WO2017049902A1 - 一种双频段射频信号的接收方法及其装置、基站 - Google Patents
一种双频段射频信号的接收方法及其装置、基站 Download PDFInfo
- Publication number
- WO2017049902A1 WO2017049902A1 PCT/CN2016/080764 CN2016080764W WO2017049902A1 WO 2017049902 A1 WO2017049902 A1 WO 2017049902A1 CN 2016080764 W CN2016080764 W CN 2016080764W WO 2017049902 A1 WO2017049902 A1 WO 2017049902A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- band
- intermediate frequency
- dual
- radio frequency
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/06—Receivers
- H04B1/16—Circuits
Definitions
- This application relates to, but is not limited to, the field of communication technology.
- the communication equipment of the related art generally adopts the following two solutions in the design of the receiving circuit:
- FIG. 1 is an independent channel circuit diagram of the related art. As shown in Figure 1, the F signal and the A signal are processed separately by using two sets of receiving circuits. The specific process is as follows:
- the F signal and the A signal are received by the first sound table filter 11, and the low noise amplifier 12 amplifies the F signal and the A signal, and outputs the signal to the second sound table filter 13 for filtering.
- the frequency converter 14 performs frequency reduction processing, filters out the signals other than the F signal and the A signal through the intermediate frequency filter 15, obtains the F intermediate frequency signal and the A intermediate frequency signal, and further amplifies the F intermediate frequency signal and the A intermediate frequency signal through the gain amplifier 16. And output to the anti-aliasing filter 17 for filtering, and finally an analog-to-digital converter 18 (Analog-to-Digital Converter, abbreviated as: ADC) respectively samples and converts the F intermediate frequency signal and the A intermediate frequency signal;
- ADC Analog-to-Digital Converter
- Figure 2 is a common channel circuit diagram of the related art.
- the F signal and the A signal are uniformly converted by using a set of receiving circuits.
- the processing is as follows: first, the low noise amplifier 21 performs low noise amplification on the F signal and the A signal, and then the acoustic table filter 22 will After the F signal and the A signal are filtered and combined, the output is output to the mixer 23 for frequency reduction processing to obtain an F intermediate frequency signal and an A intermediate frequency signal, and further filtered by the first low pass filter 24, and the gain amplifier 25 is further amplified.
- the second low pass filter 26 is further filtered and finally subjected to acquisition and conversion by an analog to digital converter 27 (ADC).
- ADC analog to digital converter
- the receiving circuit of the related art communication device has a technical problem that a device cannot simultaneously achieve high-performance reception of signals of different frequency bands and high requirements for analog-to-digital converters.
- the present invention provides a method for receiving a dual-band radio frequency signal, a device thereof, and a base station, to solve the technical problem that the single-input single-output cannot be performed in the related art, and a receiving circuit cannot be simultaneously used to achieve high-performance reception and processing of signals in different frequency bands.
- a receiving device for a dual-band radio frequency signal comprising: a shunt module, a mixing module, a combining module and an analog-to-digital conversion module;
- the splitting module is configured to receive a dual-band radio frequency signal including a first radio frequency band and a second radio frequency band, and perform the split processing on the dual-band radio frequency signal to obtain a first radio frequency band signal and a second radio frequency band signal;
- the mixing module is configured to: receive the first radio frequency band signal and the second radio frequency band signal output by the shunt module, and perform frequency reduction processing on the first radio frequency band signal and the second radio frequency band signal respectively Obtaining a corresponding first intermediate frequency band signal and a second intermediate frequency band signal;
- the combining module is configured to: receive the first intermediate frequency band signal and the second intermediate frequency band signal output by the mixing module, and perform the first intermediate frequency band signal and the second intermediate frequency band signal Combining to obtain a dual-band IF signal;
- the analog-to-digital conversion module is configured to: receive the dual-band intermediate frequency signal output by the combining module, and perform analog-to-digital conversion processing on the dual-band intermediate frequency signal to obtain a dual-band intermediate frequency digital signal.
- the branching module includes a branching unit and a filtering unit, where the filtering unit includes a first filtering subunit and a second filtering subunit;
- the branching unit is configured to: divide the dual-band RF signal received by the branching module into two paths The same first dual-band RF signal and the second dual-band RF signal;
- the first filtering sub-unit is configured to: filter out a signal outside the first radio frequency band of the first dual-band radio frequency signal output by the branching unit, to obtain the first radio frequency band signal;
- the second filtering sub-unit is configured to: filter out a signal outside the second radio frequency band of the second dual-band radio frequency signal output by the branching unit to obtain the second radio frequency band signal.
- the receiving device of the dual-band radio frequency signal further includes a signal amplifying module, configured to: divide, by the branching unit, the dual-band radio frequency signal into two identical first-band dual-band radio frequency signals and Before the second dual-band RF signal, the dual-band RF signal is subjected to low-noise amplification processing.
- a signal amplifying module configured to: divide, by the branching unit, the dual-band radio frequency signal into two identical first-band dual-band radio frequency signals and Before the second dual-band RF signal, the dual-band RF signal is subjected to low-noise amplification processing.
- the mixing module includes a first mixing unit and a second mixing unit;
- the first mixing unit is configured to: mix the first radio frequency band signal output by the shunt module with a common local oscillator to obtain the first intermediate frequency band signal;
- the second mixing unit is configured to: mix the second radio frequency band signal output by the shunt module with the common local oscillator to obtain the second intermediate frequency band signal.
- the common local oscillator is a high frequency local oscillator.
- the receiving device of the dual-band radio frequency signal further includes an intermediate frequency filtering module, where the intermediate frequency filtering module includes a first intermediate frequency filtering unit and a second intermediate frequency filtering unit;
- the first intermediate frequency filtering unit is configured to: filter out signals other than the first intermediate frequency band of the first intermediate frequency band signal output by the first mixing unit;
- the second intermediate frequency filtering unit is configured to: filter out signals other than the second intermediate frequency band of the second intermediate frequency band signal output by the second mixing unit.
- the receiving device of the dual-band radio frequency signal further includes a gain amplifying module, where the gain amplifying module includes a first gain amplifying unit and a second gain amplifying unit;
- the first gain amplifying unit is configured to: amplify the first intermediate frequency band signal output by the first intermediate frequency filtering unit;
- the second gain amplifying unit is configured to: amplify the second intermediate frequency band signal output by the second intermediate frequency filtering unit.
- the receiving device of the dual-band radio frequency signal further includes an anti-aliasing filtering module, where the anti-aliasing filtering module includes a first anti-aliasing filtering unit and a second anti-aliasing filtering unit;
- the first anti-aliasing filtering unit is configured to: perform anti-aliasing filtering processing on the first intermediate frequency band signal output by the first gain amplifying unit;
- the second anti-aliasing filtering unit is configured to perform anti-aliasing filtering processing on the first intermediate frequency band signal output by the second gain amplifying unit.
- the signal amplifying module is a low noise amplifier
- the branching unit is a balun splitter
- the first filtering subunit is a first sound table filter
- the second filtering subunit is a a second sound filter
- the first mixing unit is a first mixer
- the second mixing unit is a second mixer
- the first intermediate frequency filtering unit is a first intermediate frequency passive filter.
- the second intermediate frequency filtering unit is a second intermediate frequency passive filter
- the first gain amplifying unit is a first intermediate frequency variable gain amplifier
- the second gain amplifying unit is a second intermediate frequency variable gain amplifier
- the first anti-aliasing filtering unit is a first anti-aliasing filter
- the second anti-aliasing filtering unit is a second anti-aliasing filter
- the combining module 103 is a balun combiner
- the number conversion module 104 is an analog to digital converter
- the low noise amplifier amplifies and outputs a dual band RF signal to the balun splitter, the balun splitter splitting the dual band RF signal into two identical first dual bands Transmitting the first dual-band RF signal to the first sound meter filter, and outputting the second dual-band RF signal to the second sound meter a filter, the first sound table filter filtering the first dual-band radio frequency signal and outputting a first radio frequency band signal to a first mixer, the second sound table filter pairing the second pair
- the frequency band RF signal is filtered to output a second RF band signal to the second mixer, and the first mixer mixes and outputs the first RF band signal output by the first sound table filter with the local oscillator
- the first intermediate frequency band signal is sent to the first intermediate frequency passive filter, and the second mixer mixes the second RF band signal output by the second sound table filter with the local oscillator and outputs the second intermediate frequency Segment signal to second intermediate frequency passive filter
- the first intermediate frequency passive filter filters the first intermediate frequency band signal output by the first mixer and output
- analog to digital conversion module is configured to:
- An intermediate frequency signal in all Nyquist zones except the target Nyquist zone is mirrored into the target Nyquist zone, and an acquisition and conversion of the intermediate frequency signal is performed on the target Nyquist zone.
- a base station comprising: a base station signal processing apparatus and at least one dual-band radio frequency signal receiving apparatus according to any one of the preceding claims; the dual-band radio frequency signal receiving apparatus receives the dual-band radio frequency signal and processes the signal The dual-band intermediate frequency digital signal is then output, and then the dual-band intermediate frequency digital signal is transmitted to the base station signal processing device for further signal processing.
- a method for receiving a dual-band radio frequency signal comprising:
- the dual-band intermediate frequency signal is subjected to analog-to-digital conversion processing to obtain a dual-band intermediate frequency digital signal.
- the splitting the dual-band radio frequency signal to obtain the first radio frequency band signal and the second radio frequency band signal including:
- the method before the dual-band radio frequency signal is subjected to the shunt processing after receiving the dual-band radio frequency signal, the method further includes:
- the bandwidth of the first radio frequency band signal is greater than the bandwidth of the second radio frequency band signal, and the frequency band of the first radio frequency band signal is smaller than the frequency band of the second radio frequency band signal;
- the first radio frequency band signal and the second radio frequency band signal are respectively subjected to frequency reduction processing to obtain a corresponding first intermediate frequency band signal and a second intermediate frequency band signal, including:
- the common local oscillator is a high frequency common local oscillator.
- first radio frequency band signal and the second radio frequency band signal are respectively subjected to frequency down processing, and the first intermediate frequency band signal and the second intermediate frequency band signal are combined and processed Previously, it also included:
- the first intermediate frequency band signal and the second intermediate frequency band signal are Before the combined processing, it also includes:
- the anti-aliasing filtering process is performed on the first intermediate frequency band signal and the second intermediate frequency band signal subjected to de-doping and amplification processing, respectively.
- the performing the analog-to-digital conversion processing on the dual-band intermediate frequency signal comprises:
- An intermediate frequency signal in all Nyquist zones except the target Nyquist zone is mirrored into the target Nyquist zone, and an acquisition and conversion of the intermediate frequency signal is performed on the target Nyquist zone.
- An embodiment of the present invention provides a method for receiving a dual-band radio frequency signal, the method comprising: first receiving a dual-band radio frequency signal, and performing split processing on the signal to obtain two identical radio frequency signals, and then combining the two obtained radio signals.
- the radio frequency signals are respectively down-converted with the common local oscillator, and the corresponding first intermediate frequency band signal and the second intermediate frequency band signal are obtained, and finally the first intermediate frequency band signal and the second intermediate frequency band signal are combined.
- the road processing and acquisition and conversion obtain a dual-band intermediate frequency digital signal; the above method realizes the common channel output of the signal, thereby reducing the sampling rate requirement of the analog-to-digital conversion device during signal acquisition.
- the embodiment of the present invention further provides a dual-band radio frequency signal receiving apparatus and a base station, and the apparatus and the base station implement the signal receiving and processing by using the above-mentioned dual-band radio frequency signal receiving method, so that the signal is finally performed.
- the analog-to-digital conversion acquisition process is performed, the signals of different frequency bands are allocated to different Nyquist zones on the analog-to-digital conversion module, thereby realizing the requirement of reducing the sampling rate of the analog-to-digital conversion module, and achieving the single-band receiver of the related art.
- the performance also has the economic value of a dual-band receiver.
- 1 is a circuit diagram of an independent channel of the related art
- FIG. 3 is a flowchart of a method for receiving a dual-band radio frequency signal according to an embodiment of the present invention
- FIG. 4 is a circuit diagram of a balun splitter according to an embodiment of the present invention.
- FIG. 5 is a circuit diagram of a balun combiner according to an embodiment of the present invention.
- FIG. 6 is an equivalent circuit diagram of a balun splitter provided by the embodiment shown in FIG. 4;
- FIG. 7 is an equivalent circuit diagram of the balun combiner provided in the embodiment shown in Figure 5;
- FIG. 8 is a schematic diagram of a radio frequency signal to an intermediate frequency signal according to an embodiment of the present invention.
- FIG. 9 is a schematic diagram of sampling a dual-band IF signal across a frequency band according to an embodiment of the present invention.
- FIG. 10 is a schematic structural diagram of a device for receiving a dual-band radio frequency signal according to an embodiment of the present disclosure
- FIG. 11 is a schematic structural diagram of another apparatus for receiving a dual-band radio frequency signal according to an embodiment of the present disclosure.
- FIG. 12 is a circuit diagram of a dual-band radio frequency signal receiving apparatus according to an embodiment of the present invention.
- FIG. 3 is a flowchart of a method for receiving a dual-band radio frequency signal according to an embodiment of the present invention
- the method for receiving the dual-band radio frequency signal may include the following steps, that is, S301 to S304:
- S301 Obtain a dual-band radio frequency signal including a first radio frequency band and a second radio frequency band, and perform split processing on the dual-band radio frequency signal to obtain a first radio frequency band signal and a second radio frequency band signal;
- S302 Perform frequency-down processing on the first radio frequency band signal and the second radio frequency band signal respectively to obtain a corresponding first intermediate frequency band signal and a second intermediate frequency band signal;
- the received signal is processed by the first branching and the combining, so that the receiving circuit with one input and one output has high performance to receive and process signals of different frequency bands, thereby improving the receiving device. Performance.
- step S301 performing the branching processing on the dual-band radio frequency signal includes the following steps:
- the dual-band RF signal is divided into two identical first dual-band RF signals and a second dual-band RF signal;
- the second RF band signal is described.
- dividing the dual-band radio frequency signal into two identical first dual-band radio frequency signals and a second dual-band radio frequency signal may be implemented by a splitter to implement shunting
- the splitter uses a balun splitter 31, and the filter 32 employs a bandpass filter, such as a sound table filter.
- the signal splitting and filtering processing is implemented by using the balun splitter 31 and the acoustic table filter 32 in cooperation with each other, and the sound meter filter has an inherent characteristic that the out-of-band impedance is 0,
- the embodiment of the invention is connected in parallel with the balun splitter 31 by utilizing this characteristic of the sound table filter 32, that is, equivalent to the 1:1 parallel connection of the sound table filter 32 through the balun splitter 31, so that the balun
- the voltage ratio of the input and output of the splitter 31 is 1:1, which is equivalent to the single-ended grounding of the balun splitter 31, that is, using the characteristics of the acoustic table filter 32, so that the signal for one frequency band
- the filter 32 has a side impedance of the stop band of 0, equivalent to ground, and the filter 32 is
- FIG. 6 is an equivalent circuit diagram of the balun splitter provided in the embodiment shown in FIG. 4.
- the LNA 33 in FIG. 4 and FIG. 6 is a Low Noise Amplifier. Through this cooperation, not only the signal splitting is realized, but also the circuit insertion loss is theoretically 0, and actually less than 1 dB.
- the method before the splitting process is performed on the dual-band radio frequency signal, after receiving the signal, the method further includes: performing dual-band radio frequency signals on the first radio frequency band and the second radio frequency band The low-noise amplification process is performed; the process further amplifies the noise in the signal, paving the way for further filtering of the signal, thereby better filtering out unwanted clutter signals.
- step S302 the first radio frequency band signal and the second radio frequency band signal are respectively down-converted by using a common local oscillator.
- the method further includes performing denoising and amplifying processing on the first intermediate frequency band signal and the second intermediate frequency band signal, respectively.
- the first intermediate frequency band signal and the second intermediate frequency band signal are de-filtered by an intermediate frequency passive filter (intermediate frequency LC filter), and a gain amplifier is used for further signal amplification processing.
- the signal mixing process is optionally performed using a high frequency common local oscillator.
- the premise of using the high frequency common local oscillator is that the bandwidth of the first radio frequency band signal is greater than the bandwidth of the second radio frequency band signal, and the frequency band of the first radio frequency band signal is smaller than the frequency band of the signal of the second radio frequency band, so that the signal can be mirrored.
- the LC filter It is usually judged by the relative bandwidth whether the LC filter is easy to filter.
- the relative bandwidth here refers to the ratio of the signal bandwidth to the signal center frequency. As shown in FIG.
- a schematic diagram of a radio frequency signal to an intermediate frequency signal wherein a frequency band of a first radio frequency band signal is lower than a frequency band of a second radio frequency band signal, and a bandwidth thereof is greater than a bandwidth of the latter. Therefore, after the frequency reduction process, two signal positions are interchanged, that is, the signal with a narrow bandwidth (ie, the signal of the second RF band) is changed from the original high frequency band to the low frequency band, which makes the signal center with narrow bandwidth.
- the frequency becomes smaller than the signal originally in the high frequency band, so that the relative bandwidth becomes larger, and LC filtering is easy to implement. Therefore, under the premise of reducing the requirement of the LC filter by using the high frequency common local oscillator, the bandwidth and frequency band of the two frequency band signals should be limited.
- the method further includes: separately performing de-duplication The first intermediate frequency band signal and the second intermediate frequency band signal after the amplification process are subjected to anti-aliasing filtering processing to optimize the circuit to a greater extent.
- step S303 optionally, the first intermediate frequency band signal and the second intermediate frequency band signal are combined and combined by the balun combiner 41, and the balun combiner 41 is used for The cooperation of the filter 42 for performing the anti-aliasing filtering process reduces the circuit insertion loss.
- FIG. 5 is a circuit diagram of a balun combiner according to an embodiment of the present invention
- FIG. 7 is a balun provided by the embodiment shown in FIG.
- the equivalent circuit diagram of the combiner, ADC43 is an analog-to-digital converter, please refer to the circuit diagram of the balun combiner shown in Figure 5 and the equivalent circuit diagram of the balun combiner shown in Figure 7, the principle and the step S301
- the multiplexer 31 is identical to the vocal filter 32 and will not be described again here.
- FIG. 9 is a schematic diagram of cross-band sampling of a dual-band IF signal according to an embodiment of the present invention, where different frequency bands of the dual-band intermediate frequency signal are used.
- the IF signal is distributed to different Nyquist zones, and then all IF signals are mirrored to the same Nyquist zone for signal acquisition and conversion.
- the analog-to-digital converter only samples the image of one IF signal and another IF signal. Therefore, the analog-to-digital converter sampling rate is reduced without signal aliasing.
- the sampling frequency optionally in this embodiment is 245.76 megahertz (MHz).
- the special sampling frequency and local oscillator frequency are selected here: the local oscillator frequency is Flo, the analog-to-digital converter sampling rate is Fs, and the signals of the two frequency bands are F1 and F2 (F1 ⁇ F2), respectively. They are F1h, F1l, F2h, F2l (F1l ⁇ F1h ⁇ F2l ⁇ F2h). Then, the selection rules of the local oscillator frequency Flo and the analog-to-digital converter sampling rate Fs can satisfy the following conditions:
- a frequency range that is less than twice the bandwidth of a dual-band IF signal which reduces both the sampling rate and signal aliasing.
- the bandwidth of the dual-band IF signal refers to the difference between the maximum frequency and the minimum frequency of the two frequency band signals.
- the signal distribution here is divided by the sampling frequency, and a signal larger than half of the sampling frequency is allocated to one area, and a signal smaller than half of the sampling frequency is allocated to another area.
- Embodiment 2 is a diagrammatic representation of Embodiment 1:
- FIG. 10 is a schematic structural diagram of a dual-band radio frequency signal receiving apparatus according to an embodiment of the present invention.
- the dual-frequency radio frequency signal receiving apparatus of the present embodiment includes a shunt module 101, a mixing module 102, a combining module 103, and an analog-to-digital conversion module 104.
- the shunting module 101 is configured to: receive the first radio frequency band and the second radio frequency band.
- the dual-band radio frequency signal is subjected to shunt processing to obtain the first radio frequency band signal and the second radio frequency band signal, and is output to the mixing module 102;
- the mixing module 102 is configured to: receive the shunt After the first radio frequency band signal and the second radio frequency band signal output by the module 101, the first radio frequency band signal and the second radio frequency band signal are respectively down-converted to obtain a corresponding first intermediate frequency band signal and a second intermediate frequency band signal;
- the combining module 103 is configured to: receive the first intermediate frequency band signal and the second intermediate frequency band signal output by the mixing module 102, and the first intermediate frequency band signal and the The second intermediate frequency band signal is combined to obtain a dual-band intermediate frequency signal;
- the analog-to-digital conversion module 104 is configured to: receive the dual-band intermediate frequency signal output by the combining module 103, and Dual-band intermediate frequency signal converted by analog-digital dual-band digital IF signal.
- FIG. 11 is a schematic structural diagram of another dual-band radio frequency signal receiving apparatus according to an embodiment of the present invention.
- the branching module 101 in this embodiment includes a branching unit 1011 and a filtering unit 1012, wherein the filtering unit 1012 may include a first filtering subunit and a second filtering subunit; the branching unit 1011 is configured to:
- the dual-band RF signal received by the module 101 is divided into two identical first dual-band RF signals and a second dual-band RF signal;
- the first filtering sub-unit is configured to: filter the signal outside the first radio frequency band of the first dual-band radio frequency signal output by the shunting unit 1011 to obtain the first radio frequency band signal;
- the second filtering sub-unit is configured to: filter the signal outside the second radio frequency band of the second dual-band radio frequency signal output by the shunting unit 1011 to obtain the second radio frequency band signal.
- the receiving device of the dual-band radio frequency signal further includes an antenna 100 and a signal.
- the amplifying module 105 is disposed in front of the shunting module 101.
- the receiving device of the dual-band radio frequency signal receives the dual-band radio frequency signal from the outside through the antenna 100, and transmits the signal to the signal amplifying module 105.
- the signal is amplified.
- the module 105 is configured to perform low noise amplification processing on the dual band radio frequency signal.
- the dual-band radio frequency signal received by the splitting unit 1011 is split and processed into two.
- the same signals are the first dual-band RF signal and the second dual-band RF signal, and the first and second dual-band RF signals both contain A and F frequency bands, and then the first dual-band RF signal Transmitting to the first filtering subunit, filtering, by the first filtering subunit, a frequency band signal outside the first radio frequency band, that is, filtering out the A frequency band signal to obtain a F radio frequency band signal; similarly, the second filtering sub
- the processing of the second dual-band RF signal by the unit is the same as the processing of the first dual-band RF signal by the first filtering sub-unit, and finally the A-radio frequency band signal is obtained.
- the mixing module 102 includes a first mixing unit and a second mixing unit;
- the first mixing unit is configured to: mix the first radio frequency band signal output by the shunt module 101 with a common local oscillator to obtain a first intermediate frequency band signal;
- the second mixing unit is configured to: mix the second radio frequency band signal output by the shunt module 101 with the common local oscillator to obtain a second intermediate frequency band signal.
- the common local oscillator in this embodiment is a high frequency common local oscillator
- the mixing module 102 module receives the first and second radio frequency band signals output by the shunt module 101, respectively, and the high frequency common local oscillator signal.
- the mixing is performed to obtain the corresponding first intermediate frequency band signal and the second intermediate frequency band signal, that is, the F intermediate frequency band signal corresponding to the F radio frequency band signal and the A intermediate frequency band signal corresponding to the A radio frequency band signal.
- the receiving device of the dual-band radio frequency signal further includes an intermediate frequency filtering module 106.
- the intermediate frequency filtering module 106 includes a first intermediate frequency filtering unit and a second intermediate frequency filtering unit, and the intermediate frequency filtering module 106 mainly uses a mixing module. The first intermediate frequency band signal outputted by 102 and the unwanted clutter signal in the second intermediate frequency band signal are filtered out.
- the receiving device of the dual-band radio frequency signal further includes a gain amplifying module 107, where the gain amplifying module 107 includes a first gain amplifying unit and a second gain amplifying unit;
- the first gain amplifying unit is configured to: amplify the first intermediate frequency band signal output by the first intermediate frequency filtering unit;
- the second gain amplifying unit is configured to: amplify the second intermediate frequency band signal output by the second intermediate frequency filtering unit.
- the receiving device of the dual-band radio frequency signal further includes an anti-aliasing filtering module 108, where the anti-aliasing filtering module 108 includes a first anti-aliasing filtering unit and a second anti-aliasing filtering unit;
- the first anti-aliasing filtering unit is configured to: perform anti-aliasing filtering processing on the first intermediate frequency band signal output by the first gain amplifying unit;
- the second anti-aliasing filtering unit is configured to perform anti-aliasing filtering processing on the second intermediate frequency band signal output by the second gain amplifying unit.
- the analog-to-digital conversion module 104 is configured to: obtain a frequency band bandwidth between two intermediate frequency bands included in the dual-band intermediate frequency signal output by the combining module 103, and determine a sampling frequency of the analog-to-digital conversion module 104;
- An intermediate frequency signal in all Nyquist zones except the target Nyquist zone is mirrored into the target Nyquist zone and an acquisition of the intermediate frequency signal is performed on the target Nyquist zone.
- the analog-to-digital converter obtains, from the combining module 103, a frequency band bandwidth between two intermediate frequency signals included in the dual-band intermediate frequency signal, where the dual-band intermediate frequency signal is
- the intermediate frequency signal including the two frequency bands A and F determines the sampling frequency of the A- and F-band signals of the analog-to-digital converter, and further determines the Nyquist zone, for example, respectively, is divided into the first Nyquist zone, a second Nyquist zone; the A-band and F-band signals in the dual-band IF signal are then distributed to the first Nyquist zone and the second Nyquist zone, where the A-band signal is assigned to the first Nyquist zone , the F-band signal is allocated to the second Nyquist zone; further, a target Nyquist zone is determined, where the first Nyquist zone is used as the target Nyquist zone; finally, in the second Nyqui
- the signal amplifying module 105 is a low noise amplifier
- the branching unit 1011 is a balun splitter
- the first filtering subunit is a first sound table filter
- the second filtering subunit is a The second sound filter
- the first mixing unit is a first mixer
- the second mixing unit is a second mixer
- the first intermediate frequency filtering unit is a first intermediate frequency passive filter
- the second intermediate frequency filtering unit is a second intermediate frequency passive filter
- the first gain amplifying unit is a first intermediate frequency variable gain amplifier
- the second gain amplifying unit is a second intermediate frequency variable gain amplifier
- the first anti-aliasing filtering unit is a first anti-aliasing filter
- the second anti-aliasing filtering unit is a second anti-aliasing filter
- the combining module is a balun combiner
- the analog-to-digital conversion module is an analog-to-digital converter.
- the specific connection manner of each device is as follows: the low noise amplifier performs low noise amplification on the dual band RF signal and outputs to the balun splitter, and the balun splitter divides the dual band radio frequency signal into two identical channels. Transmitting the first dual-band radio frequency signal and the second dual-band radio frequency signal to the first dual-band RF signal, and outputting the second dual-band radio frequency signal to the a second sound table filter, the first sound table filter filtering the first dual-band radio frequency signal and outputting a first radio frequency band signal to a first mixer, the second sound table filter pair The second dual-band radio frequency signal is filtered to output a second radio frequency band signal to the second mixer, and the first mixer performs the first radio frequency band signal output by the first acoustic table filter and the local oscillator Mixing and outputting the first intermediate frequency band signal to the first intermediate frequency passive filter, the second mixer mixing the second RF band signal output by the second acoustic table filter with the local oscillator and outputting Second intermediate frequency band
- the balun splitter outputs a first intermediate frequency band signal output by the first anti-aliasing filter and a second intermediate frequency band output by the second anti-aliasing filter
- the signal is synthesized into one channel and output to an analog to digital converter for analog to digital conversion.
- FIG. 12 is a circuit diagram of a dual-band radio frequency signal receiving apparatus according to an embodiment of the present invention.
- the signal amplifying module 105 of the present embodiment is a low noise amplifier 105, and a branching unit.
- 1011 is a balun splitter 1011.
- the first filter subunit and the second filter subunit are respectively a sound table filter 10121 and a sound table filter 10122.
- the first mixing unit and the second mixing unit are respectively mixers.
- the first intermediate frequency filtering unit and the second intermediate frequency filtering unit are an intermediate frequency LC filter 1061 and an intermediate frequency LC filter 1062, respectively, and the first gain amplifying unit and the second gain amplifying unit are respectively intermediate frequency variable gain amplifiers.
- an antenna 100 is further disposed in front of the balun splitter 1011, and the dual-band radio frequency signal is received through the antenna 100.
- the dual-band radio frequency signal is a FA radio frequency band signal including two FA bands, and the low noise amplifier 105
- the received dual-band RF signal is subjected to low-noise amplification and then output to the balun splitter 1011.
- the balun splitter 1011 splits the FA RF band signal amplified by the low-noise amplifier 105 into two identical first FAs.
- the radio frequency band signal and the second FA radio frequency band signal, and output the first FA radio frequency band signal to the acoustic table filter 10121, output the second FA radio frequency band signal to the acoustic table filter 10122, and the acoustic table filter 10121 will be the first FA radio frequency
- the frequency band signal is filtered to filter out the frequency band signal outside the F RF frequency band, that is, the signal to be filtered is the A RF frequency band signal, and the corresponding A RF frequency band signal is obtained, and then the A RF frequency band signal is output to the mixed On the frequency converter 1021; the A radio frequency band signal is mixed with the common local oscillator in the mixer 1021, so that the A radio frequency band signal is down-converted to obtain the corresponding F intermediate frequency band signal.
- the F intermediate frequency band signal is subjected to filtering and denoising processing by the intermediate frequency LC filter 1061, and then further amplified by the intermediate frequency variable gain amplifier 1071, and finally a single frequency band F intermediate frequency band signal is obtained and output to Barron On the road 103; similarly, after the second FA radio frequency band signal separated in the balun splitter 1011, respectively, the sound table filter 10122, the mixer 1022, the intermediate frequency LC filter 1062, the intermediate frequency variable gain amplifier 1072 and the balun combiner 103 are processed to finally obtain a single-band A intermediate frequency band signal, and output to the balun combiner 103, and the processing process and the first processing of the first FA RF The process of the band signal is the same.
- the common local oscillator in the circuit shown in FIG. 12 can also be a high frequency common local oscillator, and the frequency of the high frequency common local oscillator is, for example, 2103.36 MHz.
- the balun combiner 103 After the F intermediate frequency band signal and the A intermediate frequency band signal are output to the balun combiner 103, the two signals are combined and processed by the balun combiner 103 to obtain one signal output. Finally, the dual-band intermediate frequency signal is image-captured and converted by the analog-to-digital converter 104 to obtain digital signals of the two frequency bands F and A.
- the balun splitter 1011 and the acoustic table filter 1021 and the acoustic table filter 1022 are used to reduce the insertion loss of the circuit and improve the performance of the receiving device.
- the cooperation method here means that since the sound table filter has the characteristic that the out-of-band impedance is 0, the present invention utilizes the characteristic that the out-of-band impedance is 0, and uses two acoustic table filters to perform 1:1 through the balun splitter.
- the parallel connection allows the balun splitter to have a voltage to input ratio of 1:1 and is equivalent to the single-ended ground of the balun splitter 1011.
- the mixing is performed by using a high-frequency common local oscillator in the mixer, so that it is easier to implement band-pass filtering in the intermediate frequency band signal after mixing, because in the present embodiment, the first RF
- the bandwidth of the frequency band signal (ie, the F-band) needs to be greater than the bandwidth of the second RF frequency band signal (ie, the A-band), and the frequency band of the first RF frequency band signal is smaller than the frequency band of the second RF frequency band signal, so after the signal is mixed
- the relative bandwidth of the second intermediate frequency band signal is large, and band-pass filtering is easy to implement.
- the digital-to-analog converter 104 adopts the Nyquist sampling law, divides the Nyquist zone according to the determined sampling frequency, distributes signals of different frequency bands to different Nyquist zones, and then selects a Nye
- the Quest area is used as a signal sampling target area, and the signals in the remaining Nyquist zone are mirrored into the target Nyquist zone for signal acquisition, thereby reducing the sampling rate requirement for the analog-to-digital converter 47, and the remaining Nana
- the Quest area is all Nyquist zones except the target Nyquist zone.
- a base station comprising a base station signal processing apparatus and at least one receiving device for a dual-band radio frequency signal as described above; and the receiving device of the dual-band radio frequency signal receives the dual-band radio frequency signal and The signal is processed to output a dual-band IF digital signal, and then The dual-band intermediate frequency digital signal is transmitted to the base station signal processing device for further signal processing.
- all or part of the steps of the above embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve.
- the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
- the device/function module/functional unit in the above embodiment When the device/function module/functional unit in the above embodiment is implemented in the form of a software function module and sold or used as a stand-alone product, it can be stored in a computer readable storage medium.
- the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
- two received RF signals are obtained by splitting the received dual-band RF signals, and then the two RF signals obtained by the splitting are respectively subjected to frequency-down processing to obtain corresponding first intermediate frequency band signals and
- the second intermediate frequency band signal is finally combined with the first intermediate frequency band signal and the second intermediate frequency band signal, and is acquired and converted to obtain a dual-band intermediate frequency digital signal, and the embodiment of the invention realizes the common channel output of the signal. , thereby reducing the sampling rate requirements of the analog to digital conversion device during signal acquisition.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Superheterodyne Receivers (AREA)
Abstract
一种双频段射频信号的接收方法及其装置、基站,该装置包括:分路模块设置为:对接收的双频段射频信号进行分路处理得到第一和第二射频频段信号;混频模块设置为:将接收的第一和第二射频频段信号分别进行降频处理得到对应的第一和第二中频频段信号;合路模块设置为:对接收的第一和第二中频频段信号进行合路处理得到双频段中频信号;模数转换模块设置为:对接收额双频段中频信号进行模数转换处理得到双频段中频数字信号。
Description
本申请涉及但不限于通信技术领域。
随着无线通讯的发展,业务的不断扩大,需要更大的带宽承载相关的业务信息,在相关技术中同一款通讯设备要同时支持多个频段的信号,然而这对该通讯设备中的接收电路的性能要求是非常高的。对于非连续带宽的两个频段信号,相关技术的通讯设备在接收电路的设计上通常采用以下两种解决的方案:
方案一,图1为相关技术的独立通道电路图。如图1所示,采用两套接收电路的方式分别对F信号和A信号进行处理,其具体流程如下:
首先由第一声表滤波器11将接收到F信号和A信号,低噪声放大器12对F信号和A信号进行放大,并输出给第二声表滤波器13进行滤波,滤波完成后再由混频器14进行降频处理,经过中频滤波器15滤除F信号和A信号之外的信号,得到F中频信号和A中频信号,再通过增益放大器16将F中频信号和A中频信号进一步的放大,并输出给抗混叠滤波器17进行滤波,最后模数转换器18(Analog-to-Digital Converter,简称为:ADC)分别对F中频信号和A中频信号进行采样转换;
方案二,图2为相关技术的共通道电路图。如图2,采用一套接收电路的方式对F信号和A信号进行统一转换处理,其处理过程为:首先低噪声放大器21将F信号和A信号进行低噪声放大,然后声表滤波器22将F信号和A信号滤波并合路后,输出给混频器23进行降频处理,得到F中频信号和A中频信号,进一步的,由第一低通滤波器24滤波,增益放大器25进一步放大,第二低通滤波器26进一步滤波后,最后通过模数转换器27(ADC)进行采集转换。
上述两种方案,都存在不同的缺陷。方案一对电路板的占用面积过大,
且成本很高;方案二在中频部分对两个信号合路的同时,对于互调杂散不能有效的抑制,个别频点阻塞性能无法保证,此外,对模数转换器件的采样速率要求很高。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
相关技术通讯设备的接收电路都存在一套装置不能同时实现高性能地接收不同频段信号和对模数转换器要求高的技术问题。
本文提供一种双频段射频信号的接收方法及其装置、基站,以解决相关技术中不能进行单输入单输出和不能同时采用一个接收电路实现高性能的接收和处理不同频段的信号的技术问题。
一种双频段射频信号的接收装置,包括:分路模块、混频模块、合路模块和模数转换模块;
所述分路模块设置为:接收包含第一射频频段和第二射频频段的双频段射频信号,并将所述双频段射频信号进行分路处理得到第一射频频段信号和第二射频频段信号;
所述混频模块设置为:接收所述分路模块输出的第一射频频段信号和第二射频频段信号,并将所述第一射频频段信号和所述第二射频频段信号分别进行降频处理得到对应的第一中频频段信号和第二中频频段信号;
所述合路模块设置为:接收所述混频模块输出的第一中频频段信号和第二中频频段信号,并将所述第一中频频段信号和所述第二中频频段信号进行合路处理得到双频段中频信号;
所述模数转换模块设置为:接收所述合路模块输出的双频段中频信号,并将所述双频段中频信号进行模数转换处理得到双频段中频数字信号。
可选地,所述分路模块包括分路单元和滤波单元,所述滤波单元包括第一滤波子单元和第二滤波子单元;
所述分路单元设置为:将所述分路模块接收的双频段射频信号分成两路
相同的第一双频段射频信号和第二双频段射频信号;
所述第一滤波子单元设置为:将所述分路单元输出的第一双频段射频信号中第一射频频段外的信号滤除,得到所述第一射频频段信号;
所述第二滤波子单元设置为:将所述分路单元输出的第二双频段射频信号中第二射频频段外的信号滤除,得到所述第二射频频段信号。
可选地,所述双频段射频信号的接收装置还包括信号放大模块,设置为:在所述分路单元将所述双频段射频信号分成两路相同的所述第一双频段射频信号和所述第二双频段射频信号之前,对所述双频段射频信号进行低噪声放大处理。
可选地,所述混频模块包括第一混频单元和第二混频单元;
所述第一混频单元设置为:将所述分路模块输出的第一射频频段信号与共本振进行混频,得到所述第一中频频段信号;
所述第二混频单元设置为:将所述分路模块输出的第二射频频段信号与所述共本振进行混频,得到所述第二中频频段信号。
可选地,所述共本振为高频本振。
可选地,所述双频段射频信号的接收装置还包括中频滤波模块,所述中频滤波模块包括第一中频滤波单元和第二中频滤波单元;
所述第一中频滤波单元设置为:将所述第一混频单元输出的第一中频频段信号中除所述第一中频频段外的信号滤除;
所述第二中频滤波单元设置为:将所述第二混频单元输出的第二中频频段信号中除所述第二中频频段外的信号滤除。
可选地,所述双频段射频信号的接收装置还包括增益放大模块,所述增益放大模块包括第一增益放大单元和第二增益放大单元;
所述第一增益放大单元设置为:将所述第一中频滤波单元输出的第一中频频段信号放大;
所述第二增益放大单元设置为:将所述第二中频滤波单元输出的第二中频频段信号放大。
可选地,所述双频段射频信号的接收装置还包括抗混叠滤波模块,所述抗混叠滤波模块包括第一抗混叠滤波单元和第二抗混叠滤波单元;
所述第一抗混叠滤波单元设置为:对所述第一增益放大单元输出的第一中频频段信号进行抗混叠滤波处理;
所述第二抗混叠滤波单元设置为:对所述第二增益放大单元输出的第一中频频段信号进行抗混叠滤波处理。
可选地,所述信号放大模块为低噪声放大器,所述分路单元为巴伦分路器,所述第一滤波子单元为第一声表滤波器,所述第二滤波子单元为第二声表滤波器,所述第一混频单元为第一混频器,所述第二混频单元为第二混频器,所述第一中频滤波单元为第一中频无源滤波器,所述第二中频滤波单元为第二中频无源滤波器,所述第一增益放大单元为第一中频可变增益放大器,所述第二增益放大单元为第二中频可变增益放大器,所述第一抗混叠滤波单元为第一抗混叠滤波器,所述第二抗混叠滤波单元为第二抗混叠滤波器,所述合路模块103为巴伦合路器,所述模数转换模块104为模数转换器;
所述低噪声放大器将双频段射频信号进行低噪声放大并输出到所述巴伦分路器,所述巴伦分路器将所述双频段射频信号分成两路相同的所述第一双频段射频信号和所述第二双频段射频信号,并将所述第一双频段射频信号输出给所述第一声表滤波器,将所述第二双频段射频信号输出给所述第二声表滤波器,所述第一声表滤波器对所述第一双频段射频信号进行滤波并输出第一射频频段信号给第一混频器,所述第二声表滤波器对所述第二双频段射频信号进行滤波并输出第二射频频段信号给第二混频器,所述第一混频器将所述第一声表滤波器输出的第一射频频段信号与本振进行混频并输出第一中频频段信号给第一中频无源滤波器,所述第二混频器将所述第二声表滤波器输出的第二射频频段信号与本振进行混频并输出第二中频频段信号给第二中频无源滤波器,所述第一中频无源滤波器对所述第一混频器输出的第一中频频段信号进行滤波处理并输出给第一中频可变增益放大器,所述第二中频无源滤波器对所述第二混频器输出的第二中频频段信号进行滤波处理并输出给第二中频可变增益放大器,所述第一中频可变增益放大器对所述第一中频无源滤波器输出的第一中频频段信号进行中频信号放大并输出给第一抗混叠滤波
器,所述第二中频可变增益放大器对所述第二中频无源滤波器输出的第二中频频段信号进行中频信号放大并输出给第二抗混叠滤波器,所述第一抗混叠滤波器对所述第一中频无源滤波器输出的第一中频频段信号进行抗混叠滤波处理并输出给所述巴伦合路器,所述第二抗混叠滤波器对所述第二中频无源滤波器输出的第二中频频段信号进行抗混叠滤波处理并输出给所述巴伦合路器。
可选地,所述模数转换模块,是设置为:
获取所述合路模块输出的双频段中频信号中包含的两个中频频段之间的频带带宽,并确定所述模数转换模块的采样频率;
根据所述采样频率划分奈奎斯特区,将所述双频段中频信号中不同频段的中频信号分配到所述模数转换模块不同的奈奎斯特区;
从所有的奈奎斯特区中确定一个目标奈奎斯特区;
将除所述目标奈奎斯特区之外的所有奈奎斯特区中的中频信号镜像到所述目标奈奎斯特区中,并对所述目标奈奎斯特区进行中频信号的采集转换。
一种基站,包括:基站信号处理装置和至少一个如上述任一项所述的双频段射频信号的接收装置;所述双频段射频信号的接收装置接收所述双频段射频信号并对信号进行处理后输出双频段中频数字信号,然后将所述双频段中频数字信号传输给所述基站信号处理装置,并进行进一步的信号处理。
一种双频段射频信号的接收方法,包括:
接收包含第一射频频段和第二射频频段的双频段射频信号,并将所述双频段射频信号进行分路处理得到第一射频频段信号和第二射频频段信号;
将所述第一射频频段信号和所述第二射频频段信号分别进行降频处理得到对应的第一中频频段信号和第二中频频段信号;
将所述第一中频频段信号和所述第二中频频段信号进行合路处理得到双频段中频信号;
将所述双频段中频信号进行模数转换处理得到双频段中频数字信号。
可选地,所述将所述双频段射频信号进行分路处理得到第一射频频段信号和第二射频频段信号,包括:
将所述双频段射频信号分成两路相同的第一双频段射频信号和第二双频段射频信号;
滤除所述第一双频段射频信号中第一射频频段外的信号得到所述第一射频频段信号;并滤除所述第二双频段射频信号中第二射频频段外的信号得到所述第二射频频段信号。
可选地,在接收到所述双频段射频信号之后,将所述双频段射频信号进行分路处理之前,还包括:
对包含所述第一射频频段和所述第二射频频段的双频段射频信号进行低噪声放大处理。
可选地,所述第一射频频段信号的带宽大于所述第二射频频段信号的带宽,且所述第一射频频段信号的频段小于所述第二射频频段信号的频段;所述将所述第一射频频段信号和所述第二射频频段信号分别进行降频处理得到对应的第一中频频段信号和第二中频频段信号,包括:
将所述第一射频频段信号和所述第二射频频段信号分别与共本振进行混频,得到所述第一中频频段信号和所述第二中频频段信号。
可选地,所述共本振为高频共本振。
可选地,在所述第一射频频段信号和所述第二射频频段信号分别进行降频处理之后,且在所述第一中频频段信号和所述第二中频频段信号进行合路处理之前,还包括:
对所述第一中频频段信号和所述第二中频频段信号分别进行去杂和放大处理。
可选地,在对所述第一中频频段信号和所述第二中频频段信号分别进行去杂和放大处理之后,在所述第一中频频段信号和所述第二中频频段信号进行合路处理之前,还包括:
分别对经过去杂和放大处理后的所述第一中频频段信号和所述第二中频频段信号进行抗混叠滤波处理。
可选地,所述将所述双频段中频信号进行模数转换处理,包括:
获取所述双频段中频信号中包含的两个中频频段之间的频带带宽;
根据所述频带带宽计算确定对所述双频段中频信号进行采样的采样频率;
根据所述采样频率划分奈奎斯特区,将所述双频段中频信号中不同频段的中频信号分配到不同的奈奎斯特区;
从所有的奈奎斯特区中确定一个目标奈奎斯特区;
将除所述目标奈奎斯特区之外的所有奈奎斯特区中的中频信号镜像到所述目标奈奎斯特区中,并对所述目标奈奎斯特区进行中频信号的采集转换。
本发明实施例提供了一种双频段射频信号的接收方法,该方法包括首先接收一个双频段射频信号,通过将该信号进行分路处理得到两路相同的射频信号,然后将分路得到的两路射频信号分别与共本振混频进行降频处理,得到对应的第一中频频段信号和第二中频频段信号,最后将所述第一中频频段信号和第二中频频段信号进行合路处理,并采集转换得到双频段中频数字信号;上述方法实现了信号的共通道输出,从而降低了在信号采集时,对模数转换器件的采样速率的要求。
另外,本发明实施例还供了一种双频段射频信号的接收装置和基站,该装置和基站是通过采用上述双频段射频信号的接收方法来实现信号的接收和处理,使得最后在进行信号的模数转换采集处理时,将不同频段的信号分配到模数转换模块上不同的奈奎斯特区,从而实现了降低了对模数转换模块的采样速率的要求,达到相关技术的单频段接收机的性能,又具有双频段接收机的经济价值。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为相关技术的独立通道电路图;
图2为相关技术的共通道电路图;
图3为本发明实施例提供的一种双频段射频信号的接收方法流程图;
图4为本发明实施例提供的一种巴伦分路器的电路图;
图5为本发明实施例提供的一种巴伦合路器的电路图;
图6为图4所示实施例提供的巴伦分路器的等效电路图;
图7为图5所示实施例提供的巴伦合路器的等效电路图;
图8为本发明实施例提供的一种射频信号转中频信号的示意图;
图9为本发明实施例提供的一种双频段中频信号跨频段采样的示意图;
图10为本发明实施例提供的一种双频段射频信号的接收装置的结构示意图;
图11为本发明实施例提供的另一种双频段射频信号的接收装置的结构示意图;
图12为本发明实施例提供的一种双频段射频信号的接收装置的电路图。
下文中将结合附图对本发明的实施方式进行详细说明。需要说明的是,在不冲突的情况下,本文中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
下面通过具体实施方式结合附图对本发明作进一步详细说明。
实施例一
请参考图3,图3为本发明实施例提供的一种双频段射频信号的接收方法流程图;
在本实施例中,所述双频段射频信号的接收方法可以包括以下步骤,即S301~S304:
S301,获取包含第一射频频段和第二射频频段的双频段射频信号,并将所述双频段射频信号进行分路处理得到第一射频频段信号和第二射频频段信号;
S302,将所述第一射频频段信号和所述第二射频频段信号分别进行降频处理得到对应的第一中频频段信号和第二中频频段信号;
S303,将所述第一中频频段信号和所述第二中频频段信号进行合路处理得到双频段中频信号;
S304,将所述双频段中频信号进行模数转换处理得到双频段中频数字信号。
上述所有步骤中,接收到的信号通过先分路后合路的处理方式,实现了同时采用一路输入和一路输出的接收电路高性能的接收和处理不同频段的信号的有益效果,从而提高接收装置的性能。
可选地,在步骤S301中,将所述双频段射频信号进行分路处理包括以下步骤:
首先,将双频段射频信号分成两路相同的第一双频段射频信号和第二双频段射频信号;
然后,滤除所述第一双频段射频信号中第一射频频段外的信号得到所述第一射频频段信号;并滤除所述第二双频段射频信号中第二射频频段外的信号得到所述第二射频频段信号。
在本实施例中,可选地,将所述双频段射频信号分成两路相同的第一双频段射频信号和第二双频段射频信号可以是通过分路器实现分路;
滤除所述第一双频段射频信号中第一射频频段外的信号以及滤除所述第二双频段射频信号中第二射频频段外的信号,可以是通过带通滤波器进行滤波处理,并得到所述第一射频频段信号和第二射频频段信号。
如图4所示,为本实施例提供的一种巴伦合路器的电路图。可选地,所述分路器采用巴伦分路器31,滤波器32采用带通滤波器,比如:声表滤波器。在本实施例中,通过采用巴伦分路器31和声表滤波器32相互配合的方式实现信号的分路和滤波处理,并且该声表滤波器具有带外阻抗为0的固有特性,本发明实施例通过利用声表滤波器32的这个特性,与巴伦分路器31并联连接,即相当于该声表滤波器32通过巴伦分路器31进行1:1的并联,使得巴伦分路器31的输入与输出的电压比值为1:1,等效于巴伦分路器31的单端接地,也就是说,利用声表滤波器32这个特性,使得对一个频段的信号,滤波器32为阻带的一侧阻抗为0,等效为接地,滤波器32为通带的一侧可
以低插损通过,反之亦然。图6为图4所示实施例提供的巴伦分路器的等效电路图,请参考图6,图4和图6中的LNA33为低噪声放大器(Low Noise Amplifier)。通过这种配合,不仅实现了信号的分路,还使得电路插损理论上为0,实际上也是小于1分贝。
可选地,在本实施例中,在对所述双频段射频信号进行分路处理之前,接收信号之后还包括:对包含所述第一射频频段和所述第二射频频段的双频段射频信号进行低噪声放大处理;该处理过程将信号中的噪声进一步的放大,为后面对信号进一步滤波处理做了铺垫,更好的滤除无用的杂波信号。
可选地,在步骤S302中,采用了共本振的方式,分别将第一射频频段信号和第二射频频段信号进行降频处理。
可选地,在本实施例中,在步骤S302之后,且在步骤S303之前还包括:对所述第一中频频段信号和所述第二中频频段信号分别进行去杂和放大处理。可选地,采用中频无源滤波器(中频LC滤波器)对所述第一中频频段信号和所述第二中频频段信号进行去杂滤波,并采用增益放大器作进一步的信号放大处理。
在本实施例中,可选地,采用高频共本振进行信号混频处理。采用高频共本振的前提是第一射频频段信号的带宽需大于第二射频频段信号的带宽,并且第一射频频段信号的频段小于要第二射频频段信号的频段,这样才能在信号镜像的同时降低对LC滤波器的要求。通常由相对带宽来判断LC滤波器滤波是否容易,这里的相对带宽是指信号带宽与信号中心频率的比值。如图8所示,为本发明实施例提供的一种射频信号转中频信号的示意图,由于第一射频频段信号的频段低于第二射频频段信号的频段,且其带宽也大于后者的带宽,因此在降频处理后,发生两个信号位置互换的现象,也就是说带宽窄的信号(即第二射频频段信号)由原来的高频段变为低频段,这使得带宽窄的信号中心频率相对原来在高频段的信号而变小,从而使得相对带宽变大,LC滤波就容易实现。所以利用高频共本振降低对LC滤波器的要求的前提下要对两路频段信号的带宽及频段做限定。
可选地,在本实施例中,在步骤S303之前,在对所述第一中频频段信号和第二中频频段信号进行去杂和放大处理之后,还包括:分别对经过去杂和
放大处理后的所述第一中频频段信号和所述第二中频频段信号进行抗混叠滤波处理,更大程度的优化电路。
在步骤S303中,可选地,将所述第一中频频段信号和第二中频频段信号进行合路通过巴伦合路器41实现合路,所述巴伦合路器41与用于进行抗混叠滤波处理的滤波器42的配合降低了电路插损,图5为本发明实施例提供的一种巴伦合路器的电路图,图7为图5所示实施例提供的巴伦合路器的等效电路图,ADC43为模数转换器,请参考图5所示巴伦合路器的电路图和图7所示巴伦合路器的等效电路图,其原理与步骤S301中巴伦分路器31与声表滤波器32配合的是一样的,在这里就不再赘述了。
因为相关技术的模数转换器在进行数据采样时对采样频率有很高的要求,必须大于两倍的信号带宽才能防止信号之间混叠的现象发生,这导致对模数转换器的采样速率有很高的要求,但是高采样率大动态范围的模数转换器成本较高不宜采用。所以本实施例采用特殊的采样频率划分奈奎斯特区,请参考图9,图9为本发明实施例提供的一种双频段中频信号跨频段采样的示意图,将双频段中频信号中不同频段的中频信号分配到不同奈奎斯特区,然后将所有中频信号都镜像到同一个奈奎斯特区后进行信号采集转换,事实上模数转换器只是对一个中频信号的镜像和另一个中频信号进行采样,从而在降低模数转换器采样速率的同时不会出现信号混叠的现象。本实施例中可选地采样频率是245.76兆赫兹(MHz)。
这里的特殊采样频率和本振频率的选取规则是:假设本振频率为Flo,模数转换器采样率为Fs,两个频段的信号分别为F1、F2(F1<F2),其频段截止点分别为F1h,F1l,F2h,F2l(F1l<F1h<F2l<F2h)。则本振频率Flo和模数转换器采样率Fs的选取规则可以满足如下条件:
(1)、Fs+F1h+F2h<2Flo
(2)、Fs>Flo-F1l
(3)、Fs/2>Flo-F2l
(4)、Fs/2<Flo-F1h
因此,通过对两个频段信号的频率和本振频率的选取的综合考量,选取
了低于双频段中频信号的两倍带宽的频率范围,所述频率范围既能降低采样速率又能防止信号混叠。所述双频段中频信号的带宽是指两个频段信号中最大频率与最小频率的差值。这里的信号分配是通过采样频率进行划分,将大于采样频率一半的信号分配到一个区,小于采样频率一半的信号分配到另一个区。
实施例二:
如图10所示,为本发明实施提供的一种双频段射频信号的接收装置的结构示意图。本实施的双频射频信号接收装置包括分路模块101、混频模块102、合路模块103和模数转换模块104;通过分路模块101设置为:接收包含第一射频频段和第二射频频段的双频段射频信号,将所述双频段射频信号进行分路处理得到第一射频频段信号和第二射频频段信号,并且输出给混频模块102;混频模块102设置为:接收所述分路模块101输出的第一射频频段信号和第二射频频段信号后,并将所述第一射频频段信号和所述第二射频频段信号分别进行降频处理,得到对应的第一中频频段信号和第二中频频段信号;合路模块103设置为:接收所述混频模块102输出的第一中频频段信号和第二中频频段信号,并将所述第一中频频段信号和所述第二中频频段信号进行合路处理得到双频段中频信号;模数转换模块104设置为:接收所述合路模块103输出的双频段中频信号,并将所述双频段中频信号进行模数转换得到双频段中频数字信号。
可选地,如图11所示,为本发明实施例提供的另一种双频段射频信号的接收装置的结构示意图。本实施例中的分路模块101包括分路单元1011和滤波单元1012,其中,滤波单元1012可以包括第一滤波子单元和第二滤波子单元;分路单元1011设置为:将所述分路模块101接收的双频段射频信号分成两路相同的第一双频段射频信号和第二双频段射频信号;
第一滤波子单元设置为:将所述分路单元1011输出的第一双频段射频信号中第一射频频段外的信号滤除,得到所述第一射频频段信号;
第二滤波子单元设置为:将所述分路单元1011输出的第二双频段射频信号中第二射频频段外的信号滤除,得到所述第二射频频段信号。
在本实施例中,所述双频段射频信号的接收装置还包括天线100和信号
放大模块105,信号放大模块105设置于分路模块101之前;所述双频段射频信号的接收装置通过天线100从外界接收双频段射频信号,并传送至信号放大模块105,可选地,信号放大模块105设置为:对所述双频段射频信号进行低噪声放大处理。
在本实施例中,可选地,当天线100从外界接收到一个包含A、F两频段信号的双频段射频信号时,分路单元1011接收到的双频段射频信号进行分路处理,分成两路相同的信号,分别为第一双频段射频信号和第二双频段射频信号,且该第一、第二双频段射频信号均包含有A、F两频段信号,然后将第一双频段射频信号传输至所述第一滤波子单元,由所述第一滤波子单元滤除第一射频频段之外的频段信号,即滤除A频段信号,得到F射频频段信号;同理,第二滤波子单元对第二双频段射频信号的处理与第一滤波子单元对第一双频段射频信号的处理过程是一样的,最后得到的是A射频频段信号。
可选地,在本实施例中,混频模块102包括第一混频单元和第二混频单元;
第一混频单元设置为:将所述分路模块101输出的第一射频频段信号与共本振进行混频,得到第一中频频段信号;
第二混频单元设置为:将分路模块101输出的第二射频频段信号与上述共本振进行混频,得到第二中频频段信号。
可选地,本实施例中的共本振为高频共本振,混频模块102模块接收到分路模块101输出的第一、第二射频频段信号后,分别与高频共本振信号进行混频,得到相应的第一中频频段信号和第二中频频段信号,即是上述F射频频段信号对应的F中频频段信号和A射频频段信号对应的A中频频段信号。
可选地,在本实施例中,双频段射频信号的接收装置还包括中频滤波模块106,中频滤波模块106包括第一中频滤波单元和第二中频滤波单元,中频滤波模块106主要将混频模块102输出的第一中频频段信号和第二中频频段信号中无用的杂波信号滤除。
可选地,在本实施例中,双频段射频信号的接收装置还包括增益放大模块107,增益放大模块107包括第一增益放大单元和第二增益放大单元;
第一增益放大单元设置为:将第一中频滤波单元输出的第一中频频段信号放大;
第二增益放大单元设置为:将第二中频滤波单元输出的第二中频频段信号放大。
可选地,在本实施例中,双频段射频信号的接收装置还包括抗混叠滤波模块108,抗混叠滤波模块108包括第一抗混叠滤波单元和第二抗混叠滤波单元;
第一抗混叠滤波单元设置为:对第一增益放大单元输出的第一中频频段信号进行抗混叠滤波处理;
第二抗混叠滤波单元设置为:对第二增益放大单元输出的第二中频频段信号进行抗混叠滤波处理。
模数转换模块104,是设置为:获取合路模块103输出的双频段中频信号中包含的两个中频频段之间的频带带宽,并确定模数转换模块104的采样频率;
根据所述采样频率划分奈奎斯特区,将所述双频段中频信号中不同频段的中频信号分配到模数转换模块104不同的奈奎斯特区;
从所有的奈奎斯特区中确定一个目标奈奎斯特区;
将除所述目标奈奎斯特区之外的所有奈奎斯特区中的中频信号镜像到所述目标奈奎斯特区中并对所述目标奈奎斯特区进行中频信号的采集转换。
可选地,模数转换模块104为模数转换器时,模数转换器从合路模块103中获取双频段中频信号中包含的两个中频信号之间的频带带宽,该双频段中频信号为包含A、F两个频段信号的中频信号,确定模数转换器对A、F两频段信号的采样频率,进一步的确定划分奈奎斯特区,例如:分别划分为第一奈奎斯特区、第二奈奎斯特区;然后将所述双频段中频信号中的A、F频段信号分配到第一奈奎斯特区和第二奈奎斯特区,这里将A频段信号分配到第一奈奎斯特区、F频段信号分配到第二奈奎斯特区;进一步的,确定一个目标奈奎斯特区,这里以第一奈奎斯特区作为目标奈奎斯特区;最后,将第二奈奎斯特区中的F频段信号镜像到第一奈奎斯特区中进行所有信号的采集转
换。
在本实施例中,可选地,信号放大模块105为低噪声放大器,分路单元1011为巴伦分路器,第一滤波子单元为第一声表滤波器,第二滤波子单元为第二声表滤波器,第一混频单元为第一混频器,第二混频单元为第二混频器,第一中频滤波单元为第一中频无源滤波器,第二中频滤波单元为第二中频无源滤波器,第一增益放大单元为第一中频可变增益放大器,第二增益放大单元为第二中频可变增益放大器,第一抗混叠滤波单元为第一抗混叠滤波器,第二抗混叠滤波单元为第二抗混叠滤波器,合路模块为巴伦合路器,模数转换模块为模数转换器。
可选地,各个器件的具体连接方式如下:低噪声放大器将双频段射频信号进行低噪声放大并输出到巴伦分路器,巴伦分路器将所述双频段射频信号分成两路相同的所述第一双频段射频信号和所述第二双频段射频信号,并将所述第一双频段射频信号输出给第一声表滤波器,将所述第二双频段射频信号输出给所述第二声表滤波器,所述第一声表滤波器对所述第一双频段射频信号进行滤波并输出第一射频频段信号给第一混频器,所述第二声表滤波器对所述第二双频段射频信号进行滤波并输出第二射频频段信号给第二混频器,所述第一混频器将所述第一声表滤波器输出的第一射频频段信号与本振进行混频并输出第一中频频段信号给第一中频无源滤波器,所述第二混频器将所述第二声表滤波器输出的第二射频频段信号与本振进行混频并输出第二中频频段信号给第二中频无源滤波器,所述第一中频无源滤波器对所述第一混频器输出的第一中频频段信号进行滤波处理并输出给第一中频可变增益放大器,所述第二中频无源滤波器对所述第二混频器输出的第二中频频段信号进行滤波处理并输出给第二中频可变增益放大器,所述第一中频可变增益放大器对所述第一中频无源滤波器输出的第一中频频段信号进行中频信号放大并输出给第一抗混叠滤波器,所述第二中频可变增益放大器对所述第二中频无源滤波器输出的第二中频频段信号进行中频信号放大并输出给第二抗混叠滤波器,所述第一抗混叠滤波器对所述第一中频无源滤波器输出的第一中频频段信号进行抗混叠滤波处理并输出给巴伦合路器,所述第二抗混叠滤波器对所述第二中频无源滤波器输出的第二中频频段信号进行抗混叠滤波处理并
输出给所述巴伦合路器,巴伦分路器将所述第一抗混叠滤波器输出的第一中频频段信号和所述第二抗混叠滤波器输出的第二中频频段信号合成一路信息并输出给模数转换器进行模数变换。
实施例三
本实施例将模块化的双频段射频信号接收装置具体到电子元件来说明本发明双频段射频信号接收装置的具体结构和工作流程。如图12所示,为本发明实施例提供的一种双频段射频信号的接收装置的电路图,在实施例二的基础上,本实施例的信号放大模块105为低噪声放大器105,分路单元1011为巴伦分路器1011,第一滤波子单元和第二滤波子单元分别为声表滤波器10121和声表滤波器10122,第一混频单元和第二混频单元分别为混频器1021和混频器1022,第一中频滤波单元和第二中频滤波单元分别为中频LC滤波器1061和中频LC滤波器1062,第一增益放大单元和第二增益放大单元分别为中频可变增益放大器1071和中频可变增益放大器1072,合路模块103为巴伦合路器103,模数转换模块104为模数转换器104。
在本实施例中,在巴伦分路器1011之前还设有天线100,通过天线100接收双频段射频信号,该双频段射频信号为包含FA两频段的FA射频频段信号,低噪声放大器105将接收到的双频段射频信号进行低噪声放大,然后输出到巴伦分路器1011上,巴伦分路器1011将经过低噪声放大器105放大后的FA射频频段信号分成两路相同的第一FA射频频段信号和第二FA射频频段信号,并输出第一FA射频频段信号给声表滤波器10121,输出第二FA射频频段信号给声表滤波器10122,声表滤波器10121将第一FA射频频段信号进行滤波处理,将F射频频段之外的频段信号滤除掉,即是需要滤除的信号是A射频频段信号,得到相应的A射频频段信号,然后将该A射频频段信号输出到混频器1021上;A射频频段信号在混频器1021中分别与共本振进行混频处理,使得A射频频段信号降频得到相应的F中频频段信号,所述F中频频段信号再经过中频LC滤波器1061的滤波去杂处理,然后通过中频可变增益放大器1071进行进一步的放大处理,最终得到单频段的F中频频段信号,并输出到巴伦合路器103上;同理,在巴伦分路器1011中分出来的第二FA射频频段信号后,分别为声表滤波器10122、混频器1022、中频LC滤波器
1062、中频可变增益放大器1072和巴伦合路器103进行处理,最终得到单频段的A中频频段信号,并输出到巴伦合路器103上,其处理过程与上述处理第一FA射频频段信号的过程是一样的。图12所示电路中的共本振同样可以为高频共本振,该高频共本振的频率例如为2103.36MHz。
在本实施例中,将F中频频段信号和A中频频段信号输出到巴伦合路器103后,由巴伦合路器103将两信号进行合路处理,得到一路信号输出,最后,通过模数转换器104将该双频段中频信号进行镜像采集转换,得到F、A两频段信号的数字信号。
在本实施例中,采用了巴伦分路器1011和声表滤波器1021、声表滤波器1022相互配合的方式降低电路插损,提高接收装置的性能。这里的配合方式是指,因为声表滤波器具有带外阻抗为0的特性,本发明利用带外阻抗为0的这个特性,采用两个声表滤波器通过巴伦分路器进行1:1的并联,使得巴伦分路器的输入与输出的电压比值为1:1,并等效于巴伦分路器1011的单端接地。
在本实施例中,在混频器中采用了高频共本振的方式进行混频,使得混频后输出的中频频段信号实现带通滤波更容易,因为在本实施中,第一射频频段信号(即F频段)的带宽需大于第二射频频段信号(即A频段)的带宽,并且第一射频频段信号的频段要小于第二射频频段信号的频段,所以在信号进行混频后所输出的第一中频频段信号(即F频段)和第二中频频段信号(即A频段)中,第二中频频段信号的相对带宽大,容易实现带通滤波。
在本实施例中,数模转换器104采用奈奎斯特采样定律,根据确定的采样频率划分奈奎斯特区,将不同频段的信号分配到不同的奈奎斯特区中,然后再选择一个奈奎斯特区作为信号采样目标区域,并将其余的奈奎斯特区中的信号镜像到目标奈奎斯特区中进行信号采集,从而降低了对模数转换器47的采样速率要求,上述其余的奈奎斯特区即为除所述目标奈奎斯特区之外的所有奈奎斯特区。
在本发明中,还提供了一种基站,包括基站信号处理装置和至少一个如上所述的双频段射频信号的接收装置;所述双频段射频信号的接收装置接收所述双频段射频信号并对信号进行处理后输出双频段中频数字信号,然后将
所述双频段中频数字信号传输给所述基站信号处理装置,并进行进一步的信号处理。
本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中,所述计算机程序在相应的硬件平台上(如系统、设备、装置、器件等)执行,在执行时,包括方法实施例的步骤之一或其组合。
可选地,上述实施例的全部或部分步骤也可以使用集成电路来实现,这些步骤可以被分别制作成一个个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。
上述实施例中的装置/功能模块/功能单元可以采用通用的计算装置来实现,它们可以集中在单个的计算装置上,也可以分布在多个计算装置所组成的网络上。
上述实施例中的装置/功能模块/功能单元以软件功能模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。上述提到的计算机可读取存储介质可以是只读存储器,磁盘或光盘等。
本发明实施例通过将接收的双频段射频信号进行分路处理得到两路相同的射频信号,然后将分路得到的两路射频信号分别进行降频处理,得到对应的第一中频频段信号和第二中频频段信号,最后将所述第一中频频段信号和第二中频频段信号进行合路处理,并采集转换得到双频段中频数字信号,本发明实施例实现了信号的共通道输出,从而降低了在信号采集时,对模数转换器件的采样速率的要求。
Claims (19)
- 一种双频段射频信号的接收装置,包括:分路模块、混频模块、合路模块和模数转换模块;所述分路模块设置为:接收包含第一射频频段和第二射频频段的双频段射频信号,并将所述双频段射频信号进行分路处理得到第一射频频段信号和第二射频频段信号;所述混频模块设置为:接收所述分路模块输出的第一射频频段信号和第二射频频段信号,并将所述第一射频频段信号和所述第二射频频段信号分别进行降频处理得到对应的第一中频频段信号和第二中频频段信号;所述合路模块设置为:接收所述混频模块输出的第一中频频段信号和第二中频频段信号,并将所述第一中频频段信号和所述第二中频频段信号进行合路处理得到双频段中频信号;所述模数转换模块设置为:接收所述合路模块输出的双频段中频信号,并将所述双频段中频信号进行模数转换处理得到双频段中频数字信号。
- 根据权利要求1所述的双频段射频信号的接收装置,其中,所述分路模块包括分路单元和滤波单元,所述滤波单元包括第一滤波子单元和第二滤波子单元;所述分路单元设置为:将所述分路模块接收的双频段射频信号分成两路相同的第一双频段射频信号和第二双频段射频信号;所述第一滤波子单元设置为:将所述分路单元输出的第一双频段射频信号中第一射频频段外的信号滤除,得到所述第一射频频段信号;所述第二滤波子单元设置为:将所述分路单元输出的第二双频段射频信号中第二射频频段外的信号滤除,得到所述第二射频频段信号。
- 根据权利要求2所述的双频段射频信号的接收装置,还包括信号放大模块,设置为:在所述分路单元将所述双频段射频信号分成两路相同的所述第一双频段射频信号和所述第二双频段射频信号之前,对所述双频段射频信号进行低噪声放大处理。
- 根据权利要求3所述的双频段射频信号的接收装置,其中,所述混频 模块包括第一混频单元和第二混频单元;所述第一混频单元设置为:将所述分路模块输出的第一射频频段信号与共本振进行混频,得到所述第一中频频段信号;所述第二混频单元设置为:将所述分路模块输出的第二射频频段信号与所述共本振进行混频,得到所述第二中频频段信号。
- 根据权利要求4所述的双频段射频信号的接收装置,其中,所述共本振为高频本振。
- 根据权利要求5所述的双频段射频信号的接收装置,还包括中频滤波模块,所述中频滤波模块包括第一中频滤波单元和第二中频滤波单元;所述第一中频滤波单元设置为:将所述第一混频单元输出的第一中频频段信号中除所述第一中频频段外的信号滤除;所述第二中频滤波单元设置为:将所述第二混频单元输出的第二中频频段信号中除所述第二中频频段外的信号滤除。
- 根据权利要求6所述的双频段射频信号的接收装置,还包括增益放大模块,所述增益放大模块包括第一增益放大单元和第二增益放大单元;所述第一增益放大单元设置为:将所述第一中频滤波单元输出的第一中频频段信号放大;所述第二增益放大单元设置为:将所述第二中频滤波单元输出的第二中频频段信号放大。
- 根据权利要求7所述的双频段射频信号的接收装置,还包括抗混叠滤波模块,所述抗混叠滤波模块包括第一抗混叠滤波单元和第二抗混叠滤波单元;所述第一抗混叠滤波单元设置为:对所述第一增益放大单元输出的第一中频频段信号进行抗混叠滤波处理;所述第二抗混叠滤波单元设置为:对所述第二增益放大单元输出的第二中频频段信号进行抗混叠滤波处理。
- 根据权利要求8所述的双频段射频信号的接收装置,其中,所述信号 放大模块为低噪声放大器,所述分路单元为巴伦分路器,所述第一滤波子单元为第一声表滤波器,所述第二滤波子单元为第二声表滤波器,所述第一混频单元为第一混频器,所述第二混频单元为第二混频器,所述第一中频滤波单元为第一中频无源滤波器,所述第二中频滤波单元为第二中频无源滤波器,所述第一增益放大单元为第一中频可变增益放大器,所述第二增益放大单元为第二中频可变增益放大器,所述第一抗混叠滤波单元为第一抗混叠滤波器,所述第二抗混叠滤波单元为第二抗混叠滤波器,所述合路模块103为巴伦合路器,所述模数转换模块104为模数转换器;所述低噪声放大器将双频段射频信号进行低噪声放大并输出到所述巴伦分路器,所述巴伦分路器将所述双频段射频信号分成两路相同的所述第一双频段射频信号和所述第二双频段射频信号,并将所述第一双频段射频信号输出给所述第一声表滤波器,将所述第二双频段射频信号输出给所述第二声表滤波器,所述第一声表滤波器对所述第一双频段射频信号进行滤波并输出第一射频频段信号给第一混频器,所述第二声表滤波器对所述第二双频段射频信号进行滤波并输出第二射频频段信号给第二混频器,所述第一混频器将所述第一声表滤波器输出的第一射频频段信号与本振进行混频并输出第一中频频段信号给第一中频无源滤波器,所述第二混频器将所述第二声表滤波器输出的第二射频频段信号与本振进行混频并输出第二中频频段信号给第二中频无源滤波器,所述第一中频无源滤波器对所述第一混频器输出的第一中频频段信号进行滤波处理并输出给第一中频可变增益放大器,所述第二中频无源滤波器对所述第二混频器输出的第二中频频段信号进行滤波处理并输出给第二中频可变增益放大器,所述第一中频可变增益放大器对所述第一中频无源滤波器输出的第一中频频段信号进行中频信号放大并输出给第一抗混叠滤波器,所述第二中频可变增益放大器对所述第二中频无源滤波器输出的第二中频频段信号进行中频信号放大并输出给第二抗混叠滤波器,所述第一抗混叠滤波器对所述第一中频无源滤波器输出的第一中频频段信号进行抗混叠滤波处理并输出给所述巴伦合路器,所述第二抗混叠滤波器对所述第二中频无源滤波器输出的第二中频频段信号进行抗混叠滤波处理并输出给所述巴伦合路器。
- 根据权利要求1-9任一项所述的双频段射频信号的接收装置,其中,所述模数转换模块,是设置为:获取所述合路模块输出的双频段中频信号中包含的两个中频频段之间的频带带宽,并确定所述模数转换模块的采样频率;根据所述采样频率划分奈奎斯特区,将所述双频段中频信号中不同频段的中频信号分配到所述模数转换模块不同的奈奎斯特区;从所有的奈奎斯特区中确定一个目标奈奎斯特区;将除所述目标奈奎斯特区之外的所有奈奎斯特区中的中频信号镜像到所述目标奈奎斯特区中,并对所述目标奈奎斯特区进行中频信号的采集转换。
- 一种基站,包括:基站信号处理装置和至少一个如权利要求1-10任一项所述的双频段射频信号的接收装置;所述双频段射频信号的接收装置接收所述双频段射频信号并对信号进行处理后输出双频段中频数字信号,然后将所述双频段中频数字信号传输给所述基站信号处理装置,并进行进一步的信号处理。
- 一种双频段射频信号的接收方法,包括:接收包含第一射频频段和第二射频频段的双频段射频信号,并将所述双频段射频信号进行分路处理得到第一射频频段信号和第二射频频段信号;将所述第一射频频段信号和所述第二射频频段信号分别进行降频处理得到对应的第一中频频段信号和第二中频频段信号;将所述第一中频频段信号和所述第二中频频段信号进行合路处理得到双频段中频信号;将所述双频段中频信号进行模数转换处理得到双频段中频数字信号。
- 根据权利要求12所述的双频段射频信号的接收方法,其中,所述将所述双频段射频信号进行分路处理得到第一射频频段信号和第二射频频段信号,包括:将所述双频段射频信号分成两路相同的第一双频段射频信号和第二双频段射频信号;滤除所述第一双频段射频信号中第一射频频段外的信号得到所述第一射频频段信号;并滤除所述第二双频段射频信号中第二射频频段外的信号得到所述第二射频频段信号。
- 根据权利要求13所述的双频段射频信号的接收方法,其中,在接收到所述双频段射频信号之后,将所述双频段射频信号进行分路处理之前,还包括:对包含所述第一射频频段和所述第二射频频段的双频段射频信号进行低噪声放大处理。
- 根据权利要求12所述的双频段射频信号的接收方法,其中,所述第一射频频段信号的带宽大于所述第二射频频段信号的带宽,且所述第一射频频段信号的频段小于所述第二射频频段信号的频段;所述将所述第一射频频段信号和所述第二射频频段信号分别进行降频处理得到对应的第一中频频段信号和第二中频频段信号,包括:将所述第一射频频段信号和所述第二射频频段信号分别与共本振进行混频,得到所述第一中频频段信号和所述第二中频频段信号。
- 根据权利要求15所述的双频段射频信号的接收方法,其中,所述共本振为高频共本振。
- 根据权利要求12-16任一项所述的双频段射频信号的接收方法,其中,在所述第一射频频段信号和所述第二射频频段信号分别进行降频处理之后,且在所述第一中频频段信号和所述第二中频频段信号进行合路处理之前,还包括:对所述第一中频频段信号和所述第二中频频段信号分别进行去杂和放大处理。
- 根据权利要求17所述的双频段射频信号的接收方法,其中,在对所述第一中频频段信号和所述第二中频频段信号分别进行去杂和放大处理之后,在所述第一中频频段信号和所述第二中频频段信号进行合路处理之前,还包括:分别对经过去杂和放大处理后的所述第一中频频段信号和所述第二中频 频段信号进行抗混叠滤波处理。
- 根据权利要求12-16任一项所述的双频段射频信号的接收方法,其中,所述将所述双频段中频信号进行模数转换处理,包括:获取所述双频段中频信号中包含的两个中频频段之间的频带带宽;根据所述频带带宽计算确定对所述双频段中频信号进行采样的采样频率;根据所述采样频率划分奈奎斯特区,将所述双频段中频信号中不同频段的中频信号分配到不同的奈奎斯特区;从所有的奈奎斯特区中确定一个目标奈奎斯特区;将除所述目标奈奎斯特区之外的所有奈奎斯特区中的中频信号镜像到所述目标奈奎斯特区中,并对所述目标奈奎斯特区进行中频信号的采集转换。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510613057.3 | 2015-09-23 | ||
CN201510613057.3A CN106549684B (zh) | 2015-09-23 | 2015-09-23 | 一种双频段射频信号的接收方法及其装置、基站 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2017049902A1 true WO2017049902A1 (zh) | 2017-03-30 |
Family
ID=58365152
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2016/080764 WO2017049902A1 (zh) | 2015-09-23 | 2016-04-29 | 一种双频段射频信号的接收方法及其装置、基站 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN106549684B (zh) |
WO (1) | WO2017049902A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112152690A (zh) * | 2020-09-18 | 2020-12-29 | Oppo广东移动通信有限公司 | 分集接收装置、设备、方法和计算机可读存储介质 |
CN115441938A (zh) * | 2022-09-07 | 2022-12-06 | 中国电子科技集团公司第五十四研究所 | 一种小型化q频段双通道下变频器 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109756238A (zh) * | 2017-11-08 | 2019-05-14 | 中兴通讯股份有限公司 | 一种多频段信号的处理方法及装置 |
CN113765614B (zh) * | 2021-09-08 | 2023-06-23 | 中国科学院新疆天文台 | 一种提高paf数据处理终端接收信息效率的系统及方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101583210A (zh) * | 2009-04-08 | 2009-11-18 | 深圳市信特科技有限公司 | 一种多频段自激干扰消除直放站 |
CN101629996A (zh) * | 2009-08-18 | 2010-01-20 | 上海华测导航技术有限公司 | 实现双频gps卫星信号转换为基带信号功能的射频电路结构 |
CN102136845A (zh) * | 2011-03-18 | 2011-07-27 | 华为技术有限公司 | 有源天线的信号接收方法和信号接收机 |
CN102751957A (zh) * | 2012-06-14 | 2012-10-24 | 北京敏视达雷达有限公司 | 一种双频放大器和一种双频接收机系统 |
CN202676918U (zh) * | 2012-06-14 | 2013-01-16 | 北京敏视达雷达有限公司 | 一种双频放大器和一种双频接收机系统 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6574459B1 (en) * | 2000-04-14 | 2003-06-03 | Lucent Technologies Inc. | Multiple branch receiver system and method |
CN101330309B (zh) * | 2008-07-30 | 2012-12-05 | 京信通信系统(中国)有限公司 | 多频段数字射频拉远系统及其工作方法 |
CN101833100B (zh) * | 2010-03-29 | 2012-12-12 | 北京航空航天大学 | 一种全数字式gnss兼容导航接收机的构建方法 |
CN102520424A (zh) * | 2011-12-16 | 2012-06-27 | 武汉大学 | 一种低中频双频双模gnss接收机射频前端装置 |
CN103067104B (zh) * | 2012-12-27 | 2015-02-25 | 上海创远仪器技术股份有限公司 | 基于数字本振对射频信号高速扫频频谱测量的系统及方法 |
CN104682985B (zh) * | 2013-11-28 | 2017-11-21 | 郑州威科姆科技股份有限公司 | Gnss多模多功器模组和多模射频收发系统 |
-
2015
- 2015-09-23 CN CN201510613057.3A patent/CN106549684B/zh active Active
-
2016
- 2016-04-29 WO PCT/CN2016/080764 patent/WO2017049902A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101583210A (zh) * | 2009-04-08 | 2009-11-18 | 深圳市信特科技有限公司 | 一种多频段自激干扰消除直放站 |
CN101629996A (zh) * | 2009-08-18 | 2010-01-20 | 上海华测导航技术有限公司 | 实现双频gps卫星信号转换为基带信号功能的射频电路结构 |
CN102136845A (zh) * | 2011-03-18 | 2011-07-27 | 华为技术有限公司 | 有源天线的信号接收方法和信号接收机 |
CN102751957A (zh) * | 2012-06-14 | 2012-10-24 | 北京敏视达雷达有限公司 | 一种双频放大器和一种双频接收机系统 |
CN202676918U (zh) * | 2012-06-14 | 2013-01-16 | 北京敏视达雷达有限公司 | 一种双频放大器和一种双频接收机系统 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112152690A (zh) * | 2020-09-18 | 2020-12-29 | Oppo广东移动通信有限公司 | 分集接收装置、设备、方法和计算机可读存储介质 |
CN112152690B (zh) * | 2020-09-18 | 2024-02-09 | Oppo广东移动通信有限公司 | 分集接收装置、设备、方法和计算机可读存储介质 |
CN115441938A (zh) * | 2022-09-07 | 2022-12-06 | 中国电子科技集团公司第五十四研究所 | 一种小型化q频段双通道下变频器 |
CN115441938B (zh) * | 2022-09-07 | 2023-11-14 | 中国电子科技集团公司第五十四研究所 | 一种小型化q频段双通道下变频器 |
Also Published As
Publication number | Publication date |
---|---|
CN106549684B (zh) | 2021-04-02 |
CN106549684A (zh) | 2017-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9374056B2 (en) | Multiband RF device | |
WO2017049902A1 (zh) | 一种双频段射频信号的接收方法及其装置、基站 | |
US11101829B1 (en) | Receiver with multi-spectrum parallel amplification | |
US20150256207A1 (en) | Multi-band receiver and signal processing method thereof | |
US9356639B1 (en) | Receiver with multi-spectrum parallel amplification | |
CN106879062A (zh) | 用于发射接收系统的装置、方法和计算机程序 | |
US20090025043A1 (en) | Multiband receiving apparatus and multiband transmitting apparatus using tunable filter | |
CN210327507U (zh) | 用于接收变频器的变频组件 | |
US20090061805A1 (en) | Rf receiver and method for removing interference signal | |
US8838058B2 (en) | Extending the upper frequency limit of a communications radio | |
EP2525500B1 (en) | Multiband receiver | |
CN108768500B (zh) | 一种通信卫星转发器 | |
US9667565B2 (en) | Method and system for an analog crossbar architecture | |
CN106953604B (zh) | 一种低噪声放大器和移动终端 | |
CN104467882A (zh) | 一种动态接收装置 | |
US8463211B2 (en) | RF signal receiving apparatus | |
CN106899317B (zh) | 一种实现射频调制信号处理的方法、装置及接收机 | |
CN210431847U (zh) | 用于接收前端的变频组件 | |
US9246664B1 (en) | Receiver with multi-spectrum parallel amplification | |
CN113992556A (zh) | 支持5g毫米波频段的超宽带信号分析处理系统 | |
KR100777188B1 (ko) | 발룬을 내장한 알에프 리시버, 알에프 트랜시버 및다중입출력 알에프 트랜시버 | |
KR20070003391A (ko) | 광대역 저잡음 증폭수신기 및 수신방법 | |
US7649416B2 (en) | Load inductor sharing | |
TWI513307B (zh) | 濾波系統、濾波方法、電視訊號接收器以及電視訊號接收方法 | |
CN117792411A (zh) | 一种用于超高场磁共振成像的多通道发射和接收前端模块 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16847784 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16847784 Country of ref document: EP Kind code of ref document: A1 |