WO2017000519A1 - 喷气式aip旋转碳氢发动机 - Google Patents

喷气式aip旋转碳氢发动机 Download PDF

Info

Publication number
WO2017000519A1
WO2017000519A1 PCT/CN2015/098811 CN2015098811W WO2017000519A1 WO 2017000519 A1 WO2017000519 A1 WO 2017000519A1 CN 2015098811 W CN2015098811 W CN 2015098811W WO 2017000519 A1 WO2017000519 A1 WO 2017000519A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
cage
anode
tornado
dry ice
Prior art date
Application number
PCT/CN2015/098811
Other languages
English (en)
French (fr)
Inventor
李伟
Original Assignee
李伟
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 李伟 filed Critical 李伟
Publication of WO2017000519A1 publication Critical patent/WO2017000519A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines

Definitions

  • the invention relates to the field of new engines, in particular to a principle of hydrogen combustion exothermic, dry ice heat absorption expansion work, and the two can be combined with an infinite cycle closed reaction rotary hydrocarbon engine.
  • a new type of engine using hydrogen and oxygen combustion exotherm as the anode (must be pure hydrogen but no purity percentage requirement, here pure oxygen is used as donor, the actual application can also be It is air.
  • Any heat source and any energy body and heat generated by mechanism can also be anode.
  • Dry ice is used as the cathode, and the thermal energy released by the anode is completely absorbed.
  • the mechanical output is mechanical.
  • the mechanical temperature of the system is the normal temperature rotary dry ice absorption of the system cathode. engine.
  • This engine has an AIP mode that can get rid of the air and operate independently. It can zero emissions, zero pollution, minimize losses in the energy conversion process, and the efficiency is infinitely close to 100%, and can even exceed.
  • Both the anode and the cathode are collectively referred to as categories, and are considered as independent energy bodies.
  • the engine includes a central shaft, an anode, a cathode, and a torn cage, wherein the central shaft is divided into an inner layer for conveying the anode and cathode energy bodies and an outer layer covering the inner layer but not contacting the inner layer and connecting the cathode to the output main power, and the layers are
  • the vacuum is isolated or left in contact with the air;
  • the anode is a hollow spiral ring, and the center point of the spiral ring is the junction of the hydrogen pipe, the inlet of the oxygen pipe, and the igniter.
  • the ignited hydrogen After being ignited by the igniter, the ignited hydrogen is burned along The spiral travels all the way to the innermost layer of the central axis of the anode at the end, and the residual gas and combustion products are discharged from the outer port of the central shaft through the residual gas pipeline.
  • the outlet and inlet of the pipeline for conveying the gas are all at the anode central axis.
  • the position of the outer end of the head end, the inner layer penetrates into the inner part of the cathode, and the dry ice is sprayed through the dry ice pipe;
  • the cathode is a dish with two spouts, and the center of the dish is a dot, and the dot is
  • the farthest distance of the sphere is the radius formed by the circle, which is the core circle.
  • the center of the core circle is the core point of the entire dish.
  • the core point coincides with the center point of the spiral ring of the anode.
  • a cathode Do not contact the cathode and anode, a cathode, respectively, the circular orifice in the core
  • the spray direction is perpendicular to its diameter
  • the spray line is parallel and opposite
  • the circumference of the cathode nozzle is the same
  • the inside of the cathode nozzle is led by a triangular curved surface
  • the concave surface faces the cathode core point.
  • the triangular arc surface is called the drainage arc
  • the cathode nozzle opening direction is The core circular surface is tangent in diameter
  • the cathode nozzle spray direction contacts the dish portion as a parabola
  • the dry ice absorbs heat in the cathode to become high-pressure gaseous carbon dioxide, and is continuously ejected from the cathode nozzle at high speed
  • the entire cathode rotates at a high speed to drive the outer layer to rotate and output the machine.
  • the outer layer of the cathode and the central shaft is connected by a mechanical seal bearing, and the inner layer does not move with the pole body; the whole body of the tornado cage is a cone, the bottom part of the torn cage is wrapped with the cathode, and the bottom of the tornado cage is not directly connected with the cathode.
  • the tip of the tornado cage extends to the outer layer of the anode central axis to become the power output of the torn cage (connected by the sealed bearing), and the carbon dioxide discharge port is left at the upper end of the tornado cage and the central axis of the anode.
  • the toroidal surface of the inner wall facing the cathode is filled with a streamlined threaded trough, and the trough is used to guide the inside of the tornado cage.
  • the direction of the carbon gas, the trough from the inner wall of the tornado cage to the cathode nozzle position slowly spiral upwards to the tip outlet, from the bottom to the tip of the trough to draw a wave-shaped shading from the bottom to the tip, withstand the cathode
  • the jet of carbon dioxide gas drives the tornado cage to rotate integrally; the outer layer of the central shaft and the upper part of the tornado cage are provided with gears for transmitting power.
  • the dragon roll cage traps carbon dioxide, balances the steering force, and transforms the auxiliary work.
  • the direction of motion is opposite to that of the cathode.
  • the invention can also solve the technical problem in this way: the outer wall of the tornado cage is smooth, and the overall regulation is rectified, thereby minimizing energy loss.
  • a central shaft an anode, a cathode, and a tornado cage, wherein the central shaft is divided into an inner layer for conveying the anode and cathode energy bodies and an inner layer covering the inner layer but not contacting the inner layer and connecting the cathode.
  • the outer layer of the output main power is vacuum-isolated or left in contact with each other;
  • the anode is a hollow spiral ring, and the center point of the spiral ring is the junction of the hydrogen pipe, the inlet of the oxygen pipe, and the igniter.
  • the ignited hydrogen gas travels along the spiral all the way to the innermost layer of the central axis of the anode at the end, and the residual gas and combustion products are discharged from the outer port of the central shaft through the residual gas pipeline, and transported.
  • the outlet and inlet of the gas pipe are located at the outer end of the anode end of the anode.
  • the inner layer penetrates the inner part of the cathode and has dry ice spray holes.
  • the dry ice is transported through the dry ice pipe.
  • the cathode is a dish with two spouts.
  • the center of the center is a dot.
  • the round surface formed by the radius from the farthest point of the circle to the sphere is the core circle.
  • the center of the core circle is the core point of the entire dish.
  • the point coincides with the center point of the spiral ring of the anode, the cathode and the anode do not contact each other, the cathode nozzles are respectively at the two ends of the core circle diameter, the injection direction is perpendicular to the diameter thereof, the injection lines are parallel and opposite, the circumference of the cathode nozzle is the same, and the cathode nozzle is inside.
  • the concave surface faces the cathode core point
  • the triangular arc surface is called the drainage arc
  • the opening direction of the cathode nozzle is tangent to the diameter of the core circular surface
  • the cathode nozzle spray direction contacts the dish portion as a parabola
  • the dry ice is absorbed and expanded in the cathode.
  • the high-pressure gaseous carbon dioxide is continuously ejected from the cathode nozzle at high speed, and the entire cathode rotates at a high speed to drive the outer layer to rotate and output mechanical force.
  • the outer layer of the cathode and the central shaft are connected by mechanical seal bearings, and the inner layer does not move with the pole body;
  • the anode and cathode are formed together, the central axis runs through the cathode, and the pipelines on both sides are the same, that is, the pipelines are connected in series, and the hydrogen and oxygen enter through the node No. 1, and burn in the anode of the No. 1 bipolar node, and continue to input the flow to the No. 2 node.
  • burning at the anode of node 2 so running to node N, exhaust gas and water are discharged by the drain Dry ice enters from node No.1 and flows through the two-pole node to the two-pole node.
  • the inner layer is static.
  • the pipelines between different nodes can be connected to each other.
  • the dragon cage is wrapped with the cathode and the dragon cage It is not in direct contact with the cathode.
  • the tip of the tornado cage extends to the outer layer of the anode central axis to become the power output of the tornado cage.
  • the upper end of the tornado cage and the central axis of the anode are connected with a carbon dioxide discharge port, and the inner wall of the tornado cage is facing
  • the toroidal surface of the cathode is filled with a streamlined threaded trough, and the trough is used to guide the direction of the carbon dioxide gas in the tornado cage.
  • the trough is slowly spiraled from the inner wall of the tornado cage to the cathode nozzle.
  • the wave pattern is drawn from the bottom to the tip in the trough, and the carbon dioxide gas flow from the cathode is injected to drive the tornado cage as a whole; the outer layer of the central shaft and the upper part of the tornado cage are provided. Gears, gears for transmission force.
  • the inter-nodes are connected to each other by the outer drive shaft of the central shaft to transmit mechanical force, and there are two sector-shaped turns at the two ends of the outer layer of the node, two nodes Connected together by a fan-shaped body, four segments are inserted into the joint to form a unitary hollow cylindrical outer shaft;
  • the middle section of the tornado cage is a hollow cylinder.
  • the middle section of the tornado cage is connected by a butt ring.
  • the butt ring is called a tornado ring.
  • the tornado rings are connected by a streamlined exoskeleton, and the cross section of the tornado ring is equally divided.
  • One quarter of the arc is radiant, and the bulge forms an exoskeleton.
  • the opposite sides of the joint extend at an equal distance for the length, and a raised fin-shaped ridge is formed at the outer joint of the tornado ring, and the two are relatively connected to each other to form
  • the bead-shaped body is connected to the internal streamlined threaded air trough.
  • the calorific value of hydrogen is a high-energy fuel which is incomparable to all fossils, chemicals and natural biofuels except for nuclear fuel.
  • the combustion product of hydrogen is water, no pollution, other fossil fuels will produce various kinds of dust, particles, harmful gases.
  • Hydrogen is non-toxic, and leakage will not cause large-scale pollution and damage to the environment. Compared with fossil fuels, the relative safety factor for personal injury is high.
  • Hydrogen is used in a wide range. It will be used in aviation, aerospace, navigation, chemical, and vehicle (military, civilian) and so on. And in the global environment, in space, other alien planets are available energy! (The most basic material conditions for human survival: air, sunlight, water. Here are two things: oxygen and water. There is also a means to achieve this in the light.)
  • dry ice that is, solid carbon dioxide, accounts for 0.03% of the air, but is important for humans, animals and plants. It is one of the important substances involved in the life and environmental circulatory system.
  • Figure 1 is a schematic view of the overall structure of the present invention
  • FIG. 2 is a schematic bottom view of the cathode of the present invention.
  • FIG. 3 is a schematic structural view of a series mode of the present invention.
  • Figure 4 is a schematic view showing the connection structure of the cylindrical portion of the tornado cage of the present invention.
  • Figure 5 is a schematic view showing the structure of the outer layer of the central shaft of the present invention.
  • Center shaft 1 (inner layer 1.1, outer layer 1.2, outer port 1.3, dry ice blasting hole 1.4), anode 2 (hydrogen pipe 2.1, oxygen pipe 2.2, residual gas pipe 2.3, dry ice pipe 2.4), cathode 3 (disc 3.1, Cathode nozzle 3.2, drainage arc 3.3), tornado cage 4, carbon dioxide discharge port 5.
  • Example 1 A central shaft 1, an anode 2, a cathode 3, and a tornado cage 4 were included.
  • the central axis 1 is divided into an inner layer 1.1 for transporting the anode and cathode energy bodies, and an outer layer 1.2 covering the inner layer 1.1 but not contacting the inner layer 1.1 and connecting the output main power of the cathode 3.
  • the layers are vacuum-isolated or retained between the layers.
  • Air contact; anode 2 is a hollow spiral ring, the center point of the spiral ring is the hydrogen pipe 2.1, the inlet of the oxygen pipe 2.2 and the junction of the igniter. After being ignited by the igniter, the ignited hydrogen is burned along the spiral all the way.
  • the residual gas and combustion products are discharged from the outer port 1.3 of the central shaft 1 through the residual gas pipe 2.3, and the pipe outlet and the inlet for conveying the gas are both at the anode center.
  • the outer end of the shaft end is 1.3, the inner layer 1.1 is deep into the cathode, and the dry ice blasting hole 1.4 is left.
  • the dry ice is transported through the dry ice pipe 2.4.
  • the cathode 3 is a dish 3.1 with two nozzles, and the center core of the dish 3.1 is The round point, the round surface formed by the radius of the circle to the farthest distance of the sphere is the core circular surface, the center of the core circular surface is the core point of the entire dish, and the core point coincides with the center point of the spiral ring of the anode 2.
  • the pole 3 and the anode 2 are not in contact with each other, and the cathode nozzles 3.2 are respectively at the two ends of the core circle diameter, the spraying direction is perpendicular to the diameter thereof, the spraying lines are parallel and opposite, the cathode nozzle is located at the same circumference, and the cathode nozzle 3.2 is internally led by a triangular curved surface, and the concave surface faces the cathode.
  • the core point, the triangular arc surface is called the drainage arc 3.3
  • the opening direction of the cathode nozzle 3.2 is tangent to the diameter of the core circular surface
  • the cathode nozzle 3.2 spray direction contacts the dish portion as a parabola
  • the dry ice absorbs heat in the cathode to become high-pressure gaseous carbon dioxide.
  • the cathode 3 and the outer layer 1.2 of the central shaft are connected by mechanical seal bearings, and the inner layer 1.1 does not move with the polar body; 4 is a cone body as a whole, the bottom part of the torn cage 4 is wrapped with the cathode 3, the bottom of the torn cage 4 is not in direct contact with the cathode 3, and the tip of the tornado cage 4 extends to the outer layer 1.2 of the anode central axis 1 to become a dragon.
  • the power output of the cage (connected by a sealed bearing), the upper end of the torn cage 4 and the anode central axis 1 are connected with a carbon dioxide discharge port 5, and the inner wall of the torn cage 4 is opposite to the cathode 3
  • the toroidal surface of the jet is filled with a streamlined threaded air trough, and the air trough is used to guide the direction of the carbon dioxide gas in the tornado cage 4.
  • the trough is slowly starting from the inner wall of the tornado cage 4 to the cathode nozzle 3.2.
  • the wave pattern is drawn from the bottom to the tip from the bottom to the tip, and the carbon dioxide gas flow from the cathode is injected to drive the overall rotation of the tornado cage 4; the outer layer 1.2 of the central shaft 1 and the dragon The upper part of the cage 4 is provided with gears for transmitting power.
  • Example 2 comprising a central shaft 1, an anode 2, a cathode 3, and a tornado cage 4.
  • the central axis 1 is divided into an inner layer 1.1 for transporting the anode and cathode energy bodies, and an outer layer 1.2 covering the inner layer 1.1 but not contacting the inner layer 1.1 and connecting the output main power of the cathode 3.
  • the layers are vacuum-isolated or retained between the layers.
  • Air contact; anode 2 is a hollow spiral ring, spiral ring
  • the center point is the hydrogen pipe 2.1, the inlet of the oxygen pipe 2.2 and the junction of the igniter. After being ignited by the igniter, the ignited hydrogen gas burns outward along the spiral path, and returns to the innermost axis 1 of the anode at the end.
  • the residual gas and combustion products are discharged from the outer port 1.3 of the central shaft 1 through the residual gas pipe 2.3.
  • the outlet and the inlet of the pipe for conveying the gas are at the outer position of the outer end of the anode center shaft at the position of 1.3, and the inner layer 1.1 is deep into the inner portion of the cathode.
  • the cathode 3 is a dish 3.1 with two spouts, with the center core of the dish 3.1 as a dot, and the farthest distance from the dot to the sphere is the radius
  • the circular surface formed is the core circular surface, the center of the core circular surface is the core point of the entire dish, the core point coincides with the center point of the spiral ring of the anode 2, the cathode 3 and the anode 2 do not contact each other, and the cathode nozzle 3.2 is respectively
  • the two ends of the core circle diameter are perpendicular to the diameter of the injection, the injection lines are parallel and opposite, the circumference of the cathode nozzle is the same, and the inside of the cathode nozzle 3.2 leads to a triangular curved surface, and the concave surface faces the cathode core point.
  • the opening direction of the cathode nozzle 3.2 is tangent to the diameter of the core circular surface.
  • the cathode nozzle 3.2 is in the direction of the contact with the disc body as a parabola.
  • the dry ice absorbs heat and expands into a high-pressure gaseous carbon dioxide in the cathode, and continuously ejects from the cathode nozzle at a high speed.
  • the whole cathode rotates at a high speed to drive the outer layer 1.2 to rotate and output mechanical force.
  • the cathode 3 and the outer layer 1.2 of the central shaft are connected by mechanical seal bearings, and the inner layer 1.1 does not move with the pole body; the tornado cage 4 is a cone body as a whole.
  • the bottom part of the tornado cage 4 is wrapped with the cathode 3, and the bottom of the tornado cage 4 is not in direct contact with the cathode 3.
  • the tip of the tornado cage 4 extends to the outer layer 1.2 of the anode central shaft 1 to become the power output of the tornado cage (to seal The bearing is connected), the upper end of the tornado cage 4 and the anode central axis 1 are connected with a carbon dioxide discharge port 5, and the inner wall of the torn coil cage 4 is opposite to the cathode 3 to be sprayed to the toroidal surface to be filled with a streamlined threaded air trough.
  • the gas trough is used to guide the direction of carbon dioxide gas in the tornado cage 4, and the trough is slowly spiraled upward from the inner wall of the tornado cage 4 to the outlet of the cathode nozzle 3.2, from the bottom to the tip end in the trough.
  • the wavy-type shading is drawn from high to low, and the carbon dioxide gas flow of the cathode injection is carried out to drive the overall rotation of the torn basket 4; the outer layer 1.2 of the central shaft 1 and the upper part of the tornado cage 4 are provided with gears for transmitting power.
  • the outer wall of the dragon cage 4 is smooth and the overall gauge is rectified to minimize energy loss.
  • Embodiment 3 A jet-type AIP rotary hydrocarbon engine, comprising: a central shaft 1, an anode 2, a cathode 3, and a tornado cage 4, wherein the central shaft 1 is divided into an inner layer 1.1 and a package for conveying the anode and cathode energy bodies.
  • the inner layer 1.1 does not contact the inner layer 1.1 and is connected to the outer layer 1.2 of the output main power of the cathode 3, and the layers are vacuum-isolated or left in contact with each other;
  • the anode 2 is a hollow spiral ring, and the center point of the spiral ring is
  • the hydrogen pipe 2.1, the inlet of the oxygen pipe 2.2 and the junction of the igniter are ignited by the igniter, and the ignited hydrogen gas burns along the spiral all the way to the innermost layer 1.1 of the anode central axis 1
  • the residual gas and combustion products are discharged from the outer port 1.3 of the central shaft 1 through the residual gas pipe 2.3.
  • the outlet and the inlet of the pipe for conveying the gas are at the outer position of the outer end of the anode center shaft at the position of 1.3, and the inner layer 1.1 penetrates the inner portion of the cathode to have dry ice.
  • the injection hole 1.4, the dry ice is transported through the dry ice pipe 2.4;
  • the cathode 3 is a dish 3.1 with two nozzles, and the circle formed by the center of the dish 3.1 as a circle, and the farthest distance from the circle to the sphere is a circle Face as the core
  • the center of the core circular surface is the core point of the entire dish, the core point coincides with the center point of the spiral ring of the anode 2, the cathode 3 and the anode 2 are not in contact with each other, and the cathode nozzles 3.2 are respectively at the ends of the core circle diameter.
  • the spray direction is perpendicular to its diameter, the spray lines are parallel and opposite, the circumference of the cathode nozzle is the same, the inside of the cathode nozzle 3.2 leads to a triangular curved surface, and the concave surface faces the cathode core point.
  • the triangular arc surface is called the drainage arc 3.3, and the cathode nozzle 3.2 is open and the core circle
  • the surface diameter is tangent, the cathode nozzle 3.2 spray direction contacts the dish portion as a parabola, the dry ice absorbs heat in the cathode to become high-pressure gaseous carbon dioxide, continuously ejects from the cathode nozzle at high speed, and the entire cathode rotates at a high speed to drive the outer layer 1.2 to rotate and output the machine.
  • the node is composed of an anode and a cathode which are connected together, the central axis penetrates the cathode, and the pipelines on both sides are the same, that is, the pipeline
  • hydrogen and oxygen enter through node 1, burn in the anode of the dipole node No. 1, and continue to input flow to section 2 , Anode No. 2 node combustion operation so To the No. N node, the exhaust gas and water are discharged by the drain pipe; the dry ice enters from the No. 1 node, flows through the No.
  • the tornado cage 4 encloses the cathode 3, the tornado cage 4 is not in direct contact with the cathode 3, and the tip of the tornado cage 4 extends to the outer layer 1.2 of the anode central axis 1 to become the power output of the tornado cage ( The sealed bearing is connected), the upper end of the tornado cage 4 is connected with the anode central axis 1 to have a carbon dioxide discharge port 5, and the inner surface of the torn coil cage 4 is opposite to the cathode 3 to be sprayed to form a streamlined threaded trough.
  • the air trough is used to guide the direction of the carbon dioxide gas in the tornado cage 4, and the trough is slowly spiraled from the inner wall of the tornado cage 4 to the cathode outlet 3.2, and the trough is from the bottom to the tip in the trough.
  • the wavy-type shading is drawn from high to low, and the carbon dioxide gas flow of the cathode injection is carried out to drive the overall rotation of the torn basket 4; the outer layer 1.2 of the central shaft 1 and the upper part of the tornado cage 4 are provided with gears for transmitting power.
  • Embodiment 4 A jet-type AIP rotating hydrocarbon engine, comprising: a central shaft 1, an anode 2, a cathode 3, and a tornado cage 4, wherein the central shaft 1 is divided into an inner layer 1.1 and a package for conveying the anode and cathode energy bodies.
  • the inner layer 1.1 does not contact the inner layer 1.1 and is connected to the outer layer 1.2 of the output main power of the cathode 3, and the layers are vacuum-isolated or left in contact with each other;
  • the anode 2 is a hollow spiral ring, and the center point of the spiral ring is
  • the hydrogen pipe 2.1, the inlet of the oxygen pipe 2.2 and the junction of the igniter are ignited by the igniter, and the ignited hydrogen gas burns along the spiral all the way to the innermost layer 1.1 of the anode central axis 1
  • the residual gas and combustion products are discharged from the outer port 1.3 of the central shaft 1 through the residual gas pipe 2.3.
  • the outlet and the inlet of the pipe for conveying the gas are at the outer position of the outer end of the anode center shaft at the position of 1.3, and the inner layer 1.1 penetrates the inner portion of the cathode to have dry ice.
  • the injection hole 1.4, the dry ice is transported through the dry ice pipe 2.4;
  • the cathode 3 is a dish 3.1 with two nozzles, and the circle formed by the center of the dish 3.1 as a circle, and the farthest distance from the circle to the sphere is a circle Face as the core
  • the center of the core circular surface is the core point of the entire dish, the core point coincides with the center point of the spiral ring of the anode 2, the cathode 3 and the anode 2 are not in contact with each other, and the cathode nozzles 3.2 are respectively at the ends of the core circle diameter.
  • the spray direction is perpendicular to its diameter, the spray lines are parallel and opposite, the circumference of the cathode nozzle is the same, the inside of the cathode nozzle 3.2 leads to a triangular curved surface, and the concave surface faces the cathode core point.
  • the triangular arc surface is called the drainage arc 3.3, and the cathode nozzle 3.2 is open and the core circle
  • the surface diameter is tangent, the cathode nozzle 3.2 spray direction contacts the dish portion as a parabola, the dry ice absorbs heat in the cathode to become high-pressure gaseous carbon dioxide, continuously ejects from the cathode nozzle at high speed, and the entire cathode rotates at a high speed to drive the outer layer 1.2 to rotate and output the machine.
  • the node is composed of an anode and a cathode which are connected together, the central axis penetrates the cathode, and the pipelines on both sides are the same, that is, the pipeline
  • hydrogen and oxygen enter through node 1, burn in the anode of the dipole node No. 1, and continue to input flow to section 2
  • the anode is burned at node No. 2, so that it runs to the No. N node, and the exhaust gas and water are discharged by the drain pipe; the dry ice enters from the No. 1 node, flows through the No.
  • the pipelines between different nodes can be docked with each other; the tornado cage 4 is wrapped with the cathode 3, the tornado cage 4 is not in direct contact with the cathode 3, the tornado cage 4 is extended with the tip of the anode and the outer center of the anode shaft is 1.2
  • the connection becomes the power output of the torn cage (connected by the sealed bearing), the upper end of the torn cage 4 and the anode central axis 1 are connected with a carbon dioxide discharge port 5, and the inner wall of the torn cage 4 is opposite to the cathode 3
  • the air trough is used to guide the direction of the carbon dioxide gas in the torn cage 4, and the trough is slowly spiraled upward from the inner wall of the torn coil 4 to the cathode outlet 3.2.
  • the wave-shaped shading is drawn from high to low, and the carbon dioxide gas flow from the cathode is injected to drive the overall rotation of the tornado cage 4; the outer layer 1.2 of the central shaft 1 and the upper portion of the tornado cage 4 are disposed.
  • the nodes are connected to each other by the outer 1.2 drive shaft of the central axis to transmit mechanical force.
  • the segments are inserted into the joint to form a unitary hollow cylindrical outer shaft.
  • Embodiment 5 comprising a central shaft 1, an anode 2, a cathode 3, and a tornado cage 4, wherein the central shaft 1 is divided into an inner layer 1.1 for transporting the anode and cathode energy bodies and an inner layer 1.1, but not contacting the inner layer 1.1 and connecting the cathodes.
  • the outer layer 1.2 of the output main power of 3 is vacuum-isolated or left in contact with each layer;
  • the anode 2 is a hollow spiral ring, the center point of the spiral ring is the inlet of the hydrogen pipe 2.1, the inlet of the oxygen pipe 2.2, and the igniter
  • the junction point after being ignited by the igniter, the ignited hydrogen gas travels along the spiral all the way, to the end and back to the inner layer 1.1 of the anode central axis 1, the residual gas and combustion products pass through the residual gas pipeline 2.3
  • the outer port 1.3 of the central shaft 1 is discharged, and the outlet and the inlet of the pipeline for conveying gas are at the outer position of the outer end of the anode central shaft at the position of 1.3, the inner layer 1.1 penetrates the inner portion of the cathode to have a dry ice spray hole 1.4, and the dry ice is transported through the dry ice duct 2.4;
  • 3 is a dish 3.1 with two nozzles, with the center core
  • the triangular arc surface is called the drainage arc 3.3
  • the opening direction of the cathode nozzle 3.2 is tangent to the diameter of the core circular surface
  • the cathode nozzle 3.2 spray direction contacts the dish.
  • the dry ice in the cathode absorbs heat and expands into high-pressure gaseous carbon dioxide, continuously ejects from the cathode nozzle at high speed, the entire cathode rotates at a high speed, drives the outer layer 1.2 to rotate and outputs mechanical force, and the cathode 3 and the outer layer of the central shaft 1.2 are mechanically used.
  • the sealed bearing is connected, the inner layer 1.1 does not move with the pole body; the node is composed of the anode and the cathode which are connected together, the central axis runs through the cathode, the pipelines on both sides are the same, that is, the pipeline is connected in series, and the hydrogen and oxygen enter through the node No. 1, in 1 Burning in the anode of the bipolar node, continue to input flow to node 2, burn at the anode of node 2, and run to N
  • the nodes, exhaust gas and water are discharged by the drain pipe; the dry ice enters from the No. 1 node and flows through the No.
  • the tornado cage 4 encloses the cathode 3, and the tornado cage 4 is not in direct contact with the cathode 3.
  • the tip of the tornado cage 4 extends to the outer layer 1.2 of the anode central shaft 1 to become the power output of the tornado cage (connected by a sealed bearing) ), the upper end of the tornado cage 4 and the anode central axis 1 are connected with a carbon dioxide discharge port 5, and the inner surface of the torn coil cage 4 is opposite to the cathode 3 to be sprayed to the torus to be filled with a streamlined threaded trough, and the trough is used for the trough
  • the trough is slowly spiraled upward from the inner wall of the tornado cage 4 to the outlet of the cathode nozzle 3.2, from the bottom to the tip of the trough to the high to low
  • the wavy type shading is carried out, and the carbon dioxide gas flow of the cathode injection is carried out to drive the whole rotation of the torn basket 4; the outer layer 1.2 of the central shaft 1 and the upper part of the tornado cage 4 are provided with gears
  • the middle section of the tornado cage 4 is a hollow cylinder, and the middle section of the torn cage 4 is connected by a butt ring.
  • the butt ring is called a tornado ring.
  • the tornado rings are connected by a streamlined exoskeleton and cross on the cross section of the tornado ring.
  • the quarter is arbitrarily curved, and the ridge is formed into an exoskeleton.
  • the opposite sides of the joint extend at an equal distance for the length, and a raised fin-shaped ridge is formed at the outer joint of the cage ring, and the two pairs are relatively connected.
  • the bead-shaped body is formed, and the internal streamlined thread-moving groove is connected to the upper and lower sides in a continuous connection.
  • Embodiment 6 A jet-type AIP rotary hydrocarbon engine, comprising: a central shaft 1, an anode 2, a cathode 3, and a tornado cage 4, wherein the central shaft 1 is divided into an inner layer 1.1 and a package for conveying the anode and cathode energy bodies.
  • the inner layer 1.1 does not contact the inner layer 1.1 and is connected to the outer layer 1.2 of the output main power of the cathode 3, and the layers are vacuum-isolated or left in contact with each other;
  • the anode 2 is a hollow spiral ring, and the center point of the spiral ring is
  • the hydrogen pipe 2.1, the inlet of the oxygen pipe 2.2 and the junction of the igniter are ignited by the igniter, and the ignited hydrogen gas burns along the spiral all the way to the innermost layer 1.1 of the anode central axis 1
  • the residual gas and combustion products are discharged from the outer port 1.3 of the central shaft 1 through the residual gas pipe 2.3.
  • the outlet and the inlet of the pipe for conveying the gas are at the outer position of the outer end of the anode center shaft at the position of 1.3, and the inner layer 1.1 penetrates the inner portion of the cathode to have dry ice.
  • the injection hole 1.4, the dry ice is conveyed through the dry ice pipe 2.4;
  • the cathode 3 is a dish 3.1 with two nozzles, Taking the center core of the dish 3.1 as the dot, the round surface formed by the radius from the farthest point of the circle to the sphere is the core circle, and the center of the core circle is the core point of the entire dish, the core point and the anode
  • the center point of the spiral ring of 2 coincides, the cathode 3 and the anode 2 do not contact each other, the cathode nozzle 3.2 is respectively at the two ends of the core circle diameter, the injection direction is perpendicular to its diameter, the injection line is parallel, the circumference of the cathode nozzle is the
  • the inner side leads to a triangular curved surface, and the concave surface faces the cathode core point.
  • the triangular arc surface is called the drainage arc 3.3
  • the opening direction of the cathode nozzle 3.2 is tangent to the diameter of the core circular surface
  • the cathode nozzle 3.2 spray direction contacts the dish portion as a parabola
  • the dry ice is at the cathode.
  • the endothermic expansion becomes high-pressure gaseous carbon dioxide, which is continuously ejected from the cathode nozzle at high speed.
  • the whole cathode rotates at a high speed, which drives the outer layer 1.2 to rotate and outputs mechanical force.
  • the cathode 3 and the outer layer 1.2 of the central shaft are connected by mechanical seal bearings.
  • 1.1 does not move with the polar body; the node consists of an anode and a cathode that are connected together, the central axis runs through the cathode, and the pipelines on both sides are the same, that is, the pipeline string
  • the hydrogen and oxygen enter through the No. 1 node, burn in the anode of the No. 1 bipolar node, continue to input the flow to the No. 2 node, burn at the anode of the No. 2 node, and thus run to the No. N node, the exhaust gas and the water are all
  • the drain pipe is discharged; the dry ice enters from the No.
  • the inner layer 1.1 is static, and the various pipelines can be docked with each other; the dragon cage 4 is wrapped Cathode 3, the torn cage 4 and the cathode 3 are not in direct contact, and the tip of the tornado cage 4 extends to the outer layer 1.2 of the anode central shaft 1 to become the power output of the torn cage (connected by a sealed bearing), and the upper end of the torn cage 4 A carbon dioxide discharge port 5 is left at the junction with the anode central axis 1.
  • the inner surface of the torn coil cage 4 is opposite to the cathode 3, and the toroid is filled with a streamlined threaded trough.
  • the trough is used to guide the inside of the tornado cage 4.
  • the direction of the carbon dioxide gas, the trough from the inner wall of the tornado cage 4 is opposite to the position of the cathode spout 3.2 and spiral upwards to the tip outlet.
  • the trough pattern is drawn from the bottom to the tip from the bottom to the tip.
  • Cathode-sprayed carbon dioxide gas flow, driving the tornado cage 4 as a whole ; Tornadoes cage 4 and the outer layer 1.2 upper center shaft 1 is provided with a gear, a gear for transmitting power.
  • the nodes are connected to each other by the outer 1.2 drive shaft of the central axis to transmit mechanical force.
  • the segments are inserted into the joint to form a unitary hollow cylindrical outer shaft.
  • the middle section of the tornado cage 4 is a hollow cylinder, and the middle section of the torn cage 4 is connected by a butt ring.
  • the butt ring is called a tornado ring.
  • the tornado rings are connected by a streamlined exoskeleton and cross on the cross section of the tornado ring.
  • the quarter is arbitrarily curved, and the ridge is formed into an exoskeleton.
  • the opposite sides of the joint extend at an equal distance for the length, and a raised fin-shaped ridge is formed at the outer joint of the cage ring, and the two pairs are relatively connected.
  • the bead-shaped body is formed, and the internal streamlined thread-moving groove is connected to the upper and lower sides in a continuous connection.
  • Figure 4 is a structural diagram of the tornado ring connection.
  • A1 and A2 are the same outer layer segment, and B1 and B2 are adjacent and connected outer layer segments, and the two are connected by intersection, that is, the connecting surface of the outer layer hollow cylinder is crossed, etc.
  • the sub-cutting is divided into four fan-shaped bodies.
  • the length of the fan-shaped body is a certain distance according to the direction of the dividing line, and the opposite fan-shaped faces are integrated with the cylinder in which they are located to form a pair of fan-shaped cymbals.
  • the outer hollow cylinder is synthesized.
  • the characteristics of the series connection of the pipeline, the pressure values of the hydrogen oxycarbon at the nodes No. 1, No. 2 and No. N are equal at the same time, so the configured air compressor can work according to the number of nodes.
  • the size of the efficiency is to configure the compressor of the corresponding size.
  • the engine is continuously uninterrupted, and the anode hydrogen oxygen combustion is continuously burned except for the initial ignition, and does not require frequent ignition.
  • the igniter is a smart remote ignition. If the anode intermittent ignition is required, the igniter is a smart remote pulse ignition and can control the entry of hydrogen and oxygen.
  • the anode undergoes a qualitative change by hydrogen combustion, releasing a large amount of energy.
  • the calorific value of hydrogen is 143 kj / g, that is, the heat released by combustion of 1 g of H 2 is 143 kj.
  • the dry ice in the cathode undergoes a phase change, and the energy absorbed by the dry ice is completely used for the sublimation of dry ice and the temperature rise of carbon dioxide.
  • the specific heat of dry ice is 2.1 ⁇ 10 3 J/kg ° C, that is, 2.1 J / g ° C, and the specific heat of carbon dioxide is 840 J / kg ° C, that is, 0.84 J / g ° C.
  • the weight is reduced to 170 at 150 atmospheres, which is 15 MPa! Comparable to the high pressure value in the rocket engine combustion chamber! but!
  • Tc critical temperature
  • Pc critical pressure
  • this pressure can still be one of the pressure choices for cathode injection.
  • the specific value varies according to the actual operation, the amount of material used, and the power demand. Only simple calculations are made here. More detailed cathode, anode, and pressure values are not discussed here.
  • the temperature of the solid state is directly sublimated into a gaseous state due to the special physical properties of carbon dioxide at low temperatures. Roughly calculated ideally, the heat released by one gram of hydrogen combustion can raise the temperature of the solid carbon dioxide of about 68 kilograms by 1 °C. The temperature of dry ice is minus 78 degrees Celsius, then at minus 77 degrees Celsius, the pressure from solid to gaseous carbon dioxide becomes 68 times, the loss is simply reduced, and the weight is recorded as 50 times. It is calculated by the previous atmospheric pressure. Atmospheric pressure, 5 MPa.
  • the physical properties of carbon dioxide are 20 ° C, the pressure of 5.73 MPa, the carbon dioxide will liquefy, minus 20 ° C, the pressure will be liquefied at 1.96 MPa, at 5 MPa pressure should be liquid carbon dioxide, or even solid.
  • the conditions of the cathode work are generally 20 ° C, and the maximum temperature of the floating temperature does not exceed 10 degrees Celsius, the minimum of 3 degrees Celsius, the output pressure is 5 MPa. Then, with one kilogram of dry ice, the temperature rises from minus 78 ° C to 20 ° C, and the temperature rises to 98 degrees.
  • the engine can output a constant continuous and constant constant mechanical force. This type of engine can also be called a medium voltage constant power engine.
  • the traditional heat engine efficiency is between 30% and 40%, only about one-third of the energy utilization efficiency, and two-thirds of the energy is lost and lost.
  • the invention eliminates energy loss and minimizes loss, and the energy utilization rate is certainly higher than that of the conventional heat engine, and the efficiency is estimated to be more than 50%. Then, with 50% energy conversion data, 0.58g hydrogen combustion energy, which will make 1kg dry ice work in constant mode, then add energy conversion factor, simply calculate, hydrogen rating needs half of 0.58g, ie 0.29 The hydrogen in grams participates in the reaction in order to fully utilize the operation of the constant power engine.
  • the temperature of the venting will be lower than the preset temperature of 20 °C, and the energy gap will be absorbed from the environment, causing the ambient temperature to decrease.
  • This is a complex energy conversion migration situation, involving more physical factors, no longer discuss.
  • this value is an uncertain theoretical design value, but it can be used to express and reflect changes in various links of the overall system operation, and can actually be realized. The specific data is subject to the actual experimental data.
  • the design concept of the invention is to use dry ice and hydrogen energy as new energy sources in the future, and the two complement each other. Because this engine is designed for energy saturation conversion, minimizing energy loss and heat dissipation, the final exhaust temperature is basically required to be normal temperature - -20 ° C, or even lower to maximize energy utilization, and To recycle The carbon dioxide is recycled. In actual operation, it is necessary to control the pressure, the cathode exhaust temperature, and the output mechanical force according to the anode material parameters and the cathode material parameters. The basic rule is that the higher the temperature rise, the greater the energy loss, the lower the temperature rise, and the lower the output energy. The size of the cathode core, the weight, the moment of inertia, the relationship between the momentum and the output mechanical force are in accordance with the principles of traditional mechanics and kinetic energy.
  • the engine does not emit any pollutants, carbon dioxide recovery is reused, and is a constant stable cycle.
  • the generated water is an excellent resource for any purpose, and it eliminates environmental pollution. In the future, no longer deliberately discharge or destroy vegetation on a large scale, you can completely say goodbye to smog, bid farewell to air pollution, greenhouse effect, and realize the healthy development of human life.
  • the anode and cathode energy is non-toxic, safer than other flammable materials, and it is safe to use strictly according to the operation. Even if it leaks, it is easy to handle.
  • the grid can be replaced by a local grid, or even a single-family network, which is safer for national security and special sectors. It can also be used for both ground (gravity field) and space (gravity-free field), such as another power source other than solar energy on the moon surface when developing the moon, and there are no restrictions on solar energy, even in the future future interstellar Sailing, the power mode that can be applied to different continents.
  • ground gravitation field
  • space gravitation-free field
  • the engine also has an ATP mode, which is an air-free propulsion device.
  • the engine as a whole can get rid of the dependence on the air, not only underwater submarines, but also high-altitude areas can also be used directly, can run smoothly and safely, conditionally achieve zero emissions, and can also achieve a certain degree of infrared detection. Since then, some plateau taboo areas for aircraft have never been a problem. For example, helicopters using this engine are of great strategic significance to China. The resulting global strategic significance and the impact of this will not be discussed, and will certainly become a new pattern.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

一种利用干冰遇热发生膨胀做功原理的旋转碳氢发动机,采用阳极提供热源,利用干冰受热膨胀的原理,让干冰在阴极内受热膨胀带动阴极旋转进而提供动力。该发动机所能达到的有益效果为:原料广泛,燃料热值高、动力强,环保无污染,结构简单,运行过程中能量损耗少,更容易实现的高压、超高压发动机的制造,对特殊需要高功率的设备和作业等项目提供了比传统机械更强大、更优势的动力选择。甚至还可以建造现在没有的超高功率、超大型的设备来应对未来某些的巨型工程或极品设备等方面的巨量需求,而且根据设计,输出的超级动力是n+模式,从理论上这是可以输出无限大动力的引擎。

Description

喷气式AIP旋转碳氢发动机 发明领域
本发明涉及全新发动机领域,具体涉及一种氢气燃烧放热,干冰吸热膨胀做功的原理,且二者可相结合无限循环封闭反应的旋转碳氢发动机。
背景技术
社会发展日新月异,传统能源使用方式和大量消耗对环境和人类的生存发展造成严重伤害也背负巨大负担,新的能源需求日益迫切,新的能源方式也层出不穷。本人几年前发明了简单的吸热式干冰发动机,就是为了解决这些问题,但本人所发明的吸热式干冰发动机结构复杂过时,制作难度大,能量转化稍低。
现面向未来实现一种更先进,健康,环保,高效,易用的新的能量运用方式。
发明内容
针对上述问题,本人设计了一种全新的更先进的发动机模式,开辟一个新的发动机领域。传统现有发动机有两个模式,一个是斯特林发动机,原理是热胀冷缩;另一个是四冲程发动机,原理是吸气,压缩,做功,排气四个反应过程。包括后来的航空喷气式发动机和燃气轮机均是四冲程发动机及其模式的变种。本人现设计的这个全新型发动机没有斯特林,四冲程等传统发动机原理,结构及部件。完全区别于传统现有所有发动机类型及样式。根据干冰吸热膨胀做功这个核心原理做如下发明:一种新型发动机,以氢气和氧气燃烧放热作为阳极(必须是纯净的氢气但是没有纯度百分比的要求,这里以纯氧为供体,实际运用也可以是空气。任何热源和任意能量体及不论机理形式产生的热量亦可为阳极),以干冰为阴极,完全吸收阳极放出的热能量膨胀做功输出机械力为系统阴极的常温态旋转式干冰吸热发动机。
此发动机具有AIP模式,可摆脱空气,独立运行。能够零排放,零污染,最大限度减小能量转变过程中的损耗,效率无限接近百分百,甚至可以超越。阳极,阴极均为范畴统一称呼,且均被视为独立的能量体。
本发明是这样解决技术问题的:
发动机包括中心轴,阳极,阴极,龙卷笼,其中中心轴分为输送阴阳极能量体出入的内层和包裹内层但不接触内层并且连接阴极的输出主动力的外层,各层之间用真空隔离或是留存空气接触;阳极是一个空心螺旋圆环,螺旋圆环中心点是氢气管道、氧气管道的入口及点火器的结合点,经点火器点燃后,点燃的氢气燃烧沿着螺旋一路向外走,到最尾端又绕回阳极中心轴的内层内,余气和燃烧产物通过余气管道从中心轴的外口排出,输送气体的管道出口和入口都在阳极中心轴头端外口位置,内层深入阴极内部分留有干冰喷射孔,干冰通过干冰管道输送;阴极是一个带两个喷口的碟形体,以碟形体的中心核心为圆点,以此圆点到球体的最远距离为半径形成的圆面为核心圆面,核心圆面的圆心即是整个碟形体的核心点,核心点与阳极的螺旋圆环中心点重合,阴极和阳极互不接触,阴极喷口分别在核心圆 直径的两端,喷射方向与其直径垂直,喷射线路平行相反,阴极喷口所在圆周相同,阴极喷口内侧引一三角曲面,凹面朝向阴极核心点,此三角弧面称为引流弧,阴极喷口开口方向与核心圆面直径相切,阴极喷口喷射方向接触碟形体部分为抛物线,干冰在阴极里吸热膨胀变为高压气态二氧化碳,从阴极喷口连续高速喷出,整个阴极高速自转,带动外层转动而输出机械力,阴极与中心轴的外层用机械密封轴承相连接,内层不随极体运动;龙卷笼整体是一个锥形体,龙卷笼的底面部分包裹着阴极,龙卷笼底部与阴极不直接接触,龙卷笼尖面延伸与阳极中心轴外层相接成为龙卷笼动力输出(以密封轴承相接),龙卷笼上端与阳极中心轴相接处留有二氧化碳排出口,龙卷笼内壁正对阴极承受喷射的环面为始布满流线型螺纹走气槽,走气槽用以引导龙卷笼内二氧化碳气体的走向,走气槽从龙卷笼内壁正对阴极喷口位置开始缓缓螺旋向上至尖端出口处,走气槽内从底部至尖端以高到低刻绘波浪型底纹,承受阴极喷射的二氧化碳气流,带动龙卷笼整体转动;中心轴的外层及龙卷笼上部均设置有齿轮,齿轮用于传递动力。龙卷笼囚禁二氧化碳,平衡转向力,转化辅助功,运动方向与阴极运动方向相反。
本发明还可以这样来解决技术问题:龙卷笼外壁光滑,整体规整流线,最大限度减少能量损耗。
本发明的另一个技术问题是这样解决的:包括中心轴,阳极,阴极,龙卷笼,其中中心轴分为输送阴阳极能量体出入的内层和包裹内层但不接触内层并且连接阴极的输出主动力的外层,各层之间用真空隔离或是留存空气接触;阳极是一个空心螺旋圆环,螺旋圆环中心点是氢气管道、氧气管道的入口及点火器的结合点,经点火器点燃后,点燃的氢气燃烧沿着螺旋一路向外走,到最尾端又绕回阳极中心轴的内层内,余气和燃烧产物通过余气管道从中心轴的外口排出,输送气体的管道出口和入口都在阳极中心轴头端外口位置,内层深入阴极内部分留有干冰喷射孔,干冰通过干冰管道输送;阴极是一个带两个喷口的碟形体,以碟形体的中心核心为圆点,以此圆点到球体的最远距离为半径形成的圆面为核心圆面,核心圆面的圆心即是整个碟形体的核心点,核心点与阳极的螺旋圆环中心点重合,阴极和阳极互不接触,阴极喷口分别在核心圆直径的两端,喷射方向与其直径垂直,喷射线路平行相反,阴极喷口所在圆周相同,阴极喷口内侧引一三角曲面,凹面朝向阴极核心点,此三角弧面称为引流弧,阴极喷口开口方向与核心圆面直径相切,阴极喷口喷射方向接触碟形体部分为抛物线,干冰在阴极里吸热膨胀变为高压气态二氧化碳,从阴极喷口连续高速喷出,整个阴极高速自转,带动外层转动而输出机械力,阴极与中心轴的外层用机械密封轴承相连接,内层不随极体运动;节点由串在一起的阳极、阴极构成,中心轴贯穿阴极,两边管路相同,即管路串联节点,氢氧通过1号节点进入,在1号双极节点的阳极里燃烧,继续输入流动到2号节点,在2号节点的阳极燃烧,如此运行至N号节点,废气及水均由排水管排出;干冰由1号节点进入,流经2号双极节点至N号双极节点,内层处于静态,不同的节点之间各路管线均可互相对接;龙卷笼包裹着阴极,龙卷笼与阴极不直接接触,龙卷笼尖面延伸与阳极中心轴外层相接成为龙卷笼动力输出,龙卷笼上端与阳极中心轴相接处留有二氧化碳排出口,龙卷笼内壁正对阴极承受喷射的环面为始布满流线型螺纹走气槽,走气槽用以引导龙卷笼内二氧化碳气体的走向,走气槽从龙卷笼内壁正对阴极喷口位置开始缓缓螺旋向上至尖端出口处,走气槽内从底部至尖端以高到低刻绘波浪型底纹,承受阴极喷射的二氧化碳气流,带动龙卷笼整体转动;中心轴的外层及龙卷笼上部均设置有齿轮,齿轮用于传递动 力。
本发明的另一个技术问题还可以这样解决:节点间是靠中心轴的外层传动轴来互相连接传输机械力,在节点外层的两端各有两个扇形体的榫卯,两个节点用扇形体榫卯连接在一起,四个扇形体榫卯插入连接组合形成整体的空心圆柱外层轴;
龙卷笼中段为空心圆柱体,龙卷笼中段以对接圆环连接,对接圆环称为龙卷环,龙卷环之间以流线外骨骼相互连接,在龙卷环截面上十字等分四分之一为弧度大小,隆起形成外骨骼,在连接处相对的两边延伸出相等距离为长度,在龙卷环外连接处形成凸起的鱼鳍形榫卯,两两相对契合连接,形成珠串形的形体,连接后内部流线型螺纹走气槽上下相对连贯连接。
本发明可以达到的有益效果是:①氢的发热值,是目前除核燃料外,其他所有化石,化工,自然生物燃料都无法比拟的高能燃料
②氢气的燃烧产物是水,没有污染,其他化石燃料会生成各种粉尘,颗粒,有害气体
③氢气的导热性好,燃烧速度快,点燃快
④氢气无毒,泄露也不会造成环境的大规模污染和破坏。和石化燃料相比,对人身伤害相对安全系数要高
⑤氢的储量丰富!是构成宇宙质量的75%的重要元素。在地球上以水的形式大量广泛存在,且可以循环使用!
⑥氢可以进化为核燃料!这是目前人类所认知的终极能量利用方法---核聚变!是理想,高效,无限,永恒的能源!
⑦氢使用范围广泛。不论航空,航天,航海,化工,车辆(军用,民用)等等方面均会用到。且不论在地球环境下,在太空,其他外星球都是可以使用的能量!(人类赖以生存的最基本物质条件:空气,阳光,水。这里就已经占了两项:氧气和水,至于光明这里面也是有手段可以实现)
⑧干冰,即固态的二氧化碳,在空气中占0.03%但是人类及动植物生活所息息相关的重要物质。是生命及环境循环系统中参与的重要物质之一。
⑨干冰的制造成本低廉。很多化工,生产,自然界,都会有二氧化碳的产生,是最常见最亲和的能量物质!不用人工合成,是生命体的一呼一吸间,都参与其中的存在。而且作为能量形式使用时,是能无限循环永恒利用的能量体!
⑩干冰无毒,有冻伤和窒息的危险,意外泄露,只要设备安全设计和安全保护措施有效,对人体的伤害相对其他有毒有害物质安全系数非常高。也不会对环境造成灾难性的污染破坏。
Figure PCTCN2015098811-appb-000001
体量丰富,易化合,可分解,价格低廉。是各行业都会需要,可广泛应用的化学物质。今后人类生产生活肯定不会随便排放,根绝了大气温室效应,人类今后甚至可自行调节大气中二氧化碳的含量。重要性及应用前景不言而喻。氢气和干冰性能相辅相成,优势出类拔萃,堪称绝配!
Figure PCTCN2015098811-appb-000002
更容易实现的高压,无限超高压发动机的出现,对特殊需要高功的设备,作业,项目等提供了比传统机械更强大,更优势的动力选择。甚至还可以建造现在没有的超超级高攻超大型的超级设备应对未来某些超出现下认识的巨型工程或极品设备等等方面的巨量需求。而且根据设计,输出的超级动力是n+模式,从理论上这是可以输出无限大动力的引 擎!
说明书附图
图1为本发明总体结构示意图;
图2为本发明阴极仰视结构示意图;
图3为本发明串联模式结构示意图;
图4为本发明龙卷笼圆柱体部分连接结构示意图;
图5本发明中心轴外层卯榫结构示意图。
具体实施方式
附图中各标号所代表的零部件名称如下:
中心轴1(内层1.1、外层1.2、外口1.3、干冰喷射孔1.4)、阳极2(氢气管道2.1、氧气管道2.2、余气管道2.3、干冰管道2.4)、阴极3(碟形体3.1、阴极喷口3.2、引流弧3.3)、龙卷笼4、二氧化碳排出口5。
实施例1:包括中心轴1,阳极2,阴极3,龙卷笼4。其中中心轴1分为输送阴阳极能量体出入的内层1.1和包裹内层1.1但不接触内层1.1并且连接阴极3的输出主动力的外层1.2,各层之间用真空隔离或是留存空气接触;阳极2是一个空心螺旋圆环,螺旋圆环中心点是氢气管道2.1、氧气管道2.2的入口及点火器的结合点,经点火器点燃后,点燃的氢气燃烧沿着螺旋一路向外走,到最尾端又绕回阳极中心轴1的内层1.1内,余气和燃烧产物通过余气管道2.3从中心轴1的外口1.3排出,输送气体的管道出口和入口都在阳极中心轴头端外口1.3位置,内层1.1深入阴极内部分留有干冰喷射孔1.4,干冰通过干冰管道2.4输送;阴极3是一个带两个喷口的碟形体3.1,以碟形体3.1的中心核心为圆点,以此圆点到球体的最远距离为半径形成的圆面为核心圆面,核心圆面的圆心即是整个碟形体的核心点,核心点与阳极2的螺旋圆环中心点重合,阴极3和阳极2互不接触,阴极喷口3.2分别在核心圆直径的两端,喷射方向与其直径垂直,喷射线路平行相反,阴极喷口所在圆周相同,阴极喷口3.2内侧引一三角曲面,凹面朝向阴极核心点,此三角弧面称为引流弧3.3,阴极喷口3.2开口方向与核心圆面直径相切,阴极喷口3.2喷射方向接触碟形体部分为抛物线,干冰在阴极里吸热膨胀变为高压气态二氧化碳,从阴极喷口连续高速喷出,整个阴极高速自转,带动外层1.2转动而输出机械力,阴极3与中心轴的外层1.2用机械密封轴承相连接,内层1.1不随极体运动;龙卷笼4整体是一个锥形体,龙卷笼4的底面部分包裹着阴极3,龙卷笼4底部与阴极3不直接接触,龙卷笼4尖面延伸与阳极中心轴1外层1.2相接成为龙卷笼动力输出(以密封轴承相接),龙卷笼4上端与阳极中心轴1相接处留有二氧化碳排出口5,龙卷笼4内壁正对阴极3承受喷射的环面为始布满流线型螺纹走气槽,走气槽用以引导龙卷笼4内二氧化碳气体的走向,走气槽从龙卷笼4内壁正对阴极喷口3.2位置开始缓缓螺旋向上至尖端出口处,走气槽内从底部至尖端以高到低刻绘波浪型底纹,承受阴极喷射的二氧化碳气流,带动龙卷笼4整体转动;中心轴1的外层1.2及龙卷笼4上部均设置有齿轮,齿轮用于传递动力。
实施例2:包括中心轴1,阳极2,阴极3,龙卷笼4。其中中心轴1分为输送阴阳极能量体出入的内层1.1和包裹内层1.1但不接触内层1.1并且连接阴极3的输出主动力的外层1.2,各层之间用真空隔离或是留存空气接触;阳极2是一个空心螺旋圆环,螺旋圆环 中心点是氢气管道2.1、氧气管道2.2的入口及点火器的结合点,经点火器点燃后,点燃的氢气燃烧沿着螺旋一路向外走,到最尾端又绕回阳极中心轴1的内层1.1内,余气和燃烧产物通过余气管道2.3从中心轴1的外口1.3排出,输送气体的管道出口和入口都在阳极中心轴头端外口1.3位置,内层1.1深入阴极内部分留有干冰喷射孔1.4,干冰通过干冰管道2.4输送;阴极3是一个带两个喷口的碟形体3.1,以碟形体3.1的中心核心为圆点,以此圆点到球体的最远距离为半径形成的圆面为核心圆面,核心圆面的圆心即是整个碟形体的核心点,核心点与阳极2的螺旋圆环中心点重合,阴极3和阳极2互不接触,阴极喷口3.2分别在核心圆直径的两端,喷射方向与其直径垂直,喷射线路平行相反,阴极喷口所在圆周相同,阴极喷口3.2内侧引一三角曲面,凹面朝向阴极核心点,此三角弧面称为引流弧3.3,阴极喷口3.2开口方向与核心圆面直径相切,阴极喷口3.2喷射方向接触碟形体部分为抛物线,干冰在阴极里吸热膨胀变为高压气态二氧化碳,从阴极喷口连续高速喷出,整个阴极高速自转,带动外层1.2转动而输出机械力,阴极3与中心轴的外层1.2用机械密封轴承相连接,内层1.1不随极体运动;龙卷笼4整体是一个锥形体,龙卷笼4的底面部分包裹着阴极3,龙卷笼4底部与阴极3不直接接触,龙卷笼4尖面延伸与阳极中心轴1外层1.2相接成为龙卷笼动力输出(以密封轴承相接),龙卷笼4上端与阳极中心轴1相接处留有二氧化碳排出口5,龙卷笼4内壁正对阴极3承受喷射的环面为始布满流线型螺纹走气槽,走气槽用以引导龙卷笼4内二氧化碳气体的走向,走气槽从龙卷笼4内壁正对阴极喷口3.2位置开始缓缓螺旋向上至尖端出口处,走气槽内从底部至尖端以高到低刻绘波浪型底纹,承受阴极喷射的二氧化碳气流,带动龙卷笼4整体转动;中心轴1的外层1.2及龙卷笼4上部均设置有齿轮,齿轮用于传递动力。
龙卷笼4外壁光滑,整体规整流线,最大限度减少能量损耗。
实施例3:喷气式AIP旋转碳氢发动机,其特征在于:包括中心轴1,阳极2,阴极3,龙卷笼4,其中中心轴1分为输送阴阳极能量体出入的内层1.1和包裹内层1.1但不接触内层1.1并且连接阴极3的输出主动力的外层1.2,各层之间用真空隔离或是留存空气接触;阳极2是一个空心螺旋圆环,螺旋圆环中心点是氢气管道2.1、氧气管道2.2的入口及点火器的结合点,经点火器点燃后,点燃的氢气燃烧沿着螺旋一路向外走,到最尾端又绕回阳极中心轴1的内层1.1内,余气和燃烧产物通过余气管道2.3从中心轴1的外口1.3排出,输送气体的管道出口和入口都在阳极中心轴头端外口1.3位置,内层1.1深入阴极内部分留有干冰喷射孔1.4,干冰通过干冰管道2.4输送;阴极3是一个带两个喷口的碟形体3.1,以碟形体3.1的中心核心为圆点,以此圆点到球体的最远距离为半径形成的圆面为核心圆面,核心圆面的圆心即是整个碟形体的核心点,核心点与阳极2的螺旋圆环中心点重合,阴极3和阳极2互不接触,阴极喷口3.2分别在核心圆直径的两端,喷射方向与其直径垂直,喷射线路平行相反,阴极喷口所在圆周相同,阴极喷口3.2内侧引一三角曲面,凹面朝向阴极核心点,此三角弧面称为引流弧3.3,阴极喷口3.2开口方向与核心圆面直径相切,阴极喷口3.2喷射方向接触碟形体部分为抛物线,干冰在阴极里吸热膨胀变为高压气态二氧化碳,从阴极喷口连续高速喷出,整个阴极高速自转,带动外层1.2转动而输出机械力,阴极3与中心轴的外层1.2用机械密封轴承相连接,内层1.1不随极体运动;节点由串在一起的阳极、阴极构成,中心轴贯穿阴极,两边管路相同,即管路串联节点,氢氧通过1号节点进入,在1号双极节点的阳极里燃烧,继续输入流动到2号节点,在2号节点的阳极燃烧,如此运 行至N号节点,废气及水均由排水管排出;干冰由1号节点进入,流经2号双极节点至N号双极节点,内层1.1处于静态,不同的节点之间各路管线均可互相对接;龙卷笼4包裹着阴极3,龙卷笼4与阴极3不直接接触,龙卷笼4尖面延伸与阳极中心轴1外层1.2相接成为龙卷笼动力输出(以密封轴承相接),龙卷笼4上端与阳极中心轴1相接处留有二氧化碳排出口5,龙卷笼4内壁正对阴极3承受喷射的环面为始布满流线型螺纹走气槽,走气槽用以引导龙卷笼4内二氧化碳气体的走向,走气槽从龙卷笼4内壁正对阴极喷口3.2位置开始缓缓螺旋向上至尖端出口处,走气槽内从底部至尖端以高到低刻绘波浪型底纹,承受阴极喷射的二氧化碳气流,带动龙卷笼4整体转动;中心轴1的外层1.2及龙卷笼4上部均设置有齿轮,齿轮用于传递动力。
实施例4:喷气式AIP旋转碳氢发动机,其特征在于:包括中心轴1,阳极2,阴极3,龙卷笼4,其中中心轴1分为输送阴阳极能量体出入的内层1.1和包裹内层1.1但不接触内层1.1并且连接阴极3的输出主动力的外层1.2,各层之间用真空隔离或是留存空气接触;阳极2是一个空心螺旋圆环,螺旋圆环中心点是氢气管道2.1、氧气管道2.2的入口及点火器的结合点,经点火器点燃后,点燃的氢气燃烧沿着螺旋一路向外走,到最尾端又绕回阳极中心轴1的内层1.1内,余气和燃烧产物通过余气管道2.3从中心轴1的外口1.3排出,输送气体的管道出口和入口都在阳极中心轴头端外口1.3位置,内层1.1深入阴极内部分留有干冰喷射孔1.4,干冰通过干冰管道2.4输送;阴极3是一个带两个喷口的碟形体3.1,以碟形体3.1的中心核心为圆点,以此圆点到球体的最远距离为半径形成的圆面为核心圆面,核心圆面的圆心即是整个碟形体的核心点,核心点与阳极2的螺旋圆环中心点重合,阴极3和阳极2互不接触,阴极喷口3.2分别在核心圆直径的两端,喷射方向与其直径垂直,喷射线路平行相反,阴极喷口所在圆周相同,阴极喷口3.2内侧引一三角曲面,凹面朝向阴极核心点,此三角弧面称为引流弧3.3,阴极喷口3.2开口方向与核心圆面直径相切,阴极喷口3.2喷射方向接触碟形体部分为抛物线,干冰在阴极里吸热膨胀变为高压气态二氧化碳,从阴极喷口连续高速喷出,整个阴极高速自转,带动外层1.2转动而输出机械力,阴极3与中心轴的外层1.2用机械密封轴承相连接,内层1.1不随极体运动;节点由串在一起的阳极、阴极构成,中心轴贯穿阴极,两边管路相同,即管路串联节点,氢氧通过1号节点进入,在1号双极节点的阳极里燃烧,继续输入流动到2号节点,在2号节点的阳极燃烧,如此运行至N号节点,废气及水均由排水管排出;干冰由1号节点进入,流经2号双极节点至N号双极节点,内层1.1处于静态,不同的节点之间各路管线均可互相对接;龙卷笼4包裹着阴极3,龙卷笼4与阴极3不直接接触,龙卷笼4尖面延伸与阳极中心轴1外层1.2相接成为龙卷笼动力输出(以密封轴承相接),龙卷笼4上端与阳极中心轴1相接处留有二氧化碳排出口5,龙卷笼4内壁正对阴极3承受喷射的环面为始布满流线型螺纹走气槽,走气槽用以引导龙卷笼4内二氧化碳气体的走向,走气槽从龙卷笼4内壁正对阴极喷口3.2位置开始缓缓螺旋向上至尖端出口处,走气槽内从底部至尖端以高到低刻绘波浪型底纹,承受阴极喷射的二氧化碳气流,带动龙卷笼4整体转动;中心轴1的外层1.2及龙卷笼4上部均设置有齿轮,齿轮用于传递动力。
节点间是靠中心轴的外层1.2传动轴来互相连接传输机械力,在节点外层1.2的两端各有两个扇形体的榫卯,两个节点用扇形体榫卯连接在一起,四个扇形体榫卯插入连接组合形成整体的空心圆柱外层轴。
实施例5:包括中心轴1,阳极2,阴极3,龙卷笼4,其中中心轴1分为输送阴阳极能量体出入的内层1.1和包裹内层1.1但不接触内层1.1并且连接阴极3的输出主动力的外层1.2,各层之间用真空隔离或是留存空气接触;阳极2是一个空心螺旋圆环,螺旋圆环中心点是氢气管道2.1、氧气管道2.2的入口及点火器的结合点,经点火器点燃后,点燃的氢气燃烧沿着螺旋一路向外走,到最尾端又绕回阳极中心轴1的内层1.1内,余气和燃烧产物通过余气管道2.3从中心轴1的外口1.3排出,输送气体的管道出口和入口都在阳极中心轴头端外口1.3位置,内层1.1深入阴极内部分留有干冰喷射孔1.4,干冰通过干冰管道2.4输送;阴极3是一个带两个喷口的碟形体3.1,以碟形体3.1的中心核心为圆点,以此圆点到球体的最远距离为半径形成的圆面为核心圆面,核心圆面的圆心即是整个碟形体的核心点,核心点与阳极2的螺旋圆环中心点重合,阴极3和阳极2互不接触,阴极喷口3.2分别在核心圆直径的两端,喷射方向与其直径垂直,喷射线路平行相反,阴极喷口所在圆周相同,阴极喷口3.2内侧引一三角曲面,凹面朝向阴极核心点,此三角弧面称为引流弧3.3,阴极喷口3.2开口方向与核心圆面直径相切,阴极喷口3.2喷射方向接触碟形体部分为抛物线,干冰在阴极里吸热膨胀变为高压气态二氧化碳,从阴极喷口连续高速喷出,整个阴极高速自转,带动外层1.2转动而输出机械力,阴极3与中心轴的外层1.2用机械密封轴承相连接,内层1.1不随极体运动;节点由串在一起的阳极、阴极构成,中心轴贯穿阴极,两边管路相同,即管路串联节点,氢氧通过1号节点进入,在1号双极节点的阳极里燃烧,继续输入流动到2号节点,在2号节点的阳极燃烧,如此运行至N号节点,废气及水均由排水管排出;干冰由1号节点进入,流经2号双极节点至N号双极节点,内层1.1处于静态,不同的节点之间各路管线均可互相对接;龙卷笼4包裹着阴极3,龙卷笼4与阴极3不直接接触,龙卷笼4尖面延伸与阳极中心轴1外层1.2相接成为龙卷笼动力输出(以密封轴承相接),龙卷笼4上端与阳极中心轴1相接处留有二氧化碳排出口5,龙卷笼4内壁正对阴极3承受喷射的环面为始布满流线型螺纹走气槽,走气槽用以引导龙卷笼4内二氧化碳气体的走向,走气槽从龙卷笼4内壁正对阴极喷口3.2位置开始缓缓螺旋向上至尖端出口处,走气槽内从底部至尖端以高到低刻绘波浪型底纹,承受阴极喷射的二氧化碳气流,带动龙卷笼4整体转动;中心轴1的外层1.2及龙卷笼4上部均设置有齿轮,齿轮用于传递动力。
龙卷笼4中段为空心圆柱体,龙卷笼4中段以对接圆环连接,对接圆环称为龙卷环,龙卷环之间以流线外骨骼相互连接,在龙卷环截面上十字等分四分之一为弧度大小,隆起形成外骨骼,在连接处相对的两边延伸出相等距离为长度,在囚笼环外连接处形成凸起的鱼鳍形榫卯,两两相对契合连接,形成珠串形的形体,连接后内部流线型螺纹走气槽上下相对连贯连接。
实施例6:喷气式AIP旋转碳氢发动机,其特征在于:包括中心轴1,阳极2,阴极3,龙卷笼4,其中中心轴1分为输送阴阳极能量体出入的内层1.1和包裹内层1.1但不接触内层1.1并且连接阴极3的输出主动力的外层1.2,各层之间用真空隔离或是留存空气接触;阳极2是一个空心螺旋圆环,螺旋圆环中心点是氢气管道2.1、氧气管道2.2的入口及点火器的结合点,经点火器点燃后,点燃的氢气燃烧沿着螺旋一路向外走,到最尾端又绕回阳极中心轴1的内层1.1内,余气和燃烧产物通过余气管道2.3从中心轴1的外口1.3排出,输送气体的管道出口和入口都在阳极中心轴头端外口1.3位置,内层1.1深入阴极内部分留有干冰喷射孔1.4,干冰通过干冰管道2.4输送;阴极3是一个带两个喷口的碟形体3.1, 以碟形体3.1的中心核心为圆点,以此圆点到球体的最远距离为半径形成的圆面为核心圆面,核心圆面的圆心即是整个碟形体的核心点,核心点与阳极2的螺旋圆环中心点重合,阴极3和阳极2互不接触,阴极喷口3.2分别在核心圆直径的两端,喷射方向与其直径垂直,喷射线路平行相反,阴极喷口所在圆周相同,阴极喷口3.2内侧引一三角曲面,凹面朝向阴极核心点,此三角弧面称为引流弧3.3,阴极喷口3.2开口方向与核心圆面直径相切,阴极喷口3.2喷射方向接触碟形体部分为抛物线,干冰在阴极里吸热膨胀变为高压气态二氧化碳,从阴极喷口连续高速喷出,整个阴极高速自转,带动外层1.2转动而输出机械力,阴极3与中心轴的外层1.2用机械密封轴承相连接,内层1.1不随极体运动;节点由串在一起的阳极、阴极构成,中心轴贯穿阴极,两边管路相同,即管路串联节点,氢氧通过1号节点进入,在1号双极节点的阳极里燃烧,继续输入流动到2号节点,在2号节点的阳极燃烧,如此运行至N号节点,废气及水均由排水管排出;干冰由1号节点进入,流经2号双极节点至N号双极节点,内层1.1处于静态,不同的节点之间各路管线均可互相对接;龙卷笼4包裹着阴极3,龙卷笼4与阴极3不直接接触,龙卷笼4尖面延伸与阳极中心轴1外层1.2相接成为龙卷笼动力输出(以密封轴承相接),龙卷笼4上端与阳极中心轴1相接处留有二氧化碳排出口5,龙卷笼4内壁正对阴极3承受喷射的环面为始布满流线型螺纹走气槽,走气槽用以引导龙卷笼4内二氧化碳气体的走向,走气槽从龙卷笼4内壁正对阴极喷口3.2位置开始缓缓螺旋向上至尖端出口处,走气槽内从底部至尖端以高到低刻绘波浪型底纹,承受阴极喷射的二氧化碳气流,带动龙卷笼4整体转动;中心轴1的外层1.2及龙卷笼4上部均设置有齿轮,齿轮用于传递动力。
节点间是靠中心轴的外层1.2传动轴来互相连接传输机械力,在节点外层1.2的两端各有两个扇形体的榫卯,两个节点用扇形体榫卯连接在一起,四个扇形体榫卯插入连接组合形成整体的空心圆柱外层轴。
龙卷笼4中段为空心圆柱体,龙卷笼4中段以对接圆环连接,对接圆环称为龙卷环,龙卷环之间以流线外骨骼相互连接,在龙卷环截面上十字等分四分之一为弧度大小,隆起形成外骨骼,在连接处相对的两边延伸出相等距离为长度,在囚笼环外连接处形成凸起的鱼鳍形榫卯,两两相对契合连接,形成珠串形的形体,连接后内部流线型螺纹走气槽上下相对连贯连接。
图4中是龙卷环连接处卯榫结构图,
在图5中,A1和A2同一个外层段,B1和B2为相邻并连接的的外层段,两者卯榫交叉进行连接,即外层轴空心圆柱体的连接面上以十字等分切割,分为四个扇形体,按分割线延柱体方向一定距离为扇形体榫卯的长度,两两相对扇形面与所在的圆柱体为一体,形成一对扇形榫卯,两两相对契合成外层空心圆柱体。
在本发明串联模式中,管路串联的特点,1号,2号及N号节点处的氢氧碳的气压值在同一时间均相等,所以配置的输气压气机可依照节点的数量,工作效率的大小来配置相应大小的压气机。如图2。本发动机是连续不间断运行,阳极氢气氧气燃烧除了最初的点燃之后是持续燃烧,不需要频繁的点燃。点火器是智能遥控点火。如果需要阳极间断点火的话,点火器就是智能遥控脉冲点火,且可控制氢氧的进入。
在本发明中,阳极通过氢气燃烧发生质变,释放出大量的能量。2H2+O2=点燃=2H2O(化合反应)氢气的热值是143kj/g,也就是说,1gH2燃烧放出的热量是143kj。阴极中的 干冰发生相变,干冰吸收的能量完全用于干冰的升华及二氧化碳的升温。干冰的比热是2.1×103J/kg℃,即2.1J/g℃,二氧化碳的比热是840J/kg℃,即0.84J/g℃。粗略计算理想状态下,一克氢气燃烧放出的热量能让一千克的二氧化碳温度升高170℃,根据气体压强公式pv=nRT(p表示压强、V表示气体体积、n表示物质的量、T表示绝对温度、R表示气体常数),1kg二氧化碳吸收1g氢气放出的热量由固态变为气态,温度上升170度,前后压强变为原来的170倍。以之前阴极压强为一个大气压来计算,那么之后的阴极内的气体压强就是170个大气压。考虑到干冰的比热比二氧化碳大及过程中的能量消耗,权且把170减记为150个大气压,即是15兆帕!媲美火箭发动机燃烧室里的高压值!但是!二氧化碳在温度高于临界温度(Tc)31℃、压力高于临界压力(Pc)7.3MPa的状态下,性质会发生变化,其密度近于液体,粘度近于气体,扩散系数为液体的100倍。由于这样的特殊极端情况会有怎样的性质变化和具体能力已属于二氧化碳领域的高端研究,本人现阶段没有这样的实验条件,所以不做深究。预估,这个压力还是可以成为阴极喷射的压力选择之一,具体数值高低依据实际操作,用料多少,动力需求来变化。这里只做简单的计算表达,更详实的阴极,阳极,压强等数值这里不继续论述。
还有一种特殊的情况就是低温情况下,因为二氧化碳的特殊物理特性,固体状态升温直接升华为气态。粗略计算理想状态下,一克氢气燃烧放出的热量能让约68千克的固态二氧化碳温度升高1℃。干冰的温度是零下78摄氏度,那么在零下77摄氏度的时候,由固态变为气态二氧化碳压强变为原来的68倍,简略掉损耗,权且记为50倍,以之前一个大气压计算,变化后就是50个大气压,5兆帕。不过,二氧化碳的物理特性温度20℃,压力为5.73MPa时二氧化碳会液化,零下20℃,压力为1.96MPa时也会液化,在5兆帕的压力下应该是液态状二氧化碳,甚至依然是固态。介于这样的物理性,阴极做功的条件一般情况下,输出温度最佳为20℃,且浮动温度上下最大均不超过10摄氏度,最小上下3摄氏度,输出压强为5兆帕。那么,以一千克干冰,温度从零下78℃升到20℃,升温98度,以100度记,压强增大为5兆帕的话,需要吸收0.58克的氢气燃烧热量,且升温后的体积为一千克干冰体积的两倍。干冰密度1.56kg/L,2千克干冰即是1.28升。由此推导出阴极容积与阳极热能与做功压强的关系。在这个关系下,发动机可以输出稳定连续大小恒定的机械力,这类发动机也可称为中压恒定功率发动机。
再以热效率来考虑,传统的热机效率为30%~40%之间,只有约三分之一的能量利用效率,三分之二的能量被损耗和散失。本发明消除了能量散失,也尽量减小损耗,能量利用率肯定比传统热机要高,效率估计在50%以上。那么,以50%的能量转化率为数据,0.58g氢气燃烧能量,会让1kg干冰恒定做功的模式中,再加入能量转化因素,简单来计算,氢气额定量还需要0.58克的一半,即0.29克的氢气参与反应,才能完全发挥恒定功率发动机的运行。否则出气的温度会低于预设的20℃,能量缺口就会从环境中吸取,造成环境温度降低,这又是一种复杂的能量转化迁徙情况,牵扯到更多各项物理因素,不再讨论。目前这个数值是一个不确定的理论设计值,但是可以用来表现和反应整体系统运行的各项环节变化,实际亦可实现,具体数据以实际实验后的数据为准。
本发明设计理念是把干冰和氢能作为未来新的能源来运用,二者相辅相成。因为这个发动机的设计目的是能量饱和转化,最大限度的减少能量的散失,散热损耗,所以最终排气温度基本要求是常温----20℃,甚至更低来达到能量利用的最大化,并且要回收排 出的二氧化碳,循环使用。实际操作运行时,需要根据阳极的用料参数,阴极的用料参数来控制压强,阴极排气温度,及输出机械力大小。基本定律是,温度升高越高,能量损失越大,温度升高越低,输出能量越小。阴极核心圆大小,重量,转动惯量,动量与输出机械力的关系等等符合传统力学原理和动能原理。
本发动机没有任何污染物的排放,二氧化碳回收重复利用,且是一个恒定的稳定循环。生成的水无论作为哪方面用途都是优良资源,根绝了环境污染。以后不再刻意排放或是大面积破坏植被,可以彻底告别雾霾,告别空气污染,温室效应,实现人类的健康生产生活发展。阴阳极能量无毒,相对其他易燃物更安全一点,严格按照使用操作便很安全,即使泄露,也易于处理。
优良的能量转化,提高了能源的利用效率,没有热污染,包括核电站在内的所有发电厂,及需求动力的民用,军工场所均能使用。眼下及未来核能的应用已经不局限在发电厂,还有核动力航母,ATP核动力潜艇,甚至航天飞机、汽车都已经在理论上和实验中具有应用的可能。氢气和氧气燃烧生成水,水又可以分解成氢气和氧气,干冰吸热变为二氧化碳气态,二氧化碳又能变为干冰。从理论到实际都是可以实现的双循环能源运用系统,这其中的影响可谓超级重要远大!拥有无限的可能,广阔美好的未来,意义无比重大!从此广义上的电网可以被局域的电网取代,甚至可以独户独网,对国家安全和特殊部门使用电力更加安全。还既可以用于地面(重力场),也可用于空间(无重力场),比如开发月球时月面上除太阳能外的又一动力源,而且没有太阳能的诸多限制,甚至是在更未来星际航行,异世大陆上均可适用的动力模式。
本发动机还有ATP模式,即不依赖空气的推进装置。发动机整体可摆脱对空气的依赖,不光是水下潜艇,还包括高海拔地区也可以直接使用,可平稳安全运行,有条件实现零排放,还可以做到一定程度上的免红外探测。从此一些以前对飞行器来说的高原禁忌地区都再也不是问题,比如使用此发动机的直升机,对于我国来说具有重大战略意义。因此而产生的全球战略意义和产生怎样的影响,不在论述,肯定将会变成一个新的格局。
把氢及干冰作为能源联动运用,是第一次全新的能量使用方式,也是开创了全新的能量运用模式,更是提高了人类使用能量认识能量的层次。
以上实施例用于理解本发明的方法和核心思想,对于本领域的技术人员来说,在不脱离本发明构思的前提下,进行任何可能的变化或替换,均属于本发明的保护范围。

Claims (5)

  1. 喷气式AIP旋转碳氢发动机,其特征是:包括中心轴(1),阳极(2),阴极(3),龙卷笼(4),其中中心轴(1)分为输送阴阳极能量体出入的内层(1.1)和包裹内层(1.1)但不接触内层(1.1)并且连接阴极(3)的输出主动力的外层(1.2),各层之间用真空隔离或是留存空气接触;阳极(2)是一个空心螺旋圆环,螺旋圆环中心点是氢气管道(2.1)、氧气管道(2.2)的入口及点火器的结合点,经点火器点燃后,点燃的氢气燃烧沿着螺旋一路向外走,到最尾端又绕回阳极中心轴(1)的内层(1.1)内,余气和燃烧产物通过余气管道(2.3)从中心轴(1)的外口(1.3)排出,输送气体的管道出口和入口都在阳极中心轴头端外口(1.3)位置,内层(1.1)深入阴极内部分留有干冰喷射孔(1.4),干冰通过干冰管道(2.4)输送;阴极(3)是一个带两个喷口的碟形体(3.1),以碟形体(3.1)的中心核心为圆点,以此圆点到球体的最远距离为半径形成的圆面为核心圆面,核心圆面的圆心即是整个碟形体(3.1)的核心点,核心点与阳极(2)的螺旋圆环中心点重合,阴极(3)和阳极(2)互不接触,阴极喷口(3.2)分别在核心圆直径的两端,喷射方向与其直径垂直,喷射线路平行相反,阴极喷口(3.2)所在圆周相同,阴极喷口(3.2)内侧引一三角曲面,凹面朝向阴极核心点,此三角弧面称为引流弧(3.3),阴极喷口(3.2)开口方向与核心圆面直径相切,阴极喷口(3.2)喷射方向接触碟形体(3.1)部分为抛物线,干冰在阴极(3)里吸热膨胀变为高压气态二氧化碳,从阴极喷口连续高速喷出,整个阴极(3)高速自转,带动外层(1.2)转动而输出机械力,阴极(3)与中心轴的外层(1.2)用机械密封轴承相连接,内层(1.1)不随极体运动;龙卷笼(4)整体是一个锥形体,龙卷笼(4)的底面部分包裹着阴极(3),龙卷笼(4)底部与阴极(3)不直接接触,龙卷笼(4)尖面延伸与阳极中心轴(1)外层(1.2)相接成为龙卷笼动力输出,龙卷笼(4)上端与阳极中心轴(1)相接处留有二氧化碳排出口(5),龙卷笼(4)内壁正对阴极(3)承受喷射的环面为始布满流线型螺纹走气槽,走气槽用以引导龙卷笼(4)内二氧化碳气体的走向,走气槽从龙卷笼(4)内壁正对阴极喷口(3.2)位置开始缓缓螺旋向上至尖端出口处,走气槽内从底部至尖端以高到低刻绘波浪型底纹,承受阴极喷射的二氧化碳气流,带动龙卷笼(4)整体转动;中心轴(1)的外层(1.2)及龙卷笼(4)上部均设置有齿轮,齿轮用于传递动力。
  2. 根据权利要求1所述的一种喷气式AIP旋转碳氢发动机,其特征是:龙卷笼(4)外壁光滑,整体规整流线,最大限度减少能量损耗。
  3. 喷气式AIP旋转碳氢发动机,其特征在于:包括中心轴(1),阳极(2),阴极(3),龙卷笼(4),其中中心轴(1)分为输送阴阳极能量体出入的内层(1.1)和包裹内层(1.1)但不接触内层(1.1)并且连接阴极(3)的输出主动力的外层(1.2),各层之间用真空隔离或是留存空气接触;阳极(2)是一个空心螺旋圆环,螺旋圆环中心点是氢气管道(2.1)、氧气管道(2.2)的入口及点火器的结合点,经点火器点燃后,点燃的氢气燃烧沿着螺旋一路向外走,到最尾端又绕回阳极中心轴(1)的内层(1.1)内,余气和燃烧产物通过余气管道(2.3)从中心轴(1)的外口(1.3)排出,输送气体的管道出口和入口都在阳极中心轴头端外口(1.3)位置,内层(1.1)深入阴极内部分留有干冰喷射孔(1.4),干冰通过干冰管道(2.4)输送;阴极(3)是一个带两个喷口的碟形体(3.1),以碟形体(3.1)的中心核心为圆点,以此圆点到球体的最远距离为半径形成的圆面为核心圆面,核心圆面的圆心即是整个碟形体(3.1)的核心点,核心点与阳极(2)的螺旋圆环中心点重合,阴极(3)和阳极(2)互不接触,阴极喷口(3.2)分别在核心圆直径的两端,喷射方向与其直径垂直,喷射线路平行相反,阴极喷口(3.2)所在圆周相同,阴极喷口(3.2)内侧引一三角曲面,凹面朝向阴极核心点,此三角弧面 称为引流弧(3.3),阴极喷口(3.2)开口方向与核心圆面直径相切,阴极喷口(3.2)喷射方向接触碟形体(3.1)部分为抛物线,干冰在阴极里吸热膨胀变为高压气态二氧化碳,从阴极喷口连续高速喷出,整个阴极高速自转,带动外层(1.2)转动而输出机械力,阴极(3)与中心轴的外层(1.2)用机械密封轴承相连接,内层(1.1)不随极体运动;节点由串在一起的阳极、阴极构成,中心轴贯穿阴极,两边管路相同,即管路串联节点,氢氧通过1号节点进入,在1号双极节点的阳极里燃烧,继续输入流动到2号节点,在2号节点的阳极燃烧,如此运行至N号节点,废气及水均由排水管排出;干冰由1号节点进入,流经2号双极节点至N号双极节点,内层(1.1)处于静态,不同的节点之间各路管线均可互相对接;龙卷笼(4)包裹着阴极(3),龙卷笼(4)与阴极(3)不直接接触,龙卷笼(4)尖面延伸与阳极中心轴(1)外层(1.2)相接成为龙卷笼动力输出,龙卷笼(4)上端与阳极中心轴(1)相接处留有二氧化碳排出口(5),龙卷笼(4)内壁正对阴极(3)承受喷射的环面为始布满流线型螺纹走气槽,走气槽用以引导龙卷笼(4)内二氧化碳气体的走向,走气槽从龙卷笼(4)内壁正对阴极喷口(3.2)位置开始缓缓螺旋向上至尖端出口处,走气槽内从底部至尖端以高到低刻绘波浪型底纹,承受阴极喷射的二氧化碳气流,带动龙卷笼(4)整体转动;中心轴(1)的外层(1.2)及龙卷笼(4)上部均设置有齿轮,齿轮用于传递动力。
  4. 根据权利要求3所述的一种喷气式AIP旋转碳氢发动机,其特征是:节点间是靠中心轴的外层(1.2)传动轴来互相连接传输机械力,在节点外层(1.2)的两端各有两个扇形体的榫卯,两个节点用扇形体榫卯连接在一起,四个扇形体榫卯插入连接组合形成整体的空心圆柱外层轴。
  5. 根据权利要求3或4所述的一种喷气式AIP旋转碳氢发动机,其特征是:龙卷笼(4)中段为空心圆柱体,龙卷笼(4)中段以对接圆环连接,对接圆环称为龙卷环,龙卷环之间以流线外骨骼相互连接,在龙卷环截面上十字等分四分之一为弧度大小,隆起形成外骨骼,在连接处相对的两边延伸出相等距离为长度,在囚笼环外连接处形成凸起的鱼鳍形榫卯,两两相对契合连接,形成珠串形的形体,连接后内部流线型螺纹走气槽上下相对连贯连接。
PCT/CN2015/098811 2015-06-30 2015-12-25 喷气式aip旋转碳氢发动机 WO2017000519A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2015103720013 2015-06-30
CN201510372001.3A CN105020011B (zh) 2015-06-30 2015-06-30 喷气式aip旋转碳氢发动机

Publications (1)

Publication Number Publication Date
WO2017000519A1 true WO2017000519A1 (zh) 2017-01-05

Family

ID=54410247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098811 WO2017000519A1 (zh) 2015-06-30 2015-12-25 喷气式aip旋转碳氢发动机

Country Status (2)

Country Link
CN (1) CN105020011B (zh)
WO (1) WO2017000519A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113701152A (zh) * 2021-09-17 2021-11-26 杭州浙大天元科技有限公司 一种螺旋式低氮燃烧器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105020011B (zh) * 2015-06-30 2017-10-13 李伟 喷气式aip旋转碳氢发动机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004364483A (ja) * 2003-06-07 2004-12-24 Kiyomi Tanaka 地球環境保全の為のクリーンエネルギー産生システム
CN102241272A (zh) * 2010-05-14 2011-11-16 炭崎公政 可造氢、脱二氧化碳气泡的节能风/电动船
US20120186542A1 (en) * 2011-01-21 2012-07-26 Fred Dawson Process for powering an engine with water by simultaneously separating hydrogen from oxygen and igniting the hydrogen in the compression/combustion chamber
CN102767428A (zh) * 2012-08-15 2012-11-07 李伟 吸热式干冰发动机
CN103557070A (zh) * 2012-08-15 2014-02-05 李伟 吸热式干冰发动机
CN105020011A (zh) * 2015-06-30 2015-11-04 李伟 喷气式aip旋转碳氢发动机

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1100494A (zh) * 1993-04-21 1995-03-22 卢菊其 反冲旋转式内燃机
CN2177811Y (zh) * 1993-07-21 1994-09-21 张士维 一种新型涡轮机
CN1101398A (zh) * 1993-10-05 1995-04-12 王建伟 喷气转子发动机
CN2232084Y (zh) * 1994-12-20 1996-07-31 李红江 反力外燃喷气发动机
DE19723109B4 (de) * 1997-06-03 2004-11-11 Hübner, Hans-Jürgen, Ing.-grad. Thermosmotor, Wärmekraftmaschine mit Diesel-Direkteinspritzung u. periodischer Innenwandungs-Verdampfungskühlung wärmeisolierter Gasarbeitsräume, gesteuerter Kompressions-Innenkühlung u. leistungssynchron integrierter Heißdampfexpansion
KR20090096249A (ko) * 2008-03-07 2009-09-10 김병규 드라이아이스의 승화작용에 의해 작동되는 외연기관 및 그작동방법
CN101251093A (zh) * 2008-03-20 2008-08-27 杨青 冷式推进器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004364483A (ja) * 2003-06-07 2004-12-24 Kiyomi Tanaka 地球環境保全の為のクリーンエネルギー産生システム
CN102241272A (zh) * 2010-05-14 2011-11-16 炭崎公政 可造氢、脱二氧化碳气泡的节能风/电动船
US20120186542A1 (en) * 2011-01-21 2012-07-26 Fred Dawson Process for powering an engine with water by simultaneously separating hydrogen from oxygen and igniting the hydrogen in the compression/combustion chamber
CN102767428A (zh) * 2012-08-15 2012-11-07 李伟 吸热式干冰发动机
CN103557070A (zh) * 2012-08-15 2014-02-05 李伟 吸热式干冰发动机
CN105020011A (zh) * 2015-06-30 2015-11-04 李伟 喷气式aip旋转碳氢发动机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113701152A (zh) * 2021-09-17 2021-11-26 杭州浙大天元科技有限公司 一种螺旋式低氮燃烧器
CN113701152B (zh) * 2021-09-17 2024-06-04 杭州浙大天元科技有限公司 一种螺旋式低氮燃烧器

Also Published As

Publication number Publication date
CN105020011B (zh) 2017-10-13
CN105020011A (zh) 2015-11-04

Similar Documents

Publication Publication Date Title
WO2017000519A1 (zh) 喷气式aip旋转碳氢发动机
CN109162831A (zh) 固液动力发动机及应用其的火箭
Qin et al. Thermodynamic and experimental investigation of a metal fuelled steam Rankine cycle for Unmanned Underwater Vehicles
CN102971519A (zh) 封装推进剂的引气式可变推力火箭发动机
Kiely Review of underwater thermal propulsion
JP2009191626A (ja) 各種エネルギ保存サイクル合体機関
CN206206009U (zh) 一种火箭冲压发动机
US11661909B2 (en) Rotary detonation rocket engine generator
CN208364293U (zh) 一种利用化学能发电的装置
Koc The use of liquefied petroleum gas (lpg) and natural gas in gas turbine jet engines
JP2009174318A (ja) 各種エネルギ保存サイクル合体機関
CN103321780B (zh) 一种微脉动燃烧电能和推力产生方法和装置
JP2012189046A (ja) 各種エネルギ保存サイクル合体機関
Azami et al. Comparative analysis of alternative fuels in detonation combustion
JP2013227891A (ja) 各種エネルギ保存サイクル合体機関
CN105822454A (zh) 一种动力执行机构
JP2012189038A (ja) 各種エネルギ保存サイクル合体機関
CN102705111A (zh) 新一代热机
UA148337U (uk) Паливо-паровий ракетний реактивний двигун
JP2012207599A (ja) 各種エネルギ保存サイクル合体機関
Hareendran et al. Rotating Detonation Engines: Future of Rocket Propulsion
JP2012237276A (ja) 各種エネルギ保存サイクル合体機関
UA126180C2 (uk) Паливо-паровий ракетний реактивний двигун
JP2011169217A (ja) 各種エネルギ保存サイクル合体機関
JP2013076340A (ja) 各種エネルギ保存サイクル合体機関

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15897044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15897044

Country of ref document: EP

Kind code of ref document: A1