WO2017001608A1 - Container having improved appearance - Google Patents

Container having improved appearance Download PDF

Info

Publication number
WO2017001608A1
WO2017001608A1 PCT/EP2016/065393 EP2016065393W WO2017001608A1 WO 2017001608 A1 WO2017001608 A1 WO 2017001608A1 EP 2016065393 W EP2016065393 W EP 2016065393W WO 2017001608 A1 WO2017001608 A1 WO 2017001608A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
edge
side wall
ablated
container
Prior art date
Application number
PCT/EP2016/065393
Other languages
French (fr)
Inventor
David RUDOLF
Original Assignee
Philip Morris Products S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philip Morris Products S.A. filed Critical Philip Morris Products S.A.
Priority to RU2018103212A priority Critical patent/RU2707447C2/en
Priority to UAA201712033A priority patent/UA123671C2/en
Priority to MX2017016683A priority patent/MX2017016683A/en
Priority to PL16736030T priority patent/PL3317208T3/en
Priority to CN201680034466.0A priority patent/CN107709189B/en
Priority to ES16736030T priority patent/ES2761703T3/en
Priority to EP16736030.4A priority patent/EP3317208B1/en
Priority to KR1020177035228A priority patent/KR20180022662A/en
Priority to JP2017565955A priority patent/JP2018519219A/en
Priority to US15/737,825 priority patent/US20190002189A1/en
Publication of WO2017001608A1 publication Critical patent/WO2017001608A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D85/00Containers, packaging elements or packages, specially adapted for particular articles or materials
    • B65D85/07Containers, packaging elements or packages, specially adapted for particular articles or materials for compressible or flexible articles
    • B65D85/08Containers, packaging elements or packages, specially adapted for particular articles or materials for compressible or flexible articles rod-shaped or tubular
    • B65D85/10Containers, packaging elements or packages, specially adapted for particular articles or materials for compressible or flexible articles rod-shaped or tubular for cigarettes
    • B65D85/1036Containers formed by erecting a rigid or semi-rigid blank
    • B65D85/1045Containers formed by erecting a rigid or semi-rigid blank having a cap-like lid hinged to an edge
    • B65D85/1048Containers formed by erecting a rigid or semi-rigid blank having a cap-like lid hinged to an edge characterized by the shape of the container
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F15/00Receptacles or boxes specially adapted for cigars, cigarettes, simulated smoking devices or cigarettes therefor
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F15/00Receptacles or boxes specially adapted for cigars, cigarettes, simulated smoking devices or cigarettes therefor
    • A24F15/12Receptacles or boxes specially adapted for cigars, cigarettes, simulated smoking devices or cigarettes therefor for pocket use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D5/00Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper
    • B65D5/42Details of containers or of foldable or erectable container blanks
    • B65D5/64Lids
    • B65D5/66Hinged lids
    • B65D5/6602Hinged lids formed by folding one or more extensions hinged to the upper edge of a tubular container body
    • B65D5/662Hinged lids formed by folding one or more extensions hinged to the upper edge of a tubular container body the container being provided with an internal frame or the like for maintaining the lid in the closed position by friction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D5/00Rigid or semi-rigid containers of polygonal cross-section, e.g. boxes, cartons or trays, formed by folding or erecting one or more blanks made of paper
    • B65D5/42Details of containers or of foldable or erectable container blanks
    • B65D5/64Lids
    • B65D5/66Hinged lids
    • B65D5/6685Hinged lids formed by extensions hinged to the upper edge of a container body formed by erecting a blank to U-shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D85/00Containers, packaging elements or packages, specially adapted for particular articles or materials
    • B65D85/07Containers, packaging elements or packages, specially adapted for particular articles or materials for compressible or flexible articles
    • B65D85/08Containers, packaging elements or packages, specially adapted for particular articles or materials for compressible or flexible articles rod-shaped or tubular
    • B65D85/10Containers, packaging elements or packages, specially adapted for particular articles or materials for compressible or flexible articles rod-shaped or tubular for cigarettes
    • B65D85/1036Containers formed by erecting a rigid or semi-rigid blank
    • B65D85/1045Containers formed by erecting a rigid or semi-rigid blank having a cap-like lid hinged to an edge

Definitions

  • the present invention relates to a container for consumer goods and to a blank for forming such a container, which find particular application for holding elongate consumer goods, such as smoking articles (for example cigarettes).
  • the present invention also relates to a method for forming such containers.
  • Such containers typically have a substantially parallelepiped shape comprising two-dimensional walls, including a front wall, a rear wall, two side walls, a top wall and a bottom wall. The manufacture of such containers using high speed manufacturing machines and processes is well established.
  • US 2004/0035723 A1 describes a method for manufacturing different cigarette containers having a variety of non- planar front walls.
  • the method described in US 2004/0035723 A1 requires the use of a complex deformation device to modify the front wall of the container in a separate process after the container has been assembled.
  • a container for consumer goods comprising a complex shape that can be assembled using existing high speed manufacturing machines and processes with minimal modification. It would be particularly desirable to provide such a container with at least one three-dimensional wall.
  • a container for consumer goods the container being at least partially formed from a blank having a thickness (T).
  • the container comprises a top wall comprising a top wall front edge, a top wall rear edge, and first and second top wall side edges.
  • the container further comprises a bottom wall comprising a bottom wall front edge, a bottom wall rear edge, and first and second bottom wall side edges.
  • a front wall extends from the top wall front edge to the bottom wall front edge
  • a rear wall extends from the top wall rear edge to the bottom wall rear edge.
  • a first side wall extends between the first top wall side edge and the first bottom wall side edge, the first side wall being connected to the front wall by a first side wall front edge and the first side wall being connected to the rear wall by a first side wall rear edge.
  • a second side wall extends between the second top wall side edge and the second bottom wall side edge, the second side wall being connected to the front wall by a second side wall front edge, and the second side wall being connected to the rear wall by a second side wall rear edge.
  • the top wall front edge, the bottom wall front edge, the first side wall front edge, and the second side wall front edge together extend along a first plane.
  • the top wall rear edge, the bottom wall rear edge, the first side wall rear edge, and the second side wall rear edge together extend along a second plane.
  • At least one of the front wall and the rear wall comprises an ablation area, wherein any ablation area on the front wall comprises at least one ablated line extending across the inner surface of the front wall to define a portion of the front wall that is spaced outwardly from the first plane, and wherein any ablation area on the rear wall comprises at least one ablated line extending across the inner surface of the rear wall to define a portion of the rear wall that is spaced outwardly from the second plane.
  • Each ablated line has a residual thickness (RT1 ) that is less than the thickness (T) of the laminar blank.
  • the terms “side”, “top”, “bottom”, “front”, “rear” and other terms used to describe relative positions of the components of containers according to the invention refer to the container in an upright position with the lid portion, where present, at the top.
  • these terms are used irrespective of the orientation of the container being described.
  • the hinge line is located at the back of the container and allows opening of the lid portion by a pivotal movement about the hinge line.
  • inner surface is used to refer to the side of a portion of the blank that, once the container is assembled, faces towards the interior of the container, for example towards the consumer goods, when the container is in the closed position.
  • outer surface is used to refer to the side of a portion of the blank that, once the container is assembled, faces towards the exterior of the container.
  • panel is used herein to refer to a portion of the containerformed from a single, continuous portion of material. A panel may depend from one or more other panels.
  • overlap refers to a panel that depends from only one other panel.
  • wall refers more generally to a facet of the container, and a wall may be formed from a single panel or flap, or a wall may be formed from two or more abutting or overlapping panels or flaps.
  • ablation area is used herein to refer to the minimum area of a wall that encloses all ablated lines on the wall.
  • ablated line is used herein to refer to an area of the blank from which material has been ablated (removed by means of a laser beam or a blade, for example) from a surface of the laminar blank or container. Accordingly, the residual thickness of an ablated line is less than the thickness (T) of the laminar blank.
  • an ablated line is provided as a groove within the blank. This may be formed with a linear ablation tool, such as a laser or a blade and preferably is a laser. Laser ablation may be performed using any suitable equipment, preferably a 1000 Watt carbon dioxide laser as commercially available from DIAMOND, such as the E-1000, for example. Ablation may be performed in the machine direction of the laminar blank or the cross direction.
  • the "thickness" (T) of the blank is the thickness of the blank after it has been manufactured, but before any ablation lines or creasing lines have been formed in the blank. That is, the thickness (T) of the blank is the thickness in any region of the blank not containing an ablated line or a crease line.
  • residual thickness is used herein to refer to the minimum distance measured between two opposite surfaces of the laminar blank or a panel of the container formed from the blank. In practice, the distance at a given location is measured along a direction locally perpendicular to the opposite surfaces.
  • the residual thickness of each ablated line can be determined by using an Optical Profilometer for 2D Non-Contact Surface Metrology, such as the MicroSpyTM Profile commercially available from Fries Research & Technology GmbH, Bergisch Gladbach, Germany, or a 3D laser scanning confocal microscope, such as the VK- X series of microscopes commercially available from Keyence Corporation of America, New Jersey, United States of America.
  • the points of residual thickness are measured over the length of an ablated line, wherein the points of measurement are evenly spread over the length of one ablated line and the arithmetic mean is calculated. More preferably, to obtain the residual thickness according to the present invention, five measurements, evenly spread over the length of an ablated line, are performed and then the arithmetic mean is calculated.
  • the residual thickness is measured at both ends of the ablated line and at three further points distanced 20 millimetres, 40 millimetres and 60 millimetres respectively from one end of the ablated line, preferably from the lower end of the ablated line.
  • the "residual thickness" of an ablated line may be constant over the ablated line if material is removed homogenously substantially all over the ablated line (flat profile). Alternatively, the residual thickness of the ablated line may vary across a width of the ablated line, if material is removed non-homogeneously over the ablated line (e.g. V-shaped, U- shaped grooves).
  • containers according to the present invention comprise a front wall, a rear wall, or both a front wall and a rear wall comprising a portion that is spaced outwardly from a plane defined by the edges bounding the wall. That is, in containers according to the present invention, at least one of the front wall and the back wall is three-dimensional.
  • containers according to the present invention can be formed on existing high speed manufacturing machines with minimal modification.
  • the three-dimensional features of at least one of the front wall and the rear wall are formed automatically by virtue of the normal folding forces that are applied to the blank during manufacture of the container. That is, folding the blank to create the edges bounding the front wall, the rear wall, the top wall, the bottom wall and the side walls automatically deforms the blank along the ablated lines of the ablation areas so that no further processes are required to form the three-dimensional features of the front wall, the rear wall, or the front wall and the rear wall.
  • the blank can be adapted easily to form containers having different shapes without the need for major modifications of the packing machine used to assemble and pack the container.
  • Forming the ablated lines by removing material from the surface of the blank that forms an inner surface of the container advantageously maintains a smooth outer surface of the container, which may provide a desirable appearance of the container upon visual and tactile inspection.
  • At least one ablated line of any ablation area on the front wall preferably extends from at least one of the top wall front edge, the bottom wall front edge, the first side wall front edge, and the second side wall front edge.
  • at least one ablated line of any ablation area on the rear wall preferably extends from at least one of the top wall rear edge, the bottom wall rear edge, the first side wall rear edge, and the second side wall rear edge.
  • forming an ablated line extending from an intersection between two edges of a wall may further enhance the effect of transferring at least some of the folding force along the ablated line when the blank is folded to form the container. Therefore, preferably, at least one ablated line of any ablation area on the front wall extends from an intersection of one of the top wall front edge and the bottom wall front edge with either the first side wall front edge or the second side wall front edge. Similarly, at least one ablated line of any ablation area on the rear wall preferably extends from an intersection of one of the top wall rear edge and the bottom wall rear edge with either the first side wall rear edge or the second side wall rear edge.
  • any ablation area on the front wall comprises a first front ablated line extending from the intersection of the top wall front edge and the first side wall front edge, and a second front ablated line extending from the intersection of the top wall front edge and the second side wall front edge.
  • any ablation area on the rear wall comprises a first rear ablated line extending from the intersection of the top wall rear edge and the first side wall rear edge, and a second rear ablated line extending from the intersection of the top wall rear edge and the second side wall rear edge.
  • any first front ablated line may extend to the intersection of the bottom wall front edge and the first side wall front edge
  • any second front ablated line may extend to the intersection of the bottom wall front edge and the second side wall front edge
  • any first rear ablated line may extend to the intersection of the bottom wall rear edge and the first side wall rear edge
  • any second rear ablated line may extend to the intersection of the bottom wall rear edge and the second side wall rear edge.
  • the blank may be configured so that any ablation area on the front wall further comprises: a third front ablated line extending from the intersection of the bottom wall front edge and the first side wall front edge; a fourth front ablated line extending from the intersection of the bottom wall front edge and the second side wall front edge; and a fifth front ablated line intersecting each of the first, second, third and fourth front ablated lines.
  • the blank may be configured so that any ablation area on the rear wall further comprises: a third rear ablated line extending from the intersection of the bottom wall rear edge and the first side wall rear edge; a fourth rear ablated line extending from the intersection of the bottom wall rear edge and the second side wall rear edge; and a fifth rear ablated line intersecting each of the first, second, third and fourth rear ablated lines.
  • Providing such ablated lines on one or both of the front and rear walls may result in the formation of a substantially bevelled portion extending around the outside of the respective wall when the blank is folded to form the container.
  • Providing such ablated lines may also result in the formation of a central portion of the wall that is bound by the substantially bevelled portion.
  • the central portion may be substantially parallel to, but spaced outwardly from, the first plane or the second plane respectively.
  • the fifth front ablated line may define a continuous loop, such as a rectangle or a square. Additionally, or alternatively, in those embodiments comprising a fifth rear ablated line, the fifth rear ablated line may define a continuous loop, such as a rectangle or a square.
  • first side wall front edge, the first side wall rear edge, the second side wall front edge and the second side wall rear edge may be a substantially straight edge.
  • first side wall front edge, the first side wall rear edge, the second side wall front edge and the second side wall rear edge may comprise a bevelled or rounded edge.
  • any bevelled or rounded edges are formed by a plurality of spaced apart and substantially parallel ablated lines. The plurality of ablated lines may have any suitable extension profile in the longitudinal direction of the bevelled or rounded edge.
  • an ablated line may follow a curved trajectory over at least a portion of its extension profile in the longitudinal direction of the bevelled or rounded edge.
  • the facet created by such an ablated line will have a non-linear perimeter.
  • a “bevelled edge”, is used herein to refer to an edge of the container that has, as viewed in cross-section, one or more substantially straight shapes forming an angle between 0 and 90 degrees with the adjacent walls of the container.
  • the bevelled edge can be measured using visual inspection by one or more test persons or microscopic measurement followed by statistical analysis, for example using a NIKON SMZ800 microscope on the outer surface of the laminar blank.
  • X-Y-coordinates can be recorded on a fine grid (10 contour points) for each sample. The recorded X-Y-coordinates can be used for a linear spline interpolation and the profile of the resulting first derivative can be captured. For an almost constant first derivative the evaluated sample can be classified as a bevel.
  • each ablated line preferably has a residual thickness (RT) of at least about 5 percent, more preferably at least about 10 percent, more preferably at least about 15 percent, more preferably at least about 20 percent, more preferably at least about 25 percent and even more preferably at least about 30 percent of the thickness (T) of the blank.
  • each ablated line preferably has a residual thickness of less than about 50 percent, more preferably less than about 45 percent and even more preferably less than about 40 percent of the thickness (T) of the blank.
  • the present inventors have found that, if the ablated line extends too far into the thickness of the laminar blank (that is, too deep) then the resultant outer surface of the container can be undesirably affected. For example, the outer surface can appear cracked or broken. Furthermore, the present inventors have found that, if an ablated line does not extend far enough into the thickness of the laminar blank (that is, too shallow) then the resultant outer surface of the container can also be undesirably affected. In particular, the present inventors have found that the turning points of the container along the ablated lines may be poorly defined on the container outer surface, and/or may follow an unintended trajectory along the outer surface of the container.
  • an ablated line extends in a straight line along the inner surface of the container
  • the present inventors have found that the corresponding turning point that is produced on the outer surface of the container may be non-linear, or uneven.
  • the present inventors have therefore identified that a cleaner looking, more well- defined container can be produced when each of the ablated lines has a residual thickness as specified above.
  • the ablated width (X) of each ablated line is preferably at least about 0.1 millimetres. More preferably, the ablated width of each ablated line is at least about 0.2 millimetres. Most preferably, the ablated width of each ablated line is at least about 0.3 millimetres. In addition, or as an alternative, the ablated width of each ablated line is less than about 0.5 millimetres. More preferably, the ablated width of each ablated line is less than about 0.45 millimetres. In some preferred embodiments, the ablated width of each ablated line is from about 0.1 millimetres to about 0.5 millimetres. Even more preferably, the ablated width of each ablated line is from about 0.2 millimetres to about 0.45 millimetres, more preferably from about 0.3 millimetres to 0.4 about millimetres.
  • the thickness (T) of the laminar blank is preferably between about 200 micrometres and about 350 micrometres, more preferably between about 250 micrometres and about 300 micrometres.
  • the thickness (T) of the laminar blank can be measured in accordance with ISO 534:201 1.
  • the laminar blank preferably has a basis weight of between about 100 grams per square metre and about 350 grams per square metre, more preferably between about 150 grams per square metre and about 350 grams per square metre, more preferably between about 200 grams per square metre and about 300 grams per square metre.
  • Basis weight is calculated using ISO 536 and may vary from plus ten percent to minus ten percent, preferably from plus five percent to minus five percent.
  • the laminar blank preferably has a spring- back force of less than 10 milliNewton metres between adjacent walls.
  • the term "spring-back force" is a known term of art for referring to a particular property of a laminar blank. It is sometimes referred to as 'the crease recovery' and means the force (Newtons) required to hold a scored sample that is folded at 90 degrees for a 15-second period. The measurement is made at the end of the 15-second period.
  • the spring-back force of a portion of a laminar blank can be measured using a known PIRA Crease and Board Stiffness Tester (commercially available for example from Messmer and Buchel, UK).
  • a sample of the portion to be tested should first be removed from the laminar blank.
  • the spring-back force of a pack is assessed using a sample measuring 38 ⁇ 1 millimetres by 38 ⁇ 0.5 millimetres, with the corner forming portion being positioned 21 ⁇ 0.5 millimetres from one side of the blank.
  • the blank should be conditioned at 22 degrees Celsius and 60 percent relative humidity for at least 24 hours prior to testing.
  • the laminar blank has a stiffness in the bending direction of at least about 50milliNewtons, preferably at least about 75 milliNewtons, most preferably at least about 90 milliNewtons.
  • the laminar blank preferably has a bending stiffness of less than about 500 milliNewtons, preferably less than about 200 milliNewtons, more preferably less than about 160 milliNewtons.
  • the laminar blank preferably has a bending stiffness from about 50 milliNewtons to about 200 milliNewtons. More preferably, the laminar blank has a stiffness in the machine direction of from about 75 milliNewtons to about 160 milliNewtons. Stiffness in the "bending direction" means that the bending stiffness is measured in the direction that the finished board is intended to be folded about an ablated line.
  • the laminar blank has a residual stiffness in the bending direction of at least about 10 milliNewtons, preferably at least about 12 milliNewtons, more preferably at least about 15 milliNewtons and even more preferably at least about 20 milliNewtons.
  • the laminar blank preferably has a residual stiffness in the bending direction of from about 60 milliNewtons or less, more preferably 50 milliNewtons or less, even more preferably 40 milliNewtons or less.
  • the laminar blank has a surface roughness of from about 0.5 micrometres to about 1.5 micrometres. More preferably, the laminar blank has a surface roughness of from about 0.75 micrometres to about 1.25 micrometres. The surface roughness is measured in accordance with ISO 8791 -4.
  • the laminar blank has a surface strength of from about 0.25 metres per second to about 1 metre per second. More preferably, the laminar blank has a surface strength of from about 0.5 metres per second to about 0.8 metres per second. The surface strength is measured in accordance with ISO 3783.
  • the laminar blank is preferably a cellulose- fibre-based laminar blank.
  • a cellulose-fibre-based blank comprises at least 50 weight-percent cellulose, preferably wood fibres, based on the total fibre content of the laminar blank.
  • a cellulose-fibre-based laminar blank may include other types of fibres, such as polymer fibres.
  • the container may comprise a box portion and a lid portion depending along a hinge line from a top edge of the box portion, the lid portion being moveable about the hinge line between an open position and a closed position.
  • the lid portion comprises a lid portion top wall, a lid portion front wall, a lid portion rear wall, a first lid portion side wall and a second lid portion side wall.
  • the box portion comprises a box portion front wall, a box portion rear wall, a box portion bottom wall, a first box portion side wall and a second box portion side wall.
  • the lid portion top wall forms the container top wall and the box portion bottom wall forms the container bottom wall.
  • the lid portion and box portion front walls together form the container front wall
  • the lid portion and box portion rear walls together form the container rear wall.
  • a bottom edge of the lid portion rear wall depends along the hinge line from a top edge of the box portion rear wall.
  • the first lid portion and box portion side walls together form the container first side wall
  • the second lid portion and box portion side walls together form the container second side wall.
  • Containers according to the present invention find application as containers for consumer goods, in particular elongate consumer goods such as smoking articles. Therefore, in any of the embodiments described above, the container may contain smoking articles.
  • the present invention also extends to a method of manufacturing the container in accordance with any of the embodiments described above. Therefore, according to a second aspect of the present invention there is provided a method of forming a container for consumer goods in accordance with any embodiment of the first aspect of the present invention, the container being at least partially formed from a blank having a thickness (T), the method comprising a step of providing a laminar blank having a thickness (T), the laminar blank having a first set of ablated lines defining a plurality of panels of the laminar blank, each ablated line having a residual thickness (RT1 ) that is less than the thickness (T) of the laminar blank.
  • T thickness
  • the laminar blank is then folded about the first set of ablated lines to form a container having a top wall comprising a top wall front edge, a top wall rear edge, and first and second top wall side edges.
  • the container further comprises a bottom wall comprising a bottom wall front edge, a bottom wall rear edge, and first and second bottom wall side edges.
  • a front wall extends from the top wall front edge to the bottom wall front edge and a rear wall extends from the top wall rear edge to the bottom wall rear edge.
  • a first side wall extends between the first top wall side edge and the first bottom wall side edge, the first side wall being connected to the front wall by a first side wall front edge, the first side wall being connected to the rear wall by a first side wall rear edge.
  • a second side wall extends between the second top wall side edge and the second bottom wall side edge, the second side wall being connected to the front wall by a second side wall front edge, the second side wall being connected to the rear wall by a second side wall rear edge.
  • the laminar blank is folded such that top wall front edge, the bottom wall front edge, the first side wall front edge, and the second side wall front edge together extend along a first plane.
  • the laminar blank is also folded such that top wall rear edge, the bottom wall rear edge, the first side wall rear edge, and the second side wall rear edge together extend along a second plane.
  • the laminar blank further comprises at least one ablation area so that at least one of the front wall and the rear wall of the container comprises the at least one ablation area, wherein any ablation area on the front wall comprises at least one ablated line extending across the inner surface of the front wall, and wherein any ablation area on the rear wall comprises at least one ablated line extending across the inner surface of the rear wall.
  • Each ablated line has a residual thickness (RT1 ) that is less than the thickness (T) of the laminar blank.
  • the laminar blank is at least partially folded along the at least one ablated line of each ablation area, so that any ablation area on the front wall defines a portion of the front wall spaced outwardly from the first plane and so that any ablation area on the rear wall defines a portion of the rear wall spaced outwardly from the second plane.
  • Figure 1 shows a front perspective view of a container in accordance with an embodiment of the present invention
  • Figure 2 shows a rear perspective view of the container of Figure 1 ;
  • Figure 3 shows a laminar blank for forming the container of Figures 1 and 2.
  • FIGS 1 and 2 show a container 10 formed from a folded laminar blank in accordance with an embodiment of the present invention.
  • the container 10 comprises a top wall 12, a bottom wall, a front wall 14, a rear wall 16, a first side wall 18 and a second side wall 20.
  • the container 10 is divided into a lid portion 1 1 and a box portion 13, the lid portion 1 1 depending along a hinge line 15 from the box portion 13.
  • the top wall 12 comprises a top wall front edge 22, a top wall rear edge 24, and first and second top wall side edges 26, 28.
  • the bottom wall comprises a bottom wall front edge 30, a bottom wall rear edge 32, and first and second bottom wall side edges 34, 36.
  • the first side wall 18 is connected to the front wall 14 by a first side wall front edge 38 and to the rear wall 16 by a first side wall rear edge 40.
  • the second side wall 20 is connected to the front wall 14 by a second side wall front edge 42 and to the rear wall 16 by a second side wall rear edge 44.
  • the top wall front edge 22, the bottom wall front edge 30, the first side wall front edge 38 and the second side wall front edge 42 together extend along a first plane.
  • the top wall rear edge 24, the bottom wall rear edge 32, the first side wall rear edge 40 and the second side wall rear edge 44 together extend along a second plane.
  • the front wall 12 comprises an ablation area including a first front ablated line 46, a second front ablated line 48, a third front ablated line 50, a fourth front ablated line 52 and a fifth front ablated line 54 each formed on the inner surface of the front wall 12.
  • the fifth front ablated line 54 is a rectangular ablated line that forms a continuous loop connected to each of the first, second, third and fourth front ablated lines.
  • the rear wall 16 comprises an ablation area including a first rear ablated line 58, a second rear ablated line 60, a third rear ablated line 62, a fourth rear ablated line 64 and a fifth rear ablated line 66 each formed on the inner surface of the rear wall 16.
  • the fifth rear ablated line 66 is a rectangular ablated line that forms a continuous loop connected to each of the first, second, third and fourth rear ablated lines.
  • Figure 3 shows a laminar blank 100 for forming the container 10 shown in Figures 1 and 2, and like reference numerals are used to designate like parts.
  • Solid line represent cut lines and dashed lines represent ablated lines along which the laminar blank 100 is folded or deformed to form the container 10.
  • the laminar blank 100 comprises a box portion bottom panel 152, a box portion front panel 154 depending along an ablated line 156 from the box portion bottom panel 152, and a box portion rear panel 158 depending along an ablated line 160 from the box portion bottom panel 152.
  • First box portion side panels 162 depend along ablated lines 164 from the box portion rear panel 158 and second box portion side panels 166 depend along ablated lines 168 from the box portion front panel 154.
  • Two box portion dust flaps 170 depend along ablated lines 172 from the first box portion side panels 162.
  • the laminar blank 100 further comprises a lid portion rear panel 174 depending along an ablated line 176 from the box portion rear panel 158, a lid portion top panel 142 depending along an ablated line 178 from the lid portion rear panel 174, and a lid portion front panel 180 depending along an ablated line 182 from the lid portion top panel 142.
  • a lid portion front under panel 184 depends along an ablated line 186 from the lid portion front panel 180.
  • the laminar blank 100 also comprises first lid portion side flaps 188 depending along ablated lines 190 from the lid portion rear panel 174, first and second dust flaps 138, 140 depending along ablated lines 194 from the respective first lid portion side flaps 188, and second lid portion side flaps 196 depending along ablated lines 198 from the lid portion front panel 180.
  • the lid portion top panel 142 in combination with the first and second dust flaps 138, 140 forms the container top wall 12.
  • Each first box portion side panel 162 in combination with the respective second box portion side panel 166, first lid portion side flap 188 and second lid portion side flap 196 forms the respective container side wall 18, 20.
  • the box portion rear panel 158 and the lid portion rear panel 174 together form the box portion rear wall 16.
  • the box portion front panel 154 in combination with the lid portion front panel 180 and the lid portion front under panel 184 forms the container front wall 14.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cartons (AREA)
  • Packaging Of Annular Or Rod-Shaped Articles, Wearing Apparel, Cassettes, Or The Like (AREA)

Abstract

There is provided a container (10) for consumer goods, the container (10) being at least partially formed from a blank (100) having a thickness (T). The container (10) comprises a top wall (12), a bottom wall, a front wall (14), a rear wall (16), and first and second side walls (18, 20). A top wall front edge (22), a bottom wall front edge (30), a first side wall front edge (38), and a second side wall front edge (42) together extend along a first plane. A top wall rear edge (24), a bottom wall rear edge (32), a first side wall rear edge (40), and a second side wall rear edge (44) together extend along a second plane. At least one of the front wall (14) and the rear wall (16) comprises an ablation area, wherein any ablation area on the front wall (14) comprises at least one ablated line (46, 48, 50, 52, 54) extending across the inner surface of the front wall (14) to define a portion (56) of the front wall (14) that is spaced outwardly from the first plane, and wherein any ablation area on the rear wall (16) comprises at least one ablated line (58, 60, 62, 64, 66) extending across the inner surface of the rear wall (16) to define a portion of the rear wall (16) that is spaced outwardly from the second plane. Each ablated line has a residual thickness (RT1 ) that is less than the thickness (T) of the laminar blank (100).

Description

CONTAINER HAVING IMPROVED APPEARANCE
The present invention relates to a container for consumer goods and to a blank for forming such a container, which find particular application for holding elongate consumer goods, such as smoking articles (for example cigarettes). The present invention also relates to a method for forming such containers.
Consumer goods such as smoking articles are commonly packaged in rigid box shaped containers, such as hinged lid containers having a box portion and a lid connected to the box portion about a hinge line extending across the back wall of the container, a so called Flip- Top™ box. Such containers typically have a substantially parallelepiped shape comprising two-dimensional walls, including a front wall, a rear wall, two side walls, a top wall and a bottom wall. The manufacture of such containers using high speed manufacturing machines and processes is well established.
Sometimes it may be desirable to manufacture a container having a more complex shape. However, known processes for manufacturing containers having a more complex shape require specialised manufacturing machines that may substantially increase the cost of manufacturing the container and may require significant downtime when machines are changed to accommodate new shapes of container. For example, US 2004/0035723 A1 describes a method for manufacturing different cigarette containers having a variety of non- planar front walls. However, the method described in US 2004/0035723 A1 requires the use of a complex deformation device to modify the front wall of the container in a separate process after the container has been assembled.
It would be desirable to provide a container for consumer goods comprising a complex shape that can be assembled using existing high speed manufacturing machines and processes with minimal modification. It would be particularly desirable to provide such a container with at least one three-dimensional wall.
According to a first aspect of the present invention there is provided a container for consumer goods, the container being at least partially formed from a blank having a thickness (T). The container comprises a top wall comprising a top wall front edge, a top wall rear edge, and first and second top wall side edges. The container further comprises a bottom wall comprising a bottom wall front edge, a bottom wall rear edge, and first and second bottom wall side edges. A front wall extends from the top wall front edge to the bottom wall front edge, and a rear wall extends from the top wall rear edge to the bottom wall rear edge. A first side wall extends between the first top wall side edge and the first bottom wall side edge, the first side wall being connected to the front wall by a first side wall front edge and the first side wall being connected to the rear wall by a first side wall rear edge. A second side wall extends between the second top wall side edge and the second bottom wall side edge, the second side wall being connected to the front wall by a second side wall front edge, and the second side wall being connected to the rear wall by a second side wall rear edge. The top wall front edge, the bottom wall front edge, the first side wall front edge, and the second side wall front edge together extend along a first plane. The top wall rear edge, the bottom wall rear edge, the first side wall rear edge, and the second side wall rear edge together extend along a second plane. At least one of the front wall and the rear wall comprises an ablation area, wherein any ablation area on the front wall comprises at least one ablated line extending across the inner surface of the front wall to define a portion of the front wall that is spaced outwardly from the first plane, and wherein any ablation area on the rear wall comprises at least one ablated line extending across the inner surface of the rear wall to define a portion of the rear wall that is spaced outwardly from the second plane. Each ablated line has a residual thickness (RT1 ) that is less than the thickness (T) of the laminar blank.
In the following description of the invention the terms "side", "top", "bottom", "front", "rear" and other terms used to describe relative positions of the components of containers according to the invention refer to the container in an upright position with the lid portion, where present, at the top. When describing containers according to the present invention, these terms are used irrespective of the orientation of the container being described. In those embodiments in which the container comprises a lid with a lid portion back wall depending from a box portion back wall along a hinge line, the hinge line is located at the back of the container and allows opening of the lid portion by a pivotal movement about the hinge line.
The term "inner surface" is used to refer to the side of a portion of the blank that, once the container is assembled, faces towards the interior of the container, for example towards the consumer goods, when the container is in the closed position. Likewise, the term "outer surface" is used to refer to the side of a portion of the blank that, once the container is assembled, faces towards the exterior of the container.
The term "panel" is used herein to refer to a portion of the containerformed from a single, continuous portion of material. A panel may depend from one or more other panels. The term "flap" refers to a panel that depends from only one other panel.
The term "wall" refers more generally to a facet of the container, and a wall may be formed from a single panel or flap, or a wall may be formed from two or more abutting or overlapping panels or flaps.
The term "ablation area" is used herein to refer to the minimum area of a wall that encloses all ablated lines on the wall.
The term "ablated line" is used herein to refer to an area of the blank from which material has been ablated (removed by means of a laser beam or a blade, for example) from a surface of the laminar blank or container. Accordingly, the residual thickness of an ablated line is less than the thickness (T) of the laminar blank. Preferably, an ablated line is provided as a groove within the blank. This may be formed with a linear ablation tool, such as a laser or a blade and preferably is a laser. Laser ablation may be performed using any suitable equipment, preferably a 1000 Watt carbon dioxide laser as commercially available from DIAMOND, such as the E-1000, for example. Ablation may be performed in the machine direction of the laminar blank or the cross direction.
The "thickness" (T) of the blank is the thickness of the blank after it has been manufactured, but before any ablation lines or creasing lines have been formed in the blank. That is, the thickness (T) of the blank is the thickness in any region of the blank not containing an ablated line or a crease line.
The term "residual thickness" is used herein to refer to the minimum distance measured between two opposite surfaces of the laminar blank or a panel of the container formed from the blank. In practice, the distance at a given location is measured along a direction locally perpendicular to the opposite surfaces. The residual thickness of each ablated line can be determined by using an Optical Profilometer for 2D Non-Contact Surface Metrology, such as the MicroSpy™ Profile commercially available from Fries Research & Technology GmbH, Bergisch Gladbach, Germany, or a 3D laser scanning confocal microscope, such as the VK- X series of microscopes commercially available from Keyence Corporation of America, New Jersey, United States of America. Preferably, several points of residual thickness are measured over the length of an ablated line, wherein the points of measurement are evenly spread over the length of one ablated line and the arithmetic mean is calculated. More preferably, to obtain the residual thickness according to the present invention, five measurements, evenly spread over the length of an ablated line, are performed and then the arithmetic mean is calculated.
For example, if the length of the ablated line is 80 millimetres, the residual thickness is measured at both ends of the ablated line and at three further points distanced 20 millimetres, 40 millimetres and 60 millimetres respectively from one end of the ablated line, preferably from the lower end of the ablated line.
The "residual thickness" of an ablated line may be constant over the ablated line if material is removed homogenously substantially all over the ablated line (flat profile). Alternatively, the residual thickness of the ablated line may vary across a width of the ablated line, if material is removed non-homogeneously over the ablated line (e.g. V-shaped, U- shaped grooves).
In contrast to conventional substantially parallelepiped containers, containers according to the present invention comprise a front wall, a rear wall, or both a front wall and a rear wall comprising a portion that is spaced outwardly from a plane defined by the edges bounding the wall. That is, in containers according to the present invention, at least one of the front wall and the back wall is three-dimensional.
By forming each three-dimensional wall using at least one ablation area comprising at least one ablated line, containers according to the present invention can be formed on existing high speed manufacturing machines with minimal modification. In particular, as a result of removing material from the blank to form the ablated lines, the three-dimensional features of at least one of the front wall and the rear wall are formed automatically by virtue of the normal folding forces that are applied to the blank during manufacture of the container. That is, folding the blank to create the edges bounding the front wall, the rear wall, the top wall, the bottom wall and the side walls automatically deforms the blank along the ablated lines of the ablation areas so that no further processes are required to form the three-dimensional features of the front wall, the rear wall, or the front wall and the rear wall. This is in contrast to known processes for forming containers having three-dimensional walls, such as the process described in US 2004/0035723 A1 , which requires the use of a complex deformation device to modify the front wall of the container in a separate process after the container has been assembled.
Advantageously, if the overall size (maximum width and depth) of a container according to the present invention is not significantly altered, the blank can be adapted easily to form containers having different shapes without the need for major modifications of the packing machine used to assemble and pack the container.
Forming the ablated lines by removing material from the surface of the blank that forms an inner surface of the container advantageously maintains a smooth outer surface of the container, which may provide a desirable appearance of the container upon visual and tactile inspection.
At least one ablated line of any ablation area on the front wall preferably extends from at least one of the top wall front edge, the bottom wall front edge, the first side wall front edge, and the second side wall front edge. Similarly, at least one ablated line of any ablation area on the rear wall preferably extends from at least one of the top wall rear edge, the bottom wall rear edge, the first side wall rear edge, and the second side wall rear edge. Forming an ablated line that extends from an edge of the wall can advantageously facilitate deformation of the blank along the ablated line by transferring at least some of the folding force from the edge from which the ablated line extends when the blank is folded to form the container.
In some embodiments, forming an ablated line extending from an intersection between two edges of a wall may further enhance the effect of transferring at least some of the folding force along the ablated line when the blank is folded to form the container. Therefore, preferably, at least one ablated line of any ablation area on the front wall extends from an intersection of one of the top wall front edge and the bottom wall front edge with either the first side wall front edge or the second side wall front edge. Similarly, at least one ablated line of any ablation area on the rear wall preferably extends from an intersection of one of the top wall rear edge and the bottom wall rear edge with either the first side wall rear edge or the second side wall rear edge.
Preferably, any ablation area on the front wall comprises a first front ablated line extending from the intersection of the top wall front edge and the first side wall front edge, and a second front ablated line extending from the intersection of the top wall front edge and the second side wall front edge. Preferably, any ablation area on the rear wall comprises a first rear ablated line extending from the intersection of the top wall rear edge and the first side wall rear edge, and a second rear ablated line extending from the intersection of the top wall rear edge and the second side wall rear edge. Providing such first and second ablated lines on one or both of the front and rear walls may advantageously result in the formation of a substantially bevelled portion along part of the respective wall when the blank is folded to form the container.
In some embodiments, any first front ablated line may extend to the intersection of the bottom wall front edge and the first side wall front edge, and any second front ablated line may extend to the intersection of the bottom wall front edge and the second side wall front edge. Similarly, any first rear ablated line may extend to the intersection of the bottom wall rear edge and the first side wall rear edge, and any second rear ablated line may extend to the intersection of the bottom wall rear edge and the second side wall rear edge. Providing such first and second ablated lines on one or both of the front and rear walls may result in the formation of a substantially bevelled portion down each side of the respective wall when the blank is folded to form the container.
Alternatively, the blank may be configured so that any ablation area on the front wall further comprises: a third front ablated line extending from the intersection of the bottom wall front edge and the first side wall front edge; a fourth front ablated line extending from the intersection of the bottom wall front edge and the second side wall front edge; and a fifth front ablated line intersecting each of the first, second, third and fourth front ablated lines. Similarly, the blank may be configured so that any ablation area on the rear wall further comprises: a third rear ablated line extending from the intersection of the bottom wall rear edge and the first side wall rear edge; a fourth rear ablated line extending from the intersection of the bottom wall rear edge and the second side wall rear edge; and a fifth rear ablated line intersecting each of the first, second, third and fourth rear ablated lines. Providing such ablated lines on one or both of the front and rear walls may result in the formation of a substantially bevelled portion extending around the outside of the respective wall when the blank is folded to form the container. Providing such ablated lines may also result in the formation of a central portion of the wall that is bound by the substantially bevelled portion. In embodiments in which the first, second, third and fourth front or rear ablated lines have substantially the same length so that the width of the substantially bevelled portion is substantially constant around the front or rear wall respectively, the central portion may be substantially parallel to, but spaced outwardly from, the first plane or the second plane respectively.
In those embodiments comprising a fifth front ablated line, the fifth front ablated line may define a continuous loop, such as a rectangle or a square. Additionally, or alternatively, in those embodiments comprising a fifth rear ablated line, the fifth rear ablated line may define a continuous loop, such as a rectangle or a square.
In any of the embodiments described above, some or all of the first side wall front edge, the first side wall rear edge, the second side wall front edge and the second side wall rear edge may be a substantially straight edge. Additionally, or alternatively, some or all of the first side wall front edge, the first side wall rear edge, the second side wall front edge and the second side wall rear edge may comprise a bevelled or rounded edge. Preferably, any bevelled or rounded edges are formed by a plurality of spaced apart and substantially parallel ablated lines. The plurality of ablated lines may have any suitable extension profile in the longitudinal direction of the bevelled or rounded edge. For example, an ablated line may follow a curved trajectory over at least a portion of its extension profile in the longitudinal direction of the bevelled or rounded edge. In such embodiments, the facet created by such an ablated line will have a non-linear perimeter.
A "bevelled edge", is used herein to refer to an edge of the container that has, as viewed in cross-section, one or more substantially straight shapes forming an angle between 0 and 90 degrees with the adjacent walls of the container. The bevelled edge can be measured using visual inspection by one or more test persons or microscopic measurement followed by statistical analysis, for example using a NIKON SMZ800 microscope on the outer surface of the laminar blank. X-Y-coordinates can be recorded on a fine grid (10 contour points) for each sample. The recorded X-Y-coordinates can be used for a linear spline interpolation and the profile of the resulting first derivative can be captured. For an almost constant first derivative the evaluated sample can be classified as a bevel.
In any of the embodiments described above, each ablated line preferably has a residual thickness (RT) of at least about 5 percent, more preferably at least about 10 percent, more preferably at least about 15 percent, more preferably at least about 20 percent, more preferably at least about 25 percent and even more preferably at least about 30 percent of the thickness (T) of the blank. In addition, or as an alternative, each ablated line preferably has a residual thickness of less than about 50 percent, more preferably less than about 45 percent and even more preferably less than about 40 percent of the thickness (T) of the blank.
The present inventors have found that, if the ablated line extends too far into the thickness of the laminar blank (that is, too deep) then the resultant outer surface of the container can be undesirably affected. For example, the outer surface can appear cracked or broken. Furthermore, the present inventors have found that, if an ablated line does not extend far enough into the thickness of the laminar blank (that is, too shallow) then the resultant outer surface of the container can also be undesirably affected. In particular, the present inventors have found that the turning points of the container along the ablated lines may be poorly defined on the container outer surface, and/or may follow an unintended trajectory along the outer surface of the container. For example, if an ablated line extends in a straight line along the inner surface of the container, the present inventors have found that the corresponding turning point that is produced on the outer surface of the container may be non-linear, or uneven. The present inventors have therefore identified that a cleaner looking, more well- defined container can be produced when each of the ablated lines has a residual thickness as specified above.
In any of the embodiments described above, the ablated width (X) of each ablated line is preferably at least about 0.1 millimetres. More preferably, the ablated width of each ablated line is at least about 0.2 millimetres. Most preferably, the ablated width of each ablated line is at least about 0.3 millimetres. In addition, or as an alternative, the ablated width of each ablated line is less than about 0.5 millimetres. More preferably, the ablated width of each ablated line is less than about 0.45 millimetres. In some preferred embodiments, the ablated width of each ablated line is from about 0.1 millimetres to about 0.5 millimetres. Even more preferably, the ablated width of each ablated line is from about 0.2 millimetres to about 0.45 millimetres, more preferably from about 0.3 millimetres to 0.4 about millimetres.
In any of the embodiments described above, the thickness (T) of the laminar blank is preferably between about 200 micrometres and about 350 micrometres, more preferably between about 250 micrometres and about 300 micrometres. The thickness (T) of the laminar blank can be measured in accordance with ISO 534:201 1.
Testing and conditioning at 23 degrees Celsius, 50% relative humidity according to ISO
187 two weeks after ablation.
In any of the embodiments described above, the laminar blank preferably has a basis weight of between about 100 grams per square metre and about 350 grams per square metre, more preferably between about 150 grams per square metre and about 350 grams per square metre, more preferably between about 200 grams per square metre and about 300 grams per square metre. Basis weight is calculated using ISO 536 and may vary from plus ten percent to minus ten percent, preferably from plus five percent to minus five percent.
In any of the embodiments described above, the laminar blank preferably has a spring- back force of less than 10 milliNewton metres between adjacent walls. The term "spring-back force" is a known term of art for referring to a particular property of a laminar blank. It is sometimes referred to as 'the crease recovery' and means the force (Newtons) required to hold a scored sample that is folded at 90 degrees for a 15-second period. The measurement is made at the end of the 15-second period. The spring-back force of a portion of a laminar blank can be measured using a known PIRA Crease and Board Stiffness Tester (commercially available for example from Messmer and Buchel, UK). As is known in the art, to measure the spring-back force of a curved edge portion of a container, a sample of the portion to be tested should first be removed from the laminar blank. For round corner packs, for the purposes of the present invention the spring-back force of a pack is assessed using a sample measuring 38±1 millimetres by 38±0.5 millimetres, with the corner forming portion being positioned 21 ±0.5 millimetres from one side of the blank. The blank should be conditioned at 22 degrees Celsius and 60 percent relative humidity for at least 24 hours prior to testing.
Preferably, the laminar blank has a stiffness in the bending direction of at least about 50milliNewtons, preferably at least about 75 milliNewtons, most preferably at least about 90 milliNewtons. In addition, or in the alternative, the laminar blank preferably has a bending stiffness of less than about 500 milliNewtons, preferably less than about 200 milliNewtons, more preferably less than about 160 milliNewtons. The laminar blank preferably has a bending stiffness from about 50 milliNewtons to about 200 milliNewtons. More preferably, the laminar blank has a stiffness in the machine direction of from about 75 milliNewtons to about 160 milliNewtons. Stiffness in the "bending direction" means that the bending stiffness is measured in the direction that the finished board is intended to be folded about an ablated line.
Preferably, the laminar blank has a residual stiffness in the bending direction of at least about 10 milliNewtons, preferably at least about 12 milliNewtons, more preferably at least about 15 milliNewtons and even more preferably at least about 20 milliNewtons. In addition, or in the alternative, the laminar blank preferably has a residual stiffness in the bending direction of from about 60 milliNewtons or less, more preferably 50 milliNewtons or less, even more preferably 40 milliNewtons or less.
Preferably, the laminar blank has a surface roughness of from about 0.5 micrometres to about 1.5 micrometres. More preferably, the laminar blank has a surface roughness of from about 0.75 micrometres to about 1.25 micrometres. The surface roughness is measured in accordance with ISO 8791 -4. Preferably, the laminar blank has a surface strength of from about 0.25 metres per second to about 1 metre per second. More preferably, the laminar blank has a surface strength of from about 0.5 metres per second to about 0.8 metres per second. The surface strength is measured in accordance with ISO 3783.
In any of the embodiments described above, the laminar blank is preferably a cellulose- fibre-based laminar blank. A cellulose-fibre-based blank comprises at least 50 weight-percent cellulose, preferably wood fibres, based on the total fibre content of the laminar blank. A cellulose-fibre-based laminar blank may include other types of fibres, such as polymer fibres.
In any of the embodiments described above, the container may comprise a box portion and a lid portion depending along a hinge line from a top edge of the box portion, the lid portion being moveable about the hinge line between an open position and a closed position. Preferably, the lid portion comprises a lid portion top wall, a lid portion front wall, a lid portion rear wall, a first lid portion side wall and a second lid portion side wall. Preferably, the box portion comprises a box portion front wall, a box portion rear wall, a box portion bottom wall, a first box portion side wall and a second box portion side wall. The lid portion top wall forms the container top wall and the box portion bottom wall forms the container bottom wall. The lid portion and box portion front walls together form the container front wall, and the lid portion and box portion rear walls together form the container rear wall. A bottom edge of the lid portion rear wall depends along the hinge line from a top edge of the box portion rear wall. The first lid portion and box portion side walls together form the container first side wall, and the second lid portion and box portion side walls together form the container second side wall.
Containers according to the present invention find application as containers for consumer goods, in particular elongate consumer goods such as smoking articles. Therefore, in any of the embodiments described above, the container may contain smoking articles.
The present invention also extends to a method of manufacturing the container in accordance with any of the embodiments described above. Therefore, according to a second aspect of the present invention there is provided a method of forming a container for consumer goods in accordance with any embodiment of the first aspect of the present invention, the container being at least partially formed from a blank having a thickness (T), the method comprising a step of providing a laminar blank having a thickness (T), the laminar blank having a first set of ablated lines defining a plurality of panels of the laminar blank, each ablated line having a residual thickness (RT1 ) that is less than the thickness (T) of the laminar blank. The laminar blank is then folded about the first set of ablated lines to form a container having a top wall comprising a top wall front edge, a top wall rear edge, and first and second top wall side edges. The container further comprises a bottom wall comprising a bottom wall front edge, a bottom wall rear edge, and first and second bottom wall side edges. A front wall extends from the top wall front edge to the bottom wall front edge and a rear wall extends from the top wall rear edge to the bottom wall rear edge. A first side wall extends between the first top wall side edge and the first bottom wall side edge, the first side wall being connected to the front wall by a first side wall front edge, the first side wall being connected to the rear wall by a first side wall rear edge. A second side wall extends between the second top wall side edge and the second bottom wall side edge, the second side wall being connected to the front wall by a second side wall front edge, the second side wall being connected to the rear wall by a second side wall rear edge. The laminar blank is folded such that top wall front edge, the bottom wall front edge, the first side wall front edge, and the second side wall front edge together extend along a first plane. The laminar blank is also folded such that top wall rear edge, the bottom wall rear edge, the first side wall rear edge, and the second side wall rear edge together extend along a second plane. The laminar blank further comprises at least one ablation area so that at least one of the front wall and the rear wall of the container comprises the at least one ablation area, wherein any ablation area on the front wall comprises at least one ablated line extending across the inner surface of the front wall, and wherein any ablation area on the rear wall comprises at least one ablated line extending across the inner surface of the rear wall. Each ablated line has a residual thickness (RT1 ) that is less than the thickness (T) of the laminar blank. During the step of folding, the laminar blank is at least partially folded along the at least one ablated line of each ablation area, so that any ablation area on the front wall defines a portion of the front wall spaced outwardly from the first plane and so that any ablation area on the rear wall defines a portion of the rear wall spaced outwardly from the second plane.
The invention will be further described, by way of example only, with reference to the accompanying drawings in which:
Figure 1 shows a front perspective view of a container in accordance with an embodiment of the present invention;
Figure 2 shows a rear perspective view of the container of Figure 1 ; and
Figure 3 shows a laminar blank for forming the container of Figures 1 and 2.
Figures 1 and 2 show a container 10 formed from a folded laminar blank in accordance with an embodiment of the present invention. The container 10 comprises a top wall 12, a bottom wall, a front wall 14, a rear wall 16, a first side wall 18 and a second side wall 20. The container 10 is divided into a lid portion 1 1 and a box portion 13, the lid portion 1 1 depending along a hinge line 15 from the box portion 13.
The top wall 12 comprises a top wall front edge 22, a top wall rear edge 24, and first and second top wall side edges 26, 28. The bottom wall comprises a bottom wall front edge 30, a bottom wall rear edge 32, and first and second bottom wall side edges 34, 36. The first side wall 18 is connected to the front wall 14 by a first side wall front edge 38 and to the rear wall 16 by a first side wall rear edge 40. The second side wall 20 is connected to the front wall 14 by a second side wall front edge 42 and to the rear wall 16 by a second side wall rear edge 44. The top wall front edge 22, the bottom wall front edge 30, the first side wall front edge 38 and the second side wall front edge 42 together extend along a first plane. The top wall rear edge 24, the bottom wall rear edge 32, the first side wall rear edge 40 and the second side wall rear edge 44 together extend along a second plane.
The front wall 12 comprises an ablation area including a first front ablated line 46, a second front ablated line 48, a third front ablated line 50, a fourth front ablated line 52 and a fifth front ablated line 54 each formed on the inner surface of the front wall 12. The fifth front ablated line 54 is a rectangular ablated line that forms a continuous loop connected to each of the first, second, third and fourth front ablated lines. When the laminar blank is folded to form the container 10 at least some of the folding force is transferred along the first to fifth front ablated lines so that the laminar blank automatically deforms along the ablated lines. The deformation along the first to fifth front ablated lines creates a central portion 56 of the front wall 12 that is substantially parallel to and spaced outwardly from the first plane.
Similarly, the rear wall 16 comprises an ablation area including a first rear ablated line 58, a second rear ablated line 60, a third rear ablated line 62, a fourth rear ablated line 64 and a fifth rear ablated line 66 each formed on the inner surface of the rear wall 16. The fifth rear ablated line 66 is a rectangular ablated line that forms a continuous loop connected to each of the first, second, third and fourth rear ablated lines. When the laminar blank is folded to form the container 10 at least some of the folding force is transferred along the first to fifth rear ablated lines so that the laminar blank automatically deforms along the ablated lines. The deformation along the first to fifth rear ablated lines creates a central portion 68 of the rear wall 16 that is substantially parallel to and spaced outwardly from the second plane.
Figure 3 shows a laminar blank 100 for forming the container 10 shown in Figures 1 and 2, and like reference numerals are used to designate like parts. Solid line represent cut lines and dashed lines represent ablated lines along which the laminar blank 100 is folded or deformed to form the container 10.
The laminar blank 100 comprises a box portion bottom panel 152, a box portion front panel 154 depending along an ablated line 156 from the box portion bottom panel 152, and a box portion rear panel 158 depending along an ablated line 160 from the box portion bottom panel 152. First box portion side panels 162 depend along ablated lines 164 from the box portion rear panel 158 and second box portion side panels 166 depend along ablated lines 168 from the box portion front panel 154. Two box portion dust flaps 170 depend along ablated lines 172 from the first box portion side panels 162. When the laminar blank 100 is folded to form the container 10, the box portion bottom panel 152 in combination with the box portion dust flaps 170 forms the container bottom wall.
The laminar blank 100 further comprises a lid portion rear panel 174 depending along an ablated line 176 from the box portion rear panel 158, a lid portion top panel 142 depending along an ablated line 178 from the lid portion rear panel 174, and a lid portion front panel 180 depending along an ablated line 182 from the lid portion top panel 142. A lid portion front under panel 184 depends along an ablated line 186 from the lid portion front panel 180.
The laminar blank 100 also comprises first lid portion side flaps 188 depending along ablated lines 190 from the lid portion rear panel 174, first and second dust flaps 138, 140 depending along ablated lines 194 from the respective first lid portion side flaps 188, and second lid portion side flaps 196 depending along ablated lines 198 from the lid portion front panel 180. When the laminar blank 100 is folded to form the container 10, the lid portion top panel 142 in combination with the first and second dust flaps 138, 140 forms the container top wall 12. Each first box portion side panel 162 in combination with the respective second box portion side panel 166, first lid portion side flap 188 and second lid portion side flap 196 forms the respective container side wall 18, 20. The box portion rear panel 158 and the lid portion rear panel 174 together form the box portion rear wall 16. The box portion front panel 154 in combination with the lid portion front panel 180 and the lid portion front under panel 184 forms the container front wall 14.

Claims

Claims
1 . A container for consumer goods, the container being at least partially formed from a blank having a thickness (T), the container comprising:
a top wall comprising a top wall front edge, a top wall rear edge, and first and second top wall side edges;
a bottom wall comprising a bottom wall front edge, a bottom wall rear edge, and first and second bottom wall side edges;
a front wall extending from the top wall front edge to the bottom wall front edge;
a rear wall extending from the top wall rear edge to the bottom wall rear edge;
a first side wall extending between the first top wall side edge and the first bottom wall side edge, the first side wall being connected to the front wall by a first side wall front edge and the first side wall being connected to the rear wall by a first side wall rear edge; and
a second side wall extending between the second top wall side edge and the second bottom wall side edge, the second side wall being connected to the front wall by a second side wall front edge and the second side wall being connected to the rear wall by a second side wall rear edge;
wherein the top wall front edge, the bottom wall front edge, the first side wall front edge, and the second side wall front edge together extend along a first plane;
wherein the top wall rear edge, the bottom wall rear edge, the first side wall rear edge, and the second side wall rear edge together extend along a second plane;
wherein at least one of the front wall and the rear wall comprises an ablation area, wherein any ablation area on the front wall comprises at least one ablated line extending across the inner surface of the front wall to define a portion of the front wall that is spaced outwardly from the first plane, and wherein any ablation area on the rear wall comprises at least one ablated line extending across the inner surface of the rear wall to define a portion of the rear wall that is spaced outwardly from the second plane; and
wherein each ablated line has a residual thickness (RT1 ) that is less than the thickness (T) of the laminar blank.
2. A container according to claim 1 , wherein at least one ablated line of any ablation area on the front wall extends from at least one of the top wall front edge, the bottom wall front edge, the first side wall front edge, and the second side wall front edge, and wherein at least one ablated line of any ablation area on the rear wall extends from at least one of the top wall rear edge, the bottom wall rear edge, the first side wall rear edge, and the second side wall rear edge.
3. A container according to claim 1 or 2, wherein any ablation area on the front wall comprises a first front ablated line extending from the intersection of the top wall front edge and the first side wall front edge, and a second front ablated line extending from the intersection of the top wall front edge and the second side wall front edge, and wherein any ablation area on the rear wall comprises a first rear ablated line extending from the intersection of the top wall rear edge and the first side wall rear edge, and a second rear ablated line extending from the intersection of the top wall rear edge and the second side wall rear edge.
4. A container according to claim 3, wherein any first front ablated line extends to the intersection of the bottom wall front edge and the first side wall front edge, wherein any second front ablated line extends to the intersection of the bottom wall front edge and the second side wall front edge, wherein any first rear ablated line extends to the intersection of the bottom wall rear edge and the first side wall rear edge, and wherein any second rear ablated line extends to the intersection of the bottom wall rear edge and the second side wall rear edge.
5. A container according to claim 3, wherein any ablation area on the front wall further comprises:
a third front ablated line extending from the intersection of the bottom wall front edge and the first side wall front edge;
a fourth front ablated line extending from the intersection of the bottom wall front edge and the second side wall front edge; and
a fifth front ablated line intersecting each of the first, second, third and fourth front ablated lines; and
wherein any ablation area on the rear wall further comprises:
a third rear ablated line extending from the intersection of the bottom wall rear edge and the first side wall rear edge;
a fourth rear ablated line extending from the intersection of the bottom wall rear edge and the second side wall rear edge; and
a fifth rear ablated line intersecting each of the first, second, third and fourth rear ablated lines.
6. A container according to claim 5, wherein any fifth front ablation line defines a continuous loop and wherein any fifth rear ablation line defines a continuous loop.
7. A container according to any of the preceding claims, wherein the first side wall, the second side wall, or both the first and second side walls comprise a bevelled or rounded edge.
8. A container according to any preceding claim, wherein each ablated line has a residual thickness (RT1 ) of less than 50 percent of the thickness (T) of the laminar blank.
9. A container according to any preceding claim, wherein each ablated line has a residual thickness (RT1 ) of at least 5 percent of the thickness (T) of the laminar blank.
10. A container according to any preceding claim, wherein the thickness (T) of the laminar blank is between 200 micrometres and 350 micrometres.
1 1 . A container according to any preceding claim, wherein the laminar blank has a basis weight of between 100 grams per square metre and 350 grams per square metre.
12. A container according to any preceding claim, wherein the laminar blank has a spring- back force of less than 10 milliNewton metres between adjacent walls.
13. A container according to any preceding claim, further comprising a box portion and a lid portion depending along a hinge line from a top edge of the box portion, the lid portion being moveable about the hinge line between an open position and a closed position.
14. A container according to any preceding claim containing smoking articles.
15. A method of forming a container for consumer goods, the container being at least partially formed from a blank having a thickness (T), the method comprising:
providing a laminar blank having a thickness (T), the laminar blank having a first set of ablated lines defining a plurality of panels of the laminar blank, each ablated line having a residual thickness (RT1 ) that is less than the thickness (T) of the laminar blank;
folding the laminar blank about the first set of ablated lines to form a container having: a top wall comprising a top wall front edge, a top wall rear edge, and first and second top wall side edges;
a bottom wall comprising a bottom wall front edge, a bottom wall rear edge, and first and second bottom wall side edges;
a front wall extending from the top wall front edge to the bottom wall front edge; a rear wall extending from the top wall rear edge to the bottom wall rear edge; a first side wall extending between the first top wall side edge and the first bottom wall side edge, the first side wall being connected to the front wall by a first side wall front edge and the first side wall being connected to the rear wall by a first side wall rear edge; and
a second side wall extending between the second top wall side edge and the second bottom wall side edge, the second side wall being connected to the front wall by a second side wall front edge, and the second side wall being connected to the rear wall by a second side wall rear edge;
wherein the laminar blank is folded such that top wall front edge, the bottom wall front edge, the first side wall front edge, and the second side wall front edge together extend along a first plane;
wherein the laminar blank is folded such that top wall rear edge, the bottom wall rear edge, the first side wall rear edge, and the second side wall rear edge together extend along a second plane;
wherein the laminar blank further comprises at least one ablation area so that at least one of the front wall and the rear wall of the container comprises the at least one ablation area, wherein any ablation area on the front wall comprises at least one ablated line extending across the inner surface of the front wall, wherein any ablation area on the rear wall comprises at least one ablated line extending across the inner surface of the rear wall, and wherein each ablated line has a residual thickness (RT1 ) that is less than the thickness (T) of the laminar blank; and
wherein, during the step of folding, the laminar blank is at least partially folded along the at least one ablated line of each ablation area, so that any ablation area on the front wall defines a portion of the front wall spaced outwardly from the first plane and so that any ablation area on the rear wall defines a portion of the rear wall spaced outwardly from the second plane.
PCT/EP2016/065393 2015-06-30 2016-06-30 Container having improved appearance WO2017001608A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
RU2018103212A RU2707447C2 (en) 2015-06-30 2016-06-30 Container with improved appearance
UAA201712033A UA123671C2 (en) 2015-06-30 2016-06-30 Container having improved appearance
MX2017016683A MX2017016683A (en) 2015-06-30 2016-06-30 Container having improved appearance.
PL16736030T PL3317208T3 (en) 2015-06-30 2016-06-30 Container having improved appearance
CN201680034466.0A CN107709189B (en) 2015-06-30 2016-06-30 The improved container of appearance
ES16736030T ES2761703T3 (en) 2015-06-30 2016-06-30 Container that has an improved appearance
EP16736030.4A EP3317208B1 (en) 2015-06-30 2016-06-30 Container having improved appearance
KR1020177035228A KR20180022662A (en) 2015-06-30 2016-06-30 Container with improved appearance
JP2017565955A JP2018519219A (en) 2015-06-30 2016-06-30 Container with improved appearance
US15/737,825 US20190002189A1 (en) 2015-06-30 2016-06-30 Container having improved appearance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP15174620 2015-06-30
EP15174620.3 2015-06-30

Publications (1)

Publication Number Publication Date
WO2017001608A1 true WO2017001608A1 (en) 2017-01-05

Family

ID=53491437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/065393 WO2017001608A1 (en) 2015-06-30 2016-06-30 Container having improved appearance

Country Status (11)

Country Link
US (1) US20190002189A1 (en)
EP (1) EP3317208B1 (en)
JP (1) JP2018519219A (en)
KR (1) KR20180022662A (en)
CN (1) CN107709189B (en)
ES (1) ES2761703T3 (en)
MX (1) MX2017016683A (en)
PL (1) PL3317208T3 (en)
RU (1) RU2707447C2 (en)
UA (1) UA123671C2 (en)
WO (1) WO2017001608A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202017104977U1 (en) * 2017-08-18 2018-08-21 Mayr-Melnhof Karton Ag Blank, resulting three-dimensional structure and carton

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0303865A2 (en) * 1987-08-18 1989-02-22 Focke & Co. (GmbH & Co.) Foldable blank for cigarettes
WO2002032786A1 (en) * 2000-10-18 2002-04-25 G.D Societa' Per Azioni Hinged-lid cigarette packet
WO2003033378A1 (en) * 2001-10-12 2003-04-24 G.D S.P.A. A pack of rigid type for tobacco products and a relative method of manufacture
US20100155292A1 (en) * 2008-12-18 2010-06-24 Innovia Films Limited Naked collation package
EP2363355A1 (en) * 2010-03-03 2011-09-07 Focke & Co. (GmbH & Co. KG) Lidded carton for tobacco products

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3099382A (en) * 1956-06-28 1963-07-30 American Mach & Foundry Cartons for elongated articles
DE19809865C1 (en) * 1998-03-07 1999-04-29 Bat Cigarettenfab Gmbh Cigarette packet has two hinged lids at opposite ends
IT1310482B1 (en) * 1999-09-21 2002-02-18 Gd Spa FLAG BLOCKED FOR THE FORMATION OF A RIGID PACKAGE.
ITBO20000722A1 (en) * 2000-12-12 2002-06-12 Gd Spa RIGID TYPE PACKAGING FOR SMOKING ITEMS AND METHOD FOR ITS REALIZATION
DE10106548A1 (en) * 2001-02-13 2002-08-22 Philip Morris Prod Blank sheets and boxes made therefrom, in particular for cigarettes
JP2009292514A (en) * 2008-06-06 2009-12-17 Japan Tobacco Inc Packaging container
MY162638A (en) * 2010-07-19 2017-06-30 Philip Morris Products Sa Container for consumer goods
GB201018716D0 (en) * 2010-11-05 2010-12-22 British American Tobacco Co A pack for smoking articles
WO2012131834A1 (en) * 2011-03-25 2012-10-04 日本たばこ産業株式会社 Method for forming ruled line on blank, package manufacturing method incorporating same, and package
US20180155116A1 (en) * 2015-05-27 2018-06-07 Philip Morris Products S.A. Container having improved strength

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0303865A2 (en) * 1987-08-18 1989-02-22 Focke & Co. (GmbH & Co.) Foldable blank for cigarettes
WO2002032786A1 (en) * 2000-10-18 2002-04-25 G.D Societa' Per Azioni Hinged-lid cigarette packet
WO2003033378A1 (en) * 2001-10-12 2003-04-24 G.D S.P.A. A pack of rigid type for tobacco products and a relative method of manufacture
US20100155292A1 (en) * 2008-12-18 2010-06-24 Innovia Films Limited Naked collation package
EP2363355A1 (en) * 2010-03-03 2011-09-07 Focke & Co. (GmbH & Co. KG) Lidded carton for tobacco products

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202017104977U1 (en) * 2017-08-18 2018-08-21 Mayr-Melnhof Karton Ag Blank, resulting three-dimensional structure and carton
US11866235B2 (en) 2017-08-18 2024-01-09 Mayr-Melnhof Karton Ag Blank, three-dimensional structure produced therefrom, and folding box

Also Published As

Publication number Publication date
CN107709189B (en) 2019-11-22
CN107709189A (en) 2018-02-16
JP2018519219A (en) 2018-07-19
US20190002189A1 (en) 2019-01-03
ES2761703T3 (en) 2020-05-20
KR20180022662A (en) 2018-03-06
UA123671C2 (en) 2021-05-12
MX2017016683A (en) 2018-03-15
EP3317208B1 (en) 2019-11-06
PL3317208T3 (en) 2020-05-18
EP3317208A1 (en) 2018-05-09
RU2707447C2 (en) 2019-11-26
RU2018103212A3 (en) 2019-09-20
RU2018103212A (en) 2019-07-31

Similar Documents

Publication Publication Date Title
US20190002188A1 (en) Container with improved opening
EP3317208B1 (en) Container having improved appearance
EP3303179B1 (en) Container having improved bevelled edge
EP3328751B1 (en) Container with non-squared edges and blank
US20180155116A1 (en) Container having improved strength
EP3350099B1 (en) Container with a bevelled edge and an adjacent transverse curved edge
EP3303178B1 (en) Container having improved curved edge
US20180037361A1 (en) Improved container with non-squared edges
WO2017001563A1 (en) Container having improved flatness

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16736030

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 11201709467X

Country of ref document: SG

ENP Entry into the national phase

Ref document number: 20177035228

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/016683

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2017565955

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: A201712033

Country of ref document: UA

WWE Wipo information: entry into national phase

Ref document number: 2018103212

Country of ref document: RU

Ref document number: 2016736030

Country of ref document: EP