JPH09152204A - Refrigerating cycle - Google Patents

Refrigerating cycle

Info

Publication number
JPH09152204A
JPH09152204A JP31310995A JP31310995A JPH09152204A JP H09152204 A JPH09152204 A JP H09152204A JP 31310995 A JP31310995 A JP 31310995A JP 31310995 A JP31310995 A JP 31310995A JP H09152204 A JPH09152204 A JP H09152204A
Authority
JP
Japan
Prior art keywords
refrigerant
refrigeration cycle
compressor
heat
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31310995A
Other languages
Japanese (ja)
Inventor
Takeshi Sakai
猛 酒井
Masaaki Satou
全秋 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP31310995A priority Critical patent/JPH09152204A/en
Publication of JPH09152204A publication Critical patent/JPH09152204A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/051Compression system with heat exchange between particular parts of the system between the accumulator and another part of the cycle

Abstract

PROBLEM TO BE SOLVED: To facilitate the supercooling of non-azeotrope refrigerant and to attempt to improve the efficiency of the refrigerating cycle by providing means for heat exchanging the refrigerant tube of a condenser outlet side with the refrigerant tube of a compressor suction side in the cycle using the non- azeotrope refrigerant as the refrigerant. SOLUTION: In the refrigerating cycle using non-azeotrope refrigerant as the refrigerant of an air conditioner, a condenser 12, a throttle mechanism 12 and an evaporator 13 are sequentially connected to the refrigerant discharge unit of a compressor 10 via tubes to return refrigerant gas to the suction unit of a compressor 10 via a suction cup 14. In this case, a heat exchanger 15 is provided at the refrigerant tube Pa for communicating the condenser 11 with the mechanism 12 of the refrigerant tube at the outlet side of the condenser 11 and the refrigerant tube Pb for communicating the evaporator 13 with the suction unit of the compressor 0 of the refrigerant tube at the suction side of the compressor 10. Thus, the non-azeotrope refrigerant can be facilitated to be supercooled, getting large evaporating latent heat, thereby attempting to improve the efficiency of the refrigerating cycle.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、たとえば空気調和
機において、非共沸混合冷媒を用いた冷凍サイクルに関
する。
TECHNICAL FIELD The present invention relates to a refrigeration cycle using a non-azeotropic mixed refrigerant in, for example, an air conditioner.

【0002】[0002]

【従来の技術】たとえば空気調和機の冷凍サイクルは、
従来、図10に示すようにして構成される。これは、冷
暖房運転の切換えが可能な、いわゆるヒートポンプ式冷
凍サイクル回路である。図中1は圧縮機、2は切換え弁
としての四方弁、3は室外熱交換器、4は絞り機構、5
は室内熱交換器、6はアキュームレータ、7はサクショ
ンカップである。
2. Description of the Related Art For example, a refrigeration cycle of an air conditioner is
Conventionally, it is configured as shown in FIG. This is a so-called heat pump type refrigeration cycle circuit capable of switching between heating and cooling operations. In the figure, 1 is a compressor, 2 is a four-way valve as a switching valve, 3 is an outdoor heat exchanger, 4 is a throttling mechanism, 5
Is an indoor heat exchanger, 6 is an accumulator, and 7 is a suction cup.

【0003】冷房運転時は、圧縮機1から吐出される高
圧の冷媒ガスは、図に実線矢印に示すように導かれる。
すなわち、圧縮機1−四方弁2−室外熱交換器3−絞り
機構4−室内熱交換器5−四方弁2−アキュームレータ
6−サクションカップ7−圧縮機1の順である。室内熱
交換器5において冷媒が蒸発し、ここに導かれる被空調
室空気から蒸発潜熱を奪って低温化し、冷房作用をな
す。
During the cooling operation, the high-pressure refrigerant gas discharged from the compressor 1 is guided as shown by the solid line arrow in the figure.
That is, the order is: compressor 1-four-way valve 2-outdoor heat exchanger 3-throttle mechanism 4-indoor heat exchanger 5-four-way valve 2-accumulator 6-suction cup 7-compressor 1. The refrigerant evaporates in the indoor heat exchanger 5, and the latent heat of evaporation is taken from the air in the air-conditioned room introduced therein to lower the temperature, thereby performing a cooling function.

【0004】暖房運転時は、四方弁2が切換えられる。
圧縮機1から吐出される高圧の冷媒ガスは、図に破線矢
印に示すように導かれる。すなわち、圧縮機1−四方弁
2−室内熱交換器5−絞り機構4−室外熱交換器3−四
方弁2−アキュームレータ6−サクションカップ7−圧
縮機1の順である。室内熱交換器5において冷媒が凝縮
し、ここに導かれる被空調室空気へ凝縮熱を放出して高
温化し、暖房作用をなす。
During heating operation, the four-way valve 2 is switched.
The high-pressure refrigerant gas discharged from the compressor 1 is guided as shown by the broken line arrow in the figure. That is, the order is compressor 1-four-way valve 2-indoor heat exchanger 5-throttle mechanism 4-outdoor heat exchanger 3-four-way valve 2-accumulator 6-suction cup 7-compressor 1. The refrigerant is condensed in the indoor heat exchanger 5, and the heat of condensation is released to the air in the air-conditioned room introduced therein to raise its temperature to perform a heating function.

【0005】[0005]

【発明が解決しようとする課題】ところで、空気調和機
の冷凍サイクルには、従来よりR22と呼ばれる冷媒が
用いられていて、このような単一冷媒では、たとえば冷
房運転時に室内熱交換器5において、蒸発温度は各部分
でほぼ一定(同一圧力)である。
A refrigerating cycle of an air conditioner has conventionally used a refrigerant called R22. With such a single refrigerant, for example, in the indoor heat exchanger 5 during cooling operation. The evaporation temperature is almost constant (same pressure) in each part.

【0006】しかるに、たとえばR32とR134aと
を混合して代替フロンとした、非共沸混合冷媒を用いる
場合がある。非共沸混合冷媒として、他に、R32とR
125の混合や、R134aとR32およびR125の
混合もある。
However, there is a case where a non-azeotropic mixed refrigerant in which, for example, R32 and R134a are mixed to form a CFC substitute. Other non-azeotropic refrigerants, R32 and R
There is also a mixture of 125 and a mixture of R134a with R32 and R125.

【0007】いずれにしても、非共沸混合冷媒は、2種
もしくは3種のフロンの組み合わせからなり、その特性
上、熱交換器の冷媒入り口部と出口部とでは温度勾配を
もつことが特徴であり、この温度傾斜を考慮した設計が
必要となっている。
In any case, the non-azeotropic mixed refrigerant is composed of a combination of two or three freons, and is characteristic in that it has a temperature gradient between the refrigerant inlet and outlet of the heat exchanger. Therefore, it is necessary to design in consideration of this temperature gradient.

【0008】そして非共沸混合冷媒を用いた冷凍サイク
ルでは、熱交換器としての凝縮器において、冷媒入り口
部から出口部にかけて温度が低くなる。すなわち、外気
温度と冷媒温度との差は、冷媒温度の低い出口部が小さ
くなる。
In the refrigeration cycle using the non-azeotropic mixed refrigerant, the temperature of the condenser as the heat exchanger decreases from the refrigerant inlet portion to the refrigerant outlet portion. That is, the difference between the outside air temperature and the refrigerant temperature becomes small at the outlet portion where the refrigerant temperature is low.

【0009】これに対して従来より用いられる単一冷媒
では、実際の温度勾配は圧損分のみであって、しかもそ
の差が極く微小なところから、ほとんど問題にならな
い。したがって非共沸混合冷媒を用いた冷凍サイクルで
は、単一冷媒を用いた冷凍サイクルと比較して、過冷却
がとり難い状況にある。過冷却を充分にとることができ
ない結果は、冷媒が膨張したあと今度は冷媒の乾き度が
大きくなり、蒸発潜熱が小さくなって冷凍サイクル効率
が低下するという不具合がある。
On the other hand, the single refrigerant conventionally used has almost no problem because the actual temperature gradient is only the pressure loss, and the difference is extremely small. Therefore, in a refrigeration cycle using a non-azeotropic mixed refrigerant, it is more difficult to achieve supercooling than in a refrigeration cycle using a single refrigerant. As a result of not being able to take sufficient subcooling, there is a problem that the dryness of the refrigerant is increased after the refrigerant is expanded, the latent heat of vaporization is decreased, and the refrigeration cycle efficiency is reduced.

【0010】本発明は、上記事情に鑑みなされたもので
あり、その目的とするところは、非共沸混合冷媒を用い
た冷凍サイクルで、非共沸混合冷媒の過冷却をとり易く
して、冷凍サイクル効率の向上を図れる冷凍サイクルを
提供しようとするものである。
The present invention has been made in view of the above circumstances, and an object of the present invention is to facilitate the supercooling of a non-azeotropic mixed refrigerant in a refrigeration cycle using the non-azeotropic mixed refrigerant. It is intended to provide a refrigeration cycle capable of improving the refrigeration cycle efficiency.

【0011】[0011]

【課題を解決するための手段】上記目的を満足するた
め、本発明の冷凍サイクルは、請求項1として、圧縮
機、凝縮器、絞り機構および蒸発器を冷媒管を介して順
次連通する冷凍サイクル回路を備え、冷媒として非共沸
混合冷媒を用いた冷凍サイクルであり、上記凝縮器出口
側の冷媒配管と、圧縮機吸込み側の冷媒配管とを、互い
に熱交換する手段を備えたことを特徴とする。
In order to satisfy the above object, the refrigeration cycle of the present invention is, as a first aspect, a refrigeration cycle in which a compressor, a condenser, a throttle mechanism and an evaporator are sequentially connected via a refrigerant pipe. A refrigeration cycle that includes a circuit and uses a non-azeotropic mixed refrigerant as a refrigerant, wherein the condenser outlet side refrigerant pipe and the compressor suction side refrigerant pipe are provided with means for exchanging heat with each other. And

【0012】請求項2として、請求項1記載の上記圧縮
機吸込み側の冷媒管に、アキュームレータおよびサクシ
ョンカップの少なくともいずれか一方を設け、上記熱交
換手段は、上記アキュームレータおよびサクションカッ
プの少なくともいずれか一方と、上記凝縮器出口側の冷
媒配管とを、互いに熱交換することを特徴とする。
As a second aspect, at least one of an accumulator and a suction cup is provided in the refrigerant pipe on the compressor suction side according to the first aspect, and the heat exchange means is at least one of the accumulator and the suction cup. One side and the refrigerant pipe on the outlet side of the condenser are heat-exchanged with each other.

【0013】請求項3として、請求項1記載の上記冷凍
サイクル回路は、冷暖房運転の切換えが可能なヒートポ
ンプ式の冷凍サイクル回路であり、上記熱交換手段は、
冷房運転時および暖房運転時のいずれにも作用すること
を特徴とする。
As a third aspect, the refrigeration cycle circuit according to the first aspect is a heat pump type refrigeration cycle circuit capable of switching between heating and cooling operations, and the heat exchange means includes:
It is characterized in that it acts both during cooling operation and during heating operation.

【0014】請求項4として、請求項3記載の上記冷凍
サイクル回路は、冷暖房運転の切換えが可能なヒートポ
ンプ式の冷凍サイクル回路であり、上記絞り機構は、冷
房運転用と暖房運転用を並列回路として備えるととも
に、これら並列回路に絞り機構と直列に逆止弁を接続し
てなり、上記熱交換手段は、上記並列回路のいずれとも
熱交換することを特徴とする。
According to a fourth aspect of the present invention, the refrigeration cycle circuit according to the third aspect is a heat pump type refrigeration cycle circuit capable of switching between heating and cooling operations, and the throttle mechanism is a parallel circuit for cooling operation and heating operation. And a check valve connected to these parallel circuits in series with the throttle mechanism, and the heat exchange means exchanges heat with any of the parallel circuits.

【0015】請求項5として、請求項3記載の上記冷凍
サイクル回路は、冷暖房運転の切換えが可能なヒートポ
ンプ式の冷凍サイクル回路であるとともに、上記絞り機
構は、上記熱交換手段の熱交換部位の両側に備えること
を特徴とする。
According to a fifth aspect of the present invention, the refrigeration cycle circuit according to the third aspect is a heat pump type refrigeration cycle circuit capable of switching between heating and cooling operations, and the throttling mechanism is provided at a heat exchange portion of the heat exchange means. It is characterized in that it is provided on both sides.

【0016】以上のような発明を解決する手段を備える
ことにより、請求項1記載の発明では、冷媒の過冷却が
従来よりも大きくとれて、絞り機構による冷媒膨張後の
乾き度が従来よりも小さくなり、大きな蒸発潜熱をも
つ。これによって蒸発性能が向上し、冷凍サイクル効率
が向上する。
By providing the means for solving the invention as described above, in the invention according to the first aspect, the supercooling of the refrigerant can be made larger than before, and the dryness after the expansion of the refrigerant by the throttle mechanism is larger than before. It becomes small and has a large latent heat of vaporization. This improves evaporation performance and refrigeration cycle efficiency.

【0017】請求項2の発明では、凝縮器から導出され
る液冷媒が、アキュームレータ内の冷媒と交換すること
になる。このとき、アキュームレータ内に液冷媒が溜ま
っていれば、より効果的に過冷却をとることができる。
According to the second aspect of the invention, the liquid refrigerant discharged from the condenser is replaced with the refrigerant in the accumulator. At this time, if the liquid refrigerant is stored in the accumulator, supercooling can be more effectively performed.

【0018】請求項3の発明および請求項4の発明で
は、冷暖房運転のいずれにおいても効率のよい熱交換作
用をなし、冷房性能と暖房性能の向上を図れる。請求項
5の発明では、冷媒吸込み温度が高くなると温度差が小
さくなって熱交換量が減少し、スーパーヒートする恐れ
があるが、これを抑制するように設定可能である。冷暖
房とも効率のよい熱交換作用をなし、冷房性能と暖房性
能の向上を図れる。
According to the invention of claim 3 and the invention of claim 4, an efficient heat exchanging action can be achieved in any of the heating and cooling operations, and the cooling performance and the heating performance can be improved. In the invention of claim 5, when the refrigerant suction temperature becomes higher, the temperature difference becomes smaller and the amount of heat exchange decreases, which may cause superheat, but this can be set to be suppressed. Efficient heat exchange is performed with both air conditioning and heating, and cooling and heating performance can be improved.

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態を、図
面を参照して説明する。図1は、たとえば空気調和機に
備えられる冷凍サイクル回路である。後述すれば、冷凍
サイクル構成部品は全て冷媒管Pを介して接続される。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a refrigeration cycle circuit provided in, for example, an air conditioner. As will be described later, all the refrigeration cycle components are connected via the refrigerant pipe P.

【0020】図中10は圧縮機であって、この冷媒吐出
部には凝縮器11が連通される。この凝縮器11の導出
側には絞り機構12と蒸発器13が連通され、さらにサ
クションカップ14を介して上記圧縮機10の吸込み部
に連通される。このようにして、冷凍サイクルが構成さ
れる。
In the figure, 10 is a compressor, and a condenser 11 is connected to this refrigerant discharge portion. The outlet side of the condenser 11 communicates with the throttle mechanism 12 and the evaporator 13, and further communicates with the suction portion of the compressor 10 via the suction cup 14. In this way, the refrigeration cycle is constructed.

【0021】そして、この発明の特徴とする熱交換手段
である熱交換器15が、上記凝縮器11の出口側の冷媒
配管である凝縮器11と絞り機構12とを連通する冷媒
管Paと、圧縮機10の吸込み側の冷媒配管である蒸発
器13と圧縮機10の吸込み部に設けられるサクション
カップ14とを連通する冷媒管Pbとに亘って設けられ
る。
A heat exchanger 15, which is a heat exchange means that is a feature of the present invention, has a refrigerant pipe Pa that connects the condenser 11 that is the refrigerant pipe on the outlet side of the condenser 11 and the throttle mechanism 12 to each other. It is provided over a refrigerant pipe Pb that connects the evaporator 13 that is the refrigerant pipe on the suction side of the compressor 10 and the suction cup 14 that is provided at the suction portion of the compressor 10.

【0022】上記熱交換手段として用いられる熱交換器
15は、通常構成の熱交換器でよく、各冷媒管Pa,P
bは、この熱交換器15を構成する熱交換パイプを代用
してもよい。
The heat exchanger 15 used as the heat exchanging means may be a heat exchanger having a normal structure, and each of the refrigerant pipes Pa, P.
The heat exchange pipe forming the heat exchanger 15 may be substituted for b.

【0023】このようにして構成される冷凍サイクルに
おいて、冷媒は非共沸混合冷媒が用いられる。具体的に
は、R32とR134aとを混合した代替フロンや、R
32とR125の混合、R134aとR32およびR1
25の混合がある。
In the refrigeration cycle thus constructed, a non-azeotropic mixed refrigerant is used as the refrigerant. Specifically, alternative CFCs that are a mixture of R32 and R134a, and R
32 and R125 mixed, R134a and R32 and R1
There are 25 mixes.

【0024】しかして、圧縮機10から吐出される高圧
の冷媒ガスは、凝縮器11に導かれて凝縮し液冷媒とな
って絞り機構12に導かれ、ここで減圧される。減圧さ
れた液冷媒は蒸発器13に導かれ、蒸発する。
The high-pressure refrigerant gas discharged from the compressor 10 is guided to the condenser 11 and condensed to become a liquid refrigerant, which is then guided to the throttling mechanism 12 where it is decompressed. The depressurized liquid refrigerant is guided to the evaporator 13 and evaporated.

【0025】この蒸発器13には被空調室空気が導かれ
ていて、熱交換をなす。すなわち、被空調室空気から蒸
発潜熱を奪って低温化し、再び被空調室に戻すことによ
って、冷房作用をなす。
The air in the air-conditioned room is introduced into the evaporator 13 for heat exchange. That is, the cooling action is performed by removing the latent heat of evaporation from the air in the air-conditioned room to lower the temperature and returning it to the air-conditioned room again.

【0026】蒸発器13で蒸発した冷媒は、サクション
カップ14を介して圧縮機10に吸込まれ、上述の冷凍
サイクルを循環することとなる。一方、凝縮器11と絞
り機構12とを連通する冷媒管Paと、蒸発器13と圧
縮機10吸込み部とを連通する冷媒管Pbとに亘って設
けられる熱交換器15は、それぞれの冷媒管Pa,Pb
に導通される冷媒を熱交換する。
The refrigerant evaporated in the evaporator 13 is sucked into the compressor 10 via the suction cup 14 and circulates in the refrigeration cycle described above. On the other hand, the heat exchanger 15 provided over the refrigerant pipe Pa that communicates the condenser 11 and the throttle mechanism 12 and the refrigerant pipe Pb that communicates the evaporator 13 and the suction portion of the compressor 10 have respective refrigerant pipes. Pa, Pb
Exchanges heat with the refrigerant conducted to.

【0027】すなわち、凝縮器11と絞り機構12とを
連通する冷媒管Paには、比較的高温の液冷媒が導か
れ、蒸発器13と圧縮機10吸込み部とを連通する冷媒
管Pbには、比較的低温の蒸発冷媒が導かれる。上記熱
交換器15は、これらの冷媒管Pa,Pbに導かれる冷
媒相互を効率よく熱交換する。
That is, a relatively high-temperature liquid refrigerant is introduced into the refrigerant pipe Pa that connects the condenser 11 and the throttle mechanism 12, and a refrigerant pipe Pb that connects the evaporator 13 and the suction portion of the compressor 10 to the refrigerant pipe Pb. , A relatively low temperature evaporative refrigerant is introduced. The heat exchanger 15 efficiently exchanges heat between the refrigerants introduced into the refrigerant pipes Pa and Pb.

【0028】このような熱交換器15を備えたことによ
る効果は、図2のモリエル線図から説明できる。同図
に、実線で示す変化Mは本発明のごとく非共沸混合冷媒
を用いるとともに所定個所に熱交換器15を備えた冷凍
サイクルによる挙動であり、破線で示す変化Nは従来の
冷凍サイクルによる挙動である。
The effect of providing such a heat exchanger 15 can be explained from the Mollier diagram of FIG. In the same figure, the change M shown by the solid line is the behavior due to the refrigeration cycle in which the non-azeotropic mixed refrigerant is used and the heat exchanger 15 is provided at a predetermined position as in the present invention, and the change N shown by the broken line is due to the conventional refrigeration cycle. It is a behavior.

【0029】本発明の実線変化Mにおいて、上記熱交換
器15を備えたことで冷媒は、従来(c点)よりも大き
く過冷却(C点)がとれる。そして、絞り機構12によ
る膨張したあとの乾き度(D点)が、従来(d点)より
も小さくなり、大きな蒸発潜熱をもつ。
In the change M of the solid line of the present invention, by providing the heat exchanger 15, the refrigerant can be more subcooled (point C) than in the conventional case (point c). Then, the dryness (point D) after expansion by the throttle mechanism 12 becomes smaller than that of the conventional one (point d), and the latent heat of vaporization is large.

【0030】また、実際の空気調和機において、絞り機
構12から蒸発器13の冷媒導入部までの冷媒管Paの
管長が長い場合においても、上記熱交換器15を用いる
ことで冷媒乾き度が低下して冷媒はほぼ液相状態とな
り、圧力損失の低減効果が高くなる。
Further, in the actual air conditioner, even when the length of the refrigerant pipe Pa from the throttle mechanism 12 to the refrigerant introduction portion of the evaporator 13 is long, the heat exchanger 15 is used to reduce the dryness of the refrigerant. As a result, the refrigerant becomes almost in the liquid phase, and the effect of reducing the pressure loss is enhanced.

【0031】図3は、冷凍サイクル構成を示す。ここで
は、蒸発器13と圧縮機10吸込み部であるサクション
カップ14とを連通する冷媒管Pbの中途部に、アキュ
ームレータ16が備えられる。
FIG. 3 shows a refrigeration cycle configuration. Here, the accumulator 16 is provided in the middle of the refrigerant pipe Pb that connects the evaporator 13 and the suction cup 14 that is the suction portion of the compressor 10.

【0032】そして、凝縮器11と絞り機構12とを連
通する冷媒管Paの一部が、上記アキュームレータ16
まで延出され、ここに熱交換部15aが設けられる。図
4は、上記熱交換部15aの具体的な構成であって、同
図(A)は、アキュームレータ16の導入部16aから
導出部16bに亘って、上記冷媒管Paの一部である熱
交換部15a1 が貫通する。したがって、この熱交換部
15a1 自体がアキュームレータ16内で効率よく熱交
換される。
A part of the refrigerant pipe Pa that connects the condenser 11 and the throttle mechanism 12 is connected to the accumulator 16 described above.
The heat exchange section 15a is provided here. FIG. 4 shows a specific configuration of the heat exchange section 15a. FIG. 4A shows a heat exchange that is a part of the refrigerant pipe Pa from the introduction section 16a to the derivation section 16b of the accumulator 16. The portion 15a 1 penetrates. Therefore, the heat exchange section 15a 1 itself is efficiently heat-exchanged in the accumulator 16.

【0033】同図(B)は、アキュームレータ16の周
面に、凝縮器11と絞り機構12とを連通する上記冷媒
管Pa一部の熱交換部15a2 で巻装した状態を示す。
したがって、熱交換部15a2 はアキュームレータ16
自体によって冷却されることになり、効率よく熱交換さ
れることは変わりがない。
FIG. 2B shows a state in which the heat exchange portion 15a 2 of a part of the refrigerant pipe Pa connecting the condenser 11 and the throttle mechanism 12 is wound around the peripheral surface of the accumulator 16.
Therefore, the heat exchanging portion 15a 2 is connected to the accumulator 16
It will be cooled by itself, and efficient heat exchange will not change.

【0034】いずれの構成でも、アキュームレータ16
内に液冷媒が溜まっている場合は、特に効果的な過冷却
をとることができる。そして、先に述べたような熱交換
作用をなし、蒸発性能が向上し、冷凍サイクル効率が向
上する。
In either configuration, the accumulator 16
When the liquid refrigerant is stored inside, particularly effective supercooling can be taken. Then, the heat exchange action as described above is performed, the evaporation performance is improved, and the refrigeration cycle efficiency is improved.

【0035】本発明は、ヒートポンプ式冷凍サイクルに
も適用できる。ここで用いられる冷媒は、非共沸混合冷
媒であることは変更ない。図5は、その第1の実施の形
態である。図中20は圧縮機、21は切換え弁としての
四方弁、22は室外熱交換器、23は並列回路、24は
室内熱交換器、25は圧縮機20の吸込み部に設けられ
るサクションカップであり、冷媒管Pを介して順次連通
される。
The present invention can also be applied to a heat pump type refrigeration cycle. The refrigerant used here remains a non-azeotropic mixed refrigerant. FIG. 5 shows the first embodiment. In the figure, 20 is a compressor, 21 is a four-way valve as a switching valve, 22 is an outdoor heat exchanger, 23 is a parallel circuit, 24 is an indoor heat exchanger, and 25 is a suction cup provided in the suction part of the compressor 20. , Are sequentially communicated via the refrigerant pipe P.

【0036】上記並列回路23は、一方に冷房用絞り機
構26と逆止弁27が直列に接続される回路であり、他
方に暖房用絞り機構28と逆止弁29とが直列に接続さ
れる回路である。
The parallel circuit 23 is a circuit in which the cooling throttle mechanism 26 and the check valve 27 are connected in series on one side, and the heating throttle mechanism 28 and the check valve 29 are connected in series on the other side. Circuit.

【0037】ここで上記熱交換手段としての熱交換器1
5Aは、上記並列回路23と、上記四方弁21および圧
縮機20吸込み部とを連通する冷媒管Pcとに跨がって
設けられる。
Here, the heat exchanger 1 as the heat exchanging means.
5A is provided across the parallel circuit 23 and a refrigerant pipe Pc that connects the four-way valve 21 and the suction portion of the compressor 20.

【0038】冷房運転時は、図中実線矢印に示すように
冷媒が導かれる。暖房運転時は、図中破線矢印に示すよ
うに冷媒が導かれる。上記並列回路23においては、逆
止弁27,28の位置と向きから、その運転に対応する
絞り機構26もしくは29に冷媒が導かれる。
During the cooling operation, the refrigerant is introduced as shown by the solid line arrow in the figure. During the heating operation, the refrigerant is guided as indicated by the broken line arrow in the figure. In the parallel circuit 23, the refrigerant is guided from the positions and directions of the check valves 27 and 28 to the throttle mechanism 26 or 29 corresponding to the operation.

【0039】そして、冷房運転時は勿論、暖房運転時に
おいても、上記熱交換器15Aは熱交換作用をなし、冷
房性能ばかりでなく、暖房性能の向上を図れる。同様に
ヒートポンプ式冷凍サイクルを備えた場合には、図6に
示すような、第2の実施の形態であってもよい。(後述
する部品以外の構成は、図5で説明したものと同一であ
るので、同番号を付して新たな説明は省略する。以下同
じ) ここでは、図5の並列回路23に代って、室外熱交換器
22と室内熱交換器24とを連通する冷媒管Pdには、
同一構成の一対の絞り機構30A,30Bが設けられ
る。
In the heating operation as well as in the cooling operation, the heat exchanger 15A has a heat exchanging function, so that not only the cooling performance but also the heating performance can be improved. Similarly, when the heat pump type refrigeration cycle is provided, the second embodiment as shown in FIG. 6 may be adopted. (The configuration other than the components described later is the same as that described with reference to FIG. 5, so the same reference numerals are given and a new description will be omitted. The same applies below.) Here, instead of the parallel circuit 23 in FIG. In the refrigerant pipe Pd that connects the outdoor heat exchanger 22 and the indoor heat exchanger 24,
A pair of diaphragm mechanisms 30A and 30B having the same configuration are provided.

【0040】熱交換手段としての熱交換器15Aは、上
記各絞り機構30A,30Bを接続する冷媒管Pdと、
四方弁21と圧縮機20吸込み部とを連通する冷媒管P
cとに跨がって設けられる。
The heat exchanger 15A as a heat exchange means includes a refrigerant pipe Pd connecting the above-mentioned throttle mechanisms 30A and 30B,
A refrigerant pipe P that connects the four-way valve 21 and the suction portion of the compressor 20.
It is provided straddling c.

【0041】冷房運転時は、図中実線矢印に示すように
冷媒が導かれる。暖房運転時は、図中破線矢印に示すよ
うに冷媒が導かれる。そして、冷暖房いずれの運転で
も、冷媒は熱交換器15Aを介して導かれ、両方の絞り
機構30A,30Bに導通する、二段絞り作用をなす。
During the cooling operation, the refrigerant is introduced as shown by the solid line arrow in the figure. During the heating operation, the refrigerant is guided as indicated by the broken line arrow in the figure. Then, in both cooling and heating operations, the refrigerant is guided through the heat exchanger 15A and conducts to both throttle mechanisms 30A and 30B, thereby performing a two-stage throttle action.

【0042】図7は、上述の二段絞り機構30A,30
Bを備えた冷凍サイクルのモリエル線図である。冷暖房
運転のいずれでも、冷媒は2回に分かれて膨張し、1回
目の膨張後に上記熱交換器15Aにおいて熱交換する。
FIG. 7 shows the above-described two-stage diaphragm mechanism 30A, 30.
It is a Mollier diagram of the refrigerating cycle provided with B. In any of the heating and cooling operations, the refrigerant is expanded in two steps, and heat is exchanged in the heat exchanger 15A after the first expansion.

【0043】すなわち、C点からE点まで膨張した冷媒
は、2回目の膨張の前に熱交換してF点まで冷却され
る。したがって、2回目の膨張後のD点での乾き度は、
従来に比較して小さくなる。
That is, the refrigerant expanded from the point C to the point E is heat-exchanged and cooled to the point F before the second expansion. Therefore, the dryness at point D after the second expansion is
It will be smaller than before.

【0044】また、このような二段絞り機構を備えた冷
凍サイクルによれば、熱交換器15Aでの熱交換量を設
定することが可能となる。すなわち、熱交換器15Aに
よって冷媒吸込み温度が高くなり過ぎると圧縮機の吸込
み冷媒のガス比体積が大きくなり、冷媒循環量が低減
し、冷凍サイクルの性能が低下してしまうが、上述の二
段絞り機構の存在によって熱交換器15Aでの熱交換量
を冷媒吸込み温度が高くなり過ぎない温度に設定するこ
とによって冷凍サイクルの性能低下が防止できる。
Further, according to the refrigeration cycle provided with such a two-stage throttle mechanism, it becomes possible to set the heat exchange amount in the heat exchanger 15A. That is, if the refrigerant suction temperature becomes too high by the heat exchanger 15A, the gas specific volume of the suction refrigerant of the compressor increases, the refrigerant circulation amount decreases, and the performance of the refrigeration cycle deteriorates. By setting the amount of heat exchange in the heat exchanger 15A to a temperature at which the refrigerant suction temperature does not become too high due to the presence of the throttle mechanism, it is possible to prevent the performance of the refrigeration cycle from deteriorating.

【0045】図8は、ヒートポンプ式冷凍サイクルを備
えた、第3の実施の形態である。ここでは室外熱交換器
22と室内熱交換器24とを連通する冷媒管Pdに一対
の絞り機構としてのキャピラリチューブ31,32を備
えている。一方のキャピラリチューブ32のみ、逆止弁
33との並列回路34を構成している。
FIG. 8 shows a third embodiment equipped with a heat pump type refrigeration cycle. Here, the refrigerant tube Pd that connects the outdoor heat exchanger 22 and the indoor heat exchanger 24 is provided with a pair of capillary tubes 31 and 32 as throttle mechanisms. Only one of the capillary tubes 32 constitutes a parallel circuit 34 with the check valve 33.

【0046】熱交換手段としての熱交換器15Aは、キ
ャピラリチューブ31とキャピラリチューブ32の並列
回路34を接続する冷媒管Pdと、上記四方弁21と圧
縮機20吸込み部とを連通する冷媒管Pcとに跨がって
設けられる。
The heat exchanger 15A as a heat exchange means includes a refrigerant pipe Pd that connects the parallel circuit 34 of the capillary tube 31 and the capillary tube 32, and a refrigerant pipe Pc that connects the four-way valve 21 and the suction portion of the compressor 20. It is installed across and.

【0047】冷房運転時は、図中実線矢印に示すように
冷媒が導かれる。暖房運転時は、図中破線矢印に示すよ
うに冷媒が導かれる。すなわち、冷房運転時のみ、冷媒
は熱交換器15Aの前後部位において両方のキャピラリ
チューブ31,32を介して導かれる二段絞りとなる。
暖房運転時は、並列回路34の逆止弁33を介して熱交
換器15Aに導かれ、一方のキャピラリチューブ31を
導通する一段絞りである。
During the cooling operation, the refrigerant is guided as shown by the solid line arrow in the figure. During the heating operation, the refrigerant is guided as indicated by the broken line arrow in the figure. That is, only during the cooling operation, the refrigerant becomes a two-stage throttle that is guided through both capillary tubes 31 and 32 in the front and rear parts of the heat exchanger 15A.
During heating operation, it is a one-stage throttle that is guided to the heat exchanger 15A via the check valve 33 of the parallel circuit 34 and conducts one of the capillary tubes 31.

【0048】したがって、冷房運転時は、先に図7に示
すようなモリエル線図における二段絞りとなり、暖房運
転時には、先に図2に示すようなモリエル線図における
一段絞りとなる。
Therefore, during the cooling operation, the two-stage throttle shown in the Mollier diagram as shown in FIG. 7 is obtained, and during the heating operation, the one-stage throttle shown in the Mollier diagram as shown in FIG. 2 is obtained.

【0049】いずれにしても、非共沸混合冷媒を用いた
冷凍サイクルで、膨張機構31,32としてキャピラリ
チューブを用いた場合にも、冷暖房のそれぞれの運転に
応じて性能を向上させることができる。
In any case, in a refrigeration cycle using a non-azeotropic mixed refrigerant, even when using capillary tubes as the expansion mechanisms 31 and 32, the performance can be improved according to each operation of cooling and heating. .

【0050】図9は、ヒートポンプ式冷凍サイクルを備
えた、第4の実施の形態である。ここでは室外熱交換器
22と熱交換器15Aとを連通する冷媒管Pdに第1の
絞り機構としてのキャピラリチューブ35を備えてい
る。さらに冷媒管Pdには、逆止弁36,37と絞り機
構としてのキャピラリチューブ38,39が直列に接続
される回路を並列にした並列回路40を構成している。
FIG. 9 shows a fourth embodiment having a heat pump type refrigeration cycle. Here, the refrigerant tube Pd that connects the outdoor heat exchanger 22 and the heat exchanger 15A is provided with a capillary tube 35 as a first throttle mechanism. Further, the refrigerant pipe Pd constitutes a parallel circuit 40 in which a circuit in which the check valves 36 and 37 and the capillary tubes 38 and 39 as a throttle mechanism are connected in series is arranged in parallel.

【0051】熱交換手段としての熱交換器15Aは、圧
縮機20吸込み部と四方弁21とを接続する冷媒管Pc
と、第1のキャピラリチューブ35と並列回路40とを
接続する冷媒管Pdに跨がって設けられる。
The heat exchanger 15A as a heat exchange means includes a refrigerant pipe Pc connecting the suction portion of the compressor 20 and the four-way valve 21.
Is provided across the refrigerant pipe Pd that connects the first capillary tube 35 and the parallel circuit 40.

【0052】冷房運転時は、図中実線矢印に示すように
冷媒が導かれる。暖房運転時は、図中破線矢印に示すよ
うに冷媒が導かれる。冷暖房運転時の両方とも、冷媒は
熱交換器15Aの前後部位において第1のキャピラリチ
ューブ35と、並列回路40のいずれか一方のキャピラ
リチューブ38もしくは39を介して導かれる。
During the cooling operation, the refrigerant is introduced as shown by the solid arrow in the figure. During the heating operation, the refrigerant is guided as indicated by the broken line arrow in the figure. In both of the heating and cooling operations, the refrigerant is introduced through the first capillary tube 35 and the capillary tube 38 or 39 of either one of the parallel circuits 40 in the front and rear portions of the heat exchanger 15A.

【0053】したがって、冷暖房運転時とも、先に図7
に示すようなモリエル線図における二段絞りとなる。そ
して、この冷凍サイクルでは、冷房および暖房のそれぞ
れの運転に応じて、それぞれのキャピラリチューブ3
8,39の絞り量を設定することによって、非共沸混合
冷媒を用いた冷凍サイクルにおいて、冷暖房のそれぞれ
の運転に応じて性能を向上させることができる。
Therefore, even during the heating and cooling operation, the operation shown in FIG.
It is a two-stage diaphragm in the Mollier diagram as shown in. Then, in this refrigeration cycle, according to the respective operations of cooling and heating, the respective capillary tubes 3 are
By setting the throttling amount of 8, 39, the performance can be improved according to each operation of cooling and heating in the refrigeration cycle using the non-azeotropic mixed refrigerant.

【0054】[0054]

【発明の効果】以上説明したよう請求項1の発明では、
凝縮器出口側の冷媒配管と、圧縮機吸込み側の冷媒配管
とを互いに熱交換する手段を備えたから、上記熱交換手
段によって非共沸混合冷媒の過冷却を大きくとれて、絞
り機構による膨張後の乾き度が小さくなり、大きな蒸発
潜熱を得られる。これにより、冷凍サイクル効率の向上
を図れる効果を奏する。
As described above, according to the invention of claim 1,
Since the condenser outlet side refrigerant pipe and the compressor suction side refrigerant pipe are provided with means for exchanging heat with each other, the non-azeotropic mixed refrigerant can be largely supercooled by the heat exchanging means, and after expansion by the throttling mechanism. The dryness becomes low and a large latent heat of vaporization can be obtained. Thereby, there is an effect that the refrigeration cycle efficiency can be improved.

【0055】請求項2の発明では、圧縮機吸込み側の冷
媒配管にアキュームレータおよびサクションカップの少
なくともいずれか一方を設け、熱交換手段は、アキュー
ムレータとサクションカップいずれか一方と、凝縮器出
口側の冷媒配管とを互いに熱交換するようにしたから、
非共沸混合冷媒の過冷却を大きくとれて、冷凍サイクル
効率の向上を図るとともに、専用の熱交換器を備える必
要がなく、部品数の増加を抑制し、省スペース化を得
る。
According to the second aspect of the present invention, at least one of an accumulator and a suction cup is provided in the refrigerant pipe on the suction side of the compressor, and the heat exchange means includes either one of the accumulator and the suction cup and the refrigerant on the outlet side of the condenser. I tried to exchange heat with the pipes,
The supercooling of the non-azeotropic mixed refrigerant can be greatly increased to improve the refrigeration cycle efficiency, and it is not necessary to provide a dedicated heat exchanger, so that the increase in the number of parts can be suppressed and the space can be saved.

【0056】請求項3の発明では、ヒートポンプ式の冷
凍サイクル回路で、熱交換手段は冷房運転時および暖房
運転時のいずれにも作用するようにしたから、および請
求項4の発明では、ヒートポンプ式の冷凍サイクル回路
で、絞り機構は、冷房運転用と暖房運転用を並列回路と
して備え、これら並列回路に絞り機構と直列に逆止弁を
接続してなり、熱交換手段は、並列回路のいずれとも熱
交換するようにしたから、冷房時ばかりでなく暖房時に
おいても熱交換作用をなし、冷房性能と暖房性能の向上
を図れる。
According to the third aspect of the invention, in the heat pump type refrigeration cycle circuit, the heat exchanging means operates both during the cooling operation and the heating operation, and in the invention of the fourth aspect, the heat pump type. In the refrigeration cycle circuit, the throttle mechanism is provided with parallel circuits for cooling operation and heating operation, and a check valve is connected to these parallel circuits in series with the throttle mechanism. Since heat is exchanged with each other, the heat exchanging action is achieved not only during cooling but also during heating, so that cooling and heating performance can be improved.

【0057】請求項5の発明では、切換え可能なヒート
ポンプ式の冷凍サイクル回路で、絞り機構を熱交換手段
の熱交換部位の両側に備えるようにしたから、冷房時ば
かりでなく暖房時においても熱交換作用をなし、冷房性
能と暖房性能の向上を図れる。そして、熱交換部の両側
の絞り機構の絞り量を調整することによって、熱交換部
での熱交換量を設定することが可能となり、冷媒循環量
を適正に保ち、冷凍サイクルの性能低下を防止できる。
According to the fifth aspect of the present invention, in the heat pump type refrigeration cycle circuit that can be switched, the throttling mechanism is provided on both sides of the heat exchanging portion of the heat exchanging means, so that heat is generated not only during cooling but also during heating. It can be exchanged, improving cooling and heating performance. Then, by adjusting the throttle amount of the throttle mechanism on both sides of the heat exchanging part, it becomes possible to set the heat exchanging amount in the heat exchanging part, keep the refrigerant circulation amount properly, and prevent the performance deterioration of the refrigeration cycle. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態を示す、冷凍サイクル回路
の構成図。
FIG. 1 is a configuration diagram of a refrigeration cycle circuit showing an embodiment of the present invention.

【図2】同実施の形態の、モリエル線図。FIG. 2 is a Mollier diagram of the same embodiment.

【図3】他の実施の形態の、冷凍サイクル回路の構成
図。
FIG. 3 is a configuration diagram of a refrigeration cycle circuit according to another embodiment.

【図4】(A)は、図3の冷凍サイクル回路におけるア
キュームレータの縦断面図。(B)は、さらに異なるア
キュームレータの縦断面図。
4A is a vertical cross-sectional view of an accumulator in the refrigeration cycle circuit of FIG. (B) is a vertical cross-sectional view of a different accumulator.

【図5】さらに他の実施の形態の、冷凍サイクル回路の
構成図。
FIG. 5 is a configuration diagram of a refrigeration cycle circuit according to still another embodiment.

【図6】さらに異なる他の実施の形態の、冷凍サイクル
回路の構成図。
FIG. 6 is a configuration diagram of a refrigeration cycle circuit according to still another embodiment.

【図7】図6の冷凍サイクルのモリエル線図。7 is a Mollier diagram of the refrigeration cycle of FIG.

【図8】さらに異なる他の実施の形態の、冷凍サイクル
回路の構成図。
FIG. 8 is a configuration diagram of a refrigeration cycle circuit according to still another embodiment.

【図9】さらに異なる他の実施の形態の、冷凍サイクル
回路の構成図。
FIG. 9 is a configuration diagram of a refrigeration cycle circuit according to still another embodiment.

【図10】従来の形態の、冷凍サイクル回路の構成図。FIG. 10 is a configuration diagram of a refrigeration cycle circuit in a conventional form.

【符号の説明】 10,20…圧縮機、11…凝縮器、12…絞り機構、
13…蒸発器、P…冷媒管、15,15A…熱交換器、
22…室外熱交換器、24…室内熱交換器、16…アキ
ュームレータ、23…並列回路、30A,30B…絞り
機構、31,32…絞り機構,35…絞り機構、40…
並列回路。
[Explanation of Codes] 10, 20 ... Compressor, 11 ... Condenser, 12 ... Throttling mechanism,
13 ... Evaporator, P ... Refrigerant tube, 15, 15A ... Heat exchanger,
22 ... Outdoor heat exchanger, 24 ... Indoor heat exchanger, 16 ... Accumulator, 23 ... Parallel circuit, 30A, 30B ... Throttle mechanism, 31, 32 ... Throttle mechanism, 35 ... Throttle mechanism, 40 ...
Parallel circuit.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】圧縮機、凝縮器、絞り機構および蒸発器を
冷媒管を介して順次連通する冷凍サイクル回路を備え、
冷媒として非共沸混合冷媒を用いた冷凍サイクルであ
り、 上記凝縮器出口側の冷媒配管と、圧縮機吸込み側の冷媒
配管とを、互いに熱交換する手段を備えたことを特徴と
する冷凍サイクル。
1. A refrigeration cycle circuit for sequentially connecting a compressor, a condenser, a throttle mechanism and an evaporator via a refrigerant pipe,
A refrigeration cycle using a non-azeotropic mixed refrigerant as a refrigerant, characterized in that the condenser outlet side refrigerant pipe, and the compressor suction side refrigerant pipe, a refrigeration cycle comprising means for exchanging heat with each other. .
【請求項2】上記圧縮機吸込み側の冷媒配管に、アキュ
ームレータおよびサクションカップの少なくともいずれ
か一方を設け、 上記熱交換手段は、上記アキュームレータおよびサクシ
ョンカップの少なくともいずれか一方と、上記凝縮器出
口側の冷媒配管とを、互いに熱交換することを特徴とす
る請求項1記載の冷凍サイクル。
2. A refrigerant pipe on the suction side of the compressor is provided with at least one of an accumulator and a suction cup, and the heat exchange means is provided with at least one of the accumulator and a suction cup and the outlet side of the condenser. The refrigeration cycle according to claim 1, wherein heat exchange is performed between the refrigerant pipe and the refrigerant pipe.
【請求項3】上記冷凍サイクル回路は、冷暖房運転の切
換えが可能なヒートポンプ式の冷凍サイクル回路であ
り、 上記熱交換手段は、冷房運転時および暖房運転時のいず
れにも作用することを特徴とする請求項1記載の冷凍サ
イクル。
3. The refrigeration cycle circuit is a heat pump type refrigeration cycle circuit capable of switching between heating and cooling operations, and the heat exchange means operates both during cooling operation and during heating operation. The refrigeration cycle according to claim 1.
【請求項4】上記冷凍サイクル回路は、冷暖房運転の切
換えが可能なヒートポンプ式の冷凍サイクル回路であ
り、 上記絞り機構は、冷房運転用と暖房運転用を並列回路と
して備えるとともに、これら並列回路に絞り機構と直列
に逆止弁を接続してなり、 上記熱交換手段は、上記並列回路のいずれとも熱交換す
ることを特徴とする請求項3記載の冷凍サイクル。
4. The refrigeration cycle circuit is a heat pump type refrigeration cycle circuit capable of switching between heating and cooling operations, and the throttling mechanism includes cooling operation and heating operation as parallel circuits, and these parallel circuits are connected to each other. The refrigeration cycle according to claim 3, wherein a check valve is connected in series with the throttle mechanism, and the heat exchange means exchanges heat with any of the parallel circuits.
【請求項5】上記冷凍サイクル回路は、冷暖房運転の切
換えが可能なヒートポンプ式の冷凍サイクル回路である
とともに、上記絞り機構は、上記熱交換手段による熱交
換部位の両側に備えることを特徴とする請求項3記載の
冷凍サイクル。
5. The refrigeration cycle circuit is a heat pump type refrigeration cycle circuit capable of switching between heating and cooling operations, and the throttle mechanism is provided on both sides of a heat exchange portion by the heat exchange means. The refrigeration cycle according to claim 3.
JP31310995A 1995-11-30 1995-11-30 Refrigerating cycle Pending JPH09152204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31310995A JPH09152204A (en) 1995-11-30 1995-11-30 Refrigerating cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31310995A JPH09152204A (en) 1995-11-30 1995-11-30 Refrigerating cycle

Publications (1)

Publication Number Publication Date
JPH09152204A true JPH09152204A (en) 1997-06-10

Family

ID=18037260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31310995A Pending JPH09152204A (en) 1995-11-30 1995-11-30 Refrigerating cycle

Country Status (1)

Country Link
JP (1) JPH09152204A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999015841A1 (en) * 1997-09-19 1999-04-01 Hitachi, Ltd. Air conditioner, heat exchanging pipe therefor, and outdoor unit
JP2000097504A (en) * 1998-07-09 2000-04-04 Behr Gmbh & Co Air conditioner
JP2000161820A (en) * 1998-11-26 2000-06-16 Matsushita Electric Ind Co Ltd Air-conditioner
JP2003510546A (en) * 1999-09-20 2003-03-18 ベール ゲーエムベーハー ウント コー Air conditioner with internal heat exchanger
KR100549063B1 (en) * 1998-12-01 2006-04-14 삼성전자주식회사 Refrigerator
JP2006522310A (en) * 2003-03-31 2006-09-28 ミョン−ブン ハン Energy efficiency improvement device for refrigeration cycle
CN1311210C (en) * 2004-01-13 2007-04-18 三星电子株式会社 Heating and cooling system
JP2007155176A (en) * 2005-12-02 2007-06-21 Showa Tansan Co Ltd Heat pump system, air conditioner or refrigerating machine system using zeotropic refrigerant mixture
JP2010002109A (en) * 2008-06-19 2010-01-07 Mitsubishi Electric Corp Refrigeration air conditioner
JP2011501092A (en) * 2007-10-09 2011-01-06 アドバンスト・サーマル・サイエンシーズ・コーポレイション Thermal control system and method
JP2015218954A (en) * 2014-05-19 2015-12-07 三菱電機株式会社 Refrigeration cycle device
WO2017002365A1 (en) * 2015-07-01 2017-01-05 日本電気株式会社 Cooling device, refrigerant processing device, and refrigerant processing method
JP2017108904A (en) * 2015-12-16 2017-06-22 東芝ライフスタイル株式会社 Dryer

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999015841A1 (en) * 1997-09-19 1999-04-01 Hitachi, Ltd. Air conditioner, heat exchanging pipe therefor, and outdoor unit
JP2000097504A (en) * 1998-07-09 2000-04-04 Behr Gmbh & Co Air conditioner
JP2000161820A (en) * 1998-11-26 2000-06-16 Matsushita Electric Ind Co Ltd Air-conditioner
KR100549063B1 (en) * 1998-12-01 2006-04-14 삼성전자주식회사 Refrigerator
JP2003510546A (en) * 1999-09-20 2003-03-18 ベール ゲーエムベーハー ウント コー Air conditioner with internal heat exchanger
JP2006522310A (en) * 2003-03-31 2006-09-28 ミョン−ブン ハン Energy efficiency improvement device for refrigeration cycle
CN1311210C (en) * 2004-01-13 2007-04-18 三星电子株式会社 Heating and cooling system
JP2007155176A (en) * 2005-12-02 2007-06-21 Showa Tansan Co Ltd Heat pump system, air conditioner or refrigerating machine system using zeotropic refrigerant mixture
JP2011501092A (en) * 2007-10-09 2011-01-06 アドバンスト・サーマル・サイエンシーズ・コーポレイション Thermal control system and method
JP2010002109A (en) * 2008-06-19 2010-01-07 Mitsubishi Electric Corp Refrigeration air conditioner
JP2015218954A (en) * 2014-05-19 2015-12-07 三菱電機株式会社 Refrigeration cycle device
WO2017002365A1 (en) * 2015-07-01 2017-01-05 日本電気株式会社 Cooling device, refrigerant processing device, and refrigerant processing method
JP2017108904A (en) * 2015-12-16 2017-06-22 東芝ライフスタイル株式会社 Dryer

Similar Documents

Publication Publication Date Title
KR101873595B1 (en) A cascade heat pump and a driving method for the same
CN110425764B (en) Heat exchange system and control method
JP2007240025A (en) Refrigerating device
US20060070391A1 (en) Air-conditioner having a dual-refrigerant cycle
JP2009299909A (en) Refrigeration cycle device
CN110425765B (en) Heat exchange system and control method
JPH09152204A (en) Refrigerating cycle
KR100195913B1 (en) Multi-room airconditioner
JP2005147456A (en) Air conditioner
JP4488712B2 (en) Air conditioner
JP5180680B2 (en) Refrigeration cycle
KR100426640B1 (en) Refrigeration cycle
CN110631286B (en) Heat exchange system and control method
JP2997504B2 (en) Air conditioner
JP2001317832A (en) Air conditioning apparatus
JP2002106917A (en) Regenerative heat pump air conditioner for cold region
JPH10160269A (en) Refrigerating device
WO2007040031A1 (en) Liquid gas heat exchanger for air conditioner
JP2009180493A (en) Heating auxiliary unit and air conditioner
KR20050043089A (en) Heat pump
JP3945949B2 (en) Air conditioner
JP2005337577A5 (en)
JP2003302111A (en) Air conditioner
JPH10132393A (en) Refrigerating device
JPH06281273A (en) Air conditioner