WO2017000428A1 - 磁共振式无线充电电路 - Google Patents

磁共振式无线充电电路 Download PDF

Info

Publication number
WO2017000428A1
WO2017000428A1 PCT/CN2015/092093 CN2015092093W WO2017000428A1 WO 2017000428 A1 WO2017000428 A1 WO 2017000428A1 CN 2015092093 W CN2015092093 W CN 2015092093W WO 2017000428 A1 WO2017000428 A1 WO 2017000428A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
diode
frequency
stage
wireless charging
Prior art date
Application number
PCT/CN2015/092093
Other languages
English (en)
French (fr)
Inventor
吕学文
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/112,103 priority Critical patent/US9948147B2/en
Publication of WO2017000428A1 publication Critical patent/WO2017000428A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present invention relates to the field of wireless charging technologies, and in particular, to a magnetic resonance type wireless charging circuit.
  • the wireless charging technology utilizes inductive coupling, and the energy is transmitted by the power supply device to the device to be charged, and the power supply device and the device to be charged are not connected by wires.
  • wireless charging technology is divided into electric field coupling type, electromagnetic induction type, magnetic resonance type, radio wave type and the like.
  • the magnetic resonance type wireless charging circuit comprises an energy transmitting device (including a transmitting coil) and an energy receiving device (including a receiving coil), and the transmitting coil and the receiving coil resonate at a specific frequency, and the energy transmitting device and the energy receiving device can be Exchange each other's energy to achieve wireless charging.
  • a magnetic resonance type wireless charging energy transmitting device includes: a high frequency oscillating circuit for generating a high frequency oscillating signal; a transmitting coil for transmitting a high frequency oscillating signal; and a power module for supplying power to the high frequency oscillating circuit.
  • the high frequency oscillation circuit includes a switch tube.
  • the performance of the switching transistor in the high frequency oscillating circuit determines the frequency at which the transmitted signal (ie, the high frequency oscillating signal) can be reached. If a good performance switch tube is selected, the frequency at which the transmitted signal can be achieved is high, the transmitted signal can be transmitted at a long distance, and the wireless charging effect is good. However, the cost of purchasing a good performance switch tube is high, and the switch tube with good performance is still difficult to purchase. Therefore, generally, a switch tube with poor performance can be used, and the frequency at which the signal can be transmitted is low, and the emission is low. The signal can be transmitted at a relatively short distance, and the wireless charging effect is not good.
  • the embodiment of the present invention provides a magnetic resonance type wireless charging circuit.
  • the technical solution is as follows:
  • Embodiments of the present invention provide a magnetic resonance type wireless charging circuit, and the magnetic resonance type wireless charging circuit includes:
  • a high frequency oscillating circuit for generating an initial oscillating signal
  • a driving circuit configured to generate a transmission signal by using the initial oscillation signal
  • the driving circuit comprises a 1-stage driving sub-circuit, or an n-stage driving sub-circuit and an (n-1)-stage blocking circuit which are alternately connected in series, n ⁇ 2 and n is an integer, and the driving sub-circuit of each stage includes a series connection The double frequency circuit and the first frequency selection circuit.
  • the first frequency selection circuit includes a first capacitor and a first inductor connected in parallel;
  • the first capacitance and the first inductance in the driving sub-circuit of the i-th stage satisfy the following formula:
  • the driving sub-circuit of the i-th stage is the i-th driving sub-circuit connected in series with the high-frequency oscillation circuit, 1 ⁇ i ⁇ n and i is an integer, and f0 is the frequency of the initial oscillation signal, Li1
  • Ci1 is a capacitance value of the first capacitor in the driving sub-circuit of the i-th stage.
  • the driving circuit when the driving circuit includes a 1-stage driving sub-circuit, the first frequency-selecting circuit includes a second capacitor, a second inductor, and a DC cancellation circuit;
  • the driving circuit includes an n-stage driving sub-circuit and an (n-1)-stage blocking circuit which are alternately connected in series, n ⁇ 2 and n is an integer, the first frequency selection in the driving sub-circuit of the nth stage
  • the circuit includes a second capacitor, a second inductor, and a DC cancellation circuit, wherein the driving sub-circuit of the nth stage is the nth driving sub-circuit connected in series with the high-frequency oscillation circuit;
  • the DC cancellation circuit is respectively connected to the second capacitor and the second inductor.
  • the DC cancellation circuit comprises a transformer, two inputs of the transformer are respectively connected to the second capacitor, and two outputs of the transformer are respectively connected to the second inductor.
  • the driving circuit includes a 1-stage driving sub-circuit
  • the second capacitor, the second inductor, and the transformer satisfy the following formula:
  • the driving circuit includes an n-stage driving sub-circuit and an (n-1)-stage blocking circuit which are alternately connected in series, n ⁇ 2 and n is an integer, the second capacitance, the second inductance, and the transformer satisfy The following formula:
  • f0 is the frequency of the initial oscillation signal
  • L is an equivalent inductance value of the second inductor and the transformer in parallel
  • C2 is a capacitance value of the second capacitor.
  • the double frequency circuit includes a first diode, a second diode, a third diode, and a fourth diode, and the first diode a positive electrode is connected to a negative electrode of the fourth diode, a negative electrode of the first diode is connected to a negative electrode of the second diode, and a positive electrode of the second diode is opposite to the third a cathode of the diode is connected, and a cathode of the third diode is connected to an anode of the fourth diode;
  • connection point of the first diode and the second diode in the driving sub-circuit of the i-th stage a connection point of the third diode and the fourth diode, respectively
  • the first frequency selection circuit included in the driver sub-circuit of the i-stage is connected;
  • connection point of the first diode and the fourth diode in the driving sub-circuit of the i-th stage, the second diode, and the third diode Connection points are respectively connected to the high frequency oscillation circuit;
  • the driving sub-circuit of the i-th stage is the i-th driving sub-circuit connected in series with the high-frequency oscillation circuit, 1 ⁇ i ⁇ n and i is an integer.
  • the driving circuit further includes:
  • a second frequency selection circuit is connected in series between the high frequency oscillation circuit and the drive sub circuit for filtering the initial oscillation signal.
  • the second frequency selection circuit includes a third inductor and a third capacitor connected in series or in parallel;
  • the third inductor and the third capacitor satisfy the following formula:
  • L3 is the inductance value of the third inductance
  • C3 is the capacitance value of the third capacitance.
  • the driving circuit further includes:
  • a spike cancellation circuit coupled to the driver subcircuit for canceling spikes in an output signal of the driver subcircuit.
  • the spike elimination circuit includes a fourth capacitor, one end of the fourth capacitor is connected to the driving subcircuit, and the other end of the fourth capacitor is grounded.
  • the DC blocking circuit includes a fifth capacitor.
  • the initial oscillation signal generated by the high frequency oscillation circuit is multiplied to obtain a higher frequency transmission signal, thereby improving the frequency of the transmission signal and ensuring the transmission signal.
  • the distance that can be transmitted ensures the effect of wireless charging.
  • FIG. 1 is a schematic structural diagram of a magnetic resonance type wireless charging circuit according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of another magnetic resonance type wireless charging circuit according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of waveforms of an input signal and an output signal of a double frequency circuit according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of still another magnetic resonance type wireless charging circuit according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of still another magnetic resonance type wireless charging circuit according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of still another magnetic resonance type wireless charging circuit according to an embodiment of the present invention.
  • the magnetic resonance type wireless charging circuit includes:
  • a high frequency oscillating circuit 11 for generating an initial oscillating signal
  • a driving circuit 12 configured to generate a transmission signal by using an initial oscillation signal
  • the driving circuit 12 includes a 1-stage driving sub-circuit 121 (see the magnetic resonance type wireless charging circuit shown in FIG. 2 and FIG. 4), or an n-stage driving sub-circuit 121 and (n-1) stages which are alternately connected in series.
  • Circuit 122 see magnetic resonance type wireless charging circuit shown in FIG. 5 and FIG. 6
  • n ⁇ 2 and n is an integer, and each stage is driven.
  • the sub circuit 121 includes a double frequency circuit 121a and a first frequency selection circuit 121b connected in series.
  • the drive circuit 12 multiplies the initial oscillating signal to obtain a transmitted signal.
  • each of the driving sub-circuits 121 performs two-frequency output on the input signal, and the blocking circuit 122 filters out the DC component in the output signal of the upper-stage driving sub-circuit 121 and transmits it to the lower-level driver.
  • Circuit 121 In each of the driving sub-circuits 121, the double frequency circuit 121a doubles the frequency of the input signal, and the first frequency selecting circuit 121b selects the signal of the doubled frequency from the multiplied signals.
  • the magnetic resonance wireless charging circuit may further include a wireless communication module 13 and a power module 14 .
  • the wireless communication module 13 and the power module 14 are respectively connected to the high frequency oscillation circuit 11 .
  • the wireless communication module 13 is for receiving a signal for adjusting the frequency and power of the transmitted signal, so that the high frequency oscillating circuit 11 adjusts the frequency and power of the initial oscillating signal according to the received signal.
  • the power module 14 is used to supply power to the high frequency oscillating circuit 11.
  • the initial oscillation signal generated by the high frequency oscillation circuit is multiplied to obtain a higher frequency transmission signal, and the frequency of the transmission signal is improved.
  • the distance that the transmitted signal can be transmitted is guaranteed, thereby ensuring the effect of wireless charging.
  • the frequency at which the signal needs to be transmitted reaches a certain value, the requirement for the switching tube is lowered, and the inexpensive charging tube can be used to realize a wireless charging circuit with good effect, thereby reducing the production cost of the wireless charging circuit.
  • FIG. 2 shows another magnetic resonance type wireless charging circuit according to an embodiment of the present invention.
  • the driving circuit only includes a level 1 driving sub-circuit.
  • the magnetic resonance type wireless charging circuit is shown in FIG. include:
  • a high frequency oscillating circuit 21 for generating an initial oscillating signal
  • a driving circuit 22 configured to generate a transmission signal by using an initial oscillation signal
  • the driving circuit 22 includes a 1-stage driving sub-circuit 221, and the driving sub-circuit 221 includes a serial double-frequency circuit 221a and a first frequency-selecting circuit 221b.
  • the driving circuit including the double frequency circuit and the first frequency selection circuit can double the initial oscillation signal generated by the high frequency oscillation circuit to obtain a higher frequency transmission signal, and improve the frequency of the transmission signal. It ensures the distance that the transmitted signal can be transmitted, thus ensuring the effect of wireless charging.
  • the frequency at which the signal needs to be transmitted reaches a certain value, the requirement for the switch tube is lowered, and an inexpensive switch tube can be used.
  • a wireless charging circuit that achieves good results reduces the production cost of the wireless charging circuit.
  • the double frequency circuit 221a may include a first diode VD1, a second diode VD2, a third diode VD3, and a fourth diode VD4, the first diode VD1
  • the positive electrode is connected to the negative electrode of the fourth diode VD4
  • the negative electrode of the first diode VD1 is connected to the negative electrode of the second diode VD2
  • the positive electrode of the second diode VD2 is connected to the negative electrode of the third diode VD3.
  • the anode of the third diode VD3 is connected to the anode of the fourth diode VD4.
  • a connection point of the first diode VD1 and the second diode VD2, a connection point of the third diode VD3 and the fourth diode VD4 are respectively connected to the first frequency selection circuit 221b.
  • connection point of the first diode VD1 and the fourth diode VD4 connection point, the second diode VD2, and the third diode VD3 are respectively connected to the high frequency oscillation circuit 21.
  • the first diode VD1, the second diode VD2, the third diode VD3, and the fourth diode VD4 can convert the full-wave signal into a half-wave signal, so that the input signal can be doubled. After frequency output. Specifically, as shown in FIG.
  • the waveform of the output signal is opposite to the waveform of the input signal.
  • the input signal is a sine wave
  • the output signal is a signal obtained by taking an absolute value of the sine wave signal
  • the frequency of the output signal is twice the input signal, realizing a double frequency of the input signal.
  • the double frequency circuit 221a is implemented by a diode, has a low cost, and can withstand a high power signal.
  • the first frequency selection circuit 221b may include a first capacitor C1 and a first inductor L1 connected in parallel.
  • the LC circuit has a frequency selection function
  • the first frequency selection circuit 221b uses the first capacitor C1 and the first inductor L1 connected in parallel to suppress signals of undesired frequencies, and filter the signal frequency to obtain a signal of a desired frequency.
  • the first frequency selection circuit 221b is realized by capacitors and inductors, has low cost, and can withstand high-power signals.
  • the first capacitor C1 and the first inductor L1 may satisfy the following formula (1):
  • L11 is the inductance value of the first inductor L1
  • C11 is the capacitance value of the first capacitor C1.
  • the frequency (ie, the resonant frequency) of the signal obtained by selecting the first capacitor C1 and the first inductor L1 is Therefore, it is possible to select a signal multiplied by the double frequency circuit 221a and filter out the clutter signals of other frequencies.
  • the driving circuit 22 may further include:
  • the second frequency selection circuit 223 is connected in series between the high frequency oscillation circuit 21 and the drive sub circuit 221 for filtering the initial oscillation signal.
  • the second frequency selection circuit 223 may include a third inductor L3 and a third capacitor C3 (shown in FIG. 2) connected in series, or a third inductor and a third capacitor connected in parallel. It should be noted that FIG. 2 is only an example in which the third inductor and the third capacitor are connected in series, and the present invention is not limited thereto.
  • the second frequency selection circuit 223 uses a third inductor and a third capacitor connected in series or in parallel to suppress a signal of an undesired frequency to obtain a signal of a desired frequency.
  • the second frequency selection circuit 223 is realized by capacitors and inductors, has low cost, and can withstand high-power signals.
  • the third inductance and the third capacitance may satisfy the following formula (2):
  • L3 is the inductance value of the third inductance L3
  • C3 is the capacitance value of the third capacitance C3.
  • the frequency (ie, the resonant frequency) of the signal obtained by selecting the third capacitor C3 and the third inductor L3 is Therefore, it is possible to select an initial oscillation signal and filter out the clutter signals of other frequencies.
  • the driving circuit 22 may further include:
  • the spike eliminating circuit 224 is connected to the driving sub-circuit 221 for eliminating spikes in the output signal of the driving sub-circuit 221 .
  • the frequency multiplication of the present invention is realized by a simple component, the signal waveform after the multiplication is difficult to be ideal, and the spike elimination circuit 224 is used to eliminate the spike in the signal, thereby improving the ideal waveform waveform. .
  • the spike elimination circuit 224 may include a fourth capacitor C4.
  • One end of the fourth capacitor C4 is connected to the driving sub-circuit 221, and the other end of the fourth capacitor C4 is grounded.
  • the frequency of the peak is high, and the impedance of the capacitor to the signal with higher frequency is smaller, one end of the fourth capacitor C4 is connected to the driving sub-circuit 221, and the other end of the fourth capacitor C4 is grounded, and the driving sub-circuit 221 is The portion of the output signal having a higher frequency (i.e., the peak) flows into the ground through the fourth capacitor C4, thereby avoiding the spike output and eliminating the spike from the output signal of the driving sub-circuit 221 .
  • FIG. 4 shows still another magnetic resonance type wireless charging circuit according to an embodiment of the present invention, the magnetic resonance type wireless charging circuit in the embodiment shown in FIG. 4, and the magnetic resonance type wireless in the embodiment shown in FIG. 2.
  • the charging circuit is basically the same, except that the structure of the first frequency selection circuit is different.
  • the first frequency selection circuit 321b may include a second capacitor C2, a second inductor L2, and a DC cancellation circuit.
  • the DC cancellation circuit is respectively connected to the second capacitor C2 and the second inductor L2, and the DC cancellation circuit is used to eliminate the DC component in the transmitted signal.
  • the DC component will form a strong magnetic field through the transmitting coil (the second inductor L2 in FIG. 4), and the magnetic field will have an influence on the overall circuit.
  • the DC component in the transmitted signal is eliminated by the DC cancellation circuit, and the magnetic field formed by the DC component through the transmitting coil can be prevented from affecting the normal operation of the circuit.
  • the DC cancellation circuit may include a transformer, and the two input ends of the transformer are respectively connected to the second capacitor C2, and the two output ends of the transformer are respectively connected to the second inductor L2.
  • the transformer may include two coupled inductors La, Lb, which are low in cost and capable of withstanding high power signals.
  • the main and auxiliary coils (inductors La, Lb) of the transformer are coupled together by a closed magnetic core, and the magnetic field formed by the DC component is confined in the magnetic core, and only the main and auxiliary coils of the transformer can be transmitted.
  • the AC component allows for the elimination of DC components in the transmitted signal.
  • the second capacitor C2, the second inductor L2, and the transformer can satisfy the following formula (3):
  • L is the equivalent inductance value of the second inductor L2 and the parallel connection of the transformer
  • C2 is the capacitance value of the second capacitor C2.
  • FIG. 5 shows still another magnetic resonance type wireless charging circuit according to an embodiment of the present invention.
  • the driving circuit includes a two-stage driving sub-circuit.
  • the magnetic resonance type wireless charging circuit is shown in FIG. include:
  • a high frequency oscillating circuit 41 for generating an initial oscillating signal
  • a driving circuit 42 configured to generate a transmission signal by using an initial oscillation signal
  • the driving circuit including the plurality of double frequency circuits and the first frequency selection circuit can perform at least four times of the initial oscillation signal generated by the high frequency oscillation circuit to obtain a higher frequency transmission signal and improve the transmission.
  • the frequency of the signal ensures the distance that the transmitted signal can be transmitted, thus ensuring the effect of wireless charging.
  • the frequency at which the signal needs to be transmitted reaches a certain value, the requirement for the switching tube is lowered, and the inexpensive charging tube can be used to realize a wireless charging circuit with good effect, thereby reducing the production cost of the wireless charging circuit.
  • the blocking circuit 422 may include a fifth capacitor C5.
  • the capacitor has a characteristic of blocking through, and a fifth capacitor C5 is disposed between the two-stage driving sub-circuit 421, and the DC component in the half-wave signal obtained by the upper-stage driving sub-circuit 421 can be removed to provide a full-wave.
  • the signal is rectified to the lower stage driving sub-circuit 421 to achieve frequency multiplication.
  • the DC blocking circuit 422 is implemented by the fifth capacitor C5, which is low in cost and can withstand signals of high power.
  • the DC blocking circuit 422 can also adopt other implementation manners, such as capacitors and resistors connected in series, and if the capacitors and resistors are connected in parallel and connected in series with the diode, the present invention does not limit this.
  • the double frequency circuit 421a may include a first diode VD1, a second diode VD2, a third diode VD3, and a fourth diode VD4, the first diode VD1
  • the positive electrode is connected to the negative electrode of the fourth diode VD4
  • the negative electrode of the first diode VD1 is connected to the negative electrode of the second diode VD2
  • the positive electrode of the second diode VD2 is connected to the negative electrode of the third diode VD3.
  • the anode of the third diode VD3 is connected to the anode of the fourth diode VD4.
  • connection point of the first diode VD1 and the second diode VD2 in the i-th stage driving sub-circuit 421, a connection point of the third diode VD3 and the fourth diode VD4, and an i-th stage driving sub-circuit, respectively 421 includes The first frequency selection circuit 421b is connected.
  • connection point of the first diode VD1 and the fourth diode VD4 in the i-th stage driving sub-circuit 421, the connection point of the second diode VD2 and the third diode VD3 are respectively
  • the high frequency oscillating circuit 41 is connected; when i ⁇ 2, the connection point of the first diode VD1 and the fourth diode VD4 in the ith stage driving sub-circuit 421, the second diode VD2 and the third diode
  • the connection point of the tube VD3 is connected to the first frequency selection circuit 421b included in the (i-1)th stage drive sub-circuit 421, respectively.
  • the i-th stage driving sub-circuit 421 is the i-th driving sub-circuit 421 connected in series with the high-frequency oscillating circuit 41, 1 ⁇ i ⁇ n and i is an integer.
  • the use of a diode to implement a double frequency circuit is relatively low cost and can withstand high power signals.
  • the first frequency selection circuit 421b may include a first capacitor C1 and a first inductor L1 connected in parallel.
  • the first capacitor C1 and the first inductor L1 in the i-th stage driving sub-circuit 421 can satisfy the following formula (4):
  • the i-th driving sub-circuit 421 is the i-th driving sub-circuit 421 connected in series with the high-frequency oscillating circuit 41, 1 ⁇ i ⁇ n and i is an integer, f0 is the frequency of the initial oscillation signal, and Li1 is the i-th stage driving.
  • the inductance value of the first inductor L1 in the sub-circuit 421, Ci1 is the capacitance value of the first capacitor C1 in the i-th stage driving sub-circuit 421.
  • the driving circuit 42 may further include:
  • the second frequency selection circuit 423 is connected in series between the high frequency oscillation circuit 41 and the drive sub circuit 421 for filtering the initial oscillation signal.
  • the second frequency selection circuit 423 may include a third inductor L3 and a third capacitor C3 (shown in FIG. 5) connected in series, or a third inductor and a third capacitor connected in parallel. It should be noted that FIG. 5 is only an example in which the third inductor and the third capacitor are connected in series, and the present invention is not limited thereto.
  • the third inductance and the third capacitance may satisfy the formula (2).
  • the driving circuit 42 may further include:
  • the spike eliminating circuit 424 is connected to the driving sub-circuit 421 for canceling the input of the driving sub-circuit 421 A spike in the signal.
  • the spike elimination circuit 424 may include a fourth capacitor C4.
  • One end of the fourth capacitor C4 is connected to the driving sub-circuit 421, and the other end of the fourth capacitor C4 is grounded.
  • a choke it is also possible to use a choke to eliminate spikes, as long as the appropriate parameters are set. Considering that the frequency of the electrical signal being processed is high, the choke can be used without the magnetic core if necessary.
  • the driving circuit includes only two stages of driving sub-circuits.
  • the driving circuit may also include at least three stages of driving sub-circuits.
  • FIG. 6 shows still another magnetic resonance type wireless charging circuit according to an embodiment of the present invention, the magnetic resonance type wireless charging circuit in the embodiment shown in FIG. 6, and the magnetic resonance type in the embodiment shown in FIG. 5.
  • the wireless charging circuit is basically the same, except that the structure of the first frequency selective circuit is different.
  • the first frequency selection circuit 521b in the nth stage driving sub-circuit 521 may include a second capacitor C2, a second inductor L2, and a DC cancel circuit, and the nth stage driving sub-circuit 521 is the nth.
  • a drive sub-circuit 521 connected in series with the high frequency oscillation circuit 51.
  • the DC cancellation circuit is respectively connected to the second capacitor C2 and the second inductor L2, and the DC cancellation circuit is configured to eliminate the DC component in the transmitted signal.
  • the DC cancellation circuit may include a transformer, and the two input ends of the transformer are respectively connected to the second capacitor C2, and the two output ends of the transformer are respectively connected to the second inductor L2.
  • the transformer may include two coupled inductors La, Lb, which are low in cost and capable of withstanding high power signals.
  • the second capacitor C2, the second inductor L2, and the transformer can satisfy the following formula (5):
  • L is the equivalent inductance value of the second inductor L2 and the parallel connection of the transformer
  • C2 is the capacitance value of the second capacitor C2.
  • the driving circuit includes only two stages of driving sub-circuits. In other embodiments, the driving circuit may also include at least three stages of driving sub-circuits. Change to the corresponding number of levels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Transmitters (AREA)

Abstract

一种磁共振式无线充电电路,属于无线充电技术领域。磁共振式无线充电电路包括:高频振荡电路(11),用于产生初始振荡信号;驱动电路(12),用于采用初始振荡信号;驱动电路包括1级驱动子电路(121),或交替串联的n级驱动子电路(121)和(n-1)级隔直电路(122),n≥2且n为整数,每级驱动子电路包括串联的二倍频电路(121a)和第一选频电路(121b)。该无线充电电路通过对高频振荡电路产生的初始振荡信号进行倍频,提高了发射信号的频率,保证了发射信号可传输的距离,进而保证了无线充电的效果。在需要发射信号的频率达到一定值时,降低了对开关管的要求,可以采用廉价开关管实现效果良好的无线充电电路,降低了无线充电电路的生产成本。

Description

磁共振式无线充电电路 技术领域
本发明涉及无线充电技术领域,特别涉及一种磁共振式无线充电电路。
背景技术
无线充电技术(wireless charging technology)是利用电感耦合,由供电设备将能量传送至待充电设备,供电设备与待充电设备之间不用电线连接。按照实现原理的不同,无线充电技术分为电场耦合式、电磁感应式、磁共振式、无线电波式等类型。其中,磁共振式无线充电电路包括能量发送装置(包括发射线圈)和能量接收装置(包括接收线圈),发射线圈和接收线圈在一个特定的频率上共振,此时能量发送装置和能量接收装置可以交换彼此的能量,实现无线充电。
现有一种磁共振式无线充电的能量发送装置包括:高频振荡电路,用于产生高频振荡信号;发射线圈,用于发射高频振荡信号;电源模块,用于为高频振荡电路供电。其中,高频振荡电路包括开关管。
在实现本发明的过程中,发明人发现现有技术至少存在以下问题:
高频振荡电路中的开关管的性能决定了发射信号(即高频振荡信号)所能达到的频率。若选用性能好的开关管,则发射信号所能达到的频率较高,发射信号可传输的距离较远,无线充电效果较好。但是购买性能好的开关管的成本较高,而且性能好的开关管还很难购买到,因此一般只能采用廉价的性能差的开关管,此时发射信号所能达到的频率较低,发射信号可传输的距离较近,无线充电的效果不好。
发明内容
为了解决现有技术采用廉价开关管时无线充电效果不好的问题,本发明实施例提供了一种磁共振式无线充电电路。所述技术方案如下:
本发明实施例提供了一种磁共振式无线充电电路,所述磁共振式无线充电电路包括:
高频振荡电路,用于产生初始振荡信号;
驱动电路,用于采用所述初始振荡信号生成发射信号;
其中,所述驱动电路包括1级驱动子电路,或交替串联的n级驱动子电路和(n-1)级隔直电路,n≥2且n为整数,每级所述驱动子电路包括串联的二倍频电路和第一选频电路。
在本发明一种可能的实现方式中,所述第一选频电路包括并联的第一电容和第一电感;
第i级所述驱动子电路中的所述第一电容和所述第一电感满足如下公式:
Figure PCTCN2015092093-appb-000001
其中,第i级所述驱动子电路为第i个与所述高频振荡电路串联的所述驱动子电路,1≤i≤n且i为整数,f0为所述初始振荡信号的频率,Li1为第i级所述驱动子电路中的所述第一电感的电感值,Ci1为第i级所述驱动子电路中的所述第一电容的电容值。
在本发明另一种可能的实现方式中,当所述驱动电路包括1级驱动子电路时,所述第一选频电路包括第二电容、第二电感、以及直流消除电路;
当所述驱动电路包括交替串联的n级驱动子电路和(n-1)级隔直电路时,n≥2且n为整数,第n级所述驱动子电路中的所述第一选频电路包括第二电容、第二电感、以及直流消除电路,第n级所述驱动子电路为第n个与所述高频振荡电路串联的所述驱动子电路;
其中,所述直流消除电路分别与所述第二电容、所述第二电感连接。
可选地,所述直流消除电路包括变压器,所述变压器的两个输入端分别与所述第二电容连接,所述变压器的两个输出端分别与所述第二电感连接。
优选地,当所述驱动电路包括1级驱动子电路时,所述第二电容、所述第二电感、所述变压器满足如下公式:
Figure PCTCN2015092093-appb-000002
当所述驱动电路包括交替串联的n级驱动子电路和(n-1)级隔直电路时,n≥2且n为整数,所述第二电容、所述第二电感、所述变压器满足如下公式:
Figure PCTCN2015092093-appb-000003
其中,f0为所述初始振荡信号的频率,L为所述第二电感和所述变压器并联的等效电感值,C2为所述第二电容的电容值。
在本发明又一种可能的实现方式中,所述二倍频电路包括第一二极管、第二二极管、第三二极管、第四二极管,所述第一二极管的正极与所述第四二极管的负极连接,所述第一二极管的负极与所述第二二极管的负极连接,所述第二二极管的正极与所述第三二极管的负极连接,所述第三二极管的正极与所述第四二极管的正极连接;
第i级所述驱动子电路中的所述第一二极管和所述第二二极管的连接点、所述第三二极管和所述第四二极管的连接点分别与第i级所述驱动子电路包括的所述第一选频电路连接;
当i=1时,第i级所述驱动子电路中的所述第一二极管和所述第四二极管的连接点、所述第二二极管和所述第三二极管的连接点分别与所述高频振荡电路连接;
当i≥2时,第i级所述驱动子电路中的所述第一二极管和所述第四二极管的连接点、所述第二二极管和所述第三二极管的连接点分别与第(i-1)级所述驱动子电路包括的所述第一选频电路连接;
其中,第i级所述驱动子电路为第i个与所述高频振荡电路串联的所述驱动子电路,1≤i≤n且i为整数。
在本发明又一种可能的实现方式中,所述驱动电路还包括:
第二选频电路,串联在所述高频振荡电路和所述驱动子电路之间,用于对所述初始振荡信号进行滤波。
可选地,所述第二选频电路包括串联或并联的第三电感和第三电容;
所述第三电感和所述第三电容满足如下公式:
Figure PCTCN2015092093-appb-000004
其中,f0为所述初始振荡信号的频率,L3为所述第三电感的电感值,C3为所述第三电容的电容值。
在本发明又一种可能的实现方式中,所述驱动电路还包括:
尖峰消除电路,与所述驱动子电路连接,用于消除所述驱动子电路的输出信号中的尖峰。
可选地,所述尖峰消除电路包括第四电容,所述第四电容的一端与所述驱动子电路连接,所述第四电容的另一端接地。
在本发明又一种可能的实现方式中,所述隔直电路包括第五电容。
本发明实施例提供的技术方案带来的有益效果是:
通过增加包括二倍频电路和第一选频电路的驱动电路,对高频振荡电路产生的初始振荡信号进行倍频,得到频率更高的发射信号,提高了发射信号的频率,保证了发射信号可传输的距离,进而保证了无线充电的效果。在需要发射信号的频率达到一定值时,降低了对开关管的要求,可以采用廉价开关管实现效果良好的无线充电电路,降低了无线充电电路的生产成本。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种磁共振式无线充电电路的结构示意图;
图2是本发明实施例提供的另一种磁共振式无线充电电路的结构示意图;
图3是本发明实施例提供的二倍频电路输入信号和输出信号波形示意图;
图4是本发明实施例提供的又一种磁共振式无线充电电路的结构示意图;
图5是本发明实施例提供的又一种磁共振式无线充电电路的结构示意图;
图6是本发明实施例提供的又一种磁共振式无线充电电路的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
本发明实施例提供了一种磁共振式无线充电电路,参见图1,该磁共振式无线充电电路包括:
高频振荡电路11,用于产生初始振荡信号;
驱动电路12,用于采用初始振荡信号生成发射信号;
其中,驱动电路12包括1级驱动子电路121(详见图2和图4所示的磁共振式无线充电电路),或交替串联的n级驱动子电路121和(n-1)级隔直电路122(详见图5和图6所示的磁共振式无线充电电路),n≥2且n为整数,每级驱动 子电路121包括串联的二倍频电路121a和第一选频电路121b。
下面简单介绍一下本发明实施例提供的磁共振式无线充电电路的工作原理:
在高频振荡电路11产生初始振荡信号之后,驱动电路12对初始振荡信号进行倍频,得到发射信号。在驱动电路12中,各级驱动子电路121均对输入信号进行二倍频后输出,隔直电路122过滤掉上1级驱动子电路121输出信号中的直流成分后传输给下1级驱动子电路121。在各个驱动子电路121中,二倍频电路121a对输入信号进行二倍频,第一选频电路121b从倍频后的信号中选出二倍频后的信号。
容易知道,参见图1,该磁共振式无线充电电路还可以包括无线通信模块13和电源模块14,无线通信模块13、电源模块14分别与高频振荡电路11连接。无线通信模块13用于接收调整发射信号的频率和功率的信号,以使高频振荡电路11根据接收的信号调整初始振荡信号的频率和功率。电源模块14用于为高频振荡电路11供电。
本发明实施例通过增加包括二倍频电路和第一选频电路的驱动电路,对高频振荡电路产生的初始振荡信号进行倍频,得到频率更高的发射信号,提高了发射信号的频率,保证了发射信号可传输的距离,进而保证了无线充电的效果。在需要发射信号的频率达到一定值时,降低了对开关管的要求,可以采用廉价开关管实现效果良好的无线充电电路,降低了无线充电电路的生产成本。
图2显示了本发明实施例提供的另一种磁共振式无线充电电路,图2所示的实施例中,驱动电路只包括1级驱动子电路,参见图2,该磁共振式无线充电电路包括:
高频振荡电路21,用于产生初始振荡信号;
驱动电路22,用于采用初始振荡信号生成发射信号;
其中,驱动电路22包括1级驱动子电路221,该驱动子电路221包括串联的二倍频电路221a和第一选频电路221b。
需要说明的是,包括二倍频电路和第一选频电路的驱动电路,可以对高频振荡电路产生的初始振荡信号进行二倍频,得到频率更高的发射信号,提高了发射信号的频率,保证了发射信号可传输的距离,进而保证了无线充电的效果。在需要发射信号的频率达到一定值时,降低了对开关管的要求,可以采用廉价开关管 实现效果良好的无线充电电路,降低了无线充电电路的生产成本。
可选地,参见图2,二倍频电路221a可以包括第一二极管VD1、第二二极管VD2、第三二极管VD3和第四二极管VD4,第一二极管VD1的正极与第四二极管VD4的负极连接,第一二极管VD1的负极与第二二极管VD2的负极连接,第二二极管VD2的正极与第三二极管VD3的负极连接,第三二极管VD3的正极与第四二极管VD4的正极连接。
第一二极管VD1和第二二极管VD2的连接点、第三二极管VD3和第四二极管VD4连接点分别与第一选频电路221b连接。
第一二极管VD1和第四二极管VD4连接点、第二二极管VD2和第三二极管VD3的连接点分别与高频振荡电路21连接。
容易知道,第一二极管VD1、第二二极管VD2、第三二极管VD3和第四二极管VD4可以将全波信号转换为半波信号,因此可以实现对输入信号进行二倍频后输出。具体地,如图2所示,当输入信号的电流是从高频振荡电路21与第一二极管VD1的连接点向高频振荡电路21与第二二极管VD2的连接点流动时,输入信号依次流经第一二极管VD1、第一选频电路221b、第三二极管VD3,输出信号的波形与输入信号相同;当输入信号的电流是从高频振荡电路21与第二二极管VD2的连接点向高频振荡电路21与第一二极管VD1的连接点流动时,输入信号依次流经第二二极管VD2、第一选频电路221b、第四二极管VD4,输出信号的波形与输入信号的波形相反。参见图3,若输入信号为正弦波时,输出信号为将正弦波信号取绝对值后的信号,输出信号的频率为输入信号的两倍,实现了对输入信号的二倍频。
可以理解地,二倍频电路221a采用二极管实现,成本较低,而且还能承受大功率的信号。
具体地,参见图2,第一选频电路221b可以包括并联的第一电容C1和第一电感L1。
容易知道,LC电路具有选频作用,第一选频电路221b采用并联的第一电容C1和第一电感L1,可以抑制非所需频率的信号,对信号频率进行筛选,得到所需频率的信号。而且第一选频电路221b采用电容和电感实现,成本低,还能承受大功率的信号。
优选地,第一电容C1和第一电感L1可以满足如下公式(1):
Figure PCTCN2015092093-appb-000005
其中,f0为初始振荡信号的频率,L11为第一电感L1的电感值,C11为第一电容C1的电容值。
容易知道,第一电容C1和第一电感L1进行选频得到的信号的频率(即谐振频率)为
Figure PCTCN2015092093-appb-000006
因此可以实现选出二倍频电路221a倍频后的信号,滤除其它频率的杂波信号。
在本实施例的一种实现方式中,参见图2,驱动电路22还可以包括:
第二选频电路223,串联在高频振荡电路21和驱动子电路221之间,用于对初始振荡信号进行滤波。
可选地,第二选频电路223可以包括串联的第三电感L3和第三电容C3(如图2所示),或者并联的第三电感和第三电容。需要说明的是,图2仅以第三电感和第三电容串联为例,本发明并不限制于此。
容易知道,LC电路具有选频作用,第二选频电路223采用串联或并联的第三电感和第三电容,可以抑制非所需频率的信号,得到所需频率的信号。而且第二选频电路223采用电容和电感实现,成本低,还能承受大功率的信号。
优选地,第三电感和第三电容可以满足如下公式(2):
Figure PCTCN2015092093-appb-000007
其中,f0为初始振荡信号的频率,L3为第三电感L3的电感值,C3为第三电容C3的电容值。
容易知道,第三电容C3和第三电感L3进行选频得到的信号的频率(即谐振频率)为
Figure PCTCN2015092093-appb-000008
因此可以实现选出初始振荡信号,滤除其它频率的杂波信号。
在本实施例的另一种实现方式中,参见图2,驱动电路22还可以包括:
尖峰消除电路224,与驱动子电路221连接,用于消除驱动子电路221的输出信号中的尖峰。
可以理解地,由于本发明的倍频是通过简单的元器件实现的,因此倍频后的信号波形很难是理想的,采用尖峰消除电路224消除信号中的尖峰,可以提高信号波形的理想程度。
可选地,如图2所示,尖峰消除电路224可以包括第四电容C4,第四电容C4的一端与驱动子电路221连接,第四电容C4的另一端接地。
容易知道,尖峰的频率较高,而电容对频率较高的信号的阻抗较小,将第四电容C4的一端与驱动子电路221连接,第四电容C4的另一端接地,驱动子电路221的输出信号中频率较高的部分(即尖峰)会通过第四电容C4流入地,从而避免了将尖峰输出,从驱动子电路221的输出信号中消除了尖峰。
图4显示了本发明实施例提供的又一种磁共振式无线充电电路,图4所示的实施例中的磁共振式无线充电电路,与图2所示的实施例中的磁共振式无线充电电路基本相同,不同之处只在于第一选频电路的结构不同。
具体地,参见图4,第一选频电路321b可以包括第二电容C2、第二电感L2、以及直流消除电路。直流消除电路分别与第二电容C2、第二电感L2连接,直流消除电路用于消除发射信号中的直流成分。
容易知道,若发射信号中存在直流成分,则该直流成分通过发射线圈(图4中的第二电感L2)会形成一个较强的磁场,该磁场会对整体电路有影响。通过直流消除电路消除发射信号中的直流成分,可以避免直流成分通过发射线圈形成的磁场影响电路的正常工作。
可选地,直流消除电路可以包括变压器,变压器的两个输入端分别与第二电容C2连接,变压器的两个输出端分别与第二电感L2连接。
具体地,参见图4,变压器可以包括两个耦合的电感La、Lb,成本低,且能承受大功率的信号。
容易知道,变压器的主、副线圈(电感La、Lb)是通过一个闭合的磁芯耦合在一起,直流成分所形成的磁场会约束在磁芯内,变压器的主、副线圈之间只能传输交流成分,因此可以实现对发射信号中的直流成分的消除。
优选地,第二电容C2、第二电感L2、变压器可以满足如下公式(3):
Figure PCTCN2015092093-appb-000009
其中,f0为初始振荡信号的频率,L为第二电感L2和变压器并联的等效电感值,C2为第二电容C2的电容值。
容易知道,第二电感L2和变压器并联形成的等效电感,与第二电容C2进 行选频得到的信号的频率(即谐振频率)为
Figure PCTCN2015092093-appb-000010
因此可以实现选出二倍频电路321a倍频后的信号,滤除其它频率的杂波信号。
图5显示了本发明实施例提供的又一种磁共振式无线充电电路,图5所示的本实施例中,驱动电路包括两级驱动子电路,参见图5,该磁共振式无线充电电路包括:
高频振荡电路41,用于产生初始振荡信号;
驱动电路42,用于采用初始振荡信号生成发射信号;
其中,驱动电路42包括交替串联的n级驱动子电路421和(n-1)级隔直电路422,n=2,每级驱动子电路421包括串联的二倍频电路421a和第一选频电路421b。
需要说明的是,包括多个二倍频电路和第一选频电路的驱动电路,可以对高频振荡电路产生的初始振荡信号进行至少四倍频,得到频率更高的发射信号,提高了发射信号的频率,保证了发射信号可传输的距离,进而保证了无线充电的效果。在需要发射信号的频率达到一定值时,降低了对开关管的要求,可以采用廉价开关管实现效果良好的无线充电电路,降低了无线充电电路的生产成本。
可选地,隔直电路422可以包括第五电容C5。
容易知道,电容具有隔直通交的特性,在两级驱动子电路421之间设置第五电容C5,可以将上1级驱动子电路421得到的半波信号中的直流成分去掉,以提供全波信号给下1级驱动子电路421进行整流,从而实现倍频。而且,隔直电路422采用第五电容C5实现,成本低,且能承受大功率的信号。
需要说明的是,隔直电路422还可以采用其它实现方式,例如串联的电容和电阻,又如电容和电阻并联后与二极管串联,本发明对此不作限制。
可选地,参见图5,二倍频电路421a可以包括第一二极管VD1、第二二极管VD2、第三二极管VD3和第四二极管VD4,第一二极管VD1的正极与第四二极管VD4的负极连接,第一二极管VD1的负极与第二二极管VD2的负极连接,第二二极管VD2的正极与第三二极管VD3的负极连接,第三二极管VD3的正极与第四二极管VD4的正极连接。
第i级驱动子电路421中的第一二极管VD1和第二二极管VD2的连接点、第三二极管VD3和第四二极管VD4的连接点分别与第i级驱动子电路421包括 的第一选频电路421b连接。
当i=1时,第i级驱动子电路421中的第一二极管VD1和第四二极管VD4的连接点、第二二极管VD2和第三二极管VD3的连接点分别与高频振荡电路41连接;当i≥2时,第i级驱动子电路421中的第一二极管VD1和第四二极管VD4的连接点、第二二极管VD2和第三二极管VD3的连接点分别与第(i-1)级驱动子电路421包括的第一选频电路421b连接。
其中,第i级驱动子电路421为第i个与高频振荡电路41串联的驱动子电路421,1≤i≤n且i为整数。
可以理解地,采用二极管实现二倍频电路,成本较低,而且还能承受大功率的信号。
具体地,参见图5,第一选频电路421b可以包括并联的第一电容C1和第一电感L1。
优选地,第i级驱动子电路421中的第一电容C1和第一电感L1可以满足如下公式(4):
Figure PCTCN2015092093-appb-000011
其中,第i级驱动子电路421为第i个与高频振荡电路41串联的驱动子电路421,1≤i≤n且i为整数,f0为初始振荡信号的频率,Li1为第i级驱动子电路421中的第一电感L1的电感值,Ci1为第i级驱动子电路421中的第一电容C1的电容值。
在本实施例的一种实现方式中,参见图5,驱动电路42还可以包括:
第二选频电路423,串联在高频振荡电路41和驱动子电路421之间,用于对初始振荡信号进行滤波。
可选地,第二选频电路423可以包括串联的第三电感L3和第三电容C3(如图5所示),或者并联的第三电感和第三电容。需要说明的是,图5仅以第三电感和第三电容串联为例,本发明并不限制于此。
优选地,第三电感和第三电容可以满足公式(2)。
在本实施例的另一种实现方式中,参见图5,驱动电路42还可以包括:
尖峰消除电路424,与驱动子电路421连接,用于消除驱动子电路421的输 出信号中的尖峰。
可选地,如图5所示,尖峰消除电路424可以包括第四电容C4,第四电容C4的一端与驱动子电路421连接,第四电容C4的另一端接地。此外,也可以采用扼流圈的形式来消除尖峰,只要设置恰当的参数即可。考虑到所处理的电信号的频率较高,必要时,扼流圈可以不使用磁芯。
需要说明的是,本实施例仅以驱动电路包括两级驱动子电路为例,在其它实施例中,驱动电路也可以包括至少三级驱动子电路,此时将本实施例的n=2替换为相应的级数即可。
图6显示了本发明实施例提供的又一种磁共振式无线充电电路,图6所示的本实施例中的磁共振式无线充电电路,与图5所示的实施例中的磁共振式无线充电电路基本相同,不同之处只在于第一选频电路的结构不同。
具体地,参见图6,第n级驱动子电路521中的第一选频电路521b可以包括第二电容C2、第二电感L2、以及直流消除电路,第n级驱动子电路521为第n个与高频振荡电路51串联的驱动子电路521。其中,直流消除电路分别与第二电容C2、第二电感L2连接,直流消除电路用于消除发射信号中的直流成分。
可选地,直流消除电路可以包括变压器,变压器的两个输入端分别与第二电容C2连接,变压器的两个输出端分别与第二电感L2连接。
具体地,参见图6,变压器可以包括两个耦合的电感La、Lb,成本低,且能承受大功率的信号。
优选地,第二电容C2、第二电感L2、变压器可以满足如下公式(5):
Figure PCTCN2015092093-appb-000012
其中,f0为初始振荡信号的频率,L为第二电感L2和变压器并联的等效电感值,C2为第二电容C2的电容值。
容易知道,第二电感L2和变压器并联形成的等效电感,与第二电容C2进行选频得到的信号的频率(即谐振频率)为
Figure PCTCN2015092093-appb-000013
因此可以实现选出n个二倍频电路521a倍频后的信号,滤除其它频率的杂波信号。
需要说明的是,本实施例仅以驱动电路包括两级驱动子电路为例,在其它实施例中,驱动电路也可以包括至少三级驱动子电路,此时将本实施例的n=2替 换为相应的级数即可。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种磁共振式无线充电电路,其特征在于,包括:
    高频振荡电路,用于产生初始振荡信号;
    驱动电路,连接到所述高频振荡电路,用于采用所述初始振荡信号生成发射信号;
    其中,所述驱动电路包括1级驱动子电路,或交替串联的n级驱动子电路和(n-1)级隔直电路,n≥2且n为整数,所述驱动子电路包括串联的二倍频电路和第一选频电路。
  2. 根据权利要求1所述的磁共振式无线充电电路,其特征在于,所述第一选频电路包括并联的第一电容和第一电感;
    第i级所述驱动子电路中的所述第一电容和所述第一电感满足如下公式:
    Figure PCTCN2015092093-appb-100001
    其中,第i级所述驱动子电路为第i个与所述高频振荡电路串联的所述驱动子电路,1≤i≤n且i为整数,f0为所述初始振荡信号的频率,Li1为第i级所述驱动子电路中的所述第一电感的电感值,Ci1为第i级所述驱动子电路中的所述第一电容的电容值。
  3. 根据权利要求1所述的磁共振式无线充电电路,其特征在于,当所述驱动电路包括1级驱动子电路时,所述第一选频电路包括第二电容、第二电感、以及直流消除电路;
    当所述驱动电路包括交替串联的n级驱动子电路和(n-1)级隔直电路时,第n级所述驱动子电路中的所述第一选频电路包括第二电容、第二电感、以及直流消除电路,第n级所述驱动子电路为第n个与所述高频振荡电路串联的所述驱动子电路;
    其中,所述直流消除电路分别与所述第二电容、所述第二电感连接。
  4. 根据权利要求3所述的磁共振式无线充电电路,其特征在于,所述直流消除电路包括变压器,所述变压器的两个输入端分别与所述第二电容连接,所述 变压器的两个输出端分别与所述第二电感连接。
  5. 根据权利要求4所述的磁共振式无线充电电路,其特征在于,当所述驱动电路包括1级驱动子电路时,所述第二电容、所述第二电感、所述变压器满足如下公式:
    Figure PCTCN2015092093-appb-100002
    当所述驱动电路包括交替串联的n级驱动子电路和(n-1)级隔直电路时,所述第二电容、所述第二电感、所述变压器满足如下公式:
    Figure PCTCN2015092093-appb-100003
    其中,f0为所述初始振荡信号的频率,L为所述第二电感和所述变压器并联的等效电感值,C2为所述第二电容的电容值。
  6. 根据权利要求1-5任一项所述的磁共振式无线充电电路,其特征在于,所述二倍频电路包括第一二极管、第二二极管、第三二极管、第四二极管,所述第一二极管的正极与所述第四二极管的负极连接,所述第一二极管的负极与所述第二二极管的负极连接,所述第二二极管的正极与所述第三二极管的负极连接,所述第三二极管的正极与所述第四二极管的正极连接;
    第i级所述驱动子电路中的所述第一二极管和所述第二二极管的连接点、所述第三二极管和所述第四二极管的连接点分别与第i级所述驱动子电路包括的所述第一选频电路连接;
    当i=1时,第i级所述驱动子电路中的所述第一二极管和所述第四二极管的连接点、所述第二二极管和所述第三二极管的连接点分别与所述高频振荡电路连接;
    当i≥2时,第i级所述驱动子电路中的所述第一二极管和所述第四二极管的连接点、所述第二二极管和所述第三二极管的连接点分别与第(i-1)级所述驱动子电路包括的所述第一选频电路连接;
    其中,第i级所述驱动子电路为第i个与所述高频振荡电路串联的所述驱动子电路,1≤i≤n且i为整数。
  7. 根据权利要求1-5任一项所述的磁共振式无线充电电路,其特征在于,所述驱动电路还包括:
    第二选频电路,串联在所述高频振荡电路和所述驱动子电路之间,用于对所述初始振荡信号进行滤波。
  8. 根据权利要求7所述的磁共振式无线充电电路,其特征在于,所述第二选频电路包括串联或并联的第三电感和第三电容;
    所述第三电感和所述第三电容满足如下公式:
    Figure PCTCN2015092093-appb-100004
    其中,f0为所述初始振荡信号的频率,L3为所述第三电感的电感值,C3为所述第三电容的电容值。
  9. 根据权利要求1-5任一项所述的磁共振式无线充电电路,其特征在于,所述驱动电路还包括:
    尖峰消除电路,与所述驱动子电路连接,用于消除所述驱动子电路的输出信号中的尖峰。
  10. 根据权利要求9所述的磁共振式无线充电电路,其特征在于,所述尖峰消除电路包括第四电容,所述第四电容的一端与所述驱动子电路连接,所述第四电容的另一端接地。
  11. 根据权利要求1-5任一项所述的磁共振式无线充电电路,其特征在于,所述隔直电路包括第五电容。
PCT/CN2015/092093 2015-06-30 2015-10-16 磁共振式无线充电电路 WO2017000428A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/112,103 US9948147B2 (en) 2015-06-30 2015-10-16 Magnetic resonance type wireless charging circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510375349.8A CN104901439B (zh) 2015-06-30 2015-06-30 磁共振式无线充电电路
CN201510375349.8 2015-06-30

Publications (1)

Publication Number Publication Date
WO2017000428A1 true WO2017000428A1 (zh) 2017-01-05

Family

ID=54033917

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/092093 WO2017000428A1 (zh) 2015-06-30 2015-10-16 磁共振式无线充电电路

Country Status (3)

Country Link
US (1) US9948147B2 (zh)
CN (1) CN104901439B (zh)
WO (1) WO2017000428A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104901439B (zh) * 2015-06-30 2017-08-08 京东方科技集团股份有限公司 磁共振式无线充电电路
CN106787786B (zh) * 2017-03-01 2020-07-07 深圳驰迅科技有限公司 一种多输入多功能电路
CN107069992A (zh) * 2017-04-09 2017-08-18 深圳市景程信息科技有限公司 远距离无线充电系统
CN107196680A (zh) * 2017-04-09 2017-09-22 深圳市景程信息科技有限公司 电能无线发射装置
WO2020133102A1 (zh) * 2018-12-27 2020-07-02 深圳市大疆创新科技有限公司 无线供电电路、相机、无线供电方法和可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201113482Y (zh) * 2007-10-25 2008-09-10 李冰 一种无线电能传输、充电装置
WO2012091210A1 (ko) * 2010-12-30 2012-07-05 전자부품연구원 이물질을 감지할 수 있는 자기공진유도 방식을 이용한 무선 전력공급 장치
US20120217926A1 (en) * 2011-02-24 2012-08-30 Samsung Electro-Mechanics Co., Ltd. Wireless power transfer
CN104901439A (zh) * 2015-06-30 2015-09-09 京东方科技集团股份有限公司 磁共振式无线充电电路

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0314077B1 (en) * 1987-10-27 1994-01-26 Matsushita Electric Works, Ltd. Discharge lamp driving circuit
CN1040272C (zh) * 1995-03-15 1998-10-14 松下电工株式会社 逆变装置
US5920155A (en) * 1996-10-28 1999-07-06 Matsushita Electric Works, Ltd. Electronic ballast for discharge lamps
US5959410A (en) * 1997-01-29 1999-09-28 Matsushita Electric Works R&D Laboratory, Inc. Charge pump power factor correction circuit for power supply for gas discharge lamp
US5945783A (en) * 1998-07-13 1999-08-31 General Electric Company Zero energy-storage ballast for compact fluorescent lamps
KR101171024B1 (ko) * 2008-10-09 2012-08-08 도요타 지도샤(주) 비접촉 수전장치 및 그것을 구비하는 차량
WO2011046223A1 (ja) * 2009-10-14 2011-04-21 Udトラックス株式会社 蓄電装置
US8559193B2 (en) * 2010-01-22 2013-10-15 The Board Of Trustees Of The University Of Illinois Zero-voltage-switching scheme for high-frequency converter
US9561730B2 (en) * 2010-04-08 2017-02-07 Qualcomm Incorporated Wireless power transmission in electric vehicles
WO2013090945A1 (en) * 2011-12-16 2013-06-20 Advanced Lighting Technologies, Inc. Near unity power factor long life low cost led lamp retrofit system and method
CN102857134B (zh) * 2012-10-09 2014-11-26 中国科学院电工研究所 无线电能传输装置的高频逆变电源及其倍频控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201113482Y (zh) * 2007-10-25 2008-09-10 李冰 一种无线电能传输、充电装置
WO2012091210A1 (ko) * 2010-12-30 2012-07-05 전자부품연구원 이물질을 감지할 수 있는 자기공진유도 방식을 이용한 무선 전력공급 장치
US20120217926A1 (en) * 2011-02-24 2012-08-30 Samsung Electro-Mechanics Co., Ltd. Wireless power transfer
CN104901439A (zh) * 2015-06-30 2015-09-09 京东方科技集团股份有限公司 磁共振式无线充电电路

Also Published As

Publication number Publication date
CN104901439A (zh) 2015-09-09
CN104901439B (zh) 2017-08-08
US9948147B2 (en) 2018-04-17
US20170149281A1 (en) 2017-05-25

Similar Documents

Publication Publication Date Title
WO2017000428A1 (zh) 磁共振式无线充电电路
US10211645B2 (en) Non-contact power supply device
KR102087283B1 (ko) 고효율 전압 모드 클래스 d 토폴로지
EP1821396A2 (en) Switching power supply circuit
CN105811888A (zh) 一种射频功率放大器输出匹配电路结构及其设计方法
Nagashima et al. Analytical design procedure for resonant inductively coupled wireless power transfer system with class-DE inverter and class-E rectifier
US10615709B2 (en) Rectifier for wireless power transfer
JP6652841B2 (ja) 非接触受電装置
CN103378657B (zh) 电力传输装置、非接触电力传输系统和信号生成方法
WO2015063919A1 (ja) 共振型高周波電源装置及び共振型高周波電源装置用スイッチング回路
US9742307B2 (en) Rectifying circuit for high-frequency power supply
CN107800199A (zh) 一种电磁干扰抑制电路及电能发射端
Anh et al. Design and optimization of high-efficiency resonant wireless power transfer system
CN108321943B (zh) 一种基于开关管共地逆变器的无线输电系统
US10236939B1 (en) Sharing system of near-field communication and high-frequency wireless charging coils
CN108123553B (zh) 一种高频大功率无线输电系统
TWM567523U (zh) Near field communication and high frequency wireless charging coil sharing system
CN108233547B (zh) 一种基于低应力逆变器的无线电能传输系统
CN108123554B (zh) 一种基于低应力逆变器的无线输电系统
CN105745829A (zh) 高频电源用整流电路
TWI690130B (zh) 近場通訊與高頻無線充電線圈之共用系統
CN210693567U (zh) 一种无线电能传输系统及无线供电系统
CN210168013U (zh) 一种高功率振荡清洗机
Li et al. Design of a wireless power transfer system based on dual-class E self-resonant synchronous rectifier
US20170163169A1 (en) Rectifying circuit for high-frequency power supply

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15112103

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15896957

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15896957

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/06/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15896957

Country of ref document: EP

Kind code of ref document: A1