in which a high-temperature refrigerant liquid flows, a second flow path structure in which a gas-liquid two-phase refrigerant flows, a mixed refrigerant liquid included in the gas-liquid two-phase refrigerant, A mixed refrigerant liquid separating unit that separates the gas phase refrigerant; and a heat exchange unit that mediates heat exchange between the high-temperature refrigerant liquid and the gas phase refrigerant.
 本発明の冷媒処理方法は、高温冷媒液を流動させる工程と、気液二相冷媒を流動させる工程と、気液二相冷媒に含まれる混合冷媒液と気相冷媒を分離する工程と、高温冷媒液と気相冷媒との間で熱交換させる工程、とを有し、分離する工程と熱交換させる工程を、共通の流路構造を用いて行う。 The refrigerant treatment method of the present invention includes a step of flowing a high-temperature refrigerant liquid, a step of flowing a gas-liquid two-phase refrigerant, a step of separating a mixed refrigerant liquid and a gas-phase refrigerant contained in the gas-liquid two-phase refrigerant, A step of exchanging heat between the refrigerant liquid and the gas-phase refrigerant, and the step of separating and the step of exchanging heat are performed using a common flow path structure.
 本発明の冷却装置、冷媒処理装置、および冷媒処理方法によれば、冷媒の循環を用いる冷凍システムにおいて、冷却性能の低下を招くことなく冷却性能の安定化を図ることができる。 According to the cooling device, the refrigerant processing device, and the refrigerant processing method of the present invention, in the refrigeration system using the circulation of the refrigerant, it is possible to stabilize the cooling performance without causing a decrease in the cooling performance.
本発明の第1の実施形態に係る冷却装置の構成を示す概略図である。It is the schematic which shows the structure of the cooling device which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る冷媒処理装置の構成を示す断面図である。It is sectional drawing which shows the structure of the refrigerant processing apparatus which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る冷媒処理装置の構成を示す断面図である。It is sectional drawing which shows the structure of the refrigerant processing apparatus which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る冷媒処理装置の構成を示す模式図である。It is a schematic diagram which shows the structure of the refrigerant processing apparatus which concerns on the 4th Embodiment of this invention. 本発明の第4の実施形態に係る冷媒処理装置の別の構成を示す模式図である。It is a schematic diagram which shows another structure of the refrigerant processing apparatus which concerns on the 4th Embodiment of this invention. 本発明の第4の実施形態に係る冷媒処理装置のさらに別の構成を示す模式図である。It is a schematic diagram which shows another structure of the refrigerant processing apparatus which concerns on the 4th Embodiment of this invention. 本発明の第4の実施形態に係る冷媒処理装置が備える二重管の別の構成を示す断面図である。It is sectional drawing which shows another structure of the double tube with which the refrigerant processing apparatus which concerns on the 4th Embodiment of this invention is provided. 本発明の第5の実施形態に係る冷却システムの構成を示す概略図である。It is the schematic which shows the structure of the cooling system which concerns on the 5th Embodiment of this invention.
 以下に、図面を参照しながら、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 〔第1の実施形態〕
 図1は、本発明の第1の実施形態に係る冷却装置1000の構成を示す概略図である。
[First Embodiment]
FIG. 1 is a schematic diagram showing a configuration of a cooling device 1000 according to the first embodiment of the present invention.
 本実施形態による冷却装置1000は、冷媒処理装置1100と受熱部1200とを有する。受熱部1200は、受熱することにより気液二相冷媒を生成する。例えば、受熱部1200には、冷媒液が貯蔵されている。受熱部1200に貯蔵された冷媒液は、発熱体や周囲環境から受熱し、気化することにより、気相冷媒に変化する。受熱部1200に貯蔵された冷媒液と気相冷媒が混合し、気液二相冷媒が生成される。生成された気液二相冷媒は、冷媒処理装置1100に供給される。冷媒処理装置1100は、この気液二相冷媒に含まれる気相冷媒を分離し、熱交換システム1300から流入する高温冷媒液と気相冷媒を熱交換させ、気相冷媒を熱交換システム1300に供給する。 The cooling device 1000 according to the present embodiment includes a refrigerant processing device 1100 and a heat receiving unit 1200. The heat receiving unit 1200 generates a gas-liquid two-phase refrigerant by receiving heat. For example, the heat receiving unit 1200 stores a refrigerant liquid. The refrigerant liquid stored in the heat receiving unit 1200 receives heat from the heating element and the surrounding environment and is vaporized to change into a gas phase refrigerant. The refrigerant liquid stored in the heat receiving unit 1200 and the gas-phase refrigerant are mixed to generate a gas-liquid two-phase refrigerant. The generated gas-liquid two-phase refrigerant is supplied to the refrigerant processing apparatus 1100. The refrigerant processing device 1100 separates the gas-phase refrigerant contained in the gas-liquid two-phase refrigerant, exchanges heat between the high-temperature refrigerant liquid flowing from the heat exchange system 1300 and the gas-phase refrigerant, and passes the gas-phase refrigerant to the heat exchange system 1300. Supply.
 本実施形態の冷却装置1100においては、冷媒処理装置1100が気液二相冷媒に含まれる気相冷媒を分離し、気相冷媒だけを熱交換システム1300に供給する構成としている。そのため、液相の冷媒が混入することによる熱交換システム1300の性能低下を回避することができる。その結果、余剰の冷媒を加えることにより気液二相冷媒が発生する状態で使用する冷却システムにおいて、本実施形態の冷却装置1000を用いることにより、冷却性能の低下を招くことなく冷却性能の安定化を図ることができる。 In the cooling device 1100 of the present embodiment, the refrigerant processing device 1100 separates the gas-phase refrigerant contained in the gas-liquid two-phase refrigerant and supplies only the gas-phase refrigerant to the heat exchange system 1300. Therefore, it is possible to avoid a decrease in performance of the heat exchange system 1300 due to mixing of a liquid-phase refrigerant. As a result, in the cooling system used in a state where gas-liquid two-phase refrigerant is generated by adding surplus refrigerant, by using the cooling device 1000 of the present embodiment, the cooling performance can be stabilized without degrading the cooling performance. Can be achieved.
 さらに、本実施形態の冷却装置1000においては、冷媒処理装置1100が気相冷媒と高温冷媒液を熱交換させる構成としている。そのため、熱交換システム1300が気相冷媒を取得して高温冷媒液を送出する際の仕事量を、同一の冷却装置1000によって低減することが可能になる。 Furthermore, in the cooling device 1000 of the present embodiment, the refrigerant processing device 1100 is configured to exchange heat between the gas-phase refrigerant and the high-temperature refrigerant liquid. Therefore, the work amount when the heat exchange system 1300 obtains the gas-phase refrigerant and sends out the high-temperature refrigerant liquid can be reduced by the same cooling device 1000.
 このように、本実施形態による冷却装置1000を用いることにより、冷却システムの成績係数(coefficient of performance:COP)を向上することができる。 As described above, by using the cooling device 1000 according to the present embodiment, the coefficient of performance (COP) of the cooling system can be improved.
 冷媒処理装置1100は、第1の流路構造1110、第2の流路構造1120、混合冷媒液分離手段1130、および熱交換手段1140を備えた構成とすることができる。 The refrigerant processing apparatus 1100 may include a first flow path structure 1110, a second flow path structure 1120, a mixed refrigerant liquid separation unit 1130, and a heat exchange unit 1140.
 第1の流路構造1110には、高温冷媒液が流動する。第2の流路構造1120には、気液二相冷媒が流動する。そして、混合冷媒液分離手段1130は、気液二相冷媒に含まれる混合冷媒液と気相冷媒を分離する。また、熱交換手段1140は、高温冷媒液と気相冷媒との間の熱交換を媒介する。このとき、混合冷媒液分離手段1130と熱交換手段1140が、共通する配管構造を備えた構成としてもよい。 The high-temperature refrigerant liquid flows through the first flow path structure 1110. A gas-liquid two-phase refrigerant flows through the second flow path structure 1120. Then, the mixed refrigerant liquid separating unit 1130 separates the mixed refrigerant liquid and the gas phase refrigerant contained in the gas-liquid two-phase refrigerant. The heat exchanging means 1140 mediates heat exchange between the high-temperature refrigerant liquid and the gas-phase refrigerant. At this time, the mixed refrigerant liquid separation unit 1130 and the heat exchange unit 1140 may have a common piping structure.
 次に、本実施形態による冷媒処理方法について説明する。 Next, the refrigerant processing method according to the present embodiment will be described.
 本実施形態の冷媒処理方法は、高温冷媒液を流動させる工程、気液二相冷媒を流動させる工程、この気液二相冷媒に含まれる混合冷媒液と気相冷媒を分離する工程、および高温冷媒液と気相冷媒との間で熱交換させる工程を有する。そして、上記分離する工程と熱交換させる工程を、共通の流路構造を用いて行う。 The refrigerant treatment method of this embodiment includes a step of flowing a high-temperature refrigerant liquid, a step of flowing a gas-liquid two-phase refrigerant, a step of separating a mixed refrigerant liquid and a gas-phase refrigerant contained in the gas-liquid two-phase refrigerant, and a high temperature A step of exchanging heat between the refrigerant liquid and the gas-phase refrigerant. And the process of carrying out heat exchange with the said process to isolate | separate is performed using a common flow-path structure.
 このように、上述した本実施形態の冷媒処理装置1100および冷媒処理方法においては、混合冷媒液と気相冷媒を分離する処理と、高温冷媒液と気相冷媒との間で熱交換させる処理を、共通する配管構造(流路構造)を用いて一体的に行う構成としている。そのため、冷媒処理装置1100の小型化、低コスト化を実現することができる。 Thus, in the refrigerant processing apparatus 1100 and the refrigerant processing method of the present embodiment described above, the process of separating the mixed refrigerant liquid and the gas-phase refrigerant and the process of exchanging heat between the high-temperature refrigerant liquid and the gas-phase refrigerant are performed. In addition, a common piping structure (flow channel structure) is used for the integrated structure. Therefore, size reduction and cost reduction of the refrigerant processing apparatus 1100 can be realized.
 〔第2の実施形態〕
 次に、本発明の第2の実施形態について説明する。図2は、本実施形態による冷媒処理装置200の構成を示す断面図である。
[Second Embodiment]
Next, a second embodiment of the present invention will be described. FIG. 2 is a cross-sectional view showing the configuration of the refrigerant processing apparatus 200 according to the present embodiment.
 本実施形態による冷媒処理装置200は、高温冷媒液21が流動する配管210と、気液二相冷媒22が流入し、気液二相冷媒22に含まれる混合冷媒液23が滞留する容器部220を有する。 In the refrigerant processing apparatus 200 according to the present embodiment, the pipe 210 through which the high-temperature refrigerant liquid 21 flows, and the container part 220 in which the gas-liquid two-phase refrigerant 22 flows and the mixed refrigerant liquid 23 contained in the gas-liquid two-phase refrigerant 22 stays. Have
 容器部220は、気液二相冷媒22が流入する流入部221と、流入部221より上方に位置し気液二相冷媒22に含まれる気相冷媒24が排出する排出部222と、流入部221より下方に位置し混合冷媒液23が流出する流出部223を備える。そして、配管210は、容器部220の内部を貫通して配置している。 The container section 220 includes an inflow section 221 into which the gas-liquid two-phase refrigerant 22 flows, an exhaust section 222 that is located above the inflow section 221 and from which the gas-phase refrigerant 24 contained in the gas-liquid two-phase refrigerant 22 is discharged, and an inflow section. An outflow portion 223 that is located below 221 and from which the mixed refrigerant liquid 23 flows out is provided. The pipe 210 is disposed through the inside of the container part 220.
 配管210を構成する材料には、熱伝導特性に優れた金属、例えばアルミニウム、銅などを用いることができる。また、容器部220を構成する材料には、一般的な金属材料、例えばステンレス、アルミニウム、銅などを用いることができる。 As a material constituting the pipe 210, a metal having excellent heat conduction characteristics, such as aluminum and copper, can be used. Moreover, a general metal material, for example, stainless steel, aluminum, copper, etc. can be used for the material which comprises the container part 220. FIG.
 次に、本実施形態による冷媒処理装置200の動作について説明する。 Next, the operation of the refrigerant processing apparatus 200 according to the present embodiment will be described.
 受熱部において発生した気液二相冷媒22が、流入部221から冷媒処理装置200を構成する容器部220に流入する。流入した気液二相冷媒22が容器部220の壁面等に当たると、気液二相冷媒22に含まれる混合冷媒液23が滴下し、容器部220内に滞留する。一方、気液二相冷媒22に含まれる気相冷媒24は、流入部221より上方に位置する排出部222から排出される。これにより、気液二相冷媒22に含まれる混合冷媒液23と気相冷媒24は分離される。すなわち、容器部220は混合冷媒液分離手段としての機能を有する。 The gas-liquid two-phase refrigerant 22 generated in the heat receiving part flows into the container part 220 constituting the refrigerant processing apparatus 200 from the inflow part 221. When the flowing gas-liquid two-phase refrigerant 22 hits the wall surface or the like of the container part 220, the mixed refrigerant liquid 23 contained in the gas-liquid two-phase refrigerant 22 drops and stays in the container part 220. On the other hand, the gas-phase refrigerant 24 contained in the gas-liquid two-phase refrigerant 22 is discharged from the discharge part 222 located above the inflow part 221. Thereby, the mixed refrigerant liquid 23 and the gas phase refrigerant 24 contained in the gas-liquid two-phase refrigerant 22 are separated. That is, the container part 220 has a function as a mixed refrigerant liquid separation means.
 なお、流出部223と受熱部を接続し、混合冷媒液23が流動する混合冷媒液配管を備えた構成とすることができる。これにより、混合冷媒液23を受熱部に還流させ、再度、受熱に利用することが可能になる。 In addition, it can be set as the structure provided with the mixed refrigerant liquid piping which connects the outflow part 223 and a heat receiving part, and the mixed refrigerant liquid 23 flows. As a result, the mixed refrigerant liquid 23 is returned to the heat receiving portion and can be used again for heat reception.
 また、配管210を流動する高温冷媒液21は、配管210の外周部を介して、容器部220に流入した気液二相冷媒22に含まれる気相冷媒24と熱交換を行うことができる。すなわち、容器部220の内部を貫通している配管210の外周部が、高温冷媒液21と気相冷媒24との間の熱交換を媒介する熱交換手段として機能する。 Further, the high-temperature refrigerant liquid 21 flowing through the pipe 210 can exchange heat with the gas-phase refrigerant 24 contained in the gas-liquid two-phase refrigerant 22 that has flowed into the container section 220 via the outer periphery of the pipe 210. That is, the outer peripheral portion of the pipe 210 penetrating the inside of the container portion 220 functions as a heat exchange means that mediates heat exchange between the high-temperature refrigerant liquid 21 and the gas-phase refrigerant 24.
 上述した本実施形態による冷媒処理装置200と、受熱することにより気液二相冷媒を生成する受熱部とによって、冷却装置を構成することができる。 The cooling device can be configured by the above-described refrigerant processing device 200 according to the present embodiment and the heat receiving unit that generates a gas-liquid two-phase refrigerant by receiving heat.
 本実施形態による冷媒処理装置200を用いた冷却装置によれば、冷媒処理装置200が気液二相冷媒22に含まれる気相冷媒24を分離して排出するので、気相冷媒24だけを熱交換システムに供給することが可能になる。そのため、液相の冷媒が混入することによる熱交換システムの性能低下を回避することができる。その結果、余剰の冷媒が加えられていることにより気液二相冷媒が発生する冷却システムにおいて、本実施形態の冷媒処理装置200を用いることにより、冷却性能の低下を招くことなく冷却性能の安定化を図ることができる。 According to the cooling device using the refrigerant processing apparatus 200 according to the present embodiment, the refrigerant processing apparatus 200 separates and discharges the gas-phase refrigerant 24 contained in the gas-liquid two-phase refrigerant 22, so that only the gas-phase refrigerant 24 is heated. It becomes possible to supply the switching system. For this reason, it is possible to avoid a decrease in performance of the heat exchange system due to mixing of the liquid-phase refrigerant. As a result, in the cooling system in which gas-liquid two-phase refrigerant is generated due to the addition of surplus refrigerant, the use of the refrigerant processing apparatus 200 of the present embodiment stabilizes the cooling performance without causing a decrease in cooling performance. Can be achieved.
 さらに、本実施形態の冷媒処理装置200は、気相冷媒24と高温冷媒液21が熱交換する構成としている。そのため、熱交換システムが気相冷媒24を取得して高温冷媒液21を送出する際の仕事量を、同一の冷媒処理装置200によって低減することが可能になる。 Furthermore, the refrigerant processing apparatus 200 of the present embodiment is configured to exchange heat between the gas-phase refrigerant 24 and the high-temperature refrigerant liquid 21. Therefore, the work amount when the heat exchange system acquires the gas-phase refrigerant 24 and delivers the high-temperature refrigerant liquid 21 can be reduced by the same refrigerant processing apparatus 200.
 また、本実施形態の冷媒処理装置200においては、混合冷媒液23と気相冷媒24を分離する処理と、高温冷媒液21と気相冷媒24との間で熱交換させる処理を、共通する配管構造(容器部220と貫通する配管210)を用いて一体的に行う構成としている。そのため、冷媒処理装置200の小型化、低コスト化を図ることができる。 Moreover, in the refrigerant processing apparatus 200 of this embodiment, the process which isolate | separates the mixed refrigerant liquid 23 and the gaseous-phase refrigerant | coolant 24, and the process which heat-exchanges between the high temperature refrigerant | coolant liquid 21 and the gaseous-phase refrigerant | coolant 24 are common piping. The structure (the container part 220 and the piping 210 penetrating through the structure) is configured to be integrated. Therefore, the coolant processing apparatus 200 can be reduced in size and cost.
 〔第3の実施形態〕
 次に、本発明の第3の実施形態について説明する。図3に、本実施形態による冷媒処理装置300の構成を示す。
[Third Embodiment]
Next, a third embodiment of the present invention will be described. FIG. 3 shows a configuration of the refrigerant processing apparatus 300 according to the present embodiment.
 冷媒処理装置300は、高温冷媒液21が流動する第1の配管310、第1の配管310の下方に位置し気液二相冷媒22が流動する第2の配管320、および第1の配管310と第2の配管320を収容する収容部330とを有する。 The refrigerant processing apparatus 300 includes a first pipe 310 through which the high-temperature refrigerant liquid 21 flows, a second pipe 320 that is located below the first pipe 310 and through which the gas-liquid two-phase refrigerant 22 flows, and a first pipe 310. And a housing 330 for housing the second pipe 320.
 ここで、第1の配管310と第2の配管320は、第1の配管310の外周部と第2の配管320の外周部が熱的に接触した状態で配置している。第2の配管320は、気液二相冷媒22に含まれる混合冷媒液23が流出する流出穴321を、外周面の下方に備える。そして、収容部330は、流出穴321から流出した混合冷媒液23が流出する流出部333を備える。 Here, the first pipe 310 and the second pipe 320 are arranged in a state where the outer peripheral portion of the first pipe 310 and the outer peripheral portion of the second pipe 320 are in thermal contact with each other. The second pipe 320 includes an outflow hole 321 through which the mixed refrigerant liquid 23 contained in the gas-liquid two-phase refrigerant 22 flows out, below the outer peripheral surface. And the accommodating part 330 is equipped with the outflow part 333 into which the mixed refrigerant liquid 23 which flowed out from the outflow hole 321 flows out.
 第1の配管310および第2の配管320を構成する材料には、熱伝導特性に優れた金属、例えばアルミニウム、銅などを用いることができる。また、収容部330を構成する材料には、一般的な金属材料、例えばステンレス、アルミニウム、銅などを用いることができる。 As a material constituting the first pipe 310 and the second pipe 320, a metal having excellent heat conductivity, such as aluminum or copper, can be used. In addition, a general metal material such as stainless steel, aluminum, copper, or the like can be used as a material constituting the housing portion 330.
 次に、本実施形態による冷媒処理装置300の動作について説明する。 Next, the operation of the refrigerant processing apparatus 300 according to the present embodiment will be described.
 受熱部において発生した気液二相冷媒22が、第2の配管320に流入する。流入した気液二相冷媒22が第2の配管320の内壁面や流出穴321等に当たると、気液二相冷媒22に含まれる混合冷媒液23は滴下し、流出穴321を通って収容部330内に滞留する。そして、流出部333を通って冷媒処理装置300から流出する。 The gas-liquid two-phase refrigerant 22 generated in the heat receiving part flows into the second pipe 320. When the inflowing gas-liquid two-phase refrigerant 22 hits the inner wall surface of the second pipe 320, the outflow hole 321, or the like, the mixed refrigerant liquid 23 contained in the gas-liquid two-phase refrigerant 22 drops and passes through the outflow hole 321. Stay in 330. Then, it flows out from the refrigerant processing apparatus 300 through the outflow portion 333.
 一方、気液二相冷媒22に含まれる気相冷媒24は第2の配管320を通過し、冷媒処理装置300から排出される。これにより、気液二相冷媒22に含まれる混合冷媒液23と気相冷媒24は分離される。すなわち、流出穴321を備えた第2の配管320は混合冷媒液分離手段としての機能を有する。 Meanwhile, the gas-phase refrigerant 24 contained in the gas-liquid two-phase refrigerant 22 passes through the second pipe 320 and is discharged from the refrigerant processing apparatus 300. Thereby, the mixed refrigerant liquid 23 and the gas phase refrigerant 24 contained in the gas-liquid two-phase refrigerant 22 are separated. That is, the 2nd piping 320 provided with the outflow hole 321 has a function as a mixed refrigerant liquid separation means.
 なお、流出部333と受熱部を接続し、混合冷媒液23が流動する混合冷媒液配管を備えた構成とすることができる。これにより、混合冷媒液23を受熱部に還流させ、再度、受熱に利用することが可能になる。 In addition, it can be set as the structure provided with the mixed refrigerant liquid piping which connects the outflow part 333 and a heat receiving part, and the mixed refrigerant liquid 23 flows. As a result, the mixed refrigerant liquid 23 is returned to the heat receiving portion and can be used again for heat reception.
 また、第1の配管310を流動する高温冷媒液21は、熱的に接触している第1の配管310の外周部と第2の配管320の外周部を介して、第2の配管320に流入した気液二相冷媒22に含まれる気相冷媒24と熱交換を行うことができる。すなわち、熱的に接触している第1の配管310の外周部と第2の配管320の外周部が、高温冷媒液21と気相冷媒24との間の熱交換を媒介する熱交換手段として機能する。 Further, the high-temperature refrigerant liquid 21 flowing through the first pipe 310 passes through the outer periphery of the first pipe 310 and the outer periphery of the second pipe 320 that are in thermal contact with the second pipe 320. Heat exchange can be performed with the gas-phase refrigerant 24 contained in the gas-liquid two-phase refrigerant 22 that has flowed in. That is, the outer peripheral portion of the first pipe 310 and the outer peripheral portion of the second pipe 320 that are in thermal contact serve as heat exchange means for mediating heat exchange between the high-temperature refrigerant liquid 21 and the gas-phase refrigerant 24. Function.
 上述した本実施形態による冷媒処理装置300と、受熱することにより気液二相冷媒を生成する受熱部とによって、冷却装置を構成することができる。 The cooling device can be configured by the above-described refrigerant processing device 300 according to the present embodiment and the heat receiving unit that generates the gas-liquid two-phase refrigerant by receiving heat.
 本実施形態による冷媒処理装置300を用いた冷却装置によれば、冷媒処理装置300が気液二相冷媒22に含まれる気相冷媒24を分離して排出するので、気相冷媒24だけを熱交換システムに供給することが可能になる。そのため、液相の冷媒が混入することによる熱交換システムの性能低下を回避することができる。その結果、余剰の冷媒が加えられていることにより気液二相冷媒が発生する冷却システムにおいて、本実施形態の冷媒処理装置300を用いることにより、冷却性能の低下を招くことなく冷却性能の安定化を図ることができる。 According to the cooling apparatus using the refrigerant processing apparatus 300 according to the present embodiment, the refrigerant processing apparatus 300 separates and discharges the gas-phase refrigerant 24 contained in the gas-liquid two-phase refrigerant 22, so that only the gas-phase refrigerant 24 is heated. It becomes possible to supply the switching system. For this reason, it is possible to avoid a decrease in performance of the heat exchange system due to mixing of the liquid-phase refrigerant. As a result, in the cooling system in which gas-liquid two-phase refrigerant is generated due to the addition of surplus refrigerant, the use of the refrigerant processing device 300 of the present embodiment stabilizes the cooling performance without causing a reduction in cooling performance. Can be achieved.
 さらに、本実施形態の冷媒処理装置300は、気相冷媒24と高温冷媒液21が熱交換する構成としている。そのため、熱交換システムが気相冷媒24を取得して高温冷媒液21を送出する際の仕事量を、同一の冷媒処理装置300によって低減することが可能になる。 Furthermore, the refrigerant processing apparatus 300 of the present embodiment is configured such that the gas-phase refrigerant 24 and the high-temperature refrigerant liquid 21 exchange heat. Therefore, the work amount when the heat exchange system acquires the gas-phase refrigerant 24 and delivers the high-temperature refrigerant liquid 21 can be reduced by the same refrigerant processing apparatus 300.
 また、本実施形態の冷媒処理装置300においては、混合冷媒液23と気相冷媒24を分離する処理と、高温冷媒液21と気相冷媒24との間で熱交換させる処理を、共通する配管構造(第1の配管310と第2の配管320)を用いて一体的に行う構成としている。そのため、冷媒処理装置300の小型化、低コスト化を図ることができる。 Moreover, in the refrigerant processing apparatus 300 of this embodiment, the process which isolate | separates the mixed refrigerant liquid 23 and the gaseous-phase refrigerant | coolant 24, and the process which heat-exchanges between the high temperature refrigerant | coolant liquid 21 and the gaseous-phase refrigerant | coolant 24 are common piping. The structure (first pipe 310 and second pipe 320) is used as a unitary structure. Therefore, the coolant processing apparatus 300 can be reduced in size and cost.
 〔第4の実施形態〕
 次に、本発明の第4の実施形態について説明する。図4は、本実施形態による冷媒処理装置400の構成を示す断面図である。
[Fourth Embodiment]
Next, a fourth embodiment of the present invention will be described. FIG. 4 is a cross-sectional view showing the configuration of the refrigerant processing apparatus 400 according to the present embodiment.
 本実施形態による冷媒処理装置400は、二重管410と、二重管410を収容する収容部420を有する。 The refrigerant processing apparatus 400 according to the present embodiment includes a double pipe 410 and a housing portion 420 that houses the double pipe 410.
 二重管410は、高温冷媒液21が流動する内層管411と気液二相冷媒22が流動する外層管412からなり、内層管411の外周面と外層管412の内周面を共有している。外層管412は、気液二相冷媒22に含まれる混合冷媒液23が流出する流出穴413を、外周面の下方に備えている。そして、収容部420は、流出穴413から流出した混合冷媒液23が流出する流出部423を備える。 The double pipe 410 includes an inner layer pipe 411 in which the high-temperature refrigerant liquid 21 flows and an outer layer pipe 412 in which the gas-liquid two-phase refrigerant 22 flows, and shares the outer peripheral surface of the inner layer pipe 411 and the inner peripheral surface of the outer layer pipe 412. Yes. The outer layer pipe 412 includes an outflow hole 413 through which the mixed refrigerant liquid 23 contained in the gas-liquid two-phase refrigerant 22 flows out, below the outer peripheral surface. And the accommodating part 420 is equipped with the outflow part 423 into which the mixed refrigerant liquid 23 which flowed out from the outflow hole 413 flows out.
 二重管410を構成する材料には、熱伝導特性に優れた金属、例えばアルミニウム、銅などを用いることができる。また、収容部420を構成する材料には、一般的な金属材料、例えばステンレス、アルミニウム、銅などを用いることができる。 As a material constituting the double pipe 410, a metal having excellent thermal conductivity, such as aluminum or copper, can be used. In addition, a general metal material such as stainless steel, aluminum, copper, or the like can be used as a material constituting the accommodating portion 420.
 次に、本実施形態による冷媒処理装置400の動作について説明する。 Next, the operation of the refrigerant processing apparatus 400 according to the present embodiment will be described.
 受熱部において発生した気液二相冷媒22が、二重管410を構成する外層管412に流入する。流入した気液二相冷媒22が外層管412の内壁面や流出穴413等に当たると、気液二相冷媒22に含まれる混合冷媒液23は滴下し、外周面の下方の流出穴413を通って収容部420内に滞留する。そして、流出部423を通って冷媒処理装置400から流出する。 The gas-liquid two-phase refrigerant 22 generated in the heat receiving part flows into the outer layer pipe 412 constituting the double pipe 410. When the flowing gas-liquid two-phase refrigerant 22 hits the inner wall surface of the outer layer pipe 412, the outflow hole 413, etc., the mixed refrigerant liquid 23 contained in the gas-liquid two-phase refrigerant 22 drops and passes through the outflow hole 413 below the outer peripheral surface. And stays in the accommodating part 420. Then, it flows out from the refrigerant processing apparatus 400 through the outflow portion 423.
 一方、気液二相冷媒22に含まれる気相冷媒24は外層管412を通過し、冷媒処理装置400から排出される。これにより、気液二相冷媒22に含まれる混合冷媒液23と気相冷媒24は分離される。すなわち、流出穴413を備えた外層管412は混合冷媒液分離手段としての機能を有する。 Meanwhile, the gas-phase refrigerant 24 contained in the gas-liquid two-phase refrigerant 22 passes through the outer layer pipe 412 and is discharged from the refrigerant processing apparatus 400. Thereby, the mixed refrigerant liquid 23 and the gas phase refrigerant 24 contained in the gas-liquid two-phase refrigerant 22 are separated. That is, the outer layer pipe 412 provided with the outflow hole 413 has a function as a mixed refrigerant liquid separation means.
 なお、流出部423と受熱部を接続し、混合冷媒液23が流動する混合冷媒液配管を備えた構成とすることができる。これにより、混合冷媒液23を受熱部に還流させ、再度、受熱に利用することが可能になる。 In addition, it can be set as the structure provided with the mixed refrigerant liquid piping which connects the outflow part 423 and a heat receiving part, and the mixed refrigerant liquid 23 flows. As a result, the mixed refrigerant liquid 23 is returned to the heat receiving portion and can be used again for heat reception.
 また、二重管410を構成する内層管411を流動する高温冷媒液21は、外層管412の内周面と共有している内層管411の外周面を介して、外層管412に流入した気液二相冷媒22に含まれる気相冷媒24と熱交換を行うことができる。すなわち、内層管411の外周面と外層管412の内周面を共有する二重管410が、高温冷媒液21と気相冷媒24との間の熱交換を媒介する熱交換手段として機能する。 Further, the high-temperature refrigerant liquid 21 flowing in the inner layer pipe 411 constituting the double pipe 410 flows into the outer layer pipe 412 via the outer peripheral surface of the inner layer pipe 411 shared with the inner peripheral surface of the outer layer pipe 412. Heat exchange can be performed with the gas-phase refrigerant 24 contained in the liquid two-phase refrigerant 22. That is, the double pipe 410 sharing the outer peripheral surface of the inner layer pipe 411 and the inner peripheral surface of the outer layer pipe 412 functions as a heat exchange means for mediating heat exchange between the high-temperature refrigerant liquid 21 and the gas-phase refrigerant 24.
 上述した本実施形態による冷媒処理装置400と、受熱することにより気液二相冷媒を生成する受熱部とによって、冷却装置を構成することができる。 The cooling device can be configured by the above-described refrigerant processing device 400 according to the present embodiment and the heat receiving unit that generates the gas-liquid two-phase refrigerant by receiving heat.
 本実施形態による冷媒処理装置400を用いた冷却装置によれば、冷媒処理装置400が気液二相冷媒21に含まれる気相冷媒24を分離して排出するので、気相冷媒24だけを熱交換システムに供給することが可能になる。そのため、液相の冷媒が混入することによる熱交換システムの性能低下を回避することができる。その結果、余剰の冷媒が加えられていることにより気液二相冷媒が発生する冷却システムにおいて、本実施形態の冷媒処理装置400を用いることにより、冷却性能の低下を招くことなく冷却性能の安定化を図ることができる。 According to the cooling device using the refrigerant processing apparatus 400 according to the present embodiment, the refrigerant processing apparatus 400 separates and discharges the gas-phase refrigerant 24 contained in the gas-liquid two-phase refrigerant 21, so that only the gas-phase refrigerant 24 is heated. It becomes possible to supply the switching system. For this reason, it is possible to avoid a decrease in performance of the heat exchange system due to mixing of the liquid-phase refrigerant. As a result, in the cooling system in which gas-liquid two-phase refrigerant is generated due to the addition of surplus refrigerant, the use of the refrigerant processing device 400 of the present embodiment stabilizes the cooling performance without causing a reduction in cooling performance. Can be achieved.
 さらに、本実施形態の冷媒処理装置400は、気相冷媒24と高温冷媒液21が熱交換する構成としている。そのため、熱交換システムが気相冷媒24を取得して高温冷媒液21を送出する際の仕事量を、同一の冷媒処理装置400によって低減することが可能になる。 Furthermore, the refrigerant processing apparatus 400 of the present embodiment is configured such that the gas-phase refrigerant 24 and the high-temperature refrigerant liquid 21 exchange heat. Therefore, the work amount when the heat exchange system acquires the gas-phase refrigerant 24 and delivers the high-temperature refrigerant liquid 21 can be reduced by the same refrigerant processing apparatus 400.
 また、本実施形態の冷媒処理装置400においては、混合冷媒液23と気相冷媒24を分離する処理と、高温冷媒液21と気相冷媒24との間で熱交換させる処理を、共通する配管構造(二重管410)を用いて一体的に行う構成としている。そのため、冷媒処理装置400の小型化、低コスト化を図ることができる。 Moreover, in the refrigerant processing apparatus 400 of this embodiment, the process which isolate | separates the mixed refrigerant liquid 23 and the gaseous-phase refrigerant | coolant 24, and the process which heat-exchanges between the high temperature refrigerant | coolant liquid 21 and the gaseous-phase refrigerant | coolant 24 are common piping. The structure (double pipe 410) is used as a unitary structure. Therefore, the coolant processing apparatus 400 can be reduced in size and cost.
 図5に、本実施形態による冷媒処理装置の別の構成を示す。同図に示した冷媒処理装置401においては、二重管410は水平方向に対して傾斜して配置している構成とした。そして、流出穴413は、二重管410の長手方向の端部のうち鉛直方向の下方に位置する下方端部の近傍に位置する構成とした。図5では、流出穴413を一個だけ備えた二重管410を示す。このような構成とすることにより、混合冷媒液23を二重管410から効率的に流出させることが可能になる。 FIG. 5 shows another configuration of the refrigerant processing apparatus according to the present embodiment. In the refrigerant processing apparatus 401 shown in the figure, the double pipe 410 is arranged to be inclined with respect to the horizontal direction. And the outflow hole 413 was set as the structure located in the vicinity of the lower end part located in the downward direction of a perpendicular direction among the edge parts of the double pipe 410 in the longitudinal direction. FIG. 5 shows a double tube 410 having only one outflow hole 413. With such a configuration, the mixed refrigerant liquid 23 can be efficiently discharged from the double pipe 410.
 図6A、6Bに、本実施形態による冷媒処理装置のさらに別の構成を示す。図6Aは、さらに別の構成による冷媒処理装置402の模式図、図6Bは、冷媒処理装置402を構成する二重管430の断面図である。 6A and 6B show still another configuration of the refrigerant processing apparatus according to the present embodiment. FIG. 6A is a schematic view of a refrigerant processing apparatus 402 according to still another configuration, and FIG. 6B is a cross-sectional view of a double pipe 430 that constitutes the refrigerant processing apparatus 402.
 冷媒処理装置402を構成する二重管430は、高温冷媒液21が流動する内層管431と気液二相冷媒22が流動する外層管432からなる。外層管432は、らせん状の流路構造を備え、この流路構造内にフィン構造433を有する(図6B)。そして、二重管410の長手方向の端部近傍に流出穴433を備えている。 The double pipe 430 constituting the refrigerant processing apparatus 402 includes an inner layer pipe 431 through which the high-temperature refrigerant liquid 21 flows and an outer layer pipe 432 through which the gas-liquid two-phase refrigerant 22 flows. The outer layer pipe 432 has a spiral channel structure, and has a fin structure 433 in the channel structure (FIG. 6B). An outflow hole 433 is provided in the vicinity of the end portion of the double tube 410 in the longitudinal direction.
 このような構成とした二重管430では、フィン構造433が外層管432を流動する気液二相冷媒22の障害となるので、気液二相冷媒22に含まれる混合冷媒液23が滴下しやすくなる。そのため、気液二相冷媒22に含まれる混合冷媒液23と気相冷媒24を効率よく分離することができる。さらに、外層管432は、らせん状(スクリュー形状)の流路構造を備えているので、外層管432を流動する気液二相冷媒22に含まれる気相冷媒24と、内層管411を流動する高温冷媒液21とが熱交換する距離を長くすることができる。これにより、高温冷媒液21と気相冷媒24との間で熱交換される熱量を増大させることができる。したがって、熱交換システムにおける仕事量を、さらに低減することができる。 In the double pipe 430 having such a configuration, the fin structure 433 becomes an obstacle to the gas-liquid two-phase refrigerant 22 flowing in the outer pipe 432, so that the mixed refrigerant liquid 23 contained in the gas-liquid two-phase refrigerant 22 drops. It becomes easy. Therefore, the mixed refrigerant liquid 23 and the gas phase refrigerant 24 contained in the gas-liquid two-phase refrigerant 22 can be efficiently separated. Furthermore, since the outer layer pipe 432 has a spiral (screw-shaped) flow path structure, the gas phase refrigerant 24 contained in the gas-liquid two-phase refrigerant 22 flowing through the outer layer pipe 432 and the inner layer pipe 411 flow. The distance for heat exchange with the high-temperature refrigerant liquid 21 can be increased. Thereby, the amount of heat exchanged between the high-temperature refrigerant liquid 21 and the gas-phase refrigerant 24 can be increased. Therefore, the work amount in the heat exchange system can be further reduced.
 〔第5の実施形態〕
 次に、本発明の第5の実施形態について説明する。図7は、本実施形態による冷却システム2000の構成を示す概略図である。
[Fifth Embodiment]
Next, a fifth embodiment of the present invention will be described. FIG. 7 is a schematic diagram showing the configuration of the cooling system 2000 according to the present embodiment.
 冷却システム2000は、冷媒処理装置2100と受熱部2200を備えた冷却装置と、熱交換システム2300を有する。 The cooling system 2000 includes a cooling device including a refrigerant processing device 2100 and a heat receiving unit 2200, and a heat exchange system 2300.
 受熱部2200は、受熱することにより気液二相冷媒を生成する。冷媒処理装置2100は、この気液二相冷媒に含まれる気相冷媒を分離して熱交換システム2300に供給し、熱交換システム2300から高温冷媒液を取得し、気相冷媒と高温冷媒液を熱交換させる。ここで、冷媒処理装置2100には、上述した第1の実施形態から第4の実施形態で説明した冷媒処理装置1100、200、300、400、401、402のいずれかを用いることができる。 The heat receiving unit 2200 generates a gas-liquid two-phase refrigerant by receiving heat. The refrigerant processing device 2100 separates the gas-phase refrigerant contained in the gas-liquid two-phase refrigerant and supplies it to the heat exchange system 2300, acquires the high-temperature refrigerant liquid from the heat exchange system 2300, and converts the gas-phase refrigerant and the high-temperature refrigerant liquid to Heat exchange. Here, any one of the refrigerant processing devices 1100, 200, 300, 400, 401, and 402 described in the first to fourth embodiments can be used as the refrigerant processing device 2100.
 熱交換システム2300は、圧縮機2310と熱交換器2320を有する。圧縮機2310は、冷媒処理装置2100から取得した気相冷媒を圧縮して高温気相冷媒を生成する。熱交換器2320は、この高温気相冷媒を熱交換して高温冷媒液を生成し、冷媒処理装置2100に供給する。 The heat exchange system 2300 includes a compressor 2310 and a heat exchanger 2320. The compressor 2310 compresses the gas phase refrigerant acquired from the refrigerant processing apparatus 2100 to generate a high temperature gas phase refrigerant. The heat exchanger 2320 heat-exchanges the high-temperature gas-phase refrigerant to generate a high-temperature refrigerant liquid, and supplies it to the refrigerant processing device 2100.
 また、冷却システム2000は、膨張弁2400をさらに有する構成とすることができる。膨張弁2400は、冷媒処理装置2100において気相冷媒と熱交換した後の高温冷媒液を膨張させて低温冷媒液を生成し、この低温冷媒液を受熱部2200に送出する。このように、冷却システム2000は冷媒の循環を用いる冷凍システムを構成する。 In addition, the cooling system 2000 may further include an expansion valve 2400. The expansion valve 2400 expands the high-temperature refrigerant liquid after heat exchange with the gas-phase refrigerant in the refrigerant processing apparatus 2100 to generate a low-temperature refrigerant liquid, and sends the low-temperature refrigerant liquid to the heat receiving unit 2200. In this way, the cooling system 2000 constitutes a refrigeration system that uses refrigerant circulation.
 なお、冷媒処理装置2100が流出部223、333、423を備えた構成である場合には、図7中の破線で示すように、流出部と受熱部2200を接続する混合冷媒液配管2500を備えた構成とすることができる。この場合、流出部から流出する混合冷媒液は、混合冷媒液配管2500を流動して受熱部2200に流入する。これにより、混合冷媒液を受熱部2200に還流させ、再度、受熱に利用することが可能になる。 In addition, when the refrigerant processing apparatus 2100 has a configuration including the outflow portions 223, 333, and 423, as shown by a broken line in FIG. 7, a mixed refrigerant liquid pipe 2500 that connects the outflow portion and the heat receiving portion 2200 is provided. Can be configured. In this case, the mixed refrigerant liquid flowing out from the outflow part flows through the mixed refrigerant liquid pipe 2500 and flows into the heat receiving part 2200. As a result, the mixed refrigerant liquid is refluxed to the heat receiving unit 2200 and can be used again for heat reception.
 上述したように、本実施形態による冷却システム2000においては、冷却システム2000を構成する冷媒処理装置2100が気液二相冷媒に含まれる気相冷媒を分離し、気相冷媒だけを熱交換システム2300に供給する構成としている。そのため、液相の冷媒が混入することによる圧縮機2310の効率の低下を防ぐことができる。すなわち、熱交換システム2300の性能低下を回避することができる。その結果、余剰の冷媒を加えることにより気液二相冷媒が発生する状態で使用する場合であっても、冷却システム2000では冷却性能の低下は生じない。 As described above, in the cooling system 2000 according to the present embodiment, the refrigerant processing device 2100 constituting the cooling system 2000 separates the gas-phase refrigerant contained in the gas-liquid two-phase refrigerant, and only the gas-phase refrigerant is exchanged with the heat exchange system 2300. It is configured to supply to. Therefore, it is possible to prevent a reduction in efficiency of the compressor 2310 due to mixing of a liquid-phase refrigerant. That is, the performance degradation of the heat exchange system 2300 can be avoided. As a result, the cooling system 2000 does not deteriorate the cooling performance even when it is used in a state where a gas-liquid two-phase refrigerant is generated by adding surplus refrigerant.
 このように、本実施形態の冷却システム2000によれば、冷媒の循環を用いる冷凍システムにおいて、冷却性能の低下を招くことなく冷却性能の安定化を図ることができる。 Thus, according to the cooling system 2000 of the present embodiment, in the refrigeration system using the circulation of the refrigerant, it is possible to stabilize the cooling performance without causing a decrease in the cooling performance.
 以上、上述した実施形態を模範的な例として本発明を説明した。しかしながら、本発明は、上述した実施形態には限定されない。即ち、本発明は、本発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。 The present invention has been described above using the above-described embodiment as an exemplary example. However, the present invention is not limited to the above-described embodiment. That is, the present invention can apply various modes that can be understood by those skilled in the art within the scope of the present invention.
 この出願は、2015年7月1日に出願された日本出願特願2015-132793を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2015-132793 filed on July 1, 2015, the entire disclosure of which is incorporated herein.
 1000  冷却装置
 1100、2100、200、300、400、401、402  冷媒処理装置
 1110  第1の流路構造
 1120  第2の流路構造
 1130  混合冷媒液分離手段
 1140  熱交換手段
 1200、2200  受熱部
 1300、2300  熱交換システム
 2000  冷却システム
 2310  圧縮機
 2320  熱交換器
 2400  膨張弁
 2500  混合冷媒液配管
 210  配管
 220  容器部
 221  流入部
 222  排出部
 223、333、423  流出部
 310  第1の配管
 320  第2の配管
 321、413、433  流出穴
 330、420  収容部
 410、430  二重管
 411、431  内層管
 412、432  外層管
 433  フィン構造
 21  高温冷媒液
 22  気液二相冷媒
 23  混合冷媒液
 24  気相冷媒
1000 Cooling device 1100, 2100, 200, 300, 400, 401, 402 Refrigerant processing device 1110 First flow path structure 1120 Second flow path structure 1130 Mixed refrigerant liquid separation means 1140 Heat exchange means 1200, 2200 Heat receiving part 1300, 2300 Heat exchange system 2000 Cooling system 2310 Compressor 2320 Heat exchanger 2400 Expansion valve 2500 Mixed refrigerant liquid pipe 210 Pipe 220 Container part 221 Inflow part 222 Discharge part 223, 333, 423 Outflow part 310 First pipe 320 Second pipe 321, 413, 433 Outflow hole 330, 420 Accommodating part 410, 430 Double pipe 411, 431 Inner layer pipe 412, 432 Outer layer pipe 433 Fin structure 21 High temperature refrigerant liquid 22 Gas-liquid two-phase refrigerant 23 Mixed refrigerant liquid 24 Gas phase refrigerant

Claims (19)

  1.  受熱することにより気液二相冷媒を生成する受熱手段と、
     前記気液二相冷媒に含まれる気相冷媒を分離し、熱交換システムから流入する高温冷媒液と前記気相冷媒を熱交換させ、前記気相冷媒を前記熱交換システムに供給する冷媒処理装置、とを有する
     冷却装置。
    Heat receiving means for generating a gas-liquid two-phase refrigerant by receiving heat;
    A refrigerant processing apparatus that separates a gas-phase refrigerant contained in the gas-liquid two-phase refrigerant, heat-exchanges the gas-phase refrigerant with a high-temperature refrigerant liquid flowing from a heat exchange system, and supplies the gas-phase refrigerant to the heat exchange system , And having a cooling device.
  2.  請求項1に記載した冷却装置において、
     前記冷媒処理装置は、
      前記高温冷媒液が流動する第1の流路構造と、
      前記気液二相冷媒が流動する第2の流路構造と、
      前記気液二相冷媒に含まれる混合冷媒液と前記気相冷媒を分離する混合冷媒液分離手段と、
      前記高温冷媒液と前記気相冷媒との間の熱交換を媒介する熱交換手段、とを備える
     冷却装置。
    The cooling device according to claim 1,
    The refrigerant processing apparatus includes:
    A first flow path structure through which the high-temperature refrigerant liquid flows;
    A second flow path structure through which the gas-liquid two-phase refrigerant flows;
    A mixed refrigerant liquid separating means for separating the mixed refrigerant liquid contained in the gas-liquid two-phase refrigerant and the gas-phase refrigerant;
    A heat exchange means for mediating heat exchange between the high-temperature refrigerant liquid and the gas-phase refrigerant.
  3.  請求項2に記載した冷却装置において、
     前記混合冷媒液分離手段と前記熱交換手段は、共通する配管構造を備える
     冷却装置。
    The cooling device according to claim 2,
    The mixed refrigerant liquid separation means and the heat exchange means have a common piping structure.
  4.  請求項1に記載した冷却装置において、
     前記冷媒処理装置は、
      前記高温冷媒液が流動する配管と、
      前記気液二相冷媒が流入し、前記気液二相冷媒に含まれる混合冷媒液が滞留する容器部、を有し、
      前記容器部は、前記気液二相冷媒が流入する流入部と、前記流入部より上方に位置し前記気相冷媒が排出する排出部と、前記流入部より下方に位置し前記混合冷媒液が流出する流出部を備え、
      前記配管は、前記容器部の内部を貫通して配置している
     冷却装置。
    The cooling device according to claim 1,
    The refrigerant processing apparatus includes:
    Piping through which the high-temperature refrigerant liquid flows;
    The gas-liquid two-phase refrigerant flows in, and a container portion in which the mixed refrigerant liquid contained in the gas-liquid two-phase refrigerant stays,
    The container portion includes an inflow portion into which the gas-liquid two-phase refrigerant flows, an exhaust portion that is located above the inflow portion and from which the gas-phase refrigerant is discharged, and is located below the inflow portion so that the mixed refrigerant liquid is It has an outflow part that flows out,
    The said piping is arrange | positioned through the inside of the said container part.
  5.  請求項1に記載した冷却装置において、
     前記冷媒処理装置は、
      前記高温冷媒液が流動する第1の配管と、
      前記第1の配管の下方に位置し前記気液二相冷媒が流動する第2の配管と、
      前記第1の配管と前記第2の配管を収容する収容手段、とを有し、
      前記第1の配管と前記第2の配管は、前記第1の配管の外周部と前記第2の配管の外周部が熱的に接触した状態で配置しており、
      前記第2の配管は、前記気液二相冷媒に含まれる混合冷媒液が流出する流出穴を、外周面の下方に備え、
      前記収容手段は、前記流出穴から流出した前記混合冷媒液が流出する流出部を備える
     冷却装置。
    The cooling device according to claim 1,
    The refrigerant processing apparatus includes:
    A first pipe through which the high-temperature refrigerant liquid flows;
    A second pipe located below the first pipe and through which the gas-liquid two-phase refrigerant flows;
    A housing means for housing the first pipe and the second pipe,
    The first pipe and the second pipe are arranged in a state where the outer peripheral part of the first pipe and the outer peripheral part of the second pipe are in thermal contact with each other,
    The second pipe has an outflow hole through which the mixed refrigerant liquid contained in the gas-liquid two-phase refrigerant flows out, below the outer peripheral surface,
    The storage means includes a flow-out portion through which the mixed refrigerant liquid flowing out from the flow-out hole flows out.
  6.  請求項1に記載した冷却装置において、
     前記冷媒処理装置は、
      前記高温冷媒液が流動する内層管と前記気液二相冷媒が流動する外層管からなり、前記内層管の外周面と前記外層管の内周面を共有する二重管と、
      前記二重管を収容する収容手段、を有し、
      前記外層管は、前記気液二相冷媒に含まれる混合冷媒液が流出する流出穴を、外周面の下方に備え、
      前記収容手段は、前記流出穴から流出した前記混合冷媒液が流出する流出部を備える
     冷却装置。
    The cooling device according to claim 1,
    The refrigerant processing apparatus includes:
    A double pipe comprising an inner layer pipe through which the high-temperature refrigerant liquid flows and an outer layer pipe through which the gas-liquid two-phase refrigerant flows, and sharing an outer peripheral surface of the inner layer pipe and an inner peripheral surface of the outer layer pipe;
    A housing means for housing the double pipe,
    The outer layer pipe includes an outflow hole through which a mixed refrigerant liquid contained in the gas-liquid two-phase refrigerant flows out, below the outer peripheral surface,
    The storage means includes a flow-out portion through which the mixed refrigerant liquid flowing out from the flow-out hole flows out.
  7.  請求項6に記載した冷却装置において、
     前記二重管は、水平方向に対して傾斜して配置しており、
     前記流出穴は、前記二重管の長手方向の端部のうち鉛直方向の下方に位置する下方端部の近傍に位置する
     冷却装置。
    The cooling device according to claim 6, wherein
    The double pipe is disposed inclined with respect to the horizontal direction,
    The said outflow hole is located in the vicinity of the lower end part located in the downward direction of a perpendicular direction among the edge parts of the longitudinal direction of the said double pipe.
  8.  請求項6または7に記載した冷却装置において、
     前記外層管は、らせん状の流路構造を備え、前記流路構造内にフィン構造を有する
     冷却装置。
    The cooling device according to claim 6 or 7,
    The outer layer pipe includes a spiral channel structure, and has a fin structure in the channel structure.
  9.  請求項4から8のいずれか一項に記載した冷却装置において、
     前記流出部と前記受熱手段を接続し、前記混合冷媒液が流動する混合冷媒液配管をさらに有する
     冷却装置。
    In the cooling device according to any one of claims 4 to 8,
    A cooling device further comprising a mixed refrigerant liquid pipe that connects the outflow part and the heat receiving means and through which the mixed refrigerant liquid flows.
  10.  請求項1から9のいずれか一項に記載した冷却装置と、前記熱交換システムを有する
     冷却システム。
    A cooling system comprising: the cooling device according to any one of claims 1 to 9; and the heat exchange system.
  11.  請求項10に記載した冷却システムにおいて、
     前記熱交換システムは、前記気相冷媒を圧縮して高温気相冷媒を生成する圧縮機と、前記高温気相冷媒を熱交換して前記高温冷媒液を生成する熱交換器、とを有する
     冷却システム。
    The cooling system according to claim 10, wherein
    The heat exchange system includes a compressor that compresses the gas-phase refrigerant to generate a high-temperature gas-phase refrigerant, and a heat exchanger that heat-exchanges the high-temperature gas-phase refrigerant to generate the high-temperature refrigerant liquid. system.
  12.  請求項10または11に記載した冷却システムにおいて、
     前記気相冷媒と熱交換した後の前記高温冷媒液を膨張させて低温冷媒液を生成し、前記低温冷媒液を前記受熱手段に送出する膨張弁をさらに有する
     冷却システム。
    The cooling system according to claim 10 or 11,
    A cooling system further comprising an expansion valve that expands the high-temperature refrigerant liquid after heat exchange with the gas-phase refrigerant to generate a low-temperature refrigerant liquid and sends the low-temperature refrigerant liquid to the heat receiving means.
  13.  高温冷媒液が流動する第1の流路構造と、
     気液二相冷媒が流動する第2の流路構造と、
     前記気液二相冷媒に含まれる混合冷媒液と気相冷媒を分離する混合冷媒液分離手段と、
     前記高温冷媒液と前記気相冷媒との間の熱交換を媒介する熱交換手段、とを備える
     冷媒処理装置。
    A first flow path structure through which the high-temperature refrigerant liquid flows;
    A second flow path structure through which the gas-liquid two-phase refrigerant flows;
    A mixed refrigerant liquid separating means for separating the mixed refrigerant liquid and the gas phase refrigerant contained in the gas-liquid two-phase refrigerant;
    And a heat exchange means for mediating heat exchange between the high-temperature refrigerant liquid and the gas-phase refrigerant.
  14.  請求項13に記載した冷媒処理装置において、
     前記第1の流路構造は、配管を備え、
     前記第2の流路構造は、前記気液二相冷媒が流入し、前記気液二相冷媒に含まれる混合冷媒液が滞留する容器部を備え、
     前記容器部は、前記気液二相冷媒が流入する流入部と、前記流入部より上方に位置し前記気相冷媒が排出する排出部と、前記流入部より下方に位置し前記混合冷媒液が流出する流出部を備え、
     前記配管は、前記容器部の内部を貫通して配置している
     冷媒処理装置。
    In the refrigerant processing device according to claim 13,
    The first flow path structure includes a pipe,
    The second flow path structure includes a container portion into which the gas-liquid two-phase refrigerant flows and the mixed refrigerant liquid contained in the gas-liquid two-phase refrigerant is retained.
    The container portion includes an inflow portion into which the gas-liquid two-phase refrigerant flows, an exhaust portion that is located above the inflow portion and from which the gas-phase refrigerant is discharged, and is located below the inflow portion so that the mixed refrigerant liquid is It has an outflow part that flows out,
    The said piping is arrange | positioned through the inside of the said container part. Refrigerant processing apparatus.
  15.  請求項13に記載した冷媒処理装置において、
     前記第1の流路構造は、第1の配管を備え、
     前記第2の流路構造は、前記第1の配管の下方に位置し前記気液二相冷媒が流動する第2の配管を備え、
     前記第1の配管と前記第2の配管を収容する収容手段を有し、
     前記第1の配管と前記第2の配管は、前記第1の配管の外周部と前記第2の配管の外周部が熱的に接触した状態で配置しており、
     前記第2の配管は、前記気液二相冷媒に含まれる混合冷媒液が流出する流出穴を、外周面の下方に備え、
     前記収容手段は、前記流出穴から流出した前記混合冷媒液が流出する流出部を備える
     冷媒処理装置。
    In the refrigerant processing device according to claim 13,
    The first flow path structure includes a first pipe,
    The second flow path structure includes a second pipe positioned below the first pipe and through which the gas-liquid two-phase refrigerant flows,
    A housing means for housing the first pipe and the second pipe;
    The first pipe and the second pipe are arranged in a state where the outer peripheral part of the first pipe and the outer peripheral part of the second pipe are in thermal contact with each other,
    The second pipe has an outflow hole through which the mixed refrigerant liquid contained in the gas-liquid two-phase refrigerant flows out, below the outer peripheral surface,
    The said accommodating means is provided with the outflow part from which the said mixed refrigerant liquid which flowed out from the said outflow hole flows out. Refrigerant processing apparatus.
  16.  請求項13に記載した冷媒処理装置において、
     前記第1の流路構造を構成する内層管と前記第2の流路構造を構成する外層管からなり、前記内層管の外周面と前記外層管の内周面を共有する二重管と、
     前記二重管を収容する収容手段、を有し、
     前記外層管は、前記気液二相冷媒に含まれる混合冷媒液が流出する流出穴を、外周面の下方に備え、
     前記収容手段は、前記流出穴から流出した前記混合冷媒液が流出する流出部を備える
     冷媒処理装置。
    In the refrigerant processing device according to claim 13,
    A double pipe comprising an inner layer pipe constituting the first flow path structure and an outer layer pipe constituting the second flow path structure, and sharing an outer peripheral surface of the inner layer pipe and an inner peripheral face of the outer layer pipe;
    A housing means for housing the double pipe,
    The outer layer pipe includes an outflow hole through which a mixed refrigerant liquid contained in the gas-liquid two-phase refrigerant flows out, below the outer peripheral surface,
    The said accommodating means is provided with the outflow part from which the said mixed refrigerant liquid which flowed out from the said outflow hole flows out. Refrigerant processing apparatus.
  17.  請求項16に記載した冷媒処理装置において、
     前記二重管は、水平方向に対して傾斜して配置しており、
     前記流出穴は、前記二重管の長手方向の端部のうち鉛直方向の下方に位置する下方端部の近傍に位置する
     冷媒処理装置。
    The refrigerant processing apparatus according to claim 16, wherein
    The double pipe is disposed inclined with respect to the horizontal direction,
    The said outflow hole is located in the vicinity of the lower end part located in the downward direction of a perpendicular direction among the edge parts of the longitudinal direction of the said double pipe.
  18.  請求項16または17に記載した冷媒処理装置において、
     前記外層管は、らせん状の流路構造を備え、前記流路構造内にフィン構造を有する
     冷媒処理装置。
    The refrigerant processing apparatus according to claim 16 or 17,
    The outer layer pipe includes a spiral channel structure, and has a fin structure in the channel structure.
  19.  高温冷媒液を流動させ、
     気液二相冷媒を流動させ、
     前記気液二相冷媒に含まれる混合冷媒液と気相冷媒を分離し、
     前記高温冷媒液と前記気相冷媒との間で熱交換させ、
     共通の流路構造を用いて、前記混合冷媒液と前記気相冷媒を分離し、前記高温冷媒液と前記気相冷媒との間で熱交換させる
     冷媒処理方法。
    Flowing high-temperature refrigerant liquid,
    Let the gas-liquid two-phase refrigerant flow,
    Separating the mixed refrigerant liquid and the gas-phase refrigerant contained in the gas-liquid two-phase refrigerant;
    Heat exchange between the high-temperature refrigerant liquid and the gas-phase refrigerant,
    A refrigerant processing method in which the mixed refrigerant liquid and the gas-phase refrigerant are separated using a common flow path structure, and heat is exchanged between the high-temperature refrigerant liquid and the gas-phase refrigerant.
PCT/JP2016/003123 2015-07-01 2016-06-29 Cooling device, refrigerant processing device, and refrigerant processing method WO2017002365A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017526183A JP6763381B2 (en) 2015-07-01 2016-06-29 Cooling device, refrigerant treatment device, and refrigerant treatment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-132793 2015-07-01
JP2015132793 2015-07-01

Publications (1)

Publication Number Publication Date
WO2017002365A1 true WO2017002365A1 (en) 2017-01-05

Family

ID=57608304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/003123 WO2017002365A1 (en) 2015-07-01 2016-06-29 Cooling device, refrigerant processing device, and refrigerant processing method

Country Status (2)

Country Link
JP (1) JP6763381B2 (en)
WO (1) WO2017002365A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113291123A (en) * 2021-06-28 2021-08-24 上海应用技术大学 Novel spiral coaxial tube heat exchanger for automobile air conditioner

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183849A (en) * 1984-10-01 1986-04-28 日新興業株式会社 Method and device for vaporizing refrigerant for vapor biser
JPH09152204A (en) * 1995-11-30 1997-06-10 Toshiba Corp Refrigerating cycle
JP2006273049A (en) * 2005-03-28 2006-10-12 Calsonic Kansei Corp Vehicular air conditioner
JP2007192429A (en) * 2006-01-17 2007-08-02 Sanden Corp Gas-liquid separator module
JP2008014629A (en) * 2006-07-03 2008-01-24 Visteon Global Technologies Inc Internal heat exchanger

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183849A (en) * 1984-10-01 1986-04-28 日新興業株式会社 Method and device for vaporizing refrigerant for vapor biser
JPH09152204A (en) * 1995-11-30 1997-06-10 Toshiba Corp Refrigerating cycle
JP2006273049A (en) * 2005-03-28 2006-10-12 Calsonic Kansei Corp Vehicular air conditioner
JP2007192429A (en) * 2006-01-17 2007-08-02 Sanden Corp Gas-liquid separator module
JP2008014629A (en) * 2006-07-03 2008-01-24 Visteon Global Technologies Inc Internal heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113291123A (en) * 2021-06-28 2021-08-24 上海应用技术大学 Novel spiral coaxial tube heat exchanger for automobile air conditioner
CN113291123B (en) * 2021-06-28 2023-02-24 上海应用技术大学 Spiral coaxial tube heat exchanger for automobile air conditioner

Also Published As

Publication number Publication date
JPWO2017002365A1 (en) 2018-04-19
JP6763381B2 (en) 2020-09-30

Similar Documents

Publication Publication Date Title
US9807908B2 (en) Pumped liquid cooling system using a phase change fluid with additional subambient cooling
US9681590B2 (en) Cooling system with controlled apportioning of the cooled high pressure refrigerant between the condenser and the expansion valve
JP2007192429A (en) Gas-liquid separator module
US10174975B2 (en) Two-phase refrigeration system
JP2006292354A (en) Accumulator for vehicle air conditioning system
JP6042026B2 (en) Refrigeration cycle equipment
JP2010001013A (en) Heating, ventilating and/or air-conditioning device for automobile
JP2008249209A (en) Refrigerating device
JP2018197613A (en) Refrigeration cycle device
JP5636871B2 (en) Refrigeration equipment
WO2010013590A1 (en) Heat pump system
JP6368205B2 (en) Heat pump system
WO2017002365A1 (en) Cooling device, refrigerant processing device, and refrigerant processing method
JP2005049049A (en) Heat exchanger
JP2011149636A (en) Air conditioner
JP2007071511A (en) Accumulator structure
JP4897464B2 (en) Vapor compression refrigeration cycle
JP2007191125A (en) Vehicular air-conditioner
JP2007278541A (en) Cooling system
KR20140059021A (en) Heat exchange for refrigerator
KR101758068B1 (en) Oil cooler
JP2017040421A (en) Heat exchanger and heat pump system
JP2008057974A (en) Cooling apparatus
JP6031263B2 (en) Air conditioner
KR20120020426A (en) Refrigerant exhaust unit for air conditioner system of vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16817475

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017526183

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16817475

Country of ref document: EP

Kind code of ref document: A1