WO2016208741A1 - Simple analysis method for lipids in trace biological sample - Google Patents

Simple analysis method for lipids in trace biological sample Download PDF

Info

Publication number
WO2016208741A1
WO2016208741A1 PCT/JP2016/068887 JP2016068887W WO2016208741A1 WO 2016208741 A1 WO2016208741 A1 WO 2016208741A1 JP 2016068887 W JP2016068887 W JP 2016068887W WO 2016208741 A1 WO2016208741 A1 WO 2016208741A1
Authority
WO
WIPO (PCT)
Prior art keywords
lipid
lipids
biological sample
trace
tlc
Prior art date
Application number
PCT/JP2016/068887
Other languages
French (fr)
Japanese (ja)
Inventor
瀧 孝雄
Original Assignee
マイクロブロット株式会社
株式会社Agt&T
株式会社メディセン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マイクロブロット株式会社, 株式会社Agt&T, 株式会社メディセン filed Critical マイクロブロット株式会社
Publication of WO2016208741A1 publication Critical patent/WO2016208741A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/90Plate chromatography, e.g. thin layer or paper chromatography

Definitions

  • the present invention is a method for identifying changes in lipid patterns, wherein (a) a trace biological sample is directly adsorbed on a TLC plate, and (b) one or more lipids in the trace biological sample are separated by TLC. And (c) a method comprising detecting one or more lipids separated on TLC.
  • lipids in cell membranes are widely involved in mediating or stimulating cell motility, including cell proliferation, adhesion and differentiation, and changes in lipids are the onset and progression of disease has been shown to be deeply involved in
  • lipid rafts which are microregions of cell membranes obtained as surfactant-insoluble fractions, are a topic of recent biological research.
  • Cholesterol and sphingolipids are the main lipid components, and lipid rafts play an important role in agonist-receptor interactions and subsequent trans-signaling.
  • studies on the function and structure of lipids involved complicated processes including lipid extraction, separation, purification, and concentration, and so far, skilled techniques were required.
  • Patent Document 1 as a method for extracting sphingosine from cultured cells, cells (1 ⁇ 10 6 to 1 ⁇ 10 7 ) are collected, washed with phosphate buffered saline (PBS), 0.1 ml Resuspend in PBS, add 3 ml chloroform / methanol (1/2, v / v), sonicate, separate by adding 2 ml each of chloroform and 1M NaCl, discard upper layer and methanol 0.2N NaOH in the solution was added to the chloroform lower layer and separated by adding 3 ml each of chloroform and 1M NaCl, and the chloroform lower layer was washed three times with chloroform / methanol / water (3/48/47). It is described that the sample from the layer was dried. Further, it is described that a dried sample is treated with a 10 mM [ 3 H] acetic anhydride solution to tritize sphingosine and analyzed using TLC.
  • PBS
  • SCDase sphingolipid ceramide deacylase
  • Patent Document 3 1000 ⁇ l of an extraction solution (methanol, chloroform, water (2: 1: 0.6) is added to each tube to a hair sample, the hair is ground in a low temperature crushing mill, centrifuged, and the supernatant (500 ⁇ l The dried sample was resuspended in 100 ⁇ l n-butanol and methanol (v / v, 1: 1) and centrifuged to obtain a supernatant, Analysis of phospholipids in the supernatant by liquid chromatography mass spectrometry (LC / MS) is described.
  • an extraction solution methanol, chloroform, water (2: 1: 0.6
  • Patent Document 4 describes a method of measuring a PVDF membrane on which a TLC plate is transferred after separating phospholipids by TLC using a mass spectrometer. However, Patent Document 4 does not describe any method for extracting phospholipids from human (normally aging) brains.
  • Non-Patent Document 1 describes that after extracting a lipid from a biological sample with an organic solvent, filtering the residue, and then subjecting the lipid extract obtained through a multistage operation necessary for deproteinization to analysis. However, there is no description of directly adsorbing a small amount of biological sample to a TLC plate.
  • the problem to be solved by the present invention is to provide a simple method for identifying changes in lipid patterns without going through complicated processes including extraction, separation, purification and concentration of lipids.
  • the present inventors have, in a method for identifying changes in lipid patterns, (a) directly adsorbing a trace biological sample to a TLC plate, and (b) one or more lipids in the trace biological sample. Analysis of lipids in biological samples, including extraction, separation, purification, concentration of lipids from biological samples by detecting one or more lipids separated on TLC and (c) detecting the one or more lipids separated on TLC Thus, it is possible to omit the complicated process that has been necessary in the past, and the present invention has been completed.
  • the present invention relates to the following.
  • a method for identifying a change in lipid pattern comprising the following steps: (A) directly adsorbing a small amount of biological sample to a TLC plate; (B) separating one or more lipids in a trace biological sample by TLC, and (c) detecting one or more lipids separated on TLC.
  • the trace biological sample is a supernatant obtained by adding a trace amount of water and / or an organic solvent to a trace amount of body fluid, tissue, or cell and allowing to stand.
  • the trace biological sample is a supernatant obtained by adding a trace amount of water and / or an organic solvent to a trace amount of body fluid, tissue, or cell, and further adding a trace amount of an inorganic base, and allowing to stand.
  • (1) The method as described.
  • the trace biological sample is a trace amount of bodily fluid, tissue, or cell, 0.5 to 400 ⁇ l of bodily fluid, 5 ⁇ 10 5 to 5.0 ⁇ 10 7 cells, or 5.0 to 150 mg of tissue,
  • (c) is the following process: (D) transferring one or more lipids separated on the TLC to a membrane; and (e) attaching the membrane to which one or more lipids have been transferred to an analysis plate, The method according to any one of (1) to (5), comprising subjecting to analysis.
  • the lipids are one or more lipids selected from the group consisting of neutral lipids, sphingophospholipids, glycerophospholipids, glycosphingolipids, glyceroglycolipids, and sulfolipids (1) to (6) ).
  • a method for identifying a symptom that changes a lipid pattern comprising the following steps: (A) directly adsorbing a supernatant obtained by adding water to blood to a TLC plate; (B) separating one or more lipids contained in the supernatant by TLC, and (c) detecting the separated one or more lipids.
  • a method for identifying a symptom that changes a lipid pattern comprising the following steps: (A) directly adsorbing a supernatant obtained by adding an organic solvent to brain tissue to a TLC plate; (B) separating one or more lipids contained in the supernatant by TLC, and (c) detecting the separated one or more lipids.
  • a method for identifying Alzheimer's disease comprising the following steps: (A) directly adsorbing the supernatant obtained by adding an organic solvent to the hippocampal white matter extracted from the subject or the subject and further adding an inorganic base to the TLC plate; (B) separating one or more lipids contained in the supernatant by TLC; (d) transferring one or more lipids separated on the TLC to a membrane; and (e) one or more.
  • a membrane to which the lipids of 1 are transferred is attached to an analysis plate, and the analysis plate is subjected to mass spectrometry to detect plasmalogen.
  • a method for identifying neuroblastoma comprising the following steps: (A) directly adsorbing a supernatant obtained by adding an organic solvent to cells extracted from a subject or a subject and further adding an inorganic base to a TLC plate; (B) separating one or more lipids contained in the supernatant by TLC; (d) transferring one or more lipids separated on the TLC to a membrane; and (e) one or more.
  • a method comprising: adhering a membrane to which a lipid is transferred to an analysis plate, and subjecting the analysis plate to mass spectrometry to detect GD2 and GD3.
  • a simple method for identifying a change in a lipid pattern can be provided.
  • FIG. 1 shows the results of separating and analyzing gangliosides of mouse cerebrum and cerebellum by TLC.
  • Lanes 1, 3, 5, and 7 are samples derived from rat cerebrum.
  • Lanes 2, 4, 6, and 8 are samples from rat cerebellum.
  • Lane 9 is a ganglioside preparation.
  • GD1a represents ganglioside GD1a
  • GD1b represents ganglioside GD1b
  • GD3 represents ganglioside GD3
  • GM1 represents ganglioside GM1
  • GM2 represents ganglioside GM2
  • GQ1b represents ganglioside GQ1b
  • GT1G represents glioside G1 SM indicates sphingomyelin.
  • FIG. 1 shows the results of separating and analyzing gangliosides of mouse cerebrum and cerebellum by TLC.
  • Lanes 1, 3, 5, and 7 are samples derived from rat cerebrum.
  • Lane 2 shows the result of separating and analyzing gangliosides of cultured cells by TLC.
  • Lane 1 is a ganglioside preparation.
  • Lanes 2, 3, 4, 5, and 6 are respectively HepG2 (human liver cancer-derived cell line), HuH (human liver cancer-derived cell line), HCT (human colon cancer-derived cell line), and HT-28 (human fibrosarcoma-derived).
  • Cell line includes DLD-1 cells (human colorectal cancer-derived cell line), and Colon 26 (mouse colorectal cancer-derived cell line).
  • Lane 8 is a rat cerebrum-derived sample.
  • FIG. 3 shows the results of separation analysis of neutral lipids of rat serum by TLC. Lanes 1-9 are serum samples of each rat. Lane 10 is a neutral lipid preparation.
  • CE indicates cholesterol ester
  • TG indicates triglyceride
  • FA indicates fatty acid
  • C indicates cholesterol
  • DG indicates diglyceride
  • PE indicates phosphatidylethanolamine
  • PC indicates phosphatidylcholine
  • SM indicates sphingomyelin Indicates.
  • FIG. 4 shows the results of separation analysis of neutral lipids and phospholipids of rat serum by TLC.
  • Lanes 1-9 are serum samples of each rat.
  • Lane 10 is a sample of neutral lipid, phospholipid and phospholipid.
  • CE indicates cholesterol ester
  • TG indicates triglyceride
  • FA indicates fatty acid
  • C indicates cholesterol
  • DG indicates diglyceride
  • PE indicates phosphatidylethanolamine
  • PC indicates phosphatidylcholine
  • SM indicates sphingomyelin Indicates.
  • FIG. 5 shows the results of separating and analyzing gangliosides (alkaline degradation treatment) of mouse cerebrum and cerebellum by TLC.
  • Lanes 1 and 3 are samples (no treatment) derived from mouse cerebellum and cerebrum, respectively.
  • Lanes 2 and 4 are samples (alkali decomposition treatment) derived from mouse cerebellum and cerebrum, respectively.
  • Lane 5 is a ganglioside preparation.
  • GD1a represents ganglioside GD1a
  • GD1b represents ganglioside GD1b
  • GT1b represents ganglioside GT1b.
  • FIG. 6 shows the results of separating and analyzing the lipids of hippocampal gray matter of Alzheimer's disease and Parkinson's disease patients and control patients by TLC.
  • Lanes 1 to 4 are samples (no treatment) of hippocampal gray matter of Alzheimer's disease patients, respectively.
  • Lanes 5 and 6 are samples of hippocampal gray matter (alkali decomposition treatment) of Parkinson's disease patients, respectively.
  • Lanes 7 and 8 are samples of hippocampal gray matter of control patients (alkaline degradation treatment), and lane 9 is a sample of hippocampal gray matter of control patients (no treatment).
  • FA indicates fatty acid
  • GalCer indicates galactosylceramide
  • Sulfatide indicates sulfatide (cerebrosid sulfate)
  • SM indicates sphingomyelin
  • Gangliosides indicates gangliosides.
  • FIG. 7 shows the results of separation analysis of hippocampal white matter lipids of Alzheimer's disease and Parkinson's disease patients and control patients by TLC.
  • Lanes 1 to 4 are samples of hippocampal white matter (untreated) from patients with Alzheimer's disease.
  • Lanes 5 and 6 are samples of hippocampal white matter (alkali decomposition treatment) of Parkinson's disease patients, respectively. Lanes 7 and 8 are samples of hippocampal white matter from the control patients (alkaline degradation treatment), and lane 9 is a sample of hippocampal white matter from the control patients (no treatment).
  • FA indicates fatty acid
  • GalCer indicates galactosylceramide
  • PE indicates phosphatidylethanolamine
  • PC indicates phosphatidylcholine
  • Sulfatide indicates sulfatide (cerebrosid sulfate)
  • LysoPE indicates lysoethanolamine plasmarogen
  • SM indicates sphingomyelin.
  • FIG. 8 shows the results of quantitative analysis of plasmalogens in hippocampal white matter of Alzheimer's disease and Parkinson's disease patients and control patients.
  • FIG. 9 shows the results of separating and analyzing gangliosides of neuroblastoma cells. Band a represents GD3 and band b represents GD2.
  • the present invention is a method for identifying changes in lipid patterns comprising the following steps: (A) directly adsorbing a small amount of biological sample to a TLC plate; It relates to a method comprising (b) separating one or more lipids in a trace biological sample by TLC, and (c) detecting one or more lipids separated on TLC.
  • the lipid is not particularly limited as long as it is a lipid detected by a usual method.
  • the lipid is, for example, a simple lipid, a complex lipid, or a derived lipid, preferably a neutral lipid, a phospholipid (sphingophospholipid, glycerophospholipid), a glycolipid (sphingoglycolipid, glyceroglycolipid), and One or more lipids selected from the group consisting of sulfolipids, and more preferably, the glycerophospholipid is one or more lipids selected from the group consisting of plasmalogen, lysophosphatidylcholine, and lysophosphatidic acid
  • the glycosphingolipid is ganglioside (GD1a, GD1b, GD2, GD3, GM1, GM2, GQ1b, GT1b) or galactosylceramide.
  • the neutral lipid includes, for example, cholesterol ester, cholesterol, steryl glucoside, ceramide, sphingosine, triglyceride, diglyceride, monoglyceride, fatty acid, preferably cholesterol ester, cholesterol, ceramide, triglyceride, diglyceride, monoglyceride, And one or more neutral lipids selected from the group consisting of fatty acids.
  • the phospholipid includes sphingophospholipid and glycerophospholipid, such as phosphatidylethanolamine, ethanolamine plasmalogen, phosphatidylcholine, choline plasmalogen, phosphatidylserine, phosphatidylinositol, cardiolipin, phosphatidic acid, lysophosphatidylethanol.
  • sphingophospholipid such as phosphatidylethanolamine, ethanolamine plasmalogen, phosphatidylcholine, choline plasmalogen, phosphatidylserine, phosphatidylinositol, cardiolipin, phosphatidic acid, lysophosphatidylethanol.
  • Amine lysophosphatidylcholine, lysophosphatidylinositol, lysophosphatidylserine, lysophosphatidic acid, sphingomyelin, lysosphingomyelin (psychosin), lysoethanolamine plasmarogen, lysocholine plasmalogen, phosphatidylglycerol, phosphatidylglucose, lyso Bisphosphatidic acid Phosphatidylethanolamine, ethanolamine plasmalogen, phosphatidylcholine, choline plasmalogen, phosphatidylserine, phosphatidylinositol, cardiolipin, phosphatidic acid, lysophosphatidylethanolamine, lysophosphatidylcholine, lysophosphatidylinositol, lysophosphatidylserine, lysophosphatidine, S
  • the glycolipid includes a sphingoglycolipid and a glyceroglycolipid.
  • examples of the ganglioside include GM2, GM3, GM4, GM1, GM1b, GD1a, GD1b, GD1 ⁇ , GD3, GD2, GT1a, GT1b, GQ1b, O-acetylGD3, GalNAc-GD1a, and preferably GM2. , GM1, GM1b, GD1a, GD1b, GD3, GD2, GT1b, GQ1b, and more preferably GM2, GM1, GM1b, GD1a, GD3, GT1b, GQ1b.
  • the lipid pattern is a pattern specified by one or more kinds of lipids, their amounts, Rf values, and / or masses, molecular weights, and the like.
  • the change in lipid pattern means, for example, gender, age, gene, eating habits, lifestyle, exercise habits, living environment, work environment, physical condition, illness, medical history, medical history, family history, etc. It means that there is a difference in the type and amount of lipid.
  • the change in the lipid pattern is, for example, a symptom or disease that changes the lipid pattern, such as a neurodegenerative disease (Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis (ALS), multiple sclerosis). (MS), lipid accumulation disease, etc., cancer (neuroblastoma, lung cancer, melanoma, liver cancer, brain tumor, pancreatic cancer, bone marrow tumor, lymphoma, colon cancer, stomach cancer, breast cancer, etc.), autoimmune disease (Guillan) Valley syndrome, ulcerative colitis, etc.).
  • a neurodegenerative disease Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis (ALS), multiple sclerosis).
  • MS lipid accumulation disease, etc.
  • cancer neuroblastoma, lung cancer, melanoma, liver cancer, brain tumor, pancreatic cancer, bone marrow tumor, lymphoma, colon cancer, stomach cancer, breast cancer, etc.
  • autoimmune disease
  • step (a) is a step of directly adsorbing a small amount of biological sample to the TLC plate.
  • the biological sample is, for example, a tissue (for example, brain (cerebrum, cerebellum, hippocampus (hippocampal gray matter, hippocampal white matter))), heart, lung, liver, stomach, intestine, collected from a subject or subject. Kidney, pancreas, breast), body fluid (eg blood (whole blood, plasma, serum), cerebrospinal fluid, urine, colostrum, milk) and cells, preferably cerebrum, cerebellum, hippocampus, whole blood, plasma Serum and cells, more preferably cerebrum, cerebellum, hippocampal gray, hippocampal white matter, serum and cells.
  • a tissue for example, brain (cerebrum, cerebellum, hippocampus (hippocampal gray matter, hippocampal white matter)
  • heart for example, heart, lung, liver, stomach, intestine, collected from a subject or subject.
  • Kidney, pancreas, breast body fluid (eg blood (whole blood, plasma, serum), cere
  • the cells are, for example, normal cells, cancer cells, cancer tissue-derived cells, etc., for example, human liver cancer-derived cells (HepG2, HuH), human colon or colon cancer-derived cells (HCT, DLD-1 cells). Human fibrosarcoma-derived cells (HT-28), mouse colon cancer-derived cells (Colon 26), and neuroblastoma cells.
  • HepG2, HuH human liver cancer-derived cells
  • HCT human colon or colon cancer-derived cells
  • HT-28 Human fibrosarcoma-derived cells
  • Colon 26 mouse colon cancer-derived cells
  • neuroblastoma cells neuroblastoma cells.
  • a small amount of biological sample is, for example, a small amount of tissue, body fluid, or cell.
  • body fluid 0.1 to 2000 ⁇ l, tissue 0.1 to 200 mg, or cell 1.0 ⁇ 10 5 to 1.0 ⁇ 10 8 , preferably 0.5 to 400 ⁇ l of body fluid, 5.0 ⁇ 10 5 to 5.0 ⁇ 10 7 cells, or 5.0 to 150 mg of tissue, more preferably 1.0 to 1.0 ⁇ 100 ⁇ l, 1.0 ⁇ 10 6 to 1.0 ⁇ 10 7 cells, or 10 to 100 mg of tissue.
  • TLC will not be restrict
  • a HPTLC plate (The Merck company make, 10cmx10cm) can be used.
  • a method for directly adsorbing a trace amount biological sample to a TLC plate includes, for example, applying the trace amount biological sample onto a TLC using a syringe or a glass capillary and drying it.
  • the trace biological sample may be a supernatant obtained by adding a trace amount of water and / or an organic solvent to the trace biological sample and allowing to stand.
  • the organic solvent is not particularly limited as long as it can be added to a biological sample, and examples thereof include nonpolar and polar solvents.
  • Nonpolar solvents include chloroform, hexane, toluene, benzene, diethyl ether and ethyl acetate.
  • Examples of the polar solvent include methanol, ethanol, acetone, n-propanol, isopropanol, butanol, acetic acid, formic acid, dimethyl sulfoxide, dimethylformamide, acetonitrile, tetrahydrofuran and 1,4-dioxane.
  • the amount of water and / or organic solvent added to a trace biological sample is not particularly limited as long as a lipid pattern can be obtained, and is preferably a small amount, for example, 0 ⁇ l to 2000 ⁇ l, 1 ⁇ l to 500 ⁇ l, preferably 5 ⁇ l to 100 ⁇ l.
  • step (a) of the present invention the amount of water and / or organic solvent added to the tissue is not particularly limited as long as a lipid pattern can be obtained. For example, 10 to 20 wt. Add the mixture.
  • the amount of water and / or organic solvent added to the body fluid is not particularly limited as long as a lipid pattern can be obtained, and water and / or organic solvent may not be added to blood.
  • the blood may be subjected to hemolysis treatment, anticoagulation treatment, and the like, and includes, for example, whole blood, plasma, and serum, preferably serum.
  • the amount of water and / or organic solvent added to the cells is not particularly limited as long as a lipid pattern can be obtained, and is preferably a small amount, for example, 0.05 to 0.1 ml. is there.
  • the time for standing by adding water and / or an organic solvent to the biological sample is not particularly limited, and is 0 to 24 hours, preferably 0 to 12 hours, and more preferably 0 to 8 hours. It's time.
  • the temperature at which water and / or an organic solvent is added to the biological sample and allowed to stand is not particularly limited, and is, for example, 4 ° C. to room temperature, preferably 4 ° C. or room temperature.
  • a trace amount biological sample (0.1 to 100 mg) is obtained by adding a trace amount of water and / or an organic solvent to a trace amount of body fluid, tissue, or cell, and further adding a trace amount of inorganic base to the trace amount biological sample.
  • the supernatant obtained by standing still is included.
  • the inorganic base added to the trace biological sample is not particularly limited as long as one or more lipids in the biological sample can be alkalinely decomposed.
  • sodium hydroxide, potassium hydroxide, sodium Methylate can be used, preferably 0.1 to 1.0 N sodium hydroxide in methanol, more preferably 0.5 N sodium hydroxide in methanol.
  • the amount of the inorganic base used for alkali decomposition is not particularly limited as long as one or more lipids in a biological sample can be alkali decomposed, and contains lipid obtained by adding water and / or an organic solvent.
  • the amount is, for example, 1/50 to 1/2 times, preferably 1/30 to 1/2 times, more preferably 1/20 to 1/5 times the volume of the liquid volume.
  • step (a) of the present invention water and / or an organic solvent is added to the biological sample, an inorganic base is further added, and the time for standing still may cause one or more lipids in the biological sample to undergo alkaline decomposition. If possible, it is not particularly limited, and is 0 to 30 minutes, preferably 0 to 15 minutes, and more preferably 0 to 10 minutes.
  • step (b) is a step of separating one or more lipids in a trace biological sample by TLC.
  • the TLC used is not particularly limited as long as one or more lipids can be separated using at least one developing solution.
  • At least one developing solution to be used is not particularly limited.
  • the at least one developing solution is not particularly limited as long as one or more lipids can be separated.
  • CHCl 3 MeOH: 0.2% CaCl 2 (60 to 75:25 to 40: 4-9, v / v / v)
  • MeOAc nPrOH: CHCl 3 : MeOH: 0.25% KCl (20-30: 20-30: 20-30: 5-15: 5-10, v / v / v / / v), Hexane: Ether: AcOH (60-80: 20-40: 0.5-1.5, v / v / v), Petroleum ether: Ether: AcOH (60-80: 20-40) : 0.5 to 1.5, v / v / v), preferably CHCl 3 : MeOH: 0.2% CaCl 2 (60: 40: 9, v / v / v), MeOAc: nPrOH: CHCl 3 : MeOH: 0.25% KCl (20-30: 20-30: 20
  • step (c) is a step of detecting one or more lipids separated on TLC.
  • the means for detecting one or more lipids separated on TLC is not particularly limited as long as the lipid can be detected.
  • UV, Rf value (comparison with standard), detection reagent, immunostaining, binding to lectin Tests and mass spectrometry can be used.
  • the detection reagent is not particularly limited as long as it can detect lipids.
  • a stimulin reagent, a molybdenum reagent, an orcinol reagent, a resorcinol reagent, a ninhydrin reagent, and the like can be used.
  • the method for identifying a change in the lipid pattern of the present invention comprises the following steps following the steps (a) to (c): (D) transferring one or more separated lipids to a membrane; and (e) attaching the membrane to which one or more lipids have been transferred to an analysis plate, and subjecting the analysis plate to mass spectrometry. Including that.
  • the membrane is not particularly limited as long as it can transfer one or more separated lipids.
  • a PVDF membrane can be used.
  • mass spectrometry is not particularly limited as long as the molecular weight of one or more separated lipids can be measured.
  • mass spectrometry is not particularly limited as long as the molecular weight of one or more separated lipids can be measured.
  • a MALDI method and a time-of-flight mass spectrometer can be used.
  • the method for identifying a change in lipid pattern of the present invention further comprises the following steps: (F) comparing a predetermined lipid pattern standard with one or more lipid patterns in a trace biological sample.
  • the predetermined lipid pattern standard means one or more corresponding lipid patterns of a living body having no cause for changing the lipid pattern.
  • the present invention also relates to a method for preparing a lipid-containing liquid for analysis by TLC.
  • the method for preparing the lipid-containing liquid of the present invention comprises the following steps: (X) adding a trace amount of water and / or an organic solvent to a trace amount biological sample; Further, if necessary, it may include alkali decomposition by adding a trace amount of an inorganic base.
  • One embodiment of the present invention is a kit for identifying changes in lipid patterns.
  • the kit of the present invention includes, for example, an organic solvent, TLC, a developing solution, and a predetermined lipid pattern standard.
  • the kit of the present invention can further include a device that can collect a small amount of biological sample by an individual or a group, for example, a device for self-collecting blood.
  • mice cerebellar and cerebellar gangliosides ⁇ Analysis of mouse cerebellar and cerebellar gangliosides> Mouse cerebrum or cerebellum 50 mg was weighed and cut finely with surgical scissors on aluminum foil placed on ice. The treated sample was placed in a glass test tube, an organic solvent (1 ml of CHCl 3 : MeOH (1: 1, v / v) was added and shaken, and stored overnight at 4 ° C. to prepare a lipid-containing solution. Using a 10 ⁇ l syringe, 5 ⁇ l of each lipid-containing solution (sample) was applied to a band of about 4 mm at a position 1.5 cm from the lower end of an HPTLC plate (Merck, 10 cm ⁇ 10 cm).
  • the ganglioside preparation was purchased from Sigma and used.
  • the HPTLC plate was developed from the lower end to A (see FIG. 1).
  • a second developing solution MeOAc: PrOH: CHCl 3 : MeOH: 0.25% KCl (25: 25: 25: 10: 9, v / v / v / v / v / v)
  • MeOAc PrOH: CHCl 3 : MeOH: 0.25% KCl (25: 25: 25: 10: 9, v / v / v / v / / v v)
  • the ganglioside preparation was purchased from Sigma and used.
  • the plate was developed once from the lower end of the HPTLC plate to A (FIG. 2). reference).
  • the second developing solution MeOAc: nPrOH: CHCl 3 : MeOH: 0.25% KCl (25: 25: 25: 10: 9, v / v / v / v) from the lower end of the HPTLC plate Development was performed once up to B (see FIG. 2).
  • the primulin reagent was sprayed and detected at UV 315 nm.
  • ⁇ Separation analysis of neutral lipids in rat serum 10 ⁇ l of rat serum derived from 9 rats was diluted 5-fold with water. Using a 10 ⁇ l Eppendorf micropipette tip, 2 ⁇ l of each lipid-containing solution (sample) was applied to a band of about 4 mm at a position 1.5 cm from the lower end of an HPTLC plate (Merck, 10 cm ⁇ 10 cm). The neutral lipid preparation was purchased from Sigma and used. Development was performed for 15 to 20 minutes using a developing solution (Hexane: Ether: AcOH (70: 30: 1, v / v / v) (see FIG. 3). After removing the developing solvent with a drier, the primulin reagent was sprayed and detected at UV 315 nm.
  • ⁇ Separation analysis of neutral lipid and complex fat in rat serum 10 ⁇ l of rat serum derived from 9 rats was diluted 5-fold with water. Using a 10 ⁇ l Eppendorf micropipette tip, 2 ⁇ l of each lipid-containing solution (sample) was applied to a band of about 4 mm at a position 1.5 cm from the lower end of an HPTLC plate (Merck, 10 cm ⁇ 10 cm). Neutral lipid and complex fat preparations were purchased from Sigma and used.
  • Mouse cerebrum or cerebellum 50 mg was weighed and cut finely with surgical scissors on aluminum foil placed on ice.
  • a mouse cerebrum or cerebellum sample was placed in a glass test tube, an organic solvent (1 ml of CHCl 3 : MeOH (1: 1, v / v) was added, and stored at 4 ° C. overnight to prepare a lipid-containing solution.
  • 20 ⁇ l of the lipid-containing solution was placed in a 10 ml glass tube, 2 ⁇ l of 0.5N NaOH (MeOH solution) was added, and the mixture was allowed to stand at room temperature for about 5 minutes.
  • Separation analysis using HPTLC was performed in the same manner as in Example 1 using a lipid-containing liquid, an alkali-treated lipid-containing liquid, and a ganglioside preparation.
  • ⁇ Separation analysis of plasmalogens in hippocampal white matter of Alzheimer's and Parkinson's disease patients and control patients 100 mg of hippocampal white matter from patients with Alzheimer's disease and Parkinson's disease from which informed consent was obtained was weighed and cut finely with surgical scissors on aluminum foil placed on ice. The treated sample was placed in a glass test tube, an organic solvent (2 ml of CHCl 3 : MeOH (1: 1, v / v) was added, and stored at 4 ° C. overnight to prepare a lipid-containing solution.
  • mass spectrometer MALDI-TOF MS: AXIMA-QIT, Shimadzu, Japan
  • mass analysis of lipid molecules contained in each band was performed, and m / z: 508.3 was integrated.
  • ⁇ Separation analysis of gangliosides in neuroblastoma cells > 300 ⁇ l of organic solvent (CHCl 3 : MeOH (1: 2, v / v) 300 ⁇ l) was added to neuroblastoma tissue (wet weight 30 mg) cultured under normal culture conditions, shaken and stored overnight at 4 ° C. A containing liquid was prepared. A 20 ⁇ l portion of the lipid-containing solution was placed in a 10 ml glass tube, 2 ⁇ l of 0.5N NaOH (MeOH solution) was added, and the mixture was allowed to stand at room temperature for 10 minutes. As a control, 50 mg of mouse cerebrum was weighed and cut finely with surgical scissors on an aluminum foil placed on ice.
  • organic solvent CHCl 3 : MeOH (1: 2, v / v) 300 ⁇ l
  • the treated sample was placed in a glass test tube, an organic solvent (1 ml of CHCl 3 : MeOH (1: 1, v / v) was added and shaken, and stored at 4 ° C. overnight to prepare a lipid-containing solution.
  • an organic solvent (1 ml of CHCl 3 : MeOH (1: 1, v / v) was added and shaken, and stored at 4 ° C. overnight to prepare a lipid-containing solution.
  • 5 ⁇ l of each lipid-containing solution was applied to a band of about 4 mm at a position 1.5 cm from the lower end of an HPTLC plate (Merck, 10 cm ⁇ 10 cm).
  • a developing solution CHCl 3 : MeOH: 0.2% CaCl 2 (60: 40: 9, v / v / v)
  • the plate was developed once from the lower end of the HPTLC plate to A.
  • lipid transfer and mass spectrometry were performed.
  • band a was identified as GD3 and band b was identified as GD2.
  • These two gangliosides were gangliosides characteristic of neuroblastoma tissue.
  • the present invention provides a method for identifying changes in lipid patterns in which (a) a microbiological sample is adsorbed directly to a TLC plate, (b) one or more lipids in the microbiological sample are separated by TLC, and (c ) Complex processes traditionally required for analysis of lipids in biological samples, including extraction, separation, purification and concentration of lipids from biological samples by detecting one or more lipids separated on TLC Therefore, the present invention has industrial applicability.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

The present invention pertains to a method for identifying a change in lipid pattern, the method comprising: (a) causing a trace biological sample to directly adsorb onto a TLC plate; (b) separating at least one lipid in a trace biological sample by TLC; and (c) detecting at least one lipid separated on the TLC.

Description

簡便な微量生体試料の脂質解析法Simple lipid analysis method for trace biological samples
 本発明は、脂質パターンの変化を同定する方法であって、(a)微量生体試料をTLCプレートに直接吸着させること、(b)微量生体試料中の1つ以上の脂質をTLCにより分離すること、及び(c)TLC上に分離された1つ以上の脂質を検出することを含む方法に関するものである。 The present invention is a method for identifying changes in lipid patterns, wherein (a) a trace biological sample is directly adsorbed on a TLC plate, and (b) one or more lipids in the trace biological sample are separated by TLC. And (c) a method comprising detecting one or more lipids separated on TLC.
 シグナル伝達系及びレセプター介在のトランス活性化の研究によって、細胞膜における脂質が細胞の増殖、接着及び分化を含む細胞運動を媒介又は刺激することに広く関与し、そして脂質の変化が疾患の発症と進行に深く関与していることが明らかにされてきた。また、界面活性剤不溶分画として得られた細胞膜の微小領域である“脂質ラフト”は、ごく近年の生物学研究のトピックである。 Through signal transduction and receptor-mediated transactivation studies, lipids in cell membranes are widely involved in mediating or stimulating cell motility, including cell proliferation, adhesion and differentiation, and changes in lipids are the onset and progression of disease Has been shown to be deeply involved in In addition, “lipid rafts”, which are microregions of cell membranes obtained as surfactant-insoluble fractions, are a topic of recent biological research.
 コレステロ―ル及びスフィンゴ脂質(ガングリオシド等を含む)は、主な脂質成分であり、そして、脂質ラフトはアゴニスト-レセプター相互作用及び続いてのトランス-シグナリングに重要な役割を果たす。しかしながら、脂質の機能、構造研究には、脂質の抽出、分離、精製、濃縮を含む複雑な過程を含むため、従来は熟練の技術が必要であった。 Cholesterol and sphingolipids (including gangliosides etc.) are the main lipid components, and lipid rafts play an important role in agonist-receptor interactions and subsequent trans-signaling. However, studies on the function and structure of lipids involved complicated processes including lipid extraction, separation, purification, and concentration, and so far, skilled techniques were required.
 特許文献1には、スフィンゴシンを培養細胞から抽出する方法として、細胞(1×10~1×10)を採集し、リン酸緩衝化生理食塩水(PBS)で洗浄し、0.1mlのPBS中に再懸濁し、3mlのクロロホルム/メタノール(1/2、v/v)を加え、超音波処理して、更にクロロホルム及び1M NaClを各々2ml加えることにより分離し、上層を捨て、そしてメタノール中の0.2N NaOH3mlをクロロホルム下層に加え、そして、クロロホルム及び1M NaCl各々3mlを加えることにより分離し、クロロホルム下層をクロロホルム/メタノール/水(3/48/47)で3回洗浄して、クロロホルム層からの試料を乾固させたことが記載されている。更に乾固試料を10mM[H]無水酢酸溶液で処理して、スフィンゴシンをトリチウム化して、TLCを用いて分析することが記載されている。 In Patent Document 1, as a method for extracting sphingosine from cultured cells, cells (1 × 10 6 to 1 × 10 7 ) are collected, washed with phosphate buffered saline (PBS), 0.1 ml Resuspend in PBS, add 3 ml chloroform / methanol (1/2, v / v), sonicate, separate by adding 2 ml each of chloroform and 1M NaCl, discard upper layer and methanol 0.2N NaOH in the solution was added to the chloroform lower layer and separated by adding 3 ml each of chloroform and 1M NaCl, and the chloroform lower layer was washed three times with chloroform / methanol / water (3/48/47). It is described that the sample from the layer was dried. Further, it is described that a dried sample is treated with a 10 mM [ 3 H] acetic anhydride solution to tritize sphingosine and analyzed using TLC.
 特許文献2には、マウス腎臓からの総脂質の抽出方法として、マウス腎臓組織湿重量10mgに対して、クロロホルム:メタノール=2:1溶液を約1ml添加し、ホモジナイズ、遠心分離して上清を得て、更に注射用水を加えて混和した後に、再度、遠心分離して下層(有機層)を回収し遠心濃縮機で乾固したことが記載されている。更に乾固した試料をスフィンゴ脂質セラミドデアシラーゼ(SCDase)で処理した後、酵素を失活させてサンプルを得て、高速液体クロマトグラフタンデム質量分析法(LC/MS/MS法)によって、サンプル中のスフィンゴ糖脂質をリゾ体として分析することが記載されている。 In Patent Document 2, as a method for extracting total lipid from mouse kidney, about 1 ml of chloroform: methanol = 2: 1 solution is added to 10 mg of mouse kidney tissue wet weight, and the supernatant is obtained by homogenization and centrifugation. In addition, after adding water for injection and mixing, the mixture was centrifuged again to recover the lower layer (organic layer) and dried with a centrifugal concentrator. Further, after the dried sample was treated with sphingolipid ceramide deacylase (SCDase), the enzyme was deactivated to obtain a sample, which was analyzed by high performance liquid chromatography tandem mass spectrometry (LC / MS / MS method). Are analyzed as lyso forms.
 特許文献3には、毛髪サンプルに各チューブに1000μlの抽出溶液(メタノール、クロロホルム、水(2:1:0.6)を加え、低温破砕ミルで毛髪をすり潰し、遠心分離し、上清(500μl)を乾固したことが記載されている。更に乾固した試料を100μlのn-ブタノール及びメタノール(v/v、1:1)中に再懸濁し、遠心分離し、上清を得て、上清中のリン脂質を液体クロマトグラフィー質量分析(LC/MS)によって分析することが記載されている。 In Patent Document 3, 1000 μl of an extraction solution (methanol, chloroform, water (2: 1: 0.6) is added to each tube to a hair sample, the hair is ground in a low temperature crushing mill, centrifuged, and the supernatant (500 μl The dried sample was resuspended in 100 μl n-butanol and methanol (v / v, 1: 1) and centrifuged to obtain a supernatant, Analysis of phospholipids in the supernatant by liquid chromatography mass spectrometry (LC / MS) is described.
 特許文献4には、リン脂質をTLCで分離した後、TLCプレートを転写したPVDF膜を質量分析装置により測定する方法が記載されている。しかしながら、特許文献4には、ヒト(正常加齢者)の脳からリン脂質を抽出する方法は一切記載されていない。 Patent Document 4 describes a method of measuring a PVDF membrane on which a TLC plate is transferred after separating phospholipids by TLC using a mass spectrometer. However, Patent Document 4 does not describe any method for extracting phospholipids from human (normally aging) brains.
 非特許文献1には、生体試料から脂質を有機溶媒で抽出後、残渣をろ過した後、更に除タンパクなどに必要な多段階操作を経て得られた脂質抽出液を分析に供することは記載されているが、微量生体試料をTLCプレートに直接吸着させることは一切記載されていない。 Non-Patent Document 1 describes that after extracting a lipid from a biological sample with an organic solvent, filtering the residue, and then subjecting the lipid extract obtained through a multistage operation necessary for deproteinization to analysis. However, there is no description of directly adsorbing a small amount of biological sample to a TLC plate.
特表平11-513110号公報Japanese National Patent Publication No. 11-513110 国際公開公報WO2012/081508International Publication No. WO2012 / 081508 特表2012-529630号公報Special table 2012-529630 gazette 特開2010-271157号公報JP 2010-271157 A
 本発明が解決しようとする課題は、脂質の抽出、分離、精製、濃縮を含む複雑な過程を経ないで、脂質パターンの変化を同定するための簡便な方法を提供することである。 The problem to be solved by the present invention is to provide a simple method for identifying changes in lipid patterns without going through complicated processes including extraction, separation, purification and concentration of lipids.
 本発明者等は、鋭意研究を重ねた結果、脂質パターンの変化を同定する方法において、(a)微量生体試料をTLCプレートに直接吸着させ、(b)微量生体試料中の1つ以上の脂質をTLCにより分離し、そして(c)TLC上に分離された1つ以上の脂質を検出することによって、生体試料からの脂質の抽出、分離、精製、濃縮を含む、生体試料中の脂質の分析に従来必要であった複雑な過程を省くことを可能とさせ、本発明を完成するに至った。 As a result of extensive research, the present inventors have, in a method for identifying changes in lipid patterns, (a) directly adsorbing a trace biological sample to a TLC plate, and (b) one or more lipids in the trace biological sample. Analysis of lipids in biological samples, including extraction, separation, purification, concentration of lipids from biological samples by detecting one or more lipids separated on TLC and (c) detecting the one or more lipids separated on TLC Thus, it is possible to omit the complicated process that has been necessary in the past, and the present invention has been completed.
 すなわち、本発明は、以下に関する。
(1)脂質パターンの変化を同定する方法であって、以下の工程:
(a)微量生体試料をTLCプレートに直接吸着させること、
(b)微量生体試料中の1つ以上の脂質をTLCにより分離すること、及び
(c)TLC上に分離された1つ以上の脂質を検出すること
 を含む、方法。
(2)微量生体試料が、微量の体液、組織、又は細胞に、微量の水及び/又は有機溶媒を加えて、静置して得られる上清である、前記(1)記載の方法。
(3)微量生体試料が、微量の体液、組織、又は細胞に、微量の水及び/又は有機溶媒を加え、更に微量の無機塩基を加えて、静置して得られる上清である、前記(1)記載の方法。
(4)微量生体試料が、体液0.1~2000μl、組織0.1~200mg又は細胞1.0×10~1.0×10個である、前記(1)~(3)のいずれか一項に記載の方法。
(5)微量生体試料が、微量の体液、組織、又は細胞が、体液0.5~400μl、細胞5×10~5.0×10個、又は組織5.0~150mgである、前記(1)~(4)のいずれか一項に記載の方法。
(6)前記(c)が、以下の工程:
(d)TLC上に分離された1つ以上の脂質をメンブレンに転写すること、及び
(e)1つ以上の脂質が転写されたメンブレンを分析用プレートに貼着し、該分析用プレートを質量分析に供すること
 を含む、前記(1)~(5)のいずれか一項に記載の方法。
(7)脂質が、中性脂質、スフィンゴリン脂質、グリセロリン脂質、スフィンゴ糖脂質、グリセロ糖脂質、及びスルホ脂質からなる群より選択される1つ以上の脂質である、前記(1)~(6)のいずれか一項記載の方法。
(8)脂質が、中性脂肪、プラスマロジェン、リゾホスファチジルコリン、リゾホスファチジン酸、ガングリオシド、及びガラクトシルセラミドからなる群より選択される1つ以上の脂質である、前記(1)~(6)のいずれか一項記載の方法。
(9)微量生体試料が、大脳、小脳、海馬、全血、血漿、血清、又は細胞である、前記(1)~(8)のいずれか一項に記載の方法。
(10)更に以下の工程:
(f)予め決定された脂質パターンの標準と微量生体試料中の1つ以上の脂質パターンを比較することを含む、前記(1)~(9)のいずれか一項記載の方法。
That is, the present invention relates to the following.
(1) A method for identifying a change in lipid pattern, comprising the following steps:
(A) directly adsorbing a small amount of biological sample to a TLC plate;
(B) separating one or more lipids in a trace biological sample by TLC, and (c) detecting one or more lipids separated on TLC.
(2) The method according to (1) above, wherein the trace biological sample is a supernatant obtained by adding a trace amount of water and / or an organic solvent to a trace amount of body fluid, tissue, or cell and allowing to stand.
(3) The trace biological sample is a supernatant obtained by adding a trace amount of water and / or an organic solvent to a trace amount of body fluid, tissue, or cell, and further adding a trace amount of an inorganic base, and allowing to stand. (1) The method as described.
(4) Any of (1) to (3) above, wherein the trace biological sample is 0.1 to 2000 μl of body fluid, 0.1 to 200 mg of tissue, or 1.0 × 10 5 to 1.0 × 10 8 cells. The method according to claim 1.
(5) The trace biological sample is a trace amount of bodily fluid, tissue, or cell, 0.5 to 400 μl of bodily fluid, 5 × 10 5 to 5.0 × 10 7 cells, or 5.0 to 150 mg of tissue, The method according to any one of (1) to (4).
(6) (c) is the following process:
(D) transferring one or more lipids separated on the TLC to a membrane; and (e) attaching the membrane to which one or more lipids have been transferred to an analysis plate, The method according to any one of (1) to (5), comprising subjecting to analysis.
(7) The lipids are one or more lipids selected from the group consisting of neutral lipids, sphingophospholipids, glycerophospholipids, glycosphingolipids, glyceroglycolipids, and sulfolipids (1) to (6) ).
(8) The lipid according to (1) to (6), wherein the lipid is one or more lipids selected from the group consisting of neutral fat, plasmalogen, lysophosphatidylcholine, lysophosphatidic acid, ganglioside, and galactosylceramide. The method according to any one of the above.
(9) The method according to any one of (1) to (8), wherein the trace biological sample is cerebrum, cerebellum, hippocampus, whole blood, plasma, serum, or cells.
(10) Further, the following steps:
(F) The method according to any one of (1) to (9), comprising comparing a predetermined lipid pattern standard with one or more lipid patterns in a trace biological sample.
 すなわち、本発明は、以下にも関する。
(11)脂質パターンを変化させる症状を同定する方法であって、以下の工程:
(a)血液に水を加えて得られる上清をTLCプレートに直接吸着させること、
(b)上清中に含まれる1つ以上の脂質をTLCにより分離すること、及び
(c)分離された1つ以上の脂質を検出すること
 を含む、方法。
(12)脂質パターンを変化させる症状を同定する方法であって、以下の工程:
(a)脳組織に有機溶媒を加えて得られる上清をTLCプレートに直接吸着させること、
(b)上清中に含まれる1つ以上の脂質をTLCにより分離すること、及び
(c)分離された1つ以上の脂質を検出すること
 を含む、方法。
(13)アルツハイマー病を同定する方法であって、以下の工程:
(a)被験者又は被検者より摘出された海馬白質に有機溶媒を加え、更に無機塩基を加えて得られる上清をTLCプレートに直接吸着させること、
(b)上清中に含まれる1つ以上の脂質をTLCにより分離すること、及び
(d)TLC上に分離された1つ以上の脂質をメンブレンに転写すること、及び
(e)1つ以上の脂質が転写されたメンブレンを分析用プレートに貼着し、該分析用プレートを質量分析に供して、プラスマロジェンを検出すること
(f)予め決定された脂質パターンの標準と被験者又は被検者の試料中の1つ以上のプラスマロジェン量を比較すること
 を含む、方法。
(14)神経芽腫を同定する方法であって、以下の工程:
(a)被験者又は被検者より摘出された細胞に有機溶媒を加え、更に無機塩基を加えて得られる上清をTLCプレートに直接吸着させること、
(b)上清中に含まれる1つ以上の脂質をTLCにより分離すること、及び
(d)TLC上に分離された1つ以上の脂質をメンブレンに転写すること、及び
(e)1つ以上の脂質が転写されたメンブレンを分析用プレートに貼着し、該分析用プレートを質量分析に供して、GD2及びGD3を検出すること
 を含む、方法。
That is, the present invention also relates to the following.
(11) A method for identifying a symptom that changes a lipid pattern, comprising the following steps:
(A) directly adsorbing a supernatant obtained by adding water to blood to a TLC plate;
(B) separating one or more lipids contained in the supernatant by TLC, and (c) detecting the separated one or more lipids.
(12) A method for identifying a symptom that changes a lipid pattern, comprising the following steps:
(A) directly adsorbing a supernatant obtained by adding an organic solvent to brain tissue to a TLC plate;
(B) separating one or more lipids contained in the supernatant by TLC, and (c) detecting the separated one or more lipids.
(13) A method for identifying Alzheimer's disease, comprising the following steps:
(A) directly adsorbing the supernatant obtained by adding an organic solvent to the hippocampal white matter extracted from the subject or the subject and further adding an inorganic base to the TLC plate;
(B) separating one or more lipids contained in the supernatant by TLC; (d) transferring one or more lipids separated on the TLC to a membrane; and (e) one or more. A membrane to which the lipids of 1 are transferred is attached to an analysis plate, and the analysis plate is subjected to mass spectrometry to detect plasmalogen. (F) A predetermined lipid pattern standard and a subject or test subject Comparing the amount of one or more plasmalogens in a person's sample.
(14) A method for identifying neuroblastoma, comprising the following steps:
(A) directly adsorbing a supernatant obtained by adding an organic solvent to cells extracted from a subject or a subject and further adding an inorganic base to a TLC plate;
(B) separating one or more lipids contained in the supernatant by TLC; (d) transferring one or more lipids separated on the TLC to a membrane; and (e) one or more. A method comprising: adhering a membrane to which a lipid is transferred to an analysis plate, and subjecting the analysis plate to mass spectrometry to detect GD2 and GD3.
 本発明によれば、生体試料中の脂質パターンを目視的に比較観察することができるため、脂質パターンの変化を同定する簡便な方法を提供することができる。 According to the present invention, since a lipid pattern in a biological sample can be visually compared and observed, a simple method for identifying a change in a lipid pattern can be provided.
図1は、マウス大脳及び小脳のガングリオシドをTLCで分離分析した結果を示す。レーン1、3、5、及び7は、ラット大脳由来サンプルである。レーン2、4、6、及び8は、ラット小脳由来サンプルである。レーン9は、ガングリオシドの標品である。GD1aはガングリオシドGD1aを示し、GD1bはガングリオシドGD1bを示し、GD3はガングリオシドGD3を示し、GM1はガングリオシドGM1を示し、GM2はガングリオシドGM2を示し、GQ1bはガングリオシドGQ1bを示し、GT1bはガングリオシドGT1bを示し、そしてSMはスフィンゴミエリンを示す。FIG. 1 shows the results of separating and analyzing gangliosides of mouse cerebrum and cerebellum by TLC. Lanes 1, 3, 5, and 7 are samples derived from rat cerebrum. Lanes 2, 4, 6, and 8 are samples from rat cerebellum. Lane 9 is a ganglioside preparation. GD1a represents ganglioside GD1a, GD1b represents ganglioside GD1b, GD3 represents ganglioside GD3, GM1 represents ganglioside GM1, GM2 represents ganglioside GM2, GQ1b represents ganglioside GQ1b, GT1G represents glioside G1 SM indicates sphingomyelin. 図2は、培養細胞のガングリオシドをTLCで分離分析した結果を示す。レーン1は、ガングリオシドの標品である。レーン2、3、4、5、6は、各々、HepG2(ヒト肝癌由来細胞株)、HuH(ヒト肝癌由来細胞株)、HCT(ヒト大腸癌由来細胞株)、HT-28(ヒト繊維肉腫由来細胞株)、DLD-1細胞(ヒト大腸癌由来細胞株)、Colon26(マウス大腸癌由来細胞株)由来のサンプルである。レーン8は、ラット大脳由来サンプルである。GD1aはガングリオシドGD1aを示し、GD1bはガングリオシドGD1bを示し、GM1はガングリオシドGM1を示し、そしてGT1bはガングリオシドGT1bを示す。FIG. 2 shows the result of separating and analyzing gangliosides of cultured cells by TLC. Lane 1 is a ganglioside preparation. Lanes 2, 3, 4, 5, and 6 are respectively HepG2 (human liver cancer-derived cell line), HuH (human liver cancer-derived cell line), HCT (human colon cancer-derived cell line), and HT-28 (human fibrosarcoma-derived). Cell line), DLD-1 cells (human colorectal cancer-derived cell line), and Colon 26 (mouse colorectal cancer-derived cell line). Lane 8 is a rat cerebrum-derived sample. GD1a represents ganglioside GD1a, GD1b represents ganglioside GD1b, GM1 represents ganglioside GM1, and GT1b represents ganglioside GT1b. 図3は、ラット血清の中性脂質をTLCで分離分析した結果を示す。レーン1~9は、ラット各個体の血清サンプルである。レーン10は、中性脂質の標品である。CEはコレステロールエステルを示し、TGはトリグリセリドを示し、FAは脂肪酸を示し、Cはコレステロールを示し、DGはジクリセリドを示し、PEはホスファチジルエタノールアミンを示し、PCはホスファチジルコリンを示し、そしてSMはスフィンゴミエリンを示す。FIG. 3 shows the results of separation analysis of neutral lipids of rat serum by TLC. Lanes 1-9 are serum samples of each rat. Lane 10 is a neutral lipid preparation. CE indicates cholesterol ester, TG indicates triglyceride, FA indicates fatty acid, C indicates cholesterol, DG indicates diglyceride, PE indicates phosphatidylethanolamine, PC indicates phosphatidylcholine, and SM indicates sphingomyelin Indicates. 図4は、ラット血清の中性脂質とリン脂質をTLCで分離分析した結果を示す。レーン1~9は、ラット各個体の血清サンプルである。レーン10は、中性脂質とリン脂質とリン脂質の標品である。CEはコレステロールエステルを示し、TGはトリグリセリドを示し、FAは脂肪酸を示し、Cはコレステロールを示し、DGはジクリセリドを示し、PEはホスファチジルエタノールアミンを示し、PCはホスファチジルコリンを示し、そしてSMはスフィンゴミエリンを示す。FIG. 4 shows the results of separation analysis of neutral lipids and phospholipids of rat serum by TLC. Lanes 1-9 are serum samples of each rat. Lane 10 is a sample of neutral lipid, phospholipid and phospholipid. CE indicates cholesterol ester, TG indicates triglyceride, FA indicates fatty acid, C indicates cholesterol, DG indicates diglyceride, PE indicates phosphatidylethanolamine, PC indicates phosphatidylcholine, and SM indicates sphingomyelin Indicates. 図5は、マウス大脳及び小脳のガングリオシド(アルカリ分解処理)をTLCで分離分析した結果を示す。レーン1及び3は、各々、マウス小脳及び大脳由来のサンプル(無処理)である。レーン2及4は、各々、マウス小脳及び大脳由来のサンプル(アルカリ分解処理)である。レーン5は、ガングリオシドの標品である。GD1aはガングリオシドGD1aを示し、GD1bはガングリオシドGD1bを示し、そしてGT1bはガングリオシドGT1bを示す。FIG. 5 shows the results of separating and analyzing gangliosides (alkaline degradation treatment) of mouse cerebrum and cerebellum by TLC. Lanes 1 and 3 are samples (no treatment) derived from mouse cerebellum and cerebrum, respectively. Lanes 2 and 4 are samples (alkali decomposition treatment) derived from mouse cerebellum and cerebrum, respectively. Lane 5 is a ganglioside preparation. GD1a represents ganglioside GD1a, GD1b represents ganglioside GD1b, and GT1b represents ganglioside GT1b. 図6は、アルツハイマー病及びパーキンソン病患者とコントロール患者の海馬灰白質の脂質をTLCで分離分析した結果を示す。レーン1~4は、各々、アルツハイマー病患者の海馬灰白質のサンプル(無処理)である。レーン5及び6は、各々、パーキンソン病患者の海馬灰白質のサンプル(アルカリ分解処理)である。レーン7及び8は、各々、コントロール患者の海馬灰白質のサンプル(アルカリ分解処理)であり、レーン9は、コントロール患者の海馬灰白質のサンプル(無処理)である。FAは脂肪酸を示し、GalCerはガラクトシルセラミドを示し、Sulfatideはスルファチド(セレブロシド硫酸エステル)を示し、SMはスフィンゴミエリンを示し、そしてGangliosidesはガングリオシド類を示す。FIG. 6 shows the results of separating and analyzing the lipids of hippocampal gray matter of Alzheimer's disease and Parkinson's disease patients and control patients by TLC. Lanes 1 to 4 are samples (no treatment) of hippocampal gray matter of Alzheimer's disease patients, respectively. Lanes 5 and 6 are samples of hippocampal gray matter (alkali decomposition treatment) of Parkinson's disease patients, respectively. Lanes 7 and 8 are samples of hippocampal gray matter of control patients (alkaline degradation treatment), and lane 9 is a sample of hippocampal gray matter of control patients (no treatment). FA indicates fatty acid, GalCer indicates galactosylceramide, Sulfatide indicates sulfatide (cerebrosid sulfate), SM indicates sphingomyelin, and Gangliosides indicates gangliosides. 図7は、アルツハイマー病及びパーキンソン病患者とコントロール患者の海馬白質の脂質をTLCで分離分析した結果を示す。レーン1~4は、各々、アルツハイマー病患者の海馬白質のサンプル(無処理)である。レーン5及び6は、各々、パーキンソン病患者の海馬白質のサンプル(アルカリ分解処理)である。レーン7及び8は、各々、コントロール患者の海馬白質のサンプル(アルカリ分解処理)であり、レーン9は、コントロール患者の海馬白質のサンプル(無処理)である。FAは脂肪酸を示し、GalCerはガラクトシルセラミドを示し、PEはホスファチジルエタノールアミンを示し、PCはホスファチジルコリンを示し、Sulfatideはスルファチド(セレブロシド硫酸エステル)を示し、LysoPEはリゾエタノールアミンプラスマロジェンを示し、そしてSMはスフィンゴミエリンを示す。FIG. 7 shows the results of separation analysis of hippocampal white matter lipids of Alzheimer's disease and Parkinson's disease patients and control patients by TLC. Lanes 1 to 4 are samples of hippocampal white matter (untreated) from patients with Alzheimer's disease. Lanes 5 and 6 are samples of hippocampal white matter (alkali decomposition treatment) of Parkinson's disease patients, respectively. Lanes 7 and 8 are samples of hippocampal white matter from the control patients (alkaline degradation treatment), and lane 9 is a sample of hippocampal white matter from the control patients (no treatment). FA indicates fatty acid, GalCer indicates galactosylceramide, PE indicates phosphatidylethanolamine, PC indicates phosphatidylcholine, Sulfatide indicates sulfatide (cerebrosid sulfate), LysoPE indicates lysoethanolamine plasmarogen, and SM indicates sphingomyelin. 図8は、アルツハイマー病及びパーキンソン病患者とコントロール患者の海馬白質のプラスマロジェンを定量分析した結果を示す。FIG. 8 shows the results of quantitative analysis of plasmalogens in hippocampal white matter of Alzheimer's disease and Parkinson's disease patients and control patients. 図9は、神経芽腫細胞のガングリオシドを分離分析した結果である。バンドaはGD3を示し、そしてバンドbはGD2を示す。FIG. 9 shows the results of separating and analyzing gangliosides of neuroblastoma cells. Band a represents GD3 and band b represents GD2.
 本発明は、脂質パターンの変化を同定する方法であって、以下の工程:
(a)微量生体試料をTLCプレートに直接吸着させること、
(b)微量生体試料中の1つ以上の脂質をTLCにより分離すること、及び
(c)TLC上に分離された1つ以上の脂質を検出すること
 を含む、方法に関する。
The present invention is a method for identifying changes in lipid patterns comprising the following steps:
(A) directly adsorbing a small amount of biological sample to a TLC plate;
It relates to a method comprising (b) separating one or more lipids in a trace biological sample by TLC, and (c) detecting one or more lipids separated on TLC.
<分析対象の脂質>
 本発明において、脂質は、通常の方法で検出する脂質であれば特に制限されない。
<Fat for analysis>
In the present invention, the lipid is not particularly limited as long as it is a lipid detected by a usual method.
 本発明において、脂質は、例えば、単純脂質、複合脂質、誘導脂質であり、好ましくは中性脂質、リン脂質(スフィンゴリン脂質、グリセロリン脂質)、糖脂質(スフィンゴ糖脂質、グリセロ糖脂質)、及びスルホ脂質からなる群より選択される1つ以上の脂質であり、更に好ましくはグリセロリン脂質が、プラスマロジェン、リゾホスファチジルコリン、及びリゾホスファチジン酸からなる群より選択される1つ以上の脂質であるか、又はスフィンゴ糖脂質が、ガングリオシド(GD1a、GD1b、GD2、GD3、GM1、GM2、GQ1b、GT1b)、又はガラクトシルセラミドである。 In the present invention, the lipid is, for example, a simple lipid, a complex lipid, or a derived lipid, preferably a neutral lipid, a phospholipid (sphingophospholipid, glycerophospholipid), a glycolipid (sphingoglycolipid, glyceroglycolipid), and One or more lipids selected from the group consisting of sulfolipids, and more preferably, the glycerophospholipid is one or more lipids selected from the group consisting of plasmalogen, lysophosphatidylcholine, and lysophosphatidic acid Or the glycosphingolipid is ganglioside (GD1a, GD1b, GD2, GD3, GM1, GM2, GQ1b, GT1b) or galactosylceramide.
 本発明において、中性脂質は、例えば、コレステロールエステル、コレステロール、ステリルグルコシド、セラミド、スフィンゴシン、トリグリセリド、ジグリセリド、モノグリセリド、脂肪酸が挙げられ、好ましくはコレステロールエステル、コレステロール、セラミド、トリグリセリド、ジグリセリド、モノグリセリド、及び脂肪酸からなる群より選択される1つ以上の中性脂質である。 In the present invention, the neutral lipid includes, for example, cholesterol ester, cholesterol, steryl glucoside, ceramide, sphingosine, triglyceride, diglyceride, monoglyceride, fatty acid, preferably cholesterol ester, cholesterol, ceramide, triglyceride, diglyceride, monoglyceride, And one or more neutral lipids selected from the group consisting of fatty acids.
 本発明において、リン脂質は、スフィンゴリン脂質及びグリセロリン脂質を含み、例えば、ホスファチジルエタノールアミン、エタノールアミンプラスマローゲン、ホスファチジルコリン、コリンプラスマロジェン、ホスファチジルセリン、ホスファチジルイノシトール、カルディオリピン、ホスファチジン酸、リゾホスファチジルエタノールアミン、リゾホスファチジルコリン、リゾホスファチジルイノシトール、リゾホスファチジルセリン、リゾホスファチジン酸、スフィンゴミエリン、リゾスフィンゴミエリン(サイコシン)、リゾエタノールアミンプラスマロジェン、リゾコリンプラスマロジェン、ホスファチジルグリセロール、ホスファチジルグルコース、ホスファチジルエタノール、リゾビスホスファチジン酸が挙げられ、好ましくはホスファチジルエタノールアミン、エタノールアミンプラスマローゲン、ホスファチジルコリン、コリンプラスマロジェン、ホスファチジルセリン、ホスファチジルイノシトール、カルディオリピン、ホスファチジン酸、リゾホスファチジルエタノールアミン、リゾホスファチジルコリン、リゾホスファチジルイノシトール、リゾホスファチジルセリン、リゾホスファチジン酸、スフィンゴミエリン、リゾスフィンゴミエリン(サイコシン)、リゾエタノールアミンプラスマロジェン、リゾコリンプラスマロジェン、ホスファチジルグリセロール、ホスファチジルグルコースであり、更に好ましくはホスファチジルエタノールアミン、ホスファチジルコリン、ホスファチジルセリン、ホスファチジルイノシトール、カルディオリピン、ホスファチジン酸、リゾホスファチジルエタノールアミン、スフィンゴミエリン、リゾエタノールアミンプラスマロジェンであり、最も好ましくはホスファチジルエタノールアミン、ホスファチジルコリン、スフィンゴミエリン、リゾエタノールアミンプラスマロジェンである。 In the present invention, the phospholipid includes sphingophospholipid and glycerophospholipid, such as phosphatidylethanolamine, ethanolamine plasmalogen, phosphatidylcholine, choline plasmalogen, phosphatidylserine, phosphatidylinositol, cardiolipin, phosphatidic acid, lysophosphatidylethanol. Amine, lysophosphatidylcholine, lysophosphatidylinositol, lysophosphatidylserine, lysophosphatidic acid, sphingomyelin, lysosphingomyelin (psychosin), lysoethanolamine plasmarogen, lysocholine plasmalogen, phosphatidylglycerol, phosphatidylglucose, lyso Bisphosphatidic acid Phosphatidylethanolamine, ethanolamine plasmalogen, phosphatidylcholine, choline plasmalogen, phosphatidylserine, phosphatidylinositol, cardiolipin, phosphatidic acid, lysophosphatidylethanolamine, lysophosphatidylcholine, lysophosphatidylinositol, lysophosphatidylserine, lysophosphatidine, Sphingomyelin, lysosphingomyelin (psychosin), lysoethanolamine plasmalogen, lysocholine plasmalogen, phosphatidylglycerol, phosphatidylglucose, more preferably phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine, phosphatidylinositol, cardiolipin Phosphatidic acid, lyso phosphatidyl ethanolamine, sphingomyelin, and lyso ethanolamine plus Malo Zhen, most preferably phosphatidylethanolamine, phosphatidylcholine, sphingomyelin, a lyso ethanolamine plus Malo Gen.
 本発明において、糖脂質は、スフィンゴ糖脂質及びグリセロ糖脂質を含み、例えば、ガングリオシド、グルコシルセラミド、ガラクトシルセラミド、サルファタイド(セレブロシド硫酸エステル)、ラクトシルセラミド、グロボトリアオシルセラミド、グロボシド、パラグロボシド、ラクトテトラオシルセラミド、i型糖脂質、I型糖脂質、Le、Le、Le、Le、シアリルパラグロボシド、シアリルラクトテトラオシルセラミド、シアリルi型糖脂質、シアリルI型糖脂質、シアリルLe、シアリルLe、シアリルLe、シアリルLe、セミノリピド、O型糖脂質、A型糖脂質、B型糖脂質、硫酸化糖脂質が挙げられ、好ましくはガングリオシド、グルコシルセラミド、ガラクトシルセラミド、サルファタイド(セレブロシド硫酸エステル)、ラクトシルセラミド、グロボトリアオシルセラミド、グロボシド、パラグロボシド、ラクトテトラオシルセラミド、i型糖脂質、I型糖脂質、Le、Le、Le、Le、シアリルパラグロボシド、シアリルラクトテトラオシルセラミド、シアリルi型糖脂質、シアリルI型糖脂質、シアリルLe、シアリルLe、シアリルLe、シアリルLeであり、更に好ましくはガングリオシド、ガラクトシルセラミド、サルファタイド(セレブロシド硫酸エステル)である。 In the present invention, the glycolipid includes a sphingoglycolipid and a glyceroglycolipid. Lactotetraosylceramide, i-type glycolipid, I-type glycolipid, Le a , Le b , Le x , Le y , sialylparagloboside, sialyl lactotetraosylceramide, sialyl i-type glycolipid, sialyl I-type glycolipid Lipid, sialyl Le a , sialyl Le b , sialyl Le x , sialyl Le y , seminolipid, O-type glycolipid, A-type glycolipid, B-type glycolipid, sulfated glycolipid, preferably ganglioside, glucosylceramide, Galactosylceramide, sulfatai (Cerebroside sulfate), lactosylceramide, globotriaosylceramide, globoside, paragloboside, lactotetraosylceramide, i-type glycolipid, I-type glycolipid, Le a , Le b , Le x , Le y , sialyl Paragloboside, sialyl lactotetraosylceramide, sialyl i type glycolipid, sialyl type I glycolipid, sialyl Le a , sialyl Le b , sialyl Le x , sialyl Le y , more preferably ganglioside, galactosylceramide, sulfa Tide (cerebroside sulfate).
 本発明において、ガングリオシドは、例えば、GM2、GM3、GM4、GM1、GM1b、GD1a、GD1b、GD1α、GD3、GD2、GT1a、GT1b、GQ1b、O-アセチルGD3、GalNAc-GD1aが挙げられ、好ましくはGM2、GM1、GM1b、GD1a、GD1b、GD3、GD2、GT1b、GQ1bが挙げられ、更に好ましくはGM2、GM1、GM1b、GD1a、GD3、GT1b、GQ1bである。 In the present invention, examples of the ganglioside include GM2, GM3, GM4, GM1, GM1b, GD1a, GD1b, GD1α, GD3, GD2, GT1a, GT1b, GQ1b, O-acetylGD3, GalNAc-GD1a, and preferably GM2. , GM1, GM1b, GD1a, GD1b, GD3, GD2, GT1b, GQ1b, and more preferably GM2, GM1, GM1b, GD1a, GD3, GT1b, GQ1b.
<脂質パターン>
 本発明において、脂質パターンとは、1つ以上の脂質の種類、その量、Rf値、及び/又は質量、分子量等によって特定されるパターンである。
<Lipid pattern>
In the present invention, the lipid pattern is a pattern specified by one or more kinds of lipids, their amounts, Rf values, and / or masses, molecular weights, and the like.
<脂質パターンの変化>
 本発明において、脂質パターンの変化とは、例えば、性別、年齢、遺伝子、食習慣、生活習慣、運動習慣、住環境、職場環境、体調、病気、病歴、既往歴、家族歴などによって、生体の脂質の種類や量に差が生じることを意味する。
<Change in lipid pattern>
In the present invention, the change in lipid pattern means, for example, gender, age, gene, eating habits, lifestyle, exercise habits, living environment, work environment, physical condition, illness, medical history, medical history, family history, etc. It means that there is a difference in the type and amount of lipid.
 本発明において、脂質パターンの変化は、例えば、脂質パターンを変化させる症状、疾患であり、例えば、神経変性疾患(アルツハイマー病、パーキンソン病、筋萎縮性側索硬化症(ALS)、多発性硬化症(MS)、脂質蓄積症など)、癌(神経芽腫、肺がん、メラノーマ、肝がん、脳腫瘍、すい臓がん、骨髄腫瘍、リンパ腫、大腸がん、胃がん、乳がんなど)、自己免疫疾患(ギランバレー症候群、潰瘍性大腸炎など)を含む。 In the present invention, the change in the lipid pattern is, for example, a symptom or disease that changes the lipid pattern, such as a neurodegenerative disease (Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis (ALS), multiple sclerosis). (MS), lipid accumulation disease, etc., cancer (neuroblastoma, lung cancer, melanoma, liver cancer, brain tumor, pancreatic cancer, bone marrow tumor, lymphoma, colon cancer, stomach cancer, breast cancer, etc.), autoimmune disease (Guillan) Valley syndrome, ulcerative colitis, etc.).
<工程(a)>
 本発明において、工程(a)は、微量生体試料をTLCプレートに直接吸着させる工程である。
<Process (a)>
In the present invention, step (a) is a step of directly adsorbing a small amount of biological sample to the TLC plate.
<生体試料>
 本発明において、生体試料は、例えば、被験体又は被検体から採取された組織(例えば、脳(大脳、小脳、海馬(海馬灰白質、海馬白質))、心臓、肺、肝臓、胃、腸、腎臓、すい臓、乳房)、体液(例えば、血液(全血、血漿、血清)、脳髄液、尿、初乳、乳汁)、及び細胞を含み、好ましくは、大脳、小脳、海馬、全血、血漿、血清、細胞、更に好ましくは大脳、小脳、海馬灰白質、海馬白質、血清、細胞である。
<Biological sample>
In the present invention, the biological sample is, for example, a tissue (for example, brain (cerebrum, cerebellum, hippocampus (hippocampal gray matter, hippocampal white matter))), heart, lung, liver, stomach, intestine, collected from a subject or subject. Kidney, pancreas, breast), body fluid (eg blood (whole blood, plasma, serum), cerebrospinal fluid, urine, colostrum, milk) and cells, preferably cerebrum, cerebellum, hippocampus, whole blood, plasma Serum and cells, more preferably cerebrum, cerebellum, hippocampal gray, hippocampal white matter, serum and cells.
 本発明において、細胞は、例えば、正常細胞、癌細胞、癌組織由来細胞等であり、例えば、ヒト肝癌由来細胞(HepG2、HuH)、ヒト大腸又は結腸癌由来細胞(HCT、DLD-1細胞)、ヒト繊維肉腫由来細胞(HT-28)、マウス大腸癌由来細胞(Colon26)、及び神経芽腫細胞を含む。 In the present invention, the cells are, for example, normal cells, cancer cells, cancer tissue-derived cells, etc., for example, human liver cancer-derived cells (HepG2, HuH), human colon or colon cancer-derived cells (HCT, DLD-1 cells). Human fibrosarcoma-derived cells (HT-28), mouse colon cancer-derived cells (Colon 26), and neuroblastoma cells.
<微量の生体試料>
 本発明において、微量の生体試料は、例えば、微量の組織、体液、細胞であり、例えば、体液0.1~2000μl、組織0.1~200mg又は細胞1.0×10~1.0×10個であり、好ましくは、体液0.5~400μl、細胞5.0×10~5.0×10個、又は組織5.0~150mgであり、更に好ましくは、体液1.0~100μl、細胞1.0×10~1.0×10個、又は組織10~100mgである。
<Trace biological sample>
In the present invention, a small amount of biological sample is, for example, a small amount of tissue, body fluid, or cell. For example, body fluid 0.1 to 2000 μl, tissue 0.1 to 200 mg, or cell 1.0 × 10 5 to 1.0 × 10 8 , preferably 0.5 to 400 μl of body fluid, 5.0 × 10 5 to 5.0 × 10 7 cells, or 5.0 to 150 mg of tissue, more preferably 1.0 to 1.0 ˜100 μl, 1.0 × 10 6 to 1.0 × 10 7 cells, or 10 to 100 mg of tissue.
<TLCプレート>
 本発明において、TLCは、脂質を分離することができれば特に制限されず、例えば、HPTLCプレート(メルク社製、10cmx10cm)を使用することができる。
<TLC plate>
In this invention, TLC will not be restrict | limited especially if a lipid can be isolate | separated, For example, a HPTLC plate (The Merck company make, 10cmx10cm) can be used.
<TLCに直接吸着させる方法>
 本発明において、微量生体試料をTLCプレートに直接吸着させる方法は、例えば、微量生体試料をシリンジやガラスキャピラリーを使用して、TLC上にアプライして乾固することが挙げられる。
<Method of directly adsorbing to TLC>
In the present invention, a method for directly adsorbing a trace amount biological sample to a TLC plate includes, for example, applying the trace amount biological sample onto a TLC using a syringe or a glass capillary and drying it.
 本発明の工程(a)において、微量生体試料は、微量生体試料に、微量の水及び/又は有機溶媒を加えて、静置して得られる上清であってもよい。 In the step (a) of the present invention, the trace biological sample may be a supernatant obtained by adding a trace amount of water and / or an organic solvent to the trace biological sample and allowing to stand.
<有機溶媒>
 本発明において、有機溶媒は、生体試料に加えることができれば特に制限されず、例えば、非極性及び極性溶媒である。非極性溶媒としては、クロロホルム、ヘキサン、トルエン、ベンゼン、ジエチルエーテル及び酢酸エチルが挙げられる。極性溶媒としては、メタノール、エタノール、アセトン、n-プロパノール、イソプロパノール、ブタノール、酢酸、ギ酸、ジメチルスルホキシド、ジメチルホルムアミド、アセトニトリル、テトラヒドロフラン及び1,4-ジオキサンが挙げられる。
<Organic solvent>
In the present invention, the organic solvent is not particularly limited as long as it can be added to a biological sample, and examples thereof include nonpolar and polar solvents. Nonpolar solvents include chloroform, hexane, toluene, benzene, diethyl ether and ethyl acetate. Examples of the polar solvent include methanol, ethanol, acetone, n-propanol, isopropanol, butanol, acetic acid, formic acid, dimethyl sulfoxide, dimethylformamide, acetonitrile, tetrahydrofuran and 1,4-dioxane.
<混合溶媒>
 本発明において、有機溶媒は、クロロホルム及びメタノールの混合溶媒を含み、好ましくはクロロホルムとメタノールの体積の比が、75:25~25:75の混合溶媒を含み、例えば、クロロホルム:メタノール=1:1、又はクロロホルム:メタノール=1:2である。
<Mixed solvent>
In the present invention, the organic solvent includes a mixed solvent of chloroform and methanol, and preferably includes a mixed solvent having a volume ratio of chloroform to methanol of 75:25 to 25:75, for example, chloroform: methanol = 1: 1. Or chloroform: methanol = 1: 2.
<微量生体試料に加える水及び/又は有機溶媒の量>
 本発明の工程(a)において、微量生体試料に加える水及び/又は有機溶媒の量は、脂質パターンを得ることができれば特に制限されず、好ましくは少量であり、例えば、0μl~2000μl、1μl~500μl、好ましくは5μl~100μlである。
<Amount of water and / or organic solvent added to trace biological sample>
In the step (a) of the present invention, the amount of water and / or organic solvent added to a trace biological sample is not particularly limited as long as a lipid pattern can be obtained, and is preferably a small amount, for example, 0 μl to 2000 μl, 1 μl to 500 μl, preferably 5 μl to 100 μl.
<組織に加える水及び/又は有機溶媒の量>
 本発明の工程(a)において、組織に加える水及び/又は有機溶媒の量は、脂質パターンを得ることができれば特に制限されず、例えば、組織1重量に対して、10~20重量のクロロフォルムメタノール混液を加える。
<Amount of water and / or organic solvent added to tissue>
In step (a) of the present invention, the amount of water and / or organic solvent added to the tissue is not particularly limited as long as a lipid pattern can be obtained. For example, 10 to 20 wt. Add the mixture.
<体液に加える水及び/又は有機溶媒の量>
 本発明の工程(a)において、体液に加える水及び/又は有機溶媒の量は、脂質パターンを得ることができれば特に制限されず、血液には水及び/又は有機溶媒を加えなくてもよい。血液は、溶血処理、抗凝固処理等を行ってもよく、例えば、全血、血漿、血清を含み、好ましくは血清である。
<Amount of water and / or organic solvent added to body fluid>
In the step (a) of the present invention, the amount of water and / or organic solvent added to the body fluid is not particularly limited as long as a lipid pattern can be obtained, and water and / or organic solvent may not be added to blood. The blood may be subjected to hemolysis treatment, anticoagulation treatment, and the like, and includes, for example, whole blood, plasma, and serum, preferably serum.
<細胞に加える水及び/又は有機溶媒の量>
 本発明の工程(a)において、細胞に加える水及び/又は有機溶媒の量は、脂質パターンを得ることができれば特に制限されず、好ましくは少量であり、例えば、0.05~0.1mlである。
<Amount of water and / or organic solvent added to cells>
In the step (a) of the present invention, the amount of water and / or organic solvent added to the cells is not particularly limited as long as a lipid pattern can be obtained, and is preferably a small amount, for example, 0.05 to 0.1 ml. is there.
<水及び/又は有機溶媒を加えて静置する時間>
 本発明の工程(a)において、生体試料に水及び/又は有機溶媒を加えて静置する時間は特に制限されず、0~24時時間、好ましくは0~12時間、更に好ましくは0~8時間である。
<Time for adding water and / or organic solvent and allowing to stand>
In the step (a) of the present invention, the time for standing by adding water and / or an organic solvent to the biological sample is not particularly limited, and is 0 to 24 hours, preferably 0 to 12 hours, and more preferably 0 to 8 hours. It's time.
<水及び/又は有機溶媒を加えて温度>
 本発明の工程(a)において、生体試料に水及び/又は有機溶媒を加えて静置する温度は特に制限されず、例えば、4℃~室温、好ましくは4℃又は室温である。
<Temperature by adding water and / or organic solvent>
In step (a) of the present invention, the temperature at which water and / or an organic solvent is added to the biological sample and allowed to stand is not particularly limited, and is, for example, 4 ° C. to room temperature, preferably 4 ° C. or room temperature.
 本発明において、微量生体試料(0.1~100mg)は、微量生体試料に、微量の体液、組織、又は細胞に、微量の水及び/又は有機溶媒を加え、更に微量の無機塩基を加えて、静置して得られる上清を含む。 In the present invention, a trace amount biological sample (0.1 to 100 mg) is obtained by adding a trace amount of water and / or an organic solvent to a trace amount of body fluid, tissue, or cell, and further adding a trace amount of inorganic base to the trace amount biological sample. The supernatant obtained by standing still is included.
<無機塩基>
 本発明の工程(a)において、微量生体試料に加える無機塩基は、生体試料中の1つ以上の脂質をアルカリ分解することができれば特に制限されず、例えば、水酸化ナトリウム、水酸化カリウム、ナトリムメチラートを使用することができ、好ましくはメタノール中の0.1~1.0Nの水酸化ナトリウムを含み、更に好ましくはメタノール中の0.5Nの水酸化ナトリウムである。
<Inorganic base>
In the step (a) of the present invention, the inorganic base added to the trace biological sample is not particularly limited as long as one or more lipids in the biological sample can be alkalinely decomposed. For example, sodium hydroxide, potassium hydroxide, sodium Methylate can be used, preferably 0.1 to 1.0 N sodium hydroxide in methanol, more preferably 0.5 N sodium hydroxide in methanol.
<無機塩基の量>
 本発明において、アルカリ分解に使用される無機塩基の量は、生体試料中の1つ以上の脂質をアルカリ分解することができれば特に制限されず、水及び/又は有機溶媒を加えて得られる脂質含有液の体積に対して、例えば1/50~1/2倍量、好ましくは1/30~1/2倍量倍量、更に好ましくは1/20~1/5倍量倍量である。
<Amount of inorganic base>
In the present invention, the amount of the inorganic base used for alkali decomposition is not particularly limited as long as one or more lipids in a biological sample can be alkali decomposed, and contains lipid obtained by adding water and / or an organic solvent. The amount is, for example, 1/50 to 1/2 times, preferably 1/30 to 1/2 times, more preferably 1/20 to 1/5 times the volume of the liquid volume.
<水及び/又は有機溶媒を加えて静置する時間>
 本発明の工程(a)において、生体試料に水及び/又は有機溶媒を加えて、更に無機塩基を加えて、静置する時間は、生体試料中の1つ以上の脂質をアルカリ分解することができれば特に制限されず、0~30分、好ましくは0~15分、更に好ましくは0~10分である。
<Time for adding water and / or organic solvent and allowing to stand>
In the step (a) of the present invention, water and / or an organic solvent is added to the biological sample, an inorganic base is further added, and the time for standing still may cause one or more lipids in the biological sample to undergo alkaline decomposition. If possible, it is not particularly limited, and is 0 to 30 minutes, preferably 0 to 15 minutes, and more preferably 0 to 10 minutes.
<工程(b)>
 本発明において、工程(b)は、微量生体試料中の1つ以上の脂質をTLCにより分離する工程である。
<Step (b)>
In the present invention, step (b) is a step of separating one or more lipids in a trace biological sample by TLC.
 本発明の工程(b)において、少なくとも1種の展開液を用いて、1つ以上の脂質を分離することができれば、使用されるTLCは特に制限されない。 In the step (b) of the present invention, the TLC used is not particularly limited as long as one or more lipids can be separated using at least one developing solution.
 本発明の工程(b)において、TLCを用いて、1つ以上の脂質を分離することができれば、使用される少なくとも1種の展開液は特に制限されない。 In the step (b) of the present invention, as long as one or more lipids can be separated using TLC, at least one developing solution to be used is not particularly limited.
 本発明において、少なくとも1種の展開液は、1つ以上の脂質を分離することができれば特に制限されず、例えば、CHCl:MeOH:0.2%CaCl(60~75:25~40:4~9、v/v/v)、MeOAc:nPrOH:CHCl:MeOH:0.25%KCl(20~30:20~30:20~30:5~15:5~10、v/v/v/v/v)、Hexane:Ether:AcOH(60~80:20~40:0.5~1.5、v/v/v)、Petroleum ether:Ether:AcOH(60~80:20~40:0.5~1.5、v/v/v)、好ましくはCHCl:MeOH:0.2%CaCl(60:40:9、v/v/v)、MeOAc:nPrOH:CHCl:MeOH:0.25%KCl(25:25:25:10:9、v/v/v/v/v)、Hexane:Ether:AcOH(70:30:1、v/v/v)を使用することができる。 In the present invention, the at least one developing solution is not particularly limited as long as one or more lipids can be separated. For example, CHCl 3 : MeOH: 0.2% CaCl 2 (60 to 75:25 to 40: 4-9, v / v / v), MeOAc: nPrOH: CHCl 3 : MeOH: 0.25% KCl (20-30: 20-30: 20-30: 5-15: 5-10, v / v / v / v / v), Hexane: Ether: AcOH (60-80: 20-40: 0.5-1.5, v / v / v), Petroleum ether: Ether: AcOH (60-80: 20-40) : 0.5 to 1.5, v / v / v), preferably CHCl 3 : MeOH: 0.2% CaCl 2 (60: 40: 9, v / v / v), MeOAc: nPrOH: CHCl 3 : MeOH: 0.25% KCl (25: 25: 25: 10: 9, v / v / v / v / v), Hexane: Ether: AcOH (70: 30: 1, v / v / v) may be used. it can.
<工程(c)>
 本発明において、工程(c)は、TLC上に分離された1つ以上の脂質を検出する工程である。
<Step (c)>
In the present invention, step (c) is a step of detecting one or more lipids separated on TLC.
<脂質の検出>
 TLC上に分離された1つ以上の脂質を検出する手段は、脂質を検出できれば特に制限されず、例えば、UV、Rf値(標品との比較)、検出試薬、免疫染色、レクチンとの結合試験、質量分析を用いることができる。
<Detection of lipid>
The means for detecting one or more lipids separated on TLC is not particularly limited as long as the lipid can be detected. For example, UV, Rf value (comparison with standard), detection reagent, immunostaining, binding to lectin Tests and mass spectrometry can be used.
<検出試薬による検出>
 本発明において、検出試薬は、脂質を検出することができれば特に制限されず、例えば、プリムリン試薬、モリブデン試薬、オルシノール試薬、レソルシノール試薬、ニンヒドリン試薬等を用いることができる。
<Detection with detection reagent>
In the present invention, the detection reagent is not particularly limited as long as it can detect lipids. For example, a primulin reagent, a molybdenum reagent, an orcinol reagent, a resorcinol reagent, a ninhydrin reagent, and the like can be used.
<質量分析による検出> <Detection by mass spectrometry>
 本発明の脂質パターンの変化を同定する方法は、前記(a)~(c)の工程に続いて、更に以下の工程:
(d)分離された1つ以上の脂質をメンブレンに転写すること、及び
(e)1つ以上の脂質が転写されたメンブレンを分析用プレートに貼着し、該分析用プレートを質量分析に供することを含む。
The method for identifying a change in the lipid pattern of the present invention comprises the following steps following the steps (a) to (c):
(D) transferring one or more separated lipids to a membrane; and (e) attaching the membrane to which one or more lipids have been transferred to an analysis plate, and subjecting the analysis plate to mass spectrometry. Including that.
<工程(d)>
 本発明において、メンブレンは、分離された1つ以上の脂質を転写することが出来れば特に制限されず、例えば、PVDF膜を使用することができる。
<Step (d)>
In the present invention, the membrane is not particularly limited as long as it can transfer one or more separated lipids. For example, a PVDF membrane can be used.
<工程(e)>
 本発明において、質量分析は、分離された1つ以上の脂質の分子量を測定できれば特に制限されず、例えば、MALDI法と飛行時間質量分析装置を用いることができる。
<Process (e)>
In the present invention, mass spectrometry is not particularly limited as long as the molecular weight of one or more separated lipids can be measured. For example, a MALDI method and a time-of-flight mass spectrometer can be used.
 本発明の脂質パターンの変化を同定する方法は、更に以下の工程:
(f)予め決定された脂質パターンの標準と微量生体試料中の1つ以上の脂質パターンを比較することを含む。
The method for identifying a change in lipid pattern of the present invention further comprises the following steps:
(F) comparing a predetermined lipid pattern standard with one or more lipid patterns in a trace biological sample.
<工程(f)>
 本発明において、予め決定された脂質パターンの標準とは、脂質パターンを変化させる原因を有さない生体の対応する1つ以上の脂質パターンを意味する。
<Step (f)>
In the present invention, the predetermined lipid pattern standard means one or more corresponding lipid patterns of a living body having no cause for changing the lipid pattern.
 本発明は、TLCで分析するための脂質含有液を調製する方法にも関する。 The present invention also relates to a method for preparing a lipid-containing liquid for analysis by TLC.
 本発明の脂質含有液を調製する方法は、以下の工程:
(x)微量生体試料に、微量の水及び/又は有機溶媒を加えること、
 更に必要に応じて、微量の無機塩基を加えて、アルカリ分解することを含むことができる。
The method for preparing the lipid-containing liquid of the present invention comprises the following steps:
(X) adding a trace amount of water and / or an organic solvent to a trace amount biological sample;
Further, if necessary, it may include alkali decomposition by adding a trace amount of an inorganic base.
<工程(x)>
 工程(x)には、工程(a)の記載を適用することができる。
<Process (x)>
The description of the step (a) can be applied to the step (x).
 本発明の一態様は、脂質パターンの変化を同定するためのキットである。 One embodiment of the present invention is a kit for identifying changes in lipid patterns.
 本発明のキットは、例えば、有機溶媒、TLC、展開液、予め決定された脂質パターンの標準を含む。 The kit of the present invention includes, for example, an organic solvent, TLC, a developing solution, and a predetermined lipid pattern standard.
 本発明のキットは、更に微量生体試料を個人又は団体で回収することができる器具、例えば自己採血用の器具を含むことができる。 The kit of the present invention can further include a device that can collect a small amount of biological sample by an individual or a group, for example, a device for self-collecting blood.
 以下に参考例及び実施例を示して本発明を更に詳しく説明するが、本発明の範囲をこれらに限定するものではない。 Hereinafter, the present invention will be described in more detail with reference examples and examples, but the scope of the present invention is not limited thereto.
<マウス大脳及び小脳のガングリオシドの分離分析>
 マウス大脳又は小脳50mgを秤量し、氷の上に置いたアルミ箔上で手術用ハサミを用いて細かく切断した。処理したサンプルをガラス試験管入れて、有機溶媒(1mlのCHCl:MeOH(1:1,v/v)を添加して振盪し、4℃で一夜保存して脂質含有液を調製した。
 HPTLCプレート(メルク社製、10cmx10cm)の下端から1.5cmのところに、10μlのシリンジを使用して、各脂質含有液5μl(サンプル)を約4mmのバンドとなるようにアプライした。ガングリオシドの標品は、Sigma社より購入して使用した。
 第一展開液(CHCl:MeOH:0.2%CaCl(60:35:8.5、v/v/v)を用いて、HPTLCプレートの下端からAのところまで展開した(図1参照)。
 続いて、第二展開液(MeOAc:PrOH:CHCl:MeOH:0.25%KCl(25:25:25:10:9、v/v/v/v/v)を用いて、HPTLCプレートの下端からBのところまで1回展開した(図1参照)。
 ドライヤーで展開溶媒を除去した後、プリムリン試薬を噴霧して、UV315nmで検出した。
<Analysis of mouse cerebellar and cerebellar gangliosides>
Mouse cerebrum or cerebellum 50 mg was weighed and cut finely with surgical scissors on aluminum foil placed on ice. The treated sample was placed in a glass test tube, an organic solvent (1 ml of CHCl 3 : MeOH (1: 1, v / v) was added and shaken, and stored overnight at 4 ° C. to prepare a lipid-containing solution.
Using a 10 μl syringe, 5 μl of each lipid-containing solution (sample) was applied to a band of about 4 mm at a position 1.5 cm from the lower end of an HPTLC plate (Merck, 10 cm × 10 cm). The ganglioside preparation was purchased from Sigma and used.
Using the first developing solution (CHCl 3 : MeOH: 0.2% CaCl 2 (60: 35: 8.5, v / v / v), the HPTLC plate was developed from the lower end to A (see FIG. 1). ).
Subsequently, using a second developing solution (MeOAc: PrOH: CHCl 3 : MeOH: 0.25% KCl (25: 25: 25: 10: 9, v / v / v / v / v)), Deployed once from the lower end to B (see FIG. 1).
After removing the developing solvent with a drier, the primulin reagent was sprayed and detected at UV 315 nm.
<培養細胞のガングリオシド分離分析>
 通常の培養条件で培養した各細胞5.0×10を回収し、ガラス遠心管に移して遠心分離した。PBSで洗浄し、更に遠心分離した後、有機溶媒(CHCl:MeOH(1:2、v/v)200μlを添加して、4℃で一夜保存して脂質含有液を調製した。
 HPTLCプレート(メルク社製、10cmx10cm)の下端から1.5cmのところに、10μlのシリンジを使用して、各脂質含有液10μl(サンプル)を約4mmのバンドとなるようにアプライした。ガングリオシドの標品は、Sigma社より購入して使用した。
 第一展開液(CHCl:MeOH:0.2%CaCl(60:40:9、v/v/v))を用いて、HPTLCプレートの下端からAのところまで1回展開した(図2参照)。
 続いて、第二展開液(MeOAc:nPrOH:CHCl:MeOH:0.25%KCl(25:25:25:10:9、v/v/v/v)を用いて、HPTLCプレートの下端からBのところまで1回展開した(図2参照)。
 ドライヤーで展開溶媒を除去した後、プリムリン試薬を噴霧して、UV315nmで検出した。
<Separation analysis of gangliosides in cultured cells>
Each cell 5.0 × 10 6 cultured under normal culture conditions was collected, transferred to a glass centrifuge tube, and centrifuged. After washing with PBS and further centrifuging, 200 μl of an organic solvent (CHCl 3 : MeOH (1: 2, v / v)) was added and stored at 4 ° C. overnight to prepare a lipid-containing solution.
Using a 10 μl syringe, 10 μl of each lipid-containing solution (sample) was applied to a band of about 4 mm at a position 1.5 cm from the lower end of an HPTLC plate (Merck, 10 cm × 10 cm). The ganglioside preparation was purchased from Sigma and used.
Using the first developing solution (CHCl 3 : MeOH: 0.2% CaCl 2 (60: 40: 9, v / v / v)), the plate was developed once from the lower end of the HPTLC plate to A (FIG. 2). reference).
Subsequently, using the second developing solution (MeOAc: nPrOH: CHCl 3 : MeOH: 0.25% KCl (25: 25: 25: 10: 9, v / v / v / v) from the lower end of the HPTLC plate Development was performed once up to B (see FIG. 2).
After removing the developing solvent with a drier, the primulin reagent was sprayed and detected at UV 315 nm.
<ラット血清の中性脂質の分離分析>
 ラット9個体由来のラット血清10μlを水で5倍希釈した。
 HPTLCプレート(メルク社製、10cmx10cm)の下端から1.5cmのところに、10μlのエッペンドルフマイクロピペットチップを使用して、各脂質含有液2μl(サンプル)を約4mmのバンドとなるようにアプライした。中性脂質の標品は、Sigma社より購入して使用した。
 展開液(Hexane:Ether:AcOH(70:30:1、v/v/v)を用いて、15~20分間、展開した(図3参照)。
 ドライヤーで展開溶媒を除去した後、プリムリン試薬を噴霧して、UV315nmで検出した。
<Separation analysis of neutral lipids in rat serum>
10 μl of rat serum derived from 9 rats was diluted 5-fold with water.
Using a 10 μl Eppendorf micropipette tip, 2 μl of each lipid-containing solution (sample) was applied to a band of about 4 mm at a position 1.5 cm from the lower end of an HPTLC plate (Merck, 10 cm × 10 cm). The neutral lipid preparation was purchased from Sigma and used.
Development was performed for 15 to 20 minutes using a developing solution (Hexane: Ether: AcOH (70: 30: 1, v / v / v) (see FIG. 3).
After removing the developing solvent with a drier, the primulin reagent was sprayed and detected at UV 315 nm.
<ラット血清の中性脂質及び複合脂肪の分離分析>
 ラット9個体由来のラット血清10μlを水で5倍希釈した。
 HPTLCプレート(メルク社製、10cmx10cm)の下端から1.5cmのところに、10μlのエッペンドルフマイクロピペットチップを使用して、各脂質含有液2μl(サンプル)を約4mmのバンドとなるようにアプライした。中性脂質及び複合脂肪の標品は、Sigma社より購入して使用した。
 第一展開液MeOAc:nPrOH:CHCl:MeOH:0.25%KCl(25:25:25:10:9、v/v/v/v)を用いて、HPTLCプレートの下端からAのところまで1回展開した(図4参照)。
 続いて、第二展開液Hexane:Ether:AcOH(70:30:1、v/v/v)を用いて、HPTLCプレートの下端からBのところまで1回展開した(図4参照)。
 ドライヤーで展開溶媒を除去した後、プリムリン試薬を噴霧して、UV315nmで検出した。
<Separation analysis of neutral lipid and complex fat in rat serum>
10 μl of rat serum derived from 9 rats was diluted 5-fold with water.
Using a 10 μl Eppendorf micropipette tip, 2 μl of each lipid-containing solution (sample) was applied to a band of about 4 mm at a position 1.5 cm from the lower end of an HPTLC plate (Merck, 10 cm × 10 cm). Neutral lipid and complex fat preparations were purchased from Sigma and used.
Using the first developing solution MeOAc: nPrOH: CHCl 3 : MeOH: 0.25% KCl (25: 25: 25: 10: 9, v / v / v / v) from the lower end of the HPTLC plate to A Deployed once (see FIG. 4).
Subsequently, using the second developing solution Hexane: Ether: AcOH (70: 30: 1, v / v / v), the plate was developed once from the lower end of the HPTLC plate to B (see FIG. 4).
After removing the developing solvent with a drier, the primulin reagent was sprayed and detected at UV 315 nm.
<マウス大脳及び小脳のガングリオシドの分離分析(アルカリ分解処理)>
 マウス大脳又は小脳50mgを秤量し、氷の上に置いたアルミ箔上で手術用ハサミを用いて細かく切断した。マウス大脳又は小脳サンプルをガラス試験管入れて、有機溶媒(1mlのCHCl:MeOH(1:1、v/v)を添加して、4℃で一夜保存して脂質含有液を調製した。
 脂質含有液20μlを10mlガラス管に入れて、0.5NNaOH(MeOH溶液)2μlを加えて、室温で約5分間静置した。
 脂質含有液、アルカリ処理した脂質含有液、ガングリオシドの標品を各々使用して、実施例1と同様にしてHPTLCを用いた分離分析を行った。
<Separation and analysis of gangliosides in mouse cerebrum and cerebellum (alkaline degradation)>
Mouse cerebrum or cerebellum 50 mg was weighed and cut finely with surgical scissors on aluminum foil placed on ice. A mouse cerebrum or cerebellum sample was placed in a glass test tube, an organic solvent (1 ml of CHCl 3 : MeOH (1: 1, v / v) was added, and stored at 4 ° C. overnight to prepare a lipid-containing solution.
20 μl of the lipid-containing solution was placed in a 10 ml glass tube, 2 μl of 0.5N NaOH (MeOH solution) was added, and the mixture was allowed to stand at room temperature for about 5 minutes.
Separation analysis using HPTLC was performed in the same manner as in Example 1 using a lipid-containing liquid, an alkali-treated lipid-containing liquid, and a ganglioside preparation.
<アルツハイマー病及びパーキンソン病患者とコントロール患者の海馬灰白質のプラスマロジェンの分離分析>
 インフォームドコンセントが得られたアルツハイマー病及びパーキンソン病患者の海馬灰白質100mgを秤量し、氷の上に置いたアルミ箔上で手術用ハサミを用いて細かく切断した。処理したンプルをガラス試験管入れて、有機溶媒(2mlのCHCl:MeOH(1:1,v/v)を添加して、4℃で一夜保存して脂質含有液を調製した。
 脂質含有液20μlを10mlガラス管に入れて、0.5NNaOH(MeOH溶液)2μlを加えて、室温で約5分間静置した。
 脂質含有液とアルカリ処理した脂質含有液を各々使用して、実施例1と同様にしてHPTLCを用いた分離分析を行った。
<Separation analysis of plasmalogens in hippocampal gray matter of patients with Alzheimer's disease and Parkinson's disease>
100 mg of hippocampal gray matter from patients with Alzheimer's disease and Parkinson's disease from whom informed consent was obtained was weighed and cut finely with surgical scissors on aluminum foil placed on ice. The treated sample was placed in a glass test tube, an organic solvent (2 ml of CHCl 3 : MeOH (1: 1, v / v) was added, and stored at 4 ° C. overnight to prepare a lipid-containing solution.
20 μl of the lipid-containing solution was placed in a 10 ml glass tube, 2 μl of 0.5N NaOH (MeOH solution) was added, and the mixture was allowed to stand at room temperature for about 5 minutes.
Separation analysis using HPTLC was performed in the same manner as in Example 1 using each of the lipid-containing liquid and the lipid-treated liquid subjected to alkali treatment.
<アルツハイマー病及びパーキンソン病患者とコントロール患者の海馬白質のプラスマロジェンの分離分析>
 インフォームドコンセントが得られたアルツハイマー病及びパーキンソン病患者の海馬白質100mgを秤量し、氷の上に置いたアルミ箔上で手術用ハサミを用いて細かく切断した。処理したンプルをガラス試験管入れて、有機溶媒(2mlのCHCl:MeOH(1:1,v/v)を添加して、4℃で一夜保存して脂質含有液を調製した。
 脂質含有液20μlを10mlガラス管に入れて、0.5NNaOH(MeOH溶液)2μlを加えて、室温で約5分間静置した。
 脂質含有液とアルカリ処理した脂質含有液を各々使用して、実施例1と同様にしてHPTLCを用いた分離分析を行った。
<Separation analysis of plasmalogens in hippocampal white matter of Alzheimer's and Parkinson's disease patients and control patients>
100 mg of hippocampal white matter from patients with Alzheimer's disease and Parkinson's disease from which informed consent was obtained was weighed and cut finely with surgical scissors on aluminum foil placed on ice. The treated sample was placed in a glass test tube, an organic solvent (2 ml of CHCl 3 : MeOH (1: 1, v / v) was added, and stored at 4 ° C. overnight to prepare a lipid-containing solution.
20 μl of the lipid-containing solution was placed in a 10 ml glass tube, 2 μl of 0.5N NaOH (MeOH solution) was added, and the mixture was allowed to stand at room temperature for about 5 minutes.
Separation analysis using HPTLC was performed in the same manner as in Example 1 using each of the lipid-containing liquid and the lipid-treated liquid subjected to alkali treatment.
 <アルツハイマー病及びパーキンソン病患者とコントロール患者の海馬白質のプラスマロジェンの定量分析>
・HPTLCプレート上の脂質のPVDF膜への転写
 実施例7で得られたHPTLCプレート上のバンド(プリムリン試薬とUV315nmで検出したバンド)を赤鉛筆でマークして、転写溶媒(イソプロパノール:0.2%CaCl:MeOH(40:20:7、v/v/v)に10秒間浸した。
 その後、直ちにPVDF膜(Clear Blot-P、ATTO Co.Ltd.))を載せて、更にテフロン膜(PTEE membrane AC5973、ATTO Co.Ltd)、ガラスフィルター膜、(AC5972(100mmx100mm)、ATTO Co.Ltd.)を順に重ねた。更に上にガラス板(100mmx100mm)を載せて、TLC Blotter(バイオエックス社製)を用いて、180℃で30秒間、圧をかけて脂質の転写を行った。
・質量分析
 導電性両面テープ(P/N:241-08727-92、Shimadzu、Kyoto、Japan)でPVDF膜をMALDIターゲットプレート(P/N:241-08727-91、Shimadzu、Kyoto、Japan)に固定した。
 マトリックスとしてDHB(メタノール:0.1%TFA=1:1を用いて、50mg/mlに調製した)を、5μl/バンドとなるように2回に分けて塗布した。
 質量分析装置(MALDI-TOF MS:AXIMA-QIT、Shimadzu、Japan)を用いて、各バンドに含まれる脂質分子の質量分析を行ってm/z:508.3を積算した。
<Quantitative analysis of plasmalogens in hippocampal white matter in Alzheimer's and Parkinson's disease patients and control patients>
-Transfer of lipid on HPTLC plate to PVDF membrane Band on HPTLC plate obtained in Example 7 (a band detected with primulin reagent and UV 315 nm) was marked with a red pencil, and transfer solvent (isopropanol: 0.2 It was immersed in% CaCl 2 : MeOH (40: 20: 7, v / v / v) for 10 seconds.
Immediately after that, a PVDF membrane (Clear Blot-P, ATTO Co. Ltd.) was placed, and further a Teflon membrane (PTEE membrane AC5973, ATTO Co. Ltd), a glass filter membrane, (AC5972 (100 mm × 100 mm), ATTO Co. Ltd.). .) In order. Furthermore, a glass plate (100 mm × 100 mm) was placed thereon, and lipid was transferred by applying pressure at 180 ° C. for 30 seconds using TLC Blotter (manufactured by Bio-X).
Mass spectrometry Fix PVDF membrane to MALDI target plate (P / N: 241-08727-91, Shimadzu, Kyoto, Japan) with conductive double-sided tape (P / N: 241-08727-92, Shimadzu, Kyoto, Japan) did.
DHB (prepared to 50 mg / ml using methanol: 0.1% TFA = 1: 1) as a matrix was applied in two portions so as to be 5 μl / band.
Using a mass spectrometer (MALDI-TOF MS: AXIMA-QIT, Shimadzu, Japan), mass analysis of lipid molecules contained in each band was performed, and m / z: 508.3 was integrated.
<神経芽腫細胞のガングリオシド分離分析>
 通常の培養条件で培養した神経芽腫組織(湿重量30mg)に、有機溶媒(CHCl:MeOH(1:2、v/v)300μlを添加して振盪し、4℃で一夜保存して脂質含有液を調製した。
 脂質含有液の一部20μlを10mlガラス管に入れて、0.5NのNaOH(MeOH溶液)2μlを加えて、室温で10分間静置した。
 コントロールとして、マウス大脳50mgを秤量し、氷の上に置いたアルミ箔上で手術用ハサミを用いて細かく切断した。処理したサンプルをガラス試験管入れて、有機溶媒(1mlのCHCl:MeOH(1:1、v/v)を添加して振盪し、4℃で一夜保存して脂質含有液を調製した。
 HPTLCプレート(メルク社製、10cmx10cm)の下端から1.5cmのところに、10μlのシリンジを使用して、各脂質含有液5μl(サンプル)を約4mmのバンドとなるようにアプライした。
 展開液(CHCl:MeOH:0.2%CaCl(60:40:9、v/v/v))を用いて、HPTLCプレートの下端からAのところまで1回展開した。
 実施例8に記載の方法に準じて、脂質の転写及び質量分析を行った。
 その結果、バンドaはGD3であり、そしてバンドbはGD2であると同定された。これら2つのガングリオシドは、神経芽腫組織に特徴的なガングリオシドであった。
<Separation analysis of gangliosides in neuroblastoma cells>
300 μl of organic solvent (CHCl 3 : MeOH (1: 2, v / v) 300 μl) was added to neuroblastoma tissue (wet weight 30 mg) cultured under normal culture conditions, shaken and stored overnight at 4 ° C. A containing liquid was prepared.
A 20 μl portion of the lipid-containing solution was placed in a 10 ml glass tube, 2 μl of 0.5N NaOH (MeOH solution) was added, and the mixture was allowed to stand at room temperature for 10 minutes.
As a control, 50 mg of mouse cerebrum was weighed and cut finely with surgical scissors on an aluminum foil placed on ice. The treated sample was placed in a glass test tube, an organic solvent (1 ml of CHCl 3 : MeOH (1: 1, v / v) was added and shaken, and stored at 4 ° C. overnight to prepare a lipid-containing solution.
Using a 10 μl syringe, 5 μl of each lipid-containing solution (sample) was applied to a band of about 4 mm at a position 1.5 cm from the lower end of an HPTLC plate (Merck, 10 cm × 10 cm).
Using a developing solution (CHCl 3 : MeOH: 0.2% CaCl 2 (60: 40: 9, v / v / v)), the plate was developed once from the lower end of the HPTLC plate to A.
In accordance with the method described in Example 8, lipid transfer and mass spectrometry were performed.
As a result, band a was identified as GD3 and band b was identified as GD2. These two gangliosides were gangliosides characteristic of neuroblastoma tissue.
 本発明は、脂質パターンの変化を同定する方法において、(a)微量生体試料をTLCプレートに直接吸着させ、(b)微量生体試料中の1つ以上の脂質をTLCにより分離し、そして(c)TLC上に分離された1つ以上の脂質を検出することによって、生体試料からの脂質の抽出、分離、精製、濃縮を含む、生体試料中の脂質の分析に従来必要であった複雑な過程を省くことが可能であるから、産業上の利用可能性を有する。 The present invention provides a method for identifying changes in lipid patterns in which (a) a microbiological sample is adsorbed directly to a TLC plate, (b) one or more lipids in the microbiological sample are separated by TLC, and (c ) Complex processes traditionally required for analysis of lipids in biological samples, including extraction, separation, purification and concentration of lipids from biological samples by detecting one or more lipids separated on TLC Therefore, the present invention has industrial applicability.

Claims (10)

  1.  脂質パターンの変化を同定する方法であって、以下の工程:
    (a)微量生体試料をTLCプレートに直接吸着させること、
    (b)微量生体試料中の1つ以上の脂質をTLCにより分離すること、及び
    (c)TLC上に分離された1つ以上の脂質を検出すること
     を含む、方法。
    A method for identifying changes in lipid patterns comprising the following steps:
    (A) directly adsorbing a small amount of biological sample to a TLC plate;
    (B) separating one or more lipids in a trace biological sample by TLC, and (c) detecting one or more lipids separated on TLC.
  2.  微量生体試料が、微量の体液、組織、又は細胞に、微量の有機溶媒及び/又は水を加えて、静置して得られる上清である、請求項1記載の方法。 The method according to claim 1, wherein the trace biological sample is a supernatant obtained by adding a trace amount of an organic solvent and / or water to a trace amount of body fluid, tissue, or cell and allowing to stand.
  3.  微量生体試料が、微量の体液、組織、又は細胞に、微量の有機溶媒及び/又は水を加え、更に微量の無機塩基を加えて、静置して得られる上清である、請求項1記載の方法。 The trace amount biological sample is a supernatant obtained by adding a trace amount of an organic solvent and / or water to a trace amount of body fluid, tissue, or cell, and further adding a trace amount of an inorganic base, and allowing to stand. the method of.
  4.  微量生体試料が、体液0.1~2000μl、組織0.1~200mg又は細胞1.0×10~1.0×10個である、請求項1~3のいずれか一項に記載の方法。 The trace amount biological sample is 0.1 to 2000 μl of body fluid, 0.1 to 200 mg of tissue, or 1.0 × 10 5 to 1.0 × 10 8 cells, according to any one of claims 1 to 3. Method.
  5.  微量生体試料が、微量の体液、組織、又は細胞が、体液0.5~400μl、細胞5.0×10~5.0×10個、又は組織5.0~150mgである、請求項1~4のいずれか一項に記載の方法。 The trace biological sample is a trace amount of body fluid, tissue or cell, 0.5 to 400 μl of body fluid, 5.0 × 10 5 to 5.0 × 10 7 cells, or 5.0 to 150 mg of tissue. The method according to any one of 1 to 4.
  6.  前記(c)が、以下の工程:
    (d)TLC上に分離された1つ以上の脂質をメンブレンに転写すること、及び
    (e)1つ以上の脂質が転写されたメンブレンを分析用プレートに貼着し、該分析用プレートを質量分析に供すること
     を含む、請求項1~5のいずれか一項に記載の方法。
    Said (c) is the following process:
    (D) transferring one or more lipids separated on the TLC to a membrane; and (e) attaching the membrane to which one or more lipids have been transferred to an analysis plate, The method according to any one of claims 1 to 5, comprising subjecting to analysis.
  7.  脂質が、中性脂質、スフィンゴリン脂質、グリセロリン脂質、スフィンゴ糖脂質、グリセロ糖脂質、及びスルホ脂質からなる群より選択される1つ以上の脂質である、請求項1~6のいずれか一項記載の方法。 7. The lipid according to claim 1, wherein the lipid is one or more lipids selected from the group consisting of neutral lipids, sphingophospholipids, glycerophospholipids, glycosphingolipids, glyceroglycolipids, and sulfolipids. The method described.
  8.  脂質が、中性脂肪、プラスマロジェン、リゾホスファチジルコリン、リゾホスファチジン酸、ガングリオシド、及びガラクトシルセラミドからなる群より選択される1つ以上の脂質である、請求項1~6のいずれか一項記載の方法。 The lipid according to any one of claims 1 to 6, wherein the lipid is one or more lipids selected from the group consisting of neutral fat, plasmalogen, lysophosphatidylcholine, lysophosphatidic acid, ganglioside, and galactosylceramide. Method.
  9.  微量生体試料が、大脳、小脳、海馬、全血、血漿、血清、又は細胞である、請求項1~8のいずれか一項に記載の方法。 The method according to any one of claims 1 to 8, wherein the trace biological sample is cerebrum, cerebellum, hippocampus, whole blood, plasma, serum, or cells.
  10.  更に以下の工程:
    (f)予め決定された脂質パターンの標準と微量生体試料中の1つ以上の脂質パターンを比較することを含む、請求項1~9のいずれか一項記載の方法。
    In addition, the following steps:
    The method according to any one of claims 1 to 9, comprising comparing (f) a predetermined lipid pattern standard with one or more lipid patterns in a trace biological sample.
PCT/JP2016/068887 2015-06-24 2016-06-24 Simple analysis method for lipids in trace biological sample WO2016208741A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562184027P 2015-06-24 2015-06-24
US62/184,027 2015-06-24

Publications (1)

Publication Number Publication Date
WO2016208741A1 true WO2016208741A1 (en) 2016-12-29

Family

ID=57585219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/068887 WO2016208741A1 (en) 2015-06-24 2016-06-24 Simple analysis method for lipids in trace biological sample

Country Status (1)

Country Link
WO (1) WO2016208741A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010271157A (en) * 2009-05-21 2010-12-02 Shimadzu Corp Method for analysis of sample by mass spectrometry
WO2012081508A1 (en) * 2010-12-13 2012-06-21 日本ケミカルリサーチ株式会社 Method for assaying glycosphingolipid
WO2013099949A1 (en) * 2011-12-28 2013-07-04 扶桑薬品工業株式会社 Method for measuring acetic acid concentration in blood plasma
JP2015062029A (en) * 2007-12-13 2015-04-02 クエスト ダイアグノスティックス インヴェストメンツ インコーポレイテッド Method for detecting estrone by mass spectrometry

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015062029A (en) * 2007-12-13 2015-04-02 クエスト ダイアグノスティックス インヴェストメンツ インコーポレイテッド Method for detecting estrone by mass spectrometry
JP2010271157A (en) * 2009-05-21 2010-12-02 Shimadzu Corp Method for analysis of sample by mass spectrometry
WO2012081508A1 (en) * 2010-12-13 2012-06-21 日本ケミカルリサーチ株式会社 Method for assaying glycosphingolipid
WO2013099949A1 (en) * 2011-12-28 2013-07-04 扶桑薬品工業株式会社 Method for measuring acetic acid concentration in blood plasma

Similar Documents

Publication Publication Date Title
Li et al. Analytical methods in lipidomics and their applications
Bou Khalil et al. Lipidomics era: accomplishments and challenges
Rolim et al. Lipidomics in the study of lipid metabolism: Current perspectives in the omic sciences
Cífková et al. Nontargeted quantitation of lipid classes using hydrophilic interaction liquid chromatography–electrospray ionization mass spectrometry with single internal standard and response factor approach
Ogiso et al. Analysis of lipid-composition changes in plasma membrane microdomains [S]
DK2419742T3 (en) DETECTION OF PHOSPHOLIPIDOSIS AND DIAGNOSTICATION OF LYSOSOMAL ACCUMULATION DISEASES
Park et al. Direct analysis of sialylated or sulfated glycosphingolipids and other polar and neutral lipids using TLC-MS interfaces [S]
Taki An approach to glycobiology from glycolipidomics: ganglioside molecular scanning in the brains of patients with Alzheimer’s disease by TLC-blot/matrix assisted laser desorption/ionization-time of flight MS
Sarbu et al. Modern separation techniques coupled to high performance mass spectrometry for glycolipid analysis
Antonelli et al. New insights in hemp chemical composition: a comprehensive polar lipidome characterization by combining solid phase enrichment, high-resolution mass spectrometry, and cheminformatics
Lobasso et al. A lipidomic approach to identify potential biomarkers in exosomes from melanoma cells with different metastatic potential
CN107632095B (en) Detection method for glycolipid and phospholipid of crops
Han et al. A review of lipidomic technologies applicable to sphingolipidomics and their relevant applications
La Barbera et al. Delving into the polar lipidome by optimized chromatographic separation, high-resolution mass spectrometry, and comprehensive identification with Lipostar: microalgae as case study
Schiopu et al. Chip‐nanoelectrospray quadrupole time‐of‐flight tandem mass spectrometry of meningioma gangliosides: A preliminary study
Dasgupta et al. Chromatographic resolution and quantitative assay of CNS tissue sphingoids and sphingolipids
Xu et al. DMS as an orthogonal separation to LC/ESI/MS/MS for quantifying isomeric cerebrosides in plasma and cerebrospinal fluid [S]
Eibisch et al. Analysis of phospholipid mixtures from biological tissues by matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS): a laboratory experiment
Cebolla et al. Scanning densitometry and mass spectrometry for HPTLC analysis of lipids: The last 10 years
Seng et al. Characterisation of sphingolipids in the human lens by thin layer chromatography–desorption electrospray ionisation mass spectrometry
Stepanova et al. Filter-based protein digestion (FPD): a detergent-free and scaffold-based strategy for TMT workflows
Rivas-Serna et al. Profiling gangliosides from milk products and other biological membranes using LC/MS
Scholz et al. Profiling of sphingolipids in Caenorhabditis elegans by two-dimensional multiple heart-cut liquid chromatography–mass spectrometry
Vasku et al. Comprehensive mass spectrometry lipidomics of human biofluids and ocular tissues
Benktander et al. Analytical scheme leading to integrated high-sensitivity profiling of glycosphingolipids together with N-and O-glycans from one sample

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16814510

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16814510

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP