WO2017000246A1 - 一种在光域上解扩的方法、设备 - Google Patents

一种在光域上解扩的方法、设备 Download PDF

Info

Publication number
WO2017000246A1
WO2017000246A1 PCT/CN2015/082882 CN2015082882W WO2017000246A1 WO 2017000246 A1 WO2017000246 A1 WO 2017000246A1 CN 2015082882 W CN2015082882 W CN 2015082882W WO 2017000246 A1 WO2017000246 A1 WO 2017000246A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical signal
signal
optical
phase
electrical
Prior art date
Application number
PCT/CN2015/082882
Other languages
English (en)
French (fr)
Inventor
方李明
周雷
隋猛
张晓风
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15896777.8A priority Critical patent/EP3301831A4/en
Priority to PCT/CN2015/082882 priority patent/WO2017000246A1/zh
Publication of WO2017000246A1 publication Critical patent/WO2017000246A1/zh
Priority to US15/857,019 priority patent/US10171175B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/005Optical Code Multiplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/616Details of the electronic signal processing in coherent optical receivers
    • H04B10/6162Compensation of polarization related effects, e.g., PMD, PDL
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2589Bidirectional transmission
    • H04B10/25891Transmission components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/615Arrangements affecting the optical part of the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/16Code allocation

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and device for despreading in an optical domain.
  • FIG. 1 shows the general network structure of a PON system.
  • the PON system usually includes an OLT (Optical Line Terminal) at the central office, and an ODN (Optical Distribution) for branching/coupling or multiplexing/demultiplexing.
  • OLT Optical Line Terminal
  • ODN Optical Distribution
  • Network optical distribution network
  • ONUs Optical Network Units
  • CDMA Code Division Multiple Access
  • CDMA technology is a mature wireless communication technology developed on the branch of digital technology, spread spectrum communication technology.
  • the principle of CDMA technology is based on spread spectrum technology, which is about to be transmitted.
  • the information data with a certain signal bandwidth is modulated by a high-speed codeword whose bandwidth is much larger than the signal bandwidth, so that the bandwidth of the original data signal is expanded, and then modulated by the carrier and transmitted.
  • the receiving end uses the same codeword, performs correlation processing with the received bandwidth signal, and despreads the wideband signal into the narrowband signal of the original information data to realize information communication.
  • CDMA access control is employed in a fiber access network, and CDMA technology is usually employed in the electrical domain.
  • the drawback of this scheme is that due to the limitation of the electron rate, the rate after the spread spectrum is limited, and this method is difficult to adapt to the needs of future development of high-speed image services such as VOD video on demand, HDTV high definition television, and the like.
  • the embodiments of the present invention provide a method, a device, and a system for despreading in an optical domain, which are used to solve the technical problem that the rate of the prior art cannot meet the requirements of the user.
  • an apparatus for despreading in an optical domain comprising a beam splitter, the splitter for dividing a received optical signal into a first optical signal and a second optical signal, the first optical signal input To the optical coupler, the second optical signal is input to the optical modulator;
  • the light modulator is configured to perform field modulation on the second optical signal to output a third optical signal, and a phase difference between the third optical signal and the first optical signal is a first difference, where a three-optic signal is input to the optical coupler;
  • the optical coupler is configured to perform phase deflection processing on the first optical signal and the third optical signal, and output the fourth optical signal and the fifth optical signal to the balanced receiver;
  • the balanced receiver is configured to superimpose the fourth optical signal and the fifth optical signal to generate a first electrical signal, and output the first electrical signal;
  • the accumulator is configured to accumulate the first electrical signal during a codeword period.
  • the optical modulator performs field modulation on the second optical signal according to a local codeword.
  • the polarization directions of the first optical signal and the third optical signal are the same.
  • the optical coupler is configured to perform phase deflection processing on the first optical signal and the third optical signal, and output the fourth optical signal and the fifth optical signal to
  • the method of balancing the receiver includes: decoupling a phase of the first optical signal by a first difference and superimposing the third optical signal to obtain a fourth optical signal; and deflecting a phase of the third optical signal by a first The difference is then superimposed with the first optical signal to obtain a fifth optical signal.
  • the balanced receiver specifically, includes: a first optical receiver PD, a second PD And an adder; the first PD is configured to receive the fourth optical signal, and the fourth optical signal is converted into a second electrical signal; the second PD is configured to receive a fifth optical signal, and the fifth optical The signal is converted into a third electrical signal; the adder is configured to superimpose the second electrical signal and the third electrical signal to obtain a first electrical signal.
  • the device further includes a phase detuner, one end connected to the accumulator, one end And coupled to the optical modulator for adjusting a phase of a codeword of the second optical signal such that a codeword of the second optical signal is aligned with a codeword of the received optical signal.
  • the first difference is ⁇ /2.
  • an apparatus for despreading in an optical domain comprising: a first polarization beam splitter prism PBS for dividing the received optical signal into first optical signals and polarizations that are perpendicular to each other in polarization direction a second optical signal, the first optical signal and the second optical signal are respectively input to the first optical coupler and the second optical coupler; the local oscillator light source is configured to emit the local oscillator light; and the second PBS is used for The local oscillation light is divided into a third optical signal and a fourth optical signal whose polarization directions are perpendicular to each other; the first optical modulator and the second optical modulator are respectively configured to modulate the third optical signal and the fourth optical signal, Generating a fifth optical signal and a sixth optical signal, the fifth optical signal and the sixth optical signal being input to the first optical coupler and the second optical coupler, respectively; wherein the fifth optical signal and the first optical signal
  • the polarization states are the same, and the phase difference is the first difference, the
  • the first optical coupler is configured to perform phase deflection on the first optical signal and the fifth optical signal, and output the seventh optical signal and the eighth optical
  • the signal specifically includes: after the phase of the fifth optical signal is deflected by the first difference, superimposing with the first optical signal to obtain a seventh optical signal; and after the phase of the first optical signal is deflected by the first difference, and the fifth optical signal The superposition is performed to obtain an eighth optical signal.
  • the second optical coupler is configured to use the second optical signal and the sixth optical signal And performing the phase deflection to output the ninth optical signal and the tenth optical signal, specifically: after the sixth optical signal is phase-deflected by the first difference, and superimposed with the second optical signal to obtain a ninth optical signal; After the signal phase is deflected by the first difference, it is superimposed with the sixth optical signal to obtain a tenth optical signal.
  • the first balancing device specifically includes: a first optical receiver PD, a second PD And a first adder; the first PD is configured to receive a seventh optical signal, and the seventh optical signal is converted into a third electrical signal; the second PD is configured to receive an eighth optical signal, and to convert the eighth optical signal And being a fourth electrical signal; the first adder is configured to superimpose the third electrical signal and the fourth electrical signal to output the first electrical signal.
  • the second balanced receiver specifically includes: a third optical receiver PD, a fourth a PD and a second adder; the third PD is configured to receive the ninth optical signal, and the third optical signal is converted into the fifth electrical signal; the fourth PD is configured to receive the tenth optical signal, and the tenth optical signal Converting to a sixth electrical signal; the subtractor is configured to superimpose the fifth electrical signal and the sixth electrical signal to output a second electrical signal.
  • the device further includes a phase detuner for the local oscillator The phase of the codeword is adjusted such that the codeword of the local oscillator is aligned with the codeword of the received optical signal.
  • the device further includes a first device, configured to perform the first electrical signal The second electrical signal is squared.
  • the first device is an analog device or an ADC and a digital device.
  • the first difference is ⁇ /2.
  • a third aspect is a method for despreading in an optical domain, the method comprising dividing a received optical signal into a first optical signal and a second optical signal; performing field modulation on the first optical signal to obtain a third optical signal, wherein a phase difference between the third optical signal and the first optical signal is a first difference; respectively, phase-deflecting the first optical signal and the third optical signal to obtain a fourth optical signal and a fifth optical signal; converting the fourth optical signal and the fifth optical signal into an electrical signal, superimposing to generate a first electrical signal; and accumulating the first electrical signal in one codeword period.
  • the first optical signal is field modulated according to a local codeword.
  • the polarization directions of the first optical signal and the third optical signal are the same.
  • the first optical signal and the third optical signal are respectively phase-deflated, Obtaining the fourth optical signal and the fifth optical signal, specifically: performing phase shifting of the third optical signal by a first difference, and superimposing with the first optical signal to obtain a fourth optical signal; The optical signal is phase-deflected by a first difference and superimposed with the third optical signal to obtain a fifth optical signal.
  • the fourth optical signal and the fifth optical signal are superimposed, and output An electrical signal specifically includes: converting the fourth optical signal into a second electrical signal; converting the fifth optical signal into a third electrical signal; and superposing the second electrical signal and the third electrical signal to obtain a An electrical signal.
  • the method further includes: adjusting a phase of a codeword of the second optical signal, so that The codeword of the second optical signal is aligned with the codeword of the received optical signal.
  • the first difference is ⁇ /2.
  • a fourth aspect is a method for despreading in an optical domain, the method comprising dividing a received optical signal into a first optical signal and a second optical signal whose polarization directions are perpendicular to each other; and a local oscillator emitted by the local light source The light is divided into a third optical signal and a fourth optical signal whose polarization directions are perpendicular to each other; after the third optical signal and the fourth optical signal are modulated, the fifth optical signal and the sixth optical signal are respectively generated; Performing phase deflection on the first optical signal and the fifth optical signal to obtain a seventh optical signal and an eighth optical signal; performing phase deflection on the second optical signal and the sixth optical signal to obtain a ninth optical signal and a first a ten-light signal; after converting the seventh optical signal and the eighth optical signal into an electrical signal, superimposing to obtain a first electrical signal; and converting the ninth optical signal and the tenth optical signal into an electrical signal, superimposing Obtaining a second electrical signal; superimposing the first electrical signal
  • the first optical signal and the fifth optical signal are phase-deflated to obtain a seventh optical signal and an eighth optical signal, specifically including After the phase of the fifth optical signal is deflected by the first difference, the first optical signal is added to obtain a seventh optical signal; after the first optical signal is phase-deflected by the first difference, the fifth optical signal is added , the eighth light signal is obtained.
  • the second optical signal and the sixth optical signal are phase-deflated to obtain a ninth
  • the optical signal and the tenth optical signal specifically include: after the phase of the sixth optical signal is deflected by the first difference, the second optical signal is added to obtain a ninth optical signal; and the phase of the second optical signal is deflected by the first difference. Then, the sixth optical signal is added to obtain a tenth optical signal.
  • Overlay including:
  • the ninth optical signal and the tenth optical signal are converted into an electrical signal and then superimposed Specifically, the method includes: converting the ninth optical signal into a sixth electrical signal; converting the tenth optical signal into a seventh electrical signal; and superposing the sixth electrical signal and the seventh electrical signal to obtain a second electric signal.
  • the method further includes: adjusting a phase of the codeword of the local oscillator So that the codeword of the local oscillator is aligned with the codeword of the received optical signal.
  • the first difference is ⁇ /2.
  • the multiplication operation in the conventional CDMA despreading is transferred from the electrical domain to the optical domain, and the electrical domain only performs the accumulating operation, and the chip rate can be easily mentioned to 20 GHz or even 25 GHz, and the single wavelength can provide the highest.
  • the 100Gbps rate can meet the high bandwidth requirements of users.
  • the device provided by the embodiment of the present invention has lower cost than the prior art.
  • FIG. 1 is a schematic diagram of a PON structure of a passive optical network
  • FIG. 2 is a schematic structural diagram of an apparatus for performing despreading on an optical domain according to an embodiment of the present invention
  • 3A is a schematic structural diagram of an apparatus for performing despreading on an optical domain according to another embodiment of the present invention.
  • 3B is a schematic structural diagram of an apparatus for performing despreading on an optical domain according to another embodiment of the present invention.
  • 3C is a schematic structural diagram of an apparatus for performing despreading on an optical domain according to another embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a method for performing despreading on an optical domain according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of a method for performing despreading on an optical domain according to another embodiment of the present invention.
  • an embodiment of the present invention provides an apparatus 200 for despreading in an optical domain, including:
  • the optical splitter 201 is configured to divide the received optical signal into a first optical signal and a second optical signal, the first optical signal is input to the optical coupler 202, and the second optical signal is input to the optical modulator 203;
  • the light modulator 203 is configured to perform field modulation on the second optical signal to output a third optical signal, wherein a phase difference between the third optical signal and the first optical signal is a first difference, and the third optical signal is also input to the optical The coupler 202; it should be noted that the light modulator 203 has a phase deflection function such that the phase difference of the phase of the third optical signal with respect to the first optical signal or the second optical signal is the first difference.
  • the modulation mentioned here refers to the field modulation of light.
  • the field modulation refers to field modulation of the second optical signal according to a local codeword.
  • the local codeword refers to the codeword corresponding to the channel or user to be received.
  • the first difference is ⁇ /2.
  • the first difference may also be ⁇ /4, ⁇ /16, ⁇ /8.
  • the code words are code1 to code n, respectively.
  • the local codeword refers to the codeword corresponding to the user on the receiving side.
  • the local codeword is code1
  • the local codeword is coden.
  • the local codeword is labeled CL.
  • the optical coupler 202 is configured to phase deflect the first optical signal and the third optical signal, respectively output a fourth optical signal and a fifth optical signal, the fourth and fifth optical signals are respectively input to the balanced receiver 204;
  • the balanced receiver 204 is configured to convert the fourth optical signal and the fifth optical signal into electrical signals, and then perform superposition to generate a first electrical signal, and output the first electrical signal.
  • the polarization directions of the first optical signal and the third optical signal are the same.
  • optical coupler 202 is specifically configured to:
  • the balanced receiver 204 further includes:
  • a first optical receiver (Photodiode, PD) 2041 configured to receive a fourth optical signal, and convert the fourth optical signal into a second electrical signal;
  • a second PD 2042 configured to receive a fifth optical signal, and convert the fifth optical signal into a third electrical signal
  • the adder 2043 is configured to superimpose the second electrical signal and the third electrical signal to obtain a first electrical signal.
  • the apparatus 200 further includes an accumulator 205 coupled to the balanced receiver 204 for accumulating the first electrical signal output by the balanced receiver during each codeword period And output the result after the accumulation.
  • an accumulator 205 coupled to the balanced receiver 204 for accumulating the first electrical signal output by the balanced receiver during each codeword period And output the result after the accumulation.
  • codeword period is the duration of the codeword, and can also be interpreted as the codeword length.
  • the apparatus 200 further includes a phase detuner 206 having one end connected to the accumulator 205 and one end connected to the optical modulator 203 for adjusting the phase of the codeword of the second optical signal.
  • the codeword of the second optical signal is aligned with the codeword of the received optical signal.
  • Embodiments of the present invention can achieve high signal-to-noise ratio SNR by employing optical coherent reception.
  • the accumulation is only done in the electrical domain and the multiplication is transferred to the optical domain, it is relatively easy to mention the chip rate to 20 GHz or even 25 GHz.
  • the device provided by the embodiment of the present invention has lower cost than the prior art.
  • another embodiment of the present invention provides an apparatus 300 for despreading in an optical domain, including:
  • a first polarization splitting prism (PBS) 301 is configured to split the received optical signal into two optical signals whose polarization directions are perpendicular, which are recorded as a first optical signal and a second optical signal, and the two optical signals are respectively separated. Delivered to the first optical coupler 302 and the second optical coupler 303;
  • the local oscillator light source 304 is configured to emit the local oscillator light; wherein the emitted local oscillator light is divided into two optical signals having perpendicular polarization directions through the second PBS 305, and is recorded as a third optical signal and a fourth optical signal, respectively input to the first a light modulator 306 and a second light modulator 307;
  • a first optical modulator 306, configured to modulate the third optical signal to generate a fifth optical signal, Input into the first optical coupler 302; wherein the modulation refers to modulating the intensity of the optical signal, wherein the phase deviation of the fifth optical signal and the first optical signal is a first difference.
  • the phase of the local oscillator light generated by the local oscillator light source may be the same as the first optical signal, or the phase deviation from the first optical signal may be the first difference.
  • the first optical modulator 306 when modulating the third optical signal, deflects the phase of the third optical signal such that the phase of the fifth optical signal is
  • the phase difference of an optical signal is the first difference, that is, in this case, the first optical modulator 306 not only performs intensity modulation on the third optical signal but also phase deflects the third optical signal.
  • the phase deviation of the phase of the local oscillator and the first optical signal is the first difference
  • the deviation of the phase of the third optical signal from the first optical signal is also the first difference
  • the fifth optical signal and the first optical signal The phase deviation is also the first difference.
  • the first light modulator 306 does not need to deflect the phase of the third optical signal, and only needs to modulate the third optical signal.
  • the first difference is ⁇ /2.
  • the first difference may also be ⁇ /4, ⁇ /16, ⁇ /8.
  • the second optical modulator 307 is configured to modulate the fourth optical signal to generate a sixth optical signal, and input the second optical signal into the second optical coupler 303.
  • the phase deviation of the sixth optical signal and the second optical signal is first. Difference.
  • the phase of the local oscillator light generated by the local oscillator light source may be the same as the second optical signal, or the phase deviation from the second optical signal may be the first difference.
  • the second optical modulator 307 deflects the phase of the fourth optical signal when modulating the fourth optical signal, so that the phase of the sixth optical signal is
  • the phase difference of the two optical signals is the first difference, that is, in this case, the second optical modulator 307 not only performs intensity modulation on the fourth optical signal but also phase deflects the fourth optical signal.
  • the phase deviation of the phase of the local oscillator from the second optical signal is ⁇ the first difference
  • the deviation of the phase of the fourth optical signal from the second optical signal is also the first difference
  • the sixth optical signal and the second optical The phase deviation of the signal is also the first difference.
  • the second optical modulator 307 does not need to deflect the phase of the fourth optical signal, and only needs to modulate the fourth optical signal.
  • the first optical coupler 302 is configured to phase deflect the first optical signal and the fifth optical signal, and output the seventh optical signal and the eighth optical signal;
  • a second optical coupler 303 configured to perform phase deflection on the second optical signal and the sixth optical signal, and output a ninth optical signal and a tenth optical signal
  • the first balanced receiver 308 is configured to perform the superimposition of the seventh optical signal and the eighth optical signal into an electrical signal, and output the first electrical signal;
  • a second balanced receiver 309 configured to convert the ninth optical signal and the tenth optical signal into electrical signals, perform superposition, and output a second electrical signal
  • the accumulator 310 is configured to accumulate the first electrical signal and the second electrical signal in each codeword period.
  • the apparatus 300 may further include a first device 320, as shown in FIG. 3B, which may be an analog device or a digital device such as an ADC.
  • a first device 320 as shown in FIG. 3B, which may be an analog device or a digital device such as an ADC.
  • the first device 320 is configured to perform a square operation on the first electrical signal and the second electrical signal.
  • the first electrical signal and the second electrical signal are sent to two inputs of the analog multiplier to complete the square operation;
  • the signal is first passed through the ADC, converted to the digital domain, and then directly squared with the DSP.
  • the embodiment of the present invention may further perform a coding by setting a first device on the transmitting side, as shown in FIG. 3A, after performing square operation on the electrical signal of the user, and the receiving side of the scheme does not need to be set.
  • the first device may further perform a coding by setting a first device on the transmitting side, as shown in FIG. 3A, after performing square operation on the electrical signal of the user, and the receiving side of the scheme does not need to be set.
  • the first device may further perform a coding by setting a first device on the transmitting side, as shown in FIG. 3A, after performing square operation on the electrical signal of the user, and the receiving side of the scheme does not need to be set.
  • the first optical coupler 302 is specifically configured to:
  • the first optical signal is added to obtain a seventh optical signal
  • the first optical signal is phase-deflected by the first difference, it is added to the fifth optical signal to obtain an eighth optical signal.
  • the second optical coupler 303 is specifically configured to:
  • the second optical signal is added to obtain a ninth optical signal
  • the sixth optical signal is added to obtain a tenth optical signal.
  • the first balanced receiver 308 specifically includes:
  • the first PD 3081 is configured to receive a seventh optical signal, and convert the seventh optical signal into a third electrical signal;
  • the second PD 3082 is configured to receive an eighth optical signal, and convert the eighth optical signal into a fourth electrical signal;
  • the first adder 3083 is configured to superimpose the third electrical signal and the fourth electrical signal to output a first electrical signal.
  • the superposition is a subtraction operation, and may also be an addition operation.
  • the second balanced receiver 309 specifically includes:
  • the third PD 3091 is configured to receive the ninth optical signal, and convert the ninth optical signal into a fifth electrical signal;
  • the fourth PD 3092 is configured to receive the tenth optical signal, and convert the tenth optical signal into a sixth electrical signal;
  • the adder 3093 is configured to superimpose the fifth electrical signal and the sixth electrical signal to output a second electrical signal. It should be noted that the superposition is a subtraction operation, and may also be an addition operation.
  • the apparatus 300 further includes a phase detuner 311 for adjusting a phase of the codeword of the local oscillator such that a codeword of the local oscillator is aligned with a codeword of the received optical signal.
  • a phase detuner 311 for adjusting a phase of the codeword of the local oscillator such that a codeword of the local oscillator is aligned with a codeword of the received optical signal.
  • Embodiments of the present invention can achieve high signal-to-noise ratio SNR by employing optical coherent reception.
  • the accumulation is only done in the electrical domain and the multiplication is transferred to the optical domain, it is relatively easy to mention the chip rate to 20 GHz or even 25 GHz.
  • the device provided by the embodiment of the present invention has lower cost than the prior art.
  • An embodiment of the present invention further provides a method for despreading on an optical domain, including:
  • Step S401 dividing the received optical signal into a first optical signal and a second optical signal
  • Step S402 performing field modulation on the first optical signal to obtain a third optical signal, where a phase difference between the third optical signal and the first optical signal is a first difference;
  • Step S403 phase-defracting the first optical signal and the third optical signal respectively to obtain a fourth optical signal and a fifth optical signal;
  • Step S404 converting the fourth optical signal and the fifth optical signal into electrical signals, and performing superposition Generating a first electrical signal
  • Step S405 accumulating the first electrical signal in one codeword period.
  • the first optical signal is field modulated according to a local codeword.
  • the polarization directions of the first optical signal and the third optical signal are the same.
  • the first optical signal and the third optical signal are phase-deflated to obtain a fourth optical signal and a fifth optical signal, which specifically include:
  • the first optical signal is phase-deflected by a first difference and superimposed with the third optical signal to obtain a fifth optical signal.
  • the superposing the fourth optical signal and the fifth optical signal to output the first electrical signal includes:
  • the second electrical signal and the third electrical signal are superimposed to obtain a first electrical signal.
  • the method further comprises adjusting a phase of the codeword of the second optical signal such that a codeword of the second optical signal is aligned with a codeword of the received optical signal.
  • the first difference is ⁇ /2.
  • the first difference may also be ⁇ /4, ⁇ /16, ⁇ /8.
  • An embodiment of the present invention further provides a method for performing despreading on an optical domain, including:
  • the received optical signal is divided into a first optical signal and a second optical signal whose polarization directions are perpendicular to each other;
  • the method further includes:
  • a square operation is performed on the first electrical signal and the second electrical signal.
  • the squaring operation can be done by a digital device, such as an analog to digital converter ADC, or an analog device.
  • step numbers S501 to S509 are not limited to the execution of the steps.
  • the steps 501 and 502 may occur at the same time, or may occur in a sequential order. Other steps are the same.
  • the present invention does not limit the execution steps, and those skilled in the art can see the method provided by the present invention. The known technology clearly obtains the present invention.
  • performing phase deflection on the first optical signal and the fifth optical signal to obtain a seventh optical signal and an eighth optical signal specifically including:
  • the first optical signal is added to obtain a seventh optical signal
  • the first optical signal is phase-deflected by the first difference, it is added to the fifth optical signal to obtain an eighth optical signal.
  • the first difference is ⁇ /2.
  • the first difference may also be ⁇ /4, ⁇ /16, ⁇ /8.
  • performing phase deflection on the second optical signal and the sixth optical signal to obtain a ninth optical signal and a tenth optical signal specifically including:
  • the second optical signal is added to obtain a ninth optical signal
  • the sixth optical signal is added to obtain the first Ten light signals.
  • the method further includes:
  • the fourth electrical signal and the fifth electrical signal are superimposed to obtain a first electrical signal.
  • the superposition is a subtraction operation, and may also be an addition operation.
  • the superposition is a subtraction operation, and may also be an addition operation.
  • the method further includes:
  • the phase of the codeword of the local oscillator is adjusted such that the codeword of the local oscillator is aligned with the codeword of the received optical signal.

Abstract

本发明公开了一种在光域上解扩的装置,所述装置包括分光器,所述分光器用于将接收的光信号分为第一光信号和第二光信号;所述光调制器,用于将所述第二光信号进行相位偏转后输出第三光信号,所述第三光信号与所述第一光信号的相位差为第一差值;所述光耦合器,用于将所述第一光信号和第三光信号分别进行相位偏转,输出第四光信号和第五光信号至平衡接收机;所述平衡接收机,用于将所述第四光信号和第五光信号进行叠加生成第六光信号。通过将传统的CDMA解扩中的乘法操作,从电域转移到光域,能够容易将码片速率提到到20GHz,甚至25GHz,单波长可以提供最高100Gbps的速率,能够满足用户对高带宽的需求。另外,本发明实施例提供的装置相比现有技术成本较低。

Description

一种在光域上解扩的方法、设备 技术领域
本发明涉及通信领域,尤其涉及一种在光域上解扩的方法、设备。
背景技术
随着用户对带宽需求的不断增长,传统的铜线宽带接入系统越来越面临带宽瓶颈。与此同时,带宽容量巨大的光纤通信技术日益成熟,应用成本逐年下降,光纤接入网成为下一代宽带接入网的有力竞争者,其中尤其PON(Passive Optical Network,无源光网络)系统更具竞争力。图1示出了PON系统的一般网络结构,PON系统通常包括一个位于中心局的OLT(Optical Line Terminal,光线路终端),一个用于分支/耦合或者复用/解复用的ODN(Optical Distribution Network,光分配网络)以及若干ONU(Optical Network Unit,光网络单元)。
CDMA(Code Division Multiple Access,码分多址)技术是在数字技术的分支——扩频通信技术上发展起来的一种成熟的无线通信技术,CDMA技术的原理是基于扩频技术,即将需传送的具有一定信号带宽信息数据,用一个宽带远大于信号带宽的高速码字进行调制,使原数据信号的带宽被扩展,再经载波调制并发送出去。接收端使用完全相同的码字,与接收的带宽信号做相关处理,把宽带信号换成原信息数据的窄带信号即解扩,以实现信息通信。
CDMA接入方式由于不需要在用户间保持同步,多用户共享整个信道,各用户可以随时接入同一信道,不需要复杂的接入控制,业务等待发送时间很短,使之成为一种理想的多址接入方式,CDMA技术在移动通信中取得了相当的成功。现有技术中,在光纤接入网中采用CDMA接入控制通常在电域上采用CDMA技术。
这种方案的缺陷在于:由于电子速率的限制,扩频后的速率有限,这种方式很难适应将来高速图像业务如VOD视频点播、HDTV高清晰度电视等发展的需要。
发明内容
本发明的实施例提供一种在光域上解扩的方法、设备及系统,用于解决现有技术存在速率不能满足用户需求的技术问题。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,一种用于在光域上解扩的装置,包括分光器,所述分光器用于将接收的光信号分为第一光信号和第二光信号,所述第一光信号输入至光耦合器,所述第二光信号输入至光调制器;
所述光调制器,用于将所述第二光信号进行场调制后输出第三光信号,所述第三光信号与所述第一光信号的相位差为第一差值,所述第三光信号输入至所述光耦合器;
所述光耦合器,用于将所述第一光信号和第三光信号进行相位偏转处理,输出第四光信号和第五光信号至平衡接收机;
所述平衡接收机,用于将所述第四光信号和第五光信号进行叠加生成第一电信号,输出所述第一电信号;
所述累加器,用于在码字周期内对所述第一电信号进行累加。
结合第一方面,在第一方面的第一种可能的实现方式中,所述光调制器根据本地码字对所述第二光信号进行场调制。
在第一方面的第二种可能的实现方式中,所述第一光信号和所述第三光信号的偏振方向相同。
在第一方面的第三种可能的实现方式中,所述光耦合器,用于将所述第一光信号和第三光信号进行相位偏转处理,输出第四光信号和第五光信号至平衡接收机,具体包括:将所述第一光信号的相位偏转第一差值后与所述第三光信号进行叠加,得到第四光信号;将所述第三光信号的相位偏转第一差值后与所述第一光信号进行叠加,得到第五光信号。
结合第一方面或第一方面的任意一种可能的实现方式,在第一方面的第四种可能的实现方式中,所述平衡接收机,具体包括:第一光接收机PD、第二PD和加法器;所述第一PD用于接收所述第四光信号,将第四光信号转为第二电信号;所述第二PD用于接收第五光信号,将所述第五光信号转为第三电信号;所述加法器用于将所述第二电信号和第三电信号进行叠加,得到第一电信号。
结合第一方面或第一方面的任意一种可能的实现方式,在第一方面的第五种可能的实现方式中,所述装置还包括相位解调谐器,一端与所述累加器相连,一端与所述光调制器相连,用于对第二光信号的码字的相位进行调整,使得第二光信号的码字与所述接收的光信号的码字对齐。
结合第一方面或第一方面的任意一种可能的实现方式,在第一方面的第六种可能的实现方式中,所述第一差值为π/2。
第二方面,一种用于在光域上解扩的装置,所述装置包括:第一偏振分光器棱镜PBS,用于将接收到的光信号分成偏振方向互相垂直的第一光信号和第二光信号,所述第一光信号和第二光信号分别输入至第一光耦合器中和第二光耦合器;本振光源,用于发出本振光;第二PBS,用于将所述本振光分成偏振方向互相垂直的第三光信号和第四光信号;第一光调制器和第二光调制器,分别用于对所述第三光信号和第四光信号进行调制,生成第五光信号和第六光信号,所述第五光信号和第六光信号分别输入至所述第一光耦合器和第二光耦合器;其中,第五光信号和第一光信号的偏振态相同,且相位差为第一差值,第六光信号和第二光信号的偏振态相同,且相位差为第一差值;所述第一光耦合器用于对第一光信号和第五光信号进行相位偏转,输出第七光信号和第八光信号;所述第二光耦合器用于对第二光信号和第六光信号进行相位偏转,输出第九光信号和第十光信号;第一平衡接收机,用于对所述第七光信号和第八光信号进行叠加后,输出第一电信号;第二平衡接收机,用于对所述第九光信号和第十光信号进行叠加后,输出第二电信号;累加器,用于对第一电信号和第二电信号进行累加。
结合第二方面,在第二方面的第一种可能的实现方式中,所述第一光耦合器用于对第一光信号和第五光信号进行相位偏转,输出第七光信号和第八光信号,具体包括:将第五光信号相位偏转第一差值后,与第一光信号进行叠加,得到第七光信号;将第一光信号相位偏转第一差值后,与第五光信号进行叠加,得到第八光信号。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述第二光耦合器用于对第二光信号和第六光信 号进行相位偏转,输出第九光信号和第十光信号,具体包括:将第六光信号相位偏转第一差值后,与第二光信号进行叠加,得到第九光信号;将第二光信号相位偏转第一差值后,与第六光信号进行叠加,得到第十光信号。
结合第二方面或第二方面的任一种可能的实现方式,在第二方面的第三种可能的实现方式中,所述第一平衡机具体包括:第一光接收机PD、第二PD和第一加法器;所述第一PD用于接收第七光信号,将第七光信号转为第三电信号;所述第二PD用于接收第八光信号,将第八光信号转为第四电信号;所述第一加法器用于对第三电信号和第四电信号进行叠加,输出第一电信号。
结合第二方面或第二方面的任意一种可能的实现方式,在第二方面的第四种可能的实现方式中,所述第二平衡接收机具体包括:第三光接收机PD、第四PD和第二加法器;所述第三PD用于接收第九光信号,将第九光信号转为第五电信号;所述第四PD用于接收第十光信号,将第十光信号转为第六电信号;所述减法器用于对第五电信号和第六电信号进行叠加,输出第二电信号。
结合第二方面或第二方面的任意一种可能的实现方式,在第二方面的第五种可能的实现方式中,所述装置还包括相位解调谐器,用于对所述本振光的码字的相位进行调整,使得本振光的码字与接收的光信号的码字对齐。
结合第二方面或第二方面的任意一种可能的实现方式,在第二方面的第六种可能的实现方式中,所述装置还包括第一器件,用于对所述第一电信号和第二电信号进行平方运算。
结合第二方面或第二方面的任意一种可能的实现方式,在第二方面的第六种可能的实现方式中,所述第一器件为模拟器件或ADC以及数字器件。
结合第二方面或第二方面的任意一种可能的实现方式,在第二方面的第七种可能的实现方式中,所述第一差值为π/2。
第三方面,一种用于在光域上解扩的方法,所述方法包括将接收的光信号分为第一光信号和第二光信号;对所述第一光信号进行场调制,得到 第三光信号,所述第三光信号与所述第一光信号的相位差为第一差值;分别将所述第一光信号和第三光信号进行相位偏转,得到第四光信号和第五光信号;将所述第四光信号和第五光信号转换为电信号,叠加生成第一电信号;对所述第一电信号在一个码字周期内进行累加。
结合第三方面,在第三方面的第一种可能的实现方式中,根据本地码字对所述第一光信号进行场调制。
结合第三方面或第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,所述第一光信号和所述第三光信号的偏振方向相同。
结合第三方面或第三方面的任意一种可能的实现方式,在第三方面的第三种可能的实现方式中,所述分别将所述第一光信号和第三光信号进行相位偏转,得到第四光信号和第五光信号,具体包括:将所述第三光信号进行相位偏转第一差值,与所述第一光信号进行叠加,得到第四光信号;将所述第一光信号进行相位偏转第一差值,与所述第三光信号进行叠加,得到第五光信号。
结合第三方面或第三方面的任意一种可能的实现方式,在第三方面的第四种可能的实现方式中,所述将所述第四光信号和第五光信号进行叠加,输出第一电信号,具体包括:将所述第四光信号转为第二电信号;将所述第五光信号转为第三电信号;将第二电信号和第三电信号进行叠加,得到第一电信号。
结合第三方面或第三方面的任意一种可能的实现方式,在第三方面的第五种可能的实现方式中,所述方法还包括对第二光信号的码字的相位进行调整,使得第二光信号的码字与所述接收的光信号的码字对齐。
结合第三方面或第三方面的任意一种可能的实现方式,在第三方面的第六种可能的实现方式中,所述第一差值为π/2。
第四方面,一种在光域上进行解扩的方法,所述方法包括将接收到的光信号分为偏振方向互相垂直的第一光信号和第二光信号;将本地光源发出的本振光分为偏振方向互相垂直的第三光信号和第四光信号;对所述第三光信号和第四光信号进行调制后,分别生成第五光信号和第六光信号; 对所述第一光信号和第五光信号进行相位偏转,得到第七光信号和第八光信号;对所述第二光信号和第六光信号进行相位偏转,得到第九光信号和第十光信号;对所述第七光信号和第八光信号转换为电信号后,进行叠加得到第一电信号;对所述第九光信号和第十光信号转换为电信号后,进行叠加得到第二电信号;对所述第一电信号和第二电信号进行叠加,得到第三电信号;将所述第三电信号在一个码字周期进行累加。
结合第四方面,在第四方面的第一种可能的实现方式中,所述对所述第一光信号和第五光信号进行相位偏转,得到第七光信号和第八光信号,具体包括:将第五光信号相位偏转第一差值后,与第一光信号进行相加,得到第七光信号;将第一光信号相位偏转第一差值后,与第五光信号进行相加,得到第八光信号。
结合第四方面或第四方面的第一种可能的实现方式,在第四方面的第二种可能的实现方式中,对所述第二光信号和第六光信号进行相位偏转,得到第九光信号和第十光信号,具体包括:将第六光信号相位偏转第一差值后,与第二光信号进行相加,得到第九光信号;将第二光信号相位偏转第一差值后,与第六光信号进行相加,得到第十光信号。
结合第四方面或第四方面的任意一种可能的实现方式,在第四方面的第三种可能的实现方式中,所述对所述第七光信号和第八光信号转换为电信号后进行叠加,具体包括:
将第七光信号转换为第四电信号;将第八光信号转换为第五电信号;对所述第四电信号和第五电信号进行叠加,得到第一电信号。
结合第四方面或第四方面的任意一种可能的实现方式,在第四方面的第四种可能的实现方式中,对所述第九光信号和第十光信号转换为电信号后进行叠加,具体包括:将所述第九光信号转换为第六电信号;将所述第十光信号转换为第七电信号;将所述第六电信号和第七电信号进行叠加,得到第二电信号。
结合第四方面或第四方面的任意一种可能的实现方式,在第四方面的第五种可能的实现方式中,所述方法还包括:对所述本振光的码字的相位进行调整,使得本振光的码字与接收的光信号的码字对齐。
结合第四方面或第四方面的任意一种可能的实现方式,在第四方面的第六种可能的实现方式中,所述第一差值为π/2。
本发明实施例通过将传统的CDMA解扩中的乘法操作,从电域转移到光域,电域只进行累加操作,能够容易将码片速率提到到20GHz,甚至25GHz,单波长可以提供最高100Gbps的速率,能够满足用户对高带宽的需求。另外,本发明实施例提供的装置相比现有技术成本较低。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为无源光网络PON结构示意图;
图2为本发明实施例提供的一种用于光域上进行解扩的装置结构示意图;
图3A为本发明又一实施例提供的一种用于光域上进行解扩的装置结构示意图;
图3B为本发明又一实施例提供的一种用于光域上进行解扩的装置结构示意图;
图3C为本发明又一实施例提供的一种用于光域上进行解扩的装置结构示意图;
图4为本发明实施例提供的一种用于光域上进行解扩的方法步骤示意图;
图5为本发明又一实施例提供的一种用于光域上进行解扩的方法步骤示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没 有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图2所示,本发明实施例提供一种用于在光域上解扩的装置200,包括:
分光器201,用于将接收的光信号分为第一光信号和第二光信号,所述第一光信号输入至光耦合器202,所述第二光信号输入至光调制器203;
光调制器203,用于将第二光信号进行场调制后输出第三光信号,其中,第三光信号与第一光信号的相位差为第一差值,第三光信号也输入至光耦合器202;需要说明的是,光调制器203具有相位偏转功能,使得第三光信号的相位相对于第一光信号或第二光信号的相位差为第一差值。另外,这里提到的调制,是指光的场调制。
可选地,所述场调制是指根据本地码字对第二光信号进行场调制。本地码字是指待接收通道或用户对应的码字。
优选地,所述第一差值为π/2。
可选地,第一差值也可以是π/4,π/16,π/8。
举例说明,在发送侧对每个用户user1~user n来说,码字分别为code1~code n。本地码字是指在接收侧该用户对应的码字,比如对用户user1来说,本地码字为code1,对user n来说,本地码字为code n。在图2中,本地码字标记为CL。
光耦合器202,用于分别将第一光信号和第三光信号进行相位偏转,输出第四光信号和第五光信号,所述第四和第五光信号分别输入至平衡接收机204;
平衡接收机204,用于将第四光信号和第五光信号转换为电信号后,进行叠加生成第一电信号,并输出。
可选地,所述第一光信号和第三光信号的偏振方向相同。
具体地,所述光耦合器202具体用于:
将所述第一光信号相位偏转后与第三光信号进行叠加,得到第四光信号;
将所述第三光信号的相位偏转第一差值后与第一光信号进行叠加,得 到第五光信号。
具体地,所述平衡接收机204进一步包括:
第一光接收机(Photodiode,PD)2041,用于接收第四光信号,将第四光信号转为第二电信号;
第二PD 2042,用于接收第五光信号,将第五光信号转为第三电信号;
加法器2043,用于对第二电信号和第三电信号进行叠加,得到第一电信号。
需要说明的是,这里的叠加为减法运算,也可以为加法运算。
可选地,所述装置200还包括累加器205,所述累加器耦合到所述平衡接收机204,用于将所述平衡接收机输出的第一电信号在每个码字周期内进行累加,并输出累加后的结果。
需要说明的是,码字周期为码字持续的时间,也可以解释为码字长度。
可选地,所述装置200还包括相位解调谐器206,一端与所述累加器205相连,一端与所述光调制器203相连,用于对第二光信号的码字的相位进行调整,使得第二光信号的码字与所述接收的光信号的码字对齐。
本发明实施例通过采用光相干接收,可以获得高信噪比SNR。另外,由于只在电域做累加,乘法转移到光域,能够比较容易的将码片速率提到到20GHz,甚至25GHz。另外,本发明实施例提供的装置相比现有技术成本较低。
实施例二
如图3A所示,本发明又一实施例提供一种用于在光域上解扩的装置300,包括:
第一偏振分光棱镜(Polarzation Beam Splitter,PBS)301,用于将接收到的光信号分成两路偏振方向垂直的光信号,记为第一光信号和第二光信号,将两路光信号分别输送至第一光耦合器302和第二光耦合器303;
本振光源304,用于发出本振光;其中,发出的本振光经过第二PBS 305分成两路偏振方向垂直的光信号,记为第三光信号和第四光信号,分别输入至第一光调制器306和第二光调制器307中;
第一光调制器306,用于对第三光信号进行调制,生成第五光信号, 输入至第一光耦合器302中;其中,所述调制是指对光信号的强度进行调制,其中,第五光信号和第一光信号的相位偏差为第一差值。需要说明的是,本振光源生成的本振光的相位可以同第一光信号相同,也可以与第一光信号的相位偏差为第一差值。如果本振光的相位与第一光信号相同,那么第一光调制器306在对第三光信号进行调制时,要对第三光信号的相位进行偏转,使得第五光信号的相位与第一光信号的相位差为第一差值,也即此种情况下,第一光调制器306不仅要对第三光信号进行强度调制还要对第三光信号进行相位偏转。如果本振光的相位与第一光信号的相位偏差为第一差值,那么第三光信号的相位与第一光信号的偏差也为第一差值,第五光信号与第一光信号的相位偏差也为第一差值,此时第一光调制器306无需对第三光信号的相位进行偏转,只需要对第三光信号进行调制。
优选地,所述第一差值为π/2。
可选地,第一差值也可以是π/4,π/16,π/8。
第二光调制器307,用于对第四光信号进行调制,生成第六光信号,输入至第二光耦合器303中;其中,第六光信号与第二光信号的相位偏差为第一差值。需要说明的是,本振光源生成的本振光的相位可以同第二光信号相同,也可以与第二光信号的相位偏差为第一差值。如果本振光的相位与第二光信号相同,那么第二光调制器307在对第四光信号进行调制时,要对第四光信号的相位进行偏转,使得第六光信号的相位与第二光信号的相位差为第一差值,也即此种情况下,第二光调制器307不仅要对第四光信号进行强度调制还要对第四光信号进行相位偏转。如果本振光的相位与第二光信号的相位偏差为π第一差值,那么第四光信号的相位与第二光信号的偏差也为第一差值,第六光信号与第二光信号的相位偏差也为第一差值,此时第二光调制器307无需对第四光信号的相位进行偏转,只需要对第四光信号进行调制。
第一光耦合器302,用于对第一光信号和第五光信号进行相位偏转,输出第七光信号和第八光信号;
第二光耦合器303,用于对第二光信号和第六光信号进行相位偏转,输出第九光信号和第十光信号;
第一平衡接收机308,用于对第七光信号和第八光信号转为电信号后,进行叠加,输出第一电信号;
第二平衡接收机309,用于对第九光信号和第十光信号转换为电信号后,进行叠加,输出第二电信号;
累加器310,用于对第一电信号和第二电信号在每个码字周期内累加。
可选地,装置300还可以包括第一器件320,如图3B所示,所述第一器件可以是模拟器件,也可以是数字器件比如ADC。
所述第一器件320用于对所述第一电信号和第二电信号做平方运算。
具体地,当第一器件为模拟器件时,将第一电信号和第二电信号送入模拟乘法器的两个输入,完成平方操作;
当第一器件为数字器件时,先将信号经过ADC,转换到数字域,然后直接用DSP做平方。
需补充的是,对电信号做平方运算也可以参考现有技术提供的方案,这里不再赘述。
可选地,本发明实施例还可以通过在发送侧设置一第一器件,如图3A所示,在对用户的电信号进行平方运算后,再进行编码,该种方案的接收侧无需在设置第一器件。
具体地,所述第一光耦合器302具体用于:
将第五光信号相位偏转第一差值后,与第一光信号进行相加,得到第七光信号;
将第一光信号相位偏转第一差值后,与第五光信号进行相加,得到第八光信号。
具体地,第二光耦合器303具体用于:
将第六光信号相位偏转第一差值后,与第二光信号进行相加,得到第九光信号;
将第二光信号相位偏转第一差值后,与第六光信号进行相加,得到第十光信号。
具体地,第一平衡接收机308具体包括:
第一光接收机PD 3081、第二PD 3082和第一加法器3083;
所述第一PD 3081用于接收第七光信号,将第七光信号转为第三电信号;
所述第二PD 3082用于接收第八光信号,将第八光信号转为第四电信号;
所述第一加法器3083用于对第三电信号和第四电信号进行叠加,输出第一电信号。
需要说明的是,所述的叠加为减法运算,也可以为加法运算。
具体地,所述第二平衡接收机309具体包括:
第三光接收机PD 3091、第四PD 3092和第二加法器3093;
所述第三PD 3091用于接收所述第九光信号,将第九光信号转为第五电信号;
所述第四PD 3092用于接收所述第十光信号,将第十光信号转为第六电信号;
所述加法器3093用于将第五电信号和第六电信号进行叠加,输出第二电信号。需要说明的是,所述的叠加为减法运算,也可以为加法运算。
可选地,所述装置300还包括相位解调谐器311,用于对所述本振光的码字的相位进行调整,使得本振光的码字与接收的光信号的码字对齐。
本发明实施例通过采用光相干接收,可以获得高信噪比SNR。另外,由于只在电域做累加,乘法转移到光域,能够比较容易的将码片速率提到到20GHz,甚至25GHz。另外,本发明实施例提供的装置相比现有技术成本较低。
实施三
本发明实施例还提供一种用于在光域上解扩的方法,包括:
步骤S401,将接收的光信号分为第一光信号和第二光信号;
步骤S402,对所述第一光信号进行场调制,得到第三光信号,所述第三光信号与所述第一光信号的相位差为第一差值;
步骤S403,分别将所述第一光信号和第三光信号进行相位偏转,得到第四光信号和第五光信号;
步骤S404,将所述第四光信号和第五光信号转换为电信号,进行叠加 后生成第一电信号;
步骤S405,对所述第一电信号在一个码字周期内进行累加。
其中,根据本地码字对所述第一光信号进行场调制。
可选地,所述第一光信号和所述第三光信号的偏振方向相同。
具体地,所述分别将所述第一光信号和第三光信号进行相位偏转,得到第四光信号和第五光信号,具体包括:
将所述第三光信号进行相位偏转第一差值,与所述第一光信号进行叠加,得到第四光信号;
将所述第一光信号进行相位偏转第一差值,与所述第三光信号进行叠加,得到第五光信号。
具体地,所述将所述第四光信号和第五光信号进行叠加,输出第一电信号,具体包括:
将所述第四光信号转为第二电信号;
将所述第五光信号转为第三电信号;
将第二电信号和第三电信号进行叠加,得到第一电信号。
可选地,所述方法还包括对第二光信号的码字的相位进行调整,使得第二光信号的码字与所述接收的光信号的码字对齐。
优选地,所述第一差值为π/2。
可选地,第一差值也可以是π/4,π/16,π/8。
实施例四
本发明实施例还提供一种用于在光域上进行解扩的方法,包括:
S501,将接收到的光信号分为偏振方向互相垂直的第一光信号和第二光信号;
S502,将本地光源发出的本振光分为偏振方向互相垂直的第三光信号和第四光信号;
S503,对所述第三光信号和第四光信号进行调制后,分别生成第五光信号和第六光信号;
S504,对所述第一光信号和第五光信号进行相位偏转,得到第七光信号和第八光信号;
S505,对所述第二光信号和第六光信号进行相位偏转,得到第九光信号和第十光信号;
S506,对所述第七光信号和第八光信号转换为电信号后,进行叠加得到第一电信号;
S507,对所述第九光信号和第十光信号转换为电信号后,进行叠加得到第二电信号;
S508,对所述第一电信号和第二电信号进行叠加,得到第三电信号;
S509,将所述第三电信号在一个码字周期进行累加。
可选地,在步骤S509之前,所述方法还包括:
对第一电信号和第二电信号做平方运算。
所述进行平方运算可以通过数字器件完成,比如模数转换器ADC,或者模拟器件。
需要说明的是,上述的步骤编号S501~S509并不是对步骤的执行前后进行的限定。比如,步骤501和步骤502可能同时发生,也可以以先后顺序发生,其他步骤同理,本发明对执行步骤不做限定,本领域普通技术人员在看到本发明提供的方法后,可以根据所知道的技术清楚的获得本发明。
具体地,对所述第一光信号和第五光信号进行相位偏转,得到第七光信号和第八光信号,具体包括:
将第五光信号相位偏转第一差值后,与第一光信号进行相加,得到第七光信号;
将第一光信号相位偏转第一差值后,与第五光信号进行相加,得到第八光信号。
优选地,所述第一差值为π/2。
可选地,第一差值也可以是π/4,π/16,π/8。
具体地,对所述第二光信号和第六光信号进行相位偏转,得到第九光信号和第十光信号,具体包括:
将第六光信号相位偏转第一差值后,与第二光信号进行相加,得到第九光信号;
将第二光信号相位偏转第一差值后,与第六光信号进行相加,得到第 十光信号。
所述对所述第七光信号和第八光信号转换为电信号后进行叠加,具体包括:
将第七光信号转换为第四电信号;
将第八光信号转换为第五电信号;
对所述第四电信号和第五电信号进行叠加,得到第一电信号。
其中,所述叠加为减法运算,也可以为加法运算。
对所述第九光信号和第十光信号转换为电信号后进行叠加,具体包括:
将所述第九光信号转换为第六电信号;
将所述第十光信号转换为第七电信号;
将所述第六电信号和第七电信号进行叠加,得到第二电信号。
其中,所述叠加为减法运算,也可以为加法运算。
可选地,所述方法还包括:
对所述本振光的码字的相位进行调整,使得本振光的码字与接收的光信号的码字对齐。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (29)

  1. 一种在光域上解扩的装置,其特征在于,所述装置包括:
    分光器,所述分光器用于将接收的光信号分为第一光信号和第二光信号,所述第一光信号输入至光耦合器,所述第二光信号输入至光调制器;
    所述光调制器,用于将所述第二光信号进行场调制后输出第三光信号,所述第三光信号与所述第一光信号的相位差为第一差值,所述第三光信号输入至所述光耦合器;
    所述光耦合器,用于将所述第一光信号和第三光信号进行相位偏转处理,输出第四光信号和第五光信号至平衡接收机;
    所述平衡接收机,用于将所述第四光信号和第五光信号转换为电信号后进行叠加生成第一电信号,输出所述第一电信号至累加器;
    所述累加器,用于在码字周期内对所述第一电信号进行累加。
  2. 根据权利要求1所述的装置,其特征在于,所述光调制器根据本地码字对所述第二光信号进行场调制。
  3. 根据权利要求1或2所述的装置,其特征在于,所述第一光信号和所述第三光信号的偏振方向相同。
  4. 根据权利要求1~3所述的装置,其特征在于,所述光耦合器,用于将所述第一光信号和第三光信号进行相位偏转处理,输出第四光信号和第五光信号至平衡接收机,具体包括:
    将所述第一光信号的相位偏转所述第一差值后与所述第三光信号进行叠加,得到第四光信号;
    将所述第三光信号的相位偏转所述第一差值后与所述第一光信号进行叠加,得到第五光信号。
  5. 根据权利要求1~4任意一项所述的装置,其特征在于,所述平衡接收机,具体包括:
    第一光接收机PD、第二PD和加法器;
    所述第一PD用于接收所述第四光信号,将第四光信号转为第二电信号;
    所述第二PD用于接收第五光信号,将所述第五光信号转为第三电信号;
    所述加法器用于将所述第二电信号和第三电信号进行叠加,得到第一电信号。
  6. 根据权利要求5所述的装置,其特征在于,所述装置还包括相位解调谐器,一端与所述累加器相连,一端与所述光调制器相连,用于对第二光信号的码字的相位进行调整,使得第二光信号的码字与所述接收的光信号的码字对齐。
  7. 根据权利要求1~6任意一项所述的装置,其特征在于,所述第一差值为π/2。
  8. 一种在光域上解扩的装置,其特征在于,所述装置包括:
    第一偏振分光器棱镜PBS,用于将接收到的光信号分成偏振方向互相垂直的第一光信号和第二光信号,所述第一光信号和第二光信号分别输入至第一光耦合器中和第二光耦合器;
    本振光源,用于发出本振光;
    第二PBS,用于将所述本振光分成偏振方向互相垂直的第三光信号和第四光信号;
    第一光调制器和第二光调制器,分别用于对所述第三光信号和第四光信号进行场调制,生成第五光信号和第六光信号,所述第五光信号和第六光信号分别输入至所述第一光耦合器和第二光耦合器;其中,第五光信号和第一光信号的相位差为第一差值,第六光信号和第二光信号的相位差为第一差值;
    所述第一光耦合器用于对第一光信号和第五光信号进行相位偏转,输出第七光信号和第八光信号;
    所述第二光耦合器用于对第二光信号和第六光信号进行相位偏转,输出第九光信号和第十光信号;
    第一平衡接收机,用于对所述第七光信号和第八光信号转换为电信号后叠加,输出第一电信号;
    第二平衡接收机,用于对所述第九光信号和第十光信号转换为电信号 后叠加,输出第二电信号;
    累加器,用于对第一电信号和第二电信号在一个码字周期内进行累加。
  9. 根据权利要求8所述的装置,其特征在于,所述装置还包括:
    第一器件,用于对所述第一电信号和第二电信号进行平方运算。
  10. 根据权利要求8或9所述的装置,其特征在于,所述第一光耦合器用于对第一光信号和第五光信号进行相位偏转,输出第七光信号和第八光信号,具体包括:
    将第五光信号相位偏转第一差值后,与第一光信号进行叠加,得到第七光信号;
    将第一光信号相位偏转第一差值后,与第五光信号进行叠加,得到第八光信号。
  11. 根据权利要求8~10任意一项所述的装置,其特征在于,所述第二光耦合器用于对第二光信号和第六光信号进行相位偏转,输出第九光信号和第十光信号,具体包括:
    将第六光信号相位偏转第一差值后,与第二光信号进行叠加,得到第九光信号;
    将第二光信号相位偏转第一差值后,与第六光信号进行叠加,得到第十光信号。
  12. 根据权利要求8~11任意一项所述的装置,其特征在于,所述第一平衡机具体包括:
    第一光接收机PD、第二PD和第一加法器;
    所述第一PD用于接收第七光信号,将第七光信号转为第三电信号;
    所述第二PD用于接收第八光信号,将第八光信号转为第四电信号;
    所述第一加法器用于对第三电信号和第四电信号进行叠加,输出第一电信号。
  13. 根据权利要求8~12任意一项所述的装置,其特征在于,所述装置还包括相位解调谐器,用于对所述本振光的码字的相位进行调整,使得本振光的码字与接收的光信号的码字对齐。
  14. 根据权利要求8~13任意一项所述的装置,其特征在于,所述第一差值为π/2。
  15. 一种在光域上解扩的方法,其特征在于,所述方法包括:
    将接收的光信号分为第一光信号和第二光信号;
    对所述第一光信号进行场调制,得到第三光信号,所述第三光信号与所述第一光信号的相位差为第一差值;
    分别将所述第一光信号和第三光信号进行相位偏转,得到第四光信号和第五光信号;
    将所述第四光信号和第五光信号转换为电信号,进行叠加后生成第一电信号;
    对所述第一电信号在一个码字周期内进行累加。
  16. 根据权利要求15所述的方法,其特征在于,根据本地码字对所述第一光信号进行场调制。
  17. 根据权利要求15或16所述的方法,其特征在于,所述第一光信号和所述第三光信号的偏振方向相同。
  18. 根据权利要求15~17任意一项所述的方法,其特征在于,所述分别将所述第一光信号和第三光信号进行相位偏转,得到第四光信号和第五光信号,具体包括:
    将所述第三光信号进行相位偏转第一差值,与所述第一光信号进行叠加,得到第四光信号;
    将所述第一光信号进行相位偏转第一差值,与所述第三光信号进行叠加,得到第五光信号。
  19. 根据权利要求15~18任意一项所述的方法,其特征在于,所述将所述第四光信号和第五光信号进行叠加,输出第一电信号,具体包括:
    将所述第四光信号转为第二电信号;
    将所述第五光信号转为第三电信号;
    将第二电信号和第三电信号进行叠加,得到第一电信号。
  20. 根据权利要求15~19任意一项所述的方法,其特征在于,所述方法还包括对第二光信号的码字的相位进行调整,使得第二光信号的码字与 所述接收的光信号的码字对齐。
  21. 根据权利要求15~20任意一项所述的方法,其特征在于,所述第一差值为π/2。
  22. 一种在光域上进行解扩的方法,其特征在于,所述方法包括:
    将接收到的光信号分为偏振方向互相垂直的第一光信号和第二光信号;
    将本地光源发出的本振光分为偏振方向互相垂直的第三光信号和第四光信号;
    对所述第三光信号和第四光信号进行调制后,分别生成第五光信号和第六光信号;
    对所述第一光信号和第五光信号进行相位偏转,得到第七光信号和第八光信号;
    对所述第二光信号和第六光信号进行相位偏转,得到第九光信号和第十光信号;
    对所述第七光信号和第八光信号转换为电信号后,进行叠加得到第一电信号;
    对所述第九光信号和第十光信号转换为电信号后,进行叠加得到第二电信号;
    对所述第一电信号和第二电信号进行叠加,得到第三电信号;
    将所述第三电信号在一个码字周期进行累加。
  23. 根据权利要求22所述的方法,其特征在于,所述方法还包括:
    对所述第一电信号和第二电信号做平方运算。
  24. 根据权利要求22或23所述的方法,其特征在于,所述对所述第一光信号和第五光信号进行相位偏转,得到第七光信号和第八光信号,具体包括:
    将第五光信号相位偏转第一差值后,与第一光信号进行相加,得到第七光信号;
    将第一光信号相位偏转第一差值后,与第五光信号进行相加,得到第八光信号。
  25. 根据权利要求22~24任意一项所述的方法,其特征在于,对所述第二光信号和第六光信号进行相位偏转,得到第九光信号和第十光信号,具体包括:
    将第六光信号相位偏转第一差值后,与第二光信号进行相加,得到第九光信号;
    将第二光信号相位偏转第一差值后,与第六光信号进行相加,得到第十光信号。
  26. 根据权利要求22~24任意一项所述的方法,其特征在于,所述对所述第七光信号和第八光信号转换为电信号后进行叠加,具体包括:
    将第七光信号转换为第四电信号;
    将第八光信号转换为第五电信号;
    对所述第四电信号和第五电信号进行叠加,得到第一电信号。
  27. 根据权利要求22~26任意一项所述的方法,其特征在于,对所述第九光信号和第十光信号转换为电信号后进行叠加,具体包括:
    将所述第九光信号转换为第六电信号;
    将所述第十光信号转换为第七电信号;
    将所述第六电信号和第七电信号进行叠加,得到第二电信号。
  28. 根据权利要求22~27任意一项所述的方法,其特征在于,所述方法还包括:
    对所述本振光的码字的相位进行调整,使得本振光的码字与接收的光信号的码字对齐。
  29. 根据权利要求22~28任意一项所述的方法,其特征在于,所述第一差值为π/2。
PCT/CN2015/082882 2015-06-30 2015-06-30 一种在光域上解扩的方法、设备 WO2017000246A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15896777.8A EP3301831A4 (en) 2015-06-30 2015-06-30 Method and device for despreading in optical domain
PCT/CN2015/082882 WO2017000246A1 (zh) 2015-06-30 2015-06-30 一种在光域上解扩的方法、设备
US15/857,019 US10171175B2 (en) 2015-06-30 2017-12-28 Method and apparatus for despreading in optical domain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/082882 WO2017000246A1 (zh) 2015-06-30 2015-06-30 一种在光域上解扩的方法、设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/857,019 Continuation US10171175B2 (en) 2015-06-30 2017-12-28 Method and apparatus for despreading in optical domain

Publications (1)

Publication Number Publication Date
WO2017000246A1 true WO2017000246A1 (zh) 2017-01-05

Family

ID=57607442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/082882 WO2017000246A1 (zh) 2015-06-30 2015-06-30 一种在光域上解扩的方法、设备

Country Status (3)

Country Link
US (1) US10171175B2 (zh)
EP (1) EP3301831A4 (zh)
WO (1) WO2017000246A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006001362A1 (ja) * 2004-06-24 2006-01-05 Nippon Telegraph And Telephone Corporation 光-無線融合通信システムおよび光-無線融合通信方法
CN101102162A (zh) * 2006-07-07 2008-01-09 北京航空航天大学 光四相制相移键控信号的全光再生方法
CN101283528A (zh) * 2005-10-05 2008-10-08 日本电气株式会社 光接收器、光通信系统及方法
WO2009102164A2 (ko) * 2008-02-13 2009-08-20 Kt Corporation Wdm-pon에서의 광 검출 장치 및 그 방법
CN102882631A (zh) * 2012-10-16 2013-01-16 广西师范大学 基于电域编解码的光码分复用发送、接收方法及其装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8594512B2 (en) * 2008-09-22 2013-11-26 Nokia Siemens Networks Oy Method and apparatus for transmission of two modulated signals via an optical channel
EP2410309B1 (en) * 2010-07-20 2017-06-21 U2t Photonics Ag Method and system for characterizing an optical device
US9473249B2 (en) * 2012-04-10 2016-10-18 Nec Corporation Light transmission apparatus, light communication system, light reception apparatus, method for adjusting light transmission, method for transmitting light, and method for receiving light

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006001362A1 (ja) * 2004-06-24 2006-01-05 Nippon Telegraph And Telephone Corporation 光-無線融合通信システムおよび光-無線融合通信方法
CN101283528A (zh) * 2005-10-05 2008-10-08 日本电气株式会社 光接收器、光通信系统及方法
CN101102162A (zh) * 2006-07-07 2008-01-09 北京航空航天大学 光四相制相移键控信号的全光再生方法
WO2009102164A2 (ko) * 2008-02-13 2009-08-20 Kt Corporation Wdm-pon에서의 광 검출 장치 및 그 방법
CN102882631A (zh) * 2012-10-16 2013-01-16 广西师范大学 基于电域编解码的光码分复用发送、接收方法及其装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3301831A4 *

Also Published As

Publication number Publication date
EP3301831A1 (en) 2018-04-04
US10171175B2 (en) 2019-01-01
US20180145767A1 (en) 2018-05-24
EP3301831A4 (en) 2018-07-04

Similar Documents

Publication Publication Date Title
US11689290B2 (en) Optical communication systems and methods
US9712273B2 (en) Orbital angular momentum multiplexing for digital communication
US9860013B2 (en) Time division multiplexed orbital angular momentum based communication
US8374504B2 (en) Optical communication system
US11115126B2 (en) Fiber communication systems and methods
WO2007071154A1 (fr) Reseau optique passif a multiplexage par repartition en longueur d'onde et son procede de mise en oeuvre
CN103828308A (zh) 综合接入网
US11855696B2 (en) Network communications systems and methods
WO2012103832A2 (zh) 信号处理方法、光接收机以及光网络系统
TW201526560A (zh) 動態波長分配光路由及應用此光路由的終端裝置
Xu et al. Demonstration of 60 Gb/s W-band optical mm-wave signal full-duplex transmission over fiber-wireless-fiber network
Zin et al. The characterization of radio-over-fiber employed GPON architecture for wireless distribution network
WO2017000246A1 (zh) 一种在光域上解扩的方法、设备
Shukla et al. Next generation PON architecture using PD-NOMA employing OAM and WDM multiplexing
CN110456453B (zh) 光通信设备、光通信方法和计算机可读介质
Islam et al. 10Gbps bidirectional transmission GPON network based on single fiber
JP2008244847A (ja) 波長多重装置
JP5414354B2 (ja) 光データ通信システム、ならびに通信装置および通信方法
JP5492279B1 (ja) 光通信システムおよび双方向通信方法
Le et al. Real-Time Demonstration of an Integrated Metro-Access Network Carrying Live VR Traffic Based on Multi-Carrier Modulation and Simplified Sub-band Coherent Detection
Magidi Performance Evaluation of Optical Networks Using Advanced Modulation Format
JP2022543412A (ja) 光伝送システム、受信器、およびデバイス、ならびに光信号を受信する方法
Rannello et al. Field-trial of a λ-to-the-user high-budget PON using a novel class of low-cost coherent transceivers and compatible with EPON system operation
JP2009123808A (ja) 光増幅装置および光伝送システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15896777

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2015896777

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE