WO2017000579A1 - 一种信号接收方法及装置、通信设备 - Google Patents

一种信号接收方法及装置、通信设备 Download PDF

Info

Publication number
WO2017000579A1
WO2017000579A1 PCT/CN2016/075485 CN2016075485W WO2017000579A1 WO 2017000579 A1 WO2017000579 A1 WO 2017000579A1 CN 2016075485 W CN2016075485 W CN 2016075485W WO 2017000579 A1 WO2017000579 A1 WO 2017000579A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
transmission branch
band
frequency band
noise
Prior art date
Application number
PCT/CN2016/075485
Other languages
English (en)
French (fr)
Inventor
段亚娟
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2017564739A priority Critical patent/JP2018524884A/ja
Publication of WO2017000579A1 publication Critical patent/WO2017000579A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/16Circuits

Definitions

  • This application relates to, but is not limited to, the field of signal reception.
  • the related technologies are implemented as shown in FIG. 1 due to the limitation of the bandwidth of the intermediate frequency adjustable gain amplifier and the bandwidth of the receiving ADC (Analog-to-Digital Converter).
  • the requirement of independent control of the transmission branch gain per band can only be realized by copying the single-band transmission branch.
  • the problem brought by this method is that the number of devices used is large, the occupied area is large, the power consumption is large, and the small-scale base station is not satisfied. Demand. Therefore, the multi-band receiving method of the related art is inferior in applicability.
  • the present invention provides a signal receiving method and apparatus, and a communication device to solve the problem of poor applicability of related technologies.
  • a signal receiving method includes:
  • the receiving antenna receives the multi-band signal and outputs to the frequency selection filter
  • the frequency selection filter outputs signals of different frequency bands to corresponding transmission branches respectively;
  • the transmission branch uses the adjustable gain amplifier and the noise suppression filter connected in sequence to perform gain processing and noise suppression processing, and then outputs the signal to the combiner;
  • the combiner combines the output signals of the plurality of transmission branches and outputs the signals to the RF sampler;
  • the RF sampler converts the multi-band RF signal output by the combiner into a baseband signal.
  • the transmission branch further includes a low noise amplifier, and the frequency selection filter is The output signal is amplified by the low noise amplifier for low noise power and output to the adjustable gain amplifier.
  • the frequency band is two
  • the frequency selection filter comprises a receiving duplexer frequency selection filter, and the number of the transmission branches is two.
  • the performing noise suppression processing on the signal includes: calculating and controlling a suppression degree of the noise suppression filter in each transmission branch to suppress noise in the transmission branch except for other frequency bands outside the corresponding frequency band.
  • the frequency band is two, including a first frequency band and a second frequency band;
  • the number of the transmission branches is two, including a first transmission branch and a second transmission branch, where the first frequency band corresponds to a transmission branch, the second frequency band corresponding to the second transmission branch;
  • NF1 is the noise figure of the link in the first frequency band.
  • NF1 is the noise figure of the link after the first band gain is attenuated
  • NF2 is the noise figure of the link in the second frequency band, when the second frequency band is blocked.
  • NF2 is the noise figure of the link after the second band gain is attenuated
  • X1 is the gain attenuation of the first transmission branch when the first band is blocked
  • X2 is the gain attenuation of the second transmission branch when the second band is blocked.
  • the quantities, Y1 and Y2 are preset values greater than zero.
  • the performing gain processing on the signal includes: calculating and controlling attenuation of the adjustable gain amplifier in each transmission branch according to an output power of the RF sampler and an output power of each transmission branch
  • the amount of the RF sampler is between the gain callback threshold and the attenuation threshold, and the difference between the output power of each of the transmission branches is less than a preset value.
  • a signal receiving apparatus includes: a receiving antenna, a frequency selective filter, at least two transmission branches, a combiner, and a radio frequency sampler; the transmission branches each include an adjustable gain amplifier and a noise suppression filter sequentially connected ;among them,
  • the receiving antenna is configured to: receive the multi-band signal and input to the frequency selection filter;
  • the device includes a plurality of output ends with different output frequency bands, each output terminal is connected to an input end of a corresponding transmission branch; the frequency selection filter is configured to: output signals of different frequency bands to corresponding transmission branches respectively;
  • the adjustable gain amplifier is configured to: perform a gain processing on the signal
  • the noise suppression filter is configured to: perform noise suppression processing on the signal;
  • An output end of the transmission branch is connected to an input end of the combiner; an output end of the combiner is connected to an input end of the RF sampler, and the combiner is set to: a plurality of transmission branches After the output signals of the roads are combined, they are output to the RF sampler;
  • the RF sampler is configured to convert the multi-band RF signal output by the combiner into a baseband signal.
  • the transmission branch further includes a low noise amplifier, an input end of the low noise amplifier is connected to an output end of the frequency selection filter, and an output end of the low noise amplifier is connected to the adjustable gain amplifier At the input end, the low noise amplifier is configured to perform low noise power amplification on an output signal of the frequency selective filter.
  • the frequency band is two
  • the frequency selection filter comprises a receiving duplexer frequency selection filter, and the number of the transmission branches is two.
  • the signal receiving apparatus further includes a calculating module, the calculating module is configured to: calculate and control a suppression degree of the noise suppression filter in each transmission branch to suppress the transmission branch Corresponding to the noise of other frequency bands outside the frequency band.
  • the frequency band is two, including a first frequency band and a second frequency band;
  • the number of the transmission branches is two, including a first transmission branch and a second transmission branch, where the first frequency band corresponds to a transmission branch, the second frequency band corresponding to the second transmission branch;
  • the calculation module is set to:
  • NF1 is the noise figure of the link in the first frequency band.
  • NF1 is the first The noise figure of the link after the gain attenuation of one band
  • NF2 is the noise figure of the link of the second band.
  • NF2 is the noise figure of the link after the second band gain is attenuated
  • X1 is when the first band is blocked.
  • X2 is the gain attenuation amount of the second transmission branch when the second frequency band is blocked
  • Y1 and Y2 are preset values greater than zero.
  • the signal receiving apparatus further includes a control module, where the control module is configured to calculate and control each transmission branch according to an output power of the radio frequency sampler and an output power of each transmission branch.
  • the attenuation of the adjustable gain amplifier is such that the output power of the RF sampler is between the gain callback threshold and the attenuation threshold, and the difference between the output power of each of the transmission branches is less than a preset value.
  • a communication device comprising the above-described signal receiving device.
  • the embodiment of the invention provides a signal receiving method, which can realize simultaneous reception of multiple frequency bands, and can realize receiving sensitivity performance in another frequency band when the transmission branches are independent of each other, and the architecture is simple.
  • the power consumption and PCB footprint are low, which is beneficial to the miniaturization of the base station and improves the application of the multi-band receiving technology.
  • FIG. 1 is a schematic structural diagram of a related art signal receiving apparatus
  • FIG. 2 is a schematic structural diagram of a signal receiving apparatus according to a first embodiment of the present invention
  • FIG. 3 is a flowchart of a signal receiving method according to a second embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a signal receiving apparatus according to a third embodiment of the present invention.
  • FIG. 5 is a flowchart of a signal receiving method according to a third embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a signal receiving apparatus according to a first embodiment of the present invention, which may be viewed from FIG.
  • the signal receiving apparatus 1 provided by the embodiment of the present invention includes: a receiving antenna 11, a frequency selection filter 12, at least two transmission branches 13, a combiner 14 and a radio frequency sampler 15;
  • the paths 13 each include an adjustable gain amplifier 131 and a noise suppression filter 132 connected in sequence; the input end of the frequency selection filter 12 is connected to the receiving antenna 11, and includes a plurality of output ends having different output frequency bands, and each output terminal is connected to the corresponding end.
  • the input end of the transmission branch 13 is connected to the input end of the combiner 14; the output end of the combiner 14 is connected to the input end of the RF sampler 15, and the output end of the RF sampler 15 is connected Signal processing device within the device. among them,
  • the receiving antenna 11 is configured to receive a multi-band signal and input to the frequency selection filter 12;
  • the frequency selection filter 12 is configured to output signals of different frequency bands to the corresponding transmission branch 13 respectively;
  • the adjustable gain amplifier 131 is configured to: perform a gain processing on the signal;
  • the noise suppression filter 132 is configured to: perform noise suppression processing on the signal
  • the combiner 14 is configured to: combine the output signals of the plurality of transmission branches, and output to the RF sampler 15;
  • the RF sampler 15 is configured to convert the multi-band RF signal output by the combiner 14 into a baseband signal.
  • the transmission branch 13 in the above embodiment further includes a low noise amplifier, the input of the low noise amplifier is connected to the output of the frequency selective filter 12, and the output of the low noise amplifier is connected to the adjustable gain amplifier 131. Input.
  • the low noise amplifier is arranged to perform low noise power amplification on the output signal of the frequency selective filter 12.
  • the frequency band in the above embodiment is two, and the frequency selection filter 12 includes a receiving duplexer frequency selection filter, and the number of the transmission branches 13 is two.
  • the signal receiving apparatus 1 in the above embodiment further includes a calculation module configured to: calculate and control the suppression degree of the noise suppression filter in each transmission branch 13 to suppress the transmission branch The noise of other frequency bands except the corresponding frequency band is removed.
  • the frequency band is two, including a first frequency band and a second frequency band;
  • the number of the transmission branches is two, including a first transmission branch and a second transmission branch, and the first frequency band Corresponding to the first transmission branch, the second frequency band corresponds to the second transmission branch;
  • the calculation module is set to:
  • NF1 is the noise figure of the link in the first frequency band.
  • NF1 is the noise figure of the link after the first band gain is attenuated
  • NF2 is the noise figure of the link in the second frequency band, when the second frequency band is blocked.
  • NF2 is the noise figure of the link after the second band gain is attenuated
  • X1 is the gain attenuation of the first transmission branch when the first band is blocked
  • X2 is the gain attenuation of the second transmission branch when the second band is blocked.
  • the quantities, Y1 and Y2 are preset values greater than zero.
  • the signal receiving apparatus 1 in the above embodiment further includes a control module configured to calculate and control each according to the output power of the RF sampler 15 and the output power of each of the transmission branches 13.
  • the attenuation of the adjustable gain amplifier 131 in the transmission branch 13 is such that the output power of the RF sampler 15 is between the gain callback threshold and the attenuation threshold, and the difference between the output power of each transmission branch 13 is less than a preset value. .
  • the embodiment of the present invention also provides a communication device, which includes the signal receiving apparatus provided by the embodiment of the present invention.
  • the communication device is a device such as a base station.
  • FIG. 3 is a flowchart of a signal receiving method according to a second embodiment of the present invention. As shown in FIG. 3, in the embodiment, the signal receiving method provided by the embodiment of the present invention includes the following steps:
  • the receiving antenna receives the multi-band signal and inputs the signal to the frequency selection filter.
  • the frequency selection filter outputs signals of different frequency bands to corresponding transmission branches respectively;
  • the transmission branch uses the adjustable gain amplifier and the noise suppression filter connected in sequence to perform gain processing and noise suppression processing, and then outputs the signal to the combiner;
  • the combiner combines the output signals of the plurality of transmission branches and outputs the signals to the RF sampler.
  • the RF sampler converts the multi-band RF signal output by the combiner into a baseband signal.
  • the transmission branch in the above embodiment further includes a low noise amplifier, and the output signal of the frequency selection filter is subjected to low noise power amplification by a low noise amplifier, and then output to the adjustable gain amplifier.
  • the frequency band in the above embodiment is two
  • the frequency selection filter includes a receiving duplexer frequency selection filter, and the number of the transmission branches is two.
  • performing noise suppression processing on the signal includes: calculating and controlling a suppression degree of the noise suppression filter in each transmission branch to suppress the transmission branch from being excluded from the corresponding frequency band Noise in other frequency bands.
  • the frequency band is two, including a first frequency band and a second frequency band;
  • the number of the transmission branches is two, including a first transmission branch and a second transmission branch, and the first frequency band Corresponding to the first transmission branch, the second frequency band corresponds to the second transmission branch;
  • NF1 is the noise figure of the link in the first frequency band.
  • NF1 is the noise figure of the link after the first band gain is attenuated
  • NF2 is the noise figure of the link in the second frequency band, when the second frequency band is blocked.
  • NF2 is the noise figure of the link after the second band gain is attenuated
  • X1 is the gain attenuation of the first transmission branch when the first band is blocked
  • X2 is the gain attenuation of the second transmission branch when the second band is blocked.
  • the quantities, Y1 and Y2 are preset values greater than zero.
  • the performing gain processing on the signal comprises: calculating and controlling the adjustable gain amplifier in each of the transmission branches according to an output power of the RF sampler and an output power of each of the transmission branches
  • the amount of attenuation is such that the output power of the RF sampler is between the gain callback threshold and the attenuation threshold, and the difference between the output power of each of the transmission branches is less than a preset value.
  • FIG. 4 is a schematic structural diagram of a signal receiving apparatus according to a third embodiment of the present invention, which may be viewed from FIG. It is to be noted that, in this embodiment, the signal receiving apparatus provided by the embodiment of the present invention includes:
  • each of the transmission branches 13 includes a low noise amplifier 133 connected in sequence, An adjustable gain amplifier 131 and a noise suppression filter 132; an input end of the frequency selective filter 12 and the receiving antenna 11 and including a plurality of output terminals having different output frequency bands, each output terminal being connected to the input of the corresponding transmission branch 13
  • the output end of the transmission branch 13 is connected to the input end of the combiner 14; the output end of the combiner 14 is connected to the input end of the RF sampler 15, and the output end of the RF sampler 15 is connected to the signal processing device in the device.
  • FIG. 5 is a schematic structural diagram of a signal receiving method according to a third embodiment of the present invention. As shown in FIG. 5, in the embodiment, the signal receiving method provided by the embodiment of the present invention includes:
  • the frequency selection filter separates the dual-band signal received by the receiving antenna to the corresponding transmission branch.
  • the low noise amplifier performs low noise power amplification on the small signals of the two received frequency bands, respectively.
  • the adjustable gain amplifier performs gain processing on the signal under the control of the control module.
  • the adjustable gain amplifier adjusts the gain of the two frequency band receivers respectively, and the gain is attenuated when the large blocking signal is input, and the gain is amplified when the sensitivity is small signal input.
  • This step can include the following substeps:
  • the control module calculates the saturation power output power level of the RF sampler RFADC, where the power level refers to the total power of the two bands; the attenuation threshold of the adjustable gain amplifier AGC is set according to the peak-to-average ratio of the system signal Attenuation step
  • the control module reads whether the power level of the PD1 detection point reaches the attenuation threshold, and if it is 51-3, if it is otherwise, re-execute 51-2;
  • 51-3 Read the power level of the PD2 detection point and the PD3 detection point, and determine whether the power at the PD2 is greater than the detection power +Z at the PD3, where Z selects an appropriate value according to the system design, and if yes, executes 51-4. If it is otherwise executed 51-5;
  • 51-5 determining whether the power at PD3 is greater than the detection power +Z at PD2, if it is 51-6, if not, executing 51-7;
  • 51-6 Attenuating the adjustable gain amplifier on the band 2 link according to the attenuation step, and then performing 51-2 to detect whether the attenuation threshold is reached;
  • 51-7 Attenuate the adjustable gain amplifier on the two-band link according to the attenuation step, and then perform 51-2 to detect whether the attenuation threshold is reached.
  • this step also includes a gain callback process:
  • 52-2 Read the detection power at PD1 to see if it reaches the gain callback threshold. If it is 52-3, if it is no, re-execute 52-2;
  • 52-3 Determine whether the power at PD2 is greater than the detection power +Z at PD3, if it is 52-4, if it is no, execute 52-7;
  • 52-7 Determine whether the power at PD3 is greater than the detection power +Z at PD2, if it is 52-8, if not, execute 52-11;
  • 52-8 Determine whether the attenuation of the link where the frequency band 1 is located is 0 dB, if it is 52-9, if not, execute 52-10;
  • the noise suppression filter performs noise suppression filtering processing under the control of the calculation module.
  • the calculation module calculates the minimum gain under the sensitivity required by the two frequency band transmission branches according to the low noise performance of the RFADC; and calculates the two frequency band transmission branches according to the saturation power level of the RFADC and the air interface in-band blocking level required by the two frequency bands respectively.
  • band 2 gain attenuation X The noise figure of the link is NF2, the gain is G2; the band 1 filter is defined as the A1 (positive value) in the band 2 frequency range, and the band 2 filter is suppressed in the band 1 frequency range.
  • A2 (positive value); calculate the thermal link level of the analog link where band 1 is located before the combiner, the thermal noise level in the frequency range of band 2 is -174dBm/Hz+NF1+G1-A1, and the analog link where band 2 is located
  • the thermal noise level in the frequency range of the frequency band 2 before the combiner is -174dBm/Hz+NF2+G2-X2, and the former is required to have a thermal noise smaller than the latter thermal noise by a certain amount Y1 (positive value).
  • the noise can be equal to the thermal noise of the analog link where band 2 is located in the range of band 2, ie
  • the gain attenuation of the transmission branch is X1
  • the non-blocking input level in band 2 is the sensitivity signal power
  • the link no attenuation of band 2 is NF2
  • the gain is G2.
  • the band 1 filter is defined as the A1 (positive value) in the frequency range of the band 2
  • the band 2 filter is suppressed in the frequency range of the band 1 A2 (positive value)
  • calculate the thermal link level of the analog link where band 2 is located before the combiner, the thermal noise level in the frequency range of band 1 is -174dBm/Hz+NF2+G2-A2, and the analog link where band 1 is located
  • the thermal noise level in the frequency range of the frequency band 1 before the combiner is -174dBm/Hz+NF1+G1-X1, and the total thermal noise is required to be smaller than the latter thermal noise by a certain amount Y2 (positive value).
  • the noise level in the frequency range of the frequency band 1 before the combiner is -174dBm/Hz+NF
  • the above Y1 and Y2 may be equal or unequal.
  • the combiner combines the signals of the two frequency bands and outputs the signals to the RF sampler.
  • the RF sampler realizes large-bandwidth multi-band RF sampling, and directly converts the RF signal into a baseband signal.
  • the noise suppression filter suppresses the noise of the frequency range of the frequency band 2 to a certain level in the frequency band 1 receiving transmission branch, and suppresses the noise of the frequency range of the frequency band 1 in the frequency band 2 receiving transmission branch.
  • the receiver gain of band 1 is to be gain-attenuated to ensure that the power of the RFADC device does not overflow, and the gain of the non-blocking receiver in band 2 still maintains the maximum gain, thus the variable gain amplifier
  • the low noise level of the post output is different.
  • the difference between the low noise level of the two bands is related to the gain difference of the link and the NF.
  • the noise level is superimposed after the combiner, if the noise power of the two channels is different. Large, inevitably affects the SNR (signal-to-noise ratio) of the low-noise transmission branch, so the noise suppression filter is placed before the combiner.
  • all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve.
  • the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • the device/function module/functional unit in the above embodiment When the device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • multiple frequency bands can be simultaneously received, and since the transmission branches are independent of each other, when there is a blocking signal in one frequency band, the other frequency band can still achieve the receiving sensitivity performance, and the architecture is simple, power consumption, and The PCB footprint is low, which is beneficial to the miniaturization of the base station and improves the applicability of the multi-band receiving technology.

Abstract

本文公布一种信号接收方法及装置、通信设备,该方法包括:接收天线接收信号并输至频率选择滤波器;频率选择滤波器输出不同频段的信号至对应传输支路;传输支路利用依次连接的可调增益放大器及噪声抑制滤波器处理信号后,输出至合路器;合路器处理每个传输支路的输入信号后,输出至射频采样器;射频采样器处理合路器后输出至设备内的信号处理装置。

Description

一种信号接收方法及装置、通信设备 技术领域
本申请涉及但不限于信号接收领域。
背景技术
随着无线通讯系统对多频段与一体化的需求不断提高,基站系统向小体积、大带宽和多频段趋势发展。对于多频段接收机的需求,相关技术实现的方式包括:如图1所示,由于受到中频可调增益放大器带宽、接收ADC(Analog-to-Digital Converter,模拟/数字转换器)带宽的限制以及每频段传输支路增益独立控制的要求,只能将单频段传输支路复制一路来实现,该方法带来的问题是用的器件数量多、占用面积大、功耗大,不满足小型化基站的需求。因此,相关技术的多频段接收方法的应用性较差。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本文提供了一种信号接收方法及装置、通信设备,以解决相关技术应用性较差的问题。
一种信号接收方法,包括:
接收天线接收多频段信号并输至频率选择滤波器;
所述频率选择滤波器将不同频段的信号分别输出至对应传输支路;
所述传输支路利用依次连接的可调增益放大器及噪声抑制滤波器将信号进行增益处理和噪声抑制处理后,输出至合路器;
所述合路器将多个传输支路的输出信号合路后,输出至射频采样器;
所述射频采样器将所述合路器输出的多频段射频信号转换为基带信号。
可选地,所述传输支路还包括低噪声放大器,所述频率选择滤波器的输 出信号通过所述低噪声放大器进行低噪声功率放大后,输出至所述可调增益放大器。
可选地,所述频段为两个,所述频率选择滤波器包括接收双工器频率选择滤波器,所述传输支路的个数为两个。
可选地,所述将信号进行噪声抑制处理包括:计算并控制每个传输支路内所述噪声抑制滤波器的抑制度,以抑制所述传输支路内除对应频段外其它频段的噪声。
可选地,所述频段为两个,包括第一频段和第二频段;所述传输支路的个数为两个,包括第一传输支路和第二传输支路,第一频段对应第一传输支路,第二频段对应第二传输支路;
所述第一传输支路中的噪声抑制滤波器在第二频段的频率范围内抑制度A1为:A1=NF1-NF2+X2+Y1;
所述第二传输支路中的噪声抑制滤波器在第一频段的频率范围内抑制度A2为:A2=NF2-NF1+X1+Y2;
其中,NF1为第一频段链路的噪声系数,当第一频段阻塞时,NF1为第一频段增益衰减后链路的噪声系数;NF2为第二频段链路的噪声系数,当第二频段阻塞时,NF2为第二频段增益衰减后链路的噪声系数;X1为第一频段阻塞时,第一传输支路的增益衰减量;X2为第二频段阻塞时,第二传输支路的增益衰减量,Y1和Y2为大于零的预设值。
可选地,所述将信号进行增益处理包括:根据所述射频采样器的输出功率、及每个传输支路的输出功率,计算并控制每个传输支路内所述可调增益放大器的衰减量,使所述射频采样器的输出功率在增益回调门限和衰减门限之间,且每个传输支路的输出功率之差小于预设值。
一种信号接收装置,包括:接收天线、频率选择滤波器、至少两个传输支路、合路器以及射频采样器;所述传输支路均包括依次连接的可调增益放大器及噪声抑制滤波器;其中,
接收天线设置为:接收多频段信号并输至频率选择滤波器;
所述频率选择滤波器的输入端与所述接收天线连接,所述频率选择滤波 器包括多个输出频段不同的输出端,每个输出端连接至对应的传输支路的输入端;所述频率选择滤波器设置为:将不同频段的信号分别输出至对应传输支路;
所述可调增益放大器设置为:将信号进行增益处理;
所述噪声抑制滤波器设置为:将信号进行噪声抑制处理;
所述传输支路的输出端连接至所述合路器的输入端;所述合路器的输出端连接所述射频采样器的输入端,所述合路器设置为:将多个传输支路的输出信号合路后,输出至射频采样器;
所述射频采样器设置为:将所述合路器输出的多频段射频信号转换为基带信号。
可选地,所述传输支路还包括低噪声放大器,所述低噪声放大器的输入端连接所述频率选择滤波器的输出端,所述低噪声放大器的输出端连接所述可调增益放大器的输入端,所述低噪声放大器设置为:将频率选择滤波器的输出信号进行低噪声功率放大。
可选地,所述频段为两个,所述频率选择滤波器包括接收双工器频率选择滤波器,所述传输支路的个数为两个。
可选地,所述信号接收装置,还包括计算模块,所述计算模块设置为:计算并控制每个传输支路内所述噪声抑制滤波器的抑制度,以抑制所述传输支路内除对应频段外其它频段的噪声。
可选地,所述频段为两个,包括第一频段和第二频段;所述传输支路的个数为两个,包括第一传输支路和第二传输支路,第一频段对应第一传输支路,第二频段对应第二传输支路;
计算模块是设置为:
控制所述第一传输支路中的噪声抑制滤波器在第二频段的频率范围内抑制度A1为:A1=NF1-NF2+X2+Y1;
控制所述第二传输支路中的噪声抑制滤波器在第一频段的频率范围内抑制度A2为:A2=NF2-NF1+X1+Y2;
其中,NF1为第一频段链路的噪声系数,当第一频段阻塞时,NF1为第 一频段增益衰减后链路的噪声系数;NF2为第二频段链路的噪声系数,当第二频段阻塞时,NF2为第二频段增益衰减后链路的噪声系数;X1为第一频段阻塞时,第一传输支路的增益衰减量;X2为第二频段阻塞时,第二传输支路的增益衰减量,Y1和Y2为大于零的预设值。
可选地,所述信号接收装置,还包括控制模块,所述控制模块设置为:根据所述射频采样器的输出功率、及每个传输支路的输出功率,计算并控制每个传输支路内所述可调增益放大器的衰减量,使所述射频采样器的输出功率在增益回调门限和衰减门限之间,且每个传输支路的输出功率之差小于预设值。
一种通信设备,包括上述的信号接收装置。
本发明实施例提供了一种信号接收方法,可以实现多频段同时接收,并且由于传输支路相互独立可以实现在一频段带内有阻塞信号时,另一频段仍旧能够实现接收灵敏度性能,架构简单、功耗和PCB占用面积较低,有利于基站的小型化,提高了多频段接收技术的应用性。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为一种相关技术的信号接收装置的结构示意图;
图2为本发明第一实施例提供的信号接收装置的结构示意图;
图3为本发明第二实施例提供的信号接收方法的流程图;
图4为本发明第三实施例提供的信号接收装置的结构示意图;
图5为本发明第三实施例提供的信号接收方法的流程图。
本发明的实施方式
现结合附图对本发明的实施方式进行诠释说明。
第一实施例:
图2为本发明第一实施例提供的信号接收装置的结构示意图,由图2可 知,在本实施例中,本发明实施例提供的信号接收装置1包括:接收天线11、频率选择滤波器12、至少两个传输支路13、合路器14以及射频采样器15;传输支路13均包括依次连接的可调增益放大器131及噪声抑制滤波器132;频率选择滤波器12的输入端与接收天线11连接,包括多个输出频段不同的输出端,每个输出端连接至对应的传输支路13的输入端;传输支路13的输出端连接至合路器14的输入端;合路器14的输出端连接射频采样器15的输入端,射频采样器15的输出端连接设备内的信号处理装置。其中,
所述接收天线11设置为:接收多频段信号并输至频率选择滤波器12;
所述频率选择滤波器12设置为:将不同频段的信号分别输出至对应传输支路13;
所述可调增益放大器131设置为:将信号进行增益处理;
所述噪声抑制滤波器132设置为:将信号进行噪声抑制处理;
所述合路器14设置为:将多个传输支路的输出信号合路后,输出至射频采样器15;
所述射频采样器15设置为:将所述合路器14输出的多频段射频信号转换为基带信号。
在一些实施例中,上述实施例中的传输支路13还包括低噪声放大器,低噪声放大器的输入端连接频率选择滤波器12的输出端,低噪声放大器的输出端连接可调增益放大器131的输入端。所述低噪声放大器设置为:将频率选择滤波器12的输出信号进行低噪声功率放大。
在一些实施例中,上述实施例中的频段为两个,频率选择滤波器12包括接收双工器频率选择滤波器,传输支路13的个数为两个。
在一些实施例中,上述实施例中的信号接收装置1还包括计算模块,计算模块设置为:计算并控制每个传输支路13内噪声抑制滤波器的抑制度,以抑制所述传输支路内除对应频段外其它频段的噪声。
在一些实施例中,所述频段为两个,包括第一频段和第二频段;所述传输支路的个数为两个,包括第一传输支路和第二传输支路,第一频段对应第一传输支路,第二频段对应第二传输支路;
计算模块是设置为:
控制所述第一传输支路中的噪声抑制滤波器在第二频段的频率范围内抑制度A1为:A1=NF1-NF2+X2+Y1;
控制所述第二传输支路中的噪声抑制滤波器在第一频段的频率范围内抑制度A2为:A2=NF2-NF1+X1+Y2;
其中,NF1为第一频段链路的噪声系数,当第一频段阻塞时,NF1为第一频段增益衰减后链路的噪声系数;NF2为第二频段链路的噪声系数,当第二频段阻塞时,NF2为第二频段增益衰减后链路的噪声系数;X1为第一频段阻塞时,第一传输支路的增益衰减量;X2为第二频段阻塞时,第二传输支路的增益衰减量,Y1和Y2为大于零的预设值。
在一些实施例中,上述实施例中的信号接收装置1还包括控制模块,控制模块设置为:根据射频采样器15的输出功率、及每个传输支路13的输出功率,计算并控制每个传输支路13内可调增益放大器131的衰减量,使所述射频采样器15的输出功率在增益回调门限和衰减门限之间,且每个传输支路13的输出功率之差小于预设值。
对应的,本发明实施例也提供了一种通信设备,其包括本发明实施例提供的信号接收装置。一般的,通信设备为基站等设备。
第二实施例:
图3为本发明第二实施例提供的信号接收方法的流程图,由图3可知,在本实施例中,本发明实施例提供的信号接收方法包括以下步骤:
S301:接收天线接收多频段信号并输至频率选择滤波器;
S302:频率选择滤波器将不同频段的信号分别输出至对应传输支路;
S303:传输支路利用依次连接的可调增益放大器及噪声抑制滤波器将信号进行增益处理和噪声抑制处理后,输出至合路器;
S304:合路器将多个传输支路的输出信号合路后,输出至射频采样器;
S305:射频采样器将所述合路器输出的多频段射频信号转换为基带信号。
在一些实施例中,上述实施例中的传输支路还包括低噪声放大器,频率选择滤波器的输出信号通过低噪声放大器进行低噪声功率放大后,输出至可调增益放大器。
在一些实施例中,上述实施例中的所述频段为两个,频率选择滤波器包括接收双工器频率选择滤波器,传输支路的个数为两个。
在一些实施例中,上述实施例中,将信号进行噪声抑制处理包括:计算并控制每个传输支路内所述噪声抑制滤波器的抑制度,以抑制所述传输支路内除对应频段外其它频段的噪声。
在一些实施例中,所述频段为两个,包括第一频段和第二频段;所述传输支路的个数为两个,包括第一传输支路和第二传输支路,第一频段对应第一传输支路,第二频段对应第二传输支路;
所述第一传输支路中的噪声抑制滤波器在第二频段的频率范围内抑制度A1为:A1=NF1-NF2+X2+Y1;
所述第二传输支路中的噪声抑制滤波器在第一频段的频率范围内抑制度A2为:A2=NF2-NF1+X1+Y2;
其中,NF1为第一频段链路的噪声系数,当第一频段阻塞时,NF1为第一频段增益衰减后链路的噪声系数;NF2为第二频段链路的噪声系数,当第二频段阻塞时,NF2为第二频段增益衰减后链路的噪声系数;X1为第一频段阻塞时,第一传输支路的增益衰减量;X2为第二频段阻塞时,第二传输支路的增益衰减量,Y1和Y2为大于零的预设值。
在一些实施例中,所述将信号进行增益处理包括:根据所述射频采样器的输出功率、及每个传输支路的输出功率,计算并控制每个传输支路内所述可调增益放大器的衰减量,使所述射频采样器的输出功率在增益回调门限和衰减门限之间,且每个传输支路的输出功率之差小于预设值。。
现结合应用场景对本发明实施例做进一步的诠释说明。
第三实施例:
本实施例结合运用场景对本发明实施例做进一步的诠释说明。
图4为本发明第三实施例提供的信号接收装置的结构示意图,由图4可 知,在本实施例中,本发明实施例提供的信号接收装置包括:
接收天线11、频率选择滤波器12、至少两个传输支路13、合路器14、射频采样器15、计算模块16以及控制模块17;传输支路13均包括依次连接的低噪声放大器133、可调增益放大器131及噪声抑制滤波器132;频率选择滤波器12的输入端与接收天线11,并包括多个输出频段不同的输出端,每个输出端连接至对应的传输支路13的输入端;传输支路13的输出端连接至合路器14的输入端;合路器14的输出端连接射频采样器15的输入端,射频采样器15的输出端连接设备内的信号处理装置。
图5为本发明第三实施例提供的信号接收方法的结构示意图,由图5可知,在本实施例中,本发明实施例提供的信号接收方法包括:
S501:频率选择滤波器将接收天线接收的双频段信号分开至对应传输支路。
S502:低噪声放大器分别对接收的两个频段的小信号进行低噪声功率放大。
S503:可调增益放大器在控制模块的控制下对信号进行增益处理。
其中,可调增益放大器,分别将两个频段接收机的增益调整,大阻塞信号输入时进行增益衰减,灵敏度小信号输入时进行增益放大。
本步骤可包括以下子步骤:
51-1:控制模块计算射频采样器RFADC的饱和功率输出功率电平,此处的功率电平是指两频段的总功率;根据系统信号的峰均比设置可调增益放大器AGC的衰减门限和衰减步进;
51-2:控制模块读取PD1检测点出的功率电平是否达到衰减门限,若为是执行51-3,若为否则重新执行51-2;
51-3:读取PD2检测点和PD3检测点的功率电平,判断PD2处功率是否大于PD3处检测功率+Z,其中Z根据系统设计选择合适的值,若为是则执行51-4,若为否则执行51-5;
51-4:按照衰减步进衰减频段1链路上的可调增益放大器,之后执行51-2进行检测是否达到衰减门限;
51-5:判断PD3处功率是否大于PD2处检测功率+Z,若为是执行51-6,若为否执行51-7;
51-6:按照衰减步进衰减频段2链路上的可调增益放大器,之后执行51-2进行检测是否达到衰减门限;
51-7:分别按照衰减步进衰减两频段链路上的可调增益放大器,之后执行51-2进行检测是否达到衰减门限。
对应的,本步骤还包括增益回调流程:
52-1:根据系统需求设置合适的增益回调门限;
52-2:读取PD1处的检测功率,看是否到增益回调门限,若为是执行52-3,若为否重新执行52-2;
52-3:判断PD2处功率是否大于PD3处检测功率+Z,若为是执行52-4,若为否执行52-7;
52-4:判断频段2所在链路的衰减量是否为0dB,若为是执行52-5,若为否执行52-6;
52-5:回调频段1链路上的增益,回调步进为衰减步进,之后重新执行52-3;
52-6:回调频段2链路上的增益,回调步进为衰减步进,之后重新执行52-3;
52-7:判断PD3处功率是否大于PD2处检测功率+Z,若为是执行52-8,若为否执行52-11;
52-8:判断频段1所在链路的衰减量是否为0dB,若为是执行52-9,若为否执行52-10;
52-9:回调频段2链路上的增益,回调步进为衰减步进,之后重新执行52-3;
52-10:回调频段1链路上的增益,回调步进为衰减步进,之后重新执行52-3;
52-11:分别回调两频段链路上的增益,回调步进为衰减步进,之后重 新执行52-3;
S504:噪声抑制滤波器在计算模块的控制下进行噪声抑制滤波处理。
计算模块根据RFADC的低噪性能分别计算两个频段传输支路需要的灵敏度下的最小增益;根据RFADC的饱和功率电平和两个频段要求的空口带内阻塞电平,分别计算两个频段传输支路需要的阻塞下的最大增益;提取两个频段在阻塞情况下增益衰减量要求的最大值。
假设频段2的阻塞电平下,传输支路的增益衰减量为X2,频段1带内无阻塞输入电平是灵敏度信号功率,频段1的链路无衰减量噪声系数为NF1,增益为G1,频段2增益衰减X后链路的噪声系数为NF2,增益为G2;定义频段1滤波器在频段2频率范围内抑制度为A1(正值),频段2滤波器在频段1频率范围内抑制度为A2(正值);计算频段1所在的模拟链路在合路器前,频段2频率范围内的热噪电平为-174dBm/Hz+NF1+G1-A1,频段2所在的模拟链路在合路器之前频段2频率范围内的热噪电平为-174dBm/Hz+NF2+G2-X2,要求前者热噪比后者热噪小一定量Y1(正值)时,叠加后的总噪声才能够与频段2所在的模拟链路在频段2范围内的热噪相等,即
-174dBm/Hz+NF1+G1-A1=-174dBm/Hz+NF2+G2-X2-Y1,则得到抑制度要求A1=NF1-NF2+X2+Y1;
假设频段1的阻塞电平下,传输支路的增益衰减量为X1,频段2带内无阻塞输入电平是灵敏度信号功率,频段2的链路无衰减量噪声系数为NF2,增益为G2,频段1增益衰减X1后链路的噪声系数为NF1,增益为G1;定义频段1滤波器在频段2频率范围内抑制度为A1(正值),频段2滤波器在频段1频率范围内抑制度为A2(正值);计算频段2所在的模拟链路在合路器前,频段1频率范围内的热噪电平为-174dBm/Hz+NF2+G2-A2,频段1所在的模拟链路在合路器之前频段1频率范围内的热噪电平为-174dBm/Hz+NF1+G1-X1,要求前者热噪比后者热噪小一定量Y2(正值)时,叠加后的总噪声才能够与频段2所在的模拟链路在频段2范围内的热噪相等,即
-174dBm/Hz+NF2+G2-A2=-174dBm/Hz+NF1+G1-X1-Y2,则得到抑制度 A2=NF2-NF1+X1+Y2。
上述的Y1和Y2可以相等,也可以不等。
通过计算抑制度A1和A2,选择满足抑制度要求的噪声抑制滤波器。
S505:合路器将两个频段的信号合路后输出给射频采样器。
S506:射频采样器实现大带宽多频段射频采样,直接将射频信号转换为基带信号。
在本实施例中,噪声抑制滤波器,在频段1接收传输支路中将频段2的频率范围的噪声抑制到一定水平,同时在频段2接收传输支路中将频段1的频率范围的噪声抑制到一定水平;如果频段1内有阻塞信号,频段1的接收机增益要进行增益衰减来保证RFADC器件功率不溢出,频段2内没有阻塞接收机的增益仍旧保持最大增益,这样在可变增益放大器后输出的低噪电平是不同的,两个频段低噪电平的差和链路的增益差以及NF有关,经合路器后噪声电平是叠加的,如果两路的噪声功率相差较大,势必会影响噪声电平低传输支路的SNR(信噪比),因此噪声抑制滤波器放置在合路器之前。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如系统、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。
上述实施例中的装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
工业实用性
通过本发明实施例的实施,可以实现多频段同时接收,并且由于传输支路相互独立可以实现在一频段带内有阻塞信号时,另一频段仍旧能够实现接收灵敏度性能,架构简单、功耗和PCB占用面积较低,有利于基站的小型化,提高了多频段接收技术的应用性。

Claims (13)

  1. 一种信号接收方法,包括:
    接收天线接收多频段信号并输至频率选择滤波器;
    所述频率选择滤波器将不同频段的信号分别输出至对应传输支路;
    所述传输支路利用依次连接的可调增益放大器及噪声抑制滤波器将信号进行增益处理和噪声抑制处理后,输出至合路器;
    所述合路器将多个传输支路的输出信号合路后,输出至射频采样器;
    所述射频采样器将所述合路器输出的多频段射频信号转换为基带信号。
  2. 如权利要求1所述的信号接收方法,其中,所述传输支路还包括低噪声放大器,所述频率选择滤波器的输出信号通过所述低噪声放大器进行低噪声功率放大后,输出至所述可调增益放大器。
  3. 如权利要求1所述的信号接收方法,其中,所述频段为两个,所述频率选择滤波器包括接收双工器频率选择滤波器,所述传输支路的个数为两个。
  4. 如权利要求1所述的信号接收方法,其中,所述将信号进行噪声抑制处理包括:计算并控制每个传输支路内所述噪声抑制滤波器的抑制度,以抑制所述传输支路内除对应频段外其它频段的噪声。
  5. 如权利要求4所述的信号接收方法,其中,所述频段为两个,包括第一频段和第二频段;所述传输支路的个数为两个,包括第一传输支路和第二传输支路,第一频段对应第一传输支路,第二频段对应第二传输支路;
    所述第一传输支路中的噪声抑制滤波器在第二频段的频率范围内抑制度A1为:A1=NF1-NF2+X2+Y1;
    所述第二传输支路中的噪声抑制滤波器在第一频段的频率范围内抑制度A2为:A2=NF2-NF1+X1+Y2;
    其中,NF1为第一频段链路的噪声系数,当第一频段阻塞时,NF1为第一频段增益衰减后链路的噪声系数;NF2为第二频段链路的噪声系数,当第二频段阻塞时,NF2为第二频段增益衰减后链路的噪声系数;X1为第一频 段阻塞时,第一传输支路的增益衰减量;X2为第二频段阻塞时,第二传输支路的增益衰减量,Y1和Y2为大于零的预设值。
  6. 如权利要求1至5任一项所述的信号接收方法,其中,所述将信号进行增益处理包括:根据所述射频采样器的输出功率、及每个传输支路的输出功率,计算并控制每个传输支路内所述可调增益放大器的衰减量,使所述射频采样器的输出功率在增益回调门限和衰减门限之间,且每个传输支路的输出功率之差小于预设值。
  7. 一种信号接收装置,包括:接收天线、频率选择滤波器、至少两个传输支路、合路器以及射频采样器;所述传输支路均包括依次连接的可调增益放大器及噪声抑制滤波器;其中,
    接收天线设置为:接收多频段信号并输至频率选择滤波器;
    所述频率选择滤波器的输入端与所述接收天线连接,所述频率选择滤波器包括多个输出频段不同的输出端,每个输出端连接至对应的传输支路的输入端;所述频率选择滤波器设置为:将不同频段的信号分别输出至对应传输支路;
    所述可调增益放大器设置为:将信号进行增益处理;
    所述噪声抑制滤波器设置为:将信号进行噪声抑制处理;
    所述传输支路的输出端连接至所述合路器的输入端;所述合路器的输出端连接所述射频采样器的输入端,所述合路器设置为:将多个传输支路的输出信号合路后,输出至射频采样器;
    所述射频采样器设置为:将所述合路器输出的多频段射频信号转换为基带信号。
  8. 如权利要求7所述的信号接收装置,其中,所述传输支路还包括低噪声放大器,所述低噪声放大器的输入端连接所述频率选择滤波器的输出端,所述低噪声放大器的输出端连接所述可调增益放大器的输入端,所述低噪声放大器设置为:将频率选择滤波器的输出信号进行低噪声功率放大。
  9. 如权利要求7所述的信号接收装置,其中,所述频段为两个,所述频率选择滤波器包括接收双工器频率选择滤波器,所述传输支路的个数为两 个。
  10. 如权利要求7所述的信号接收装置,还包括计算模块,所述计算模块设置为:计算并控制每个传输支路内所述噪声抑制滤波器的抑制度,以抑制所述传输支路内除对应频段外其它频段的噪声。
  11. 如权利要求10所述的信号接收装置,其中,所述频段为两个,包括第一频段和第二频段;所述传输支路的个数为两个,包括第一传输支路和第二传输支路,第一频段对应第一传输支路,第二频段对应第二传输支路;
    计算模块是设置为:
    控制所述第一传输支路中的噪声抑制滤波器在第二频段的频率范围内抑制度A1为:A1=NF1-NF2+X2+Y1;
    控制所述第二传输支路中的噪声抑制滤波器在第一频段的频率范围内抑制度A2为:A2=NF2-NF1+X1+Y2;
    其中,NF1为第一频段链路的噪声系数,当第一频段阻塞时,NF1为第一频段增益衰减后链路的噪声系数;NF2为第二频段链路的噪声系数,当第二频段阻塞时,NF2为第二频段增益衰减后链路的噪声系数;X1为第一频段阻塞时,第一传输支路的增益衰减量;X2为第二频段阻塞时,第二传输支路的增益衰减量,Y1和Y2为大于零的预设值。
  12. 如权利要求7至11任一项所述的信号接收装置,还包括控制模块,所述控制模块设置为:根据所述射频采样器的输出功率、及每个传输支路的输出功率,计算并控制每个传输支路内所述可调增益放大器的衰减量,使所述射频采样器的输出功率在增益回调门限和衰减门限之间,且每个传输支路的输出功率之差小于预设值。
  13. 一种通信设备,包括如权利要求7至12任一项所述的信号接收装置。
PCT/CN2016/075485 2015-06-29 2016-03-03 一种信号接收方法及装置、通信设备 WO2017000579A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017564739A JP2018524884A (ja) 2015-06-29 2016-03-03 信号受信方法及び装置、通信デバイス、プログラムならびに記録媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510368400.2A CN106330220B (zh) 2015-06-29 2015-06-29 一种信号接收方法及装置、通信设备
CN201510368400.2 2015-06-29

Publications (1)

Publication Number Publication Date
WO2017000579A1 true WO2017000579A1 (zh) 2017-01-05

Family

ID=57607756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/075485 WO2017000579A1 (zh) 2015-06-29 2016-03-03 一种信号接收方法及装置、通信设备

Country Status (3)

Country Link
JP (1) JP2018524884A (zh)
CN (1) CN106330220B (zh)
WO (1) WO2017000579A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108232392A (zh) * 2017-12-26 2018-06-29 广东盛路通信科技股份有限公司 合路器与功分器一体化的射频器件
CN108566216A (zh) * 2018-03-16 2018-09-21 成都锦江电子系统工程有限公司 射频重构式双通道接收组件
CN112290973A (zh) * 2020-10-23 2021-01-29 国信军创(岳阳)六九零六科技有限公司 一种合路器
CN113890642A (zh) * 2021-10-09 2022-01-04 中信科移动通信技术股份有限公司 通信系统收信机检验方法及装置
CN115664441A (zh) * 2022-10-21 2023-01-31 电子科技大学 一种基于N-Path陷波器的高动态范围接收机及接收方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109150216B (zh) * 2017-06-13 2021-01-22 中兴通讯股份有限公司 一种双频段接收机及其自动增益控制方法
CN109756238A (zh) * 2017-11-08 2019-05-14 中兴通讯股份有限公司 一种多频段信号的处理方法及装置
CN112821902B (zh) * 2019-11-18 2022-08-30 海能达通信股份有限公司 一种接收机、接收机的控制方法及移动终端
CN115276691A (zh) * 2021-10-14 2022-11-01 神基科技股份有限公司 无线信号接收装置及系统
CN115296733B (zh) * 2022-07-18 2024-02-06 三维通信股份有限公司 上行合路信号防溢出方法、装置、das系统和存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101588184A (zh) * 2009-07-14 2009-11-25 北京天碁科技有限公司 基于多频段的射频收信方法及收信机
US8594559B2 (en) * 2010-09-30 2013-11-26 Nxp, B.V. Combined satellite radio receiver
CN103546102A (zh) * 2012-07-10 2014-01-29 晨星半导体股份有限公司 多重无线电标准的低噪声放大器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4224802B2 (ja) * 2002-03-18 2009-02-18 日立金属株式会社 ハイパスフィルタおよびこれを用いたマルチバンドアンテナスイッチ回路、マルチバンドアンテナスイッチ積層モジュール並びに通信装置
US7436912B2 (en) * 2005-10-11 2008-10-14 L-3 Communications Integrated Systems L.P. Nyquist folded bandpass sampling receivers and related methods
JP4646827B2 (ja) * 2006-02-24 2011-03-09 京セラ株式会社 マルチバンド無線通信装置及びフィルタ作動制御方法
CN200941614Y (zh) * 2006-08-02 2007-08-29 冠日通讯科技(深圳)有限公司 一种多频段直放站
KR20130019011A (ko) * 2009-03-03 2013-02-25 인터디지탈 패튼 홀딩스, 인크 시간 인터리빙된 샘플러의 어레이를 구비한 무선 주파수 (rf) 샘플링 장치 및 시나리오 기반의 동적 자원 할당을 위한 방법
JP2011146812A (ja) * 2010-01-12 2011-07-28 Nippon Telegr & Teleph Corp <Ntt> フィルタ装置及びフィルタ方法
CN102291157B (zh) * 2011-05-13 2014-01-01 京信通信系统(中国)有限公司 多制式通道复用电路
CN103412317A (zh) * 2013-08-15 2013-11-27 上海司南卫星导航技术有限公司 实现gnss卫星信号转换为基带信号功能的射频电路结构

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101588184A (zh) * 2009-07-14 2009-11-25 北京天碁科技有限公司 基于多频段的射频收信方法及收信机
US8594559B2 (en) * 2010-09-30 2013-11-26 Nxp, B.V. Combined satellite radio receiver
CN103546102A (zh) * 2012-07-10 2014-01-29 晨星半导体股份有限公司 多重无线电标准的低噪声放大器

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108232392A (zh) * 2017-12-26 2018-06-29 广东盛路通信科技股份有限公司 合路器与功分器一体化的射频器件
CN108566216A (zh) * 2018-03-16 2018-09-21 成都锦江电子系统工程有限公司 射频重构式双通道接收组件
CN108566216B (zh) * 2018-03-16 2023-06-23 成都锦江电子系统工程有限公司 射频重构式双通道接收组件
CN112290973A (zh) * 2020-10-23 2021-01-29 国信军创(岳阳)六九零六科技有限公司 一种合路器
CN113890642A (zh) * 2021-10-09 2022-01-04 中信科移动通信技术股份有限公司 通信系统收信机检验方法及装置
CN113890642B (zh) * 2021-10-09 2023-12-05 中信科移动通信技术股份有限公司 通信系统收信机检验方法及装置
CN115664441A (zh) * 2022-10-21 2023-01-31 电子科技大学 一种基于N-Path陷波器的高动态范围接收机及接收方法
CN115664441B (zh) * 2022-10-21 2023-05-16 电子科技大学 一种基于N-Path陷波器的高动态范围接收机及接收方法

Also Published As

Publication number Publication date
CN106330220A (zh) 2017-01-11
JP2018524884A (ja) 2018-08-30
CN106330220B (zh) 2020-04-28

Similar Documents

Publication Publication Date Title
WO2017000579A1 (zh) 一种信号接收方法及装置、通信设备
CN102780533B (zh) 可适性无线通讯接收器
US10637514B1 (en) Receiver with multi-spectrum parallel amplification
US10230413B2 (en) Filtering architectures and methods for wireless applications
WO2016050062A1 (zh) 射频模块的无源互调pim干扰抵消方法及相关装置
US8818263B1 (en) Circuit isolation using a signal splitter/combiner
WO2021115453A1 (zh) 无线接收机及无线设备
TW201701600A (zh) 具有放大器相位補償之分集接收器前端系統
US9172344B2 (en) Statistical gain control in a receiver
CN210246728U (zh) 用于接收变频器的自动增益组件
US7106232B2 (en) Analog multiplexer and variable gain amplifier for intermediate frequency applications
US9356639B1 (en) Receiver with multi-spectrum parallel amplification
US8909132B2 (en) Bi-directional amplifier with a common amplification path
JP2007221758A (ja) 電話信号除去回路、デジタル放送受信回路及び携帯用デジタル放送受信器
JP5638468B2 (ja) 信号切替装置
WO2017049902A1 (zh) 一种双频段射频信号的接收方法及其装置、基站
US20060178111A1 (en) Apparatus and method for canceling noise in wireless transceiver
JP2003318688A (ja) 差動pinダイオード減衰器
US20030185321A1 (en) Combined multiplexer and switched gain circuit
CN109150216B (zh) 一种双频段接收机及其自动增益控制方法
US9246664B1 (en) Receiver with multi-spectrum parallel amplification
CN106899317B (zh) 一种实现射频调制信号处理的方法、装置及接收机
JP2010233023A (ja) 無線通信装置
US20190068154A1 (en) Multiple-port signal boosters
CN109067413A (zh) 一种高动态范围的超短波信道接收机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16816944

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017564739

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16816944

Country of ref document: EP

Kind code of ref document: A1