WO2017000717A1 - 一种网络架构及资源配置方法 - Google Patents
一种网络架构及资源配置方法 Download PDFInfo
- Publication number
- WO2017000717A1 WO2017000717A1 PCT/CN2016/083641 CN2016083641W WO2017000717A1 WO 2017000717 A1 WO2017000717 A1 WO 2017000717A1 CN 2016083641 W CN2016083641 W CN 2016083641W WO 2017000717 A1 WO2017000717 A1 WO 2017000717A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- channel
- meets
- ports
- channel group
- preset requirement
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
- H04W16/02—Resource partitioning among network components, e.g. reuse partitioning
- H04W16/06—Hybrid resource partitioning, e.g. channel borrowing
Definitions
- the present invention relates to the field of communications technologies, and in particular, to a network architecture and a resource configuration method.
- FIG. 1 an indoor network architecture is shown in FIG. 1 , including a Baseband Processing Unit (BBU), a Radio Remote Unit (RRU), a power splitter, and an antenna remote unit.
- BBU Baseband Processing Unit
- RRU Radio Remote Unit
- the RRU is connected to the RRU through the optical fiber (English: Fiber).
- the RRU is connected to the power splitter through the RF feeder.
- the power splitter divides the power evenly and connects the antenna to the remote unit unit Ant0 ⁇ AntN through the RF feeder.
- N is a positive integer.
- Figure 2 is a schematic diagram of the indoor network coverage corresponding to Figure 1. All the antenna remote units are only configured as one port, and can only transmit the same signal, and cannot support multiple-input multiple-output (MIMO). Technology, resulting in limited data service capacity.
- MIMO multiple-input multiple-output
- the embodiment of the invention provides a network architecture and resource configuration method for supporting MIMO technology and improving data service capacity.
- a first aspect of the present invention provides a network architecture, including: an antenna remote unit and a radio remote unit RRU;
- the antenna remote unit is configured with N ports, the RRU includes M radio frequency channels, N is a positive integer greater than 1 and less than or equal to M, and at least two of the N ports are different types of ports;
- the antenna remote unit is connected to the M radio frequency channels of the RRU through the N ports, and any one port corresponds to at least one radio frequency channel.
- the N ports include two different types of ports, and the two different types of ports are staggered.
- the antenna remote unit includes N antennas, and each of the N antennas corresponds to one of the ports;
- the antenna remote unit includes N antenna groups, each of the N antenna groups corresponds to one of the ports, and each antenna group includes at least two antennas, and the at least two antennas Antennas that are adjacent or staggered.
- the network architecture further includes N power dividers
- Each of the N power splitters is connected to one of the N antenna groups through a feeder, through a port corresponding to the one antenna group, and M radio frequency channels in the RRU connection.
- the network architecture further includes:
- the HUB is connected to the BBU and the RRU, respectively;
- the HUB and the BBU are connected by an optical fiber, and the HUB and the RRU are connected by a network cable.
- the antenna remote unit and the RRU are connected by a feeder.
- a second aspect of the present invention provides a method for implementing resource configuration by using a network architecture, where the network architecture is the network architecture of the first aspect, and the method includes:
- the channel group includes a first channel group determined according to N ports in the antenna remote unit or determined according to M radio frequency channels in the radio remote unit a second channel group, the first channel group includes N first channels, the second channel group includes M second channels, and N is a positive integer greater than 1 and less than or equal to M;
- the performing resource configuration on the UE according to the determined channel group includes:
- the performing resource configuration for the UE according to the determined channel group includes:
- the method before the configuring the resource to the UE on the second channel that meets the preset requirement, the method further includes:
- the calculating, according to the signal information of the SRS, the feature vector of the UE includes:
- the BBU decomposes the signal information of the SRS by using a singular value decomposition algorithm SVD to calculate a feature vector of the UE.
- the The UE configuration resources include:
- the The UE configuration resources include:
- the second UE and the third UE are selected from the UE according to the user priority principle, where the second UE is the UE with the highest priority, and the third UE is the UE with the second highest priority.
- the configuring, by the second channel that meets the preset requirement, to the second UE and the third UE After the resources also includes:
- a third aspect of the present invention provides an apparatus for configuring a resource, including: a processing module;
- the processing module is configured to determine a channel group for performing resource configuration on the user equipment UE, where the channel group includes a first channel group determined according to N ports in the antenna remote unit or according to the radio remote unit a second channel group determined by the M radio frequency channels, the first channel group includes N first channels, and the second channel group includes M second channels, where N is greater than 1 and less than or equal to M Positive integer
- the processing module is further configured to perform resource configuration on the UE according to the determined channel group.
- the processing module is configured to: when the resource configuration of the UE is performed according to the first channel group, acquire, by the UE, a reference signal SRS corresponding to the N first channels in the first channel group. Signal power, and determining a first channel that meets a preset requirement according to the signal power of the SRS, and configuring resources to the UE on the first channel that meets the preset requirement.
- the processing module is configured to acquire channel information of the SRS corresponding to the M channels of the second channel group of the UE when the UE is configured according to the second channel group. And determining, according to the channel information of the SRS, a second channel that meets the preset requirement, and configuring resources to the UE on the second channel that meets the preset requirement.
- the processing module is further configured to calculate a feature vector of the UE according to channel information of the SRS before configuring resources on the second channel that meets the preset requirement.
- the processing module is specifically configured to decompose the signal information of the SRS by using a singular value decomposition algorithm SVD, and calculate a feature vector of the UE.
- the processing module is specifically configured to select a first UE from the UE according to a user priority principle, where the first UE is a UE with a first highest priority, and on the second channel that meets a preset requirement. Allocating resources to the first UE.
- the processing module is specifically configured to select a second UE and a third UE from the UE according to a user priority principle, where the second UE is a UE with a first highest priority, and the third UE is a priority a second high UE, calculating an inner product of feature vectors of the second UE and the third UE, when an inner product of feature vectors of the second UE and the third UE is less than a preset threshold, Allocating resources to the second UE and the third UE on the second channel that meets the preset requirement.
- the processing module is further configured to: after configuring resources to the second UE and the third UE on the second channel that meets the preset requirement, according to the enhanced zero-forcing EZF algorithm, to the second UE and the first
- the feature vectors of the three UEs are forced to zero, and the feature vectors of the second UE and the third UE after zero-forcing are mapped to the second channel that satisfies the preset requirement.
- the network architecture includes an antenna remote unit and a radio remote unit RRU; the antenna remote unit is configured with N ports, the RRU includes M radio channels, and N is a positive integer greater than 1 and less than or equal to M.
- the at least two ports of the N ports are different types of ports.
- the antenna remote unit is connected to the M radio frequency channels of the RRU through the N ports, and any one port corresponds to at least one radio frequency channel.
- a type of port can be used to transmit a signal
- N ports configured by the antenna remote unit can be used to transmit a plurality of different signals, thereby supporting MIMO technology and effectively improving the data service capacity.
- FIG. 1 is a schematic structural diagram of a network architecture in the prior art
- FIG. 3 is a schematic diagram of an embodiment of a network architecture in an embodiment of the present invention.
- FIG. 4 is a schematic diagram of another embodiment of a network architecture according to an embodiment of the present invention.
- FIG. 5 is a schematic diagram of an embodiment of a method for resource configuration according to an embodiment of the present disclosure
- FIG. 6 is a schematic diagram of another embodiment of a method for resource configuration according to an embodiment of the present disclosure.
- FIG. 7 is a schematic diagram of another embodiment of a method for resource configuration according to an embodiment of the present disclosure.
- FIG. 8 is a schematic diagram of an embodiment of an apparatus for resource configuration according to an embodiment of the present disclosure.
- FIG. 9 is a schematic diagram of another embodiment of an apparatus for resource configuration according to an embodiment of the present invention.
- 10a-10b are a schematic structural diagram of a network architecture in an application scenario and a corresponding network coverage diagram according to an embodiment of the present invention
- 11a-11b are another schematic structural diagram of a network architecture in an application scenario and a corresponding network coverage diagram according to an embodiment of the present invention.
- the embodiment of the invention provides a network architecture and resource configuration method for supporting MIMO technology and improving data service capacity.
- 2G communication systems including Global System for Mobile (GSM), Wideband Code Division Multiple Access. (WCDMA, wideband code division multiple access), time division synchronous code division multiple access (TD-SCDMA, time division-synchronization code division multiple access) and other 3G communication systems, long-term evolution (LTE) Next-generation communication systems such as its subsequent evolution system.
- GSM Global System for Mobile
- WCDMA Wideband Code Division Multiple Access
- TD-SCDMA time division synchronous code division multiple access
- LTE long-term evolution
- Next-generation communication systems such as its subsequent evolution system.
- a User Equipment which may also be called a Mobile Terminal, a mobile user equipment, or the like, may communicate with one or more core networks via a radio access network (eg, RAN, Radio Access Network).
- the user equipment may be a mobile terminal, such as a mobile phone (or "cellular" phone) and a computer with a mobile terminal, for example, a portable, pocket, handheld, computer built-in or in-vehicle mobile device,
- the wireless access network exchanges languages and/or signals.
- the technical solution provided by the embodiment of the invention can be used in various indoor environments, such as an airport hall, an exhibition hall, a supermarket, a library, an underground parking lot, a mine, an office building and the like.
- an embodiment of the network architecture in the embodiment of the present invention includes: an antenna remote unit 301, a radio remote unit RRU302;
- the antenna remote unit 301 is configured with N ports 3011, and the RRU 302 includes M radio frequency channels 3021, where N is a positive integer greater than 1 and less than or equal to M, and at least two of the N ports are of different types.
- different types of ports correspond to different signals, wherein different types of ports are specifically different types of ports, and ports of different types can support signals of different frequencies.
- different types of ports may also be configured with different ports, which are not specifically limited herein.
- the antenna remote unit is a component for transmitting or receiving electromagnetic waves.
- non-signal energy radiation also requires an antenna remote unit in terms of transmitting energy using electromagnetic waves.
- the antenna remote unit is connected to the M radio frequency channels of the RRU through the N ports, and any one port corresponds to at least one radio frequency channel.
- the antenna remote unit is connected to a radio frequency channel through a port, or the antenna remote unit is connected to multiple radio frequency channels through a port.
- the specific connection manner is determined according to the actual application, and is not specifically limited herein.
- At least two ports of the N ports are different types of ports, and each type of port can correspondingly send a signal, or several ports of the same type send a signal corresponding to the port.
- N ports send a variety of different signals to support MIMO technology and effectively increase data service capacity.
- another embodiment of the network architecture in the embodiment of the present invention includes:
- the antenna remote unit 401 is configured with N ports 4011, and the RRU 402 includes M radio frequency channels 4021, where N is a positive integer greater than 1 and less than or equal to M, and at least two of the N ports are different types.
- the antenna remote unit is connected to the M radio frequency channels of the RRU through the N ports, and any one port corresponds to at least one radio frequency channel.
- the antenna remote unit and the RRU are connected by a feeder.
- the feeder can effectively transmit the signal between the antenna remote unit and the RRU.
- the distortion is small, the loss is small, and the anti-interference ability is strong.
- the commonly used feeder is a coaxial feeder with a characteristic impedance of 50 ohms, and the coaxial feeder has a metal shielding layer. Strong interference capability and low transmission loss.
- the antenna remote unit in the embodiment of the present invention is configured with N ports, so that the connection between the antenna remote unit and the RRU is performed through the feeder, and the required feeder distance is compared with the prior art.
- the wiring cost of the feeder is reduced, and the loss of power consumption of the feeder is reduced.
- the N ports 4011 include two different types of ports, and the two different types of ports are interleaved, and each type of port sends a signal, for example, the N ports.
- port0 and port1 are interleaved, two different signals are sent separately, which supports the support of MIMO technology and reduces the cost.
- the antenna remote unit 401 includes N antennas, and each of the N antennas corresponds to one of the ports;
- the N antennas correspond to one port. Assuming each port has different types, the N ports corresponding to the N antennas can send up to N different signals.
- the antenna remote unit 401 includes N antenna groups, each of the N antenna groups corresponds to one of the ports, and each antenna group includes at least two antennas, and the at least two antennas
- the antennas are adjacent or interleaved antennas.
- Ant0 to Ant6 are arranged in sequence, and Ant0, Ant1, Ant2, and Ant3 are selected as one antenna group, or Ant0, Ant2, Ant4, and Ant6 are one antenna group.
- each antenna group includes at least two antennas, and each antenna group corresponds to one port, wherein the antennas in each antenna group are adjacent or interlaced antennas, assuming each antenna group There are two antennas, such as: adjacent antenna Ant0, Ant1 is an antenna group, Ant 2 and Ant 3 are one antenna group, or correspondingly, interlaced antennas Ant0, Ant2 is an antenna group, and Ant1 and Ant 3 are one.
- Antenna group is grouped, each antenna group includes at least two antennas, and each antenna group corresponds to one port, wherein the antennas in each antenna group are adjacent or interlaced antennas, assuming each antenna group There are two antennas, such as: adjacent antenna Ant0, Ant1 is an antenna group, Ant 2 and Ant 3 are one antenna group, or correspondingly, interlaced antennas Ant0, Ant2 is an antenna group, and Ant1 and Ant 3 are one.
- Antenna group is grouped, each antenna group includes at least two antennas, and each antenna group corresponds to one port, wherein the antennas in
- each antenna group may be the same or different.
- multiple antenna groups may be corresponding to one port, which is not specifically limited herein.
- the network architecture further includes N power dividers
- Each of the N power splitters is connected to one of the N antenna groups through a feeder, through a port corresponding to the one antenna group, and M radio frequency channels in the RRU connection.
- the HUB 403 is connected to the BBU 404 and the RRU 402, respectively;
- the HUB is connected to the BBU through an optical fiber, and the interference between UEs on different channels can be greatly reduced by using optical fiber transmission.
- the HUB and the RRU are connected by a network cable, and the insulation distance between the network cables is small, the occupied space is small, the underground is laid without occupying the space above the ground, and is not affected by the surrounding environment pollution, and the transmission speed is high.
- the network cable in the embodiment of the present invention may be a Category 5 line cat5e or a Category 6 twisted pair cat6, etc., and is not specifically limited herein.
- the transmission speed of the cat5e may be up to 1000 Mbps.
- RRU there are at least one RRU, and one RRU corresponds to one HUB.
- the M radio frequency channels 4021 are configured to send a first signal to the antenna remote unit 401 through the N ports 4011; wherein a signal may be correspondingly sent through one port, or correspondingly sent by several ports of the same type A signal, since at least two of the N ports are different types of ports, the first signal including at least two different frequencies can be supported by the N ports.
- the antenna remote unit 401 is configured to receive the first signal from the M radio frequency channels 4021 in the RRU 402 by using the N ports 4011.
- the antenna remote unit can receive the same signal from the RRU through the N ports, and can also receive different signals, which is not specifically limited herein.
- the HUB 403 is configured to receive a second signal from the BBU 404, and send the second signal to the M radio frequency channels 4021 in the RRU 402, where the M radio frequency channels 4021 transmit the second signal Processing to form the first signal;
- the HUB has a signal forwarding function, receives a second signal from the BBU, and sends the second signal to the M radio frequency channels in the RRU, where the M radio frequency channels are The second signal is amplified to form a first signal.
- the BBU 404 is configured to send the second signal to the HUB 403.
- the power splitter is configured to share the power received from the radio frequency channel 4021 by the port corresponding to the one antenna group. And respectively sent to the at least two antennas in the one antenna group.
- the antenna remote unit 401 is further configured to send, by using the N ports 4011, a third signal to the M radio frequency channels 4021 in the RRU 402, where the third signal is the antenna remote unit 401 a signal acquired by the UE;
- the M radio frequency channels 4021 are further configured to receive the third signal from the antenna remote unit 401 through the N ports 4011, and send the fourth signal formed by the third signal processing to the Said HUB403;
- the HUB 403 is further configured to receive the fourth signal from the radio frequency channel 4021, and send the fourth signal to the BBU 404;
- the BBU 404 is further configured to receive the fourth signal from the HUB 403, and perform demodulation and the like on the fourth signal.
- the power splitter is configured to collect power of the at least two antennas in the one antenna group and pass the one antenna group.
- the corresponding port sends the aggregated power to the radio frequency channel 4021.
- At least two ports of the N ports are different types of ports, and each type of port may correspondingly send one type of signal, or several ports of the same type correspondingly send one type of signal, N Any two adjacent ports in the port are different types of ports, and any different types of ports are interleaved, thereby increasing the amount of data of the UE, using the N ports to send multiple different signals, or receiving multiple different or the same Signals to support MIMO technology and effectively increase data service capacity.
- an embodiment of a method for resource configuration in the embodiment of the present invention is to apply the method shown in FIG. 3 or FIG.
- the network architecture is implemented.
- the embodiment includes:
- the channel group includes a first channel group determined according to N ports in the antenna remote unit or a second channel group determined according to M radio frequency channels in the radio remote unit, the first channel group N first channels are included, and the second channel group includes M second channels, where N is large a positive integer of 1 and less than or equal to M;
- the resource configuration of the UE according to the channel group may refer to the processing capability of the BBU, the data volume of the current network, or the data volume of the current UE. For example, when the current network data volume is large, according to the second.
- the channel allocates resources to the UE. When the data volume of the current network is small, the resources are configured according to the first channel.
- the BBU performs resource configuration on the UE in sequence according to the priority order of the UE.
- the BBU first determines a channel group for performing resource configuration on the UE, and the BBU performs resource configuration on the UE according to the determined channel group, where the channel group includes N according to the remote unit of the antenna.
- the channel group includes N according to the remote unit of the antenna.
- a first channel group determined by the port or a second channel group determined according to the M radio frequency channels in the radio remote unit the first channel group includes N first channels
- N is a positive integer greater than 1 and a positive integer less than or equal to M.
- a plurality of different signals can be transmitted through the first channel group or the second channel group, thereby supporting MIMO technology and effectively improving data. Business capacity.
- another embodiment of the method for resource configuration in the embodiment of the present invention includes:
- the UE Since the first channel group is determined according to the N ports in the antenna remote unit, the UE obtains the signal power of the corresponding SRS on each port.
- the first channel corresponding to the signal power of the SRS that meets the preset requirement is the first channel that meets the preset requirement.
- the resource configuration is performed on the UE in the corresponding first channel.
- the UE when the BBU determines that the signal power difference of the corresponding SRSs on the two first channels meets the preset requirement, the UE performs resource configuration on the corresponding two first channels.
- the UE selects the UE according to the user priority principle. For example, the user priority of the general voice call is higher than the user priority of the web browsing. After the UE is selected, the resource is configured to the UE on the first channel that meets the preset requirement.
- the BBU when the resource configuration is performed on the UE according to the first channel group, acquires the signal power of the reference signal SRS corresponding to the N first channel of the UE in the first channel group, and the BBU according to the signal power of the SRS.
- the first channel that meets the preset requirement is determined, and the BBU allocates resources to the UE on the first channel that meets the preset requirement. Since the first channel group includes N first channels, different signals can be sent and received through the N first channels, thereby supporting MIMO technology and effectively improving data service capacity.
- another embodiment of the method for resource configuration in the embodiment of the present invention includes:
- the feature information of the UE is calculated by using the channel information of the SRS, and the second channel that meets the preset requirement is determined.
- the BBU decomposes the signal information of the SRS by using a singular value decomposition algorithm SVD, and calculates a feature vector of the UE, where the feature vector can be used as a reference feature for resource configuration in the priority order, for example, UE1.
- the BBU preferentially allocates resources to the UE1 and the UE2.
- the signal information of the SRS includes the channel quality indication information and the channel threshold. For example, when the channel quality indication information is greater than the preset threshold, and the channel threshold is N, determining the second corresponding to the signal information of the SRS.
- the channel is a second channel that meets the preset requirements.
- steps 702 and 703 is not limited.
- configuring resources on the second channel that meets the preset requirement includes:
- the BBU selects the first UE from the UE according to the user priority principle, where the first UE is the UE with the highest priority;
- the BBU allocates resources to the first UE on a second channel that meets a preset requirement.
- configuring resources on the second channel that meets the preset requirement includes:
- the BBU selects the second UE and the third UE from the UE according to a user priority principle, where the second UE is the UE with the highest priority, and the third UE is the second highest priority.
- UE is the UE with the highest priority
- UE is the second highest priority.
- the BBU goes to the second UE and the second channel on the second channel that meets the preset requirement.
- the third UE configures resources.
- the BBU after configuring resources to the second UE and the third UE on the second channel that meets a preset requirement, performs the second UE and according to an EZF algorithm.
- the feature vector of the third UE performs zero-forcing, and maps the feature vectors of the second UE and the third UE after zero-forcing to the second channel that satisfies the preset requirement.
- the BBU when the resource configuration is performed on the UE according to the second channel group, acquires channel information of the SRS corresponding to the second channel of the UE in the second channel group, and the BBU calculates the UE according to the channel information of the SRS.
- the feature vector the BBU determines the second channel that meets the preset requirement according to the signal information of the SRS, and the BBU allocates resources to the UE on the second channel that meets the preset requirement, because the second channel group includes M second channels, M second channels can transmit and receive different signals to support MIMO technology and effectively increase data service capacity.
- an embodiment of an apparatus 800 for resource configuration in an embodiment of the present invention includes: a processing module 801;
- the processing module 801 is configured to determine a channel group for performing resource configuration on the user equipment UE, where the channel group includes a first channel group determined according to N ports in the antenna remote unit or according to the radio remote unit a second channel group determined by the M radio frequency channels, the first channel group includes N first channels, and the second channel group includes M second channels, where N is greater than 1 and less than or equal to M Positive integer
- the processing module 801 is further configured to perform resource configuration on the UE according to the determined channel group.
- the processing module 801 is configured to: when the UE is configured according to the first channel group, obtain the UE corresponding to the N first channels in the first channel group. Reference signal SRS signal power, and determining a first channel that meets a preset requirement according to the signal power of the SRS, and configuring resources to the UE on the first channel that meets the preset requirement.
- the processing module 801 is specifically configured to: when the resource configuration is performed on the UE according to the second channel group, obtain the UE corresponding to the M second channels in the second channel group.
- the channel information of the SRS is determined, and the second channel that meets the preset requirement is determined according to the channel information of the SRS, and the resource is configured to the UE on the second channel that meets the preset requirement.
- the processing module 801 is further configured to calculate a feature vector of the UE according to channel information of the SRS before configuring resources on the second channel that meets the preset requirement.
- the processing module 801 is specifically configured to decompose the signal information of the SRS by using a singular value decomposition algorithm SVD, and calculate a feature vector of the UE.
- SVD singular value decomposition algorithm
- the processing module 801 is specifically configured to select a first UE from the UE according to a user priority principle, where the first UE is a UE with a first highest priority, and meets the preset requirement in the foregoing.
- the resource is configured to the first UE on the second channel.
- the processing module 801 is specifically configured to select a second UE and a third UE from the UE according to a user priority principle, where the second UE is a UE with a first highest priority, and the third The UE is the second highest priority UE, and calculates an inner product of the feature vectors of the second UE and the third UE, where the inner product of the feature vector of the second UE and the third UE is less than a preset At the threshold, resources are allocated to the second UE and the third UE on the second channel that meets the preset requirement.
- the processing module 801 is further configured to: after configuring resources to the second UE and the third UE on the second channel that meets the preset requirement, according to the enhanced zero-forcing EZF algorithm
- the feature vectors of the second UE and the third UE perform zero-forcing, and map the feature vectors of the second UE and the third UE after zero-forcing to the second channel that satisfies the preset requirement.
- FIG. 8 illustrates the specific structure of the device for resource configuration from the perspective of the function module.
- the specific structure of the device for resource configuration is described below from the hardware point of view with the embodiment of FIG. 9:
- FIG. 9 is a schematic structural diagram of a device 900 for resource configuration according to an embodiment of the present invention, including a transceiver 901, a memory 902, a processor 903, and a bus 904, the transceiver 901, a memory 902, and a processor. 903 is coupled to the bus 904, wherein:
- the transceiver 901 is configured to receive or send data
- the memory 902 is configured to store a program
- the processor 903 is configured to invoke the program to perform the following operations:
- the channel group includes a first channel group determined according to N ports in the antenna remote unit or determined according to M radio frequency channels in the radio remote unit a second channel group, the first channel group includes N first channels, the second channel group includes M second channels, and N is a positive integer greater than 1 and less than or equal to M;
- the processor 903 is further configured to perform the following operations:
- the signal power of the reference signal SRS corresponding to the N first channels in the first channel group and according to the SRS The signal power determines a first channel that meets a preset requirement, and allocates resources to the UE on the first channel that meets the preset requirement.
- the processor 903 is further configured to perform the following operations:
- the resource configuration of the UE Obtaining, according to the second channel group, the resource configuration of the UE, acquiring channel information of the SRS corresponding to the S channel of the UE in the second channel group, and according to the channel of the SRS The information determines a second channel that meets the preset requirement, and allocates resources to the UE on the second channel that meets the preset requirement.
- the processor 903 is further configured to perform the following operations:
- the processor 903 is further configured to perform the following operations:
- the signal information of the SRS is decomposed by the singular value decomposition algorithm SVD, and the feature vector of the UE is calculated.
- the first UE is selected from the UE according to a user priority principle, where the first UE is the UE with the highest priority, and the second channel is configured to the first channel.
- One UE configuration Resources One UE configuration Resources.
- the second UE and the third UE are selected from the UE according to the user priority principle, where the second UE is the UE with the highest priority, and the third UE is the UE with the second highest priority.
- a resource is configured to the second UE and the third UE on a second channel that is preset.
- the vector performs zero forcing, and maps the feature vectors of the second UE and the third UE after zero-forcing to the second channel that satisfies the preset requirement.
- an embodiment of an application scenario of the network architecture in the embodiment of the present invention includes:
- FIG. 10a-10b a schematic diagram of a structure diagram of a pull-two network architecture and a corresponding embodiment of a network coverage, wherein the RF channel RF in the RRU is externally connected to the antenna through the feeder, and there are two RFs.
- Figure 10 ⁇ a is a RRU-corresponding one-to-two network architecture diagram, and the antennas in the antenna remote unit are distributed and deployed.
- the ports are respectively Ant0 and Ant1, and the adjacent antennas are configured with different port ports. To ensure the access of the current UE, the adjacent ports are alternately configured with the first port port0 and the second port port1, and the R5 and the HUB are connected with cat5e.
- a fiber optic fiber is connected between the BBU and the HUB.
- the antenna spacing is required to be 10 m in the network architecture according to the simulation evaluation.
- the antenna transmission power is 19 dBm.
- the antenna spacing is 15m and the RRU spacing is 30m. Therefore, compared with the prior art, the number of RRUs can be effectively reduced. As the number of RRUs decreases, the number of corresponding BBUs and HUBs decreases accordingly. The cost of materials has dropped, while the labor costs have also dropped significantly.
- the BBU when the BBU performs the resource configuration on the UE, the BBU can perform resource configuration on the channel corresponding to the port 0 and the port 1 , and the dual stream can be supported in the prior art. Only one port can only support single stream, and the single-user space-division multiplexing gain can be obtained under one-to-two network architecture. Through simulation evaluation, 30%-60% capacity gain can be obtained compared with the prior art.
- the BBU can also perform resource configuration through the corresponding channel of the RF.
- an embodiment of the network coverage of the three RRUs includes one RF and one RF.
- One channel, three RRUs can support six channels. Therefore, the spatial freedom of the antenna is 6, and a multi-user spatial multiplexing algorithm can be performed. Through simulation evaluation, more than 300% can be obtained compared with the prior art. Capacity gain.
- FIG. 11a-11b are respectively a structural diagram of a pull-four network architecture and a schematic diagram of an embodiment of a corresponding network coverage.
- the RF channel RF in the RRU is externally connected to the antenna through the feeder, and there are two RFs, and the RRU has 2, one HUB, one HUB can correspond to at least one RRU, wherein Figure 11-a is a RRU corresponding one-four network architecture diagram, and the antennas in the antenna remote unit are distributed and deployed, and there are four antennas. They are Ant0, Ant1, Ant2, Ant3, and the splitter divides the antenna into two paths. The antennas are divided into two channels to configure different port ports.
- the two ports are interleaved to configure the first port port0 and
- the second port port1 has a cat5e connected between the RRU and the HUB, and a fiber fiber is connected between the BBU and the HUB.
- the power splitter allows the two antennas to share a power
- the power of each antenna is halved.
- the power of each antenna is reduced from 19 dBm to 15 dBm.
- the antenna spacing is evaluated by simulation.
- the distance between the two RRUs is 40 m. Therefore, compared with the prior art, the number of RRUs can be effectively reduced. As the number of RRUs decreases, the number of corresponding BBUs and HUBs decreases correspondingly, material costs decrease, and labor costs decrease. Dropped significantly.
- the BBU when the BBU configures the resources of the UE, the BBU can configure the resources of the ports corresponding to the port 0 and the port 1 to support the dual stream.
- the BBU In the prior art, only one port can only support the resources.
- Single-stream, one-to-two network architecture can obtain single-user space-division multiplexing gain. Through simulation evaluation, 30%-60% capacity gain can be obtained compared with the prior art.
- the BBU can also perform resource configuration through the corresponding channel of the RF.
- a schematic diagram of an embodiment of network coverage corresponding to two RRUs includes one RF and one RF.
- One channel, two RRUs can support four channels. Therefore, the spatial freedom of the antenna is 4, and a multi-user spatial multiplexing algorithm can be performed at this time. Get more than 200% capacity gain.
- the disclosed system, apparatus, and method may be implemented in other manners.
- the device embodiments described above are merely illustrative.
- the division of the unit is only a logical function division.
- there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
- the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
- each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
- the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
- the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
- the technical solution of the present invention which is essential or contributes to the prior art, or all or part of the technical solution, may be embodied in the form of a software product stored in a storage medium.
- a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
- the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明实施例公开了一种网络架构,用于支持MIMO技术,提升数据业务容量。所述网络架构包括:天线拉远单元、射频拉远单元RRU;所述天线拉远单元配置有N个端口,所述RRU包括M个射频通道,N为大于1且小于等于M的正整数,所述N个端口中的至少两个端口为不同类型的端口;所述天线拉远单元通过所述N个端口与所述RRU中的M个射频通道连接,任意一个端口对应至少一个射频通道。
Description
本申请要求于2015年07月01日提交中国专利局、申请号为201510379860.5、发明名称为“一种网络架构及资源配置方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本发明涉及通信技术领域,具体涉及一种网络架构及资源配置方法。
当前80%的数据业务发生在室内,在室内部署网络架构为室内用户提供服务,提升网络性能,提高用户体验。
目前,一种室内网络架构如图1所示,包括基带处理单元(BBU,Building Base band Unit),射频拉远单元(RRU,Radio Remote Unit),功分器和天线拉远单元,其中,BBU通过光纤(英文:Fiber)连接RRU,RRU通过射频馈线外接功分器,功分器将功率均分,并通过射频馈线连接天线拉远单元单元Ant0~AntN,N为正整数。如图2为图1对应的室内网络覆盖示意图,所有的天线拉远单元只配成一个端口,只能发送相同的信号,无法支持多输入多输出(MIMO,Multiple-Input Multiple-Out-put)技术,导致数据业务容量受限。
发明内容
本发明实施例提供了一种网络架构及资源配置方法,用于支持MIMO技术,提升数据业务容量。
本发明第一方面提供一种网络架构,包括:天线拉远单元、射频拉远单元RRU;
所述天线拉远单元配置有N个端口,所述RRU包括M个射频通道,N为大于1且小于等于M的正整数,所述N个端口中的至少两个端口为不同类型的端口;
所述天线拉远单元通过所述N个端口与所述RRU中的M个射频通道连接,任意一个端口对应至少一个射频通道。
结合第一方面,在第一种可能的实现方式中,
所述N个端口中包含两种不同类型的端口,所述两种不同类型的端口交错配置。
结合第一方面或者第一方面的第一种可能的实现方式,在第二种可能的实现方式中,
所述天线拉远单元包括N条天线,所述N条天线中的每条天线对应一个所述端口;
或者,所述天线拉远单元包括N个天线组,所述N个天线组中的每个天线组对应一个所述端口,所述每个天线组包括至少两条天线,所述至少两条天线为相邻或者交错配置的天线。
结合第一方面的第二种可能的实现方式,在第三种可能的实现方式中,当所述天线拉远单元包括N个天线组时,所述网络架构还包括N个功分器;
所述N个功分器中的每个功分器,通过馈线与所述N个天线组中的一个天线组连接,通过所述一个天线组对应的端口与所述RRU中的M个射频通道连接。
结合第一方面,在第四种可能的实现方式中,所述网络架构还包括:
基带处理单元BBU和集线器HUB;
所述HUB分别与所述BBU和所述RRU连接;
其中,所述HUB与所述BBU之间通过光纤连接,所述HUB与所述RRU之间通过网线连接。
结合第一方面,在第五种可能的实现方式中,
所述天线拉远单元与所述RRU之间通过馈线连接。
本发明第二方面提供一种应用网络架构实现资源配置的方法,所述网络架构如第一方面所述的网络架构,其特征在于,所述方法包括:
确定对用户设备UE进行资源配置的通道组,所述通道组包括根据天线拉远单元中的N个端口所确定的第一通道组或者根据所述射频拉远单元中的M个射频通道所确定的第二通道组,所述第一通道组中包含N个第一通道,所述第二通道组中包含M个第二通道,N为大于1且小于等于M的正整数;
根据确定的所述通道组对所述UE进行资源配置。
结合第二方面,在第一种可能的实现方式中,所述根据确定的所述通道组对所述UE进行资源配置包括:
当根据所述第一通道组对所述UE进行资源配置时,获取所述UE在所述
第一通道组中的N个第一通道上对应的参考信号SRS的信号功率;
根据所述SRS的信号功率确定满足预设要求的第一通道;
在所述满足预设要求的第一通道上向所述UE配置资源。
结合第二方面,在第二种可能的实现方式中,所述根据确定的所述通道组对所述UE进行资源配置包括:
当根据所述第二通道组对所述UE进行资源配置时,获取所述UE在所述第二通道组中的M个第二通道上对应的SRS的信道信息;
根据所述SRS的信道信息确定满足预设要求的第二通道;
在所述满足预设要求的第二通道上向所述UE配置资源。
结合第二方面的第二种可能的实现方式,在第三种可能的实现方式中,所述在所述满足预设要求的第二通道上向所述UE配置资源之前,还包括:
根据所述SRS的信道信息计算所述UE的特征向量。
结合第二方面的第三种可能的实现方式,在第四种可能的实现方式中,所述根据所述SRS的信号信息计算所述UE的特征向量包括:
所述BBU通过奇异值分解算法SVD分解所述SRS的信号信息,计算出所述UE的特征向量。
结合第二方面或者第二方面的第一种至第四种任意一种可能的实现方式,在第五种可能的实现方式中,所述在所述满足预设要求的第二通道上向所述UE配置资源包括:
根据用户优先级原则从所述UE中选取第一UE,所述第一UE为优先级第一高的UE;
在所述满足预设要求的第二通道上向所述第一UE配置资源。
结合第二方面或者第二方面的第一种至第四种任意一种可能的实现方式,在第六种可能的实现方式中,所述在所述满足预设要求的第二通道上向所述UE配置资源包括:
根据用户优先级原则从所述UE中选取第二UE和第三UE,所述第二UE为优先级第一高的UE,所述第三UE为优先级第二高的UE;
计算所述第二UE和所述第三UE的特征向量的内积;
当所述第二UE和所述第三UE的特征向量的内积小于预设门限值时,在所述满足预设要求的第二通道上向所述第二UE和所述第三UE配置资源。
结合第二方面的第六种可能的实现方式,在第七种可能的实现方式中,所述在所述满足预设要求的第二通道上向所述第二UE和所述第三UE配置资源之后,还包括:
根据增强迫零EZF算法对所述第二UE和第三UE的特征向量进行迫零,并将迫零后的所述第二UE和第三UE的特征向量映射到所述满足预设要求的第二通道上。
本发明第三方面提供一种资源配置的装置,包括:处理模块;
所述处理模块,用于确定对用户设备UE进行资源配置的通道组,所述通道组包括根据天线拉远单元中的N个端口所确定的第一通道组或者根据所述射频拉远单元中的M个射频通道所确定的第二通道组,所述第一通道组中包含N个第一通道,所述第二通道组中包含M个第二通道,N为大于1且小于等于M的正整数;
所述处理模块,还用于根据确定的所述通道组对所述UE进行资源配置。
结合第三方面,在第一种可能的实现方式中,
所述处理模块,具体用于当根据所述第一通道组对所述UE进行资源配置时,获取所述UE在所述第一通道组中的N个第一通道上对应的参考信号SRS的信号功率,并根据所述SRS的信号功率确定满足预设要求的第一通道,并在所述满足预设要求的第一通道上向所述UE配置资源。
结合第三方面,在第二种可能的实现方式中,
所述处理模块,具体用于当根据所述第二通道组对所述UE进行资源配置时,获取所述UE在所述第二通道组中的M个第二通道上对应的SRS的信道信息,并根据所述SRS的信道信息确定满足预设要求的第二通道,并在所述满足预设要求的第二通道上向所述UE配置资源。
结合第三方面的第二种可能的实现方式,在第三种可能的实现方式中,
所述处理模块,还用于在所述满足预设要求的第二通道上向所述UE配置资源之前,根据所述SRS的信道信息计算所述UE的特征向量。
结合第三方面的第三种可能的实现方式,在第四种可能的实现方式中,
所述处理模块,具体用于通过奇异值分解算法SVD分解所述SRS的信号信息,计算出所述UE的特征向量。
结合第三方面或者第三方面的第一种至第四种任意一种可能的实现方式,在第五种可能的实现方式中,
所述处理模块,具体用于根据用户优先级原则从所述UE中选取第一UE,所述第一UE为优先级第一高的UE,并在所述满足预设要求的第二通道上向所述第一UE配置资源。
结合第三方面或者第三方面的第一种至第四种任意一种可能的实现方式,在第六种可能的实现方式中,
所述处理模块,具体用于根据用户优先级原则从所述UE中选取第二UE和第三UE,所述第二UE为优先级第一高的UE,所述第三UE为优先级第二高的UE,计算所述第二UE和所述第三UE的特征向量的内积,当所述第二UE和所述第三UE的特征向量的内积小于预设门限值时,在所述满足预设要求的第二通道上向所述第二UE和所述第三UE配置资源。
结合第三方面的第六种可能的实现方式,在第七种可能的实现方式中,
所述处理模块,还用于在所述满足预设要求的第二通道上向所述第二UE和所述第三UE配置资源之后,根据增强迫零EZF算法对所述第二UE和第三UE的特征向量进行迫零,并将迫零后的所述第二UE和第三UE的特征向量映射到所述满足预设要求的第二通道上。
应用以上技术方案,网络架构包括天线拉远单元、射频拉远单元RRU;天线拉远单元配置有N个端口,所述RRU包括M个射频通道,N为大于1且小于等于M的正整数,所述N个端口中的至少两个端口为不同类型的端口所述天线拉远单元通过所述N个端口与所述RRU中的M个射频通道连接,任意一个端口对应至少一个射频通道。通过任意一种类型的端口可对应发送一种信号,利用天线拉远单元配置的N个端口发送多种不同的信号,从而支持MIMO技术,有效提升数据业务容量。
图1为现有技术中网络架构的一个结构示意图;
图2为现有技术中网络覆盖的一个示意图;
图3为本发明实施例中网络架构的一个实施例示意图;
图4为本发明实施例中网络架构的另一个实施例示意图;
图5为本发明实施例中资源配置的方法的一个实施例示意图;
图6为本发明实施例中资源配置的方法的另一个实施例示意图;
图7为本发明实施例中资源配置的方法的另一个实施例示意图;
图8为本发明实施例中资源配置的装置的一个实施例示意图;
图9为本发明实施例中资源配置的装置的另一个实施例示意图;
图10a‐10b为本发明实施例中应用场景下的网络架构的一个结构示意图和对应的网络覆盖示意图;
图11a‐11b为本发明实施例中应用场景下的网络架构的另一个结构示意图和对应的网络覆盖示意图。
本发明实施例提供了一种网络架构及资源配置方法,用于支持MIMO技术,提升数据业务容量。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的信号在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
需要说明的是,在本发明实施例中使用的术语是仅仅出于描述特定实施例
的目的,而非旨在限制本发明。在本发明实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
本文中描述的各种技术可用于各种通信系统,包括2G、3G通信系统和下一代通信系统,例如全球移动通信(GSM,global system for mobile commu nication)等2G通信系统,宽带码分多址(WCDMA,wideband code division multiple access),时分同步码分多址(TD-SCDMA,time division-synchroniza tion code division multiple access)等3G通信系统,长期演进(LTE,long-ter m evolution)通信系统及其后续演进系统等下一代通信系统。
用户设备(UE,User Equipment),也可称之为移动终端(Mobile Terminal)、移动用户设备等,可以经无线接入网(例如,RAN,Radio Access Network)与一个或多个核心网进行通信,用户设备可以是移动终端,如移动电话(或称为“蜂窝”电话)和具有移动终端的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或信号。
本发明实施例提供的技术方案,可以用于各类室内环境,如机场大厅、展厅、超市、图书馆、地下停车场、矿井,办公楼等场所。
请参阅图3,本发明实施例中网络架构的一个实施例包括:天线拉远单元301,射频拉远单元RRU302;
所述天线拉远单元301配置有N个端口3011,所述RRU302包括M个射频通道3021,N为大于1且小于等于M的正整数,所述N个端口中的至少两个端口为不同类型的端口;
本发明实施例中,不同类型的端口对应发送不同的信号,其中,不同类型的端口具体为型号不同的端口,型号不同的端口可以支持不同频率的信号。另外,在一些可选的实施例中,不同类型的端口也可以是配置不同的端口,此处不做具体限定。
天线拉远单元是用来发射或接收电磁波的部件。无线电通信、广播、电视、
雷达、导航、电子对抗、遥感、射电天文等工程系统,凡是利用电磁波来传递信息的,都依靠天线拉远单元来进行工作。此外,在用电磁波传送能量方面,非信号的能量辐射也需要天线拉远单元。
所述天线拉远单元通过所述N个端口与所述RRU中的M个射频通道连接,任意一个端口对应至少一个射频通道。
例如:天线拉远单元通过一个端口与一个射频通道连接,或者天线拉远单元通过一个端口与多个射频通道连接,具体连接方式根据实际应用而定,此处不做具体限定。
需要说明的是,本发明实施例中,RRU有至少一个,此处不做具体限定。
本发明实施例中,N个端口中的至少两个端口为不同类型的端口,通过每个不同类型的端口可对应发送一种信号,或者几个相同类型的端口对应发送一种信号,利用该N个端口发送多种不同的信号,从而支持MIMO技术,有效提升数据业务容量。
在图3所示实施例的基础上,请参阅图4,本发明实施例中网络架构的另一个实施例包括:
天线拉远单元401、RRU402、集线器HUB403和基带处理单元BBU404。
所述天线拉远单元401配置有N个端口4011,所述RRU402包括M个射频通道4021,N为大于1且小于等于M的正整数,所述N个端口中的至少两个端口为不同类型的端口;
即:所述天线拉远单元通过所述N个端口与所述RRU中的M个射频通道连接,任意一个端口对应至少一个射频通道。
其中,所述天线拉远单元与所述RRU之间通过馈线连接。馈线能有效地传送天线拉远单元与RRU之间的信号,畸变小、损耗小、抗干扰能力强,常用的馈线为特性阻抗是50欧姆的同轴馈线,同轴馈线有金属屏蔽层,抗干扰能力强,传输损耗小。
与现有技术不同的是,本发明实施例中的天线拉远单元配置有N个端口,如此,通过馈线进行天线拉远单元与RRU之间的连接,连接所需的馈线距离比现有技术中所需的要短,一般小于10米,由于馈线布线成本高,并且馈线布线的距离超过10米会造成功耗损失,在本发明实施例中的网络架构不仅节
约馈线的布线成本,而且减少馈线功耗的损失。
可选的,所述N个端口4011中包含两种不同类型的端口,所述两种不同类型的端口交错配置,对应的每种类型的端口发送一种信号,例如:所述N个端口中包含两种不同类型的端口port0和port1,port0和port1交错配置,比如,依次为port0,port1,port0,port1….,通过交错配置端口,可以更大限度地增加UE的数据量。通过port0和port1交错配置后,分别发送两种不同的信号,从而支持支持MIMO技术,也降低了成本。
可选的,所述天线拉远单元401包括N条天线,所述N条天线中的每条天线对应一个所述端口;
例如:N条天线分别对应一个端口,假设每个端口的类型各不相同,那么N条天线对应的N个端口最多可以发送N种不同的信号。
或者,所述天线拉远单元401包括N个天线组,所述N个天线组中的每个天线组对应一个所述端口,所述每个天线组包括至少两条天线,所述至少两条天线为相邻或者交错配置的天线,比如,Ant0至Ant6依次排列,选择Ant0,Ant1,Ant2,Ant3为一个天线组,或者Ant0,Ant2,Ant4,Ant6为一个天线组。
例如:将所有的天线分组,每个天线组中包含至少两条天线,每个天线组对应一个端口,其中,每个天线组中的天线是相邻的或者交错的天线,假设每个天线组有2条天线,比如:相邻的天线Ant0,Ant1为一个天线组,Ant 2和Ant 3为一个天线组,或者对应地,交错的天线Ant0,Ant2为一个天线组,Ant1和Ant 3为一个天线组。
需要说明的是,每个天线组对应的端口的类型可相同,也可以不同,另外,在一些可选的实施例中,也可以是多个天线组对应一个端口,此处不做具体限定。
可选的,当所述天线拉远单元401包括N个天线组时,所述网络架构还包括N个功分器;
所述N个功分器中的每个功分器,通过馈线与所述N个天线组中的一个天线组连接,通过所述一个天线组对应的端口与所述RRU中的M个射频通道连接。
所述HUB403分别与所述BBU404和所述RRU402连接;
其中,所述HUB与所述BBU之间通过光纤连接,通过光纤传输可以大大降低不同通道上UE之间的干扰。
所述HUB与所述RRU之间通过网线连接,网线间的绝缘距离小,占地空间小,地下敷设而不占地面以上空间,不受周围环境污染影响,传输速度高。本发明实施例中的网线可以为超5类线cat5e或者6类双绞线cat6等,此处不做具体限定,其中,cat5e的传输速度可高达1000Mbps。
需要说明的是,本发明实施例中,RRU有至少一个,一个RRU对应有一个HUB。
下面进一步介绍根据该网络架构实现信号流从BBU到天线拉远单元的工作链路:
所述M个射频通道4021用于通过所述N个端口4011向所述天线拉远单元401发送第一信号;其中,通过一个端口可对应发送一种信号,或者几个相同类型的端口对应发送一种信号,由于所述N个端口中的至少两个端口为不同类型的端口,因此,通过所述N个端口可支持包含至少两种不同频率的第一信号。
所述天线拉远单元401,用于通过所述N个端口4011从所述RRU402中的所述M个射频通道4021接收所述第一信号。
本发明实施例中,天线拉远单元通过N个端口从所述RRU中可以接收相同的信号,也可以接收不同的信号,此处不做具体限定。
所述HUB403,用于从所述BBU404接收第二信号,并将所述第二信号发送给所述RRU402中的所述M个射频通道4021,所述M个射频通道4021将所述第二信号处理形成所述第一信号;
本发明实施例中,HUB具有信号的转发功能,从所述BBU接收第二信号,并将所述第二信号发送给所述RRU中的所述M个射频通道,M个射频通道将所述第二信号进行放大处理后形成第一信号。
所述BBU404用于向所述HUB403发送所述第二信号。
另外,当所述天线拉远单元401包括N个天线组时,所述功分器,用于通过所述一个天线组对应的所述端口从所述射频通道4021接收的功率均分后
分别发送给所述一个天线组中的所述至少两条天线。
前面介绍了信号流从BBU到天线拉远单元的工作链路,下面进一步说明信号流从天线拉远单元到BBU的工作链路:
所述天线拉远单元401,还用于通过所述N个端口4011向所述RRU402中的所述M个射频通道4021发送第三信号,所述第三信号为所述天线拉远单元401从所述UE获取的信号;
所述M个射频通道4021,还用于通过所述N个端口4011从所述天线拉远单元401接收所述第三信号,并将所述第三信号处理后形成的第四信号发送给所述HUB403;
所述HUB403,还用于从所述射频通道4021接收所述第四信号,并将所述第四信号发送给所述BBU404;
所述BBU404,还用于从所述HUB403接收所述第四信号,并对所述第四信号进行解调等处理。
另外,当所述天线拉远单元401包括N个天线组时,所述功分器,用于将所述一个天线组中的所述至少两条天线的功率集合,并通过所述一个天线组对应的所述端口将集合后的功率发送给所述射频通道4021。
本发明实施例中,N个端口中的至少两个端口为不同类型的端口,通过每个不同类型的端口可对应发送一种信号,或者几个相同类型的端口对应发送一种信号,N个端口中的任意两个相邻端口为不同类型的端口,任意不同类型的端口交错配置,从而增加UE的数据量,利用该N个端口发送多种不同的信号,或者接收多种不同或者相同的信号,从而支持MIMO技术,有效提升数据业务容量。
在图3和图4所示实施例的基础上,请参阅图5,本发明实施例中资源配置的方法的一个实施例,该资源配置的方法是应用图3或者图4所示实施例的网络架构实现的。所述实施例包括:
501、确定对用户设备UE进行资源配置的通道组;
所述通道组包括根据天线拉远单元中的N个端口所确定的第一通道组或者根据所述射频拉远单元中的M个射频通道所确定的第二通道组,所述第一通道组中包含N个第一通道,所述第二通道组中包含M个第二通道,N为大
于1且小于等于M的正整数;
在实际应用中,具体根据何种通道组对UE进行资源配置,可参考BBU的处理能力、当前网络的数据量或者当前UE的数据量等,比如,当前网络的数据量较大时根据第二通道对UE进行资源配置,当前网络的数据量较小时,根据第一通道对UE进行资源配置。
502、根据确定的通道组对UE进行资源配置。
BBU按照UE的优先级顺序依次对UE进行资源配置。
本发明实施例中,BBU首先确定对UE进行资源配置的通道组,所述BBU根据确定的所述通道组对所述UE进行资源配置,所述通道组包括根据天线拉远单元中的N个端口所确定的第一通道组或者根据所述射频拉远单元中的M个射频通道所确定的第二通道组,所述第一通道组中包含N个第一通道,所述第二通道组中包含M个第二通道,N为大于1的正整数且小于等于M的正整数,通过第一通道组或者第二通道组都可发送多种不同的信号,从而支持MIMO技术,有效提升数据业务容量。
在图5所示实施例的基础上,进一步请参阅图6,本发明实施例中资源配置的方法的另一个实施例包括:
601、当根据第一通道组对UE进行资源配置时,获取UE在第一通道组中的N个第一通道上对应的参考信号SRS的信号功率;
由于第一通道组是根据天线拉远单元中的N个端口所确定的,即获取UE在每个端口上有对应的SRS的信号功率。
602、根据SRS的信号功率确定满足预设要求的第一通道;
当BBU判断SRS的信号功率满足预设要求时,则满足预设要求的SRS的信号功率所对应的第一通道为满足预设要求的第一通道。
例如:当BBU判断UE在任意一个第一通道上对应的SRS的信号功率满足预设要求时,则在对应的第一通道对UE进行资源配置。
或者,当BBU判断任意两个第一通道上对应的SRS的信号功率差满足预设要求,则在对应的两个第一通道上对UE进行资源配置。
603、在满足预设要求的第一通道上向所述UE配置资源。
BBU确定满足预设要求的第一通道后,根据用户优先级原则选取UE,比
如,一般语音通话的用户优先级高于网页浏览的用户优先级,选取UE后,则在满足预设要求的第一通道上向所述UE配置资源。
本发明实施例中,当根据第一通道组对UE进行资源配置时,BBU获取UE在第一通道组中的N个第一通道上对应的参考信号SRS的信号功率,BBU根据SRS的信号功率确定满足预设要求的第一通道,BBU在满足预设要求的第一通道上向所述UE配置资源。由于第一通道组中包含N个第一通道,通过N个第一通道可收发不同的信号,从而支持MIMO技术,有效提升数据业务容量。
在图6所示实施例的基础上,进一步请参阅图7,本发明实施例中资源配置的方法的另一个实施例包括:
701、当根据第二通道组对UE进行资源配置时,获取UE在第二通道组中的M个第二通道上对应的SRS的信道信息;
在本发明实施例中,利用SRS的信道信息计算UE的特征向量以及确定满足预设要求的第二通道。
702、根据SRS的信道信息计算UE的特征向量;
可选的,BBU通过奇异值分解算法SVD分解所述SRS的信号信息,计算出所述UE的特征向量,该特征向量可作为按照优先级顺序对UE进行资源配置的一个参考特征,比如:UE1和UE2的特征向量的内积小于预设门限值时,则BBU优先向UE1和UE2进行资源配置。
703、根据SRS的信道信息确定满足预设要求的第二通道;
其中,该SRS的信号信息包含信道质量指示信息和信道轶值,比如:当信道质量指示信息大于预设门限值,且信道轶值为N时,则确定该SRS的信号信息对应的第二通道为满足预设要求的第二通道。
本发明实施例中,步骤702与步骤703的先后顺序不做限定。
704、在满足预设要求的第二通道上向UE配置资源。
在一些可选的实施例中,在满足预设要求的第二通道上向UE配置资源包括:
BBU根据用户优先级原则从所述UE中选取第一UE,所述第一UE为优先级第一高的UE;
所述BBU在满足预设要求的第二通道上向所述第一UE配置资源。
在一些可选的实施例中,在满足预设要求的第二通道上向UE配置资源包括:
所述BBU根据用户优先级原则从所述UE中选取所述第二UE和第三UE,所述第二UE为优先级第一高的UE,所述第三UE为优先级第二高的UE;
所述BBU计算所述第二UE和所述第三UE的特征向量的内积;
当所述第二UE和所述第三UE的特征向量的内积小于预设门限值时,所述BBU在所述满足预设要求的第二通道上向所述第二UE和所述第三UE配置资源。
在一些可选的实施例中,在所述满足预设要求的第二通道上向所述第二UE和所述第三UE配置资源之后,所述BBU根据EZF算法对所述第二UE和第三UE的特征向量进行迫零,并将迫零后的所述第二UE和第三UE的特征向量映射到所述满足预设要求的第二通道上。
本发明实施例中,当根据第二通道组对UE进行资源配置时,BBU获取UE在第二通道组中的M个第二通道上对应的SRS的信道信息,BBU根据SRS的信道信息计算UE的特征向量,BBU根据SRS的信号信息确定满足预设要求的第二通道,BBU在满足预设要求的第二通道上向UE配置资源,由于第二通道组中包含M个第二通道,通过M个第二通道可收发不同的信号,从而支持MIMO技术,有效提升数据业务容量。
为便于更好的实施本发明实施例的上述相关方法,下面还提供用于配合上述方法的相关装置。
请参阅图8,本发明实施例中资源配置的装置800的一个实施例包括:处理模块801;
所述处理模块801,用于确定对用户设备UE进行资源配置的通道组,所述通道组包括根据天线拉远单元中的N个端口所确定的第一通道组或者根据所述射频拉远单元中的M个射频通道所确定的第二通道组,所述第一通道组中包含N个第一通道,所述第二通道组中包含M个第二通道,N为大于1且小于等于M的正整数;
所述处理模块801,还用于根据确定的所述通道组对所述UE进行资源配置。
可选的,所述处理模块801,具体用于当根据所述第一通道组对所述UE进行资源配置时,获取所述UE在所述第一通道组中的N个第一通道上对应的参考信号SRS的信号功率,并根据所述SRS的信号功率确定满足预设要求的第一通道,并在所述满足预设要求的第一通道上向所述UE配置资源。
可选的,所述处理模块801,具体用于当根据所述第二通道组对所述UE进行资源配置时,获取所述UE在所述第二通道组中的M个第二通道上对应的SRS的信道信息,并根据所述SRS的信道信息确定满足预设要求的第二通道,并在所述满足预设要求的第二通道上向所述UE配置资源。
可选的,所述处理模块801,还用于在所述满足预设要求的第二通道上向所述UE配置资源之前,根据所述SRS的信道信息计算所述UE的特征向量。
可选的,所述处理模块801,具体用于通过奇异值分解算法SVD分解所述SRS的信号信息,计算出所述UE的特征向量。
可选的,所述处理模块801,具体用于根据用户优先级原则从所述UE中选取第一UE,所述第一UE为优先级第一高的UE,并在所述满足预设要求的第二通道上向所述第一UE配置资源。
可选的,所述处理模块801,具体用于根据用户优先级原则从所述UE中选取第二UE和第三UE,所述第二UE为优先级第一高的UE,所述第三UE为优先级第二高的UE,计算所述第二UE和所述第三UE的特征向量的内积,当所述第二UE和所述第三UE的特征向量的内积小于预设门限值时,在所述满足预设要求的第二通道上向所述第二UE和所述第三UE配置资源。
可选的,所述处理模块801,还用于在所述满足预设要求的第二通道上向所述第二UE和所述第三UE配置资源之后,根据增强迫零EZF算法对所述第二UE和第三UE的特征向量进行迫零,并将迫零后的所述第二UE和第三UE的特征向量映射到所述满足预设要求的第二通道上。
图8所示的实施例从功能模块的角度对资源配置的装置的具体结构进行了说明,以下结合图9的实施例从硬件角度对资源配置的装置的具体结构进行说明:
请参阅图9,图9为本发明实施例提供的资源配置的装置900的一个结构示意图,包括收发器901、存储器902、处理器903以及总线904,所述收发器901、存储器902以及处理器903与所述总线904连接,其中:
所述收发器901用于接收或发送数据;
所述存储器902用于存储程序,所述处理器903用于调用所述程序执行以下操作:
确定对用户设备UE进行资源配置的通道组,所述通道组包括根据天线拉远单元中的N个端口所确定的第一通道组或者根据所述射频拉远单元中的M个射频通道所确定的第二通道组,所述第一通道组中包含N个第一通道,所述第二通道组中包含M个第二通道,N为大于1且小于等于M的正整数;
根据确定的所述通道组对所述UE进行资源配置。
所述处理器903还用于执行以下操作:
当根据所述第一通道组对所述UE进行资源配置时,获取所述UE在所述第一通道组中的N个第一通道上对应的参考信号SRS的信号功率,并根据所述SRS的信号功率确定满足预设要求的第一通道,并在所述满足预设要求的第一通道上向所述UE配置资源。
所述处理器903还用于执行以下操作:
当根据所述第二通道组对所述UE进行资源配置时,获取所述UE在所述第二通道组中的M个第二通道上对应的SRS的信道信息,并根据所述SRS的信道信息确定满足预设要求的第二通道,并在所述满足预设要求的第二通道上向所述UE配置资源。
所述处理器903还用于执行以下操作:
在所述满足预设要求的第二通道上向所述UE配置资源之前,根据所述SRS的信道信息计算所述UE的特征向量。
所述处理器903还用于执行以下操作:
通过奇异值分解算法SVD分解所述SRS的信号信息,计算出所述UE的特征向量。
可选的,根据用户优先级原则从所述UE中选取第一UE,所述第一UE为优先级第一高的UE,并在所述满足预设要求的第二通道上向所述第一UE配置
资源。
可选的,根据用户优先级原则从所述UE中选取第二UE和第三UE,所述第二UE为优先级第一高的UE,所述第三UE为优先级第二高的UE,计算所述第二UE和所述第三UE的特征向量的内积,当所述第二UE和所述第三UE的特征向量的内积小于预设门限值时,在所述满足预设要求的第二通道上向所述第二UE和所述第三UE配置资源。
可选的,在所述满足预设要求的第二通道上向所述第二UE和所述第三UE配置资源之后,根据增强迫零EZF算法对所述第二UE和第三UE的特征向量进行迫零,并将迫零后的所述第二UE和第三UE的特征向量映射到所述满足预设要求的第二通道上。
在以上实施例的基础上,请参阅图10a‐10b和图11a‐11b,本发明实施例中网络架构的应用场景的实施例包括:
请参阅图10a‐10b,分别为一拉二网络架构的一个结构示意图和对应的网络覆盖的一个实施例示意图,其中,RRU中的射频通道RF通过馈线外接天线拉远单元,RF有2个,RRU有3个,HUB有一个,一个HUB可对应至少一个RRU,其中,图10‐a为一个RRU对应的一拉二网络架构图,且天线拉远单元中的天线分布式部署,天线有2条,分别为Ant0和Ant1,相邻的天线配置不同的端口port,为了保证当前UE的接入,相邻天线交错配置第一端口port0和第二端口port1,RRU与HUB之间连接有cat5e,BBU与HUB之间连接有光纤fiber。
当保证室内覆盖的参考信号接收功率为-105dBm以上时,根据仿真评估,现有技术中的网络架构下要求天线间距10m,本发明实施例中的一拉二网络架构下,天线发射功率为19dBm,和现有技术的网络覆盖相当时,天线间距15m,RRU间距为30m,因此,相对于现有技术,可有效减少RRU的数量,由于RRU数量减小,对应的BBU和HUB的数量相应下降,物料成本下降,同时人工成本也大幅度下降。
本发明实施例中的一拉二网络架构下,BBU对UE进行资源配置时可以以port0和port1对应的通道进行资源配置,此时可以支持双流,而现有技术中
只有一个端口,只能支持单流,一拉二网络架构下可获得单用户的空分复用增益,通过仿真评估,相比现有技术可获得30%~60%的容量增益。
一拉二网络架构下,BBU还可以通过RF对应的通道进行资源配置,如图10‐b所示,3个RRU对应的网络覆盖的一个实施例示意图,一个RRU包含2个RF,一个RF对应一个通道,3个RRU可支持6个通道,因此,获得天线的空间自由度为6,此时可进行多用户的空间复用算法,通过仿真评估,相比现有技术可获得300%以上的容量增益。
请参阅图11a-11b,分别为一拉四网络架构的一个结构示意图和对应的网络覆盖的一个实施例示意图,RRU中的射频通道RF通过馈线外接天线拉远单元,RF有2个,RRU有2个,HUB有一个,一个HUB可对应至少一个RRU,其中,图11-a为一个RRU对应的一拉四网络架构图,且天线拉远单元中的天线分布式部署,天线有4条,分别为Ant0,Ant1,Ant2,Ant3,功分器将天线分成两路,分成两路的天线配置不同的端口port,为了保证当前UE的接入,分成两路的天线交错配置第一端口port0和第二端口port1,RRU与HUB之间连接有cat5e,BBU与HUB之间连接有光纤fiber。
由于功分器使得两根天线共享一份功率,每个天线的功率减半,考虑到线损,每个天线功率由19dBm降低为15dBm;为了保证和原来相同的覆盖,经仿真评估,天线间距为10m,此时两个RRU间距为40m,因此,相对于现有技术,可有效减少RRU的数量,由于RRU数量减小,对应的BBU和HUB的数量相应下降,物料成本下降,同时人工成本大幅度下降。
本发明实施例中的一拉四网络架构下,BBU对UE进行资源配置时可以以port0和port1对应的通道进行资源配置,此时可以支持双流,而现有技术中只有一个端口,只能支持单流,一拉二网络架构下可获得单用户的空分复用增益,通过仿真评估,相比现有技术可获得30%~60%的容量增益。
一拉四网络架构下,BBU还可以通过RF对应的通道进行资源配置,如图11-b所示,2个RRU对应的网络覆盖的一个实施例示意图,一个RRU包含2个RF,一个RF对应一个通道,2个RRU可支持4个通道,因此,获得天线的空间自由度为4,此时可进行多用户的空间复用算法,通过仿真评估,相比DAS可
获得200%以上的容量增益。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read‐Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽
管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
Claims (22)
- 一种网络架构,其特征在于,包括:天线拉远单元、射频拉远单元RRU;所述天线拉远单元配置有N个端口,所述RRU包括M个射频通道,所述N个端口包含至少两种不同类型的端口;所述天线拉远单元通过所述N个端口与所述RRU中的M个射频通道连接,所述N个端口中的任一个端口对应至少一个射频通道;其中,所述N和所述M为正整数,且满足N小于等于M。
- 根据权利要求1所述的网络架构,其特征在于,所述N个端口中包含两种不同类型的端口时,所述两种不同类型的端口交错配置。
- 根据权利要求1或2所述的网络架构,其特征在于,所述天线拉远单元包括N条天线,所述N条天线中的每条天线对应一个所述端口;或者,所述天线拉远单元包括N个天线组,所述N个天线组中的每个天线组对应一个所述端口,所述每个天线组包括至少两条天线,所述至少两条天线为相邻或者交错配置的天线。
- 根据权利要求3所述的网络架构,其特征在于,当所述天线拉远单元包括N个天线组时,所述网络架构还包括N个功分器;所述N个功分器中的每个功分器,通过馈线与所述N个天线组中的一个天线组连接,通过所述一个天线组对应的端口与所述RRU中的M个射频通道连接。
- 根据权利要求1所述的网络架构,其特征在于,所述网络架构还包括:基带处理单元BBU和集线器HUB;所述HUB分别与所述BBU和所述RRU连接;其中,所述HUB与所述BBU之间通过光纤连接,所述HUB与所述RRU之间通过网线连接。
- 根据权利要求1所述的网络架构,其特征在于,所述天线拉远单元与所述RRU之间通过馈线连接。
- 一种应用网络架构实现资源配置的方法,所述网络架构如权利要求1 至6任一项所述的网络架构,其特征在于,所述方法包括:确定对用户设备UE进行资源配置的通道组,所述通道组包括根据天线拉远单元中的N个端口所确定的第一通道组或者根据所述射频拉远单元中的M个射频通道所确定的第二通道组,所述第一通道组中包含N个第一通道,所述第二通道组中包含M个第二通道,N为大于1且小于等于M的正整数;根据确定的所述通道组对所述UE进行资源配置。
- 根据权利要求7所述的方法,其特征在于,所述根据确定的所述通道组对所述UE进行资源配置包括:当根据所述第一通道组对所述UE进行资源配置时,获取所述UE在所述第一通道组中的N个第一通道上对应的参考信号SRS的信号功率;根据所述SRS的信号功率确定满足预设要求的第一通道;在所述满足预设要求的第一通道上向所述UE配置资源。
- 根据权利要求7所述的方法,其特征在于,所述根据确定的所述通道组对所述UE进行资源配置包括:当根据所述第二通道组对所述UE进行资源配置时,获取所述UE在所述第二通道组中的M个第二通道上对应的SRS的信道信息;根据所述SRS的信道信息确定满足预设要求的第二通道;在所述满足预设要求的第二通道上向所述UE配置资源。
- 根据权利要求9所述的方法,其特征在于,所述在所述满足预设要求的第二通道上向所述UE配置资源之前,还包括:根据所述SRS的信道信息计算所述UE的特征向量。
- 根据权利要求10所述的方法,其特征在于,所述根据所述SRS的信号信息计算所述UE的特征向量包括:通过奇异值分解算法SVD分解所述SRS的信号信息,计算出所述UE的特征向量。
- 根据权利要求7至11任一项所述的方法,其特征在于,所述在所述满足预设要求的第二通道上向所述UE配置资源包括:根据用户优先级原则从所述UE中选取第一UE,所述第一UE为优先级第一高的UE;在所述满足预设要求的第二通道上向所述第一UE配置资源。
- 根据权利要求7至11任一项所述的方法,其特征在于,所述在所述满足预设要求的第二通道上向所述UE配置资源包括:根据用户优先级原则从所述UE中选取第二UE和第三UE,所述第二UE为优先级第一高的UE,所述第三UE为优先级第二高的UE;计算所述第二UE和所述第三UE的特征向量的内积;当所述第二UE和所述第三UE的特征向量的内积小于预设门限值时,在所述满足预设要求的第二通道上向所述第二UE和所述第三UE配置资源。
- 根据权利要求13所述的方法,其特征在于,所述在所述满足预设要求的第二通道上向所述第二UE和所述第三UE配置资源之后,还包括:根据增强迫零EZF算法对所述第二UE和第三UE的特征向量进行迫零,并将迫零后的所述第二UE和第三UE的特征向量映射到所述满足预设要求的第二通道上。
- 一种资源配置的装置,其特征在于,包括:处理模块;所述处理模块,用于确定对用户设备UE进行资源配置的通道组,所述通道组包括根据天线拉远单元中的N个端口所确定的第一通道组或者根据所述射频拉远单元中的M个射频通道所确定的第二通道组,所述第一通道组中包含N个第一通道,所述第二通道组中包含M个第二通道,N为大于1且小于等于M的正整数;所述处理模块,还用于根据确定的所述通道组对所述UE进行资源配置。
- 根据权利要求15所述的装置,其特征在于,所述处理模块,具体用于当根据所述第一通道组对所述UE进行资源配置时,获取所述UE在所述第一通道组中的N个第一通道上对应的参考信号SRS的信号功率,并根据所述SRS的信号功率确定满足预设要求的第一通道,并在所述满足预设要求的第一通道上向所述UE配置资源。
- 根据权利要求15所述的装置,其特征在于,所述处理模块,具体用于当根据所述第二通道组对所述UE进行资源配置时,获取所述UE在所述第二通道组中的M个第二通道上对应的SRS的信道信 息,并根据所述SRS的信道信息确定满足预设要求的第二通道,并在所述满足预设要求的第二通道上向所述UE配置资源。
- 根据权利要求17所述的装置,其特征在于,所述处理模块,还用于在所述满足预设要求的第二通道上向所述UE配置资源之前,根据所述SRS的信道信息计算所述UE的特征向量。
- 根据权利要求18所述的装置,其特征在于,所述处理模块,具体用于通过奇异值分解算法SVD分解所述SRS的信号信息,计算出所述UE的特征向量。
- 根据权利要求15至19任一项所述的装置,其特征在于,所述处理模块,具体用于根据用户优先级原则从所述UE中选取第一UE,所述第一UE为优先级第一高的UE,并在所述满足预设要求的第二通道上向所述第一UE配置资源。
- 根据权利要求15至19任一项所述的装置,其特征在于,所述处理模块,具体用于根据用户优先级原则从所述UE中选取第二UE和第三UE,所述第二UE为优先级第一高的UE,所述第三UE为优先级第二高的UE,计算所述第二UE和所述第三UE的特征向量的内积,当所述第二UE和所述第三UE的特征向量的内积小于预设门限值时,在所述满足预设要求的第二通道上向所述第二UE和所述第三UE配置资源。
- 根据权利要求21所述的装置,其特征在于,所述处理模块,还用于在所述满足预设要求的第二通道上向所述第二UE和所述第三UE配置资源之后,根据增强迫零EZF算法对所述第二UE和第三UE的特征向量进行迫零,并将迫零后的所述第二UE和第三UE的特征向量映射到所述满足预设要求的第二通道上。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510379860.5 | 2015-07-01 | ||
CN201510379860.5A CN106330279B (zh) | 2015-07-01 | 2015-07-01 | 一种应用网络架构实现资源配置方法及装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2017000717A1 true WO2017000717A1 (zh) | 2017-01-05 |
WO2017000717A9 WO2017000717A9 (zh) | 2017-03-23 |
Family
ID=57607828
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/083641 WO2017000717A1 (zh) | 2015-07-01 | 2016-05-27 | 一种网络架构及资源配置方法 |
Country Status (2)
Country | Link |
---|---|
CN (2) | CN111246492B (zh) |
WO (1) | WO2017000717A1 (zh) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109714083B (zh) * | 2017-10-26 | 2021-07-09 | 华为技术有限公司 | 一种信号传输方法及其相关设备 |
CN110461043B (zh) * | 2018-05-08 | 2020-12-04 | 大唐移动通信设备有限公司 | 一种通道选择方法、基带单元及基站 |
CN112714467B (zh) * | 2019-10-24 | 2023-03-24 | 上海华为技术有限公司 | 应用于分布式蜂窝系统的通信处理方法和通信装置 |
CN111934798B (zh) * | 2020-08-10 | 2022-07-01 | 河北电信设计咨询有限公司 | 以用户为中心的可动态分配通道的rru模块及其通道动态分配方法 |
CN112351437B (zh) * | 2020-09-30 | 2021-12-24 | 联想(北京)有限公司 | 一种前传网络的数据处理方法和装置 |
CN117676778A (zh) * | 2022-08-30 | 2024-03-08 | 华为技术有限公司 | 一种通信方法及装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201233948Y (zh) * | 2008-07-10 | 2009-05-06 | 中国移动通信集团公司 | 一种天线子系统、天线单元和射频拉远单元 |
CN101924593A (zh) * | 2010-07-28 | 2010-12-22 | 北京邮电大学 | 上/下行天线拉远装置、发射机、接收机和信道测量方法 |
US20120250740A1 (en) * | 2011-01-07 | 2012-10-04 | Integrated Device Technology, Inc. | Ofdm signal processing in a base transceiver system |
CN103338464A (zh) * | 2013-06-26 | 2013-10-02 | 华为技术有限公司 | 通信方法及设备 |
CN104219684A (zh) * | 2013-05-29 | 2014-12-17 | 中兴通讯股份有限公司 | 一种小区组网的方法及装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012026318A1 (ja) * | 2010-08-27 | 2012-03-01 | 株式会社日立製作所 | 分散アンテナシステム、および同システムにおける無線通信方法 |
US8462683B2 (en) * | 2011-01-12 | 2013-06-11 | Adc Telecommunications, Inc. | Distinct transport path for MIMO transmissions in distributed antenna systems |
KR101892688B1 (ko) * | 2011-11-07 | 2018-10-05 | 삼성전자 주식회사 | 다중 안테나를 위한 제어 채널 검색 방법 및 장치 |
CN103326761B (zh) * | 2012-03-19 | 2017-10-27 | 中兴通讯股份有限公司 | 信道状态信息处理方法及装置 |
CN102664669B (zh) * | 2012-04-26 | 2015-03-25 | 厦门大学 | 一种提高室内分布式多输入多输出系统信道容量的方法 |
CN104427601B (zh) * | 2013-08-29 | 2018-02-23 | 中国移动通信集团公司 | 一种调整双通道室分系统中的通道功率方法和装置 |
CN104079329B (zh) * | 2014-06-26 | 2017-08-25 | 华为技术有限公司 | 一种虚拟天线端口的映射方法和基站 |
-
2015
- 2015-07-01 CN CN202010044651.6A patent/CN111246492B/zh active Active
- 2015-07-01 CN CN201510379860.5A patent/CN106330279B/zh active Active
-
2016
- 2016-05-27 WO PCT/CN2016/083641 patent/WO2017000717A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201233948Y (zh) * | 2008-07-10 | 2009-05-06 | 中国移动通信集团公司 | 一种天线子系统、天线单元和射频拉远单元 |
CN101924593A (zh) * | 2010-07-28 | 2010-12-22 | 北京邮电大学 | 上/下行天线拉远装置、发射机、接收机和信道测量方法 |
US20120250740A1 (en) * | 2011-01-07 | 2012-10-04 | Integrated Device Technology, Inc. | Ofdm signal processing in a base transceiver system |
CN104219684A (zh) * | 2013-05-29 | 2014-12-17 | 中兴通讯股份有限公司 | 一种小区组网的方法及装置 |
CN103338464A (zh) * | 2013-06-26 | 2013-10-02 | 华为技术有限公司 | 通信方法及设备 |
Also Published As
Publication number | Publication date |
---|---|
CN111246492A (zh) | 2020-06-05 |
CN106330279A (zh) | 2017-01-11 |
WO2017000717A9 (zh) | 2017-03-23 |
CN111246492B (zh) | 2021-12-10 |
CN106330279B (zh) | 2020-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2017000717A1 (zh) | 一种网络架构及资源配置方法 | |
US11888665B2 (en) | Sounding reference signal (SRS) design for cellular time division duplex (TDD) mmWave systems | |
US10972158B2 (en) | Distributed FD-MIMO: cellular evolution for 5G and beyond | |
EP3593507B1 (en) | System and method for beam management in high frequency multi-carrier operations with spatial quasi co-locations | |
CN108631831B (zh) | 信息的传输方法和设备 | |
US10530548B2 (en) | Unifying message to support downlink beam management over multiple groups of beam paired links (MGBPL) | |
CN111200872A (zh) | 波束上报的方法和通信装置 | |
JP6665101B2 (ja) | デュアルストリームビームフォーミング方法及び装置 | |
CN109195148A (zh) | 用于资源分配和设备对设备发现跳的用户设备和方法 | |
CN105874849A (zh) | 一种信道测量方法、小区切换方法、相关装置及系统 | |
CN105453642A (zh) | 异构网络中的通信方法、宏基站、微基站和用户设备 | |
EP3641203A1 (en) | Beam management method, network device and terminal | |
US10178012B2 (en) | Systems and methods for a sounding frame in an IEEE 802.11ax compliant network | |
EP3515100B1 (en) | Communications method and device | |
CN111512571A (zh) | 用于mimo通信系统中的信号检测的方法和装置 | |
JP6509758B2 (ja) | 指向性切替アンテナを用いた無線基地局およびアンテナ指向性切替方法 | |
CN105634574A (zh) | 传输导频信号的方法、基站和用户设备 | |
CN117856839A (zh) | 数据发送的方法和装置 | |
CN104022986B (zh) | 一种降低多天线干扰的方法和装置 | |
CN106330282B (zh) | 一种信号处理方法及装置 | |
KR101616636B1 (ko) | 듀얼 모드 빔포밍 방법 및 장치 | |
CN107453855A (zh) | 一种控制信道发送方法及装置 | |
JP6692934B2 (ja) | 無線基地局および送受信電力制御方法 | |
KR20240151826A (ko) | 통신 방법 및 장치 | |
KR20220060986A (ko) | 통신 시스템에서 하향링크 스케쥴링과 협력 전송 방법 및 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16817081 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16817081 Country of ref document: EP Kind code of ref document: A1 |