WO2017000077A1 - Amplificador de fuerza - Google Patents

Amplificador de fuerza Download PDF

Info

Publication number
WO2017000077A1
WO2017000077A1 PCT/CL2015/050022 CL2015050022W WO2017000077A1 WO 2017000077 A1 WO2017000077 A1 WO 2017000077A1 CL 2015050022 W CL2015050022 W CL 2015050022W WO 2017000077 A1 WO2017000077 A1 WO 2017000077A1
Authority
WO
WIPO (PCT)
Prior art keywords
lever
force
levers
point
power
Prior art date
Application number
PCT/CL2015/050022
Other languages
English (en)
French (fr)
Inventor
Juan Lester NAVEA LUCAR
Original Assignee
Navea Lucar Juan Lester
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Navea Lucar Juan Lester filed Critical Navea Lucar Juan Lester
Priority to PCT/CL2015/050022 priority Critical patent/WO2017000077A1/es
Publication of WO2017000077A1 publication Critical patent/WO2017000077A1/es

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H21/00Gearings comprising primarily only links or levers, with or without slides
    • F16H21/10Gearings comprising primarily only links or levers, with or without slides all movement being in, or parallel to, a single plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H21/00Gearings comprising primarily only links or levers, with or without slides
    • F16H21/10Gearings comprising primarily only links or levers, with or without slides all movement being in, or parallel to, a single plane
    • F16H21/12Gearings comprising primarily only links or levers, with or without slides all movement being in, or parallel to, a single plane for conveying rotary motion
    • F16H21/14Gearings comprising primarily only links or levers, with or without slides all movement being in, or parallel to, a single plane for conveying rotary motion by means of cranks, eccentrics, or like members fixed to one rotary member and guided along tracks on the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H21/00Gearings comprising primarily only links or levers, with or without slides
    • F16H21/10Gearings comprising primarily only links or levers, with or without slides all movement being in, or parallel to, a single plane
    • F16H21/16Gearings comprising primarily only links or levers, with or without slides all movement being in, or parallel to, a single plane for interconverting rotary motion and reciprocating motion
    • F16H21/18Crank gearings; Eccentric gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H21/00Gearings comprising primarily only links or levers, with or without slides
    • F16H21/10Gearings comprising primarily only links or levers, with or without slides all movement being in, or parallel to, a single plane
    • F16H21/16Gearings comprising primarily only links or levers, with or without slides all movement being in, or parallel to, a single plane for interconverting rotary motion and reciprocating motion
    • F16H21/18Crank gearings; Eccentric gearings
    • F16H21/22Crank gearings; Eccentric gearings with one connecting-rod and one guided slide to each crank or eccentric
    • F16H21/32Crank gearings; Eccentric gearings with one connecting-rod and one guided slide to each crank or eccentric with additional members comprising only pivoted links or arms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/12Gearings comprising primarily toothed or friction gearing, links or levers, and cams, or members of at least two of these types

Definitions

  • the invention corresponds to a mechanical force amplifier based on the use of levers connected to each other, forming a kinematic chain.
  • the application of the lever of first degree or class as a means of amplification of force, power, involves decreasing the transmitted speed and the distance traveled by the resistance, consequently when directly connecting each other n (ene) equal or different levers to form a kinematic chain, will be amplified force n (ene) times depending on the multiplication between the ratios of each lever, depending on the ratio between its distances, power arm, distance a, is to the resistance arm, distance b, to / b, but in turn the speed and travel will decrease the same n (ene) times, tending to zero (0) at a higher ratio of the levers and / or greater number of these.
  • the present invention shows a mechanical force amplifier formed by multiple units of levers of first degree, to amplify the power force, connected to each other by links, forming a mechanism, a kinematic chain, which reproduces, increases or decreases the speed and the travel distance of the input lever on the output lever, maintaining the original revolution, producing the amplification of the input force, power force, as a function of the multiplication between the ratios of each of the first-degree levers connected to each other, allowing the force amplifier the addition of multiple units, equal or different, whose special characteristics are described below according to the drawings that are an integral part of this presentation where:
  • FIG. 1 shows three (3) views in elevation and perspective of the cycle of activation and amplification of force, with numbered elements, of the axial mechanism formed by two (2) levers, one of entrance, and another of exit, connected to each other by means of a link , link with pre-resistance point 10 coinciding with the displacement and rotation point p of 11, both levers in ratio two to one (2: 1) and one to one tangent to seven hundred thirty-two (1: 1, 732) or thirty sexagesimal degrees (30 s ), rotating axially.
  • FIG. 1 shows three (3) views in elevation and perspective of the cycle of activation and amplification of force, with numbered elements, of the axial mechanism formed by two (2) levers, one of entrance, and another of exit, connected to each other by means of a link , link with pre-resistance point 10 coinciding with the displacement and rotation point p of 11, both levers in ratio two to one (2: 1) and one to one tangent to seven hundred thirty-two (1: 1, 732) or thirty
  • FIG. 2 shows three (3) views in elevation and perspective of the cycle of activation and amplification of force, with numbered elements, of the axial mechanism conformed by three (3) levers, one of input, one intermediate and one of output, connected to each other by means of links, the first link with the point of resistance of the link pre 10 not coincident with the point of displacement and rotation p of 11, and the second link with the point of resistance of the link pre 10 coinciding with the point of displacement and rotation p of 11, the three in ratio two to one (2: 1) and one to one tangent to seven hundred thirty-two (1: 1, 732) or thirty sexagesimal degrees (30 s ), rotating axially.
  • FIG. 3 shows three (3) views in elevation and perspective of the cycle of activation and amplification of force, with numbered elements, of the axial mechanism formed by two (2) levers, one input, and one output, connected to each other by a link , link with pre resistance point 10 coinciding with the displacement and rotation point p of 11, the input lever in ratio two to one (2: 1) and tangent one to two (1: 2) or twenty six point fifty seven sexagesimal degrees (26.57 s ), and the exit lever in ratio three to one (3: 1) and tangent one to four (1: 4) or fourteen point zero four sexagesimal degrees (14.04 s ), rotating axially .
  • FIG. 4 shows three (3) views in elevation and perspective of the cycle of activation and amplification of force, with numbered elements, of the axial mechanism formed by two (2) levers, one of entrance, and another of exit, connected to each other by means of a link , link with the point of resistance pre 10 not coincident with the point of displacement and rotation p of 11, the lever of entry in ratio three to one (3: 1) and tangent one to three (1: 3) or eighteen point forty and three sexagesimal degrees (18.43 s ), and the exit lever in ratio two to one (2: 1) and one to two tangent (1: 2) or twenty-six point fifty-seven sexagesimal degrees (26.57 s ), rotating axially.
  • FIG. 4 shows three (3) views in elevation and perspective of the cycle of activation and amplification of force, with numbered elements, of the axial mechanism formed by two (2) levers, one of entrance, and another of exit, connected to each other by means of a link , link with the point of resistance pre 10
  • FIG. 5 shows three (3) views in elevation and perspective of the cycle of activation and amplification of force, with numbered elements, of the axial mechanism formed by two (2) levers, one input, and one output, connected to each other by a link , link with the point of resistance pre 10 not coincident with the point of displacement and rotation p of 11, the lever of entry in ratio five to one (5: 1) and tangent one to eight (1: 8) or seven point thirteen degrees sexagesimal (7,13 s ), and the exit lever in ratio two to one (2: 1) and tangent one to one (1: 1) or forty-five degrees sexagesimal (45 s ), rotating axially.
  • FIG. 6 shows three (3) views in elevation and perspective of the cycle of activation and amplification of force, with numbered elements, of the axial mechanism formed by two (2) levers, one of entrance, and another of exit, connected to each other by means of a link , link with the point of resistance pre 10 not coincident with the point of displacement and rotation p of 11, the lever of entrance in ratio two to one (2: 1) and tangent two to one (2: 1) or sixty three four sexagesimal degrees (63.4 s ), and the exit lever in ratio two to one (2: 1) and one to two tangent (1: 2) or twenty-six point fifty-seven sexagesimal degrees (26.57 s ), rotating axially.
  • FIG. 6 shows three (3) views in elevation and perspective of the cycle of activation and amplification of force, with numbered elements, of the axial mechanism formed by two (2) levers, one of entrance, and another of exit, connected to each other by means of a link , link with the point of resistance pre 10 not coincident with the
  • FIG. 7 and 8 show three (3) views in elevation and perspective of the cycle of activation and amplification of force, of the axial mechanism consisting of two (2) levers, one input, and one output, connected to each other by a link, link with the point of resistance pre 10 coinciding with the point of displacement and rotation p of 11, the lever of entrance in ratio two to one (2: 1), the lever of exit in reason one to one (1: 1) and both with tangent one to one, seven hundred thirty-two (1: 1, 732) or thirty sexagesimal degrees (30 s ), rotating axially, which reproduces the speed and distance of travel of the input lever on the output lever, producing the amplification of the input force, depending on the input lever ratio, ratio one to two, is amplified to twice the input force, without altering the revolutions or angular momentum of the receiver axis.
  • an axial mechanism, linear kinematic chain, force amplifier is shown, which is constituted basically by a minimum of 2 (two) adjacent levers, one input, and one output, connected to each other by a link that moves and rotates in the inner plane of the mechanism, link driven by the rotation of the input lever, and that produces the rotation of the output lever.
  • the body that contains the fulcrum 1, the power point pf 2 and the point of resistance pr 3, and the fulcrum 1 and the power points pf 2 and resistance pr 3 being located longitudinally in the body of the lever 4, the fulcrum 1 having as a kinematic pair a pivotal connection or articulation, the power point pf 2 having as a kinematic pair a slot or guide connection or connection with a variable length form closure, and having the point of resistance pr 3 as a kinematic pair a connection or pivoting joint, and depending on the location of the lever in the mechanism, location in the linear kinematic chain, the corresponding type of kinematic pair of connection to the driving element, input, and connection to the receiving element, output.
  • the fulcrum 1 of each lever of the mechanism is located on the longitudinal axis of the mechanism and the same plane of rotation that contains them respectively, and the fulcrums 1 are linked to the mechanism frame 5 by means of a pivotal connection or articulation.
  • the angle 0 smaller to the infinite tangent is to one ( ⁇ / 1), (0 ⁇ Tg ( ⁇ / 1)), the angle (0) less than pi average radius (7tr / 2), (0 ⁇ 7tr / 2), or angle 0 less than 90 (ninety) sexagesimal degrees, (0 ⁇ 90 s ), in the plane of rotation that contains them with respect to longitudinal axis of the mechanism that is the reference of rotation, where all distances are magnitudes and therefore are positive, using the trigonometric tangent, Tg, and the corresponding angular functions, as a measure of the slope for the levers of the mechanism.
  • the rotation of the lever around the fulcrum 1, point of support or articulation of the lever located on the longitudinal axis of the mechanism, determines rotation with the same direction of rotation of the power points pf 2 and resistance pr 3 with respect to to fulcrum 1, where 8pf is the distance traveled by the power point pf 2 from its position on the longitudinal axis of the mechanism to its position on the slope assumed by the lever, point pf 6, in its turn around the fulcrum 1 with radius a, and 8pr being the distance traveled by the point of resistance pr 3 from its position on the longitudinal axis of the mechanism to its position on the slope assumed by the lever, point pr '7, in its turn around the fulcrum 1 with radius b, both positions in the plane of rotation that contains them, where the ratio, 8pf / 8pr, is directly proportional to the ratio of the arms, a / b, (8pf / 8pr a / b), the ratio of the lever, ratio m (eme), to the slope
  • levers of the mechanism are connected at their adjacent points, point of resistance pr 3 of the input lever, point that has as a kinematic pair a connection or pivoting joint, and power point pf 2 of the output lever, point that has as a kinematic pair a connection or articulation of slot or guide with closing of shape of variable length, a link 8 being the connecting means between the levers.
  • Link 8 has three (3) connection points, a power point pfe 9, a point of resistance pre 10, and a point of displacement and rotation p of 11, there being a distance E (e) between the power points pfe 9 and of pre-resistance 10, where E (e) is greater than or equal to pfy of the output lever, (E> pfy), (E> a / (V (Tg 2 +1))) or (E> a (sin0)), the power point pfe 9 having as a kinematic pair a pivotal connection or articulation, and the point of resistance as a kinematic pair a pivotal and sliding connection or articulation.
  • the point of displacement and rotation of the link pde 11 is located around the resistance point pre 10, at a distance P (pe), where P is a length greater than or equal to zero (0), (P> 0), having the displacement point and rotation pde 11 as a kinematic pair a connection or pivoting and sliding articulation.
  • the connecting link 8 between the levers at their adjacent points is driven by the rotation of the input lever, driven in its movement by the point of resistance pr 3 of the input lever, to which the point is connected of power pfe 9 of the link by means of a connection or pivoting articulation, simultaneously the link activates the rotation of the exit lever, driving it in its movement by the pre-resistance point of the link, to which the exit lever is connected in its power point pf 2, point that has as kinematic pair a connection or articulation of groove or guide with closing of form of variable length, moving and rotating the link in the plane that contains it, describing an arc of displacement of radius R (ere ), where R is a length greater than zero (0), (R> 0), and the displacement and rotation of the link 8 being guided by the pde 11 point, arranged in the connection or groove or guide articulation with closing so that it has the inner plane centered 12 in the frame of the mechanism 5, this displacement and rotation is determined by the slopes of the adjacent levers to which the link
  • link 8 its displacement and rotation, it is obtained that the rotations and movements of the connected levers are simultaneous, being able to be equal or different between their respective power and resistance points, and being the levers of the first degree, to amplify the force of power, strength of the input lever, and amplification as a function of the ratio between its arms, distance a is a distance b, a / b, where a> b, the input force will be amplified as a function of the multiplication between the reasons of each lever, and the number of levers of the mechanism.
  • the combination between the ratios and slopes between the levers of the mechanism can reproduce the speed and the distance of the travel of the lever of entrance in the lever of exit of the mechanism without diminishing in one unit the amplification of the force.
  • the mechanism increases the capacity of force, power or input force of the motor element, mechanical force provided by the motor, maintaining the original revolution, one revolution per cycle of lever balancing, and reproducing or altering the path of the resistance, increasing the force directly as a function of the multiplication between the ratios and quantity of levers of the mechanism.
  • the input lever of the mechanism is connected to the motor or driving force, and the output lever of the mechanism is connected to a receiving element, an axis or secondary driving element, with its corresponding type of kinematic pair of connection to the driving and connecting element. to the receiving element.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmission Devices (AREA)

Abstract

La invención, corresponde a un amplificador mecánico de fuerza conformado por múltiples unidades de palancas de primer grado, iguales o distintas, para amplificar la fuerza de potencia, fuerza de entrada, conectadas entre sí mediante eslabones, conformando un mecanismo, una cadena axial, que reproduce, aumenta o disminuye la velocidad y la distancia de recorrido de la palanca de entrada en la palanca de salida, produciendo la amplificación de la fuerza de entrada, en función de la multiplicación entre las razones de cada una de las palancas conectadas entre sí, lo que permite aumentar la fuerza de potencia de manera directa, sin perdidas de potencia, y controlando la velocidad y la distancia recorrida por la resistencia. Permitiendo el amplificador de fuerza la adición de múltiples unidades, iguales o distintas.

Description

DESCRIPCION
TITULO DE LA INVENCION: AMPLIFICADOR DE FUERZA
La invención corresponde a un amplificador mecánico de fuerza basado en la utilización de palancas conectadas entre sí, conformando una cadena cinemática.
La utilización de la fuerza mecánica aportada por motores de distintos tipos de suministro de energía, se basa en transmisiones que aumentan o disminuyen su capacidad de fuerza, potencia o fuerza de entrada, elemento motriz, mediante mecanismos cooperantes que alteran la relación directa entre la fuerza suministrada y la fuerza de salida, resistencia, de un elemento receptor.
La soluciones tradicionales que considera el Arte Previo, ha sido procurar mecanismos cooperantes, mediante cajas de cambio, correas, reductores, sistemas hidráulicos, etc., generalmente de alta complejidad o pérdida de potencia, la utilización de tales soluciones, generalmente alteran la revolución original para conseguir el aumento o disminución de la fuerza mecánica aportada por el motor original. La patente CN102478108 hace mención a la utilización de la palanca como medio de amplificación de fuerza con una estructura de disco central y palancas de anillos perimetrales, con engranajes de conexión a ejes de entrada y salida del mecanismo, de las patentes revisadas como amplificador de fuerza, o amplificador mecánico de fuerza, es la única que hace mención a la utilización de la palanca como medio de amplificación de fuerza.
La aplicación de la palanca de primer grado o clase, como medio de amplificación de fuerza, potencia, implica disminuir la velocidad transmitida y la distancia recorrida por la resistencia, consecuentemente al conectar directamente entre sí n (ene) palancas iguales o distintas para conformar una cadena cinemática, se amplificara la fuerza n (ene) veces en función a la multiplicación entre las razones de cada palanca, en función a la razón entre sus distancias, brazo de potencia, distancia a, es al brazo de resistencia, distancia b, a/b, pero a su vez la velocidad y recorrido disminuirá las mismas n (ene) veces, tendiendo a cero (0) a mayor razón de las palancas y/o mayor numero de estas.
La presente invención, muestra un amplificador mecánico de fuerza conformado por múltiples unidades de palancas de primer grado, para amplificar la fuerza de potencia, conectadas entre sí mediante eslabones, conformando un mecanismo, una cadena cinemática, que reproduce, aumenta o disminuye la velocidad y la distancia de recorrido de la palanca de entrada en la palanca de salida, manteniendo la revolución original, produciendo la amplificación de la fuerza de entrada, fuerza de potencia, en función de la multiplicación entre las razones de cada una de las palancas de primer grado conectadas entre sí, permitiendo el amplificador de fuerza la adición de múltiples unidades, iguales o distintas, cuyas características especiales se describen a continuación según los dibujos que forman parte integral de esta presentación en donde:
La FIG. 1 muestra tres (3) vistas en elevación y perspectiva del ciclo de accionamiento y amplificación de fuerza, con elementos numerados, del mecanismo axial conformado por dos (2) palancas, una de entrada, y otra de salida, conectadas entre sí mediante un eslabón, eslabón con el punto de resistencia pre 10 coincidente con el punto de desplazamiento y rotación pde 11 , ambas palancas en razón dos a uno (2:1 ) y tangente uno a uno coma setecientos treinta y dos (1 :1 ,732) o treinta grados sexagesimales (30s), rotando axialmente. La FIG. 2 muestra tres (3) vistas en elevación y perspectiva del ciclo de accionamiento y amplificación de fuerza, con elementos numerados, del mecanismo axial conformado por tres (3) palancas, una de entrada, una intermedia y otra de salida, conectadas entre sí mediante eslabones, el primer eslabón con el punto de resistencia del eslabón pre 10 no coincidente con el punto de desplazamiento y rotación pde 11 , y el segundo eslabón con el punto de resistencia del eslabón pre 10 coincidente con el punto de desplazamiento y rotación pde 11 , las tres en razón dos a uno (2:1 ) y tangente uno a uno coma setecientos treinta y dos (1 :1 ,732) o treinta grados sexagesimales (30s), rotando axialmente.
La FIG. 3 muestra tres (3) vistas en elevación y perspectiva del ciclo de accionamiento y amplificación de fuerza, con elementos numerados, del mecanismo axial conformado por dos (2) palancas, una de entrada, y otra de salida, conectadas entre sí mediante un eslabón, eslabón con el punto de resistencia pre 10 coincidente con el punto de desplazamiento y rotación pde 11 , la palanca de entrada en razón dos a uno (2:1 ) y tangente uno a dos (1 :2) o veintiséis coma cincuenta y siete grados sexagesimales (26,57s), y la palanca de salida en razón tres a uno (3:1 ) y tangente uno a cuatro (1 :4) o catorce coma cero cuatro grados sexagesimales (14,04s), rotando axialmente.
La FIG. 4 muestra tres (3) vistas en elevación y perspectiva del ciclo de accionamiento y amplificación de fuerza, con elementos numerados, del mecanismo axial conformado por dos (2) palancas, una de entrada, y otra de salida, conectadas entre sí mediante un eslabón, eslabón con el punto de resistencia pre 10 no coincidente con el punto de desplazamiento y rotación pde 11 , la palanca de entrada en razón tres a uno (3:1 ) y tangente uno a tres (1 :3) o dieciocho coma cuarenta y tres grados sexagesimales (18,43s), y la palanca de salida en razón dos a uno (2:1 ) y tangente uno a dos (1 :2) o veintiséis coma cincuenta y siete grados sexagesimales (26,57s), rotando axialmente. La FIG. 5 muestra tres (3) vistas en elevación y perspectiva del ciclo de accionamiento y amplificación de fuerza, con elementos numerados, del mecanismo axial conformado por dos (2) palancas, una de entrada, y otra de salida, conectadas entre sí mediante un eslabón, eslabón con el punto de resistencia pre 10 no coincidente con el punto de desplazamiento y rotación pde 11 , la palanca de entrada en razón cinco a uno (5:1 ) y tangente uno a ocho (1 :8) o siete coma trece grados sexagesimales (7,13s), y la palanca de salida en razón dos a uno (2:1 ) y tangente uno a uno (1 :1 ) o cuarenta y cinco grados sexagesimales (45s), rotando axialmente.
La FIG. 6 muestra tres (3) vistas en elevación y perspectiva del ciclo de accionamiento y amplificación de fuerza, con elementos numerados, del mecanismo axial conformado por dos (2) palancas, una de entrada, y otra de salida, conectadas entre sí mediante un eslabón, eslabón con el punto de resistencia pre 10 no coincidente con el punto de desplazamiento y rotación pde 11 , la palanca de entrada en razón dos a uno (2:1 ) y tangente dos a uno (2:1 ) o sesenta y tres coma cuatro grados sexagesimales (63,4s), y la palanca de salida en razón dos a uno (2:1 ) y tangente uno a dos (1 :2) o veintiséis coma cincuenta y siete grados sexagesimales (26,57s), rotando axialmente. La FIG. 7 y 8 muestran tres (3) vistas en elevación y perspectiva del ciclo de accionamiento y amplificación de fuerza, del mecanismo axial conformado por dos (2) palancas, una de entrada, y otra de salida, conectadas entre sí mediante un eslabón, eslabón con el punto de resistencia pre 10 coincidente con el punto de desplazamiento y rotación pde 11 , la palanca de entrada en razón dos a uno (2:1 ), la palanca de salida en razón uno a uno (1 :1 ) y ambas con tangente uno a uno coma setecientos treinta y dos (1 :1 ,732) o treinta grados sexagesimales (30s), rotando axialmente, lo que reproduce la velocidad y la distancia de recorrido de la palanca de entrada en la palanca de salida, produciendo la amplificación de la fuerza de entrada, en función de la razón de palanca de entrada, razón uno a dos, se amplifica al doble la fuerza de entrada, sin alterar las revoluciones ni momento angular del eje receptor.
De esta manera, en dichas figuras se muestra un mecanismo axial, cadena cinemática lineal, amplificador de fuerza, que está constituido básicamente por un mínimo de 2 (dos) palancas adyacentes, una de entrada, y otra de salida, conectadas entre sí mediante un eslabón que se desplaza y gira en el plano interior del mecanismo, eslabón accionado por la rotación de la palanca de entrada, y que produce la rotación de la palanca de salida.
Las palancas del mecanismo son de primer grado o clase, para amplificar la fuerza de potencia, teniendo una longitud L (ele) entre sus puntos de potencia y resistencia, siendo L la suma de la distancia al fulcro 1 , punto de apoyo o articulación de la palanca, del punto de aplicación de la fuerza de potencia pf 2, o brazo de potencia, distancia a, mas la distancia al fulcro 1 del punto de aplicación de la fuerza de resistencia pr 3, o brazo de resistencia, distancia b, L (ele) es igual a la suma de a mas b, (L=a + b), y siendo a mayor que b, (a > b), donde la razón de la palanca, razón m (eme), está determinada por la relación, razón, entre a y b, (m=(a/b)), y dependiendo de la magnitud de a y b de cada palanca, ser la razón m (eme) la misma o distinta para cada palanca del mecanismo.
Siendo el cuerpo rígido de la palanca 4, el cuerpo que contiene al fulcro 1 , el punto de potencia pf 2 y al punto de resistencia pr 3, y estando ubicado el fulcro 1 y los puntos de potencia pf 2 y de resistencia pr 3 longitudinalmente en el cuerpo de la palanca 4, teniendo el fulcro 1 como par cinemático una conexión o articulación pivotante, teniendo el punto de potencia pf 2 como par cinemático una conexión o articulación de ranura o guía con cierre de forma de longitud variable, y teniendo el punto de resistencia pr 3 como par cinemático una conexión o articulación pivotante, y dependiendo de la ubicación de la palanca en el mecanismo, ubicación en la cadena cinemática lineal, el correspondiente tipo de par cinemático de conexión al elemento motriz, entrada, y de conexión al elemento receptor, salida.
El fulcro 1 de cada palanca del mecanismo se ubica en el eje longitudinal del mecanismo y el mismo plano de rotación que los contiene respectivamente, y vinculados los fulcros 1 al marco del mecanismo 5 mediante una conexión o articulación pivotante.
El giro de la palanca en torno al fulcro 1 , punto de apoyo o articulación de la palanca ubicado en el eje longitudinal del mecanismo, produce una inclinación, una pendiente, y un ángulo (0), del eje longitudinal de la palanca respecto al eje longitudinal del mecanismo, eje definido desde el punto de entrada al punto de salida del mecanismo, ángulo (0) que puede ser determinado mediante distintos sistemas de medición: Trigonométrico: Tangente, Tg, cateto opuesto dividido por cateto adyacente; Grados sexagesimales: circunferencia de trescientos sesenta grados, 360s; Radianes: el radio contenido en la circunferencia, 27tr, y otros sistemas de medición. Siendo el límite de la Inclinación, de la pendiente, de las palancas del mecanismo, el ángulo 0 menor a la tangente infinito es a uno (∞/1 ), (0 < Tg (∞/1 )), el ángulo (0) menor a pi radio medio (7tr/2), (0 < 7tr/2), o el ángulo 0 menor a 90 (noventa) grados sexagesimales, (0 < 90s), en el plano de rotación que las contiene con respecto al eje longitudinal del mecanismo que es la referencia de giro, donde todas las distancias son magnitudes y por lo tanto son positivas, utilizando la tangente trigonométrica, Tg, y las funciones angulares correspondientes, como medida de la pendiente para las palancas del mecanismo. El giro de la palanca en torno al fulcro 1 , punto de apoyo o articulación de la palanca ubicado en el eje longitudinal del mecanismo, determina la rotación con el mismo sentido de giro de los puntos de potencia pf 2 y de resistencia pr 3 con respecto al fulcro 1 , siendo 8pf la distancia recorrida por el punto de potencia pf 2 desde su posición en el eje longitudinal del mecanismo a su posición en la pendiente asumida por la palanca, punto pf 6, en su giro en torno al fulcro 1 con radio a, y siendo 8pr la distancia recorrida por el punto de resistencia pr 3 desde su posición en el eje longitudinal del mecanismo a su posición en la pendiente asumida por la palanca, punto pr' 7, en su giro en torno al fulcro 1 con radio b, ambas posiciones en el plano de rotación que las contiene, donde la razón, 8pf/8pr, es directamente proporcional a la razón de los brazos, a/b, (8pf/8pr=a/b), siendo independiente la razón de la palanca, razón m (eme), a la pendiente, tangente Tg, de la palanca.
Donde la distancia perpendicular (y) de pf 6 al eje longitudinal que pasa por pf 2 y el fulcro 1 , es igual al brazo de potencia de la palanca, distancia a, dividida por la raíz, de la suma de la tangente, al cuadrado más uno (1 ), pfy=(a/(V(Tg2+1 )),o es ¡gUa| a| brazo de potencia, distancia a, por la función seno del ángulo (0), pfy=a(sen0), y donde la proyección sobre el mismo eje, de la distancia longitudinal (x) de pf 6 al fulcro 1 , es igual a la distancia pfy dividida por la tangente, pf'x=pf'y/(Tg), o es igual al brazo de potencia, distancia a, multiplicado por la función coseno del ángulo (0), pfx=a(cos0), y donde la distancia perpendicular (y) de pr' 7 al eje longitudinal que pasa por pr 3, es igual a la distancia pfy dividida por la razón de la palanca, razón m (eme), (pr'y=pf'y/m), o es igual al brazo de potencia distancia b, por la función seno del ángulo (0), pf'y=b(sen0), donde la razón de las distancia pfy y pr'y, (pf'y/pr'y), es directamente proporcional a la razón de los brazos de la palanca, a/b, o razón m (eme) de la palanca, (pf'y/pr'y=a/b=m).
Todas las palancas del mecanismo se encuentran conectadas en sus puntos adyacentes entre sí, punto de resistencia pr 3 de la palanca de entrada, punto que tiene como par cinemático una conexión o articulación pivotante, y punto de potencia pf 2 de la palanca de salida, punto que tiene como par cinemático una conexión o articulación de ranura o guía con cierre de forma de longitud variable, siendo un eslabón 8 el medio conector entre las palancas.
El eslabón 8 posee tres (3) puntos de conexión, un punto de potencia pfe 9, un punto de resistencia pre 10, y un punto de desplazamiento y rotación pde 11 , existiendo una distancia E (e) entre los puntos de potencia pfe 9 y de resistencia pre 10, siendo E (e) una longitud mayor o igual a pfy de la palanca de salida, (E > pfy), (E > a/(V(Tg2+1 ))) o (E > a(sen0)), teniendo el punto potencia pfe 9 como par cinemático una conexión o articulación pivotante, y el punto de resistencia pre 10 como par cinemático una conexión o articulación pivotante y deslizante. El punto de desplazamiento y rotación del eslabón pde 11 , se ubica en torno al punto resistencia pre 10, a una distancia P (pe), siendo P una longitud mayor o igual a cero (0), (P > 0), teniendo el punto de desplazamiento y rotación pde 11 como par cinemático una conexión o articulación pivotante y deslizante.
El eslabón 8 de conexión entre las palancas en sus puntos adyacentes entre sí, es accionado por la rotación de la palanca de entrada, impulsado en su movimiento por el punto de resistencia pr 3 de la palanca de entrada, al cual se encuentra conectado el punto de potencia pfe 9 del eslabón mediante una conexión o articulación pivotante, simultáneamente el eslabón acciona la rotación de la palanca de salida, impulsándola en su movimiento por el punto de resistencia pre 10 del eslabón, al cual se encuentra conectada la palanca de salida en su punto de potencia pf 2, punto que tiene como par cinemático una conexión o articulación de ranura o guía con cierre de forma de longitud variable, desplazándose y rotando el eslabón en el plano que lo contiene, describiendo un arco de desplazamiento de radio R (ere), siendo R una longitud mayor a cero (0), (R > 0), y siendo el desplazamiento y la rotación del eslabón 8 guiado mediante el punto pde 11 , dispuesto en la conexión o articulación de ranura o guía con cierre de forma que tiene el plano interior centrado 12 en el marco del mecanismo 5, este desplazamiento y rotación está determinado por las pendientes de las palancas adyacentes a las cuales conecta el eslabón 8, punto de resistencia pr' 7 de la palanca de entrada y punto de potencia pf 6 de la palanca de salida.
La distancia entre los fulcros 1 , ubicados en el eje longitudinal del mecanismo y plano de rotación que los contiene, de un par de palancas adyacentes conectadas entre sí, tiene una longitud F (efe), siendo F igual a la suma de la proyección longitudinal del brazo de potencia pf'x, de la palanca de salida, mas el brazo de resistencia de la palanca de entrada, distancia b, menos de la raíz de la diferencia, de la distancia E (e) al cuadrado, E del eslabón que las conecta, menos la distancia pf'y al cuadrado de la palanca de salida, F = pf'x+b-V(E2-(pf'y)2), o es igual al brazo de potencia de la palanca de salida, distancia a, multiplicado por la función coseno del ángulo (0) , mas el brazo de resistencia de la palanca de entrada, distancia b, menos de la raíz de la diferencia, de la distancia E (e) al cuadrado, E del eslabón que las conecta, menos el brazo de potencia de la palanca de salida, distancia a, multiplicado por la función seno del ángulo (0), al cuadrado, F= a(cos0)+b-V(E2-(a(sen0))2).
Mediante esta conexión, eslabón 8, su desplazamiento y rotación, se obtiene que las rotaciones y movimientos de las palancas conectadas sean simultáneos, pudiendo ser iguales o distintos entre sus respectivos puntos de potencia y resistencia, y siendo las palancas de primer grado, para amplificar la fuerza de potencia, fuerza de la palanca de entrada, y la amplificación en función de la razón entre sus brazos, distancia a es a distancia b, a/b, siendo a>b, se amplificara la fuerza de entrada en función de la multiplicación entre las razones de cada palanca, y a la cantidad de palancas del mecanismo.
Para un mecanismo de 2 (dos) palancas iguales, (a/b=8pf/8pr=m), la amplificación de la fuerza, es de (a/b)*(a/b) o m*m, que es igual a F=(a/b)2=m2, siendo el recorrido de salida igual a 8pr.
Para un mecanismo de n (ene) palancas iguales, (a/b=8pf/8pr=m), la amplificación de la fuerza, es exponencial, es de (a/b)*(a/b)...*(a/b)n, o m*m ...mn, que es igual a F=(a/b) n=mn, siendo el recorrido de salida igual a 8pr. Para un mecanismo de 2 (dos) palancas distintas,
Figure imgf000007_0001
la amplificación de la fuerza, es de (a1/b1)*(a2/b2), o m1 *m2, que es igual a F=(a/b)1 *(a/b)2=m1 *m2, siendo el recorrido de salida igual a 8pr2.
Para un mecanismo de n (ene) palancas distintas, (a^b^ópt^Spr^m^, (a2/b2=8pf2/8pr2=m2),
Figure imgf000007_0002
la amplificación de la fuerza, es (ai/bi)*(a2/b2)*(a3/b3)... (an/bn), que es igual a
Figure imgf000007_0003
(a/b)n= (mi*m2 *m3...*m„), siendo el recorrido de salida igual a 8prn
Para reproducir la distancia del recorrido y la velocidad de la palanca de entrada en la palanca de salida del mecanismo, esto implica disminuir en una unidad el exponente, así para un mecanismo de 2 (dos) palancas iguales, la amplificación de la fuerza es de (a/b=8pf/8pr=m)*(a/a=8pf/8pf=1 ), que es igual a F=(a/b)2-1 = (a/b), siendo el recorrido de salida igual a 8pf.
Para un mecanismo de n (ene) palancas iguales, la amplificación de la fuerza es de (a/b=8pf/8pr=m)*(a/b=8pf/8pr=m)... (a/a=8pf/8pf=1 )n, que es igual a F=(a/b) n"1 , siendo el recorrido de salida igual a 8pf.
Así también la combinación entre las razones y pendientes entre las palancas del mecanismo puede reproducir la velocidad y la distancia del recorrido de la palanca de entrada en la palanca de salida del mecanismo sin disminuir en una unidad la amplificación de la fuerza.
El mecanismo aumenta la capacidad de fuerza, potencia o fuerza de entrada del elemento motriz, fuerza mecánica aportada por el motor, manteniendo la revolución original, una vuelta por ciclo de balanceo de la palanca, y reproduciendo o alterando el recorrido de la resistencia, aumentando la fuerza directamente en función de la multiplicación entre las razones y cantidad de palancas del mecanismo.
Se conecta la palanca de entrada del mecanismo al motor o fuerza motriz, y se conecta la palanca de salida del mecanismo a un elemento receptor, un eje o elemento motriz segundario, con su correspondiente tipo de par cinemático de conexión al elemento motriz y de conexión al elemento receptor.
Todo ello, tal y como se describe y observa en los dibujos adjuntos, de acuerdo a lo señalado en el enunciado y estando definido por las reivindicaciones anexas.

Claims

REIVINDICACIONES
1 . Un amplificador mecánico de fuerza, conformado por unidades de palancas de primer grado para amplificar la fuerza de potencia, conectadas entre sí, conformando una cadena cinemática,
CARACTERIZADO por la adición de múltiples unidades, iguales o distintas.
2. Un amplificador mecánico de fuerza, conformado por unidades de palancas de primer grado para amplificar la fuerza de potencia, conectadas entre sí, conformando una cadena cinemática, según la reivindicación anterior, CARACTERIZADO porque dichas palancas se encuentran conectadas mediante eslabones.
3. Un amplificador mecánico de fuerza, conformado por unidades de palancas de primer grado para amplificar la fuerza de potencia, conectadas entre sí, conformando una cadena cinemática, según la reivindicación 2, CARACTERIZADO porque el desplazamiento de dicho eslabón de conexión reproduce, aumenta o disminuye la velocidad y la distancia de recorrido de la palanca de entrada en la palanca de salida.
4. Un amplificador mecánico de fuerza, conformado por unidades de palancas de primer grado para amplificar la fuerza de potencia, conectadas entre sí, conformando una cadena cinemática, según la reivindicación 3, CARACTERIZADO porque la reproducción, aumento o disminución de la velocidad y la distancia de recorrido de la palanca de entrada en la palanca de salida, no impide la amplificación de la fuerza de entrada.
5. Un amplificador mecánico de fuerza, conformado por unidades de palancas de primer grado para amplificar la fuerza de potencia, conectadas entre sí, conformando una cadena cinemática, según la reivindicación 4, CARACTERIZADO porque produce la amplificación de la fuerza de entrada, en función de multiplicación entre las razones de cada palanca de primer grado que componen el mecanismo.
6. Un amplificador mecánico de fuerza, conformado por unidades de palancas de primer grado para amplificar la fuerza de potencia, conectadas entre sí, conformando una cadena cinemática, según la reivindicación 5, CARACTERIZADO porque produce la amplificación de la fuerza de entrada independiente del tipo de motor o fuerza motriz, bastando el correspondiente tipo de par cinemático de conexión al elemento motriz y de conexión al elemento receptor.
PCT/CL2015/050022 2015-06-29 2015-06-29 Amplificador de fuerza WO2017000077A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CL2015/050022 WO2017000077A1 (es) 2015-06-29 2015-06-29 Amplificador de fuerza

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CL2015/050022 WO2017000077A1 (es) 2015-06-29 2015-06-29 Amplificador de fuerza

Publications (1)

Publication Number Publication Date
WO2017000077A1 true WO2017000077A1 (es) 2017-01-05

Family

ID=57607366

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2015/050022 WO2017000077A1 (es) 2015-06-29 2015-06-29 Amplificador de fuerza

Country Status (1)

Country Link
WO (1) WO2017000077A1 (es)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2136244A1 (en) * 1994-11-21 1996-05-22 Carlos Vazquez Torque increaser by linkage
WO2001081742A1 (en) * 2000-04-21 2001-11-01 Panagiotis, Georgiov Engines with multipliers
WO2004055353A2 (es) * 2002-12-17 2004-07-01 Oumar Haidara Fall Transmisión multiplicadora de potencia mediante palancas pivotantes
JP2005090562A (ja) * 2003-09-16 2005-04-07 Rikogaku Shinkokai リンク式無段変速機
MX2012002607A (es) * 2009-09-01 2012-04-02 Renato Bastos Ribeiro Sistema de palancas multiplicadoras de energia.
US8479601B2 (en) * 2010-08-03 2013-07-09 General Electric Company Gearless transmission mechanism
RU2013149701A (ru) * 2013-11-08 2015-05-20 Георгий Николаевич Березовский Механический усилитель мощности

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2136244A1 (en) * 1994-11-21 1996-05-22 Carlos Vazquez Torque increaser by linkage
WO2001081742A1 (en) * 2000-04-21 2001-11-01 Panagiotis, Georgiov Engines with multipliers
WO2004055353A2 (es) * 2002-12-17 2004-07-01 Oumar Haidara Fall Transmisión multiplicadora de potencia mediante palancas pivotantes
JP2005090562A (ja) * 2003-09-16 2005-04-07 Rikogaku Shinkokai リンク式無段変速機
MX2012002607A (es) * 2009-09-01 2012-04-02 Renato Bastos Ribeiro Sistema de palancas multiplicadoras de energia.
US8479601B2 (en) * 2010-08-03 2013-07-09 General Electric Company Gearless transmission mechanism
RU2013149701A (ru) * 2013-11-08 2015-05-20 Георгий Николаевич Березовский Механический усилитель мощности

Similar Documents

Publication Publication Date Title
ES2897542T3 (es) Caja de cambios
ES2327959T3 (es) Trasnsmision toroidal de variacion continua.
ES2495590B1 (es) Mecanismo de giro azimutal para seguidores solares
WO2017215267A1 (zh) 车轮及具有该车轮的车辆
ES2247108T3 (es) Carrito automotor apto para desplazarse en una galeria cilindrica.
EP2251642A3 (en) Compact resonator fiber optic gyroscope
CN102152306B (zh) 杆轮组合式三平一转并联机构
US20120213472A1 (en) Fiber bundle based passive bi-directional off-axis forj with center bore
WO2017000077A1 (es) Amplificador de fuerza
ES2672143T3 (es) Aparato con masas rotatorias concéntricas para desarrollar fuerzas inerciales
ES2954079T3 (es) Equipo de estabilización de rotación
ES2606639T3 (es) Dispositivo de guiado de un conductor de energía eléctrica para ángulos de rotación de gran tamaño
US1868540A (en) Universal joint
WO2003042580A1 (fr) Unite de transfert a plaque oscillante (et variantes) et convertisseur differentiel de vitesse sur la base de cette unite (et variantes)
CN108431457A (zh) 可变速比传动装置
JP2017172765A5 (es)
ES2833161T3 (es) Estructura portante robusta para un telescopio reflector óptico
US1220554A (en) Speed-varying device.
ES2694588T3 (es) Una estructura de bola de centrado para articulaciones de cardán dobles autocentrantes
ES2385961T3 (es) Variador
JP5702256B2 (ja) リンク作動装置
CN102954173B (zh) 承载平台与应用于承载平台的挠性元件
US96395A (en) Improvement in affakatdb for transmitting rotary motiow
TWM465340U (zh) 變速裝置
CN102966713A (zh) 一圈变多圈转换装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15896609

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15896609

Country of ref document: EP

Kind code of ref document: A1