WO2016209058A1 - Induced polarization switching-less dc motor - Google Patents

Induced polarization switching-less dc motor Download PDF

Info

Publication number
WO2016209058A1
WO2016209058A1 PCT/KR2016/006855 KR2016006855W WO2016209058A1 WO 2016209058 A1 WO2016209058 A1 WO 2016209058A1 KR 2016006855 W KR2016006855 W KR 2016006855W WO 2016209058 A1 WO2016209058 A1 WO 2016209058A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
stator
rotor
magnetic
less
Prior art date
Application number
PCT/KR2016/006855
Other languages
French (fr)
Korean (ko)
Inventor
이이수
Original Assignee
이이수
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이이수 filed Critical 이이수
Priority to CN201680049262.4A priority Critical patent/CN108141074A/en
Publication of WO2016209058A1 publication Critical patent/WO2016209058A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/02Machines with one stator and two or more rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/48Fastening of windings on the stator or rotor structure in slots
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/09Structural association with bearings with magnetic bearings

Definitions

  • the present invention relates to a DC motor driven by a switching-less direct current, and more particularly, the electric energy of the stator and the passive energy of the rotor are synthesized to combine the kinetic energy of the motor.
  • Kinetic Energy relates to a switching-less DC motor to be high efficiency.
  • the global challenges of 21st century physics are to solve the "energy problem” and "climate change problem”.
  • the core of this task is the electric vehicle.
  • the key element technologies of electric vehicles, high-speed trains, and combat robots are the traction motors.
  • This motor is a pan-cake type in-wheel motor, requiring high efficiency and constant power. A motor will need to be developed to meet this function.
  • Robot technology the next generation convergence technology that will lead the world, aims to realize the "war that does not shed blood” with the appearance of "robots caring for old age” and robot soldiers.
  • One of the three element technologies of robot technology is the servo motor technology.
  • This motor should be a flange type motor with smooth bidirectional control, excellent position control, stepless speed, and constant speed.
  • innovative motors have to be developed to meet this.
  • Patent Document 0001 Domestic Registered Patent No. 10-1239713 (2013.03.06. Registered Notification, Switching-less DC Motor)
  • An object of the present invention is to provide a switching-less DC motor that solves the above problems significantly.
  • the stator is wound around the coil in a radial manner around the non-magnetic circular, flat core to form a magnetic field on both sides of the stator and It is installed at the center of two rotors, and the rotor magnetizes two circular and flat permanent magnets of a size corresponding to the magnetic field of the stator so that the magnetic field of each rotor is opposite to both magnetic fields of the stator.
  • the stator has a plurality of winding grooves (in both sides) to achieve a coreless motor (core-less motor) Winding Ditch) and a coreless motor are formed by winding one layer so that many coils are parallel and adjacent to one winding groove, and the input power stage (PWM Stage) of this motor is about 1,000. It is configured to control PWM (Pulse Width Modulation), and when the stator is energized, the rotor starts and rotates according to "Maxwell's mechanical model", and the rotation direction is determined by "Fleming's left hand law". It is characterized by.
  • PWM Pulse Width Modulation
  • the stator forms an induced polarization slit on both magnetic surfaces of a winding core and radially symmetrically installed on both sides of the stator to distribute the windings.
  • Distributed Winding The magnetic field at both sides of the slot is induced polarization to generate a doubling magnetization force to be magnetic flux concentration.
  • the rotor constitutes two rotors by circumferentially stacking silicon steel sheets on one magnetic surface of the rotor in order to achieve a power motor, each magnetic surface is a magnetic force of the double of the stator Magnetic Flux Concentration is achieved by a magnetic force corresponding to (Doubling Megnetiomotive Force).
  • the distribution winding is characterized in that composed of independent multi-phase (Phase).
  • windings function as a motor
  • the remaining windings function as a generator, characterized in that the motor-generator integrated.
  • the apparatus may further include a magnet bearing configured to provide a circular and flat magnet on the outer surface of the magnetic field of the rotor such that poles such as the outer surface of the rotor face each other, thereby supporting the rotor. It is done.
  • IP SLDC MOTOR Induced Polarization Switching-less DC Motor
  • the IP SLDC MOTOR of the present invention has no switching stage and has high stability and low cost.
  • the IP SLDC MOTOR of the present invention is easy to winding, and there is no internal connection, so automatic winding and connection are easy.
  • IP SLDC MOTOR of the present invention is easy to configure the permanent magnet rotor.
  • the IP SLDC MOTOR of the present invention is not restricted in the manufacture of a coreless motor or a power motor.
  • IP SLDC MOTOR of the present invention is easy to install and install as a flange type motor (Flange type Motor).
  • the IP SLDC MOTOR of the present invention is easy to manufacture of the outer rotor type, direct drive type, pan-cake type, and in-wheel motor type.
  • the IP SLDC MOTOR of the present invention is easy to manufacture the Immersible Motor.
  • the IP SLDC MOTOR of the present invention has no eddy current loss or hysteresis loss.
  • the IP SLDC MOTOR of the present invention is free from heat, noise and vibration.
  • IP SLDC MOTOR of the present invention is easy to manufacture a linear motor (Linear Motor).
  • the IP SLDC MOTOR of the present invention is a constant power motor with a constant torque and a linear motor and a high speed rotation.
  • the IP SLDC MOTOR of the present invention achieves an efficiency of about 200% due to the induction polarization of the stator and about 200% by the magnetic flux concentration effect of the rotor, resulting in a total efficiency of about 400% (Over Unity Energy). Motor).
  • the IP SLDC MOTOR of the present invention can automatically charge the battery with a self-powered IP SLDC Motor-Generator, thereby enabling continuous use of the device without external charging.
  • the IP SLDC MOTOR of the present invention is a self-generating IP SLDC Motor-Generator, which is a renewable energy generation device capable of feeding back 100% of electrical energy and continuously using about 300% of electric energy without external power supply. At this time, constant voltage control is essential).
  • FIG. 1 is a schematic diagram showing a cross section of a DC motor according to an embodiment of the present invention
  • FIG. 2a and 2b is a plan view and a front cross-sectional view showing a stator according to an embodiment of the present invention
  • 3A and 3B are a plan sectional view and a front sectional view showing a stator according to another embodiment of the present invention.
  • Figure 3c is a front sectional view showing a winding slot and induced polarization slit of the stator according to another embodiment of the present invention.
  • FIG. 4 is an exemplary view showing a four-phase motor according to an embodiment of the present invention.
  • FIG. 5 is a perspective view of a rotor according to an embodiment of the present invention.
  • 6A and 6B are cross-sectional views illustrating a motor to which a magnetic bearing according to another embodiment of the present invention is applied.
  • FIG. 1 is a schematic diagram showing a cross section of a DC motor according to an embodiment of the present invention.
  • the high-efficiency inductive polarization switching-less DC motor 100 (hereinafter, referred to as an “IP SLDC motor”) of the present invention includes a power supply unit 10 for converting AC power into DC power. ), A high efficiency DC motor 100 according to the control of the input buffer unit 20, the frequency velocity (FV) conversion circuit 30, the input buffer unit 20 and the FV conversion circuit 30 for inputting a user control command. It forms a configuration in which the input power supply unit 40 (PWM STAGE) for voltage control is connected.
  • an encoder 50 for detecting a speed is attached to a shaft 130 of the IP SLDC motor 100 and connected to the FV conversion circuit 30.
  • the IP SLDC motor 100 of the present invention has a structure in which one stator 110 is disposed between two permanent magnet rotors 120.
  • Stator (110, STATOR) of the motor is a circular, plate-shaped non-magnetic material (Non Magnetic Disk Core) formed with a hole in the center on both sides radially (Radial to Shaft) distributed winding (Distributed Winding) both sides of the stator It is configured to be located at the center of two rotors by forming a magnetic field in the.
  • Non Magnetic Disk Core Non Magnetic Disk Core
  • distributed Winding distributed Winding
  • the rotor 120 of the motor rotates two circular disk magnet rotors of a size corresponding to the magnetic field of the stator on both sides, so that the same pole of each magnet is formed on both magnetic fields of the stator. It is comprised so that (N) may oppose.
  • the input power supply unit 40 (PWM STAGE) of the motor installs and configures a square wave volume of pulse width modulation (PWM) of about 1,000 Hz.
  • the motor When the motor is energized with DC electricity, the rotor starts and rotates according to the Maxwell's mechanical model (magnetic principle), and the direction of rotation is determined by the Fleming's left-hand law. Constant power).
  • FIGS. 2A and 2B are a plan view and a front sectional view showing a stator according to an embodiment of the present invention.
  • the stator 110 according to an embodiment of the present invention, the coil 112 is wound in a radial manner directly to the non-magnetic disk board (111) of circular and flat plates Magnetic windings are formed on both sides by winding the distribution.
  • radial winding grooves 114 having a predetermined depth are formed on both surfaces of the disc so that the coils are wound, and the coils 112 are wound along the winding grooves 114.
  • FIGS. 3A and 3B are a plan sectional view and a front sectional view showing a stator according to another embodiment of the present invention
  • FIG. 3C is a front sectional view showing a winding slot and induced polarization slit of the stator according to another embodiment of the present invention.
  • the stator according to another embodiment of the present invention is the coil 112 is wound around the nonmagnetic disk 111 through the winding core 113.
  • a plurality of cores 113 are radially coupled to both surfaces of the nonmagnetic disc 111, and the coil 112 is formed along the winding groove 114 of the core 113.
  • the windings are distributed in a radially wound manner to form magnetic fields on both sides.
  • the winding core 113 formed by stacking the silicon steel sheet forms a rectangular bar shape, for example, may form a rectangular bar shape having a length of 40mm, a height of 15mm, and a width of 10mm.
  • the winding groove 114 is formed in the upper center portion in the longitudinal direction.
  • the core 113 is coupled to the nonmagnetic disc 111, with the winding groove 114 facing outward, and a portion of the lower side of the core 113 inside the nonmagnetic disc 111. Combined to dent.
  • it is radially coupled to both sides with respect to the circular nonmagnetic disk 111, and forms a constant distance from the neighboring core 113.
  • the coil 112 is wound around the winding groove 114 of the core 113 by a predetermined winding to form a magnetic field surface on both sides of the nonmagnetic disc 111.
  • the winding core configures n winding slots in the center, 2n induced polarization slits outside the respective winding slots, and distributes windings to the n winding slots.
  • both magnetic fields of the Winding Slot are induced polarization, doubling the magnetomotive force to become magnetic flux concentration, and the rotor is started and rotated.
  • the rotation direction is configured to be determined by the Fleming Left Hand Rule.
  • the stator 110 having the above structure is arranged to be positioned at the center of the two rotors 120 as shown in FIG. 1.
  • the rotors 120 on both sides are started and rotated according to the "Maxwell's mechanical model (magnetic principle)" ("Maxwell's mechanical model ( Magnetic principle) ", two coils in which current flows in the same direction attract each other, two coils in which current flows in opposite directions push each other, and the strength of the force is inversely proportional to the square of the distance.
  • the rotation direction of the rotor 120 is determined by the "Fleming's left-hand law"
  • the IP SLDC motor 100 of the present invention is a high efficiency constant power according to the "Maxwell's mechanical model (magnetic principle)” Constant power).
  • FIG. 4 is an exemplary view showing a four-phase motor according to an embodiment of the present invention. As shown, in the IP SLDC motor 100 of the present invention, one stator 110 is disposed between two permanent magnet rotors 120.
  • stator 110 is wound around the circular and flat nonmagnetic plate 111 in a manner of winding the coil 112 in a radial manner to form a magnetic field on both sides, and the rotor 120 of the stator 110
  • Two circular and flat permanent magnets of a size corresponding to the magnetic field are double-sided magnetized so that the magnetic field of each rotor 120 is opposed to both magnetic fields of the stator 110.
  • the same pole of the rotor 120 is configured to face the magnetic field of the stator 110. That is, the N-N poles of the rotor 120 permanent magnets face each other or the S-S poles face each other.
  • the stator 110 may be wound around the coil 112 is divided into a plurality of areas at equal intervals.
  • divided windings are divided into four areas, and are connected to +/- power of the input power supply unit (40 in FIG. 1, PWM STAGE) through lead wires to form a four-phase motor.
  • the divided areas are 2, 3, 4, 5,... It is possible to divide into a plurality of phases such as and n.
  • FIG. 5 is a perspective view showing a rotor according to an embodiment of the present invention.
  • the rotor 120 of the present invention is constructed by laminating silicon steel plates 122 in a columnar shape on one magnetic interface of circular and flat permanent magnets 121 corresponding to the stator 110. At this time, the silicon steel plate 122 is wound in a columnar shape with a strip having a width of about 5 mm and stacked on one magnetic surface of the permanent magnet 121.
  • Each magnetic surface of the rotor 210 has magnetic flux corresponding to a magnetic force corresponding to a doubling force of the stator of the stator (Magnetic Flux Concentration).
  • each coil may be used as an input terminal, some may be used as an input terminal, and the other may be used as an output terminal.
  • the stator 110 drives the rotor 120 with strong magnetic force by the winding sum of the coils 112.
  • IP SLDC functions as a motor.
  • the stator 110 when some are used as input terminals and the other are used as output terminals, the stator 110 functions as a motor to drive the rotor 120 by the power of the input terminals, and at the same time, Since the induction current is generated in the output terminal by the rotation of the electron 120, it functions as a motor-generator.
  • a magnet bearing 160 is provided as a bearing for guiding the rotor 120. That is, as illustrated in FIGS. 6A and 6B, circular / flat magnetic bearings 160 are installed on the outer surface of the magnetic field surface of the rotor 120.
  • the magnetic bearing 160 is installed such that a pole, such as an outer surface of the rotor 120, faces the rotor 120 so that a repulsive force acts between the rotors 120. Since the magnetic bearing 160 levitations the rotor 120 inside the housing 150 of the IP SLDC motor 100, any frictional force by the housing 150 or the ball bearing (140 in FIG. 1) It doesn't happen, so it can be rotated very fast.
  • stator 111 nonmagnetic disc

Abstract

The present invention relates to a DC motor which is driven by direct current without current switching and, more particularly, to a switching-less DC motor which enables the kinetic energy thereof to be highly efficient, as the active energy of a stator and the passive energy of a rotator are synthesized.

Description

유도분극 스위칭-레스 DC 모터Inductive Polarization Switching-less DC Motor
본 발명은 전류 교번 없이(Switching-less) 직류로 구동되는 DC 모터에 관한 것으로, 더욱 상세하게는 고정자의 전기에너지(Active Energy)와 회전자의 자기에너지(Passive Energy)가 합성되어 모터의 운동에너지(Kinetic Energy)가 고효율이 되게 하는 스위칭-레스 DC 모터에 관한 것이다.The present invention relates to a DC motor driven by a switching-less direct current, and more particularly, the electric energy of the stator and the passive energy of the rotor are synthesized to combine the kinetic energy of the motor. (Kinetic Energy) relates to a switching-less DC motor to be high efficiency.
21세기 물리학이 해결해야 할 지구촌적 과제는 "에너지 문제"와 "기후변화 문제"의 해결이다. 이 과제의 핵심은 전기자동차이다. 전기자동차, 고속전철, 전투로봇 등의 핵심적 요소기술은 견인모터(Traction Motor)이다. 이모터는 팬-케이크(Pan-cake) 형의 인-휠(In-Wheel) 모터로서, 고효율과 콘스탄트 파워(Constant Power)를 요구한다. 이 기능을 충족할 수 있는 모터가 개발되어야 할 것이다.The global challenges of 21st century physics are to solve the "energy problem" and "climate change problem". The core of this task is the electric vehicle. The key element technologies of electric vehicles, high-speed trains, and combat robots are the traction motors. This motor is a pan-cake type in-wheel motor, requiring high efficiency and constant power. A motor will need to be developed to meet this function.
세계를 주도할 차세대 융합기술인 로봇기술은 "노모를 잘 돌보는 로봇", 로봇 병사의 출현으로 "인간의 피를 흘리지 않는 전쟁"의 실현을 목표로 하고 있다. 로봇기술의 3 요소기술 중 하나가 모터(Servo Motor)기술이다. 이 모터는 양 방향제어(Bidirectional Control)가 원활하고, 우수한 위치 제어기능, 무단변속, 정속기능을 갖고, 플랜지(Flange)형 모터여야 한다. 이를 충족할 혁신적인 모터가 개발되어야 한다.Robot technology, the next generation convergence technology that will lead the world, aims to realize the "war that does not shed blood" with the appearance of "robots caring for old age" and robot soldiers. One of the three element technologies of robot technology is the servo motor technology. This motor should be a flange type motor with smooth bidirectional control, excellent position control, stepless speed, and constant speed. Innovative motors have to be developed to meet this.
또한, 가전제품, 자동차 전장, 전자완구, 의료 건강기기 등의 고기능화, 고성능화를 지원하는 요소기술로서, 모터기술의 혁신을 요구하고 있다.In addition, as an element technology supporting high functionalization and high performance of home appliances, automotive electronics, electronic toys, and medical health equipment, there is a demand for innovation in motor technology.
60,000RPM 이상으로 회전하는 스핀들모터(Spindle Motor)는 절삭유를 사용하지 않는 공작기계를 개발할 수 있다. 고속모터가 개발되어야 할 필요성이다.Spindle motors that rotate at over 60,000 RPM can develop machine tools that do not use coolant. High speed motors need to be developed.
100,000RPM 이상으로 회전하는 모터는, 원심분리기의 기술 혁신을 가져오고, 300,000RPM 이상의 모터는 신 섬유를 개발할 수 있다고 한다. 초고속 모터가 개발되어야 할 것이다. 초고속 모터는 마그네트 베어링(Magnet Bearing)이 필수적이다.Motors spinning at 100,000 RPM or more will revolutionize the technology of centrifuges, and motors above 300,000 RPM will be able to develop new fibers. Ultrafast motors will have to be developed. In high speed motors, a magnet bearing is essential.
한편, 지구의 75%는 바다이다. 이제 바다 밑에서 자원을 찾아야 한다. 해저개발에는 침수형 모터(Immersible Motor)가 있어야 한다. 침수형 로봇(Immersible Robot)이 개발되기 위하여 모터기술에 혁신이 있어야 할 것이다.Meanwhile, 75% of the earth is sea. Now we need to find resources under the sea. Subsea development requires an Immersible Motor. In order for the Immersible Robot to be developed, there must be innovation in motor technology.
또한, 자기부상식 고속철도(Mag-Lev)를 실현하기 위해서는 획기적인 리니어 모터(Linear Motor)가 개발되어야 한다. 새로운 모터가 개발되어야 할 필요성이다.In addition, in order to realize a Mag-Lev, a groundbreaking linear motor must be developed. New motors need to be developed.
(선행기술문헌)(Prior art document)
(특허문헌 0001) 국내등록특허 제10-1239713호(2013.03.06.등록공고, 스위칭-레스 DC모터)(Patent Document 0001) Domestic Registered Patent No. 10-1239713 (2013.03.06. Registered Notification, Switching-less DC Motor)
오늘날 기가비트(Giga-Bit), 나노기술(Nano-Technology)의 시대에 모터기술만이 발전이 없는 상태이다.Today, in the era of Giga-Bit and Nano-Technology, only motor technology is in development.
기존의 AC 모터, DC 모터, BLDC 모터 등은 원통형의 구조로서, 견인모터(Traction Motor)가 요구하는 팬 케이크 모터(Pan-cake Motor)는 제작이 어렵다.Conventional AC motors, DC motors, BLDC motors, etc. have a cylindrical structure, and a pan-cake motor required by a traction motor is difficult to manufacture.
또한, 교번 전류를 사용하는 관계로 속도의 증가에 비례하여 증가하는 와류손실(Eddy Current Loss)과 자기이력손실(Hysteresis Loss)로 인하여 고속에서 기능·성능이 나쁘며, 초고속은 불가능하다.In addition, due to the use of alternating current, due to the Eddy Current Loss and the Hysteresis Loss, which increase in proportion to the increase in speed, the function and performance are bad at high speeds, and ultra-high speeds are impossible.
본 발명은 이상의 문제들을 획기적으로 해결하는 스위칭-레스 DC 모터(Switching-less DC Motor)를 제공하는 것을 목적으로 한다.An object of the present invention is to provide a switching-less DC motor that solves the above problems significantly.
상기와 같은 목적을 달성하기 위한 본 발명은 스위칭-레스 DC모터를 구성함에 있어서, 고정자는 비자성체의 원형·평판형 코어에 코일을 방사상으로 휘감는 방식으로 분포권선하여 고정자의 양면에 자기장을 형성하고 2개의 회전자의 중앙에 설치하고, 회전자는 상기 고정자의 자계면에 대응되는 크기의 원형·평판형 영구자석 2개를 양면 착자하여 각 회전자의 자계면이 상기 고정자의 양측 자계면에 대향되게 구성하되, 각 회전자의 같은 극(N-N 또는 S-S)이 고정자의 자계면에 대향되게 구성하며, 상기 고정자는 코어레스 모터(Core-less Motor)를 성취하기 위하여 양측 자계면에 다수의 권선 홈(Winding Ditch)을 구성하고, 한 권선 홈에 다수의 코일을 평행·인접하도록 한 겹으로 분포권선하여 코어레스 모터를 구성하며, 이 모터의 입력 전원부(PWM Stage)는 약 1,000Hz의 PWM(Pulse Width Modulation) 제어가 되도록 구성하여, 상기 고정자에 직류 전기를 통전하면 "맥스웰의 역학적 모델"에 따라 회전자는 기동·회전하며, 회전방향은 "플레밍의 왼손법칙"에 의하여 정해지는 것을 특징으로 한다.In the present invention for achieving the above object in the construction of a switching-less DC motor, the stator is wound around the coil in a radial manner around the non-magnetic circular, flat core to form a magnetic field on both sides of the stator and It is installed at the center of two rotors, and the rotor magnetizes two circular and flat permanent magnets of a size corresponding to the magnetic field of the stator so that the magnetic field of each rotor is opposite to both magnetic fields of the stator. Wherein the same pole (NN or SS) of each rotor is configured to face the magnetic field of the stator, the stator has a plurality of winding grooves (in both sides) to achieve a coreless motor (core-less motor) Winding Ditch) and a coreless motor are formed by winding one layer so that many coils are parallel and adjacent to one winding groove, and the input power stage (PWM Stage) of this motor is about 1,000. It is configured to control PWM (Pulse Width Modulation), and when the stator is energized, the rotor starts and rotates according to "Maxwell's mechanical model", and the rotation direction is determined by "Fleming's left hand law". It is characterized by.
여기서, 상기 고정자는 파워모터(Power Motor)를 성취하기 위하여, 와인딩 코어(Winding Core) 양측 자계면에 유도분극 슬릿(Induced Polarization Slit)을 구성하여 상기 고정자 양면에 방사상으로 대칭되게 설치하여 분포권선(Distributed Winding) 하면 슬롯(Slot) 양측 자계면은 유도분극(Induced Polarization) 되어 배가의 기자력(Doubling Megnetiomotive Force)을 생성시켜 자속집중(Magnetic Flux Concentration)이 되도록 하는 것을 특징으로 한다.Here, in order to achieve a power motor, the stator forms an induced polarization slit on both magnetic surfaces of a winding core and radially symmetrically installed on both sides of the stator to distribute the windings. Distributed Winding) The magnetic field at both sides of the slot is induced polarization to generate a doubling magnetization force to be magnetic flux concentration.
또한, 상기 회전자는 파워모터(Power Motor)를 성취하기 위하여, 회전자의 한 쪽 자계면 위에 규소강판을 원주형으로 적층하여 2개의 회전자를 구성하며, 각 자계면은 상기 고정자의 배가의 기자력(Doubling Megnetiomotive Force)에 상응하는 자기력(Magnetic Force)으로 자속집중(Magnetic Flux Concentration)이 이루어지도록 하는 것을 특징으로 한다.In addition, the rotor constitutes two rotors by circumferentially stacking silicon steel sheets on one magnetic surface of the rotor in order to achieve a power motor, each magnetic surface is a magnetic force of the double of the stator Magnetic Flux Concentration is achieved by a magnetic force corresponding to (Doubling Megnetiomotive Force).
또한, 상기 분포권선은 독립다상(Independent Multi-Phase)으로 구성되는 것을 특징으로 한다.In addition, the distribution winding is characterized in that composed of independent multi-phase (Phase).
또한, 일부의 권선은 모터(Motor)로 기능하고, 나머지의 권선은 제너레이터(Generator)로 기능하여, 모터-제너레이터(Motor-Generator) 일체형으로 구성되는 것을 특징으로 한다.In addition, some of the windings function as a motor, and the remaining windings function as a generator, characterized in that the motor-generator integrated.
또한, 상기 회전자의 자계면 바깥면에 회전자 바깥면과 같은 극이 마주보도록 원형·평판형 자석을 설치하여, 회전자를 부양(Levitation)시키는 자석 베어링(Magnet Bearing)을 더 포함하는 것을 특징으로 한다.The apparatus may further include a magnet bearing configured to provide a circular and flat magnet on the outer surface of the magnetic field of the rotor such that poles such as the outer surface of the rotor face each other, thereby supporting the rotor. It is done.
본 발명에 따른 스위칭-레스 직류 모터(Induced Polarization Switching-less DC Motor, 이하, "IP SLDC MOTOR"라 함)는 다음과 같은 효과가 있다.Induced Polarization Switching-less DC Motor (hereinafter, referred to as "IP SLDC MOTOR") according to the present invention has the following effects.
1. 본 발명의 IP SLDC MOTOR는 전류교번장치(Switching Stage)가 없어 안정성이 높고, 원가가 싸다.1. The IP SLDC MOTOR of the present invention has no switching stage and has high stability and low cost.
2. 본 발명의 IP SLDC MOTOR는 권선이 쉽고, 내부결선(Inter Connection)이 없으므로 자동권선·결선이 용이하다.2. The IP SLDC MOTOR of the present invention is easy to winding, and there is no internal connection, so automatic winding and connection are easy.
3. 본 발명의 IP SLDC MOTOR는 영구자석 회전자의 구성이 쉽다.3. IP SLDC MOTOR of the present invention is easy to configure the permanent magnet rotor.
4. 본 발명의 IP SLDC MOTOR는 코어레스 모터(Core-less Motor)나 파워 모터(Power Motor)의 제작에 있어 제약이 없다.4. The IP SLDC MOTOR of the present invention is not restricted in the manufacture of a coreless motor or a power motor.
5. 본 발명의 IP SLDC MOTOR는 플랜지형 모터(Flange type Motor)[0025] 로 설치·장착이 용이하다.5. IP SLDC MOTOR of the present invention is easy to install and install as a flange type motor (Flange type Motor).
6. 본 발명의 IP SLDC MOTOR는 외부 회전자(Outer-Rotor)형, 직구동(Direct-Drive)형, Pan-Cake형, 바퀴내장모터(In-Wheel Motor)형의 제작이 용이하다.6. The IP SLDC MOTOR of the present invention is easy to manufacture of the outer rotor type, direct drive type, pan-cake type, and in-wheel motor type.
7. 본 발명의 IP SLDC MOTOR는 침수형 모터(Immersible Motor)의 제작이 용이하다.7. The IP SLDC MOTOR of the present invention is easy to manufacture the Immersible Motor.
8. 본 발명의 IP SLDC MOTOR는 와전류 손실(Eddy Current Loss)이나 자기이력손실(Hysteresis Loss)이 전혀 없다.8. The IP SLDC MOTOR of the present invention has no eddy current loss or hysteresis loss.
9. 본 발명의 IP SLDC MOTOR는 열, 소음, 진동이 없다.9. The IP SLDC MOTOR of the present invention is free from heat, noise and vibration.
10. 본 발명의 IP SLDC MOTOR는 선형 모터(Linear Motor) 제작이 용이하다.10. IP SLDC MOTOR of the present invention is easy to manufacture a linear motor (Linear Motor).
11. 본 발명의 IP SLDC MOTOR는 강력한 기동토크(Stall Torque)와 직선가속모터(Linear Motor)이면서 고속 회전이 되는 콘스탄트 파원모터(Constant Power Motor)이다.11. The IP SLDC MOTOR of the present invention is a constant power motor with a constant torque and a linear motor and a high speed rotation.
12. 본 발명의 IP SLDC MOTOR는 고정자의 유도분극으로 약 200%의 효율과 회전자의 자속집중 효과로 약 200%의 효율을 이룩하여 총효율이 약 400%가 되는 초효율 모터(Over Unity Energy Motor)이다.12. The IP SLDC MOTOR of the present invention achieves an efficiency of about 200% due to the induction polarization of the stator and about 200% by the magnetic flux concentration effect of the rotor, resulting in a total efficiency of about 400% (Over Unity Energy). Motor).
13. 본 발명의 IP SLDC MOTOR는 자가발전 IP SLDC Motor-Generator로 배터리를 자동 충전할 수 있어서 외부 충전 없이 지속적으로 기기의 사용이 가능하다.13. The IP SLDC MOTOR of the present invention can automatically charge the battery with a self-powered IP SLDC Motor-Generator, thereby enabling continuous use of the device without external charging.
14. 본 발명의 IP SLDC MOTOR는 자가발전 IP SLDC Motor-Generator로 전기에너지 100%는 Feed-Back 시키고 외부 전력공급 없이 약 300%의 전기에너지를 지속적으로 사용할 수 있는 신재생 에너지의 발전장치이다(이때, 정전압 제어는 필수적이다).14. The IP SLDC MOTOR of the present invention is a self-generating IP SLDC Motor-Generator, which is a renewable energy generation device capable of feeding back 100% of electrical energy and continuously using about 300% of electric energy without external power supply. At this time, constant voltage control is essential).
도 1은 본 발명의 일 실시예에 따른 직류 모터의 단면을 도시한 개략도,1 is a schematic diagram showing a cross section of a DC motor according to an embodiment of the present invention;
도 2a 및 2b는 본 발명의 일 실시예에 따른 고정자를 나타낸 평면도 및 정단면도,2a and 2b is a plan view and a front cross-sectional view showing a stator according to an embodiment of the present invention,
도 3a 및 3b는 본 발명의 다른 실시예에 따른 고정자를 나타낸 평단면도 및 정단면도,3A and 3B are a plan sectional view and a front sectional view showing a stator according to another embodiment of the present invention;
도 3c는 본 발명의 다른 실시예에 따른 고정자의 Winding Slot 과 Induced Polarization Slit 을 나타낸 정단면도,Figure 3c is a front sectional view showing a winding slot and induced polarization slit of the stator according to another embodiment of the present invention,
도 4는 본 발명의 실시예에 따른 4상 모터를 나타낸 예시도,4 is an exemplary view showing a four-phase motor according to an embodiment of the present invention;
도 5는 본 발명의 실시예에 따른 회전자를 나타낸 사시도,5 is a perspective view of a rotor according to an embodiment of the present invention;
도 6a 및 6b는 본 발명의 다른 실시예에 따른 자석 베어링이 적용된 모터를 나타낸 단면도이다.6A and 6B are cross-sectional views illustrating a motor to which a magnetic bearing according to another embodiment of the present invention is applied.
본 발명과 본 발명의 실시에 의해 달성되는 기술적 과제는 다음에서 설명하는 바람직한 실시예들에 의해 명확해질 것이다. 이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 살펴보기로 한다.The technical problem achieved by the present invention and the practice of the present invention will be apparent from the preferred embodiments described below. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 실시예에 따른 직류 모터의 단면을 도시한 개략도이다.1 is a schematic diagram showing a cross section of a DC motor according to an embodiment of the present invention.
도 1에 도시된 바와 같이 본 발명의 고효율 유도분극 스위칭-레스 직류 모터(100, Induced Polarization Switching-less DC Motor, 이하 "IP SLDC 모터"라 함)에는 교류전원을 직류전원으로 변환하는 전원부(10), 사용자 제어명령을 입력하기 위한 입력 버퍼부(20), 주파수속도(FV) 변환회로(30), 입력버퍼부(20)와 FV 변환회로(30)의 제어에 따라 고효율 직류 모터(100)를 전압 제어하는 입력전원부(40, PWM STAGE)가 연결되는 구성을 이룬다. 그리고 IP SLDC 모터(100)의 샤프트(Shaft, 130)에는 속도를 감지하기 위한 엔코더(50)가 부착되어 FV 변환회로(30)와 연결되어 있다.As shown in FIG. 1, the high-efficiency inductive polarization switching-less DC motor 100 (hereinafter, referred to as an “IP SLDC motor”) of the present invention includes a power supply unit 10 for converting AC power into DC power. ), A high efficiency DC motor 100 according to the control of the input buffer unit 20, the frequency velocity (FV) conversion circuit 30, the input buffer unit 20 and the FV conversion circuit 30 for inputting a user control command. It forms a configuration in which the input power supply unit 40 (PWM STAGE) for voltage control is connected. In addition, an encoder 50 for detecting a speed is attached to a shaft 130 of the IP SLDC motor 100 and connected to the FV conversion circuit 30.
본 발명의 IP SLDC 모터(100)는 2개의 영구자석 회전자(Rotor, 120) 사이에 하나의 고정자(110)가 배치된 구조로 되어 있다.The IP SLDC motor 100 of the present invention has a structure in which one stator 110 is disposed between two permanent magnet rotors 120.
상기 모터의 고정자(110, STATOR)는 중앙부에 홀이 형성된 원형·평판형 비자성체(Non Magnetic [0040] Disk Core) 양면에 방사상(Radial to Shaft)으로 분포권선(Distributed Winding)하여 고정자의 양 측면에 자기장(Magnetic Field)을 형성하도록 하여 두 개의 회전자 중앙에 위치되도록 구성한다.Stator (110, STATOR) of the motor is a circular, plate-shaped non-magnetic material (Non Magnetic Disk Core) formed with a hole in the center on both sides radially (Radial to Shaft) distributed winding (Distributed Winding) both sides of the stator It is configured to be located at the center of two rotors by forming a magnetic field in the.
상기 모터의 회전자(120, ROTOR)는 상기 고정자의 자계면에 대응되는 크기의 원형·평판형 영구자석 2개(Dual Disk Magnet Rotor)를 양면 착자하여 고정자의 양측 자계면에 각 자석의 같은 극(N)이 대향되도록 구성한다.The rotor 120 of the motor rotates two circular disk magnet rotors of a size corresponding to the magnetic field of the stator on both sides, so that the same pole of each magnet is formed on both magnetic fields of the stator. It is comprised so that (N) may oppose.
상기 모터의 입력전원부(40, PWM STAGE)는 약 1,000Hz의 PWM(Pulse Width Modulation)의 구형파 볼륨(Digital Volume)을 설치 구성한다.The input power supply unit 40 (PWM STAGE) of the motor installs and configures a square wave volume of pulse width modulation (PWM) of about 1,000 Hz.
상기 모터에 직류 전기를 통전하면 "맥스웰의 역학적 모델(자기적 원리)"에 따라 회전자는 기동·회전하게 되고, 회전방향은 "플레밍의 왼손법칙"에 의하여 결정되며, 모터는 고효율과 콘스탄트 파워(Constant power)를 제공한다.When the motor is energized with DC electricity, the rotor starts and rotates according to the Maxwell's mechanical model (magnetic principle), and the direction of rotation is determined by the Fleming's left-hand law. Constant power).
도 2a 및 2b는 본 발명의 일 실시예에 따른 고정자를 나타낸 평면도 및 정단면도이다. 도면에서 알 수 있는 바와 같이 본 발명의 일 실시예에 따른 고정자(110)는, 원형·평판형의 비자성체 원판(Non-magnetic Disk Board,111)에 직접 코일(112)이 방사상으로 휘감는 방식으로 분포권선하여 양면에 자계면(Magnetic Field)을 형성한다. 이때, 코일이 권선되기 위하여 원판의 양 표면에는 소정의 깊이를 가지는 방사상의 권선 홈(114)이 형성되고, 상기 권선 홈(114)을 따라 코일(112)이 권선된다.2A and 2B are a plan view and a front sectional view showing a stator according to an embodiment of the present invention. As can be seen in the figure, the stator 110 according to an embodiment of the present invention, the coil 112 is wound in a radial manner directly to the non-magnetic disk board (111) of circular and flat plates Magnetic windings are formed on both sides by winding the distribution. At this time, radial winding grooves 114 having a predetermined depth are formed on both surfaces of the disc so that the coils are wound, and the coils 112 are wound along the winding grooves 114.
도 3a 및 3b는 본 발명의 다른 실시예에 따른 고정자를 나타낸 평단면도 및 정단면도이고, 도 3c는 본 발명의 다른 실시예에 따른 고정자의 Winding Slot 과 Induced Polarization Slit 을 나타낸 정단면도이다. 본 발명의 다른 실시예에 따른 고정자는 코일(112)이 와인딩 코어(113)를 매개로 비자성체 원판(111)에 휘감겨진다.3A and 3B are a plan sectional view and a front sectional view showing a stator according to another embodiment of the present invention, and FIG. 3C is a front sectional view showing a winding slot and induced polarization slit of the stator according to another embodiment of the present invention. The stator according to another embodiment of the present invention is the coil 112 is wound around the nonmagnetic disk 111 through the winding core 113.
즉, 도 3a 및 3b에 도시된 바와 같이, 비자성체 원판(111)의 양면에는 방사상으로 다수개의 코어(113)가 결합되고, 코일(112)은 코어(113)의 권선 홈(114)에 따라 방사상으로 휘감는 방식으로 분포권선하여 양면에 자계면(Magnetic Field)을 형성한다.That is, as shown in FIGS. 3A and 3B, a plurality of cores 113 are radially coupled to both surfaces of the nonmagnetic disc 111, and the coil 112 is formed along the winding groove 114 of the core 113. The windings are distributed in a radially wound manner to form magnetic fields on both sides.
한편, 규소강판을 적층하여 구성된 와인딩 코어(113)는 사각의 막대 형상을 이루며, 일 예로 길이 40mm, 높이 15mm, 폭 10mm의 사각 막대 형상을 이룰 수 있다. 또한, 길이 방향의 상측 중앙부에는 권선 홈(114)이 형성된다. 상기와 같은 코어(113)가 도 3a 및 3b에 도시된 바와 같이, 비자성체 원판(111)에 결합되는데, 권선홈(114)이 외측으로 향하며, 하측의 일부가 비자성체 원판(111) 내부에 함몰되도록 결합된다. 또한, 원형의 비자성체 원판(111)에 대하여 방사상으로 양 측에서 결합되며, 이웃하는 코어(113)와는 일정한 간격을 이룬다. 이러한 코어(113)의 권선 홈(114)을 따라 코일(112)이 소정의 분포권선으로 휘감겨져 비자성체 원판(111)의 양면에 자계면을 형성하게 된다.On the other hand, the winding core 113 formed by stacking the silicon steel sheet forms a rectangular bar shape, for example, may form a rectangular bar shape having a length of 40mm, a height of 15mm, and a width of 10mm. In addition, the winding groove 114 is formed in the upper center portion in the longitudinal direction. As shown in FIGS. 3A and 3B, the core 113 is coupled to the nonmagnetic disc 111, with the winding groove 114 facing outward, and a portion of the lower side of the core 113 inside the nonmagnetic disc 111. Combined to dent. In addition, it is radially coupled to both sides with respect to the circular nonmagnetic disk 111, and forms a constant distance from the neighboring core 113. The coil 112 is wound around the winding groove 114 of the core 113 by a predetermined winding to form a magnetic field surface on both sides of the nonmagnetic disc 111.
또한, 도 3c와 같이 와인딩 코어는 중앙에 n 개의 Winding Slot 을 구성하고, 각 Winding Slot 외측에 2n 개의 유도분극슬릿(Induced Polarization Slit)을 구성하여, n 개의 Winding Slot 에 분포권선(Distributed Winding)하여 고정자를 구성하고, 고정자에 통전(In-put)하면 Winding Slot 양쪽 자계면은 유도분극되어 기자력(Magnetomotive Force)을 배가(doubling)시켜 자속집중(Magnetic Flux Concentration)이 되도록 하여 회전자는 기동·회전하게 되고, 회전방향은 Fleming Left Hand Rule 에 의하여 결정되도록 구성된다.In addition, as shown in FIG. 3C, the winding core configures n winding slots in the center, 2n induced polarization slits outside the respective winding slots, and distributes windings to the n winding slots. When the stator is configured and in-put to the stator, both magnetic fields of the Winding Slot are induced polarization, doubling the magnetomotive force to become magnetic flux concentration, and the rotor is started and rotated. The rotation direction is configured to be determined by the Fleming Left Hand Rule.
상기와 같은 구조의 고정자(110)는 도 1에 도시된 바와 같이 2개의 회전자(120) 중앙에 위치하도록 배치된다. 고정자(110)의 코일(112)에 직류 전기를 통전하면, "맥스웰의 역학적 모델(자기적 원리)"에 따라 양 측의 회전자(120)는 기동·회전하게 된다["맥스웰의 역학적 모델(자기적 원리)"에 의하면 전류가 같은 방향으로 흐르는 두 코일은 서로 끌어당기고, 전류가 반대방향으로 흐르는 두 코일은 서로 밀어내며, 그 힘의 세기는 거리의 제곱에 반비례한다]. 이때, 회전자(120)의 회전 방향은 "플레밍의 왼손법칙"에 의하여 결정되며, 본 발명의 IP SLDC 모터(100)는 "맥스웰의 역학적 모델(자기적 원리)"에 따라 고효율의 콘스탄트 파워(Constant Power)를 제공한다.The stator 110 having the above structure is arranged to be positioned at the center of the two rotors 120 as shown in FIG. 1. When direct current is applied to the coil 112 of the stator 110, the rotors 120 on both sides are started and rotated according to the "Maxwell's mechanical model (magnetic principle)" ("Maxwell's mechanical model ( Magnetic principle) ", two coils in which current flows in the same direction attract each other, two coils in which current flows in opposite directions push each other, and the strength of the force is inversely proportional to the square of the distance. At this time, the rotation direction of the rotor 120 is determined by the "Fleming's left-hand law", the IP SLDC motor 100 of the present invention is a high efficiency constant power according to the "Maxwell's mechanical model (magnetic principle)" Constant power).
도 4는 본 발명의 실시예에 따른 4상 모터를 나타낸 예시도이다. 도시된 바와 같이, 본 발명의 IP SLDC 모터(100)는 2개의 영구자석 회전자(Rotor, 120) 사이에 하나의 고정자(Stator, 110)가 배치된다.4 is an exemplary view showing a four-phase motor according to an embodiment of the present invention. As shown, in the IP SLDC motor 100 of the present invention, one stator 110 is disposed between two permanent magnet rotors 120.
여기서 고정자(110)는 원형·평판형의 비자성체 원판(111)에 코일(112)이 방사상으로 휘감는 방식으로 분포권선하여 양면에 자계면을 형성하고, 회전자(120)는 고정자(110)의 자계면에 대응되는 크기의 원형·평판형 영구자석 2개를 양면 착자하여 각 회전자(120)의 자계면이 고정자(110)의 양측 자계면에 대향되게 구성한다.Here, the stator 110 is wound around the circular and flat nonmagnetic plate 111 in a manner of winding the coil 112 in a radial manner to form a magnetic field on both sides, and the rotor 120 of the stator 110 Two circular and flat permanent magnets of a size corresponding to the magnetic field are double-sided magnetized so that the magnetic field of each rotor 120 is opposed to both magnetic fields of the stator 110.
이때, 회전자(120)의 같은 극이 고정자(110)의 자계면에 대향되도록 구성한다. 즉, 회전자(120) 영구자석의 N-N극이 서로 마주보거나 S-S 극이 서로 마주보도록 배치된다.In this case, the same pole of the rotor 120 is configured to face the magnetic field of the stator 110. That is, the N-N poles of the rotor 120 permanent magnets face each other or the S-S poles face each other.
한편, 고정자(110)는 코일(112)이 다수개의 영역으로 등 간격으로 분할되어 감겨질 수 있다. 일 예로 도시된 바와 같이, 4개의 영역으로 분할권선되며 리드 선을 통해 각각 입력전원부(도 1의 40, PWM STAGE)의 +/- 전원과 연결되어, 4상 모터를 구성한다. 이때, 분할되는 영역은 2, 3, 4, 5, …, n개 등 다수의 상(相)으로 분할이 가능하다.On the other hand, the stator 110 may be wound around the coil 112 is divided into a plurality of areas at equal intervals. As an example, divided windings are divided into four areas, and are connected to +/- power of the input power supply unit (40 in FIG. 1, PWM STAGE) through lead wires to form a four-phase motor. At this time, the divided areas are 2, 3, 4, 5,... It is possible to divide into a plurality of phases such as and n.
도 5는 본 발명의 실시예에 따른 회전자를 나타낸 사시도이다. 본 발명의 회전자(120)는 고정자(110)에 대응하는 원형·평판형의 영구자석(121) 한 쪽 자계면위에 규소강판(122)을 원주형으로 적층하여 구성한다. 이때, 규소강판(122)은 약 5mm 폭을 갖는 띠를 두루마리로 원주형으로 감아서 영구자석(121)의 한 쪽 자계면에 적층한다. 이러한 회전자(210)의 각 자계면은 상기 고정자의 배가의 기자력(Doubling Megnetiomotive Force)에 상응하는 자기력(Magnetic Force)으로 자속집중(Magnetic Flux Concentration)이 이루어지다.5 is a perspective view showing a rotor according to an embodiment of the present invention. The rotor 120 of the present invention is constructed by laminating silicon steel plates 122 in a columnar shape on one magnetic interface of circular and flat permanent magnets 121 corresponding to the stator 110. At this time, the silicon steel plate 122 is wound in a columnar shape with a strip having a width of about 5 mm and stacked on one magnetic surface of the permanent magnet 121. Each magnetic surface of the rotor 210 has magnetic flux corresponding to a magnetic force corresponding to a doubling force of the stator of the stator (Magnetic Flux Concentration).
도 6a 및 6b는 본 발명의 다른 실시예에 따른 자석 베어링이 적용된 모터를 나타낸 단면도이다. 코일(112)이 분할 권선된 구조에서는 각 코일이 모두 입력단자로 사용되거나, 일부는 입력단자로 사용되고, 나머지는 출력단자로 사용될 수 있다.6A and 6B are cross-sectional views illustrating a motor to which a magnetic bearing according to another embodiment of the present invention is applied. In the structure in which the coil 112 is divided and wound, each coil may be used as an input terminal, some may be used as an input terminal, and the other may be used as an output terminal.
즉, 도 6a에 도시된 바와 같이, 모든 분할 영역의 코일(112)이 입력단자로 사용되는 경우, 고정자(110)는 코일(112)의 권선 합에 의하여 강한 자력으로 회전자(120)를 구동시키고, IP SLDC는 모터(Motor)로 기능한다. 또한, 도 6b에 도시된 바와 같이, 일부는 입력단자로 사용되고 나머지는 출력단자로 사용되는 경우 고정자(110)는 입력단자의 전원에 의해 회전자(120)를 구동시키는 모터로 기능하고, 동시에 회전자(120)의 회전에 의하여 출력단자에는 유도 전류가 발생하므로 모터-제너레이터(Motor-Generator)로 기능한다.That is, as shown in FIG. 6A, when the coils 112 of all the divided regions are used as input terminals, the stator 110 drives the rotor 120 with strong magnetic force by the winding sum of the coils 112. IP SLDC functions as a motor. In addition, as shown in FIG. 6B, when some are used as input terminals and the other are used as output terminals, the stator 110 functions as a motor to drive the rotor 120 by the power of the input terminals, and at the same time, Since the induction current is generated in the output terminal by the rotation of the electron 120, it functions as a motor-generator.
한편, 본 발명의 IP SLDC 모터(100)에서는 회전자(120)를 가이드 하기 위한 베어링으로 자석 베어링(Magnet bearing, 160)이 구비된다. 즉, 도 6a 및 도 6b에 도시된 바와 같이, 회전자(120)의 자계면 바깥면에 원형·평판형 자석 베어링(160)이 설치된다. 이때, 자석 베어링(160)은 회전자(120) 사이에 척력이 작용하도록 회전자(120)의 바깥면과 같은 극이 회전자(120)를 마주보도록 설치된다. IP SLDC 모터(100)의 하우징(150) 내부에서 자석 베어링(160)이 회전자(120)를 부양(levitation)시키게 되므로, 하우징(150) 또는 볼 베어링(도 1의 140)에 의한 어떠한 마찰력이 발생하지 않아 초고속 회전이 가능하다.Meanwhile, in the IP SLDC motor 100 of the present invention, a magnet bearing 160 is provided as a bearing for guiding the rotor 120. That is, as illustrated in FIGS. 6A and 6B, circular / flat magnetic bearings 160 are installed on the outer surface of the magnetic field surface of the rotor 120. In this case, the magnetic bearing 160 is installed such that a pole, such as an outer surface of the rotor 120, faces the rotor 120 so that a repulsive force acts between the rotors 120. Since the magnetic bearing 160 levitations the rotor 120 inside the housing 150 of the IP SLDC motor 100, any frictional force by the housing 150 or the ball bearing (140 in FIG. 1) It doesn't happen, so it can be rotated very fast.
이상에서 본 발명에 있어서 실시예를 참고로 설명되었으나, 본 기술분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 것이다.Although the embodiments of the present invention have been described with reference to the present invention, those skilled in the art will understand that various modifications and equivalent other embodiments are possible therefrom.
부호의 설명Explanation of the sign
100 : IP SLDC 모터100: IP SLDC Motor
110 : 고정자 111 : 비자성체 원판110: stator 111: nonmagnetic disc
112 : 코일 113 : 규소강판 와인딩 코어112 coil 113 silicon steel winding core
114 : 권선 홈114: winding groove
120 : 회전자120: rotor
121 : 영구자석 122 : 규소강판121: permanent magnet 122: silicon steel sheet

Claims (6)

  1. 스위칭-레스 DC모터를 구성함에 있어서,In constructing a switching-less DC motor,
    고정자는 비자성체의 원형·평판형 코어에 코일을 방사상으로 휘감는 방식으로 분포권선하여 고정자의 양면에 자기장을 형성하고 2개의 회전자의 중앙에 설치하고,The stator is wound around the coil by radially winding the coil on a round or flat core of a nonmagnetic material to form magnetic fields on both sides of the stator, and is installed in the center of two rotors.
    회전자는 상기 고정자의 자계면에 대응되는 크기의 원형·평판형 영구자석 2개를 양면 착자하여 각 회전자의 자계면이 상기 고정자의 양측 자계면에 대향되게 구성하되, 각 회전자의 같은 극(N-N 또는 S-S)이 고정자의 자계면에 대향되게 구성하며,The rotor is formed by double magnetizing two circular and flat permanent magnets of a size corresponding to the magnetic field of the stator so that the magnetic field of each rotor is opposite to the magnetic field on both sides of the stator, but the same pole of each rotor ( NN or SS) opposite the magnetic field of the stator,
    상기 고정자는 코어레스 모터(Core-less Motor)를 성취하기 위하여 양측 자계면에 다수의 권선 홈(Winding Ditch)을 구성하고, 한 권선 홈에 다수의 코일을 평행·인접하도록 한 겹으로 분포권선하여 코어레스 모터를 구성하며,In order to achieve a coreless motor, the stator forms a plurality of winding grooves on both sides of the magnetic interface, and distributes the windings in one layer so that a plurality of coils are parallel and adjacent to one winding groove. Make up the coreless motor,
    이 모터의 입력 전원부(PWM Stage)는 약 1,000Hz의 PWM(Pulse Width Modulation) 제어가 되도록 구성하여,The input power stage (PWM Stage) of this motor is configured to control pulse width modulation (PWM) of about 1,000 Hz,
    상기 고정자에 직류 전기를 통전하면 "맥스웰의 역학적 모델"에 따라 회전자는 기동·회전하며, 회전방향은 "플레밍의 왼손법칙"에 의하여 정해지는 것을 특징으로 하는 유도분극 스위칭-레스 DC 모터.Induction polarization switching-less DC motor, characterized in that the rotor is started and rotated in accordance with the "Maxwell's mechanical model" and the direction of rotation is determined by the "Fleming's left hand law".
  2. 제1항에 있어서, 상기 고정자는,The method of claim 1, wherein the stator,
    파워모터(Power Motor)를 성취하기 위하여, 와인딩 코어(Winding Core) 양측 자계면에 유도분극 슬릿(Induced Polarization Slit)을 구성하여 상기 고정자 양면에 방사상으로 대칭되게 설치하여 분포권선(Distributed Winding) 하면 슬롯(Slot) 양측 자계면은 유도분극(Induced Polarization) 되어 배가의 기자력(Doubling Megnetiomotive Force)을 생성시켜 자속집중(Magnetic Flux Concentration)이 되도록 하는 것을 특징으로 하는 유도분극 스위칭-레스 DC 모터.In order to achieve a power motor, an induced polarization slit is formed on both magnetic fields of a winding core and radially symmetrically installed on both sides of the stator to distribute the windings. (Slot) Induction polarization switching-less DC motor, characterized in that the magnetic surface on both sides is induced polarization (Doubling Megnetiomotive Force) to generate a magnetic flux concentration (Magnetic Flux Concentration).
  3. 제1항에 있어서, 상기 회전자는,The method of claim 1, wherein the rotor,
    파워모터(Power Motor)를 성취하기 위하여, 회전자의 한 쪽 자계면 위에 규소강판을 원주형으로 적층하여 2개의 회전자를 구성하며, 각 자계면은 상기 고정자의 배가의 기자력(Doubling Megnetiomotive Force)에 상응하는 자기력(Magnetic Force)으로 자속집중(Magnetic Flux Concentration)이 이루어지도록 하는 것을 특징으로 하는유도분극 스위칭-레스 DC 모터.In order to achieve a power motor, a silicon steel sheet is circumferentially stacked on one magnetic surface of the rotor to form two rotors, each of which has a doubling magnetic force of the stator. Inductive polarization switching-less DC motor, characterized in that the magnetic flux (Magnetic Flux Concentration) is achieved by the corresponding magnetic force (Magnetic Force).
  4. 제1항 또는 제2항에 있어서,The method according to claim 1 or 2,
    상기 분포권선은 독립다상(Independent Multi-Phase)으로 구성되는 것을 특징으로 하는 유도분극 스위칭-레스 DC 모터.Inductive polarization switching-less DC motor, characterized in that the distribution winding is composed of independent multi-phase (Independent Multi-Phase).
  5. 제4항에 있어서,The method of claim 4, wherein
    일부의 권선은 모터(Motor)로 기능하고, 나머지의 권선은 제너레이터(Generator)로 기능하여, 모터-제너레이터(Motor-Generator) 일체형으로 구성되는 것을 특징으로 하는 유도분극 스위칭-레스 DC 모터.Induction-polarized switching-less DC motor, characterized in that some of the windings function as a motor (Motor), the remaining windings as a generator (Motor-Generator) integral.
  6. 제1항 또는 제3항에 있어서,The method according to claim 1 or 3,
    상기 회전자의 자계면 바깥면에 회전자 바깥면과 같은 극이 마주보도록 원형·평판형 자석을 설치하여, 회전자를 부양(Levitation)시키는 자석 베어링(Magnet Bearing)을 더 포함하는 것을 특징으로 하는 유도분극 스위칭-레스 DC 모터.It characterized in that it further comprises a magnet bearing for mounting the rotor (Levitation) by installing a circular, flat-shaped magnet on the outer surface of the rotor magnetic field facing the same pole as the outer surface of the rotor Inductive polarization switching-less DC motors.
PCT/KR2016/006855 2015-06-26 2016-06-27 Induced polarization switching-less dc motor WO2016209058A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680049262.4A CN108141074A (en) 2015-06-26 2016-06-27 Induced polarization is without switching direct current generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150091293A KR102099409B1 (en) 2015-06-26 2015-06-26 Induced polarization switching-less dc motor
KR10-2015-0091293 2015-06-26

Publications (1)

Publication Number Publication Date
WO2016209058A1 true WO2016209058A1 (en) 2016-12-29

Family

ID=54244673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/006855 WO2016209058A1 (en) 2015-06-26 2016-06-27 Induced polarization switching-less dc motor

Country Status (3)

Country Link
KR (1) KR102099409B1 (en)
CN (1) CN108141074A (en)
WO (1) WO2016209058A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018117555A1 (en) * 2016-12-19 2018-06-28 선상규 Generator using two rotors capable of using rotating shaft or fixed shaft

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229677A (en) * 1991-09-18 1993-07-20 Newport News Shipbuilding And Dry Dock Company Electric propulsion motor for marine vehicles
JP2006238623A (en) * 2005-02-25 2006-09-07 Fujitsu General Ltd Dc motor
KR20070082819A (en) * 2006-02-18 2007-08-22 심영숙 High efficient motor-generator
JP2012196103A (en) * 2011-03-18 2012-10-11 Mitsubishi Electric Corp Magnetic inductor type rotary motor
KR101239713B1 (en) * 2011-09-14 2013-03-06 이이수 Dual disk magnet rotor switching-less dc motor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150048507A (en) * 2013-10-28 2015-05-07 이이수 Induced Polarization Brushless DC Electric Motor
CN106921227A (en) * 2017-04-05 2017-07-04 丁士来 A kind of absence of commutator permanent magnet DC motor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5229677A (en) * 1991-09-18 1993-07-20 Newport News Shipbuilding And Dry Dock Company Electric propulsion motor for marine vehicles
JP2006238623A (en) * 2005-02-25 2006-09-07 Fujitsu General Ltd Dc motor
KR20070082819A (en) * 2006-02-18 2007-08-22 심영숙 High efficient motor-generator
JP2012196103A (en) * 2011-03-18 2012-10-11 Mitsubishi Electric Corp Magnetic inductor type rotary motor
KR101239713B1 (en) * 2011-09-14 2013-03-06 이이수 Dual disk magnet rotor switching-less dc motor

Also Published As

Publication number Publication date
KR20150105270A (en) 2015-09-16
CN108141074A (en) 2018-06-08
KR102099409B1 (en) 2020-04-09

Similar Documents

Publication Publication Date Title
US8288916B2 (en) Composite electromechanical machines with uniform magnets
Wang et al. A magnetic continuously variable transmission device
WO2015064993A1 (en) Induced polarization bldc motor
JP2013524747A (en) Three-phase AC permanent magnet motor
CN108809030B (en) Two-degree-of-freedom bearingless switched reluctance motor controlled by external winding set
WO2020138583A1 (en) Axial motor including magnetic levitation rotation body
JP7205146B2 (en) Rotating electric machine, control device, vehicle system, maintenance method for rotating electric machine
Chirca et al. Analysis of innovative design variations for double-sided coreless-stator axial-flux permanent-magnet generators in micro-wind power applications
CN111075839A (en) New structure radial two-degree-of-freedom hexapole alternating current/direct current hybrid magnetic bearing
WO2015081106A2 (en) Electronically commutated electromagnetic apparatus
WO2012044014A2 (en) Permanent magnet chain orbit generator
CN110518766B (en) Asymmetric double-stator mixed excitation type axial magnetic field flux switching motor
CN111953161B (en) Double-winding axial magnetic field multiphase flywheel pulse generator system
WO2016209058A1 (en) Induced polarization switching-less dc motor
WO2013039346A2 (en) Switching-less dc motor
WO2023063740A1 (en) Power generation device with improved counter-electromotive force reduction efficiency
KR100712451B1 (en) Linear motor for generating levitation force and thrust simultaneously
CN106787569B (en) Magnetic suspension magnetic flux switching motor
CN108336877A (en) A kind of bimorph transducer magnetic suspension permanent magnet brshless DC motor
CN211574039U (en) New structure radial two-degree-of-freedom hexapole alternating current/direct current hybrid magnetic bearing
CN111934508B (en) Radial magnetic field coreless permanent magnet synchronous motor
WO2021104123A1 (en) Motor and device comprising said motor
JP2013176292A (en) Rotor and rotary electric machine having the same
CN214367288U (en) Distributed winding type alternating current hybrid magnetic bearing
CN216086270U (en) Motor and equipment comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814771

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/04/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16814771

Country of ref document: EP

Kind code of ref document: A1