WO2012081508A1 - Method for assaying glycosphingolipid - Google Patents

Method for assaying glycosphingolipid Download PDF

Info

Publication number
WO2012081508A1
WO2012081508A1 PCT/JP2011/078512 JP2011078512W WO2012081508A1 WO 2012081508 A1 WO2012081508 A1 WO 2012081508A1 JP 2011078512 W JP2011078512 W JP 2011078512W WO 2012081508 A1 WO2012081508 A1 WO 2012081508A1
Authority
WO
WIPO (PCT)
Prior art keywords
glycosphingolipid
disease
mass spectrometry
scdase
liquid
Prior art date
Application number
PCT/JP2011/078512
Other languages
French (fr)
Japanese (ja)
Inventor
徹 平戸
登 田中
秀人 森本
Original Assignee
日本ケミカルリサーチ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ケミカルリサーチ株式会社 filed Critical 日本ケミカルリサーチ株式会社
Priority to JP2012548765A priority Critical patent/JP5977174B2/en
Publication of WO2012081508A1 publication Critical patent/WO2012081508A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/92Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving lipids, e.g. cholesterol, lipoproteins, or their receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/914Hydrolases (3)
    • G01N2333/978Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5)
    • G01N2333/98Hydrolases (3) acting on carbon to nitrogen bonds other than peptide bonds (3.5) acting on amide bonds in linear amides (3.5.1)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2405/00Assays, e.g. immunoassays or enzyme assays, involving lipids
    • G01N2405/08Sphingolipids
    • G01N2405/10Glycosphingolipids, e.g. cerebrosides, gangliosides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7233Mass spectrometers interfaced to liquid or supercritical fluid chromatograph

Definitions

  • the present invention includes a step of deacylating a glycosphingolipid using a sphingolipid ceramide deacylase to form a lysosphingoglycolipid, and detecting the obtained lysosphingoglycolipid using mass spectrometry.
  • the present invention relates to a method for quantifying glycosphingolipid, and particularly to a method for quantifying glucocerebrosid or globotriaosylceramide.
  • Glucocerebroside is a type of glycosphingolipid in which glucose is ⁇ -glycoside-bonded to the hydroxyl group at the 1-position of ceramide, and is a generic name for heterogeneous molecules in which the chain length of the constituent fatty acid is not constant. is there.
  • glucocerebroside is metabolized by glucocerebrosidase (glucosylceramidase) through hydrolysis at a ⁇ -glycoside bond (FIG. 1). Therefore, as a treatment method for Gaucher's disease, glucocerebrosidase accumulated in the patient's organs is administered by administering glucocerebrosidase to the patient by intravenous injection or the like and supplementing glucocerebrosidase that is lacking in the patient's body. Enzyme replacement therapy is being performed to break down and improve various symptoms such as hematopoietic disorders.
  • Gaucher's disease There are multiple clinical types of Gaucher's disease. Among them, the so-called infant type and younger type are characterized in that they show progressive central nervous symptoms from infancy or early childhood. Therefore, in order to suppress the progression of the disease state, it is desirable to start treatment early. For this purpose, it is necessary to diagnose Gaucher disease at the infancy stage. *
  • Globotriaosylceramide is a type of glycosphingolipid in which three hexoses are linked via the hydroxyl group at the 1-position of ceramide, and its hetero-molecular chain length is not constant. It is a generic name.
  • ceramide trihexoside including globotriaosyl ceramide is metabolized by ⁇ -galactosidase A at the non-reducing end ⁇ -galactoside bond (FIG. 2). .
  • ⁇ -galactosidase A is administered to a patient by intravenous injection or the like, and ⁇ -galactosidase A that is deficient in the patient's body is replenished, so that globo accumulated in the patient's organs.
  • Enzyme replacement therapy is being performed to break down ceramides and trihexosides such as trioosylceramide to improve various symptoms such as cardiovascular lesions.
  • Fabry disease is often asymptomatic in early childhood, and limb pain, skin rash, etc. are observed after school age, and severe symptoms such as cardiovascular lesions and kidney damage appear after puberty. Is a progressive disease that becomes. Therefore, it is desirable to start treatment early in order to suppress the progression of the disease state. For that purpose, it is necessary to diagnose Fabry disease at the stage of asymptomatic infants.
  • genetic diseases caused by glycosphingolipid accumulation include Krabbe disease, metachromatic leukodystrophy, G M1 -gangliosidosis, G M2 -gangliosidosis and the like.
  • Krabbe disease metachromatic leukodystrophy
  • G M1 -gangliosidosis metachromatic leukodystrophy
  • G M2 -gangliosidosis galactocerebroside, sulfatide, ganglioside G M1 , ganglioside G M2 and the like accumulate in the patient's body.
  • the gene diagnosis method is a highly versatile diagnosis method that can be used for diagnosis of almost all genetic diseases.
  • the genetic diagnosis method requires a complicated procedure of extracting DNA or RNA from a sample such as blood collected from each patient and then sequentially specifying the base sequence of the DNA or RNA.
  • the mutation position on the gene is not constant depending on the patient, so in order to detect the abnormality of the gene, it is necessary to investigate the presence or absence of the abnormality throughout the gene, Gene diagnosis is a time-consuming and expensive diagnosis. Therefore, genetic diagnosis is not always an appropriate method for diagnosing many infants.
  • ceramide trihexoside sphingoglycolipid
  • ESI / MS electrospray ionization tandem mass spectrometry
  • ceramide trihexoside is measured using, for example, ceramide / trihexoside whose fatty acid is heptadecanoic acid as a standard product. Therefore, the measured value is an approximate value.
  • a product obtained by removing a fatty acid from a sphingoglycolipid is called a lysosphingo glycolipid (lyso form).
  • a method for converting to a lyso form in this way a method of specifically hydrolyzing an amide bond in a glycosphingolipid (eg, glucocerebroside, globotriaosylceramide, etc.) with a sphingolipid ceramide deacylase (SCDase) There is. ( Figure 3).
  • SCDase has been isolated from various organisms so far, including SCDase derived from Pseudomonas (Patent Document 2, Patent Document 3), SCDase derived from Schwannella (Patent Document 3), and G8 derived from a marine bacterium, Shebanera alga.
  • SCDase (patent document 4) derived from a strain
  • SCDase (patent document 5) derived from a strain (non-fermentative gram-negative bacillus AI-2 (FERM P-16124)) obtained from desquamation of atopic dermatitis patients, Streptomyces A genus-derived SCDase (Patent Document 6) and the like are known.
  • Patent Document 2 and Patent Document 3 it is confirmed by detecting the obtained lyso form by mass spectrometry that a glycosphingolipid is deacylated with the above SCDase to obtain a lyso form.
  • the object of the present invention is to provide a simple and economical glycosphingolipid, particularly glucocerebrosid and globotriosylceramide, which are causative in genetic diseases caused by glycosphingolipid accumulation. It is to provide a more sensitive quantitative method.
  • the present inventors hydrolyzed glycosphingolipid with sphingolipid ceramide deacylase (SCDase) to obtain a lyso form, and then analyzed the lyso form by mass spectrometry.
  • SCDase sphingolipid ceramide deacylase
  • the present inventors have found that glycosphingolipids can be quantified with high sensitivity.
  • the present inventors sonicated a solution or suspension containing the sphingoglycolipid, frozen it once, thawed, and then SCDase.
  • the lysosphingo glycolipid-containing solution thus obtained is subjected to an enzymatic reaction and analyzed by mass spectrometry, the lysosphingo glycolipid-containing solution is subjected to ultrasonic treatment in advance. It was found that the quantitative value of was stabilized and the detection sensitivity was further increased. The present invention has been completed based on these findings.
  • a method for quantifying glycosphingolipid (A) A specimen containing glycosphingolipid is dissolved or dispersed in an aqueous solution, and a sphingolipid ceramide deacylase is added to the glycosphingolipid-containing liquid thus obtained to deacylate the glycosphingolipid contained therein by hydrolysis.
  • the specimen is obtained from any one selected from the group consisting of kidney, liver and other organ tissues collected from the subject, blood, cerebrospinal fluid and other body fluids, urine, skin, muscle, and interstitial tissue.
  • glycosphingolipid is selected from the group consisting of glucocerebroside, globotriaosylceramide, galactocerebroside, sulfatide, ganglioside G M1 and ganglioside G M2.
  • the specimen is obtained from any one selected from the group consisting of kidney, liver and other organ tissues collected from the subject, blood, spinal fluid and other body fluids, urine, skin, muscle, and interstitial tissue.
  • the sphingolipid ceramide deacylase comprises SCDase derived from Pseudomonas, SCDase derived from Shewanella, SCDase derived from Streptomyces, and SCDase derived from non-fermentative Gram-negative bacilli AI-2 (FERM P-16124) A preparation method according to any one of the above [11] to [14], which is selected from the group; [16] A method for quantifying glycosphingolipid, (A) sonicating the lysosphingoglycolipid-containing solution prepared in any one of [11] to [15] above; (B) a quantification method comprising a step of quantifying the glycosphingolipid by measuring lysosphingoglycolipid contained in the ultrasonically treated liquid by mass spectrometry; [
  • a method for producing a lysosphingoglycolipid-containing liquid (A) dissolving or dispersing a material containing glycosphingolipid in an aqueous solution, and sonicating the glycosphingolipid-containing liquid thus obtained; (B) freezing the sonicated liquid; (C) thawing the frozen solution; and (D) a step of adding a sphingolipid ceramide deacylase to the melted liquid and deacylating the glycosphingolipid contained in the liquid by hydrolysis to release the lysosphingoglycolipid. ,Production method.
  • glycosphingolipids particularly glucocerebrosides and globotriaosylceramides can be quantified simply, economically and with higher sensitivity. Furthermore, according to the present invention, it is possible to provide a lysosphingoglycolipid-containing solution used for the determination.
  • the glycosphingolipid diagnostic method according to the present invention is simple and economical, and thus can be used not only for diagnosis of specific subjects but also for large-scale diagnosis, for example, large-scale screening of newborns. It is also possible to grasp the medical condition over time by periodically diagnosing a specific patient. Further, by diagnosing a patient before and after treatment such as enzyme replacement therapy, the degree of the effect of the treatment can be known.
  • FIG. 1 is a drawing showing glucocerebrosides and locations in the molecule that are hydrolyzed by glucocerebrosidase. An arrow indicates a portion hydrolyzed by glucocerebrosidase, and R indicates an acyl group of a fatty acid.
  • FIG. 2 is a drawing showing globotriaosylceramide and the portion of the molecule that is hydrolyzed by ⁇ -galactosidase A. An arrow indicates a portion hydrolyzed by ⁇ -galactosidase A, and R indicates an acyl group of a fatty acid.
  • FIG. 1 is a drawing showing glucocerebrosides and locations in the molecule that are hydrolyzed by glucocerebrosidase. An arrow indicates a portion hydrolyzed by glucocerebrosidase, and R indicates an acyl group of a fatty acid.
  • FIG. 2 is a drawing showing
  • FIG. 3 is a drawing showing hydrolysis of a sphingoglycolipid by a sphingolipid ceramide deacylase (SCDase). An arrow indicates a portion hydrolyzed by SCDase, R1 indicates an acyl group of a fatty acid, and R2 indicates a sugar or a sugar chain.
  • A Glycosphingolipid
  • B Glycosphingolipid
  • FIG. 4 is a drawing showing an ion chromatogram of globotriaosylsphingosine (lyso form). The vertical axis represents ion intensity (cps: counts / second), and the horizontal axis represents retention time (min).
  • FIG. 5 is a drawing showing a calibration curve of globotriaosylceramide.
  • the vertical axis is the peak area (counts) of the ion chromatogram of globotriaosylsphingosine (lyso form), and the horizontal axis is the concentration of globotriaosylceramide (ng / ng) in the glycosphingolipid (globotriaosylceramide) -containing solution. mL).
  • the glycosphingolipid to be quantified is not particularly limited as long as the glycosphingolipid is hydrolyzed with SCDase to produce a lysosphingoglycolipid.
  • SCDase to produce a lysosphingoglycolipid.
  • the glycosphingolipid in the present invention are glucocerebroside, globotriaosylceramide, galactocerebroside, sulfatide, ganglioside G M1 and ganglioside G M2 .
  • ganglioside G M1 is G M1 - gangliosidoses patient
  • ganglioside G M2 is a glycosphingolipid known to accumulate in the body of patients with G M2 -gangliosidosis, respectively. Therefore, by quantifying these glycosphingolipids, it is possible to specify a patient or a carrier of a disease whose pathogenesis is the accumulation of glycosphingolipids.
  • glycosphingolipids of the invention are disease pathogenesis accumulation of glycosphingolipids, particularly Gaucher disease, Fabry disease, Krabbe disease, metachromatic leukodystrophy, G M1 - gangliosidosis, G M2 - It can be used as a diagnostic method for gangliosidosis.
  • “specimen containing glycosphingolipid” or “material containing glycosphingolipid” means microorganisms, plants, animals (including humans), etc. containing glycosphingolipid, and artificial (for example, All samples containing glycosphingolipids synthesized industrially) are included.
  • animal tissues and the like refer to kidney, liver and other organ tissues, blood, cerebrospinal fluid and other body fluids, urine, skin, muscle, and interstitial tissues. Diagnosis of diseases caused by the accumulation of glycosphingolipids according to the present invention is carried out using subjects such as kidney, liver and other organ tissues, blood, cerebrospinal fluid and other body fluids, urine, skin, muscle, and interstitial tissues as specimens.
  • glycosphingolipid contained in these Collected and quantified glycosphingolipid contained in these.
  • blood and urine are collected as specimens for easy collection.
  • needle biopsy is generally used to puncture the organ and collect a part of it, but not limited to this, other methods such as incisional biopsy and excisional biopsy should also be used.
  • Can do As a result of quantification, when the obtained quantitative value shows an abnormally high value, the subject can be estimated or diagnosed as a patient or carrier of these diseases.
  • the specimen or material containing glycosphingolipid when a specimen or material containing glycosphingolipid is treated with SCDase, the specimen or material is dissolved or dispersed or suspended in an aqueous solution in advance to obtain a glycosphingolipid-containing liquid.
  • SCDase treatment may be performed after thawing what has been frozen by ultrasonic treatment.
  • the aqueous solution in which the specimen or the material is dissolved or dispersed or suspended is preferably a buffer, and the pH is preferably pH 5.5 to 6.5, more preferably pH 5.8 to 6.2. Particularly preferred is about pH 6.0.
  • the buffer used at this time is not particularly limited, but is preferably an acetate buffer or a phosphate buffer.
  • the “sphingoglycolipid-containing liquid” herein refers to not only a state in which the glycosphingolipid is completely dissolved in the buffer solution, but also a liquid in which the glycosphingolipid is dispersed or suspended in the buffer solution. Including.
  • the concentration of the glycosphingolipid in the glycosphingolipid-containing solution is not particularly limited as long as the glycosphingolipid or the glycosphingolipid-containing solution can be prepared by dispersing or suspending, but is preferably a concentration of 4 to 2000 ng / mL. It is.
  • the ultrasonic treatment of the glycosphingolipid-containing solution is performed for the purpose of sufficiently dissolving the glycosphingolipid in the buffer solution (that is, dissolving, dispersing or suspending, etc.).
  • the glycosphingolipid is not subject to physical degradation, it may be performed under any conditions.
  • an ultrasonic treatment device sonicator
  • an ultrasonic cleaner for example, USK-3R (As One Corporation)
  • USK-3R As One Corporation
  • the temperature of the glycosphingolipid-containing liquid at the time of sonication is not particularly limited as long as the liquid phase state of the liquid is maintained and the glycosphingolipid is not denatured. C.).
  • the sonication time is not particularly limited as long as the purpose of the sonication is achieved, but the preferred time when using an ultrasonic cleaner is, for example, 15 minutes to 60 minutes, more preferably. Examples include 20 to 40 minutes.
  • Freezing of the glycosphingolipid-containing solution after ultrasonic treatment is not particularly limited as long as the solution is completely frozen and the glycosphingolipid as a content is not denatured.
  • a preferable freezing temperature is, for example, ⁇ 20 ° C. to ⁇ 180 ° C., more preferably ⁇ 60 ° C. to ⁇ 100 ° C.
  • a room temperature sphingoglycolipid-containing liquid is placed in a freezer set at a predetermined freezing temperature and frozen as it is.
  • the melting of the frozen glycosphingolipid-containing solution is not particularly limited as long as the content of the glycosphingolipid is not affected by denaturation or the like, but can be carried out, for example, by leaving it at room temperature.
  • the sphingolipid ceramide deacylase (SCDase) used in the present invention has an activity capable of specifically hydrolyzing an amide bond in a glycosphingolipid to liberate a fatty acid, thereby converting the glycosphingolipid into a lysosphingoglycolipid.
  • SCDase derived from Pseudomonas for example, Pseudomonas sp.
  • SCDase derived from non-fermentative Gram-negative bacilli AI-2 (FERM P-16124), etc.
  • SCDase derived from Pseudomonas is preferred.
  • Hydrolysis with SCDase can be carried out by a conventional method.
  • the reaction temperature is preferably in the range of 36 to 40 ° C.
  • the reaction time is preferably in the range of 10 to 20 hours.
  • the enzyme reaction can be stopped by heating the lysosphingoglycolipid-containing solution after the reaction to deactivate the enzyme. Heating can be carried out, for example, by maintaining a temperature of 90 ° C. or higher for 3 to 10 minutes.
  • the lysosphingoglycolipid-containing solution obtained by SCDase treatment may be subjected to ultrasonic treatment before analysis by mass spectrometry.
  • the sonication is performed for the purpose of sufficiently dissolving the lysosphingoglycolipid, and so may be performed under any conditions as long as this purpose can be achieved and the lysosphingoglycolipid is not subject to physical degradation. , And can be carried out in the same manner as described above.
  • tandem mass spectrometry there is no particular limitation on the mass spectrometry used for the analysis of glycosphingolipid, but tandem mass spectrometry (MS / MS) is preferably used.
  • the high performance liquid chromatograph tandem mass spectrometry (LC / MS / MS) described in the examples is an example.
  • selection of a column and other various settings can be appropriately performed according to a conventional method.
  • Tandem mass spectrometry (MS / MS) can also be carried out according to conventional methods. For example, lysosphingoglycolipids are ionized (parent ions) and cleaved by colliding them with a collision gas.
  • the ionization method include soft ionization methods such as electroion spray ionization, atmospheric pressure chemical ionization, and thermospray ionization. Among these, the electro ion spray ionization method can be preferably used.
  • Glycosphingolipid quantification using mass spectrometry in the present invention is carried out by subjecting a standard product containing a known concentration of glycosphingolipid to SCDase treatment and analyzing it by mass spectrometry to determine the ion chromatogram of lysosphingoglycolipid. Obtain the peak area, then draw a calibration curve that shows the correlation between the glycosphingolipid concentration and the peak area, and then analyze the sample or material by mass spectrometry on the ion chromatogram of lysosphingoglycolipid. The amount of glycosphingolipid contained in the specimen or material is calculated by interpolating the peak area.
  • the present invention is not limited to this, and the maximum value of the ion intensity of the ion chromatogram can be used as a parameter instead of the peak area.
  • lysosphingoglycolipid or “lyso form” refers to a deacylated form obtained by hydrolyzing the amide bond of the glycosphingolipid and removing the fatty acid from the glycosphingolipid.
  • This GL-3 standard solution was serially diluted with a TDC solution to prepare 2000, 1000, 400, 200, 40, 20, and 4 ng / mL GL-3 standard solutions.
  • 50 ⁇ L of each GL-3 standard solution is dispensed into a 500 ⁇ L PP test tube (assist) and ultrasonic cleaner [USK-3R, ASONE CORPORATION, main specifications (tank volume: 5.9 L, oscillation frequency] : 40kHz, Oscillator circuit: Separately excited oscillation method, Oscillator: BLT (Bolt-tightened Langevin), Output: 120W], ultrasonic treatment was performed at room temperature (25 ° C) for 30 minutes, then about 15 at -80 ° C Freeze for hours.
  • SCDase treatment of globotriaosylceramide standard solution 5 ⁇ L (25 mU) of Pseudomonas SCDase derived from sp. (Sphingolipid ceramide N-deacylase (Takara Bio) was mixed with 995 ⁇ L of TDC solution to make 2XSCDase solution. After thawing each GL-3 standard solution (50 ⁇ L) at room temperature, 50 ⁇ L of 2XSCDase solution was added thereto and mixed, and allowed to stand at 37 ° C. for about 15 hours to hydrolyze globotriaosylceramide to obtain a lyso form (globotriaosyl sphingosine). SCDase was inactivated by heating at 5 ° C. for 5 minutes.
  • Condition 1 group those subjected to SCDase treatment without performing the above ultrasonic treatment and freezing and thawing were classified as Condition 2 group.
  • the SCDase treatment was performed on 6 samples independently for each group.
  • API2000 (ABI) comprising an ion spray part, three quadrupole parts (Q1, Q2, Q3) and a detection part was used.
  • the measurement sample introduced into this apparatus is continuously ionized by the ion spray unit.
  • the ionized sample is first introduced into Q1.
  • the ions introduced into Q2 collide with collision gas (nitrogen) and cleave, producing various daughter ions with globotriaosylsphingosine as the parent ion.
  • the resulting daughter ions are then introduced into Q3.
  • the LC / MS / MS method was performed using API2000 (ABI) as a tandem mass spectrometer and LC20 (Shimadzu Corporation) as a high performance liquid chromatography apparatus.
  • API2000 ABSI
  • LC20 Shiadzu Corporation
  • the column temperature was previously set to 40 ° C. in a column oven, and the column was equilibrated with a mixed solution of methanol: 0.1% (v / v) formic acid aqueous solution (75:25). 20 ⁇ L of the above standard solution sonicated was added to the column.
  • the flow rate was 0.2 mL / min, and after addition of the sample, methanol: 0.1% (v / v) aqueous formic acid (75:25) was allowed to flow for 2 minutes, and then methanol: 0.1% (v / v) aqueous formic acid (85: Then, the methanol concentration ratio was linearly increased to 95% over 4 minutes, and finally 100% methanol was allowed to flow for 2 minutes.
  • the solution that passed through the column under the above conditions was continuously introduced into the tandem mass spectrometer.
  • sample analysis by high-performance liquid chromatograph tandem mass spectrometry (LC / MS / MS method)
  • condition 1 group 100 ⁇ L of acetonitrile was added to the SCDase-treated sample, mixed, and then sonicated using an ultrasonic cleaner (USK-3R, ASONE CORPORATION) at room temperature (25 ° C). For 30 minutes.
  • the sample after sonication was dispensed into a 300 ⁇ L vial for HPLC (Shimadzu Corporation) and analyzed by the LC / MS / MS method.
  • the analysis by LC / MS / MS method was performed in the same manner as the preparation of the above calibration curve, and the ion intensity derived from globotriaosylsphingosine (lyso form) was measured to prepare an ion chromatogram. Using this and the calibration curve created above, the concentration of globotriaosylceramide contained in the sample was calculated. On the other hand, for the condition 2 group, the above analysis was performed without ultrasonic treatment. The measurement was performed twice for each sample in each group, and the average value was taken as the measurement value.
  • FIG. 4 shows an ion chromatogram of globotriaosylsphingosine (lyso form) obtained using a globotriaosylceramide standard solution (2000 ng / mL).
  • the horizontal axis represents the retention time (minutes), and the vertical axis represents the ionic strength (cps: count / second).
  • the peak derived from globotriaosylsphingosine reached its maximum intensity with a retention time of 3.68 minutes. The area surrounded by the horizontal axis and the peak was calculated as the peak area.
  • Fig. 5 shows a calibration curve prepared using a standard solution prepared by serial dilution of globotriaosylceramide.
  • condition 1 group In the group (condition 1 group) that was sonicated and freeze-thawed at the time of SCDase treatment and sonicated at the time of analysis by mass spectrometry (at the time of mass spectrometry), the six quantitative values of globotriaosylceramide were The standard deviation was 32.36, and the relative standard deviation was 1.15% (the upper part of Table 1). On the other hand, the quantitative values of 6 times in the condition 2 group were in the range of 2540-3072 ng, the standard deviation was 197.5, and the relative standard deviation was 7.14% (lower part of Table 1). In both condition group 1 and condition group 2, globotriaosylceramide contained in the specimen could be quantified. Moreover, in the condition 1 group, a quantitative value having less variation than the condition 2 group could be obtained (the upper part of Table 1).
  • the above results are obtained by hydrolyzing globotriaosylceramide contained in the sample with sphingolipid ceramide deacylase to obtain the lyso form, and then analyzing the lyso form by mass spectrometry. It shows that ceramide can be quantified.
  • mass spectrometry is used to obtain 4 to 2000 ng / This shows that the amount of globotriaosylceramide contained in a sample in the range of mL can be quantified very accurately.
  • the present invention it is possible to diagnose a patient having a disease caused by glycosphingolipid accumulation or a carrier thereof, particularly a patient with Gaucher's disease and Fabry disease.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Endocrinology (AREA)
  • Food Science & Technology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

Disclosed is a simple, economical, and highly sensitive method for assaying a glycosphingolipid. This method for assaying a glycosphingolipid comprises a step for deacylating the glycosphingolipid using sphingolipid-ceramide deacylase to obtain a lyso form, and a step for detecting the generated lyso form by using mass spectrometry.

Description

スフィンゴ糖脂質の定量法Determination of glycosphingolipids
 本発明は、スフィンゴ糖脂質を、スフィンゴ脂質セラミドデアシラーゼを用いて脱アシル化しリゾスフィンゴ糖脂質とするステップと、得られたリゾスフィンゴ糖脂質を質量分析法を用いて検出するステップとを含む、スフィンゴ糖脂質の定量法に関し、特にグルコセレブロシドまたはグロボトリアオシルセラミドの定量法に関する。 The present invention includes a step of deacylating a glycosphingolipid using a sphingolipid ceramide deacylase to form a lysosphingoglycolipid, and detecting the obtained lysosphingoglycolipid using mass spectrometry. The present invention relates to a method for quantifying glycosphingolipid, and particularly to a method for quantifying glucocerebrosid or globotriaosylceramide.
 ライソゾーム病の一種であるゴーシェ病の患者は、グルコセレブロシダーゼの活性が遺伝的要因により無いかまたは低下しており、その結果としてグルコセレブロシドが分解されずに臓器及び血中に蓄積し、造血器障害等の諸症状が引き起こされる。グルコセレブロシド(グルコシルセラミド)は、セラミドの1位のヒドロキシル基にグルコースがβ-グリコシド結合したスフィンゴ糖脂質の一種であり、その構成成分である脂肪酸の鎖長が一定ではないヘテロな分子の総称である。ヒトを含む哺乳動物の生体内では、グルコセレブロシドは、グルコセレブロシダーゼ(グルコシルセラミダーゼ)によってβ-グリコシド結合で加水分解を受けて代謝される(図1)。
 そこで、ゴーシェ病の治療法として、グルコセレブロシダーゼを静脈注射等により患者に投与して、患者の体内で不足しているグルコセレブロシダーゼを補充することにより、患者の臓器中に蓄積したグルコセレブロシドを分解し、造血器障害等の諸症状の改善を図る、酵素補充療法が行われている。 
In patients with Gaucher's disease, a type of lysosomal disease, the activity of glucocerebrosidase is absent or decreased due to genetic factors. As a result, glucocerebrosid is accumulated in organs and blood without being decomposed, resulting in hematopoietic organs. Symptoms such as disability are caused. Glucocerebroside (glucosylceramide) is a type of glycosphingolipid in which glucose is β-glycoside-bonded to the hydroxyl group at the 1-position of ceramide, and is a generic name for heterogeneous molecules in which the chain length of the constituent fatty acid is not constant. is there. In mammals including humans, glucocerebroside is metabolized by glucocerebrosidase (glucosylceramidase) through hydrolysis at a β-glycoside bond (FIG. 1).
Therefore, as a treatment method for Gaucher's disease, glucocerebrosidase accumulated in the patient's organs is administered by administering glucocerebrosidase to the patient by intravenous injection or the like and supplementing glucocerebrosidase that is lacking in the patient's body. Enzyme replacement therapy is being performed to break down and improve various symptoms such as hematopoietic disorders.
 ゴーシェ病には複数の臨床病型があるが、その中でも乳幼児型および若年型と呼ばれるものは、乳児期あるいは幼児学童期から進行性の中枢神経症状を示す点に特徴がある。従って、その病状の進行を抑制するためには早期に治療を開始することが望まれる。そのためには、乳児期の段階でゴーシェ病を診断する必要がある。  There are multiple clinical types of Gaucher's disease. Among them, the so-called infant type and younger type are characterized in that they show progressive central nervous symptoms from infancy or early childhood. Therefore, in order to suppress the progression of the disease state, it is desirable to start treatment early. For this purpose, it is necessary to diagnose Gaucher disease at the infancy stage. *
 ライソゾーム病の一種であるファブリー病の患者は、α-ガラクトシダーゼAの活性が遺伝的要因により無いかまたは低下しており、その結果としてグロボトリアオシルセラミド等のセラミド・トリヘクソシドが分解されずに臓器及び血中に蓄積し、心血管病変、腎障害等の諸症状が引き起こされる。グロボトリアオシルセラミドは、セラミドの1位のヒドロキシル基を介して、3個のヘキソースが結合したスフィンゴ糖脂質の一種であり、その構成成分である脂肪酸の鎖長が一定ではないヘテロな分子の総称である。ヒトを含む哺乳動物の生体内では、グロボトリアオシルセラミドを含むセラミド・トリヘクソシドは、その非還元末端のα-ガラクトシド結合で、α-ガラクトシダーゼAによって加水分解を受けて代謝される(図2)。 In patients with Fabry disease, a type of lysosomal disease, the activity of α-galactosidase A is absent or decreased due to genetic factors, and as a result, ceramides and trihexosides such as globotriaosylceramide are not degraded. It accumulates in the blood and causes various symptoms such as cardiovascular lesions and kidney damage. Globotriaosylceramide is a type of glycosphingolipid in which three hexoses are linked via the hydroxyl group at the 1-position of ceramide, and its hetero-molecular chain length is not constant. It is a generic name. In mammals including humans, ceramide trihexoside including globotriaosyl ceramide is metabolized by α-galactosidase A at the non-reducing end α-galactoside bond (FIG. 2). .
 そこで、ファブリー病の治療法として、α-ガラクトシダーゼAを静脈注射等により患者に投与して、患者の体内で不足しているα-ガラクトシダーゼAを補充することにより、患者の臓器中に蓄積したグロボトリアオシルセラミド等のセラミド・トリヘクソシドを分解し、心血管病変等の諸症状の改善を図る、酵素補充療法が行われている。   Therefore, as a treatment method for Fabry disease, α-galactosidase A is administered to a patient by intravenous injection or the like, and α-galactosidase A that is deficient in the patient's body is replenished, so that globo accumulated in the patient's organs. Enzyme replacement therapy is being performed to break down ceramides and trihexosides such as trioosylceramide to improve various symptoms such as cardiovascular lesions. *
 ファブリー病は乳幼児期には無症状であることが多く、学齢期以後に四肢疼痛、皮膚発疹等が認められ、思春期以降に心血管病変、腎障害等の重篤な諸症状が出現するようになる進行性の疾患である。従って、その病状の進行を抑制するために早期に治療を開始することが望まれる。そのためには、未だ無症状の乳幼児期の段階でファブリー病を診断する必要がある。 Fabry disease is often asymptomatic in early childhood, and limb pain, skin rash, etc. are observed after school age, and severe symptoms such as cardiovascular lesions and kidney damage appear after puberty. Is a progressive disease that becomes. Therefore, it is desirable to start treatment early in order to suppress the progression of the disease state. For that purpose, it is necessary to diagnose Fabry disease at the stage of asymptomatic infants.
 ゴーシェ病、ファブリー病の他に、スフィンゴ糖脂質の蓄積を病因とする遺伝病には、クラッベ病、異染性ロイコジストロフィー、GM1-ガングリオシドーシス、GM2-ガングリオシドーシスなどが知られており、それぞれ、ガラクトセレブロシド、スルファチド、ガングリオシドGM1、ガングリオシドGM2などが患者の体内に蓄積する。 In addition to Gaucher's disease and Fabry disease, genetic diseases caused by glycosphingolipid accumulation include Krabbe disease, metachromatic leukodystrophy, G M1 -gangliosidosis, G M2 -gangliosidosis and the like. In this case, galactocerebroside, sulfatide, ganglioside G M1 , ganglioside G M2 and the like accumulate in the patient's body.
 これら遺伝病の診断方法として、患者の遺伝子の塩基配列をDNAシーケンサーを用いて解析し、遺伝子の異常の有無を検出する遺伝子診断法がある。遺伝子診断法はほぼ全ての遺伝子病の診断に用いることのできる汎用性の高い診断方法である。
 しかし、遺伝子診断法は、各患者から採取した血液等のサンプルからDNAまたはRNAを抽出したうえで、DNAまたはRNAの塩基配列を逐次特定するという煩雑な手順を必要とする。また、同じ遺伝子疾患でも、患者により遺伝子上の変異位置は一定ではないので、遺伝子の異常を検出するためには、その遺伝子の全体に渡って異常の有無を調べることが必要となり、その結果、遺伝子診断法は、時間のかかる高額な診断法となる。従って、多くの乳幼児を診断する方法として、遺伝子診断法は必ずしも適当な方法であるとはいえない。 
As a method for diagnosing these genetic diseases, there is a gene diagnostic method in which the base sequence of a patient's gene is analyzed using a DNA sequencer to detect the presence or absence of a gene abnormality. The gene diagnosis method is a highly versatile diagnosis method that can be used for diagnosis of almost all genetic diseases.
However, the genetic diagnosis method requires a complicated procedure of extracting DNA or RNA from a sample such as blood collected from each patient and then sequentially specifying the base sequence of the DNA or RNA. In addition, even in the same genetic disease, the mutation position on the gene is not constant depending on the patient, so in order to detect the abnormality of the gene, it is necessary to investigate the presence or absence of the abnormality throughout the gene, Gene diagnosis is a time-consuming and expensive diagnosis. Therefore, genetic diagnosis is not always an appropriate method for diagnosing many infants.
 ファブリー病の患者では、健常者と比較して血中または尿中に含まれるグロボトリアオシルセラミドをはじめとするセラミド・トリヘクソシド(スフィンゴ糖脂質)の濃度が上昇する。そこで、遺伝子診断法に代わる比較的簡便なファブリー病の診断法として、患者の血中または尿中に含まれるセラミド・トリヘクソシドを、質量分析法(エレクトロスプレイイオン化タンデム質量分析法:ESI/MS)を用いて定量する方法が知られている(特許文献1)。しかし、セラミド・トリヘクソシドは、その構成成分の脂肪酸の鎖長が一定ではない一群のヘテロな分子種である。従って、セラミド・トリヘクソシドをそのまま質量分析法を用いて定量するためには、脂肪酸の鎖長が異なる個々の分子種に対応した標準品を準備して検量線を作成し、各分子種について個別に定量する必要があり煩雑である。そこで、上記文献では、標準品として、例えば脂肪酸がヘプタデカン酸であるセラミド・トリヘクソシドを用いて、セラミド・トリヘクソシドの測定が行われている。従って、その測定値は近似値となる。 In patients with Fabry disease, the concentration of ceramide trihexoside (sphingoglycolipid) such as globotriaosylceramide contained in blood or urine is increased compared to healthy subjects. Therefore, as a comparatively simple method for diagnosing Fabry disease instead of genetic diagnosis, ceramide trihexoside contained in the blood or urine of patients is analyzed by mass spectrometry (electrospray ionization tandem mass spectrometry: ESI / MS). A method of quantifying using this is known (Patent Document 1). However, ceramide trihexoside is a group of heterogeneous molecular species whose constituent fatty acid chain lengths are not constant. Therefore, in order to quantify ceramide trihexoside directly using mass spectrometry, prepare a standard product corresponding to each molecular species with different fatty acid chain lengths, create a calibration curve, and individually prepare each molecular species. It is necessary to quantify and is complicated. Therefore, in the above document, ceramide / trihexoside is measured using, for example, ceramide / trihexoside whose fatty acid is heptadecanoic acid as a standard product. Therefore, the measured value is an approximate value.
 スフィンゴ糖脂質から脂肪酸を取り除いたもの(脱アシル体)は、リゾスフィンゴ糖脂質(リゾ体)と呼ばれている。このようにリゾ体へ変換する方法として、スフィンゴ糖脂質(例えば、グルコセレブロシド、グロボトリアオシルセラミド等)中のアミド結合を、スフィンゴ脂質セラミドデアシラーゼ(SCDase)で、特異的に加水分解する方法がある。(図3)。SCDaseは、これまでに種々の生物から単離されており、シュードモナス属由来のSCDase(特許文献2、特許文献3)、シュワネラ属由来のSCDase(特許文献3)、海洋性細菌であるシェバネラアルガ由来 G8株由来のSCDase(特許文献4)、アトピー性皮膚炎患者の落屑より得られた菌株(非醗酵性グラム陰性桿菌AI―2(FERM P-16124))由来のSCDase(特許文献5)、ストレプトミセス属由来のSCDase(特許文献6)等が知られている。 A product obtained by removing a fatty acid from a sphingoglycolipid (deacylated form) is called a lysosphingo glycolipid (lyso form). As a method for converting to a lyso form in this way, a method of specifically hydrolyzing an amide bond in a glycosphingolipid (eg, glucocerebroside, globotriaosylceramide, etc.) with a sphingolipid ceramide deacylase (SCDase) There is. (Figure 3). SCDase has been isolated from various organisms so far, including SCDase derived from Pseudomonas (Patent Document 2, Patent Document 3), SCDase derived from Schwannella (Patent Document 3), and G8 derived from a marine bacterium, Shebanera alga. SCDase (patent document 4) derived from a strain, SCDase (patent document 5) derived from a strain (non-fermentative gram-negative bacillus AI-2 (FERM P-16124)) obtained from desquamation of atopic dermatitis patients, Streptomyces A genus-derived SCDase (Patent Document 6) and the like are known.
 特許文献2及び特許文献3においては、スフィンゴ糖脂質を上記SCDaseにより脱アシル化してリゾ体が得られることを、得られたリゾ体を質量分析法で検出ことにより確認している。 In Patent Document 2 and Patent Document 3, it is confirmed by detecting the obtained lyso form by mass spectrometry that a glycosphingolipid is deacylated with the above SCDase to obtain a lyso form.
 また、ファブリー病の患者において血液中のリゾスフィンゴ糖脂質の濃度が上昇することを利用して、このように上昇したリゾスフィンゴ糖脂質をエレクトロスプレータンデム型質量分析法により定量することにより、ファブリー病を診断することが報告されている(特許文献7)。 In addition, by utilizing the increase in the concentration of lysosphingoglycolipid in blood in patients with Fabry disease, the lysosphingoglycolipid thus increased is quantified by electrospray tandem mass spectrometry, so that Fabry disease Has been reported (Patent Document 7).
特表2005-512061公報JP 2005-512061 A 特開平8-84587公報JP-A-8-84587 特開平10-45792公報JP 10-45792 A WO2002/026963WO2002 / 026963 特開平10-257884公報JP-A-10-257784 特開平7-107988公報JP-A-7-1079888 米国特許公開公報2010/0047844US Patent Publication 2010/0047844
 上記背景の下で、本発明の目的は、スフィンゴ糖脂質の蓄積を病因とする遺伝病において、原因となるスフィンゴ糖脂質、特にグルコセレブロシドおよびグロボトリアオシルセラミドについて、簡便で、経済的で、更に高感度な定量法を提供することである。 Under the above background, the object of the present invention is to provide a simple and economical glycosphingolipid, particularly glucocerebrosid and globotriosylceramide, which are causative in genetic diseases caused by glycosphingolipid accumulation. It is to provide a more sensitive quantitative method.
 上記目的に向けた研究において、本発明者らは、スフィンゴ糖脂質をスフィンゴ脂質セラミドデアシラーゼ(SCDase)で加水分解してそのリゾ体とした後、このリゾ体を質量分析法で分析することにより、高感度にスフィンゴ糖脂質を定量できることを見出した。更に、本発明者らは、スフィンゴ糖脂質を、SCDaseを用いて加水分解する際に、スフィンゴ糖脂質を含む溶液又は懸濁液を超音波処理して一旦凍結した後、融解してからSCDaseを添加して酵素反応に付すること、および、こうして得たリゾスフィンゴ糖脂質含有液を質量分析法により分析する際に、予め該リゾスフィンゴ糖脂質含有液を超音波処理することにより、スフィンゴ糖脂質の定量値が安定し、検出感度が更に上昇することを見出した。本発明はこれらの知見に基づき完成されたものである。 In the research for the above purpose, the present inventors hydrolyzed glycosphingolipid with sphingolipid ceramide deacylase (SCDase) to obtain a lyso form, and then analyzed the lyso form by mass spectrometry. The present inventors have found that glycosphingolipids can be quantified with high sensitivity. Furthermore, when hydrolyzing a sphingoglycolipid using SCDase, the present inventors sonicated a solution or suspension containing the sphingoglycolipid, frozen it once, thawed, and then SCDase. When the lysosphingo glycolipid-containing solution thus obtained is subjected to an enzymatic reaction and analyzed by mass spectrometry, the lysosphingo glycolipid-containing solution is subjected to ultrasonic treatment in advance. It was found that the quantitative value of was stabilized and the detection sensitivity was further increased. The present invention has been completed based on these findings.
 すなわち、本発明は以下を提供する。
 [1]スフィンゴ糖脂質を定量する方法であって、
 (a)スフィンゴ糖脂質を含む検体を水溶液に溶解または分散し、こうして得たスフィンゴ糖脂質含有液にスフィンゴ脂質セラミドデアシラーゼを添加してその中に含まれるスフィンゴ糖脂質を加水分解により脱アシル化して、リゾスフィンゴ糖脂質を遊離させるステップ、および、
 (b)該リゾスフィンゴ糖脂質を質量分析法で測定することにより、スフィンゴ糖脂質を定量するステップ
を含んでなるものである、定量方法、
 [2]検体が、被験者から採取された腎臓、肝臓その他の臓器の組織、血液、髄液その他の体液、尿、皮膚、筋肉、及び間質組織からなる群から選択されるいずれかから得られたものである、上記[1]の定量方法、
 [3]スフィンゴ糖脂質が、グルコセレブロシド、グロボトリアオシルセラミド、ガラクトセレブロシド、スルファチド、ガングリオシドGM1およびガングリオシドGM2からなる群から選択されるものである、上記[1]または[2]の定量方法、
 [4]スフィンゴ糖脂質が、グルコセレブロシドまたはグロボトリアオシルセラミドである、上記[1]または[2]の定量方法、
 [5]スフィンゴ脂質セラミドデアシラーゼが、シュードモナス属由来のSCDase、シェワネラ属由来のSCDase、ストレプトミセス属由来のSCDase、および非醗酵性グラム陰性桿菌AI-2(FERM P-16124)由来のSCDaseからなる群から選択されるものである、上記[1]~[4]のいずれかの定量方法、
 [6]質量分析方法がタンデム質量分析法(MS/MS)である、上記[1]~[5]のいずれかの定量方法、
 [7]質量分析方法が高速液体クロマトグラフタンデム質量分析(LC/MS/MS)である、上記[1]~[6]のいずれかの定量方法、
 [8]上記[1]~[7]のいずれかの定量方法を用いて、スフィンゴ糖脂質を定量することによる、スフィンゴ糖脂質の蓄積を病因とする疾患の診断方法、
 [9]スフィンゴ糖脂質の蓄積を病因とする疾患が、ゴーシェ病、ファブリー病、クラッベ病、異染性ロイコジストロフィー、GM1-ガングリオシドーシスおよびGM2-ガングリオシドーシスからなる群から選択されるものである、上記[8]の診断方法、
 [10]スフィンゴ糖脂質の蓄積を病因とする疾患が、ゴーシェ病またはファブリー病である、上記[8]の診断方法、
 [11]リゾスフィンゴ糖脂質含有液の調製方法であって、
 (a)スフィンゴ糖脂質を含む検体を水溶液に溶解または分散し、こうして得たスフィンゴ糖脂質含有液を超音波処理するステップ、
 (b)超音波処理した該液を凍結するステップ、
 (c)凍結した該液を融解するステップ、および、
 (d)融解した該液にスフィンゴ脂質セラミドデアシラーゼを添加して該液中に含まれるスフィンゴ糖脂質を加水分解により脱アシル化して、リゾスフィンゴ糖脂質を遊離させるステップ
を含んでなるものである、調製方法、
 [12]検体が、被験者から採取された腎臓、肝臓その他の臓器の組織、血液、髄液その他の体液、尿、皮膚、筋肉、及び間質組織からなる群から選択されるいずれかから得られたものである、上記[11]の調製方法、
 [13]スフィンゴ糖脂質が、グルコセレブロシド、グロボトリアオシルセラミド、ガラクトセレブロシド、スルファチド、ガングリオシドGM1およびガングリオシドGM2からなる群から選択されるものである、上記[11]又は[12]の調製方法、
 [14]スフィンゴ糖脂質が、グルコセレブロシドまたはグロボトリアオシルセラミドである、上記[11]又は[12]の調製方法、
 [15]スフィンゴ脂質セラミドデアシラーゼが、シュードモナス属由来のSCDase、シェワネラ属由来のSCDase、ストレプトミセス属由来のSCDase、および非醗酵性グラム陰性桿菌AI-2(FERM P-16124)由来のSCDaseからなる群から選択されるものである、上記[11]~[14]のいずれかの調製方法、
 [16]スフィンゴ糖脂質の定量方法であって、
 (a)上記[11]~[15]のいずれかで調製したリゾスフィンゴ糖脂質含有液を、超音波処理するステップ、
 (b)超音波処理した該液に含まれるリゾスフィンゴ糖脂質を質量分析法で測定することにより、スフィンゴ糖脂質を定量するステップ
を含んでなるものである、定量方法、
 [17]質量分析方法が、タンデム質量分析法(MS/MS)である、上記[16]の定量方法、
 [18]質量分析法が、高速液体クロマトグラフタンデム質量分析(LC/MS/MS)である、上記[16]の定量方法、
 [19]上記[16]~[18]のいずれかの定量方法を用いて、スフィンゴ糖脂質を定量することによる、スフィンゴ糖脂質の蓄積を病因とする疾患の診断方法、
 [20]スフィンゴ糖脂質の蓄積を病因とする疾患が、ゴーシェ病、ファブリー病、クラッペ病、異染性ロイコジストロフィー、GM1-ガングリオシドーシスおよびGM2-ガングリオシドーシスからなる群から選択されるものである、上記[19]の診断方法、
 [21]スフィンゴ糖脂質の蓄積を病因とする疾患が、ゴーシェ病またはファブリー病である、上記[19]の診断方法、
 [22]リゾスフィンゴ糖脂質含有液の製造方法であって、
 (a)スフィンゴ糖脂質を含む材料を水溶液に溶解または分散し、こうして得たスフィンゴ糖脂質含有液を超音波処理するステップ、
 (b)超音波処理した該液を凍結するステップ、
 (c)凍結した該液を融解するステップ、および、
 (d)融解した該液にスフィンゴ脂質セラミドデアシラーゼを添加して該液中に含まれるスフィンゴ糖脂質を加水分解により脱アシル化して、リゾスフィンゴ糖脂質を遊離させるステップ
を含んでなるものである、製造方法。
That is, the present invention provides the following.
[1] A method for quantifying glycosphingolipid,
(A) A specimen containing glycosphingolipid is dissolved or dispersed in an aqueous solution, and a sphingolipid ceramide deacylase is added to the glycosphingolipid-containing liquid thus obtained to deacylate the glycosphingolipid contained therein by hydrolysis. Releasing lysosphingoglycolipid, and
(B) a quantitative method comprising the step of quantifying the glycosphingolipid by measuring the glycosphingolipid by mass spectrometry,
[2] The specimen is obtained from any one selected from the group consisting of kidney, liver and other organ tissues collected from the subject, blood, cerebrospinal fluid and other body fluids, urine, skin, muscle, and interstitial tissue. The quantification method of [1] above,
[3] The quantification of [1] or [2] above, wherein the glycosphingolipid is selected from the group consisting of glucocerebroside, globotriaosylceramide, galactocerebroside, sulfatide, ganglioside G M1 and ganglioside G M2. Method,
[4] The quantification method of the above [1] or [2], wherein the glycosphingolipid is glucocerebroside or globotriaosylceramide,
[5] The sphingolipid ceramide deacylase is composed of SCDase derived from Pseudomonas, SCDase derived from Shewanella, SCDase derived from Streptomyces, and SCDase derived from non-fermentative Gram-negative bacilli AI-2 (FERM P-16124) A quantification method according to any one of the above [1] to [4], which is selected from the group;
[6] The quantification method according to any one of the above [1] to [5], wherein the mass spectrometry method is tandem mass spectrometry (MS / MS),
[7] The quantification method according to any one of the above [1] to [6], wherein the mass spectrometry method is high performance liquid chromatograph tandem mass spectrometry (LC / MS / MS),
[8] A method for diagnosing a disease caused by glycosphingolipid accumulation by quantifying the glycosphingolipid using the quantification method according to any one of [1] to [7] above,
[9] disease pathogenesis accumulation of glycosphingolipids, Gaucher's disease, Fabry's disease, Krabbe disease, metachromatic leukodystrophy, G M1 - is selected from the group consisting of gangliosidosis - gangliosidosis and G M2 The diagnostic method of [8] above,
[10] The diagnostic method of [8] above, wherein the disease caused by glycosphingolipid accumulation is Gaucher disease or Fabry disease,
[11] A method for preparing a lysosphingoglycolipid-containing liquid,
(A) dissolving or dispersing a specimen containing glycosphingolipid in an aqueous solution, and sonicating the glycosphingolipid-containing liquid thus obtained;
(B) freezing the sonicated liquid;
(C) thawing the frozen solution; and
(D) a step of adding a sphingolipid ceramide deacylase to the melted liquid, deacylating the glycosphingolipid contained in the liquid by hydrolysis, and releasing lysosphingoglycolipid. Preparation method,
[12] The specimen is obtained from any one selected from the group consisting of kidney, liver and other organ tissues collected from the subject, blood, spinal fluid and other body fluids, urine, skin, muscle, and interstitial tissue. The preparation method of [11] above,
[13] Preparation of [11] or [12] above, wherein the glycosphingolipid is selected from the group consisting of glucocerebroside, globotriaosylceramide, galactocerebroside, sulfatide, ganglioside G M1 and ganglioside G M2. Method,
[14] The method according to [11] or [12] above, wherein the glycosphingolipid is glucocerebrosid or globotriaosylceramide,
[15] The sphingolipid ceramide deacylase comprises SCDase derived from Pseudomonas, SCDase derived from Shewanella, SCDase derived from Streptomyces, and SCDase derived from non-fermentative Gram-negative bacilli AI-2 (FERM P-16124) A preparation method according to any one of the above [11] to [14], which is selected from the group;
[16] A method for quantifying glycosphingolipid,
(A) sonicating the lysosphingoglycolipid-containing solution prepared in any one of [11] to [15] above;
(B) a quantification method comprising a step of quantifying the glycosphingolipid by measuring lysosphingoglycolipid contained in the ultrasonically treated liquid by mass spectrometry;
[17] The quantification method of [16] above, wherein the mass spectrometry method is tandem mass spectrometry (MS / MS),
[18] The quantification method of the above [16], wherein the mass spectrometry is high performance liquid chromatograph tandem mass spectrometry (LC / MS / MS),
[19] A method for diagnosing a disease caused by glycosphingolipid accumulation by quantifying the glycosphingolipid using the quantification method according to any one of [16] to [18] above,
[20] The disease caused by the accumulation of glycosphingolipid is selected from the group consisting of Gaucher disease, Fabry disease, Krabpe disease, metachromatic leukodystrophy, G M1 -gangliosidosis and G M2 -gangliosidosis The diagnostic method of [19] above,
[21] The diagnostic method of the above [19], wherein the disease caused by glycosphingolipid accumulation is Gaucher's disease or Fabry disease.
[22] A method for producing a lysosphingoglycolipid-containing liquid,
(A) dissolving or dispersing a material containing glycosphingolipid in an aqueous solution, and sonicating the glycosphingolipid-containing liquid thus obtained;
(B) freezing the sonicated liquid;
(C) thawing the frozen solution; and
(D) a step of adding a sphingolipid ceramide deacylase to the melted liquid and deacylating the glycosphingolipid contained in the liquid by hydrolysis to release the lysosphingoglycolipid. ,Production method.
 本発明によれば、簡便に、経済的に、更に高感度にスフィンゴ糖脂質、特にグルコセレブロシドおよびグロボトリアオシルセラミドを定量することができる。さらに、本発明によれば、該定量に用いるリゾスフィンゴ糖脂質含有液を提供することができる。
 特に、本発明によるスフィンゴ糖脂質の診断法は、簡便かつ経済的であるので、特定の被験者の診断のみならず、大規模な診断、例えば新生児の大規模スクリーニングに使用することができる。また、特定の患者を定期的に診断することにより、病状を経時的に把握することも可能である。更には、酵素補充療法等の治療の前後で患者を診断することにより、その治療の効果の程度を知ることもできる。
According to the present invention, glycosphingolipids, particularly glucocerebrosides and globotriaosylceramides can be quantified simply, economically and with higher sensitivity. Furthermore, according to the present invention, it is possible to provide a lysosphingoglycolipid-containing solution used for the determination.
In particular, the glycosphingolipid diagnostic method according to the present invention is simple and economical, and thus can be used not only for diagnosis of specific subjects but also for large-scale diagnosis, for example, large-scale screening of newborns. It is also possible to grasp the medical condition over time by periodically diagnosing a specific patient. Further, by diagnosing a patient before and after treatment such as enzyme replacement therapy, the degree of the effect of the treatment can be known.
図1は,グルコセレブロシド、および、その分子内の、グルコセレブロシダーゼにより加水分解される箇所を示す図面である。矢印はグルコセレブロシダーゼにより加水分解される箇所、Rは脂肪酸のアシル基をそれぞれ示す。FIG. 1 is a drawing showing glucocerebrosides and locations in the molecule that are hydrolyzed by glucocerebrosidase. An arrow indicates a portion hydrolyzed by glucocerebrosidase, and R indicates an acyl group of a fatty acid. 図2は,グロボトリアオシルセラミド、および、その分子内の、α-ガラクトシダーゼAにより加水分解される箇所を示す図面である。矢印はα-ガラクトシダーゼAにより加水分解される箇所、Rは脂肪酸のアシル基をそれぞれ示す。FIG. 2 is a drawing showing globotriaosylceramide and the portion of the molecule that is hydrolyzed by α-galactosidase A. An arrow indicates a portion hydrolyzed by α-galactosidase A, and R indicates an acyl group of a fatty acid. 図3は,スフィンゴ脂質セラミドデアシラーゼ(SCDase)によるスフィンゴ糖脂質の加水分解を示す図面である。矢印はSCDaseにより加水分解される箇所、R1は脂肪酸のアシル基、R2は糖若しくは糖鎖をそれぞれ示す。A:スフィンゴ糖脂質、B:リゾスフィンゴ糖脂質FIG. 3 is a drawing showing hydrolysis of a sphingoglycolipid by a sphingolipid ceramide deacylase (SCDase). An arrow indicates a portion hydrolyzed by SCDase, R1 indicates an acyl group of a fatty acid, and R2 indicates a sugar or a sugar chain. A: Glycosphingolipid, B: Glycosphingolipid 図4は,グロボトリアオシルスフィンゴシン(リゾ体)のイオンクロマトグラムを示す図面である。縦軸はイオン強度(cps:counts/second)を、横軸はリテンションタイム(min)を示す。FIG. 4 is a drawing showing an ion chromatogram of globotriaosylsphingosine (lyso form). The vertical axis represents ion intensity (cps: counts / second), and the horizontal axis represents retention time (min). 図5は,グロボトリアオシルセラミドの検量線を示す図面である。縦軸はグロボトリアオシルスフィンゴシン(リゾ体)のイオンクロマトグラムのピーク面積(counts)を、横軸はスフィンゴ糖脂質(グロボトリアオシルセラミド)含有液におけるグロボトリアオシルセラミドの濃度(ng/mL)を示す。FIG. 5 is a drawing showing a calibration curve of globotriaosylceramide. The vertical axis is the peak area (counts) of the ion chromatogram of globotriaosylsphingosine (lyso form), and the horizontal axis is the concentration of globotriaosylceramide (ng / ng) in the glycosphingolipid (globotriaosylceramide) -containing solution. mL).
 本発明において、定量の対象となるスフィンゴ糖脂質は、SCDaseで加水分解することによりリゾスフィンゴ糖脂質を生じるものである限り、特に限定はなく、微生物、植物、動物等の生物由来のものの他、人為的(例えば、工業的)に合成されたもののいずれでもよい。
 本発明におけるスフィンゴ糖脂質の好ましい具体例は、グルコセレブロシド、グロボトリアオシルセラミド、ガラクトセレブロシド、スルファチド、ガングリオシドGM1およびガングリオシドGM2である。グルコセレブロシドはゴーシェ病の患者、グロボトリアオシルセラミドはファブリー病の患者、ガラクトセレブロシドはクラッベ病の患者、スルファチドは異染性ロイコジストロフィーの患者、ガングリオシドGM1はGM1-ガングリオシドーシスの患者、およびガングリオシドGM2はGM2-ガングリオシドーシスの患者の体内でそれぞれ蓄積することが知られているスフィンゴ糖脂質である。従って、これらのスフィンゴ糖脂質を定量することにより、スフィンゴ糖脂質の蓄積を病因とする疾患の患者またはその保因者を特定することができる。従って、本発明のスフィンゴ糖脂質の定量法は、スフィンゴ糖脂質の蓄積を病因とする疾患、特にゴーシェ病、ファブリー病、クラッベ病、異染性ロイコジストロフィー、GM1-ガングリオシドーシス、GM2-ガングリオシドーシスの診断法として使用することができる。
In the present invention, the glycosphingolipid to be quantified is not particularly limited as long as the glycosphingolipid is hydrolyzed with SCDase to produce a lysosphingoglycolipid. In addition to those derived from organisms such as microorganisms, plants, animals, Any of those synthesized artificially (for example, industrially) may be used.
Preferable specific examples of the glycosphingolipid in the present invention are glucocerebroside, globotriaosylceramide, galactocerebroside, sulfatide, ganglioside G M1 and ganglioside G M2 . Patients Glucocerebroside Gaucher disease, patients globotriaosylceramide Fabry disease, galactocerebrosidase patients b Sid Krabbe disease, sulfatide patients metachromatic leukodystrophy, ganglioside G M1 is G M1 - gangliosidoses patient, And ganglioside G M2 is a glycosphingolipid known to accumulate in the body of patients with G M2 -gangliosidosis, respectively. Therefore, by quantifying these glycosphingolipids, it is possible to specify a patient or a carrier of a disease whose pathogenesis is the accumulation of glycosphingolipids. Therefore, determination of glycosphingolipids of the invention are disease pathogenesis accumulation of glycosphingolipids, particularly Gaucher disease, Fabry disease, Krabbe disease, metachromatic leukodystrophy, G M1 - gangliosidosis, G M2 - It can be used as a diagnostic method for gangliosidosis.
 本発明において、「スフィンゴ糖脂質を含む検体」または「スフィンゴ糖脂質を含む材料」とは、スフィンゴ糖脂質を含む微生物、植物、及び動物(ヒトを含む)の組織等、並びに人為的(例えば、工業的)に合成されたスフィンゴ糖脂質を含む試料のいずれをも包含するものである。ここで、動物の組織等とは、腎臓、肝臓その他の臓器の組織、血液、髄液その他の体液、尿、皮膚、筋肉、間質組織等をいう。
 本発明によるスフィンゴ糖脂質の蓄積を病因とする疾患の診断は、被験者から、腎臓、肝臓その他の臓器の組織、血液、髄液その他の体液、尿、皮膚、筋肉、間質組織等を検体として採取し、これらの中に含まれるスフィンゴ糖脂質を定量して行う。採取の簡便さから、特に血液、尿が検体として採取される。臓器の組織を検体として採取する場合、臓器に針を刺してその一部を採取する針生検が一般に用いられるが、これに限らず、切開生検、摘出生検等、他の方法も用いることができる。定量の結果、得られた定量値が異常な高値を示した場合、被験者はこれら疾患の患者若しくは保因者と推定又は診断できる。
In the present invention, “specimen containing glycosphingolipid” or “material containing glycosphingolipid” means microorganisms, plants, animals (including humans), etc. containing glycosphingolipid, and artificial (for example, All samples containing glycosphingolipids synthesized industrially) are included. Here, animal tissues and the like refer to kidney, liver and other organ tissues, blood, cerebrospinal fluid and other body fluids, urine, skin, muscle, and interstitial tissues.
Diagnosis of diseases caused by the accumulation of glycosphingolipids according to the present invention is carried out using subjects such as kidney, liver and other organ tissues, blood, cerebrospinal fluid and other body fluids, urine, skin, muscle, and interstitial tissues as specimens. Collected and quantified glycosphingolipid contained in these. In particular, blood and urine are collected as specimens for easy collection. When collecting organ tissue as a specimen, needle biopsy is generally used to puncture the organ and collect a part of it, but not limited to this, other methods such as incisional biopsy and excisional biopsy should also be used. Can do. As a result of quantification, when the obtained quantitative value shows an abnormally high value, the subject can be estimated or diagnosed as a patient or carrier of these diseases.
 本発明において、スフィンゴ糖脂質を含む検体または材料をSCDaseにより処理をするとき、予め検体または材料を水溶液中に溶解または分散ないし懸濁させて、スフィンゴ糖脂質含有液とするが、これをそのままSCDase処理してもよく、または超音波処理して一旦凍結させたものを融解してから、SCDase処理してもよい。このとき、検体または材料を溶解または分散ないし懸濁させる水溶液は、好ましくは緩衝液であり、また、そのpHは好ましくはpH5.5~6.5であり、より好ましくはpH5.8~6.2であり、特に好ましくは約pH6.0である。またこのとき用いられる緩衝液は、特に限定はないが、好ましくは酢酸緩衝液またはリン酸緩衝液である。また、ここで「スフィンゴ糖脂質含有液」とは、スフィンゴ糖脂質が緩衝液中に完全に溶解した状態のみならず、スフィンゴ糖脂質が緩衝液中に分散ないし懸濁等した状態の液体をも含む。
 該スフィンゴ糖脂質含有液中のスフィンゴ糖脂質の濃度としては、スフィンゴ糖脂質または分散ないし懸濁してスフィンゴ糖脂質含有液が調製出来る限り特に限定はないが、好ましくは、4~2000ng/mLの濃度である。
In the present invention, when a specimen or material containing glycosphingolipid is treated with SCDase, the specimen or material is dissolved or dispersed or suspended in an aqueous solution in advance to obtain a glycosphingolipid-containing liquid. SCDase treatment may be performed after thawing what has been frozen by ultrasonic treatment. At this time, the aqueous solution in which the specimen or the material is dissolved or dispersed or suspended is preferably a buffer, and the pH is preferably pH 5.5 to 6.5, more preferably pH 5.8 to 6.2. Particularly preferred is about pH 6.0. The buffer used at this time is not particularly limited, but is preferably an acetate buffer or a phosphate buffer. In addition, the “sphingoglycolipid-containing liquid” herein refers to not only a state in which the glycosphingolipid is completely dissolved in the buffer solution, but also a liquid in which the glycosphingolipid is dispersed or suspended in the buffer solution. Including.
The concentration of the glycosphingolipid in the glycosphingolipid-containing solution is not particularly limited as long as the glycosphingolipid or the glycosphingolipid-containing solution can be prepared by dispersing or suspending, but is preferably a concentration of 4 to 2000 ng / mL. It is.
 また、スフィンゴ糖脂質含有液の超音波処理は、緩衝液中にスフィンゴ糖脂質を十分に溶解等(すなわち、溶解または分散ないし懸濁等)させる目的で行うものであるので、この目的が達成でき且つスフィンゴ糖脂質が物理的な分解を受けない限り、いかなる条件で行ってもよく、例えば、超音波処理装置(ソニケーター)、超音波洗浄器(例えば、USK-3R(アズワン株式会社))等を用いて行うことができる。超音波処理を行う際のスフィンゴ糖脂質含有液の温度は、該液の液相状態が維持されかつスフィンゴ糖脂質が変性等しない限り特に限定はないが、通常、常温(例えば、10℃~40℃)で行うことが好ましい。また、超音波処理の時間としては、上記超音波処理の目的が達成される限り特に限定はないが、超音波洗浄器を用いた場合の好ましい時間として、例えば15分~60分、より好ましくは20分~40分が挙げられる。
 超音波処理後のスフィンゴ糖脂質含有液の凍結は、該液が完全に凍結しかつ内容物であるスフィンゴ糖脂質が変性しない限り特にその条件に限定はない。好ましい凍結温度としては、例えば-20℃~-180℃、より好ましくは-60℃~-100℃である。また、凍結速度に関しては、例えば、特に管理することなく、所定の凍結温度に設定された冷凍庫に常温のスフィンゴ糖脂質含有液を入れ、そのまま凍結させることなどが挙げられる。
 凍結したスフィンゴ糖脂質含有液の融解は、内容物であるスフィンゴ糖脂質が変性などの影響を受けない限りその条件に特に限定はないが、例えば、室温に放置することにより実施することができる。
In addition, the ultrasonic treatment of the glycosphingolipid-containing solution is performed for the purpose of sufficiently dissolving the glycosphingolipid in the buffer solution (that is, dissolving, dispersing or suspending, etc.). As long as the glycosphingolipid is not subject to physical degradation, it may be performed under any conditions. For example, an ultrasonic treatment device (sonicator), an ultrasonic cleaner (for example, USK-3R (As One Corporation)), etc. Can be used. The temperature of the glycosphingolipid-containing liquid at the time of sonication is not particularly limited as long as the liquid phase state of the liquid is maintained and the glycosphingolipid is not denatured. C.). The sonication time is not particularly limited as long as the purpose of the sonication is achieved, but the preferred time when using an ultrasonic cleaner is, for example, 15 minutes to 60 minutes, more preferably. Examples include 20 to 40 minutes.
Freezing of the glycosphingolipid-containing solution after ultrasonic treatment is not particularly limited as long as the solution is completely frozen and the glycosphingolipid as a content is not denatured. A preferable freezing temperature is, for example, −20 ° C. to −180 ° C., more preferably −60 ° C. to −100 ° C. Regarding the freezing rate, for example, without any particular management, a room temperature sphingoglycolipid-containing liquid is placed in a freezer set at a predetermined freezing temperature and frozen as it is.
The melting of the frozen glycosphingolipid-containing solution is not particularly limited as long as the content of the glycosphingolipid is not affected by denaturation or the like, but can be carried out, for example, by leaving it at room temperature.
 本発明において用いるスフィンゴ脂質セラミドデアシラーゼ(SCDase)としては、スフィンゴ糖脂質中のアミド結合を特異的に加水分解して脂肪酸を遊離させ、スフィンゴ糖脂質をリゾスフィンゴ糖脂質とすることができる活性を有する限り特に限定はないが、シュードモナス属(例えば、シュードモナスエスピー.TK-4)由来のSCDase、シェワネラ属(例えば、シェワネラアルガ NS-589、シェワネラアルガ G8)由来のSCDase、ストレプトミセス属(例えば、ストレプトミセス・エスピー H-37(FERM P-13822)由来のSCDase、非醗酵性グラム陰性桿菌AI-2(FERM P-16124)由来のSCDase等が好適に利用できる。このうち、シュードモナス属由来のSCDaseが好ましい。
 SCDaseによる加水分解は、常法により実施することができ、例えば、反応温度としては、36℃~40℃の範囲が好ましく、反応時間としては、10時間~20時間の範囲が好ましい。該酵素反応は、反応後のリゾスフィンゴ糖脂質含有液を加熱して、酵素を失活させることにより、停止させることができる。加熱は、例えば90℃以上の温度を、3~10分間維持することにより、実施することができる。
The sphingolipid ceramide deacylase (SCDase) used in the present invention has an activity capable of specifically hydrolyzing an amide bond in a glycosphingolipid to liberate a fatty acid, thereby converting the glycosphingolipid into a lysosphingoglycolipid. As long as it has, there is no particular limitation, but SCDase derived from Pseudomonas (for example, Pseudomonas sp. SCDase derived from SP H-37 (FERM P-13822), SCDase derived from non-fermentative Gram-negative bacilli AI-2 (FERM P-16124), etc. can be suitably used, of which SCDase derived from Pseudomonas is preferred. Good.
Hydrolysis with SCDase can be carried out by a conventional method. For example, the reaction temperature is preferably in the range of 36 to 40 ° C., and the reaction time is preferably in the range of 10 to 20 hours. The enzyme reaction can be stopped by heating the lysosphingoglycolipid-containing solution after the reaction to deactivate the enzyme. Heating can be carried out, for example, by maintaining a temperature of 90 ° C. or higher for 3 to 10 minutes.
本発明において、SCDase処理をして得られるリゾスフィンゴ糖脂質含有液は、質量分析法により分析をする前に、超音波処理してもよい。超音波処理は、リゾスフィンゴ糖脂質を十分に溶解等させる目的で行うものであるので、この目的が達成でき且つリゾスフィンゴ糖脂質が物理的な分解を受けない限り、いかなる条件で行ってもよく、前記と同様にして実施することができる。 In the present invention, the lysosphingoglycolipid-containing solution obtained by SCDase treatment may be subjected to ultrasonic treatment before analysis by mass spectrometry. The sonication is performed for the purpose of sufficiently dissolving the lysosphingoglycolipid, and so may be performed under any conditions as long as this purpose can be achieved and the lysosphingoglycolipid is not subject to physical degradation. , And can be carried out in the same manner as described above.
 本発明において、リゾスフィンゴ糖脂質の分析に用いる質量分析法に関して特に限定はないが、タンデム型質量分析法(MS/MS)が好適に用いられる。実施例に記載の高速液体クロマトグラフタンデム質量分析法(LC/MS/MS)はその一例である。
 高速液体クロマトグラフを行う場合、カラムの選択、その他の各種設定は、常法に従い、適宜行うことができる。
 また、タンデム型質量分析法(MS/MS)も常法に従い実施することができ、例えば、リゾスフィンゴ糖脂質をイオン化し(親イオン)、これをコリジョンガスと衝突させることにより解裂させて各種の娘イオンを生じさせ、このうちの特定の娘イオンのみを選択的に検出することにより、実施することができる。イオン化の手法としては、例えば、エレクトロイオンスプレーイオン化、大気圧化学イオン化、サーモスプレーイオン化などのソフトイオン化法を挙げることができるが、このうち、エレクロイオンスプレーイオン化法を好適に用いることができる。
In the present invention, there is no particular limitation on the mass spectrometry used for the analysis of glycosphingolipid, but tandem mass spectrometry (MS / MS) is preferably used. The high performance liquid chromatograph tandem mass spectrometry (LC / MS / MS) described in the examples is an example.
When performing a high performance liquid chromatograph, selection of a column and other various settings can be appropriately performed according to a conventional method.
Tandem mass spectrometry (MS / MS) can also be carried out according to conventional methods. For example, lysosphingoglycolipids are ionized (parent ions) and cleaved by colliding them with a collision gas. This can be carried out by generating only one daughter ion and selectively detecting only specific daughter ions. Examples of the ionization method include soft ionization methods such as electroion spray ionization, atmospheric pressure chemical ionization, and thermospray ionization. Among these, the electro ion spray ionization method can be preferably used.
 本発明における質量分析法を用いたスフィンゴ糖脂質の定量は、既知の濃度のスフィンゴ糖脂質を含む標準品をSCDase処理し、これを質量分析法により分析してリゾスフィンゴ糖脂質のイオンクロマトグラムのピーク面積を求め、次いでスフィンゴ糖脂質の濃度と該ピーク面積との相関を示す検量線を描き、これに検体または材料を質量分析法で分析して得られたリゾスフィンゴ糖脂質のイオンクロマトグラムのピーク面積を内挿することにより、検体または材料中に含まれるスフィンゴ糖脂質の量を算出して行う。但し、これに限らず、ピーク面積に換えてイオンクロマトグラムのイオン強度の最大値等をパラメーターとして使用することもできる。 Glycosphingolipid quantification using mass spectrometry in the present invention is carried out by subjecting a standard product containing a known concentration of glycosphingolipid to SCDase treatment and analyzing it by mass spectrometry to determine the ion chromatogram of lysosphingoglycolipid. Obtain the peak area, then draw a calibration curve that shows the correlation between the glycosphingolipid concentration and the peak area, and then analyze the sample or material by mass spectrometry on the ion chromatogram of lysosphingoglycolipid. The amount of glycosphingolipid contained in the specimen or material is calculated by interpolating the peak area. However, the present invention is not limited to this, and the maximum value of the ion intensity of the ion chromatogram can be used as a parameter instead of the peak area.
 本発明において、「リゾスフィンゴ糖脂質」または「リゾ体」というときは、スフィンゴ糖脂質のアミド結合を加水分解することにより得られる、スフィンゴ糖脂質から脂肪酸を除いた脱アシル体のことをいう。 In the present invention, the term “lysosphingoglycolipid” or “lyso form” refers to a deacylated form obtained by hydrolyzing the amide bond of the glycosphingolipid and removing the fatty acid from the glycosphingolipid.
 以下、実施例を参照して本発明を更に詳細に説明するが、本発明が実施例に限定されることは意図しない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not intended to be limited to the examples.
〔グロボトリアオシルセラミド標準溶液の作成〕
 1.6022gのタウロデオキシコール酸(ナカライテスク)を200mLの50mM酢酸緩衝液(pH6.0)に溶解し、0.22μmメンブランフィルターでろ過し0.8%(w/v)タウロデオキシコール酸溶液(TDC溶液)を調整した。100 μgのブタ赤血球由来グロボトリアオシルセラミド(ナカライテスク)を、1mLのTDC溶液に溶解し、100μg/mLグロボトリアオシルセラミド溶液(GL-3標準溶液)を調整した。このGL-3標準溶液を、TDC溶液を用いて段階希釈し、2000、1000、400、200、40、20、4 ng/mLの各GL-3標準溶液を調製した。50 μLの各GL-3標準溶液を、500μL容量PP製試験管(アシスト)に分取し、超音波洗浄器〔USK-3R、アズワン株式会社、主な仕様(槽容量:5.9L、発振周波数:40kHz 、発振回路:他励発振方式、発振子:BLT(ボルト締めランジュバン)、出力:120W〕を用いて超音波処理を室温(25℃)で30分間行った後、-80℃で約15時間凍結させた。
[Preparation of globotriaosylceramide standard solution]
1.6022 g of taurodeoxycholic acid (Nacalai Tesque) is dissolved in 200 mL of 50 mM acetate buffer (pH 6.0), filtered through a 0.22 μm membrane filter, and 0.8% (w / v) taurodeoxycholic acid solution (TDC solution) Adjusted. 100 μg of porcine erythrocyte-derived globotriaosylceramide (Nacalai Tesque) was dissolved in 1 mL of TDC solution to prepare a 100 μg / mL globotriaosylceramide solution (GL-3 standard solution). This GL-3 standard solution was serially diluted with a TDC solution to prepare 2000, 1000, 400, 200, 40, 20, and 4 ng / mL GL-3 standard solutions. 50 μL of each GL-3 standard solution is dispensed into a 500 μL PP test tube (assist) and ultrasonic cleaner [USK-3R, ASONE CORPORATION, main specifications (tank volume: 5.9 L, oscillation frequency] : 40kHz, Oscillator circuit: Separately excited oscillation method, Oscillator: BLT (Bolt-tightened Langevin), Output: 120W], ultrasonic treatment was performed at room temperature (25 ° C) for 30 minutes, then about 15 at -80 ° C Freeze for hours.
〔グロボトリアオシルセラミド標準溶液のSCDase処理〕
 5 μL(25mU)のPseudomonas
sp.由来のSCDase(Sphingolipid ceramide N-deacylase(タカラバイオ)を995μLのTDC溶液と混合して2XSCDase溶液とした。上記の各GL-3標準溶液(50 μL)を室温に放置して融解後、これに50μLの2XSCDase溶液を加えて混合し、37℃で約15時間静置し、グロボトリアオシルセラミドを加水分解してリゾ体(グロボトリアオシルスフィンゴシン)とした。反応後の溶液を90℃で5分間加熱してSCDaseを失活させた。
[SCDase treatment of globotriaosylceramide standard solution]
5 μL (25 mU) of Pseudomonas
SCDase derived from sp. (Sphingolipid ceramide N-deacylase (Takara Bio) was mixed with 995 μL of TDC solution to make 2XSCDase solution. After thawing each GL-3 standard solution (50 μL) at room temperature, 50 μL of 2XSCDase solution was added thereto and mixed, and allowed to stand at 37 ° C. for about 15 hours to hydrolyze globotriaosylceramide to obtain a lyso form (globotriaosyl sphingosine). SCDase was inactivated by heating at 5 ° C. for 5 minutes.
〔マウス腎臓からの総脂質の抽出〕
 4個体のマウス(C57Black 6N、24週齢、雄)から組織(腎臓)を採取し、クロロホルム:メタノール=2:1溶液を組織湿重量10 mgに対し約1 mL添加し、ホモジナイズした後に、遠心分離(2000rpm、5分間、室温)した。遠沈管に上清を移し、4 mLの注射用水を加え、30秒間激しく混和した後に、遠心分離(2000rpm、5分間、室温)した。下層(有機層)を回収し、500 μLずつガラス試験管に分注し、遠心濃縮機で乾固した。乾固した試料を、測定時まで-20℃以下で保存した。これを総脂質画分とした。
[Extraction of total lipid from mouse kidney]
Tissue (kidney) was collected from 4 mice (C57Black 6N, 24 weeks old, male), chloroform: methanol = 2: 1 solution was added to about 1 mg of tissue wet weight 10 mg, homogenized, and centrifuged. Separation (2000 rpm, 5 minutes, room temperature). The supernatant was transferred to a centrifuge tube, 4 mL of water for injection was added, and the mixture was vigorously mixed for 30 seconds, followed by centrifugation (2000 rpm, 5 minutes, room temperature). The lower layer (organic layer) was collected, dispensed in 500 μL aliquots into glass test tubes, and dried with a centrifugal concentrator. The dried sample was stored at −20 ° C. or lower until measurement. This was taken as the total lipid fraction.
〔総脂質画分のSCDase処理〕
 上記の総脂質画分に1mLの0.8%TDC溶液を添加して溶解し、これを1.5mLチューブ(Eppendorf社)に移し、超音波処理を、超音波洗浄器(USK-3R、アズワン株式会社)を用いて、室温(25℃)で、30分間行った。これを0.8%TDC溶液を用いて、4倍希釈した後に、500 μL容量PP製試験管(アシスト)に50μL分取し、-80℃の冷凍庫に移しそのまま一晩(約15時間)保存して、凍結させた。凍結させた試料を室温に放置して融解後、50 μLの2XSCDase溶液を加えて混合後、37℃で一晩反応(約15時間)させた。反応後の溶液を90℃で5分間加熱して酵素を失活させた。これを条件1群とした。またこのとき、上記の超音波処理と凍結融解を行わないでSCDase処理をしたものを条件2群とした。SCDase処理は、それぞれの群について、独立して6検体について行った。
[SCDase treatment of total lipid fraction]
1 mL of 0.8% TDC solution is added to the total lipid fraction and dissolved, transferred to a 1.5 mL tube (Eppendorf), and subjected to ultrasonic treatment using an ultrasonic cleaner (USK-3R, ASONE CORPORATION). ) At room temperature (25 ° C.) for 30 minutes. This is diluted 4-fold with 0.8% TDC solution, then 50 μL is dispensed into a 500 μL PP test tube (assist), transferred to a -80 ° C. freezer and stored overnight (about 15 hours). And frozen. The frozen sample was allowed to stand at room temperature and thawed. After adding 50 μL of 2XSCDase solution and mixing, the mixture was reacted at 37 ° C. overnight (about 15 hours). The solution after the reaction was heated at 90 ° C. for 5 minutes to inactivate the enzyme. This was defined as Condition 1 group. In addition, at this time, those subjected to SCDase treatment without performing the above ultrasonic treatment and freezing and thawing were classified as Condition 2 group. The SCDase treatment was performed on 6 samples independently for each group.
〔タンデム質量分析法〕
 タンデム質量分析装置として、イオンスプレー部、三つの四重極部(Q1,Q2,Q3)及び検出部から構成される、API2000(ABI社)を用いた。分析条件は、Q1(m/z=786.3)、Q3(m/z=282.3)とし、また陽イオンモードとした。この装置に導入された測定試料は、連続的にイオンスプレー部でイオン化される。イオン化された試料は、まずQ1へ導入される。導入された測定試料イオンは、Q1で特定のイオン(m/z=786.3)のみが選択的にQ2へ導入される。Q2へ導入されたイオンはコリジョンガス(窒素)と衝突して解裂し、グロボトリアオシルスフィンゴシンを親イオンとする各種の娘イオンが生じる。生じた娘イオンは、次にQ3に導入される。Q3では、特定の娘イオン(m/z=282.3)のみを、選択的に検出部へ導入することで、グロボトリアオシルスフィンゴシン由来のイオンが特異的に検出される。Q1のm/z=786.3は、グロボトリアオシルスフィンゴシン(分子量:785.9)が1価の陽イオン化した親イオンを、Q3のm/z=282.3は、グロボトリアオシルスフィンゴシンがQ2で解裂して生じた糖鎖部分を欠くスフィンゴシン骨格部分がイオン化した娘イオンを、選択的に検出する条件である。
[Tandem mass spectrometry]
As a tandem mass spectrometer, API2000 (ABI) comprising an ion spray part, three quadrupole parts (Q1, Q2, Q3) and a detection part was used. The analysis conditions were Q1 (m / z = 786.3), Q3 (m / z = 282.3), and positive ion mode. The measurement sample introduced into this apparatus is continuously ionized by the ion spray unit. The ionized sample is first introduced into Q1. As the introduced measurement sample ions, only specific ions (m / z = 786.3) are selectively introduced into Q2 in Q1. The ions introduced into Q2 collide with collision gas (nitrogen) and cleave, producing various daughter ions with globotriaosylsphingosine as the parent ion. The resulting daughter ions are then introduced into Q3. In Q3, ions derived from globotriaosylsphingosine are specifically detected by selectively introducing only a specific daughter ion (m / z = 282.3) into the detector. Q1 m / z = 786.3 is the monovalent cationized parent ion of globotriaosylsphingosine (molecular weight: 785.9), and Q3 m / z = 282.3 is globotriaosylsphingosine cleaved by Q2. This is a condition for selectively detecting a daughter ion in which a sphingosine skeleton part lacking the sugar chain part produced by ionization is ionized.
〔高速液体クロマトグラフタンデム質量分析法(LC/MS/MS法)による検量線の作成〕
 SCDase処理した標準溶液に、100μLのアセトニトリルを添加して混合後、超音波処理を、超音波洗浄器(USK-3R、アズワン株式会社)を用いて、室温(25℃)で、30分間行った。超音波処理後の標準溶液を、HPLC用300μL容量バイアル(島津製作所)に分注し、LC/MS/MS法により分析をした。LC/MS/MS法は、タンデム質量分析装置としてAPI2000(ABI社)、高速液体クロマトグラフィー装置としてLC20(島津製作所)を用いて実施した。高速液体クロマトグラフィーには、高速液体クロマトグラフィーカラムとして、ODS(Cadenza CD-C18、2.0
mm X 75.0 mm、Imtakt)を用い、予めカラム温度をカラムオーブンで40℃とし、カラムをメタノール:0.1%(v/v)ホルミル酸水溶液(75:25)の混合液で平衡化した。該カラムに超音波処理した上記の標準溶液を20μL添加した。流速を0.2 mL/分とし、試料添加後メタノール:0.1%(v/v)ホルミル酸水溶液(75:25)を2分間流した後、メタノール:0.1%(v/v)ホルミル酸水溶液(85:15)の混合液に切り替え、次いでメタノールの濃度比を直線的に4分間かけて95%まで上昇させ、最後に100%メタノールを2分間流した。上記条件にてカラムを通過した溶液を、タンデム質量分析装置へ連続的に導入した。タンデム質量分析装置の測定条件は、Q1(m/z=786.3)、Q3(m/z=282.3)とし、陽イオンモードで行うことで、グロボトリアオシルスフィンゴシン(リゾ体)に由来するイオン強度を測定し、イオンクロマトグラムを作成した。測定は各標準溶液について2回行った。得られたイオンクロマトグラムから、グロボトリアオシルセラミド(GL-3)濃度に対する、グロボトリアオシルスフィンゴシン由来イオンのピーク面積を算出し、検量線を作成した。
[Preparation of calibration curve by high performance liquid chromatography tandem mass spectrometry (LC / MS / MS method)]
After adding 100 μL of acetonitrile to the SCDase-treated standard solution and mixing, sonication was performed at room temperature (25 ° C.) for 30 minutes using an ultrasonic cleaner (USK-3R, ASONE CORPORATION). . The standard solution after sonication was dispensed into a 300 μL vial for HPLC (Shimadzu Corporation) and analyzed by the LC / MS / MS method. The LC / MS / MS method was performed using API2000 (ABI) as a tandem mass spectrometer and LC20 (Shimadzu Corporation) as a high performance liquid chromatography apparatus. For high performance liquid chromatography, ODS (Cadenza CD-C18, 2.0
mm × 75.0 mm, Immtak), the column temperature was previously set to 40 ° C. in a column oven, and the column was equilibrated with a mixed solution of methanol: 0.1% (v / v) formic acid aqueous solution (75:25). 20 μL of the above standard solution sonicated was added to the column. The flow rate was 0.2 mL / min, and after addition of the sample, methanol: 0.1% (v / v) aqueous formic acid (75:25) was allowed to flow for 2 minutes, and then methanol: 0.1% (v / v) aqueous formic acid (85: Then, the methanol concentration ratio was linearly increased to 95% over 4 minutes, and finally 100% methanol was allowed to flow for 2 minutes. The solution that passed through the column under the above conditions was continuously introduced into the tandem mass spectrometer. The measurement conditions of the tandem mass spectrometer are Q1 (m / z = 786.3) and Q3 (m / z = 282.3), and the ionic strength derived from globotriaosylsphingosine (lyso form) is performed in positive ion mode. Was measured and an ion chromatogram was prepared. The measurement was performed twice for each standard solution. From the obtained ion chromatogram, the peak area of the globotriaosylsphingosine-derived ion with respect to the globotriaosylceramide (GL-3) concentration was calculated, and a calibration curve was prepared.
〔高速液体クロマトグラフタンデム質量分析法(LC/MS/MS法)による検体の分析〕
 条件1群については、SCDase処理した試料に、100 μLのアセトニトリルを添加して混合後、超音波洗浄器(USK-3R、アズワン株式会社)を用いて超音波処理を、室温(25℃)で、30分間実施した。超音波処理後の試料を、HPLC用300μL容量バイアル(島津製作所)に分注し、LC/MS/MS法により分析をした。LC/MS/MS法による分析は、上記の検量線の作成と同様の方法で行い、グロボトリアオシルスフィンゴシン(リゾ体)に由来するイオン強度を測定し、イオンクロマトグラムを作成した。これと上記で作成した検量線を用いて、検体中に含まれるグロボトリアオシルセラミドの濃度を算出した。一方、条件2群については、超音波処理せずに上記の分析を行った。測定は各群の各検体についてそれぞれ2回行い、平均値を測定値とした。
[Sample analysis by high-performance liquid chromatograph tandem mass spectrometry (LC / MS / MS method)]
For condition 1 group, 100 μL of acetonitrile was added to the SCDase-treated sample, mixed, and then sonicated using an ultrasonic cleaner (USK-3R, ASONE CORPORATION) at room temperature (25 ° C). For 30 minutes. The sample after sonication was dispensed into a 300 μL vial for HPLC (Shimadzu Corporation) and analyzed by the LC / MS / MS method. The analysis by LC / MS / MS method was performed in the same manner as the preparation of the above calibration curve, and the ion intensity derived from globotriaosylsphingosine (lyso form) was measured to prepare an ion chromatogram. Using this and the calibration curve created above, the concentration of globotriaosylceramide contained in the sample was calculated. On the other hand, for the condition 2 group, the above analysis was performed without ultrasonic treatment. The measurement was performed twice for each sample in each group, and the average value was taken as the measurement value.
〔高速液体クロマトグラフタンデム質量分析法(LC/MS/MS法)による分析結果〕
 グロボトリアオシルセラミド標準溶液(2000ng/mL)を用いて得た、グロボトリアオシルスフィンゴシン(リゾ体)のイオンクロマトグラムを図4に示す。横軸は保持時間(分)を、縦軸はイオン強度(cps:count/second)である。グロボトリアオシルスフィンゴシン由来のピークは保持時間3.68分で最大強度となった。横軸とピークに囲まれた領域をピーク面積として算出した。
[Results of analysis by high performance liquid chromatograph tandem mass spectrometry (LC / MS / MS method)]
FIG. 4 shows an ion chromatogram of globotriaosylsphingosine (lyso form) obtained using a globotriaosylceramide standard solution (2000 ng / mL). The horizontal axis represents the retention time (minutes), and the vertical axis represents the ionic strength (cps: count / second). The peak derived from globotriaosylsphingosine reached its maximum intensity with a retention time of 3.68 minutes. The area surrounded by the horizontal axis and the peak was calculated as the peak area.
 グロボトリアオシルセラミドを段階希釈して調製した標準溶液を用いて作成した検量線を図5に示す。このとき検量線の定量範囲である4~2000ng/mLの範囲でQuadratic法による回帰式を求めたところ、この回帰式に対する測定値の相関係数は0.999と算出され、ピーク面積とグロボトリアオシルセラミドの濃度に極めて強い相関関係が見いだされた。この検量線を用いて、マウス腎臓由来総脂質中に含まれるグロボトリアオシルセラミドを定量した。 Fig. 5 shows a calibration curve prepared using a standard solution prepared by serial dilution of globotriaosylceramide. At this time, when a regression equation by the quadratic method was obtained in the range of 4 to 2000 ng / mL which is the quantification range of the calibration curve, the correlation coefficient of the measured value with respect to this regression equation was calculated as 0.999, and the peak area and globotriaosyl A very strong correlation was found with the concentration of ceramide. Using this calibration curve, globotriaosylceramide contained in mouse kidney-derived total lipid was quantified.
 SCDase処理時に超音波処理および凍結融解をし、且つ質量分析法による分析時(質量分析時)に超音波処理をした群(条件1群)では、グロボトリアオシルセラミドの6回の定量値は、2772~2868ngの範囲であり、標準偏差は32.36、相対標準偏差は1.15%であった(表1上段)。一方、条件2群の6回の定量値は、2540~3072ngの範囲であり、標準偏差は197.5、相対標準偏差は7.14%であった(表1下段)。条件1群、条件2群のいずれにおいても、検体中に含まれるグロボトリアオシルセラミドを定量することができた。また、条件1群では、条件2群よりも、よりばらつきの少ない定量値を得ることができた(表1上段)。 In the group (condition 1 group) that was sonicated and freeze-thawed at the time of SCDase treatment and sonicated at the time of analysis by mass spectrometry (at the time of mass spectrometry), the six quantitative values of globotriaosylceramide were The standard deviation was 32.36, and the relative standard deviation was 1.15% (the upper part of Table 1). On the other hand, the quantitative values of 6 times in the condition 2 group were in the range of 2540-3072 ng, the standard deviation was 197.5, and the relative standard deviation was 7.14% (lower part of Table 1). In both condition group 1 and condition group 2, globotriaosylceramide contained in the specimen could be quantified. Moreover, in the condition 1 group, a quantitative value having less variation than the condition 2 group could be obtained (the upper part of Table 1).
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 以上の結果は、検体中に含まれるグロボトリアオシルセラミドをスフィンゴ脂質セラミドデアシラーゼで加水分解してそのリゾ体とした後に、該リゾ体を質量分析法で分析することにより、グロボトリアオシルセラミドを定量できることを示すものである。特に、SCDase処理時に超音波処理および凍結融解をし、且つ質量分析法による分析の際(質量分析時)に予め検体を超音波処理をすることにより、質量分析法を用いて、4~2000ng/mLの範囲で検体中に含まれるグロボトリアオシルセラミドの量を極めて正確に定量することができることを示すものである。 The above results are obtained by hydrolyzing globotriaosylceramide contained in the sample with sphingolipid ceramide deacylase to obtain the lyso form, and then analyzing the lyso form by mass spectrometry. It shows that ceramide can be quantified. In particular, by sonicating and freezing and thawing at the time of SCDase treatment, and by subjecting the sample to sonication in advance at the time of analysis by mass spectrometry (at the time of mass spectrometry), mass spectrometry is used to obtain 4 to 2000 ng / This shows that the amount of globotriaosylceramide contained in a sample in the range of mL can be quantified very accurately.
 本発明によれば、スフィンゴ糖脂質の蓄積を病因とする疾患の患者またはその保因者、特にゴーシェ病およびファブリー病の患者を診断することができる。 According to the present invention, it is possible to diagnose a patient having a disease caused by glycosphingolipid accumulation or a carrier thereof, particularly a patient with Gaucher's disease and Fabry disease.

Claims (22)

  1.  スフィンゴ糖脂質を定量する方法であって、
     (a)スフィンゴ糖脂質を含む検体を水溶液に溶解または分散し、こうして得たスフィンゴ糖脂質含有液にスフィンゴ脂質セラミドデアシラーゼを添加してその中に含まれるスフィンゴ糖脂質を加水分解により脱アシル化して、リゾスフィンゴ糖脂質を遊離させるステップ、および、
     (b)該リゾスフィンゴ糖脂質を質量分析法で測定することにより、スフィンゴ糖脂質を定量するステップ
    を含んでなるものである、定量方法。
    A method for quantifying glycosphingolipid,
    (A) A specimen containing glycosphingolipid is dissolved or dispersed in an aqueous solution, and a sphingolipid ceramide deacylase is added to the glycosphingolipid-containing liquid thus obtained to deacylate the glycosphingolipid contained therein by hydrolysis. Releasing lysosphingoglycolipid, and
    (B) A quantification method comprising a step of quantifying the glycosphingolipid by measuring the lysosphingoglycolipid by mass spectrometry.
  2. 検体が、被験者から採取された腎臓、肝臓その他の臓器の組織、血液、髄液その他の体液、尿、皮膚、筋肉、及び間質組織からなる群から選択されるいずれかから得られたものである、請求項1の定量方法。 The specimen is obtained from any one selected from the group consisting of kidney, liver and other organ tissues collected from the subject, blood, spinal fluid and other body fluids, urine, skin, muscle, and interstitial tissue. The quantification method according to claim 1.
  3.  スフィンゴ糖脂質が、グルコセレブロシド、グロボトリアオシルセラミド、ガラクトセレブロシド、スルファチド、ガングリオシドGM1およびガングリオシドGM2からなる群から選択されるものである、請求項1または2の定量方法。 The method according to claim 1 or 2, wherein the glycosphingolipid is selected from the group consisting of glucocerebroside, globotriaosylceramide, galactocerebroside, sulfatide, ganglioside GM1 and ganglioside GM2.
  4.  スフィンゴ糖脂質が、グルコセレブロシドまたはグロボトリアオシルセラミドである、請求項1または2の定量方法。 3. The method according to claim 1 or 2, wherein the glycosphingolipid is glucocerebrosid or globotriaosylceramide.
  5.  スフィンゴ脂質セラミドデアシラーゼが、シュードモナス属由来のSCDase、シェワネラ属由来のSCDase、ストレプトミセス属由来のSCDase、および非醗酵性グラム陰性桿菌AI-2(FERM P-16124)由来のSCDaseからなる群から選択されるものである、請求項1~4のいずれかの定量方法。 The sphingolipid ceramide deacylase is selected from the group consisting of SCDase from Pseudomonas, SCDase from Shewanella, SCDase from Streptomyces, and SCDase from non-fermentative Gram-negative bacilli AI-2 (FERM P-16124) The quantification method according to any one of claims 1 to 4, wherein
  6.  質量分析方法がタンデム質量分析法(MS/MS)である、請求項1~5のいずれかの定量方法。 The quantification method according to claim 1, wherein the mass spectrometry method is tandem mass spectrometry (MS / MS).
  7.  質量分析方法が高速液体クロマトグラフタンデム質量分析(LC/MS/MS)である、請求項1~6のいずれかの定量方法。 7. The quantification method according to claim 1, wherein the mass spectrometry method is high performance liquid chromatograph tandem mass spectrometry (LC / MS / MS).
  8.  請求項1~7のいずれかの定量方法を用いて、スフィンゴ糖脂質を定量することによる、スフィンゴ糖脂質の蓄積を病因とする疾患の診断方法。 A method for diagnosing a disease caused by glycosphingolipid accumulation by quantifying the glycosphingolipid using the quantification method according to any one of claims 1 to 7.
  9.  スフィンゴ糖脂質の蓄積を病因とする疾患が、ゴーシェ病、ファブリー病、クラッベ病、異染性ロイコジストロフィー、GM1-ガングリオシドーシスおよびGM2-ガングリオシドーシスからなる群から選択されるものである、請求項8の診断方法。 The disease caused by glycosphingolipid accumulation is selected from the group consisting of Gaucher disease, Fabry disease, Krabbe disease, metachromatic leucodystrophy, GM1-gangliosidosis and GM2-gangliosidosis, The diagnostic method according to Item 8.
  10.  スフィンゴ糖脂質の蓄積を病因とする疾患が、ゴーシェ病またはファブリー病である、請求項8の診断方法。 The diagnostic method according to claim 8, wherein the disease caused by glycosphingolipid accumulation is Gaucher's disease or Fabry disease.
  11.  リゾスフィンゴ糖脂質含有液の調製方法であって、
     (a)スフィンゴ糖脂質を含む検体を水溶液に溶解または分散し、こうして得たスフィンゴ糖脂質含有液を超音波処理するステップ、
     (b)超音波処理した該液を凍結するステップ、
     (c)凍結した該液を融解するステップ、および、
     (d)融解した該液にスフィンゴ脂質セラミドデアシラーゼを添加して該液中に含まれるスフィンゴ糖脂質を加水分解により脱アシル化して、リゾスフィンゴ糖脂質を遊離させるステップ
    を含んでなるものである、調製方法。
    A method for preparing a lysosphingoglycolipid-containing liquid,
    (A) dissolving or dispersing a specimen containing glycosphingolipid in an aqueous solution, and sonicating the glycosphingolipid-containing liquid thus obtained;
    (B) freezing the sonicated liquid;
    (C) thawing the frozen solution; and
    (D) a step of adding a sphingolipid ceramide deacylase to the melted liquid, deacylating the glycosphingolipid contained in the liquid by hydrolysis, and releasing lysosphingoglycolipid. , The preparation method.
  12. 検体が、被験者から採取された腎臓、肝臓その他の臓器の組織、血液、髄液その他の体液、尿、皮膚、筋肉、及び間質組織からなる群から選択されるいずれかから得られたものである、請求項11の調製方法。 The specimen is obtained from any one selected from the group consisting of kidney, liver and other organ tissues collected from the subject, blood, spinal fluid and other body fluids, urine, skin, muscle, and interstitial tissue. The preparation method of claim 11, wherein
  13.  スフィンゴ糖脂質が、グルコセレブロシド、グロボトリアオシルセラミド、ガラクトセレブロシド、スルファチド、ガングリオシドGM1およびガングリオシドGM2からなる群から選択されるものである、請求項11又は12の調製方法。 The preparation method according to claim 11 or 12, wherein the glycosphingolipid is selected from the group consisting of glucocerebroside, globotriaosylceramide, galactocerebroside, sulfatide, ganglioside GM1 and ganglioside GM2.
  14.  スフィンゴ糖脂質が、グルコセレブロシドまたはグロボトリアオシルセラミドである、請求項11又は12の調製方法。 The preparation method according to claim 11 or 12, wherein the glycosphingolipid is glucocerebrosid or globotriaosylceramide.
  15.  スフィンゴ脂質セラミドデアシラーゼが、シュードモナス属由来のSCDase、シェワネラ属由来のSCDase、ストレプトミセス属由来のSCDase、および非醗酵性グラム陰性桿菌AI-2(FERM P-16124)由来のSCDaseからなる群から選択されるものである、請求項11~14のいずれかの調製方法。 The sphingolipid ceramide deacylase is selected from the group consisting of SCDase from Pseudomonas, SCDase from Shewanella, SCDase from Streptomyces, and SCDase from non-fermentative Gram-negative bacilli AI-2 (FERM P-16124) The preparation method according to any one of claims 11 to 14, wherein
  16.  スフィンゴ糖脂質の定量方法であって、
    (a)請求項11~15のいずれかで調製したリゾスフィンゴ糖脂質含有液を、超音波処理するステップ、
    (b)超音波処理した該液に含まれるリゾスフィンゴ糖脂質を質量分析法で測定することにより、スフィンゴ糖脂質を定量するステップ
    を含んでなるものである、定量方法。
    A method for quantifying glycosphingolipid, comprising:
    (A) sonicating the glycosphingolipid-containing solution prepared in any one of claims 11 to 15,
    (B) A quantification method comprising a step of quantifying a glycosphingolipid by measuring lysosphingoglycolipid contained in the ultrasonically treated liquid by mass spectrometry.
  17.  質量分析方法が、タンデム質量分析法(MS/MS)である、請求項16の定量方法。 The quantification method according to claim 16, wherein the mass spectrometry method is tandem mass spectrometry (MS / MS).
  18.  質量分析法が、高速液体クロマトグラフタンデム質量分析(LC/MS/MS)である、請求項16の定量方法。 The quantitative method according to claim 16, wherein the mass spectrometry is high-performance liquid chromatograph tandem mass spectrometry (LC / MS / MS).
  19.  請求項16~18のいずれかの定量方法を用いて、スフィンゴ糖脂質を定量することによる、スフィンゴ糖脂質の蓄積を病因とする疾患の診断方法。 A method for diagnosing a disease caused by glycosphingolipid accumulation by quantifying the glycosphingolipid using the quantification method according to any one of claims 16 to 18.
  20.  スフィンゴ糖脂質の蓄積を病因とする疾患が、ゴーシェ病、ファブリー病、クラッペ病、異染性ロイコジストロフィー、GM1-ガングリオシドーシスおよびGM2-ガングリオシドーシスからなる群から選択されるものである、請求項19の診断方法。 The disease caused by glycosphingolipid accumulation is selected from the group consisting of Gaucher's disease, Fabry disease, Krappe disease, metachromatic leucodystrophy, GM1-gangliosidosis and GM2-gangliosidosis, Item 20. The diagnosis method according to Item 19.
  21.  スフィンゴ糖脂質の蓄積を病因とする疾患が、ゴーシェ病またはファブリー病である、請求項19の診断方法。 The diagnostic method according to claim 19, wherein the disease caused by accumulation of glycosphingolipid is Gaucher's disease or Fabry disease.
  22.  リゾスフィンゴ糖脂質含有液の製造方法であって、
     (a)スフィンゴ糖脂質を含む材料を水溶液に溶解または分散し、こうして得たスフィンゴ糖脂質含有液を超音波処理するステップ、
     (b)超音波処理した該液を凍結するステップ、
     (c)凍結した該液を融解するステップ、および、
     (d)融解した該液にスフィンゴ脂質セラミドデアシラーゼを添加して該液中に含まれるスフィンゴ糖脂質を加水分解により脱アシル化して、リゾスフィンゴ糖脂質を遊離させるステップ
    を含んでなるものである、製造方法。
    A method for producing a lysosphingoglycolipid-containing liquid,
    (A) dissolving or dispersing a material containing glycosphingolipid in an aqueous solution, and sonicating the glycosphingolipid-containing liquid thus obtained;
    (B) freezing the sonicated liquid;
    (C) thawing the frozen solution; and
    (D) a step of adding a sphingolipid ceramide deacylase to the melted liquid, deacylating the glycosphingolipid contained in the liquid by hydrolysis, and releasing lysosphingoglycolipid. ,Production method.
PCT/JP2011/078512 2010-12-13 2011-12-09 Method for assaying glycosphingolipid WO2012081508A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012548765A JP5977174B2 (en) 2010-12-13 2011-12-09 Determination of glycosphingolipids

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-276814 2010-12-13
JP2010276814 2010-12-13

Publications (1)

Publication Number Publication Date
WO2012081508A1 true WO2012081508A1 (en) 2012-06-21

Family

ID=46244612

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078512 WO2012081508A1 (en) 2010-12-13 2011-12-09 Method for assaying glycosphingolipid

Country Status (2)

Country Link
JP (1) JP5977174B2 (en)
WO (1) WO2012081508A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016506501A (en) * 2012-12-11 2016-03-03 セントジーン アーゲー Diagnosis of metachromatic leukodystrophy
WO2016208741A1 (en) * 2015-06-24 2016-12-29 マイクロブロット株式会社 Simple analysis method for lipids in trace biological sample
CN110464874A (en) * 2019-08-30 2019-11-19 中国科学院深圳先进技术研究院 A kind of polymer material and its preparation method and application with nerve fiber repairing activity
CN113866308A (en) * 2021-09-28 2021-12-31 吉林天成制药有限公司 Method for detecting content of pig brain ganglioside in medicinal preparation
CN114965822A (en) * 2017-10-27 2022-08-30 齐鲁制药有限公司 Medicine analysis method for efficiently determining ganglioside GM1 and impurities thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02180995A (en) * 1988-10-28 1990-07-13 Soc Prod Nestle Sa Method for separating glycolipid from lipid mixture
JPH0884587A (en) * 1994-07-21 1996-04-02 Takara Shuzo Co Ltd Glycolipid ceramide deacylase
JPH08508978A (en) * 1993-01-22 1996-09-24 スローン − ケタリング・インスティテュート・フォー・キャンサー・リサーチ Ganglioside-KLH complex with QS-21
JPH1045792A (en) * 1996-07-26 1998-02-17 Takara Shuzo Co Ltd Production of lysosphingolipid
JP2004504621A (en) * 2000-07-19 2004-02-12 バイオトロン・リミテッド Methods for identifying marker traits of cancer in cancer diagnosis and uses for diagnosis
JP2005512061A (en) * 2001-11-28 2005-04-28 アイシーエイチ プロダクションズ リミテッド Sphingolipid internal standard
WO2009011466A1 (en) * 2007-07-19 2009-01-22 Tohoku Technoarch Co., Ltd. CANCER EVALUATION METHOD USING HAPTOGLOBIN β-CHAIN DEFINED BY ANTIBODY RM2

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02180995A (en) * 1988-10-28 1990-07-13 Soc Prod Nestle Sa Method for separating glycolipid from lipid mixture
JPH08508978A (en) * 1993-01-22 1996-09-24 スローン − ケタリング・インスティテュート・フォー・キャンサー・リサーチ Ganglioside-KLH complex with QS-21
JPH0884587A (en) * 1994-07-21 1996-04-02 Takara Shuzo Co Ltd Glycolipid ceramide deacylase
JPH1045792A (en) * 1996-07-26 1998-02-17 Takara Shuzo Co Ltd Production of lysosphingolipid
JP2004504621A (en) * 2000-07-19 2004-02-12 バイオトロン・リミテッド Methods for identifying marker traits of cancer in cancer diagnosis and uses for diagnosis
JP2005512061A (en) * 2001-11-28 2005-04-28 アイシーエイチ プロダクションズ リミテッド Sphingolipid internal standard
WO2009011466A1 (en) * 2007-07-19 2009-01-22 Tohoku Technoarch Co., Ltd. CANCER EVALUATION METHOD USING HAPTOGLOBIN β-CHAIN DEFINED BY ANTIBODY RM2

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016506501A (en) * 2012-12-11 2016-03-03 セントジーン アーゲー Diagnosis of metachromatic leukodystrophy
WO2016208741A1 (en) * 2015-06-24 2016-12-29 マイクロブロット株式会社 Simple analysis method for lipids in trace biological sample
CN114965822A (en) * 2017-10-27 2022-08-30 齐鲁制药有限公司 Medicine analysis method for efficiently determining ganglioside GM1 and impurities thereof
CN114965822B (en) * 2017-10-27 2024-06-04 齐鲁制药有限公司 Drug analysis method for efficiently determining ganglioside GM1 and impurities thereof
CN110464874A (en) * 2019-08-30 2019-11-19 中国科学院深圳先进技术研究院 A kind of polymer material and its preparation method and application with nerve fiber repairing activity
CN113866308A (en) * 2021-09-28 2021-12-31 吉林天成制药有限公司 Method for detecting content of pig brain ganglioside in medicinal preparation

Also Published As

Publication number Publication date
JP5977174B2 (en) 2016-08-24
JPWO2012081508A1 (en) 2014-05-22

Similar Documents

Publication Publication Date Title
JP5977174B2 (en) Determination of glycosphingolipids
Raetz et al. Kdo2-Lipid A of Escherichia coli, a defined endotoxin that activates macrophages via TLR-4
Jiang et al. Alkaline methanolysis of lipid extracts extends shotgun lipidomics analyses to the low-abundance regime of cellular sphingolipids
Hsu et al. Electrospray ionization tandem mass spectrometric analysis of sulfatide.: Determination of fragmentation patterns and characterization of molecular species expressed in brain and in pancreatic islets
Von Gerichten et al. Diastereomer-specific quantification of bioactive hexosylceramides from bacteria and mammals [S]
AU2015346064B2 (en) Determination of glycosaminoglycan levels by mass spectrometry
US20240219372A1 (en) Analytical method for glycosaminoglycans
CN101426926A (en) Substrates and internal standards for mass spectroscopy detection
Wing et al. High-performance liquid chromatography analysis of ganglioside carbohydrates at the picomole level after ceramide glycanase digestion and fluorescent labeling with 2-aminobenzamide
JP2005530157A (en) Oligosaccharide biomarkers for mucopolysaccharidosis and other related disorders
Lawrence et al. Characterization of glycan substrates accumulating in GM1 Gangliosidosis
CN105474017A (en) Marker for acid sphingomyelinase disorders and uses thereof
He et al. Synthetic disaccharide standards enable quantitative analysis of stored heparan sulfate in MPS IIIA murine brain regions
CN113686992A (en) Method for detecting target breast milk oligosaccharide in formula food
S'Dravious et al. Characterizing human mesenchymal stromal cells’ immune-modulatory potency using targeted lipidomic profiling of sphingolipids
JP2016521967A (en) Ganglioside composition
JP2005512061A (en) Sphingolipid internal standard
Bonham et al. The allopurinol load test lacks specificity for primary urea cycle defects but may indicate unrecognized mitochondrial disease
JP2021036232A (en) METHOD OF QUANTIFYING Hex4, LYSO-GM1, Fuc-GlcNAc-Asn, AND LYSO-SULFATIDE CONTAINED IN CEREBROSPINAL FLUID
Timmer et al. Discovery of Lipids from B. longum subsp. infantis using Whole Cell MALDI Analysis
KR102078431B1 (en) Quantification of non-reducing end glycan residual compounds
Ozand et al. Sanfilippo type D presenting with acquired language disorder but without features of mucopolysaccharidosis
JP7361256B2 (en) Analytical method for chondroitin sulfate
CN111537626A (en) Metabolite of corn in different producing areas and metabolic pathway analysis method thereof
von Gerichten Development of Mass Spectrometric Methods for Tissue Imaging and LC-based Quantification of Glycosphingolipids/Gangliosides including Tay-Sachs disease based Neuraminidase-deficient Mouse Models and Human Gut Microbiota

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11849150

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012548765

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11849150

Country of ref document: EP

Kind code of ref document: A1